Functional Analysis, Sobolev Spaces and Partial Differential Equations
Solutions

Dannin Eccles

1.1 Properties of the duality map

Let E be an n.v.s. The duality map F' is defined for every x € E by

F(z)={f e B :|f] = |=] and (f,z) = |}

1. Prove that
F(z)={feE":|f] < |z| and (f,z) = |z|*}.

and deduce that F(x) is nonempty, closed, and convex.

Proof. To discard with the trivial case, observe that when x = 0, the statement follows from the fact that
If]l >0 for all f e E*. Hence, we may assume WLOG that = # 0. Fix nonzero x € E and define S, := {f ¢
E* | f]| < |z|| and (f,z) = ||z|?}. Clearly F(z) c S,, moreover for any f € S, (f,z) = ||=|? implies that
[zl = (f; zp) < I < =], so that [ f] = [=]. Hence f € F(x), and it follows that F'(z) = S,.

The fact that F(z) is nonempty follows from the Hahn-Banach theorem and is the content of Corollary
1.3. To see that F(x) is closed, let J, € E** : f — (f,z) be the embedding of x in E** and observe that
F(x) =S8, = Bg:(0,|z]) n J;*({|=|?}), which is closed by the continuity of .J,. Finally, to see that F(z) is
convex, fix f,g € Fi(z) and X € [0,1]. Observe that [Af+(1-N)g| < M| f[+(1=X)|g| < ||=|, and (A\f+(1-N)g,z) =
ML)+ (1= X {g,z) = Mz|?> + (1= N)|z||? = |z|*> Hence, A\f + (1-XN)g €S, = F(x) for all f,g € F(z) and
A € [0,1], proving convexity. O

2. Prove that if E* is strictly convex, then F(x) contains a single point.

Proof. Fix z € E, f,g € F(x) and suppose E* is strictly convex. If x = 0, then ||f| = |g| = 0 implies that
f=9¢=0, so we may assume WLOG that x # 0. By the convexity of F(z), % € F(x) so that H%

| = JI.

f+g

2
convex, this is only possible if ' =¢’, and by rescaling, we see that f = g, which gives the desired result. O

Define f’:= ﬁ and g’ := ;% and observe that || = [¢'| =1 and H%’ + %’H =&

[l

’ = 1. Since E* is strictly

3. Prove that L i
F()={f € B s 5lyl - Slal? > (fy-o) VyeF}.

Proof. Fix z,y € E, f € F(z) and define R, := {f € E* : 1|y|®> - 3|=|®> > (f,y —x) Vy e E}. Observe that
(fry==2) = (f,9) = lz]* < I fllyl - J2l* = |z[(ly] - J=]). There are two cases to consider: when [y| > |z,
we have that | < P4 and Jy - ] 2 0, so that (f,y - ) < 2 (ly] - |#]) < FEL(Jy] - 2]), and the
desired inequality follows. Otherwise, when |y| < ||z|, then |z| > Mz\lw\l and |y| - |z] < 0, so that again
(fy—=) <|z|(lyl - |=]) < $ly|*> - 2]=|> This shows that the desired inequality holds for all y € E, and
therefore f € R, giving the first inclusion F(x) c R,.

Towards showing the other inclusion, suppose that f € R,. Then for any A > 1, we have that (A - 1)(f,z) <
%HxHQ and it follows that (f,z) < 22 |z|? for all A > 1. Taking the limit as n - 1 gives (f,z) < |z|*



Similarly, we see that for all A€ (0,1), (f,z) > %Hx“z and, in the limit, we see that (f,z) = |z|?. Using what
we just showed, it follows that for all y € E, (f,y) < 1|y|* + $|=|* and therefore for any & > 0, we have

Ifl= sw (fud=1 sw {fy)<5+o el
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yeB,y|=1 € yeB,yl=e 2

Assuming that x # 0, taking e = |z| gives |f] < |z| so that f € F(z). In the case where x = 0, note that for
every y € E, we have that (f,y) = L(f,ey) < £|y|? for all € > 0. It follows that f = 0 € F(0), proving that

€

F(z)=R, forall z € E. O

4. Deduce that
(F(z)-F(y),z~-y)>0 Va,yek,

and more precisely that
(f-g,x-y)20 Vz,yeE, VfeF(z), VgeF(y).
Show that, in fact,
(f=gz=y)2(lz] - ly)* VoyeB, VfeF(x), VgeF(y).

Proof. Fix z,y e E, f € F(z) and g € F(y). From (3), we have

1 1 1 1
(F=g.e=y)=~(fy=a)~{g.x-y) > (lal® = S1uI?) + (1wl - Sl21?) =0,

proving the first inequality.

For the second inequality, we have
(f_gax_y>:<f7$)_(fuy>_<gvx>+(g7y>
= []® = (f,9) = {g,2) + |y[?
> = 11yl - gzl + ly]
= (=] = ly)*.

5. Assume again that E* is strictly convex and let x,y € E be such that
(F(z) - F(y),z-y) = 0.
Show that Fx = Fy.

Proof. From the last inequality in (4), we see that (|z] - |y[)? < (F(x) - F(y),z - y) =0, so that |z| = [y].
Moreover, since 0 = ||z|? - (Fx,y) + |y|*> - (Fy,z) and |z|* - (Fz,y) > |z|?> - |Fz||y| = 0 and similarly

ly|? = (Fy,z) > 0, it follows that (Fa,y) = |z|* = (Fy,z). Since <%ﬁ + %%,ﬁ) = 1, it follows that

H%ﬁ + %ﬁ > 1. Finally, observing that ﬁ;—"ﬁ = % =1, the fact that E* is strictly convex implies that
Fx=Fy. O

1.2

Let E be a vector space of dimension n and let (e;)1<i<, be a basis of E. Given z € E, write z = Y1, x;e; with x; € R;
given f e E* set f; = (f,e;).

2. Consider on E the norm
|2] oo = max |z;|.
1<isn

(a) Compute explicitly, in terms of the f/s, the dual norm | f| g~ of f € E*.



Solution

Fix f € E* and note that for any x € E, (f,x) = ¥;xifi < X |willfil < |x]oo (X 1fsl). Thus, [f]e- < X;[fil
Now let y := (sgn(fi))1<icn, Where we set sgn(f;) =1if f; =0. Clearly (f,y) = >;|fi| and ||y|e =1, hence
1£1=X:1fil-

(b) Determine explicitly the set F'(z) (duality map) for every = € E.

Solution

Fix € E and suppose that f € F(z). Then ¥, z;f; = |z|% = max;|z;]* and max;|z;| = | f] = Z;|fil.
Note that max; |[z;]* = ¥, i fi < 3 |zl fil < | f]]z]leo = max;|x;|*. It follows that for each i, z;f; > 0. Let
A:={1<i<n:|z;| =max;|z;|}. Iclaim that for all j ¢ A, f; = 0. Towards proving this claim, suppose
for a contradiction that for some j ¢ A, |f;| > 0. Then max; || = ¥; || fs] = |2;](maxy [ar] - Xivj | f5]) +
Yiwj @il fil < maxy |zxl? — maxy 2] ¥isj | fil + maxy 2] Xisj | fil, @ contradiction. Hence, F(x) = {f € E* :
YieaTifi = MaXigicn 2| and Vj ¢ A: f; =0 and Vje A:x;f; >0},

1.3

Let E ={ueC([0,1]; R): u(0) = 0} with its usual norm

Jul = max Ju(t)].

)

Consider the linear functional

f:ueEHf(u):—/Olu(t)dt.

1. Show that f € E* and compute | f|

E*-

Proof. The linearity of f follows from the linearity of the integral over [0,1]. Note that for any u € E,
fluw) < fol lu(t)|dt < max;eo,1 |u(1€)\fo1 dt = |u|. Thus, f € E* and |f| g+ < 1. To see that |f| = 1, for each
0<t<t

’1” %‘S ;" Clearly uy| = 1 for alln and f(u,) = (1= ) + g = 1= g0 It

follows that | f[ g > 1~ 5~ for all n> 1, so that | f] g+ = 1. O

n > 1, define u, € E by u,(t) =

2. Can one find some u € F such that |u]| =1 and f(u) = | f|g+?

Solution

No. Observe that for any u € F with |u| = 1, the fact that w is continuous and u(0) = 0 implies that there
exists some & > 0 such that |u(t)| < 3 for all ¢ € [0,¢). Thus,

fo Lty

1 1
Fu) < gfo |u(t)|dt<§+f€ |u(t)|dt§%+(1—s):1—§<HfHE*.

1.6

Let F be an n.v.s. and let H c E be a hyperplane. Let V' c E be an affine subspace containing H.
1. Prove that either V=H or V = E.

Proof. Let f be a linear functional on E and « € R such that H = [f = a]. Since V is an affine subspace, there
exists a linear subspace V' of E and vy € E such that V' = vy + V’. Observe that WLOG, we may assume that
(f,v0) = «, so that vy € H. Indeed, if (f,v9) # a, then there must exist some w € V' such that (f,vo + w) = «,
and we can simply take V = (vg +w) +V’'. With this assumption in mind, observe that for any w € V', w € ker f
implies that (f,vg+w) = «, so that vg+w € H, showing that vo+ker f ¢ H. Moreover, since H c V, if w € V' such
that vg + w € H, then (f,vg +w) = (f,vp), which implies that w € ker f. Thus, we have H = vy + ker f. Suppose



that V' # H so that V' # ker f. Then there must exist some wqy € V' such that (f,wg) # 0. By homogeneity, it
follows that for all ¢ € R, there exists some w; € V' such that (f,w;) = t. Clearly E = Uyer[f =t]. FixtgeR
and y € [f =to]. Then taking w_¢, € V'. we have that y +w_s, e ker f c V', so that y = (y + w_¢,) —w_¢, € V.
It follows that E = User[f = t] ¢ V', which proves that V = E. O

2. Deduce that H is either closed or dense in E.
Proof. Let vg € H and observe that since H = vg +ker f c vg +ker f, the fact that vg + ker f is an affine subspace

containing H implies that either H = vg + ker f, so that H is closed, or H = vy + ker f = vg + ker f = E, so that
H is dense in E. O

1.8

Let E be an n.v.s. with norm | ||. Let C ¢ E be an open convex set such that 0 € C. Let p denote the gauge of C.

1. Assuming C' is symmetric (i.e., —C' = C) and C' is bounded, prove that p is a norm which is equivalent to | |.

Proof. The gauge p is defined by p(z) = inf{a > 0: 2z € «C}. From Lemma 1.2 (9) and (10), we see that there
exists a constant M such that 0 < p(z) < M|z|| Vze E, and C = {x € E: p(x) < 1}. The triangle inequality
holds for p by definition. Towards proving homogeneity of p, fix A <0, z € E and observe that for any a > p(z),
x € aC by the definition of p. By the symmetry of C, it follows that -z € aC so that p(-z) < «. Thus,
p(-z) < p(x). By symmetry, it’s clear that p(-z) = p(x). It follows that p(Ax) = p(—|A|z) = [Alp(-z) = |\p(z),
proving homogeneity. To finish the proof that p defines a norm on FE, note that it suffices to find some m > 0
such that m| x| < p(z) for all z € E. Since C' is bounded, there exists some ¢ > 0 such that ||z| < ¢ for all z € C.
Pick y € E, fix € > 0 and note that my € C so that p(Tl)%HyH < c. It follows that L|y| < p(y) +e. Since

this inequality holds for all € > 0 and y € E, we have m = % > 0 gives the desired constant. Note that since
m|z| <p(x) < M|z| for all z € E, p and | | are equivalent norms. O

2. Let E=C([0, 1]; R) with its usual norm
[ul = max |u(t)].

)

Let
1
C={uck: f Ju(t) dt < 1.
0
Check that C is convex and symmetric and that 0 € C. Is C bounded in E? Compute the gauge p of C' and
show that p is a norm on E. Is p equivalent to || ||?
Solution

Fix u1,us € C and X € [0,1]. By the convexity of z ~ 22, we have

fol|)\u1(t)+(1—)\)uQ(t)|2dts)\fol\ul(t)|2dt+(1—)\)[01|uQ(t)|2dt<1.

Since Aug + (1 — A)ug is obviously continuous, Au; + (1 — A)ug € C' which shows that C' is convex. That C is

symmetric simply follows from the fact that for all u € C', —u is continuous and [01 | —u(t)dt = fol lu(t)|?dt < 1.

Since 0 € E and [01 |0(#)]*dt = 0 < 1, 0 € C. Observe that C is not bounded: for each n > 1, wu, :=
Vn(l-nt), 0<t<t

{O n(1-nt), 1 <t<q € F and jol lun(t)]?dt = 3 < 1, so that u, € C. The fact that [u,| = \/n — oo as

n — oo proves that C is unbounded in F.

Towards computing the gauge p of C, note that for any a > 0, a~'u € C if and only if ||u|\%2([0 1 < a?. Thus,
after taking square roots, taking the inf over all such « gives p(u) = |u|12([0,17)- That | [ z2([0,1]) is @ norm on

E is immediate given that F can be realized as a subspace of L*([0,1]). Clearly | | and | |r2((0,1]) are not
equivalent norms on F since C' c E is bounded with respect to the latter and unbounded with respect to the
former.



1.14

Let E = ¢! and consider the two sets

and

X:{x:(mn)nzleE:xQn:O Vnzl}

1
Y= {y = (Yn)ns1 € Etyon = on Y2n-1 Vn > 1}~

1. Check that X and Y are closed linear spaces and that X +Y = E.

Solution

Fix z,2" € X and A € R. Observe that (z + 2")an = Zop + @5, = 0, (AT)2, = AT2, = 0 and 0z, = 0 for all n > 1,
which shows that X is linear subspace of E. Now suppose that (z¥)rs1 ¢ X converges in ¢! to some point
x € E. Then for any n > 1, since |za,| = |25, — 2on| < X |25, — 20| = 2% — 2| = 0 as k — oo, it follows that
x e X, and so X is a closed linear space.

Now fix y,3' € Y and observe that (y+%')2, = Q%ygn_l + Q%yén_l = %(yﬂ/)gn_l, (AyY)an = Q%Aygn_l, and Ogy, =
0= 2%02”_1 for all n > 1, which shows that Y is also a linear subspace of E. Suppose that (y*)gs1 ¢ Y converges
in ¢! to some point y € E. Then for all n > 1, |y, — Q%ygn_ﬂ < |y2n —y§n| + 2%|y§n_1 —yn—1| < (1+ 2%)Hy—y’f” -0
as k — oo, proving that Y is a closed linear space.

Towards proving that X +Y = E, fix (a,)ns1 € E. For each N > 1, define the elements %V € X and 3 €Y as
follows: for n > 2N, define xfy = yflv =0 and for 1 < n < N, define yo,-1 = 2" a9y, Yon = Q%ygn_l, To, = 0 and
Top 1 = Ggp_1 — 2"ag,. Note that (2N +yN), =a, for all 0 <n < 2N, and so [a— (2™ +y™)| = Zpsona1 |@n] = 0
as N — oo. Thus, a € X +Y, which proves that X +Y = F.

Let c € E be defined by
Con-1=0 Vn2x1,
Con = 2% Vn>1.

Check that c¢ X +Y.

Solution

Towards a contradiction, suppose that c€ X +Y. Then ¢ =z +y for some z € X and y € Y. Since zs, =0 for
all n > 1, it follows that yo, = 5~ and therefore y,—1 = 2"ys,, = 1 for all n > 1. But then obviously |y| = oo,
contradicting the fact that y belongs to ¢!. Thus, c¢ X +Y

Set Z = X — ¢ and check that Y n Z = @. Does there exist a closed hyperplane in F that separates Y and Z7
Compare with Theorem 1.7 and Exercise 1.9.

Solution

That Y n Z = & follows immediately from part 2. since otherwise there would be some y € Y such that y =z —c¢
for some x € X, contradicting that ¢ ¢ X + Y. To see that no closed hyperplane in E separates Y and Z,
suppose for a contradiction that there were some nonzero f € E* and « such that (f,y) < a < (f,z —¢) for all
yeY and x € X. Since X and Y are both linear subspaces, the only way this is possible is if ker f o X, Y. But
then X +Y c ker f, so that £ = X +Y c ker f = ker f, contradicting our assumption that f is nonzero. Note
that this result does not conflict with the Hahn-Banach, second geometric form (Theorem 1.7) since neither X
nor Y are compact (it’s easy to see that neither are bounded in ¢1).

4. Same questions in E=/P, 1 <p< oo, and in E = ¢g.



Solution

Checking that X and Y are still closed linear subspaces when we set E = /P or E = ¢y is a matter of adding
a pth power or using the sup norm in place of the ¢! norm above, and is trivial. Similarly, my proof that
X +Y = FE works equally well with E = ¢P or E = ¢g, just adding a power of p or observing that the trailing
sequence converges to 0. My proofs for 3. and 4. work without any changes.

1.16

Let E = /', so that E* = ¢°°. Consider N = ¢; as a closed subspace of E*. Determine
Nt={zeE:(f,z)=0 VfeN}

and
Nt ={feE":(f,z)=0 VaxeN'}.

Check that N*t + N.

Solution

Note that N* = {0}. To see why this holds, fix z € N* and n € N and observe that (d; )1 clearly belongs to
N so that 0 = ((§;n)i>1,%) = 5. The claim then follows by noting that this identity holds for all n > 1. Thus,
Nt ={feE*:(f,x)=0 Vze{0}}=FE*=(. Since (1);51 € £ \ ¢y, it follows that N** + N.

1.17

Let E be an n.v.s. and let f € E* with f # 0. Let M be the hyperplane [f = 0].
1. Determine M*.

Solution

Clearly span(f) c M*. Fix x € Ex M so that (f,z) # 0. Observe that for any y € F, (f, Y- ((J;;%Q))x) =0, so that

Y- E;z;x e M for all y € E. It follows that for all ge M* and all y € E, (g,y) = E?i; (f,y). Thus, g € span(f),
proving that M* = span(f).

2. Prove that for every z € E, dist(z, M) =inf ey |z -y = l%}ﬁ”-

Proof. From Example 1.3 of section 1.4 and part 1. above, we have that for any x € E,

dist(a:, M): max |<g x)|:max|</\f7x)| — |<f,37>|

geMfgls1 AR AS] Fi

3. Assume now that E = {u e C([0, 1]; R) : u(0) =0} and that

(fau):folu(t)dt, uek.

Prove that dist(u, M) = |f01 u(t)dt| Vu € E. Show that inf,cps |u — v| is never achieved for any u € E~ M.

Solution

I showed in problem 1.3 part 1. that |f]| = 1, so that by part 2. above, for all u € E, dist(u, M) = |<{Jfﬁ)‘ =

|[01 u(t)dt|. In part 2. of problem 1.3, I showed that there exists no u € E such that |u| =1 and (f,u) =1 = |u].
Since [(f,u)| < | f||u] = |u| for all w € E, it’s clear from the previous sentence that for all nonzero u € E,
[{(f,u)| < |u|. Thus, for all ue E~ M and all v e M, |u—v| > [{f,u—v)|=|{f,u)| = dist(u, M), which proves
that inf,eps |u — v|| is never achieved for any u € E N\ M.




2.1 Continuity of convex functions.

Let E be a Banach space and let ¢ : E - (—o00,+00] be a convex l.s.c. function. Assume z € IntD(p).

1. Prove that there exist two constants R >0 and M such that

o(z) <M VzeFE with |z -z < R.

Proof. Since xg € IntD(yp), there exists a neighborhood V' of xg such that ¢(y) < oo for all y € V. Hence, there
exists some p > 0 such that B(zg,p) c V. Now for each n > 1, define F,, := {x € E: |z — 20| < p and p(x) < n}.
Note that U, Fy, = B(xo, p) and each F), is closed by the lower semicontinuity of ¢ since F,, = B(zg, p)n[¢ < n].
By the Baire category theorem, the fact that B(xg,p) is not meager implies that there must exist some ng > 1
such that Int F,,, #+ @. It follows that there exists some yo € F,, and € > 0 such that B(yo,¢) c F,,. Observe
that for any = € B(xo,5), = = %(y +2(x —xp)) + %(930 + (20 —y)). Applying the convexity of ¢, we have
that ¢(z) < 1o(y +2(z - 20)) + So(wo + (zo — y)). Observing that y + 2(z - z9) € B(y,e), it follows that
p(r) <+ %ap(mo + (20 ~y)) for all z € B(xo, 5). Since ¢ + (w0 ~y) € B(wo, p) c D(p), we can take R = 5 and
M ="+ Lo(220 +y). O

2. Prove that Vr < R,3L > 0 such that

lo(z1) —p(x2)| < L|w1 — 22| V1,22 € E With |z; —x0| <7, i=1,2.

2[M—p(z0)]

More precisely, one may choose L = o

Proof. Clearly we may assume WLOG that zg = 0. Fix r > 0 with » < R and 21,25 € B(0,7). The inequality is
trivial if x1 = 22, so WLOG assume that x1 # x2. Let y = m(xl - xg). Then z1 = ty + (1 - t)x2 for some
t €[0,1], so that p(x1) <te(y)+(1-t)p(xe) <tM +(1-t)p(x2). It follows that ¢(z1) —p(x2) < (M —p(x2)).
Since x1 — x2 = t(y — z2), it follows that |z1 — x| > t(R - r), and so p(x1) — ¢(z2) < w(M - p(x2)).
Applying the same reasoning except replacing x; with 0, we have that ¢(0) — p(x2) < t(M — p(x2)). Since
—x9 = t(y—x3), so that |za] = tH(—HLRQ” —1)z5]|. Solving for ¢, we get that t = Rhi”z” < % Hence, ¢(0) —¢(x2) <
%(M - p(x2)). Rearranging, we have —p(x2) < M —2(0). Plugging this back into our prior inequality, we
have (1) - p(x2) < %Hxl —25|. By symmetry, we must also have ¢(x2) —p(x1) < WH@ -x1],
and the desired inequality follows. O

2.3

Let E and F be two Banach spaces and let (T,) be a sequence in L(F, F). Assume that for every x € E, T,z
converges as n — oo to a limit denoted by T'xz. Show that if x,, > « in E, then T,,z,, > Tx in F.

Proof. Suppose that z,, - z € E. Because T,,y - Ty for all y € E, it follows that |T,y|| — |Ty| for all y € E, so that
sup,, |Thy| < oo for all y € E. By the uniform boundedness principle, there exists C' € R such that sup,, |7, | < C.
Thus, for all n>1

|Thxn — Tx|| < | Th(xn —x)| + | The - Tx| < Clzy — x| + |Tnx - Tz =0  as n — oo.
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Let F and F be two Banach spaces and let a: E x F' > R be a bilinear form satisfying:
(i) for each fixed x € E, the map y ~ a(z, y) is continuous;
(ii) for each fixed y € F, the map x — a(z, y) is continuous.

Prove that there exists a constant C' > 0 such that

la(z, Y| < Clafly] vVeeE, VyeF.



Proof. For every x € E, define Ty, : y € F' — a(x, y). By assumption each T, € F*. Define the map T: E - F*; x — T,.
Note that the proof will be complete if I can show that T is a bounded linear operator since then for any = € E and
yelr,
la(z, y)| = (Lo, y)| < | Tl [yl < 1T (1] ]y]-

That T is linear follows from the fact that a is bilinear: Yoy, 20 € E VA, A2 € R Vye F: (T(Max1 + Aaza), y) =
a(Az1+Aaxa, y) = Ma(zy, y)+dea(ze, y) = (MT(21)+ AT (22), y). To prove that T is bounded, let T(B) := {T'(x) :
|z] <1} ¢ F*. Fix y € F and observe that by the assumed continuity of the linear map = — a(z, y), there exists
Cy € R such that |a(z, y)| < Cy|z| for all z € E. Hence, for all T(z) € T'(B)

(T(@), y)l =la(z, y)| < Cy[z] < Cy.

It follows that for each y € F, the set (T'(B), y) is bounded in R and so by corollary 2.5, T'(B) is bounded in F*.
That is, there exists C' € R such that |T'(x)| < C for all € E with |z| < 1. This proves that T" is bounded and has
operator norm |T| < C. The desired inequality follows. O

2.5

Let E be a Banach space and let €,, be a sequence of positive numbers such that lim €, = 0. Further, let (f,,) be a
sequence in E* satisfying the property

Ir>0, VaxeFE with |z|<r, 3C(x) e R such that
(fn,x) <enlful +C(z)  Vn.
Prove that (f,) is bounded.

Proof. For each n > 1, define #\I)‘Hf” Fix z € E. T claim that the set ((gn)ns1,) is bounded in R. If z = 0, this
statement is obvious so suppose WLOG that x # 0. Then by assumption, for all n > 1,

r 1 r
(gns 51—) = (s 1™
2z T+enlfull " 2]2]
enll fall +O(mz)

L+en|ful

T

<1+C(=—z).

(2||93H)

r

It follows that for all z € F and n > 1, {gn,z) < 2|z|(1 + C(erwlx)) Hence, for all x € E, the set ((gn)ns1,)

is bounded and so by corollary 2.5, the set (gn)n»1 is @ bounded subset of E*. That is, there exists some C € R
sup,, |gnll = sup, ﬁ”f”anH < C. Thus, for any n such that |f,]| >0, 1-¢, < ﬁ Since €,, - 0, there exists N
such that €, < % for all n > N, so that for all n > N such that | f,] >0, | f.] < 2C, proving that (f,) is bounded in
E*. O

2.7

Let o = (a,) be a given sequence of real numbers and let 1 < p < co. Assume that Y |a,||z,| < oo for every element
@ = (z,) in 7. Prove that a € 7.

Proof. For p =00, set ()n> = (1)n>1 and observe that 3 |ay,| = ¥ |ay|[@,] < 0o, so that a € £1. For p = 1, suppose for
a contradiction that « ¢ £%°. Then for each k, N > 1, there must exist some nj > N such that |a,, | > 2% Thus, we can
construct an increasing sequence (ny) such that |, | > 2% for all k > 1. For each k, define ()51 = >k (Onny %)nzl
and note that (z,,) € €' but ¥,, |anllzn| > Xy |, |55 = 0. By contradiction, a € £,

Having dealt with the cases p =1 and p = oo, we may assume WLOG that 1 < p < co. For each n > 1, define the
map T, : 7 - R; (z;) — Z;-Ll ajx;. Clearly each T}, is a continuous linear functional and, by assumption, for all
x € P, (T, x) converges as n — oo to some point which we shall denote T'z. Then by corollary 2.3, T € £7* and so there



k<
exists C' € R such that | Y, apz,| = (T, 2)| < C|z|, for all x € P. Now for each n, define ay, ,, = {gk’ L = Clearly
, >n.
p'-1 pp’-p
()1 € 7 for all n. For each n, define B, : N > R; k > 28(ekn)loknl? — " Noto that 18n B = Thoy love] =1

7 N
”(am,n)mzl Hzl/p ”(am,n)mlez/

’ 1 1

n ag|? n 7\ »’ n r\ '

and (T.B,) = Tiy 11— = (Zis o)™ Thus, for all n 2 1, (Ziuax’)” = (T.8,) < ClBal, = €.
myn)m21ll

proving that « € v

2.8

Let E be a Banach space and let T': E — E* be a linear operator satisfying
(Tz,z) >0 VzekFE.

Prove that T is a bounded operator.

Proof. Since T is a linear operator between two Banach spaces E and E*, by the closed graph theorem, to prove that
T is a bounded operator, it suffices to prove that T is closed. To this end, suppose that (z,,,Tx,) ¢ ExE* converges to
apoint (z, f) in ExE*. We have that for ally € E, (Tz,-Ty,x,-y) > 0. Since each T(z,-y) € E*, T(xn-y) - f-Ty
and z, -y - ¢ —y as n - oo, we can apply problem 2.3 to get that (f - Ty, z —y) = lim, oo (T(zn - y),2n —y) >0,
which holds for all y € E. Thus, fixing v € £ and taking y = x — %u, we have that for alln > 1 (f-Txz + %Tu, %u) >0,
which implies that (f - T2 + L Tu,u) > 0 and taking the limit as n — oo, we get that (f - Tz, u) > 0 for all u € E.
Doing the same trick but replacing —%u with %u, we see that also (f — Tz,u) <0 for all u € E, proving that f = Tz.
By the closed graph theorem, T' is a bounded linear operator. O

2.20

Let E and F' be two Banach spaces. Let T € L(E, F') and let A: D(A) c E - F be an unbounded operator that is
densely defined and closed. Consider the operator B: D(B) c E — F defined by

D(B)=D(A), B=A+T.
1. Prove that B is closed.

Proof. Suppose that (x,,Bx,) c D(B) x F' converges to some point (z, f) € E x F. Then z,, - z in E and
since T is continuous, Tz, — Tz in F. Note that since (x, Axy) = (2n, By —Txy) — (x, f —Tx) as n — oo,
the fact that A is closed and (z,) ¢ D(B) = D(A) implies that x € D(A) and Az = f - Txz. Thus, x € D(B)
and f = Bz, proving that B is closed. O

2. Prove that D(B*) = D(A*) and B* = A* +T"*.

Proof. Fix v e D(A*). By definition, there exists C' € R such that (v, Au)| < C|lu| for all w e D(A) = D(B).
Thus, for all u € D(B), |(v,Bu)| = |{v,Au+ Tu)| < (C + |T|)|u|, and it follows that v € D(B*) so that
D(A*) ¢ D(B*). Further, if v € D(B*), then there exists some C € R such that for all u € D(B) = D(A),
|{(v, Bu)| < C|u|. It follows that for all uw € D(A), [(v, Au)| < (v, Bu)| + [{(v,Tu)| < (C + |T|)|u|, so that
v € D(A*), which proves that D(A*) = D(B*). Note that for any v € D(B*) = D(A*) and v € D(B) = D(A4),
(B*v,u) = (v, Bu) = (v, Au+Tu) = (A*v+T*v,u). By the continuity of B* and A*+T* and the fact that D(B)
is dense in E, it follows that for all v e D(B*) = D(A*), B*v = A*v + T*v, proving that B* = A* + T*. O

2.21

Let E be an infinite dimensional Banach space. Fix an element a € F, a # 0, and a discontinuous linear functional
f:E - R. Consider the operator A: F — E defined by

D(A)=E, Az=z-f(z)a.
1. Determine N(A) and R(A).



Solution

Clearly N(A) c span(a). In fact, if A\a € N(A) and X # 0, then Aa = Af(a)a <= a = f(a)a < f(a) = 1.
Hence, either f(a) # 1 and N(A) = {0} or f(a) =1 and N(A) = span(a). Towards finding R(A), note that if
x € N(f) then Az =z - f(x)a = x, which shows that N(f) c R(A). In fact, if f(a) =1, then u € R(A) implies
that for some x € E, f(u) = f(Ax) = f(x) — f(z)f(a) = 0, which shows that R(A) = N(f) when f(a) =1. If
f(a) # 1, then for any u € E, set x = u + 1_f7za)a and note that Az = u + 1{;2)(1 - f(w)a - 1f§?i)f(a)a =,
showing that R(A) = E when f(a) # 1.

2. Is A closed?

Solution

No. Since A is a linear operator from the Banach space E to itself, if A were closed then it would be continuous
by the closed graph theorem. In particular, it would be continuous at 0. However, since f is discontinuous,
it is necessarily discontinuous at 0 and so there exists a sequence z,, ¢ E that converges to 0 such that f(z,,)
does not converge to 0. But then Ax,, cannot converge to 0, and so A cannot be closed as it is not continuous.

3. Determine A*

Solution

Suppose that v e D(A*), then there exists C such that for all z € E,

[f (@)l[{v, a)| = [[(v, )] < [|{v, 2)| = [f (@)[[(v, a)l|
<Hv,z - f(x)a)
<Oz

Observe that this forces (v,a) = 0, since otherwise we would have that for all x € E, |f(x)| < (I(i:HaU)‘ID x|,

contradicting the assumption that f is discontinuous. Thus, D(A*) ¢ N(a € E**). Clearly if v € N(a € E**),
then for all x € E, |(v, Ax)| = [(v,z)| < |v|||z], which shows that D(A*) = N(a € E**). Thus, it follows that for
all ve D(A*) and for all x € E, (A*v,z) = (v,2 — f(x)a) = (v, ), showing that A* = Idp(a«).

4. Determine N(A*) and R(A*).

Solution
From part 3. above, it follows that N(A*) = {0} and R(A*) = D(A*) = N(a € E**).
5. Compare N(A) with R(A*)* as well as N(A*) with R(A)*.

Solution

R(A*)* = {x € E: (v,x) Vv e D(A*)} = span(a) (equality follows from an obvious application of Hahn-
Banach, second geometric form). Comparing this to N(A), we see that N(A) = {0} ¢ R(A*)* if f(a) # 1 and
N(A) =span(a) = R(A*)* if f(a) = 1. Further, R(A)* = {0} = N(A*) since by problem 1.6, the fact that N(f)
is not closed implies that N(f) is dense in E. (That N(f) is not closed follows from the closed graph theorem
and the fact that f is discontinuous.)

6. Compare with the results of Exercise 2.18 (skipping since 2.18 was not included in the assignment).

2.22

The purpose of this exercise is to construct an unbounded operator A : D(A) ¢ E — E that is densely defined, closed,
and such that D(A*) # E*. Let E = /(' so that E* = (. Consider the operator A: D(A) c E - E defined by

D(A) = {u = (up) € ' : (nuy,) € El} and Au = (nuy,).
1. Check that A is densely defined and closed.

10



Solution

Towards first proving that A is densely defined, fix x = (z,,) € £! and € > 0. Pick N such that Y00 x, |za] <€

n, N<N
and define u = (uy,) = ({g " N
, n>

|z —ul1 = ¥,sn |2n| < € proves that D(A) is dense in 1.

) . Clearly u € £! and (nu,,) € ¢' since the sum is finite. The fact that
n>1

To see that A is closed, suppose that @, = (zx.,) ¢ D(A) is a sequence that converges to some point = () € £*,
and Az, = (kxy,,) converges to f = (fi) in £'. Then |kxy., — fi| < |Az, — fl1 = 0 as n > oo, so that fi =
lim,,, 00 2y, i, for each k > 1. But also |kxy —kxyg n| < k|z—2,[1 — 0 as n — oo, so that fi = lim,, e kzp k = ki
Thus, z € D(A) and f = Az, proving that A is closed.

2. Determine D(A*), A*, and D(A*).

Solution

Note that for all v = (v,,) € D(A*), there exists some C such that for every = = (z,,) € £}, |(v, Ax)| = | £, nvnzp| <
Cllz||1 < oo. By exercise 2.7, (nvy,) € £° and so D(A*) c {v € £~ : (nv,) € £°}. Clearly if v € £>° and (nv,,) € £*°,
then for all x € /1, |(v, Az)| = | ¥, n0n 2| < [(ny) | o] z]1, Which shows that D(A*) = {v € £* : (nv,) € £°}. For
any v e D(A"), (A*v); = (A*v, (On,;)) = (v, A(On,;)) = jv;, which shows that A*v = (nv,,) on D(A*). Clearly
for every v € D(A*), there must exist some C' € R such that [nv,| < C for all n, which implies that |v,| < C/n -0
as n — co. Hence, D(A*) c ¢y. Using the same method as above to show that D(A) is dense in ¢!, it is clear
that D(A*) is dense in cg, so that D(A*) = ¢y ¢ £*°.

3.1

Let E be a Banach space and let A c E be a subset that is compact in the weak topology o(E, E*). Prove that A
is bounded.

Proof. By Corollary 2.4, to prove that A is bounded it suffices to prove that for every f € E*, the set f(A) is bounded
in R. To this end, fix f € E* and for each x € A, define U, = {y € E:|(f,y — x)| < 1}. Clearly each U, is weakly open

and the collection {U, },ca covers A. Since A is weakly compact, there exist x1,...,z, € A such that A c U, U,
Thus, for any y € A, there is some x; such that |(f,y)| < 1 +|(f,z;)| < 1 + maxicp<n |(f, zr)| < 00, proving that f(A) is
bounded for each f e E*. It follows that A is bounded. O
3.2

Let E be a Banach space and let (z,,) be a sequence such that x,, -~ x in the weak topology o(F, E*). Set
1
on=—(1+ T2+ +xy,).
n

Prove that o,, -~ x in the weak topology o(E, E*).

Proof. Fix f € E*. Since x, = z, (f,x,) = (f,x). Fix € >0 and pick Ny such that [(f,z —z,)| < § for all n > N;.
Pick Ny large enough such that Niz Zf\:ﬁl |(f,x —2;)| < 5. Then for all n > max(Ny, N2),

L |
[(fsx —on)l <D =[(fiz— )]
=1
1 M 1 n
< Z|f7x xl|+7 Z |(f,f£—$1>|
N2 4 N i=N1+1
<Ee.

Thus, (f,0,) = (f,z). Since (f,o,) — (f,x) for every f e E*, it follows that o, — 2 in the weak topology
o(E, E*). O
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Lemma 1

Let X be a first countable topological vector space and suppose that C' ¢ X is convex. Then the closure of C is
convex.

Proof. Suppose that a,be C and X € [0, 1]. Since the topology on X is first countable, C' is equal to the set of all limits
of sequences in C. Thus, there exist sequences (a,,), (b,) c C such that a,, > a and b,, - b. Since Aa,, + (L =A)b, € C
for all n and Aa, + (1= M)b, = Aa+ (1 -A)b by the continuity of the addition and scalar multiplication operations on
X, it follows that Aa + (1 - \)be C, proving the convexity of C. O

3.3

Let E be a Banach space. Let A c E be a convex subset. Prove that the closure of A in the strong topology and
that in the weak topology o(E, E*) are the same.

Proof. Define A to be the strong closure of A and A the weak closure of A. Since the strong and weak topologies on
an n.v.s. are obviously first countable, it follows by Lemma 1 above that A and A° are both convex subsets. Thus,
by Theorem 3.7, A is a weakly closed subset including A, proving that A° c A. Since all weakly closed subsets are
strongly closed, A° is a strongly closed subset including A, proving that A = A°. O

3.5

Let E be a Banach space and let K ¢ E be a subset of E that is compact in the strong topology. Let (x,) be a
sequence in K such that z,, — z weakly o(E, E*). Prove that =, — x strongly.

Proof. Suppose for a contradiction that z, does not converge strongly to . Then there must exist some ¢ > 0 and
a subsequence (x,, ) of (x,) such that ||x,, —z| > €. In particular, no subsequence of (z,,) converges to x. Since
the strong topology on F is obviously metrizable, K being strongly compact is equivalent to K being sequentially
compact with respect to the norm on E. Thus, the sequence (z,, ) c K has a convergent subsequence (x,, ) which
must converge to a point y € K. But then by Proposition 3.5, x,, -y in o(E, E*). Since x,, -2z and o(E, E*)
is Hausdorff, it follows that Tn,,, Y=, a contradiction. Thus, by contradiction z,, - x strongly. O

3.7

Let FE be a Banach space and let A c E be a subset that is closed in the weak topology o(FE, E*). Let Bc E be a
subset that is compact in the weak topology o(E, E*).

1. Prove that A+ B is closed in o(E, E*).

Proof. Let O := Ex (A+ B) and fix a point « € O. For each b € B, since A + b is weakly closed and z ¢ A + b,
there exists a weakly open neighborhood Uy, of 0 such that (z+Uy)n(A+b) = @. Moreover, since o(E, E*) is a
locally convex topology, we can assume WLOG that each U, is convex. Finally, it is clear from the local bases
of 0 in the weak topology that we can make the further assumption that each U, is symmetric. Observe that the
collection {%Ub +b}pep is a weak open cover of B and so by weak compactness, there exist %Ubl +b1,..., %Ubn +b,
that cover B. Thus, A+ Bc A+UpL, (3Us, +b;). I claim that (z + N}, 3Us,) N (A + B) = @. Towards proving
this claim, suppose for a contradiction that there exists u € N}, %Ubi such that x+w e A+ B. Then there exists
some a€ A, 1 <k<nandu € %Ubk such that z + u = a + v’ + b. But then by the symmetry and convexity
of Up,, u—u' € Uy, so that x +u —u" € (z + Uy, ) N (A+bg), which is impossible. Thus, by contradiction,
(z+NL,Up,)Nn(A+ B) =@. Since z +Nj=, Up, c O is a weak open neighborhood of z, it follows that O is
weakly open, proving that £\ O = A + B is weakly closed. O

2. Assume, in addition, that A and B are convex, nonempty, and disjoint. Prove that there exists a closed
hyperplane strictly separating A and B.
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Proof. Note that since B is weakly compact and convex, so is —B. By part 1. above, A — B is weakly closed
and therefore strongly closed. Since the sum of two convex sets is convex, A — B is a nonempty, convex,
strongly closed subset of FE that does not include {0} (since An B = @). By the second geometric form of the
Hahn-Banach theorem, there exists f € E* and «a € R such that f(a-b) <a< f(0)=0 for all a e A and b € B.
It follows that f(a) <a+ f(b) < f(b) for all a € A and b e B. Thus, sup,c4 f(a) < a+infyep f(b) < infiep f(D).
Pick o € (supges f(a),infpep f(b)) and e > 0 such that (o' —e,0’ +¢€) c (supgeq f(a),infpep f(b)) and observe
that for alla e Aand be B, f(a) <a'—e<a’+e < f(b). Thus, A and B are strictly separated by the hyperplane

[f=a]. O

3.8

Let E be an infinite-dimensional Banach space. Our purpose is to show that FE equipped with the weak topology is
not metrizable. Suppose, by contradiction, that there is a metric d(z,y) on E that induces on E the same topology
as o(E, E*).

1. For every integer k > 1 let Vi denote a neighborhood of 0 in the topology o(E, E*), such that
Vi c {x 2d(x,0) < l}
k
Prove that there exists a sequence (f,) in E* such that every g € E* is a (finite) linear combination of the f; s.

Proof. We may assume WLOG that for each k, there exist €5, > 0 and bounded linear functionals fi 1,. .., fin, €
E* such that Vi, = {z € E:|(fxi,x)| <er Vi:1l<i<ng}. Let (f,) bean ordering of these functionals f ; for all
k>1and1<i<ng. FixgeE*. Iclaim that there exists my,...,m; and Aq,...,\; e Rsuch that g = Zgzl i frng -
Observe that by Lemma 3.2, to prove this claim, it suffices to prove that there exists mj,...,m; such that
ﬂle ker f,,,, c ker g. Suppose for a contradiction that for any finite subset F' ¢ N, N;cp ker f; is not a subset of
ker g. Then for every k > 1, there exists x;, € N ker f; such that ¢ kerg. Then Azj € N ker f,; \ ker g
for all A # 0 and so by potentially rescaling each zj, we may assume WLOG that (g,zy) = % But since
each zj clearly belongs to Vj, it follows that d(xy,0) < % — 0 as k - oo and so zp — 0 weakly, forcing
% = (g,xr) = (g,0) = 0, which is clearly absurd. Thus, by contradiction, g must be equal to a finite linear

combination of the functionals in the sequence (f,,). O
2. Deduce that E* is finite-dimensional.

Proof. From part 1. we have a sequence (f,,) ¢ E* such that every g € E* is equal to a finite linear combination
of the f,,’s. Now for each n > 1, define Fj = span(f1,..., fr) and observe that each F} is a finite-dimensional
subspace so strongly closed in E*. Since U,s1 F, = E* and E* is a complete metric space with respect to
the operator norm, it follows by the Baire category theorem that there exists some N such that Int(Fy) # @.
That is, there exists some g € Fiy and an open neighborhood V of 0 such that g + V ¢ Fy. It follows that
V =(g+V)-gc Fy. Using the bases for the topology induced by the operator norm on E*, there exists some
€ > 0 such that Bg+(0,¢) ¢ V c Fy. Observe that if {b;};c; is a basis for E*, and b; is any vector belonging
to this basis, then 55—b; € V c Fiy and so b; € Fiy, proving that {b;},c; ¢ Fx. Since Fy is finite-dimensional

2[b4]
and {b;}ier ¢ Fiv is a linearly independent collection of vectors in Fy, it follows that |I| < co. That is, E* is
finite-dimensional. O
3. Conclude.
Solution

Towards proving that E* can never be finite-dimensional when F is infinite-dimensional, fix a linearly inde-
pendent collection f1,..., f, € E*. Define the map ¢ : E - R™; z » (f1(x),..., fn(x)). Since ¢ is linear,
continuous and its image is finite-dimensional well its domain is infinite-dimensional, ¢ cannot be injective and
so there must exist nonzero z € N7, ker f;. By Corollary 1.6, there exists f € E* such that (f,z) = |z # 0 and
so Nivy ker f; is not a subset of ker f, which implies that f cannot be a linear combination of the f;’s. Thus,
FE* cannot be finite-dimensional, contradicting our conclusion from part 2. above. By contradiction, the weak
topology o(FE, E*) on E cannot be metrizable when F is an infinite-dimensional Banach space.
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4. Prove by a similar method that E* equipped with the weak® topology o(E*, E) is not metrizable.

Proof. Suppose for a contradiction that there exists a metric d(f,g) in E* that induces the same topology as
o(E*, E). For every integer k > 1 let V}, denote a neighborhood of 0 in the topology o(E*, E), such that

VkC{f:d(f,0)<%}.

Then we may assume WLOG that for each k, there exists e > 0 and g,1,...,%5n, € E such that Vi, = {f €
E*:|(f,zrq)| <er Vi:l<i<ng}. Let (z,) be an ordering of the z;’s and fix € E. I claim that 2 must
be equal to a finite linear combination of the x,’s. Again using Lemma 3.2, to prove this claim, it suffices to
find mq,...,m, € N such that N}, ker J(«;) c ker J(z), where J is the embedding of E into E** (since then
there will exist A1,..., A\, € R such that (f,z — X1 \ixy,,) = 0 for all f € E*, so that |z - X7y N\izm, | = 0).
Suppose for a contradiction that = were not a finite linear combination of some of the z,’s. Then for all

k > 1, there would exist f, € N[ ker J(2k,) \ ker J(z), and we may assume WLOG that (fz,2) = 3. Since

each fj € Vi, d(fx,0) < % —~ 0 as n — oo, implying that f — 0 in o(E*, E). However, this implies that
% = (fr,z) = (J(z), fr) = 0, a contradiction. Thus, by contradiction, z is a finite linear combination of the
Zn's. For each n, define F,, = span(zy,...,2z,) c E. Each F, is a finite-dimensional subspace of E so strongly
closed in E, and from our conclusion above, it follows that F = U,>1 Fi,. Since F is a complete metric space
with respect to the metric induced by its norm, by the Baire category theorem, there exists some N > 1
such that Int(Fy) # @. And the same reasoning as in part 2. above shows that E would then by finite-
dimensional, contradicting our assumption that E is infinite-dimensional. By contradiction, it follows that the
weak”™ topology on E* cannot be metrizable whenever F is infinite-dimensional. O

3.10

Let E and F be two Banach spaces. Let T € L(E, F), so that T* € L(F*, E*). Prove that T* is continuous from
F* equipped with o(F*, F) into E* equipped with o(E*, E).

Proof. Note that, by definition, o (E*, E) is the weakest topology that makes all maps J, : f € E* — (f,z) for each
x € E continuous. Thus, by Proposition 3.2, to prove that T* : (F*,o(F*, F)) - (E*,0(E*, E)) is continuous, it
suffices to check that for each x € E, the map J, o T™* is continuous. But for any v € F*, J, o T*(v) = (T™v,2) g+ =
(v,Tz)p+ p, and since v € F ~ (v,Tz)p+ p is a continuous map from (F*,o(F*, F)) into R by the definition of
o(F*, F), it follows that T* is continuous between the weak* topologies. O

3.13

Let E be a Banach space. Let (z,,) be a sequence in E and let z € E. Set

K, = conv( @{xl})

1. Prove that if z, — 2 weakly o(F, E*), then

(an s

Proof. Note that if the sequence (x,)n»1 converges weakly to x in o(E, E*) then clearly all subsequence of
(z,,) also converge weakly to  and, in particular, all sequences (2 )gsn for any n. Thus, by Mazur’s lemma,

for each n > 1, there exists a sequence (yi) c conv( U;’:n{x,}) such that y, — = strongly. It follows that for

alln>1, z € K,, and so {z} c N2, K,,. Now fix y € N>y K,,. Towards proving that y = z, fix £ > 0, nonzero
f € E* and pick N such that [(f,z, - )| < § for all n. > N. Since y € Ky, there exists ni,...,n, > N and
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Ay Am €[0,1] with Y12, A; = 1 such that ||y — 272 Nz, Thus,

< m
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Since € > 0 and f € E* were arbitrary, it follows that (f,z—y) =0 for all f € E*. Thus, |z-y|| =0, and so = = y.
The statement to prove follows. O

. Assume that E is reflexive. Prove that if (x,,) is bounded and if 0,2, K, = {«}, then z,, —~ x weakly o(E, E*).

Proof. Towards a contradiction, suppose that x, does not converge weakly to x. Then, there would necessary
exist a subsequence (x,, ) of (z,), f € E* and € > 0 such that |[(f,x,, — )| > ¢ for all k> 1. Since E is reflexive
and (z,, ) is bounded, by Theorem 3.18 there exists a subsequence (xy,, ) of (z,,) that converges weakly to a
point y € E. Observe that for any n > 1, there exists N such that for all m > N, ng,, >n, so that z,, € K, for
all m > N. It follows that y is a weak limit point of each K, and since each K, is convex and strongly closed,
each K, is also weakly closed, so y € N2; K, = {x}. It follows that x,, ~— 2 weakly, and so (g, 2., ) - (g,7)
as m — oo for all g € E*. But then there must exist some m such that |(f,z,, -2)|<e¢, a contradiction. Thus,
by contradiction, x,, — x weakly. O

. Assume that F is finite-dimensional and N;2; K,, = {z}. Prove that z,, — x.

Proof. T claim that (x,) must be a bounded sequence. Towards proving this claim, suppose for a contradiction
that (x,) is unbounded. Fix a basis vy,...,v, for E and let (-,-)g be the canonical inner product on F that
makes the basis vy,...,v, orthonormal. Let |- ||z be the norm induced by this inner product. Since all norms
defined on a finite-dimensional vector space are equivalent, the sequence (x,) is bounded if and only if it is
bounded with respect to |« |g. For m > 1, let (zm1,.-.,Zm,n) be the components of x,, with respect to the
fixed basis vy,...,v,. Then since (z,) must be unbounded with respect to |+ | g, it follows that there must
exist 1 <4 < n such that (z,,;) is an unbounded sequence in R. For all m > 1, writing K,,, with respect to the
basis v1,...,v, gives

Ko = {(X Mtirs o 3 Mewnn) s F e {mym+1,..} and [F] <00 and i, A€ [0,1]: 3 M =1},
keF keF keF

Thus, since {(21,...,2,)} = NyZy Ky, we must have that {z;} = conv(U52,,{7;:}) o [liminf; e ;;, limsup;_, . x;;].
Clearly we must therefore have that limsup,_,, x;; = liminf; e x;; = x;, but this contradicts the sequence
(Zm,i)m>1 being unbounded. Thus, by contradiction, (z,,) is a bounded sequence. Since F is finite-dimensional,
E is reflexive. By part 2., x,, — x weakly. But since the weak topology on any finite-dimensional Banach space
is the same as the strong topology, it follows that z,, - x strongly. O

. In ¢P, 1 < p < oo, construct a sequence (z,) such that N5, K, = {z}, and (x,) is not bounded.
Solution

dd
Define the function o0: N - N by o(n) = mn no
0, mneven

alln>1, [(0(n)0n.m)|2 = o(n) and so (0(1n)0n.m)ns1 © €2 is unbounded. Now suppose that y € N2, K,,. Then
for all n > 1, since y € K,,41, it follows that the nth component of y must be equal to 0 and so y = 0. Clearly
0eN;>y Ky, proving that Ny K, = {0}.

, and define the sequence (0(n)0y, m )n>1. Observe that for
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3.16

Let E be a Banach space.

1. Let (f,) be a sequence in E* such that for every x € E, (f,,x) converges to a limit. Prove that there exists
some f € E* such that f, = f in o(E*, E).

Proof. For each x € E, denote the limit lim, oo {fn,z) by (f,2). By Corollary 2.3, f € L(E,R) = E*. Since
(f = fn,x) > 0 for all z € E, it follows that f, — f in o(E*, E). O

2. Assume here that E is reflexive. Let (z,) be a sequence in E such that for every f € E*, (f,x,) converges to
a limit. Prove that there exists some x € F such that x,, -~ = in o(E, E*).

Proof. Let J: E - E** be the embedding of E in E**. Observe that (J(z,)) is a sequence in E** = (E*)*
such that for all f € E*, (J(x,), f) = (f,z,) converges to a limit. Applying part 1., it follows that there exists
some & € E** such that J(z,) = € in o(E**, E*). Since E is reflexive, there exists some 2 € E such that
¢ = J(x). Moreover, for every f e E* (f,x—x,)=(J(x) - J(x,),f) > 0 as n > co. Thus, z,, ~ = weakly in
E. O

3. Construct an example in a nonreflexive space E where the conclusion of 2 fails.

Solution

Take E = ¢y (which is not reflexive since cj* = (¢1)* = £*) and for each n > 1, define the sequence 1,, : N —

1, k<n _. . .
{0,1}; k — 0. kon' Fix some f € ¢} = ¢'. Observe that (f,1,) = ¥1; fi, which converges as n — oo since
the series Y72, f; is absolutely convergent. However, for any x € ¢, since x,, — 0, there exists some N such that
lzn| < %, and so [(On ks 1n = 2)| = [l - xn| > § for all n > N, proving that 1,, does not converge weakly to x for
any T € co.

3.17
1. Let (z™) be a sequence in #? with 1 <p < oo. Assuming =™ — z in o(¢?, Zp’) prove that:
(a) («™) is bounded in P,
Proof. This is just Proposition 3.5 (iii) for p < co and Proposition 3.13 (iii) for p = co. O

(b) ¥ — for every i, where z" = (z7,2%,...) and = = (21,22, ...).
Proof. First suppose that 1 <p < co. For each n > 1, the projection map 7, : /¥ - R;z ~ z,, is obviously
bounded and linear for all 1 < p < oo and so m, € ¢ . Since z™ — x in o(¢P, ¢7), it follows that for every
i>1, 27 = (m,2™) - (m, &) = 2; as n — oo. Now when p = oo, we have that 2™ -~ z in the weak* topology
o(£>,¢Y). Thus, for any y € ¢, (2™, y) - (z,y). Fix i > 1 and note that m; = (9;n)ns1 € €' so that
alt ={(z",m;) > (x,7;) =x; as n - oo for all 7 > 1. O
2. Conversely, suppose (™) is a sequence in #” with 1 < p < oco. Assume that (a) and (b) hold (for some limit
denoted by z;). Prove that z € 7 and that " — z in (2, (*).

Proof. First consider 1 < p < oo. Suppose for a contradiction that " does not weakly converge to . Then there
must exist some subsequence (2™ ) as well as some y € ## and ¢ > 0 such that |(y,2™ —z)| > ¢ for all k > 1.
Since £? is reflexive and (z™) is bounded, by Theorem 3.18, there exists a subsequence (x™*m ) that converges in
the weak topology o(#2, /7). Let a € £7 be the weak limit of (2™ ) and observe that by (b) above, z*m > a;
as m — oo for all ¢ > 1. Since z}' - x; for all ¢ > 1, it follows that a = x. But then (y,z™m —x) - 0 as m — oo,
contradicting that |(y, ™ — )| > ¢ for all k > 1. Thus, by contradiction, 2™ — z in o(¢?, £%).
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Now suppose that p = oo and fix y € ¢! as well as £ > 0. Pick N; such that Y07 vy |y <

1>
2max(sup 2" [|eo+|Z] eo, 1)
(which we can do since (Hx"Hm) is bounded). Choose Ny large enough such that for any n > Np and 1 <i< Ny
where y; # 0, |2 — ;] < Then for all n > Na,

2N\ il
(2" —2,y) e 1| < Y lyillzy = il
i=1
Ny
Z (sup 2" oo + [ 2] c0) Z [yl
1 i= N1+1
<e.
It follows that [(z™ — 2, y)= 1| > 0 as n - oo for all y € /*, and so 2" Zzin o=, /). O

3.18

For every integer n > 1 let

e" = (an,m)mzl-

0 in 7 weakly o(£7, (') with 1 < p < oo.

1. Prove that e"

n—o00

Proof. For 1 < p < oo, that €™ — 0 weakly simply expresses the fact that for any y (p', (y,€™) = yp = 0 as
n — oo, which follows from the fact that Y ;o; |yi|p' < 00. The case p = oo is essentially the same: for any y € %,
(e™,y) = yn = 0 as n — oo since Y72, |y;| < oo. Thus, e” 20 in the weak* topology o(£>, ¢*). O

2. Prove that there is no subsequence (e"*) that converges in £ with respect to o (¢*, £°°).

0, k<N
Proof. Fix a subsequence (™) and z € £'. Pick N such that Y72y |2 < 5. Define 1,5 (k) = {1’ e N € (>
and observe that for all k such that ny > N, [(Isn,e™ - z)| = [ - £2y 2| > 3, proving that (™) cannot
converge weakly to z for any x € /1. O

3. Construct an example of a Banach space E and a sequence (fy,) in E* such that || f,| =1 Vn and such that
(f») has no subsequence that converges in o(E*, E). Is there a contradiction with the compactness of Bg+ in
the topology o(E*, E)?

Proof. Pick E = ¢*. Let J : {* - (£>°)* be the canonical embedding of ¢! inside (¢!)**. For each n > 1, set
fn=J(e) e J() c (£>)*. Since J is an isometry, |fu| g+ = |1 = 1 for all n. Towards a contradiction,
suppose that the sequence (f,,) has a subsequence (f,, ) that converges in o((¢*°)*, £°°). Then for any = € £*°,

0, né¢{ng:k>1}
(frp» T)(e)* o~ must converge in R as k — oo. Define a sequence x € £*° by z,, =41, n=ny and k is odd .
-1, n=n; and k is even

k is odd

1
, which clearly does not converge in R as k — oo, a contradic-

-1, kiseven.

)

Observe that (fn,,z) = (x,e™) = {

tion. Thus, (f,) is a sequence with the desired properties. Note that this conclusion does not contradict the
compactness of B(s~)~ in the weak* topology o((£*)*, £°°) since compactness is only equivalent to sequential
compactness for metric spaces and B(~)« is not metrizable in the weak™ topology as £*° is not separable. [

3.19

Let E=/0P and F =/¢9 with 1 <p<oo and 1 <g< oo. Let a:R - R be a continuous function such that

la(t)| < C|t[P/?  viteR.
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Given

set

m:(xl,xg,...,xi,...)eﬂp,

Ax = (a(z1),a(z2), ..., a(zi),...).

1. Prove that Ax € ¢9 and that the map x — Az is continuous from ¢ (strong) into £¢ (strong).

Proof. Fix x € f? and observe that ¥, |a(x,)|? < ¥,,51 Cxn|P = C9)z[b < oo, proving that Az € £7. Towards
proving that A is continuous between the strong topologies on /7 and ¢4, fix € > 0 and a sequence (z*) c ¢?
that converges to some point z € /7. Then since (z¥),sny = (2,)nsn strongly in (7 for any N > 1, it follows
that [[(2F)nsn |5 = [(xn)nen|} for any N > 1. Observe also that for each n > 1, zk » 2, as k - oco. Pick

Ny such that ¥, n, [2a]? < %, pick Ny such that [[(z5)nsn, |5 = [ (#n)nsn, 3] < % for all k > N3, and by

Lt for every n < N7 and k > N3. Then for every

the continuity of a, pick N3 such that |a(zf) - a(z,)| < 357

k> maX(Nl,NQ,Ng)

|Az® ~ Az|? = 3 |a(ar) - a(wn)|?

n>1
1 Nagl g
3 27+Cq > (kP + [aal?)
n=1 n>Np
<€—q+0q(i+2 > |;z:n|p)
3 3C1 nSN,
<l

Thus, Az - Az strongly in £9, proving that A is a continuous map between the strong topologies on ¢ and
AN O

. Prove that if (z) is a sequence in £ such that ™ — z in o(¢?, ¢%') then Az™ —~ Az in o(£7, (7).

Proof. Suppose that (z") is a sequence in ¥ such that z" — z in o(¢P, Ep’). Then by Exercise 3.17, (z™)
is bounded in ¢ and z} — z; for every ¢ > 1. Using the inequality from part 1. above, we have that
|Az™ |9 < C9la™ B < C9(supysy [2*],)P, so that (Az™) is a bounded sequence in 7. Moreover, by the continuity
of a, (Az™); = a(zl') - a(z;) = (Az); as n - oo for all 4 > 1. Thus, again by Exercise 3.17, Az" — Az in

o (09, 69). O

. Deduce that A is continuous from Bg equipped with o(E, E*) into F' equipped with o(F, F*).

Proof. Since 1 <p’ < oo and 1< ¢’ < oo, ¢ = E* and ¢ = F* are both separable and so, by Theorem 3.29, Bg
and C1Br > A(Bg) are metrizable in the weak topologies o(E, E*) and o(F, F*), respectively. Since metric
spaces are first countable and sequentially continuous functions between first countable spaces are continuous,
we conclude by part 2. that A is continuous from Bpg equipped with o(F, E*) into CYBp c F equipped
with (the subspace topology induced by) o(F, F*). Finally, since the inclusion map i : (C!Bp, o(F, F*)) —
(F, o(F, F*)) is obviously continuous, it follows that A is continuous from Bg equipped with o(E, E*) into
F equipped with o(F, F*). O

3.21

Let E be a separable Banach space and let (f,,) be a bounded sequence in E*. Prove directly-without using the
metrizability of E*—that there exists a subsequence (f,, ) that converges in o(E*, E).

Proof. Let {x,} be a countable dense subset of Bg. Since (f,) is a bounded sequence in E*, the sequence ({f,,x1))
is bounded in R and therefore, by Bolzano-Weierstrass, there exists a subsequence (f;}) c (f,) such that (f! )
converges. Now suppose that we have defined subsequences (f¥) c (f*1) c - c (f}) c (f,) such that for all
1<i<k, (ff,r;) converges as n — co. Then observe that since (f¥ z.1) is a bounded sequence in R, there exists
a subsequence (f**1) c (f*) such that (f**! 2,,1) converges as n — oo. Thus, we inductively have a sequence of
nested subsequences (fX);»1 such that for all k > 1, (f¥, z) converges. For each k > 1, define f,,, = f. Observe that
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by the construction of the nested subsequences, for any m > 1, the sequence (f,,, ) converges as k - oo. Moreover,

for any = € F and € > 0, there exists m such that ||« — ||2|2,| <

(fns

selrny s well as N such that for all k,j > N,

= frgTm)| < m Thus, for any k,j > N,

((Fr = g @) < (o @ = @[ 2m) [+ [{Frie = Fuys [ m)] + [(Fnys 2 = |2 ]2 )

<2sup | fullz = |2lzm| + [€[[(fry = fr;s2m)l
n

<E.

It follows that for every x € E, the sequence ({fyn,,x)) is Cauchy and therefore converges to some point in R. By

Corollary 2.3, f = limg_e fn, € E* and since (f - fn,,2) = 0 as k - oo for all z € E, it follows that f,, X fin
o(E*, E). O

Lemma 1

Let V be an n.v.s. and suppose that M is a closed proper subspace of V. Then for any ¢ > 0, there exists some unit
vector x € E such that dist(z, M) >1-e¢.

Proof. Fix € >0 and some y ¢ M. Let A = dist(y, M). Since M is closed, A > 0. Pick some § > 0 such that ﬁ <e.
Note that by the definition of dist, there must exist some m € M such that |y—m| < A+4, and since y ¢ M, |y—m] > 0.

Set z = &
y

ﬁ. Then for any m' € M,

3.22

Let E be an infinite-dimensional Banach space satisfying one of the following assumptions:

(a)
(b)

E* is separable,

E is reflexive.

Prove that there exists a sequence (x,) in E such that

|zn]|=1 Vn and =z, -0 weakly o(E, E™).

Proof. (a) If E* is separable, then Bp is metrizable in the weak topology o(E, E*) by Theorem 3.29. Now

since F is infinite-dimensional, we saw in Example 1 of Chapter 3 that the weak closure of the unit sphere
S={xeE:|z|=1}is S7F F) = By. It follows that S is a dense subset of the metric space B (with respect
to o(E, E*)), and so every point x € B is equal to the weak limit of some sequence in S. In particular, there
must exist some sequence (z,,) ¢ S such that x,, — 0 weakly.

Suppose that F is reflexive and infinite-dimensional. Using Lemma 1 above, I shall construct a sequence {z,,}
such that |z, | = 1 and |2, ., | > 5 for any n # m. Begin by picking any z € E such that |z | = 1. Now suppose
that we have picked x1, ...,z € E with the desired properties. Since span(zy,...,zx) is a closed proper subspace
of F, by Lemma 1, there exists some unit vector xy41 € E such that ||xg,1—z;|| > dist(ag+1, span(zy, ..., xx)) > %
Thus, we can continue inductively to get the desired sequence (z,,) ¢ E. Since (z,) is a bounded sequence
and E is reflexive, by Theorem 3.18, there exists a weakly convergent subsequence (x,,). Let 2 € E be the
weak limit of this subsequence. By potentially removing at most one point in this subsequence, we may assume

WLOG that |z, — x| > § for all k (if there were some ko such that |z - Ty, || < 1, then for all k # ko,
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z—p, | 2|z - 20, |- |Tn, —Tn, || =L, then just remove x,, from the sequence). Define the sequence (y
k kg kg k 4 ko
by Yk = pp-i=zy- Observe that for all &, |yx[ = 1 and for any f € E*,

Hznk’

)] - ‘<f H)

|, - |

<A S, wn, - ) >0,

as k - oo. Thus, yx —~ 0 in o(E, E*).

3.25

Let K be a compact metric space that is not finite. Prove that C'(K) is not reflexive.

Proof. Since K is a compact metric space with infinitely many points, only finitely many of the points in K can be
isolated points (or else K would not be compact) and so there must exist some a € K that is a limit point of K. That
is, there exists some sequence (a,) ¢ K ~{a} that converges to a. Define a function f: C(K) > R; u > Yo %u(an).
To see that f is well-defined, fix u € C(K) and observe that Yoo |5u(an)| < supgex [u(@)| oy 55 = |uf c(x) < oo,
and so Y5, s-u(a,) converges absolutely for all u € C(K). Observe that since the sum converges absolutely
over C(K), it follows that for any wi,us € C(K) and A, Ay € R, f(Aur + Aug) = Yoo (Arug + deus)(ay) =
M Yo ur(an) + Ao Yo ua(an) = A f(ur) + Aaf(ug). Thus, f is a linear functional such that for any u € C(K),
|f(u)] < |ul k). It follows that fe C(K)* and | f|| <1.

Define M = {u € C(K) : u(a) = 0}. Clearly M is a linear subspace of C'(K) and since for any (u,) ¢ M such
that u, — w in C(K), then u, — w uniformly and so 0 = u,(a) - u(a), which shows that M is a closed linear
subspace of C(K). By Proposition 3.20, to prove that C(K) is not reflexive, it suffices to prove that M is not
reflexive. To this end, set g = f|p. Clearly g € M* and |g| < |f| = 1. To see that ||g| = 1, observe that for any
n > 1, the map u, = nd(z,a) Al e M and |g(u,)| > Yoy 5 = 1 as n - oco. Fix ue M with |u| = 1 and observe
that since a, — a and u is continuous, there exists some N such that for all n > N, |u(an)| = [u(a,) - u(a)| < 3.
Thus, [g(u)| < Yoy 5= u(an)| < N o+ Y N 5 < Yoot 55 = 1. It follows that, for every u € M with [ul =1,
lg(u)| < 1. Let J: M — M** be the canonical embedding of M into its double dual. Since g € M*, by the Hahn-
Banach theorem, there exists some & € M** such that (¢,g) = ||g|? = 1 and |¢| = |g| = 1. Observe that & ¢ J(M)
since for any w € M with |ul| = [|[J(w)|| = [&]| = 1, (J(u),g) = g(u) < 1. Thus, M is not reflexive which proves that
C(K) cannot be reflexive. O

3.26

Let F be a separable Banach space and let (a,) be a dense subset of Bp. Consider the linear operator T : S F
defined by

oo
Tx = inai with z = (21, 29,...,2,,...) € /1.
i=1

1. Prove that T is bounded and surjective.

Proof. First observe that T is well defined since for any x € ¢!, the sequence YI", z;a; is Cauchy (since
I=m x| < S, |z — 0 as n,m — oo) and therefore converges to a unique limit in F. Fix x € ¢! with
unit norm and note that |Tz|p = limy e | Xieq Tias| < imyoo Yy |zilllai] p < limyoo Yinq |zi] = 1. Thus,
T e L(¢, F) with ||T| < 1.

Clearly to prove that T is surjective, it suffices to prove that Br c T(¢'). To this end, fix a € Bp. Since
(an) is dense in Bp, there exists some ny such that |a - an,| < 3. Now suppose we have found ny,...,ng
such that n; # n; for ¢ # j and |a — an, — %am — = %%ank | < 2% Since F' is a metric space with no
isolated points (with respect to the norm on F'), a dense set excluding finitely many points is still dense.
Thus, the sequence (%kan)m{m ny} is dense in 2L,CBF, and so there exists some ng41 ¢ {n1,...,nx} such that

[(a—ap, — - Q,C%lank ) - %ank“ | < %% Continuing this process inductively, we get an injection £ : k € N — ny

.....
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such that Yoy 2%1@% = a. Take the inverse €71 : §(N) — N of this sequence and define the sequence x by

o =z ned)
"o, n ¢ £(N).

and so unconditionally convergent). Moreover, by a change of variables, we have that

Note that z € £' since Y5 x| < Yeg 57 = 2 (since Yo7 5 is absolutely convergent

1

Te= ) Semeyatn
ne&(N) 2¢ )
=Y =4, =a
fe 2k
Thus, Br c T'(¢'), which proves that T is surjective. O

In what follows, we assume, in addition, that F is infinite-dimensional and that F'* is separable.

2. Prove that T' has no right inverse.
Proof. Towards a contradiction, suppose that there exists some S € L(F, ¢!) such that Idp = T'S. Since F is
infinite-dimensional and F* is separable, by Exercise 3.22 there must exist some sequence (b, ) c F such that
|bn]l = 1 for all n and b, = 0 weakly o(F, F*). By Theorem 3.10, S is continuous from o(F, F*) on F to
o(€*, =) on ¢'. Thus, Sb, — 0 in o(¢*, £°°) and by Schur’s theorem, it follows that Sb,, — 0 strongly so that

|Sb,| = 0 as n — co. However, for all n, 1 = |b,| = |T'Sb,|| < |Sb,|, a contradiction. Thus, by contradiction,
T has no right inverse. ]

3. Deduce that N (T') has no complement in ¢*.
Proof. By Theorem 2.12, N(T') does not admit a complement in £*. O

4. Determine T7.

Solution

For any f € F*, define Af = ((f, ai)) v Observe that Af € £=° for all f € F* since sup,, |(f,an)| < | f||. For
>

i

any f € F* and z € ¢! we have (T*f,z) = (f,Tx) = (f, > xiai) = Y72 xi(fa;) = (Af,x). Tt follows that
Tf=Af = ((f.a))

i>1

3.27

Let E be a separable Banach space with norm | |. The dual norm on E* is also denoted by || |. The purpose of
this exercise is to construct an equivalent norm on E that is strictly convex and whose dual norm is also strictly convex.

Let (a,) c Bg be a dense subset of By with respect to the strong topology. Let (b,,) ¢ Bg+ be a countable subset
of Bp+ that is dense in Bg- for the weak* topology o(E*, E). Why does such a set exist?

Solution

By Theorem 3.23, the weak™* topology on Bg« is metrizable and by Banach-Alaoglu, Bg~ is weak* compact. Since
every compact metric space is separable, Bg+ is separable with respect to o(E*, E). (Let K be a compact metric
space and for each n > 1, consider the covering of K by %—balls indexed over x € K. Apply compactness to conclude
that the %—balls indexed over some finite set F,, ¢ K cover K. Then U, F), is a countable dense subset of K.)

Given f e E*, set

[N

11 = {|f|2 5> ;n|<f,an>|2} .

21



1. Prove that || || is a norm equivalent to || |.

Proof. The homogeneity and positive-definiteness of | |; are obvious. Note that my proof of the strict convexity
of | |1 in part 2. below does not rely on | |; being a norm and so to prove that the triangle inequality is
satisfied, I may use the fact that | |; satisfies the strict convexity property. Fix f,g € E* and observe that if
f=goroneof forgare zero, then the triangle inequality follows trivially. Thus, we may assume WLOG that
frg+#0and f#g. Then since | | satisfies strict convexity (my proof given below just uses the strict convexity
of x + z?), it follows that

|7+l -

A F s Ay g
(HfH+H9||) 171+ gl Hf\|+( 171+ HQH)HQH

<1.

Thus | |1 is a norm on E*. Clearly for any f € E*, |f|? < | f]|? and so | f| < [f]:. Moreover, |f|? <
1£12+ Zo2q 5= 1112 an] < 2| f]?. 1t follows that, | f| < | f[1 < V2| f], proving that | | and | | are equivalent
norms on E*. O

2. Prove that | |y is strictly convex.

Proof. Fix t € (0,1) and f,g € E* such that |f|1 =|lg|1 =1 and f # g. Since (a,) is dense in Bg and f # g,
there must exist some ng such that (f,an,) # (g,a,,). Thus, by the strict convexity of z + z?, it follows that
(tf + (1 =1)g, any ) < tl{f, ane)> + (1 = 1)|(g, an,)|*. Then again using the convexity of the x + 2?2, it follows
that

1
[tf+ (L =t)glf <t fI*+ (1 -)]g]* +1 Z [(foan) + (1~ 1) Z ?|(9,an)|2
=t 7+ (1-1)]gl} = 1.
It follows that |¢tf + (1 —t)g|1 < 1, proving that | |; is strictly convex. O

Given x € E, set

N|=

|x|2:{||x|% e |<bn,z>|2} .

n=1

where |z|1 = Supufulg(f,ﬂ?)-

3. Prove that | |2 is a strictly convex norm that is equivalent to || |.

Proof. Again, homogeneity and positive-definiteness of | |2 are both obvious. Observe that my proof that | ||
satisfies the triangle inequality only made use of the fact that || |; satisfies the strict convexity property. Thus,
to complete our verification that || |2 defines a norm on E, it suffices to prove that | ||o satisfies the strict
convexity property. To this end, fix ¢t € (0,1) and z,y € E such that ||z|2 = |y|2 =1 and x # y. I claim that
there must exist some n such that (b,,z) # (by,y). To see why this is the case, observe that if it weren’t, so
that (by,z —y) =0 for all n, then for any f € Bg+ and 6 > 0, since (b,,) is weak” dense in Bg~, there must exist
some n such that § > (b, — f,x —y)| = [{f, 2 —y)|. But then (f,z —y) = 0 for all f € Bg+, which would force
the contradiction that 2 = y. Thus, there exists some n such that (b,,x) # (b,,y). By the strict convexity of
x> 22, (b, tz+ (1= t)y)> <t|{bn,x)|* + (1 - t)|(bn,y)|?. Applying the convexity of z + 22, it follows that

o)

1
[tz + (1 =t)yl5 = [tz + (L=t)y[i + 3 o lbn, tz+ (1=1)y)
n=1

31
<f||x|\f+(1-t)\|y\|%+t227|(bn,x +(1-t)Z )
n=1

=tfalz + (1 -1yl =1.

Taking square-roots, it follows that ||tz + (1-t)y|2 < 1, proving that | |2 satisfies the strict convexity property.
Thus, from the comments above, || |2 is a strictly convex norm on F.
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Towards proving that | |2 and | | are equivalent norms, fix « € E and observe that for any f € E* such that
[ £l <1, since [f[ <[ f]1 <1, it follows that (f,z) < | f[|z] < |=[. Hence, [z]1 < [z]. Thus,

> 1
ol < J21* + 3 ol (bn, 2} < 2],

n=1

so that |z|2 < v/2||z|. Now applying Hahn-Banach, pick some f € E* such that (f,z) = |z||> and |f|| = |z].

Then H\[”z”fH <4l - Land (2 f,a) = Jgla, so that J5|e| <[] < ]2, which proves that | 2 and | |
are equivalent norms on FE. O
3.28

Let E be a uniformly convex Banach space. Let F' denote the (multivalued) duality map from E into E*. Prove
that for every f € E* there exists a unique x € E such that f € Fx.

Proof. Fix some f € E*. By Hahn-Banach, there exists some & € E** such that (¢, f) = | f|? and || = | f]. Since
E is uniformly convex, by the Milman-Pettis Theorem, E is reflexive. Thus, letting J : £ — E** be the canonical
embedding of E in E**, it follows that there exists some x € E such that & = J(x). Hence, |z| = ||J(z)| = ||f| and
(f,x) = (J(x), f) = |f|? = |z|* It follows that f € Fz. Towards showing that z is the unique element of E such that
f € Fz, fix some y € E such that f € Fy. Then |y| = | f|| = || and (f,) = |ly|?. Clearly if x = 0, then y is forced to be

0, so we may assume WLOG that = # 0. Observe that (\IIH’ ;“;y”) =1, and since HﬁH =1, it follows that ;HJ;y” >1.
Since ””””, Tel both belong to Bg, by uniform convexity, there cannot exist any € > 0 such that Hw\l >¢e. That
is, x = y.

3.29

Let E be a uniformly convex Banach space.

1. Prove that YM > 0,Ve > 0,36 > 0 such that

2
Tr+y

2

1
<l + 5 Lyl -

Ve,ye B with |z| <M, |y|<M and |z-y|>e.

Proof. Suppose for a contradiction that there exists some M > 0 and € > 0 such that for all § > 0, there exists

2
U > Lz|? + §|y[|? - 6. Then for each n > 1, there

some z,y € E with |z| < M, |y| < M and |z —y| > € but

2
wdte > Slanl® + 5lynl® - - Since (Jan]) is a
bounded sequence in R, there exists some subsequence (|, |) that converges, and since (|yn,||) is a bounded

sequence, there exists a subsequence (HynkJ |) that converges. Note that (||:13nk] |) also converges, and so we may

exists X, yn € E with |z, |, |ynl] € M, |2n - yn| > € and

assume WLOG that (|z,|) and (||yn|) are both convergent sequences with limits a and b, respectively. Then
sa? + 30

2 2 2
! = limy oo 3@ ]? + 31y < limsup, o, (312nl + 31val) = (3a+ 50) -
By the strict convexity of x + 2, it follows that limn |z, =a=>b=1lim, |y,|. Thus, we have that there exists
some N such that for all n > N,

1

TntYn
2

1 .
- = < limsup,,_,

. Then by uniform convexity, there exists some 4’ > 0 such

‘ +

HwnH Hyn [
that ‘ M <1-4¢' for all n > N. But then
2 1 2
i sup || Fnt Yn Eal %+ fal¥
imsup | ———
n—o0 n—oo 2
<a®(1-4¢")
1
< =a%+ =b?
2
contradicting what we found above. Hence, the statement is proven by contradiction. O
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2. Same question when || |? is replaced by || |? with 1 <p < 0.

Proof. Since z ~ P is strictly convex on (0, c0) for all 1 < p < oo, the exact same proof above but replacing 2

by p works. O
3.30
Let E be a Banach space with norm | |. Assume that there exists on F an equivalent norm, denoted by | |, that is

uniformly convex.
Prove that given any k > 1, there exists a uniformly convex norm [[ ]] on E such that

|z] <{[=]] <k|z| VzeFE.

Proof. Fix k > 1. Since | | is equivalent to | |, there exist constants ¢,C' > 0 such that c||z| < |z| < C|z| for all
x e FE. Seta-= ké; > 0 and define [[ ]]: F - [0,00) by [[2]] = V/|z|? + a|z|>. Observe that for all z € E,
|z| < [[#]] and [[*]]? < (1 +aC?)|z|? = k?|x|?, so that [[x]] < k|x|. Thus, if we can show that [[ ]] is a uniformly
convex norm on FE, then we are done. That [[ ]] satisfies homogeneity and positive-definiteness is obvious. To
prove the triangle inequality, note that for all ¢ € (0,1) and z,y € E such that [[z]],[[y]] < 1, [[tz + (1 - t)y]]? =
[t + (1= t)y[* + alte + (1= )y <tz + (1 - )y)* + talz? + (1 - t)aly* = t[[=]]* + (1 - )[[y]]* < 1, so that
[[tx + (1 -t)y]] < 1. Thus, for all x,y € E,

N R e [[]] x =] y
(GBI H[[w]]+[[y]][[x]]+(1 [[xn+uy11)uy]1H
<1,

proving that [[ ]]is a norm on E. It remains to prove that [[ ]] is uniformly convex. To this end, fix £ > 0. Define
B=1\/%+aand v =/Zz + o and observe that for all z € E, 72| < [[2]] < B|2|. By Exercise 3.29, there exists some

2
:c+y

d > 0 such that for all x,y € E with |z|,|y| <
x,y € E such that [[z]],[[y]] <1 and [[z - y]

and |z —y| > £, we have the inequality

< 2o+ Lyl* - 6. Fix

<1
B!
]>e. Thus, |z|,|y| < % and [z -y > 5. It follows that

500 =152 el 5

1 2 2 1 2 1 2
§||xn Slyl? + a5l + Sl - o)

[l ]]2+1[[y]]2—o«s

2
ad.

’-‘w\»—l

So [[%H < V1-ad <1, and we can pick any g such that 1 -8y > V1 -ad, proving that [[ ]] is uniformly

convex. O

3.31

Let E be a uniformly convex Banach space.

1. Prove that .
Ve>0, Vace (0, 5), 35 >0 such that
[tz +(1-t)y|<1-96
Viela,1-«a], Vr,yeE with|z|<1,|y|<1and |[z-y|>e.

Proof. Fixe >0, ae (0, %) By the uniform convexity of E, there exists some § > 0 such that for all z,y € E

z+y
2

<1-4§. Fix z,y € E with |z, |y| <1 and
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|z-y| >e. Then for any t € [, 3], define z = 2tz +y -2ty and observe that since |z| < 2¢|z|+(1-2t)|y| < 1 and
ly—z| = 2t|x—y| > 2te > 2ae, it follows that ||tz +(1-t)y| = Hy+z ‘ <1-4. Moreover, for any ¢ € (3, 1-a], define
z = 2tz —2ty+2y—=x and observe that ||z| < (2t-1)|z|+(2-2¢)|y| < 1 and |z-z| = (2-2t)|z—y| = (2-2t)e > 20k,
so that [tz + (1-t)y| = ||%2|| <1-46. Hence, |tz + (1 -t)y| <1-6 for all t € [, 1 — a]. O

2. Deduce that E is strictly convex.

Proof. Fix z,y € E such that |z|| = |y|| = 1 and suppose that  # y. Then there exists some ¢ > 0 such that
|z —y| >e. Fixte(0,1) and pick a € (0,min(¢,1-t)) c (0,3). Observe that ¢ € [a,1 - o] and so by part 1.
above, there exists some ¢ > 0 such that |tz + (1 -¢)y| <1-§<1. Thus, |tz + (1-t)y| <1 for all t € (0,1) and
it follows that F is strictly convex. O

3.32 Projection on a closed convex set in a uniformly convex Banach
space.

Let E be a uniformly convex Banach space and C c E a nonempty closed convex set.

1. Prove that for every z € E,
of e —

is achieved by some unique point in C, denoted by Pcoz.

Proof. Observe that since E is uniformly convex, F is reflexive by the Milman-Pettis Theorem. Thus, by
Theorem 3.18, every bounded sequence in E has a weakly convergent subsequence. Fix z € E and for every
n > 1, pick some y,, € C such that |z -y, | <infyec |z -y| + L. Since for every n, |y, | < infyec [z -y + || +1,
(yn) is a bounded sequence in E and therefore there exists a subsequence (yy, ) that converges weakly to a point
y € E. Since C is strongly closed and convex, by Theorem 3.7 C' is weakly closed. Thus, the fact that (y,, ) c C
and y,, — y implies that y € C. Since z - y,, — x —y, by Proposition 3.5, |z — y|| < Iminfy e [|& = Yn, | <
liminfj_, e (infec |z - 2| + L) = inf e |2—2z||. This proves that inf,c |- z|| is achieved by y. Towards proving

Nk
that y is the unique such point in C, suppose for a contradiction that z € C' such that |z - z| = inf,cc |z - 2|

and z # y. Then there exists some £ > 0 such that |(z - 2) - (x —y)| = |2 —y| > ¢, and by the convexity of
C, e C’ Moreover, since |z - zH [z —y| < |z -vy|, by Exercise 3.29, there exists some § > 0 such that
H U <Lz -y|?+ |z - 2> - 6 =inf.cc |2 - 2| - 6, which is clearly absurd. Thus, y is the unique point
inC that achieves the distance from z to C. O

2. Prove that every minimizing sequence (y,) in C converges strongly to Pox.

Proof. 1shall first prove that y, — Pox. Suppose for a contradiction that (y,, ) does not converge weakly to Pox.
Then there must exist a subsequence (y,, ), € >0 and f € E* such that |(f,yn, — Pox)| > €. Since E is reflexive
and (yn, ) is a bounded sequence (as there exists some N such that for all k > N, |y, | <infyec [|z—y|+]z|+1),
it follows that (y,, ) has a weakly convergent subsequence (ynk ), converging weakly to some point y € E. Since

(ynk ) ¢ C and C is strongly closed and convex, so weakly closed it follows that y € C. Moreover, since
T = Yn,, = « =y, by Proposition 3.5, |z - y| < liminf |2 -y, | = inficc |# - z[. But then from part 1., we
Conclude that y = Pox, and so (f, Y, - Pocx) =0, a contradlctlon Thus, by contradiction, y,, ~ Pox weakly.

To complete the proof, note that because x -y, = = - Pox weakly and |z - yn| - [z - Pox|, it follows by
Proposition 3.32 that « - y,, -  — Pox strongly, and therefore y,, — Pox strongly. O

3. Prove that the map = » Pgz is continuous from FE strong into E strong.
Proof. See part 4. below. O

4. More precisely, prove that Pc is uniformly continuous on bounded subsets of E.
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Proof. Towards a contradiction, suppose that there exists a bounded subset B ¢ E and € > 0 such that for all
0 >0, there exists z,y € B with |z-y| < § and | Pcx—Peyl|| > e. Then we can construct sequences (z,,), (yn) ¢ B
such that ||z, — yn|| = 0 as n > oo and inf,, | Pox, — Poyn| > €. Moreover, since B is bounded, there exists a
constant M > 0 such that |2, |, |yn|| < M for all n. Note that by the convexity of C' and the definition of P¢,

P, + P,
|20 = Pown| < x_w
mn+yn_Pan+PCyn +1Hx _ H
12 2 g I = Ynll

ZTntyn _ Pcxy+Pcyn
2 2

1

Similarly, |y —Poyn| < ?

+%Hxn—yn |. Thus, we have that Ha:n—PCmnH2+%Hyn—Pcyn\F <

Tntyn _ Pcxn+Pcyn
2

2
+0(n). Now, with the intent of applying Exercise 3.29, I claim that (|, — Pcz,|) and

(|yn—Pcyn|) are bounded sequences. Indeed, for any n > 1, |z,— Poxy| < |@n—Poxi| < |@n-21||+|21-Pox1| <
2M + |x1 = Pox1|. (The proof for (||yn — Pcyn|) being bounded follows by the exact same argument.) Since
|7 = Y| — 0, there must exist some N such that for all n > N, |2, -y, | < § and it follows that for all n > N,
I(xn = Poxn) = (Yn = Poyn)| 2 || Pon — Poynll = |0 —ynl| 2 5. Thus, by Exercise 3.29, there exists some § > 0
such that for every n > N,

2

xn+yn_Pan+PCyn

1
n = Poxn|? + < |yn - Poya|® - 6.
5 5 lzn = Pewn|” + 5 yn = Poyn|

This conclusion gives us the desired contradiction since, when combined with the above inequality, %Hxn -

2.1 2 | wast Poan+Poyn ||
Poxn|® + 5|yn — Poya|® < || Frgte — ~0Fng—ctn

+o(n), we get 0 < 4§ <o(n), which is absurd. O

Let ¢ : B — (—o00,+00] be a convex l.s.c. function, ¢ # +oo.

. Prove that for every = € E and every integer n > 1,
inf {n]z - y|*+¢(y)}
yeE

is achieved at some unique point, denoted by y,,.

Proof. Fix x € E and n > 1. Since ¢ # +oo, there exists some y € E such that a = n|z - y|? + ¢(y) < co. Since
y = n|z - y||? is continuous and ¢ is Ls.c., y = nlz - y[? + ¢(y) is Ls.c. Moreover, for any y;,y, € E and
te(0,1),

nllz - (tyr + (L= 1)y2)|* + p(tyr + (L= t)y2) <nft(z —y1) + (L —t)(z = y2) > + to(y1) + (1 - )p(y2)
I+ 0(y1) + (1= t)(nlz - y2|* + (2)).

It follows that y = n|x —y|? +¢(y) is convex and L.s.c. and so C = {y € E:n|z-y|*+p(y) < a} is a nonempty,
closed, convex subset of E. By Proposition 1.10, there exists some f € E* such that for all y € E, (f,y) < ©(y).
Thus, for any y € E such that ¢(y) <0, |o(y)| < {f,9)] < |fllyl, and it follows that for all y € E such that
¢(y) <0,

<t(nle -y

nlz=yl* + o(y) 2 nle - yl* - [ flly] 2 nlyl® - @nlz] + DIyl +nlz]?,

which is a positive quadratic polynomial in |y| and so is bounded below. Thus, 8 = infyep{n|z -y|? +¢(y)} >
—oo. Now we argue exactly as we did in part 1: fix some sequence (y,) c C such that n|z - y.|* + ¢(yn) - B
Note that (y,) is a bounded sequence since n|z — y,|? + ¢(y,) is a convergent sequence, so bounded, and
©(yn) is bounded, so that |2 - y,|* must be bounded. Thus, since E is reflexive, (y,,) has a weakly convergent
subsequence (yy, ) with weak limit point y. By Corollary 3.9 y = n|z —y|? +¢(y) is Ls.c. in the weak topology
o(E, E*), and so y,, — y implies that n|z - y|? + ¢(y) < liminfyen|z = yn, |*> + ©(yn,) = B. Thus, y € E
achieves the desired infimum. To see that y is the unique point in E that achieves this minimum, suppose for
a contradiction that z € E such that n|z - z|? + p(z) = n|z - y|? + ¢(y) and z #y. Then |y - z| > ¢ for some

T+y

€ >0 and so by Exercise 3.29 there exists some § > 0 such that ”x -5

’ <1z -y|?+ 1|z -2|*-6. But then

T+y

2
5 ’ + (552 < gnfe - y|* + gnfa - 2| + 50(y) + 30(2) = 6 = infyep{nfz - y|* + o(y)} - §, which is
impossible. Thus, by contradiction y is the unique point in E that achieves this minimum. O

nlz -
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6. Prove that y, —— Pcx, where C = D(p).

n—oo
Proof. Note that for any n > 1, n|z - yu|* + ¢(yn) < nfz - y|? + p(y) for all y € E. In particular, for any n > 1,
nlz=yn|*+@(yn) < nlz=yne|*+@(yn) and (n+1) [z=yn1 [*+@(Yns1) < (n+1) [2=ya[>+¢(yn). Thus, by playing
around with these two inequalities, we get that |z —yn41]? < (n+1) |z =y |? =]z + yns1|* + ©(Yns1) — (yn) <
|z = yn|?, and so |2 = yns1| < |2 = yn| for all n > 1. It follows that (z -y, ) is a bounded sequence, so that (yy)
is a also a bounded sequence, and since F is reflexive, (y,) has a weakly convergent subsequence (y,, ) with
weak limit y € E. Moreover, since = — y,,, — = —y weakly, it follows that |z — y||* < liminf}, |2 -y, [*. Since
(J]z = yn|) is @ monotonically decreasing sequence, bounded below by 0, it follows that |z -y, | converges, and
since ||z —y|| <liminfy, |z — yn, | = lim, |z -y, |, it follows that ||z —y|| < |z =y, | for all n > 1. Note that for any
n>1, n|z-y|?+o(yn) <nlz—yn|*+¢o(yn) < nllz-2z|?+¢(2) for all z € E. From my reasoning in part 5. above,
we know that ¢(y,) € D(y) for all n, and so we have that for all ze E and n> 1, |z-y|?-|z-z2| < %.
Using Proposition 1.10 again, we have an f € E* such that if ¢(z) <0, then |p(2)| < | f[|z||. Combining this
insight with the fact that (y,) is a bounded sequence, say with bound M > 0, we have that for all n > 1 and
2eB, |z-y|*~[z-z]*< W. Taking the limit over n, we get that for any z € D(¢), |z -y|? < |z - 2|?,
and it follows that y = Pox (since each y,, € D(p) c C and C' is the strong closure of a convex space, so weakly
closed, the fact that y,,, — y implies that y € C'). Finally, since for any z € D(y), |-y, |-[z-2] < w -0

as n — oo, it follows that |z -y, | = |« - Pox|, so that (y,) c C is a minimizing sequence of C. Since C' = D(p)
is a nonempty closed convex set, by part 2. above, y, - Pox strongly. O

Except where otherwise stated, {2 denotes a o-finite measure space.

4.1

Let a>0 and 3 > 0. Set
f(@)={1+2*}y {1+ |loglz]|} ", zeRM.

Under what conditions does f belong to LP(RY)?

Solution

<1 for all a,3 >0, f e L=(RY). Now, for 1 < p < oo, we perform a
TNfl

(1+ro)P(1+|logr
PN-1 N-1 1

oo . _ C
.[2 (1+re)P(1+|logr|P)P dr < co. Observe that (1+re)P(1+|logr|f)P ~— ropr-N+lllogr|[fP(1+r-2)P(1+|logr|-P)P < rap-N+1|log r|BP
some constant C' > 0, and it’s therefore clear that f e LP(R”) if and only if a > %, or a = % and 3 > %.

. ; 1 1
Observe that since T ogF? < 1 and THap

spherical change of coordinates to get that [py f(2)Pdz < oo if and only if fooo

Y dr < oo, if and only if

for

4.3
1. Let f,g € LP() with 1 < p < oo. Prove that
h(z) = max{f(z),g(x)} € L"(Q).
Proof. Observe that for all z € Q, |h(x)| < |f(x)|+|g(x)|. Thus, if p = 1 then [, |hldp < [ |fl+|gldp < | fli+]g]1 <

oo. If p = oo, we have that {|h| > | flloo + |gllec} € {If] > [ floo} U {lg] > |g]eo}, which is a p-null set. Finally if
1 < p < oo, we have that

hlPd 2 Elgira

< | = + —

Lnpdps [ S+ gy
<27 (115 + Lgl) < .

Thus, in all cases, h € LP(Q). O

2. Let (f,) and (g,) be two sequences in LP(€) with 1 < p < oo such that f,, - f in LP(Q) and g,, - g in LP(Q).
Set h,, = max{f,,gn} and prove that h, — h in LP().

27



Proof. We have
1 1
Hh_hTLHP: H§(|f_g|+f+g)_§(|fn_gn|+fn+gn)”17

1 1 1
< W7 =91 = U= gullp + 515 = Fuly + 519 = gul:

Thus7 it suffices to prove that |fn _gn| - |f_g| in LP(Q) Since ||f_g| - |fn _gnH < |(f_g) - (fn _gn)| over Qv

we get that [||f =gl =[fn = gullp < [(f = fo) + (gn=9p <[ f = falp+ 9= gnlp = 0 as n — oo, and the statement
follows. O

3. Let (f,) be a sequence in LP(2) with 1 < p < oo and let (g, ) be a bounded sequence in L= (). Assume f, - f
in L?(Q) and g, — g a.e. Prove that f,g, — fg in LP(Q).

Proof. Note that | fg = fugnlp < 1£(9=9u)lp + 19:(f = fu)lp < 1£(9 = gn)llp +sup,, [gnlloo | f = fullp, and since
sup,, [ gn |l < o0 and | f - fy[, = 0 as n — oo, it suffices to prove that | f(g—gx )|, = 0 as n - co. Because g, - g
a.e., it follows that f(g-g,) — 0 a.e. and, moreover, |g| < sup,, |gn| a.e. so that |f(g—gn)? < (2sup,, |gn | )?|f]P-
Thus, we can apply the dominated convergence theorem to conclude that | f(g—gn)|, = 0 as n - oo, and the
statement follows. O

4.5

Let 1<p<ocoand1<qg<oo.

1. Prove that L'(€2) n L°°(12) is a dense subset of LP().

Proof. Note first that for any f e L'(Q) n L=(Q), [ |fIPdu = [ 1fIIfP du < | fIli|f]%* < co. Thus, fe LP(L),
proving that L'(Q) n L>=(Q) c LP(Q). Now fix f € LP(2), let (F,) be a measurable sequence such that
U, F, = Q and |F,,| < oo for all n, and for each n > 1 let T}, be the truncation function on R defined in the
proof of Theorem 4.12. Then for each n > 1, T,,o(fxr, ) clearly belongs to L'(Q2)nL>(Q), [Th,o(fxr,)-fIP =0
a.e. asn — oo and [T, o (fxF,) - fIP <|f|P. By the dominated convergence theorem, T,, o (fxr,) = f in LP (),
which proves that L1(Q)n L(£) is dense in LP(2). O

2. Prove that the set
{feL?(Q)nLUQ) | fl, <1}
is closed in LP(Q).
Proof. Fix a sequence (f,) c {f e LP(Q)nL%(Q): |f|q <1} that converges to some point f in LP(€2). Since
fn = fin LP(Q), it follows that there exists some subsequence (f,,) that converges a.e. to f. Now, when
1 < g < oo, applying Fatou’s lemma, we have that [ |f|?du < liminfy, [ |f,,|9du < 1, which proves that f e L1(Q)

and | f|, <1. And when ¢ = oo, f,, — f a.e. and ||f,, [ < 1 for all k implies that |f| <1 a.e. The statement
follows. O

3. Let (f,) be a sequence in LP(2) n L4(Q) and let f e LP(£2). Assume that
fn— fin LP(Q) and | f,]l, < C.
Prove that f e L™(Q) and that f, —» f in L"(Q) for every r between p and ¢, r # q.
Proof. The statement is trivial when C' = 0, so we may assume WLOG that C' > 0. From part 2 above, since
%fn - %f in LP(Q)) and H%fn”q <1, it follows that %f e L1(Q) and H%qu < 1. Fix r between p and ¢ with

r # q. For convenience, assume p < r < g. Observe that for all p < s < ¢ LP(Q) n LI(Q) c L*() since, when
a<00, fol15dn = fiypony LFIEdm+ Sy, Lo < IFI2 + 1£19 < oo, and if g = oo then [ |fl*du = [ |FIPLF*Pd <

IFISPfIIB < oo. Since % <ig %, there must exist some ¢ € (0,1] such that 1 = %4‘ %. Then since rt and
(1 -1t)r are both between p and ¢, we can apply the interpolation inequality to get that

1o = fle < Ifu = FIGIFa = F1GT" < Q)Y 1 fi = fllp = 0,

as n — oo. O
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4.7

Let 1 < g<p<oo. Let a(z) be a measurable function on Q. Assume that au € LI(Q) for every function u € LP(£2).
Prove that a € L™ () with
P4
r:{p‘q if p < o0,

q if p=o0.

Proof. If p = oo then taking u = xyq € L*(f2), we have that a = au € LY(Q2) = L"(Q2). When p < oo, define the map
T:LP(Q) —» L(Q);u ~ au. Note that T is linear. To see that T is a bounded linear operator, suppose that (u,) is a
convergent sequence in LP(Q) with limit w, and that Tu, — f in LI(Q) as n — co. Then there exists a subsequence
(un, ) such that u,, — u a.e., and since Tu,, — f in LI(9), there exists a subsequence (uy,, ) such that u,, —u
a.e. and Tun,, - f a.e. For convenience, we shall write this subsequence as (u;). Thus, we have that au; = Tu; - f
a.e. and since u; - u a.e., it follows that au; - au a.e., so that f = au = T'w a.e. This proves that the graph of T is
closed and, thus, by the Closed Graph Theorem, T is a bounded linear operator. It follows that for all u € La (),
since |u|% € LP(Q), [ |a|®uldp < | T)|7) [ul*/? |5 = [T|]w]pq, so that ¢ : Li(Q) > Ryuw [ la|%udp is a bounded linear

pla  _

functional. Observe that the conjugate of fli is a1 = ﬁ. By the Riesz Representation Theorem, there exists unique

f e L¥a(Q) such that [ lal?udp = [ fudp for all u e LP/9(Q). By the usual argument, we see that [, ||a|? - f|du

for any measurable subset K with finite measure, so that |a|? = f a.e. on Q. Hence, |a|? € L7 (S), proving that
aeL"(Q). O

4.11(a) The spaces L*(2) with 0 <a < 1.

Let 0<a < 1. Set
L) = {u :Q—>R: wis measurable and |u|® € Ll(Q)}

o= ( fe)

Check that L® is a vector space but that [ ], is not a norm. More precisely, prove that if u,v € L*(2), u > 0 a.e.
and v > 0 a.e., then

and

[u+v]a 2 [U]a+ [V]a-

Proof. Fix u,v e L* and A € R. Since u is measurable and |u|® € L(£2), Au is measurable and [Au|* = |\[*|u|* € L}(R),
so that Au € L. Moreover, u+v is measurable, being the sum of measurable functions, and |u+v|* < 2% max(|u|, [v]|%).
Since 2% max(|u|®, [v|*) € L*(Q2) by Exercise 4.3 Part 1, it follows that |u +v|* € L'(Q), so that v +v € L*. Thus, L®
is a vector space. To see that [ ], is not a norm, note that for all u,v € L“ such that u >0 a.e. and v >0 a.e.,

[+ [0 - [ (( i |u|a)l/a_1|u“+( i |v|“)1/a_1|v|a)

S[([u]a+[v]a)1_a|u+v|a

= ([ua+[v]a)  [u+ols.

Rearranging, we have that [u]s + [v]a < [u+v]. Now taking any u,v € L such that u,v >0 a.e. and [u]q + [v]a <
[u+v]q, we see that [ ], cannot satisfy the triangle inequality, so it cannot be a norm. O

4.13(c)

Let (f,) be a sequence in L'(2) and let f be a function in L(Q) such that
(1) falz) = f(z) ae.,
(i) Ifulle = 111
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Prove that | f, - f]1 = 0.

Proof. Note that for all n > 1, ||fu| = |fn = fIl < |f| and |fn| = |fn — f| = |f] a.e. Thus, since f € L1(Q), we can apply
the Dominated Convergence Theorem to conclude that limy, e (| f]1 = || f - anl) =limyoo [ (|fal = 1f = ful) = [ f]1-
Rearranging, we have that lim, e | f = fnll1 = 0. O

4.15

Let Q= (0,

1).

1. Consider the sequence (f,) of functions defined by f,(x) =ne ™*. Prove that

(i)

(iv)

fn—0ae.

Proof. Fix x € (0,1) and observe that by L’Hopital’s rule, y — ei has limit equal to 0 as y — oo, proving

yx
that f,(z) =ne ™ - 0 as n — oo. Thus, f, — 0 pointwise as n — oco. O

fn is bounded in L*(Q).
Proof. | ful = Jo|ful = fol ne "dr=1-¢e"<1forall n>1. O
fn #0in L'(Q) strongly.

Proof. From above, we see that lim,, e | fn]1 = limy—o 1 — €™ =1 % ||0];. By the continuity of | ||; on
LY(Q), it follows that f, 4 0 in L'(). O

fn # 0 weakly o(L', L*). More precisely, there is no subsequence that converges weakly o(L!, L*).

Proof. Observe that for any g € C.(2), there exists a < b € (0,1) such that |f01 9fn] € maxgeq g(2)] fab Ifn] =
max,eq [9(2)|(e7* — ™) - 0 as n — oo, so that (g, fn) =1 — 0 for all g e C.(2) ¢ L=(). Suppose for
a contradiction that there exists some subsequence (f,,, ) and f € L'(Q) such that f,, —~ f weakly. Then
for all g € C.(R), [ gf =limgseo [ gfn, = 0. Applying Corollary 4.24, it follows that f =0 a.e. on Q. But
then since f,, — f and xq € L= (), we have that 0= [ f = [ xof = limkseo [ X0 Sfny = IMkooo | fre 1 =1,
a contradiction. Thus, no subsequence of (f,,) converges weakly. O

2. Let 1< p < oo and consider the sequence (g,) of functions defined by g, (z) = n'/Pe ™. Prove that

(i)

(i)

(iii)

gn — 0 a.e.

Proof. Observe that 0 < g, < f,, on €. Since f, - 0 pointwise as n — oo, it follows that g,, > 0 pointwise
as n — oo. O

(gn) is bounded in LP(Q).
Proof. |gn|b = fol ne P dy = PET;W <lforalln>1. O
gn + 0 in LP(Q) strongly.

Proof. From above, we see that limy, e [gn[} = lim, e 1_e:n = % # |0],. By the continuity of | ||, on

LP(Q), it follows that f,, 4 0 in LP(£2). O

gn — 0 weakly o(LP, L?").

Proof. Observe that for any f € C.(Q2), |f01 fgn| < maxgeq |f(30)|f01 gn =P P max,eq |f(2)](1-€e™) -0
as m — oo, so that (f,gn)r» 1o = (f,0) s 1o for all feCe(Q). Since C.(Q) is dense in LP(Q), it follows
that g, — 0 weakly o(LP, L*"). O
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4.18 Rademacher’s functions.

Let 1<p<oo and let fe LP (R). Assume that f is T-periodic, i.e. f(z+T) = f(z) a.e. x €R. Set

loc

_ 1 T
f= T /0 f(t)dt.
Consider the sequence (uy) in LP(0,1) defined by
un(x) = f(nz), x€(0,1).
1. Prove that u, — f in LP(0,1) with respect to the topology o (L?, Lp').

Proof. Case 1 <p<oo: Fix ge C°(0,1) and observe that

[ oun= [ o)

:fo g(2) f(2 Tx)dm

7f f(x)dm—fn g(%)f(x)dw
Nn;g(’f) /0 Fa)do+ [ o(5)p@yde

B i [ s o) o

- /0 g(x) fdz,

where m is the integer remainder of %, and the use of ~ becomes exact in the limit by noting that if we
kT (k+1)T

n’ n

take n large enough, since g is smooth, g(%) will be equal to g(%) +o(n) on [ ], where o(n) is a

function that goes to 0 as n — oco. The limit in the final line is justified by observing that % < % -0
and %jTZTg(%)f(x)dx < w jOT [f| = 0, and noting that the sum on the left is just a Riemann sum,
which is equal to the integral in the limit. Since C2°(0,1) is dense in LP(0,1), the case 1 < p < oo follows.

Observe that since we are taking the weak* limit for the case p = oo, we can use the exact same argument,
concluding by noting that C'°(0,1) is dense in L(0,1). O

2. Determine limy,,co [un = f|p-

Solution

For 1 < p < oo, we have

_ 1 —
lun=FI = [ 17(n) = FPda
== M1 - Frde
mT _ n —
= [T @) - Trde s [ 1) - rda
1

T - " B
= mar [, @ - TPaee [15) - Tras

T _
|[f(z) - fIPdz,
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where the limit follows from the fact that + [".|f(z) - f]Pdx < %fOT |f(x) = f|Pdx - 0. Thus,
_ 1 T — 1/p
: _TF= (2 _TFP
dim fu, =Tl = (7 [ 1@ = Trae)

For p = oo, Cleaﬂy limy, - o Hun _7HL°"(O,1) =limy o0 Hf _?HL‘”(O,n) = Hf _?HL""[O,T}
3. Examine the following examples:

(i) up(x) =sinnx

Solution

Observe that T = 27 and f = i fo% sinzdx = 0. Thus, we conclude from our analysis above that
Uy, = sinnz = 0 in the topology o (LP, L) on L?(0,1) for 1 < p < co. We also have that lim,, e, | sin nz|, =

1 27 . D 1p . .
(ﬁ Jo " |sinz| da:) for 1 < p < oo and lim,, e | Sinnz|e = 1.
(ii) up(x) = f(nxz) where f is 1-periodic and

_Ja for xe(0,1/2),
f(x)_{ﬂ for 2 € (1/2,1).

The functions of example (ii) are called Rademacher’s functions.

Solution
We have f = fol f(x)dx = %a + %B, so that u, — %a + %B in the topology o(L?, L?) on L?(0,1) for
1/p
1< p<oo. We also have that lim, e [un — 0 = 38, = (fol |f(z) - 3a - %5|pdm) = sizla - f| for
1

1<p<oo and limy e U — 0= 18] = 2|a = 3.

4.21

Given a function ug : R - R, set u, () = ug(z +n).

1. Assume ug € LP(R) with 1 < p < co. Prove that u, — 0 in L?(R) with respect to the weak topology o(L?, L*").

Proof. Fix nonzero g € C.(R). Note that there exists N; such that g(x) = 0 for all |x| > N;. Moreover, since
up € LP(R), for any e > 0, there exists N2 such that |ug(z)| < for almost all |z| > Na. Thus, we have
that for all n > N; + Ny

| [ o

e
2N1llglle

< [ty +mlda

N1
< HQHoofN |ug(z +n)|de < e.
—4iV1

Thus, lim, e [ gu, =0 for all g € C.(R), and since C.(R) is dense in L¥ (R), it follows that u, — 0 weakly in
o(LP, L*). O

2. Assume ug € L*(R) and that ug(z) - 0 as |z| - oo in the following weak sense:

for every ¢ > 0 the set [|ug| > 0] has finite measure.

Prove that u, — 0 in L= (R) weak* (L%, L').
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Proof. Fix nonzero g € C.(R) and ¢ > 0. Again, let N; be such that g(«) = 0 for all |z| > N;. By assumption

[|uo| > m] has finite measure. In particular, there must exist a finite interval (-Na, Na2) such that

[[|u0| > m] N (=N2, Na)| < ooz (obviously we may assume WLOG that [uofe > 0). Thus, we have

that for all n > N7 + Ny

< [ lot@uole +mldz

[ o

< x)ug(x +n)|dx + ¢
f[—Nl,Nl]n[uo»/(leugnm)] lg(@)uo(z +m)

< glo 120 o [ o] > N (N2, )| +e < 2.

CrA P
il

It follows that lim,, . [ gu, = 0 for all g € C.(R), and since C.(R) is dense in L'(R), this proves that u, =0
in o(L>, L'). O

3. Take ug = X(0,1). Prove that there exists no subsequence (u,,) that converges in L'(R) with respect to
o(LY, L™).

Proof. Towards a contradiction, suppose that there exists some u € L' (R) and a subsequence (u,, ) such that
Up, — u in o(L', L>). Then we must have that 0 = limj_co [ X&(tn, —u) =1 - [ u, so that [u = 1. Thus,
there must exist some finite interval (a,b) ¢ R such that [ X(a,b)t = fabu > % Since uy, — u, it follows that
limg_, oo fab X(=ng,1-ng) = dMisee [ X(ap)Une = J X(ap)t > %, which is absurd since (a,b) is a finite interval.
By contradiction, it follows that there exists no subsequence (u,,) that converges in L'(R) with respect to
o(LY, L™). O

4.23

Let f:Q — R be a measurable function and let 1 < p < co. The purpose of this exercise is to show that the set
C= {uEL”(Q): u>f a.e.}

is closed in LP()) with respect to the topology o (L?, Lp').

1. Assume first that 1 < p < co. Prove that C is convex and closed in the strong LP topology. Deduce that C' is
closed in o(LP, L?").

Proof. First, to see that C' is convex, observe that for any uy,us € C and t € (0,1), tus +(1-t)ug > tf+(1-t)f = f
a.e. so that tu; + (1 —t)ug € C. Now suppose that (u,) c C is a sequence such that u, — u in LP(2) for some
we LP(§). Then there exists a subsequence (uy, ) such that u,, — u a.e., and since u,, > f a.e. for all k> 1,
it follows that u € C. Thus, C' is convex and strongly closed in LP. It follows by Theorem 3.7 that C' is weakly
closed in o(LP, L*). O

2. Taking p = co, prove that
C = {u e L=(0): /ugo > / fo YeeL'(Q) with foe L'(Q) and ¢ >0 a.e.}.

Proof. Clearly if u € C' then for all ¢ € L*(Q) with fo € L'(€2) and ¢ > 0 a.e., since u > f a.e., it follows that
up > fo a.e. so that [up > [ fo. Thus, one direction is clear. Towards proving the other direction, suppose
that u € L>(£2) has the property that for all ¢ € L' (Q2) such that fp e L'(Q2) and p >0 a.e., [up > [ fo. Con-
sider first the case where f € L=(Q). Then for all measurable subsets F' c Q) with finite measure, we have that
Jp(u—f)= [ xr(u—-f)>0. Thus, applying the fact that Q is o-finite, pick an increasing sequence of subsets
(F,) of finite measure such that U,, F}, = Q and observe that since for all n and k > 1 anﬁ[u_f<_%](u -f)=0,
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it follows that for all £ > 1, [u- f < —%] =limy oo Fnnfu—f < —%] = 0. Thus, u > f proving that u € C, and
the statement follows in the case where f e L* ().

If f¢ L>*(R), for each n > 1 define w, = [|f| < n]. Clearly Q = U, w,. Since for any n, fl,, € L=(w,) and
), € L°(wy,) and for any ¢ € L'(w,) with ¢ > 0 a.e., we have that Jo w92 [, flo, e, the situation above
applies and we can conclude that u > f a.e. on w, for all n. It follows that u > f a.e. on €2 so that u € C, and
the statement follows. O

3. Deduce that when p = oo, C'is closed in o(L*°, L').

Proof. Observe that since L'(f) is separable, Bpe(q) is metrizable with respect to the weak® topology
o(L*, L'). Thus, since C is convex, by the Krein-Smulian Theorem, to prove that C' is closed in o(L>, L"),
it suffices to prove that every bounded weak* convergent sequence in C' converges in o(L>, L') to some point
in C' with the same bound. To this end, fix a sequence (u,) ¢ C'NnnBp~(q) and suppose that there exists

some u € L=(Q) such that u, — u in (L%, L'). Then |u/e < liminf, |u, | <7 and for any ¢ € L'(Q) with
foe LY(Q) and ¢ > 0 a.e., we have that [ up =lim, e [ uny > [ fi, proving that u € CnnBr«(q). It follows
that C is closed in o(L*, L'). O

4. Let f1, fo € L=(Q) with fi < fo a.e. Prove that the set
C = {ueL”(Q) L fi<u<fo a.e.}
is compact in L () with respect to the topology o(L>, L').

Proof. To see that C is closed in o(L*>, L), observe that C = {u e L=(Q) :u > fi ae}n{-ue L®(Q):
u > —fy ae.}. From part 3 above and the fact that u — —u is continuous on L*(2), it follows that C
is the intersection of weak® closed subsets, so is closed in o(L*, L'). Moreover, note that for any u € C,
[u| < max(|f1],|f2]) a.e. s0 that |u]eo < | f1]eo + | f2] e, Proving that C is a o(L>, L') closed bounded subset of
L>(€2). Thus, by the Banach-Alaoglu Theorem, C' is compact in o (L%, L'). O

4.25 Regularization of functions in L>({2).

Let Q c RY be open.
1. Let uwe L™ (). Prove that there exists a sequence (uy,) in C°(2) such that

(@) [unfoo < fufe ¥n,
(b) up —> u a.e. on Q,

(¢) tp — uin L=(Q) weak* o(L=, L').

u(z) if x e,
0 otherwise.

Proof. Extend u to a function we L= (R) by defining u(z) = { For each n define

2
K, = {a: € Q:dist(z,Q°) > — and |z|< n},
n

so that U;>; K,, = Q and each K, is a compact subset of RY. Set g, = Xk, @ and U, = py, * gn, where (p,,) is

a sequence of mollifiers. Observe that by Proposition 4.18, supp %, ¢ supp g, + supp p, < K, + B(0,1/n) and
since each g,, € L (R), applying Proposition 4.20, we have that each w, € C°(R). Moreover, observe that

loc

K, +B(0,1/n) c Q so that for each n, u, = Upla € Ce°(Q). Note that for any x € Q, |u,(2)| = | [x, pn(z -
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y)u(y)dy| < |ulleo [, pn < |ufoo, which verifies that |y | < [u]eo for all n. Moreover, for any z € Q, we have
that for all n large enough,

fune) ~u(@)| < [ e y) - u()lpn()dy
Slplee [0 Tule=—y) —u(y)ldy

N
= —y) - dy —0 a.e.
n /B(O,l/n) lu(z - y) —u(y)|dy a.e

by Lebesgue’s Differentiation Theorem. Thus, u, — u a.e. on ). Finally, toward proving that wu, AN u, fix

v € C(2) and note that
fQ Unpp = ‘/K” (Pn * “)SD

= fKVU(p“n * )

= /Q u(pn * @) - fQK u(pn * ©)

> up,
Q

n— oo

where g, () = pp(—x), and the final line above is justified by observing that since g, is again a sequence of
mollifiers, by Theorem 4.22 p, x ¢ - ¢ in L'(Q) as n - oco. Thus, [u(p, * ¢) > [qup as n > oo, and

the second integral can be bounded by ‘fQ\K u( P * <p)‘ < fulleo foux, ¥ = 0 as n — oo since ¢ is compactly

supported on 2. Since C= () is dense in L'(Q) by Theorem 4.23, it follows that u, — u in o(L>, L'). O

2. If u>0 a.e. on €, show that one can also take

(d) up>200n Q Vn.

Proof. If u > 0 a.e. on Q, then for each n € N and x € Q, we have that u,(z) = [ u(z - y)pn(y)dy 2 0 since
u(z-y)pn(y) >0 a.e. on K,. O

3. Deduce that C2°(2) is dense in L* () with respect to the topology o(L*, L').

Proof. Fix u € L*(Q) and a weak* open neighborhood V c L*(Q) of u. By part 1 above, there exists a

sequence (uy,) ¢ C () such that u, — u in L=(Q) weak* (L™, L'). Thus, there must exist some N such
that u, € V for all n > N. It follows that every nonempty weak* open neighborhood V' c L*°(2) contains a
point in C°(Q), and so C°(Q) is dense in L*(Q) with respect to o(L>, L'). O

4.33

Fix a function ¢ € C.(R), ¢ # 0, and consider the family of functions
F=Ulenh

where ¢, () = p(z +n), z € R.

1. Assume 1 < p < oo. Prove that Ve > 03§ > 0 such that

Imnf—flp<e VfeF and VheR with |h| <.
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Proof. Fix € > 0. Since p € C.(R), ¢ is uniformly continuous on R and so there exists some § > 0 such that
lo(z) = p(y)| < \K\l/P for all |x —y| < §, where K c R is a compact subset containing supp ¢ + B(0,d). Thus, for

all f € F, there exists some n € N such that f = ¢, and so for all |h| < §

s =115 = [ lo(@+n+h) - p(a+n)Pde

- [ e+ h) = p(@)Pda

<eP.
The statement follows. O
2. Prove that F does not have compact closure in LP(R).

Proof. Let N € N be such that p(z) =0 for all |x| > N. Consider the sequence (porn)rs1 € F. Observe that
for any j + k,

lisen = asnllh = [ lp(a+26N) —o(a + 2iN) P da

—(2k-1)N —(2j-1)N
- [ lo(x + 26N Pda + f lo(z + 2N [Pda

-(2k+1)N —(2j+1)N
=2 ell7,
and so (p2rn) has no convergent subsequence. Since a subset of a metric space is compact if and only if it is
sequentially compact, it follows that the closure of F is not compact in LP(R). O
In what follows, H will always denote a Hilbert space equipped with the scalar product ( , ) and the corre-

sponding norm | |.

5.2 L? is not a Hilbert space for p # 2.

Let € be a measure space and assume that there exists a measurable set A c Q such that 0 < |[4] < |Q}|. Prove that
the | |, norm does not satisfy the parallelogram law for any 1 <p < oo, p # 2.

Proof. Clearly we're going to need more than just the assumption that there exists 0 < |A| < |©2]. For example, if
Q ={1,2}, {1}| = 1 and |[{2}| = oo, then we can pick A = {1} and 0 < |A| < |Q] is satisfied and it’s obvious that
for any 1 <p < oo, LP(Q) = {f : f(2) = 0}, so that | f[, = |f(1)| for all f e LP(2). But then for any f,g ¢ LP(1),

2 2
H%Hp + ’ ‘p = lf(l)_f(l)F + ‘f(l)zg(l)ﬁ = %(|f(1)|2 + |g(1)|2) = %(Hfﬂf, + Hng,) I think the most general condition

required to prove the result is this: In addition to some measurable A with 0 < |A] < ||, we also have measurable
BcQ with AnB =@ and 0 < |B| <|Q|. Then observe that for any p # 2 with 1 < p < co, we have that for any « >0

f+g
2

-1 1
| - 5™ 0
and
loalE s Sl = 3P s )

Differentiating the RHS of (1) with respect to , we get 2P~![A|(xP|A| +1)~P)/P and then differentiating the RHS of

(2) with respect to z, we get z|A|*/P. Now picking z = IAI%/P’ we see that the derivative of (1) simplifies to 2(2-P)/P|A[/P

and the derivative of (2) simplifies to |A|*/?. Since these two terms are equal if and only if p = 2, it follows that (1)
and (2) cannot be equal for all z > 0, proving that the parallelogram law does not hold for p # 2 with 1 < p < oo.

2 2
For p = oo, observe that HMH +”2XA#H =2# 2 = 22xal + 3Ixsl%- O

[ oo
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5.3

Let (u,) be a sequence in H and let (£,) be a sequence in (0, c0) such that
(tntn = tmtm, Up —Um) <0 Vm,n.
1. Assume that the sequence (t,,) is nondecreasing (possibly unbounded). Prove that the sequence (u,,) converges.

Proof. Observe that

2(tntn =t U — U ) = 2t |un > = 2(tn + tim) (U, U ) + 2t |t |*
= 2t |un|? = ton|tn]? + ton|tn|* = trltim[? + toltim]? + 2tm|tm|? = 2(tn + tn) (U s U )
= (tn + ) ([l + fm|* = 2, wm)) + (b = ti) (funf* = fum[*)
= (tn +tm)|un - Um|2 +(tn _tm)(lun|2 - |um|2)'
Thus, for all m < n we have (tp, + tn)|un — Um|® < (tm = tn)(unl® = [um|?). Since (t,) is nondecreasing, it
follows that if w, # wu,,, then t,, < t,. Since the LHS of the inequality is strictly positive, this forces that

[tn|? = [tm|? < 0, so that |un| < [ty,]. Thus, (Ju,|) is a nonincreasing sequence in R, bounded below by 0, and
therefore converges to a limit. Finally, observe that for all n, m we have that

tn_tm(

o+t |um|2 - |un|2) < |um|2 - |un|27

[t — U |* <

and since (Ju,|?) is a Cauchy sequence in R, it follows that (u,) is a Cauchy sequence in H and therefore
converges. O

2. Assume that the sequence (¢,) is nonincreasing. Prove that the following alternative holds:

(i) either |u,|— oo,

(ii) or (uy,) converges.

If ¢,, - t > 0, prove that (u,) converges, and if ¢,, — 0, prove that both cases (i) and (ii) may occur.

Proof. Observe that for all m <n

tm —tn

0§|un_um|2S (|un|2_|um|2) S|un|2_|um|27

tm +1n

and it follows that (Ju,|) is a nondecreasing sequence. Thus, either (|u,|) has some finite limit and is therefore
a Cauchy sequence in R, which forces (u,) to be a Cauchy sequence in H by the same inequality, and therefore
converge, or (|uy,|) diverges to infinity. Thus, the first part of the question is proven. Towards proving the
second part, assume first that ¢,, - ¢ > 0. Then observe that (h,,) := (i) is a nondecreasing sequence and we
have that

02> (tntn = b, Up — Up,)
= ((tnun) - (tmum)a hn(tnun) - hm(tmum))

= (hnvn - hmvma Un — 'Um)a

for all n,m where v, = t,u,. It follows by part 1 above that (v,) converges to some limit v € H, and

since for all n we have that t|u,| < tplun| = |vn] = |v], it follows that (Ju,|) is bounded, proving from our

reasoning above that (u,) converges. When t, — 0, observe that the constant sequence (u,) = (u) always

converges and obviously (t,u — t,u,u —u) < 0, so case (ii) can definitely occur. Moreover, for u # 0, the
1

sequence (u,) = (h,u) obviously has the property that |u,| — oo since h, = 7~ — oo, and we have that

(tntn =t Um, Un — U ) = (u—u, hpu — hpu) < 0. Thus, case (i) is also possible. O
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5.5

1.

Let (K,) be a nonincreasing sequence of closed convex sets in H such that n, K, # @. Prove that for every
f € H the sequence u,, = Pk, f converges (strongly) to a limit and identify the limit.

Proof. Fix f € H and for each n > 1, set u,, = Pk, f. By assumption n, K,, is nonempty and closed, being the
intersection of closed sets. Moreover, since for any w,v € n, K, and t € (0,1), tu+ (1 —t)v € K,, Vn by the
convexity of each K,, so that tu + (1 —t)v € n,K,, it follows that n, K, is a nonempty, closed and convex
subset of K, for all m. Define u = P, g, f. I claim that u, — u. Since K,, > K, > n;K; for all m < n,
from the definition of the projection, it follows that |f — w,,| < |f — un| < |f = u|- Thus, (|f - u,|) is a upper-
bounded, nondecreasing sequence in R and therefore converges to some limit. Observe that for any m <n, by

the convexity of K,, > K,, and the definition of the projection, we have that |f — w,,| < ‘ f- %| It follows

by the parallelogram law that for all m <n,

2 2

1
1|un _um|2 + |f _um|2 <

Up + U,

2

Up — Um,

f 2

1 1
= §|f_un|2+§|f_um‘2'

Thus, for all m < n, we have that |u, —u,|* < 2(|f—un|2 - |f—um|2). Taking the lim sup with respect to n > m,
and then with respect to m > 1, it follows that (u,) is a Cauchy sequence and therefore converges to some
point u’. Since (uy,) is eventually entirely contained in K, for each m, and each K, is closed, it follows that
u’ € Ny, K. But because |f —u'| = limy o0 |f = upn| < |f — u| = mingen, x,, |f - v|, and w is the unique element of
Np K, that minimizes the distance to f, it follows that lim, e un =u = Pk, f, as claimed. O

Let (K,) be a nondecreasing sequence of nonempty closed sets in H. Prove that for every f € H the sequence
un = Pk, f converges (strongly) to a limit and identify the limit.

Proof. Fix f € H and for each n set u, = Pk, f. Since for all m <n, we have that K,, c K, it follows by the
definition of the projection function that |f —wu,| < |f — wm|, and so (|f — u,|) is a lower-bounded, nonincreasing
sequence in R and therefore converges to some limit. Observe that by the convexity of each K, and the fact that

K,, c K, for each m < n, applying the definition of the projection we have that | f—u,,| < ‘f—%

. By the same

parallelogram law argument as above, we therefore have that for all m < n, |u, — wm|? < 2(|f — U |* = |f —unl?).
Taking the lim sup with respect to n > m and then with respect to m, we see that (u,) is a Cauchy sequence
and therefore converges to some limit u € H. Define F' = UJ,, K,,. Since K,, c K,,;1 c -+, it’s clear that U,, K, is
convex by virtue of each K,, being convex, and since the closure of a convex subset is convex, it follows that F'
is a nonempty, closed convex set. I claim that v = Prf. Indeed, observe that for all m, u,, € K, cU,, K, c F,
and it follows that uw = lim,, o u,, € F. Moreover, we have that for any v € U,, K,,, there exists some N such
that v € K so that |f —u| < |f —un]| < |f —v|. Since U, K, is dense in F, the continuity of | | implies that
|f —u|<|f —v| for all v e F, proving that u = Prf as claimed.

O

Let ¢ : H - R be a continuous function that is bounded from below. Prove that the sequence o, = infx, ¢
converges and identify the limit.

Proof. Let C' be a finite lower bound for . Observe that for any m < n and u € K,, c K,,, we have C <
ap = infg, ¢ < p(u). Taking the inf over all u € K,,, we have that C < a, < ay,. Thus, («,) is a lower-
bounded, nonincreasing sequence in R and therefore converges to some limit. Let F' be as defined above. I
claim that lim, . o, = infp . Since K, c F for each n, it’s clear by the same argument as before that
infrp<infg, ¢ =ca, Vn. On the other hand, for any v € U, K, there must exist some N such that v e Ky
and so limy, e oy, < any = infg,, @ < p(v). Since U,, K, is dense in F', applying the continuity of ¢, it follows
that limy, e iy < @(v) for all v € F, and so lim, e v, < infp . The claim follows. O
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5.8

Let Q be a measure space and let h: € — [0,+00) be a measurable function. Let
K={ueLl*(Q): |u(z)|<h(z)ae. onQ}.
Check that K is a nonempty closed convex set in H = L?(2). Determine Pp.

Proof. Clearly we have that 0(z) =0 < h(z) Ve, and since 0 € L2(12), it follows that 0 € K, confirming that K
is nonempty. Moreover, for any uq,us € K and ¢ € (0,1), we have that tju;| < th a.e. on Q and (1 -t)|us| < (1 -t)h
a.e. on Q. Thus, [tug + (1 - t)ug| < tlus| + (1 = t)|ue| < th + (1 -t)h = h a.e. on Q, which confirms that K is convex.
Now towards proving that K is closed in L?(Q), suppose that a sequence (u, ) c K converges (strongly in L?(Q2)) to
some point u € L?(2). Then there exists some subsequence (u,, ) such that u,, — u a.e. on . Let N, c Q be the
null set where u,, + u, and for each k, let Nj c Q be the null set where |uy,, | > h. Then N, U (Ux Ni) is a null set
and for all x ¢ N, U (Uy Ni), we have that |u(z)| = limg_ o |tin, ()| < h(x), proving that « € K and therefore that K
is a nonempty closed convex subset of L?(2).

Observe that for any f € L?(Q), Pk f is the unique element u € K satisfying [,,(f —u)(v-u)dz <0 for all v € K.
Define u = sgn(f) min(|f|,h). Then u is measurable and we have that |u| < |f| on © so that u € L?(£2). Moreover,
|u| < h on Q so that u € K. Fix v € K and define A = [(f —u)(v—wu) > 0]. Observe that for all = € A, either we
have u(x) < f(x), so that u(x) = h(z), and h(z) = u(x) < v(z), or we have f(z) < u(x), so that u(z) = -h(x), and
v(z) <u(z) = -h(x). In either case, |v(z)| > h(z) and it follows that A is a null set. Thus, (f —u)(v—-u) <0 a.e. on
Q, so that [(f—wu)(v—u)dz<0. Since this inequality holds for all v € K, it follows that u = Pk f. O

5.10

Let FF': H - R be a convex function of class C'. Let K c¢ H be convex and let u € H. Show that the following
properties are equivalent:

(i) F(u)x F(v) YvekK,
(ii) (F'(u),v-u)>0 VvekK.
Example: F(v) = v~ f|*> with f € H given.

Proof. This statement is not true in general: take H = R, u = -1, K = {2} and f = #2. I'm going to assume here Brezis
meant to write "let u € K”. With this assumption in mind, fix F': H - R e C'(H), K convex and u € K. Assume (i)
holds. Then by the convexity of K, for any ¢ € (0,1) and v € K, we have that t(v—u)+u=tv+ (1 -t)u € K, so that
F(u) < F(t(v—-u) +u). It follows that for all ¢ € (0,1) and v € K, (F'(u),v—u) +o(t) = F(t(v-u) +u) - F(u) 0.
Taking the limit as t - 0, we get (F'(u),v —u) > 0, proving that (i) = (ii). Now assume (ii) holds. Fix v € K
and observe that by the convexity of F', for all ¢ € (0,1) we have t(F(v) — F(u)) > F(t(v - u) +u) - F(u) 2
F(t(v-u)+u)-F(u) - (F'(u),v—-u) =o(t). Thus, F(v) - F(u) > %o(t) for all ¢ € (0,1), and taking the limit as
t - 0, we see that F'(v) — F(u) >0, proving that (ii) = (i). O

5.11

Let M c H be a closed linear subspace that is not reduced to {0}. Let f e H, f ¢ M*.

1. Prove that
m = [j%f‘{(f’ u)

is uniquely achieved.

Proof. Set K = M n By and note that since M and Bpy are both closed and convex, K is closed and convex.
Define p: H - R; u+ (f,u). Clearly ¢ is a bounded linear functional on H and so is convex and l.s.c. Since H
is reflexive, ¢ # oo and K is bounded, we can apply Corollary 3.23 to conclude that ¢ achieves its minimum on
K. Let u be a minimum for ¢. Towards proving that |u| = 1, observe that because f ¢ M*, it follows that there
exists some v € M such that (f,v) <0, and by potentially scaling v, we may assume WLOG that v € K, so

39



that (f,u) < (f,v) <0. Now we have that % € K, and so if it were the case that |u| # 1, then since u € By, we

|ul
would have that |u| < 1, so that (f, ﬁ) = Wll(f’u) < (f,u), which is absurd. Thus, since {ve M :|v| =1} c K,

it follows that u achieves the minimum inf,eps(f,v). Finally, to see that u uniquely achieves this minimum,
vl=1

suppose towards a contradiction that there exists some u’ € K such that (f,u") = (f,u) and u’ # u. We showed

above that every minimum of K must have norm 1. However, we have that %u + %u’ e K and this element

achieves the minimum since (f,u) = (f, u + u’), which produces a contradiction as H is uniformly convex,

2 2
so strictly convex, implying that |%u + %u' | < 1. Thus, u is the unique element that achieves the minimum
m = infyerr (f,v). O
[v]=1

2. Let ¢1,p2,03 € H be given and let E denote the linear space spanned by {¢1, p2,¢3}. Determine m in the
following cases:

(i) M=E,

Solution

By possibly performing Gram-Schmidt, we may assume WLOG that o1, @2, 3 is an orthonormal basis
for E. Observe that f = Pgf + Pg.f, and so for all uw € E, we have (f,u) = (Pgf + Pg.f,u) = (Pgf,u).
Thus, for all u € E with |u| = 1, we have (f,u) = (Ppf,u) > -|Ppf|. Set ug = -2 € E and observe that

" Pefl
lug| =1 and (f,u) = -|Pgf|. It follows that m = ~|Pgf| =~ X;(v:, [)wil = -/ Z:[(wi, £
(i) M = E*
Solution

Regurgitating the exact same argument as above but replacing F with E*, we see that m = —|Pg.|. Since
[fP? = [Pef” +|Pg: fI7, it follows that m = —/|f[2 = [P f[> = —\/If[> = = |(f, 0%

3. Examine the case in which H = L%(0, 1), ¢1(t) = t,pa(t) = t2,p3(t) = .

Solution

After performing Gram-Schmidt on o1, s, @3, we get the orthonormal basis e;(t) = V/3t, ea(t) = V/5(4t% -
3t), es(t) = V/7(15t3 = 20t% + 6t). From our results in part 2 above, it follows that

2
+7

2

2
1 1 1
mpg = — 31f0 F(t)tdt +5f0 F()(42 - 3t)dt fo F(4) (153 - 2062 + 6t)dt|

and mpg. = /| f]2 - mZ.

5.14
Let a: H x H - R be a bilinear continuous form such that
a(v,v) >0 VYveH.
Prove the the function v — F(v) = a(v,v) is convex, of class C*, and determine its differential.

Proof. Since a is a continuous bilinear form, there exists C' > 0 such that |a(u,v)| < Clu||v| for all u,v € H. Thus,
if up, = u, then |F(u,) — F(u)| = |a(un, — u,un) — alu — up,u)| < Cluy, — ul(|un| + |u]) - 0. Since H is a metric
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space, this proves that F is continuous. Fix v,u € H and ¢ € (0,1). Since a(u — v,u —v) > 0, it follows that
a(u,v) + a(v,u) < F(u) + F(v), and therefore
F(tv+(1-t)u) <t?F(v) + (1 -t)?F(u) + t(1 - t)(F(u) + F(v))
= t(tF(v) + (1 =t)(F(u) + F(v))) + (1 - t)*F(u)
=t((1-t)F(v) + (tF(v) + (1 =t)F(u)) + (1 - t)*F (u)
=(1-t)((1-t)F(u) +tF(v)) +t(tF(v) + (1 - t)F(u))
=tF(v) + (1-t)F(u),

proving that F is convex. Towards proving that F' € C!, observe that for all u,h e H,

|[F'(u+h) - F(u) - a(u,h) —a(h,u)| |a(u+h,u+h)-a(u,u+h)-a(h,u)l

|h| |h]
la(h, )|
= ————= <CJh|.
|h]
Thus, the LHS goes to 0 as |h| - 0, and since the map ¢, : h € H » a(u,h) +a(h,u) is a continuous linear functional
on H, it follows that F' e C! and F'(u) = ¢,. O
5.15

Let G c H be a linear subspace of a Hilbert space H; G is equipped with the norm of H. Let F' be a Banach space.
Let S: G - F be a bounded linear operator. Prove that there exists a bounded linear operator T': H — F' that
extends S and such that

| Tl 2crry = 1S e, ry-

Proof. By Exercise 1.6, G is either dense or closed in H. If G is dense in H then S extends uniquely to some bounded
linear operator 7" on H since S is bounded and so uniformly continuous on a dense subset of H. That is, for any
u € H, we pick any sequence (u,) c G that converges to u in H. Since |S(un — um)|r < |S|tn = wm|m, (Suyn) is a
Cauchy sequence in F' and therefore converges to some point Tu € F. Observe that if (v,) c G is another sequence
converging to u, then |Tu — Sv,| < |Tu — Stp| + | S||tm —vn] = 0, and so T is a well defined function from H into F.
That T is linear and extends S is clear. To see that T is bounded, fix v € H and pick a sequence (u,,) c G such that
up = v. Then [T = limy, o0 [Stn| < limy oo |S||un| = [S]|v]. Hence, T is bounded and ||T'| z(m,ry < |S] 2¢c,F)- Since
T extends S, it’s clear that |S|,(q,ry < |T|z(#,r), and the case where G is dense in H follows.

Suppose now that G is not dense in H so that G is a closed linear subspace. Define T: H - F by Tv = S o Pgu.
Since Pgu = u for all w € G, T extends S. Moreover, because S € L(G,H) and Pg € L(H,G), it follows that
T e L(H,F). For any v € H, we have |Tv| < | S| Pg/|[v] = |S||v], proving that |T'|zcm,ry < |S]lz(q,F)- Again, since
T is an extension of S, the inequality in the other direction follows, and so |T'| z(x,ry = [ S| z(c,F), as required. [

5.16 The triplet Vc Hc V*.

Let H be a Hilbert space equipped with the scalar product ( , ) and the corresponding norm | |. Let V c H
be a linear subspace that is dense in H. Assume that V has its own norm | | and that V is a Banach space for
| |. Assume also that the injection V c H is continuous, i.e., [v] < C|v| Vv € V. Consider the operator T: H - V*
defined by

(Tu,v)y+v =(u,v) YueH, VYveV.

1. Prove that |Tu|y~ < Clu|Yu e H.

Proof. Fix u € H. Note that for all v € V, [(Tu,v)| = |(u,v)| < Juljv| < Clul|v], and so |Tully+« < Clu| for all
weH. O

2. Prove that T is injective.
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Proof. Fix u,u’ € H and suppose that Tu = Tw'. Then for all v eV, (u—-u',v) = (T'(u—-u"),v) = 0. Since V is
dense in H, the continuity of ( , ) implies that (u—u',v) =0 for all v € H, and so u -’ =0, proving that T
is injective. O

3. Prove that R(T') is dense in V™ if V' is reflexive.

Proof. Towards a contradiction, suppose that V is reflexive but R(T') is not dense in V*. Since R(T) is a
linear subspace of V*, the fact that R(T) is not dense in V* implies that R(T') is closed (by Exercise 1.6).
Pick some f ¢ R(T) and apply the second geometric form of the Hahn-Banach theorem to get a bounded linear
functional € € V** and some € > 0 such that (&, Tu) < (£, f) — for all u e H. It follows that (¢, Tu) = 0 for all
ue H and € #0. But since V is reflexive, there exists some u € V' such that (&, v* )y« v+ = (v*,u)y+ v for all
v* € V* and it follows that 0 = (&, Tu) = (T, u) = |u|?, so that u = 0 which is absurd because we then have that
(f,0) = (&, f) > 0. By contradiction, if V is reflexive then R(T') is dense in V'*. O

4. Given f e V*, prove that f € R(T) iff there is a constant a > 0 such that [{f, v}y« v| < alv|Vve V.

Proof. Fix f € V*. Clearly if f € R(T), then we have some u € H such that for all v e V| |(f,v)| = {Tu,v)| =
|(u,v)] < |u||v], and so we can choose a = |u| > 0. Now suppose that there exists some a > 0 such that [(f,v)| < a|v|
for all v € V. Then f|y is a bounded linear functional on the subspace V ¢ H with respect to the norm | |,
and so by the analytic form of the Hahn-Banach theorem, there exists an extension '€ H* of f. By the Riesz
Representation Theorem for Hilbert spaces, there exists some u € H such that (F,v) = (u,v) for all ve H. It
follows that for all v e V, (T'u,v) = (u,v) = (F,v) = (f,v), and so f € R(T). O

5.20

Assume that S € L(H) satisfies (Su,u) >0VYu e H.
1. Prove that N(S) = R(S)*.

Proof. Fix u e N(S). Observe that for all v € H, since 0 < (S(v—u),v—u) = (Sv,v-u), it follows that ((Sv,u) <
(Sv,v). Now fix v € H. For every t >0 we have that (S(tv),u) < (S(tv),tv), so that (Sv,u) < t(Sv,v). Taking
the limit as ¢ — 0, we have that (Sv,u) < 0. We also have that for all ¢t < 0, (S(tv),u) < (S(tv),tv), and so
(Sv,u) > t(Sv,v). Taking the limit as ¢t - 0, we get (Sv,u) > 0, showing that u 1L Sv. Since this holds for all
v e H, we have that u € R(S)*. Thus, N(S) c R(S)* = N(S*). Observe that (Su,u) >0 Vue H implies that
(S*u,u) = (u,Su) >0 Vue H. Thus, N(S*) c R(S*)* = N(9), proving that N(S) = N(5*) = R(S)*. O

2. Prove that I +tS is bijective for every ¢ > 0.

Proof. Fix t > 0. Suppose that u € N(I +tS), so that u = -tSu. Then 0 < (Su,u) = —t(Su, Su) = ~t|Su|?, which
implies that v € N(S). Thus, u = —tSu = 0, proving that I +tS is injective. Towards proving that I + ¢S is
surjective, fix v € H and define the bilinear form a : H x H — R; (z,y) ~ (x + tSz,y). Observe that for all
r,ye H, la(z,y)| < |z +tSz|ly| < (1 +t]|S|)|zlly| and a(z,x) = |z|*> + t(Sz,z) > |z|?, proving that a is continuous
and coercive. Thus, by Lax-Milgram, there exists a unique element v € H such that a(u,z) = (¢, z) for all
x € H, where p:x € H — (v,z). That is, there exists unique u € H such that (u + tSu,z) = (v,z) for all z € H,
proving that u + tSu = v. It follows that I + ¢S is a bijection. O

3. Prove that
Jim (1 + tS) ' f=Pnsyf VfeH.

Proof. Suppose first that f € N(S). Fix t > 0 and set u; = (I +tS)™1f. Observe that since N(S) = R(S)*,
we have (Sug, us) + t|Sus|*> = (Suy, f) = 0. Since (Sug,u;) and t|Suy|*> are both at nonnegative, it follows that
|Sug| = 0 so that f =wuy +tSus = ug. Thus, limye (I +tS)71f = f for all fe N(S).

Now suppose that f € R(S). Then there exists v € H such that f = Sv. Fix ¢t >0 and set u; = (I +tS)"'f, so
that u; + tSu; = Sv. Since uy + S(tug — v) = 0, it follows that (ug,tu; —v) = =(S(tus — v),tus —v) < 0. Thus,
tlue? < (ug,v) < Jug||v], and so |uy| < %|v| Taking the limit as t — oo, we have limy_ o (I +¢S)™1 f = limy_ 0 us = 0.
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Applying Exercise 5.15 with G = R(.S), it follows that lim_, . (I +S)~ =0.

76
R(S)
Since H =N(S)@ N(S)*=N(S)@ (R(S)*)* = N(S)® R(S), for any f € H, we have that

Jim (1 + tS) ' f = Jim (1 + tS) (Pn(s)f + Prgyf) = Pnesy -

5.22

Let C' c H be a nonempty closed convex set and let T': C' > C be a nonlinear contraction, i.e.,
|Tu—-Tv|<|u-v| Yu,veC.
1. Let (u,) be a sequence in C such that
up, = u weakly and (u,, — Tu,) - f strongly.
Prove that u —Tu = f.

Proof. Note that since C' is convex and strongly closed, C' is weakly closed and so u € C'. Moreover, since T is
a contraction, we have the following chain of inequalities
|t —u* > |Tu,, — Tul?
=(u—-Tu) = (tn, - Tuy) - (u—-uy,)[?
=(u-Tu) = (g, = Tun)* + [ty —u* = 2((w = Tw) = (tty, = Ti), 2w — Uy, ).
Thus, it follows that |(u—Tu)~(w,~Tu,)* < 2((u-Tu)~(up-Tuy,), u—uy) for all n. Since (u~Twu)-(u,~-Tu,) -

u—-Tu~- f strongly and u - u,, -~ 0 weakly, it follows that |(u—Tu) - f|* = limy, e |(u = Tw) = (u, — Tuy,)* = 0.
Thus, v —Tu = f, as required.

2. Deduce that if C' is bounded and T'(C') c C, then T has a fixed point.

Proof. Fix a € C' and ¢ € (0,1). Observe that for any u € C, (1 —&)Tu +ca € C by the convexity of C. Define
F.:C > C;uw~ (1-¢)Tu+ca. Note that F. is a strict contraction since for any u,v € C, |F.u — F.v| =
(1-&)[Tu-Tv| < (1-¢)|u-v|. Since C is closed subspace of H, C' is a complete metric space with respect to
the metric induced by the norm on C, and so by the Banach-fixed point theorem, there exists unique u. € C'
such that (1 -¢)Tu. +€a = Fou. = u.. For each n > 1, define u, :=wu1. Since C is bounded, (u,) is a bounded
sequence in H and therefore there exists subsequence (u,, ) that coiwerges weakly to some u € H. Moreover,
Upy, — TUp, = n—lk(a —Tup,) — 0 strongly as k — oo (since (T'up, ) c C is bounded). Thus, by part 1 above,
u—Tu =0, and so T has a fixed point. O

5.26

Assume that (e,) is an orthonormal basis of H.

1. Check that e,, = 0 weakly.

Proof. Fix u € H and observe that by Parseval’s identity, ¥, |(en,u)|* = |u|*> < 0. Thus, |(en,u)]* = 0 as
n — oo, and it follows that (e,,u) - 0 as n — oo for all uw € H, so that e, —~ 0 weakly. O

Let (a,) be a bounded sequence in R and set wu, = % Y aie;.

2. Prove that |u,| — 0.

Proof. By assumption, there exists C' > 0 such that |a,| < C for all n. Observe that |u,|* = =5 Y7L |ag? <
LY, C% = LC2. 1t follows that for all n, |u,| < %C, which goes to 0 as n — oo. O
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3. Prove that \/nu, — 0 weakly.

Proof. Fix v e H. Observe that for any m > 1 and for all n > m, we have that (\/nu,, e, ) = ?/ﬁ — 0 as n — oo.

It follows that for all v € span(e;)i»1, (v/NUn,v) - 0 as n — co. Since span(e;);»1 is dense in H, there exists
a sequence (vy,) C span(e;);»1 such that v, — v strongly. Fix ¢ > 0 and pick M such that |v,, —v| < 55 for all
m 2 M. Choose N such that |(\/nu,,var)| < 5. Then for all n> N

(Vi v)] < [(Vnm, var)| + (Vs v = var)|

gg+C|v—vM|<5.

It follows that lim,, e (\/nu,,v) = 0 for all v € H, proving that \/nu, —~ 0 weakly. O

5.28

Assume that H is separable.

1. Let V c H be a linear subspace that is dense in H. Prove that V contains an orthonormal basis of H.

Proof. Since H is separable, so is V. Let (v,) be a countable dense subset of V. Let Fj denote the linear
subspace of V spanned by {vi,...,v;}. The sequence (F}) is a nondecreasing sequence of finite dimensional
subspaces of V' such that Uj2;{vn} © Upeq Fy is dense in V| and therefore in H. Now pick any unit vector
e1 € F} and assume that we have picked a nondecreasing sequence of orthonormal bases for Fi,..., Fi_1, which
we shall denote by {e1} c - c {e1,...,en,_, }. Then we can construct an orthonormal basis of F}; that includes
{e1,...,€en,_, } as follows: if span(ey,...,en,_,) = Fy then choose {ey,...,en,,_, . Otherwise pick any vector vy, €
Fy ~ span(e; f;ll and perform Gram-Schmidt to get the orthonormal basis {e1,...,en,_;,€x} 2 {€1,...,€n,,}
of F). Repeating this process for each k > 1, we get an orthonormal sequence (e, ) c V whose span is equal to
Up2 Fk, which is dense in H. Thus, (e,) c V is an orthonormal basis of H, as required. O

2. Let (en)n>1 be an orthonormal sequence in H, i.e., (e;,e;) = d;;. Prove that there exists an orthonormal basis
of H that contains U, ,{en}.

Proof. Let E = span(ey,). If E = H, then we’re done so suppose WLOG that E ¢ H. Clearly (e,) is an
orthonormal basis for E. Since E* is a closed linear subspace of H, E* is a separable Hilbert space with
respect to the inner product ( , ), and so by Theorem 5.11, E* has an orthonormal basis (v,)o2, ¢ E*.
Define (uy, )2, by uapn = e, and ug,-1 = v,. Since e, L vy, for all n,m, it’s clear that (u,) is an orthonormal

sequence. Moreover, span(u,) > span(e,) = E and span(u,) > span(v,) = E*. Since span(u,) is a linear
subspace of H, it follows that H = E @ E* c span(y,), proving that (u,) is an orthonormal basis of H
containing Uy {en }. O

5.30

Let (€n)ns1 be an orthonormal sequence in H = L2(0,1). Let p(t) be a given function in H.

1. Prove that for every t € [0,1], one has

[}

2

n=1

Atp(s)e,L(s)ds sf0t|p(s)|2ds. (1)

Proof. Since L?(0,1) is separable, we can apply Exercise 5.28 to extend (e, ) to an orthonormal basis (u,,) of
L?(0,1). Observe that [px[o,17 < |p| for all z € (0,1), and so px[o,1] € L*(0,1). Applying Parseval’s identity, we
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have

2 2

= 3| [, POx0aen()ds

[

<5

n=1

= [ b)xpoas)Pds
= [Mp()as.

21 '/Otp(s)en(s)ds

2

fo 1 P(8)x[0,¢1(8)un(s)ds

2. Deduce that )

[0 Co(s)en(s)ds| dt < fo (B (1 - 1)t 2)

Proof. Applying the inequality from part 1 above, we have

2
ifol dt:/(;lnil fotp(s)en(s)ds

n=1

1t

< f f Ip(s)|dsdt
o Jo
1,1 )

= [ ] )P xen (s st
1,1

:f f Ip(s)[X[s<i1 (s, t)dtds (Fubini’s Theorem)
o Jo

= [ )1~ s)ds.

2

/(;tp(s)en(s)ds

dt (Monotone Convergence Theorem)

3. Assume now that (e, )n»1 is an orthonormal basis of H. Prove that (1) and (2) become equalities.
Proof. Since (e,) is an orthonormal basis, we don’t need to extend (e, ) to the basis (u,) in part 1 above, and
so the line with the inequality is removed, giving equality. E.g., we apply Parseval’s identity with (e,) to get
Yoy |(en,pX[0’t])\2 = |px0,41 |3. Observe that the only inequality in my proof of part 2 is now an equality, and
so (2) also becomes an equality. O

4. Conversely, assume that equality holds in (2) and that p(t) # 0 a.e. Prove that (e, )n»1 is an orthonormal basis.

Proof. Observe from the chain of (in)equalities in part 2 that equality in (2) forces that

2
0:[01/Ot|117(s)|2ds—n§:1 /Otp(s)en(s)ds dt
2
:/01 /(;t|p(5)|2d5—§°:1 fotp(s)en(s)ds dt,

2

and it follows that Yo, ‘fotp(s)en(s)ds‘ = fot Ip(s)[>ds for almost all ¢ € [0,1]. Thus, equality in (2) im-
plies equality for almost all ¢ € [0,1] in (1). Extend (e,) to an orthonormal basis (u,) of L?(0,1). To-
wards a contradiction, suppose that there exists some m such that wu,, ¢ (e,). Then we have that for ¢ a.e.
oy |(un,pX[07t])|2 = |px[o,1] 3=5%, |(en,pX[0,t])\2, which forces that |(t,, pXx[0,¢])| = 0 for almost all € [0, 1].
That is, fot um (8)p(s)ds = 0 for almost all ¢ € [0,1], and since ¢ — fot um (8)p(s)ds is a continuous function, it
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follows that fot Um(8)p(s)ds =0 for all t € [0,1]. Thus, [:12 Um(8)p(s)ds =0 for all (¢1,t2) c [0,1], which implies

that u,,p = 0 a.e. on [0,1]. Since p # 0 a.e. on [0, 1], we must have that u,, = 0 a.e., so that |u,,|3 = jol |t | = 0,
which contradicts the fact that u,, is a unit vector. Thus, by contradiction, U,{en} = U, {un}, proving that
(en) is an orthonormal basis for L2(0,1). O

6.1

Let E =¢P with 1< p<oo. Let (A\,) be a bounded sequence in R and consider the operator T € L(FE) defined by
Tx = ()\1%1, )\Q.TQ, ey )\nl'n, .. .),

where
x=(x1,Ta, ..., Tn,...).

Prove that T is a compact operator from F into E iff A, — 0.

Proof. Tt’s clear that T € L(¢P) with |T| = sup,, |\n|- Observe that for any n with A, # 0, dnm € N(T = A\, 1),
where d,,,,, is the sequence with 1 in the nth position and zeroes elsewhere. Hence, N(T - \,I) 2 {0}, proving that
{An:An £0} cEV(T) N {0} c o(T) ~ {0}. Thus, by Lemma 6.2, if T € K (¢P), then either {\, : A, # 0} is finite or
{An A #£0} is a subset in R with limit point 0. In either case, the sequence (\,) converges to 0, proving the ”only
if” direction.

For the ”if” direction, suppose that A\, — 0. Then for each n, define T, € L(/P); z — (Mx1,..., A\nZn,0,...).
Clearly each T, has finite rank and is therefore compact. Observe that for any x € ¢F

” (T - Tn)pr = ”(Oa . ‘707>\n+1xn+17>\n+2xn+27 . )Hp < %Qfl{p‘m”‘pra

proving that |T - T, | € max;,s, |[Am| > 0 as n - oo. Thus, T is a compact operator, being the limit of compact
operators. O

6.2
Let E and F be two Banach spaces, and let T € L(E, F).

1. Assume that F is reflexive. Prove that T'(Bg) is closed (strongly).

Proof. By Kakutani’s Theorem, E reflexive implies that Bg is weakly compact. Since T is continuous from FE
with the weak topology o(E, E*) into F' with the weak topology o(F, F*) by Theorem 3.10, it follows that
T(Bg) is a weakly compact subset of F. In particular, T(Bg) is weakly closed and therefore strongly closed
in F. O

2. Assume that F is reflexive and that T € K(F, F'). prove that T(Bg) is compact.

Proof. By part 1 above, T'(Bg) is (strongly) closed. Thus, since T is a compact operator, T(Bg) = T(Bg) is
(strongly) compact. O

3. Let E=F =C([0,1]) and Tu(t) = fotu(s)ds. Check that T € K(F). Prove that T(Bg) is not closed.

Proof. Tt’s clear that T is a bounded linear operator (linearity is obvious, the range of T being contained in
C([0,1]) follows by the continuity of ¢ — fot u for any (locally integrable) u, and boundedness follows by the
fact that |Tullc([o,1]) = maxe[o,1]|[Tu(t)| < maxe[o,1 fot lul = |ulc(fo,17))- Now towards proving that T' is a
compact operator, observe that for any v € Bg and ¢ € [0,1]

\Tu(t +h) - Tu(t)] = ‘ I T (s)ds

< |h|.
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Thus, clearly T'(Bg) is an equicontininuous subset of C'([0,1]). Moreover, for any u € Bg, |Tu|c(o,17) < T =

1, and so T(Bg) is equibounded. By Arzela-Ascoli, it follows that T'(Bg) is a compact subset of C'([0,1]),
and so T € K(F).

Finally, towards proving that T'(Bg) is not closed, observe that by the Fundamental Theorem of Calculus
Part I, T(Bg) c C*([0,1]) and so it suffices to construct a sequence (u,) ¢ Bg such that Tu, converges to a
function not belonging to C*([0,1]). Define the sequence (u,,) c Bg by

0, te0,3],
un(t): ?’L(t—l/Z), tE[%,%-f—%],
1, te[s+<,1].

Clearly limy, oo Tun (t) = (t - %)X[ 1 ,17(t), and since this function is not differentiable at ¢ = 1, it follows that
lim,, 0o Ty, ¢ C1([0,1]). Thus, T(Bg) is not closed. O

6.3

Let E and F be two Banach spaces, and let T € K(E, F'). Assume dim FE = co. Prove that there exists a sequence
(un) in E such that ||u,|g =1 and |Tu,|r — 0.

Proof. Towards a contradiction, suppose that there exists no sequence (u,) ¢ Sg such that |Tu,|r — 0. Then there
must exist some e > 0 such that |Tu| > € for all u € Sg (or else we could clearly construct a sequence (u,) c Sg such
that |[Tu,|F — 0). It follows that for all w € E, |Tu| > ¢l|u|. Since dim E = oo, applying Riesz’s Lemma, there exists
a sequence (u,) © Sp such that |u, — tm |z > 1 for all n#m. But then for all n #m,

€
|Tun = Tum| > llun = wm| > 9
and so (Tuy,) is a sequence in T(Bg) without any convergent subsequence, which is absurd since T is a compact
operator. Thus, by contradiction, there must exist a sequence (u,) ¢ Bg such that |Tu,|r — 0. O
6.5

Let (A\,,) be a sequence of positve numbers such that lim, ., A, = +00. Let V' be the space of sequences (uy, )ns1 such
that

o0
Z /\n|un|2 < 00.

n=1

The space V is equipped with the scalar product
((u,v)) = 5 Anttnvn.
n=1

Prove that V is a Hilbert space and the V c £ with compact injection.

Proof. Observe that for any (u,), (v,) € V and aq,as € R, by the convexity of z + 2

- 2 < 2 . 2
Z An]@1tiy + aov,|” < aq| Z An|tin|” + |2l Z An|vn|® < oo,
n=1 n=1 n=1

and since the zero sequence clearly belongs to V, it follows that V is a vector space. Towards proving that V c ¢2,
suppose that (u,) ¢ €2, so that Yoo, [u,[? = co. Then for any N > 1, 352\ [u,|? = 00, and since A, — +oo, there
exists some Ny such that A, > 1 for all n > Ny. Thus, Yoo Ay |u,|? > e No Antn]? 2 Y meNo |t,|? = oo, proving that
(u,) ¢ V. Tt follows that V c /2.

Towards proving that V' is a Hilbert space with respect to (( , )), note that (( , )) is clearly a symmetric,

positive-definite bilinear form on V', and so it suffices to verify that V is a Banach space with respect to the norm
induced by (( , )). To this end, fix a Cauchy sequence (u") c V. Then we have that Yoo A, [u™ —u™2|? > 0
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as mip, mg — oo. It follows that (\/A,ul")ms1 is a Cauchy sequence in ¢? and therefore converges to some (u,) € /2.

2
Observe that Y, )\n‘\/%un‘ = |ul|3 < o0, so that (\/%un) e V. Moreover,

S At - | = S [VAwu - =0
Uy, — —F—U = U, —uU - as m — o0.
n=1 B )‘n " n=1 e "

It follows that (u™) converges to u € V with respect to (( , )), and so V is a Hilbert space.

Finally, to see that the injection ¢ : V — £2 is a compact operator, note first that ¢ € £(V, £?). Indeed, it’s obvious
that ¢ is linear and if (u™) ¢ V converges in V to (u,) € V, then let N be such that A\, > 1 for all n > N and note
that

> AU w0 as m — oo.
mlnle{l LN} A nZ:l "

oo
Z |ug - un|2
n=1

It follows that ¢(u™) — t(u) in £2, which verifies that ¢ is a bounded linear operator. For each n, define ¢, €
LV, 02); (1, ... Un,Uns1s--.) = (U1,...,u,,0,...). Clearly each ¢, has finite rank and for any u € V,

= 2 . 2
v(u) = (w2 = up, Anlu ufy.
) =)l = 3 el ot S A = ol
Since mingsy, A, = oo, it follows that «,, - ¢ in £(V, £?), and so ¢ is a compact operator. O

6.7

Let E and F be two Banach spaces, and let T' ¢ L(E, F'). Consider the following properties:

{For every weakly convergent sequence (u,) in E

Uy — u, then Tu,, > Tu strongly in F.

T is continuous from FE equipped with the weak topology
o(E, E*) into F equipped with the strong topology.

1. Prove that
(Q) < T is a finite-rank operator.

Proof. Suppose that T is a finite-rank operator. Then define 77 € L(FE, R(T)) by T'(u) = T(u), and let
t: R(T) — F be the inclusion. Since dim R(T') < oo, it follows that the weak and strong topologies on R(T)
are equivalent, and since T” is continuous from FE weak into R(T') weak, it follows that 7" is continuous from
E weak into R(T') strong. Since T =:toT" and ¢ is continuous (with respect to the strong topologies), it follows
that T is continuous from the weak topology on E into the strong topology on F'.

Finally, suppose that (Q) holds. Then there exists uj,...,u; € E* and 6 > 0 such that {u € E : [{u},u)| <
§ Vie{l,...,n}} c T"Y(Bg). Since N, N(u}) has finite codimension, it follows that there exists a finite
dimensional subspace G ¢ E such that F = G + N}, N(u}) and G n N, N(u;) = {0}. Moreover, for any
weNivy N(u!), we have that (u}, Au) = 0 for all A € R so that |T'(Au)|r <1 for all A e R. It follows that Tu =0

and so dim R(T) =dimT(G @ Njx; N(u})) =dimT(G) < co. O
2. Prove that T e K(E, F) = (P).

Proof. Suppose that T € K(F, F) and fix a sequence (u,) ¢ F that converges weakly to some point u € E.
Then since T is continuous from E weak into F' weak, it follows that Tu,, — Tu weakly in F and so (|Tu,|) is
a bounded sequence. Thus, there exists some M > 0 such that (Tu,) c T(MBg) = MT(Bg). Since MT(Bg)
is a (strongly) compact subset of F', we can apply Exercise 3.5 to conclude that Tu,, — T'u strongly. Property
(P) follows. O
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3. Assume that either F = ¢! or F = ¢'. Prove that every operator T e L(E, F) satisfies (P).

Proof. Fix T € L(E, F). By Schur’s Theorem, a sequence in ¢! converges strongly to some point iff the sequence
converges weakly to that point. Thus, if £ = ¢* and u,, — u € E, then u,, - u strongly and so T'u,, - Tu strongly.
And if F = ¢* and u,, ~ u € E then Tu,, ~ Tu weakly in F = ¢! and so T'u,, = T'u strongly. Thus, property (P)
holds for all T € L(E, F). O

In what follows we assume that F is reflexive.

4. Prove that T e K(E, F) < (P).

Proof. The left direction follows from part 3. Suppose (P). Fix a sequence (Tu,) ¢ T(Bg). Since (u,) c E
is a bounded sequence and E is reflexive, there exists a subsequence (up,) that converges weakly to some
point w € E. Applying property (P), we have that Tu,, — Tu strongly. Since every sequence in T'(Bg) has
a (strongly) convergent subsequence, it follows that the closure T'(Bg) is sequentially compact, and therefore
compact since the strong topology on E' is metrizable. Thus, T € K (E, F'), as required. O

5. Deduce that every operator T € L(F, ¢') is compact.
Proof. By part 3, every T € L(E, (') satisfies (P). By part 4, it follows that every T € L(E, ¢*) is compact. [
6. Prove that every operator T € L(co, E) is compact.

Proof. Fix T € L(E, cp). Observe that T* € L(E*, ¢}) = L(E*, ¢}). Thus, by part 5, T* is a compact operator,
and by Schauder’s theorem, it follows that T is a compact. Hence, every T € L(E, ¢g) is compact. O

6.8

Let E and F be two Banach spaces, and let T € K(FE, F'). Assume that R(T) is closed.

1. Prove that T is a finite-rank operator.

Proof. Since R(T) is closed, it follows that R(T) is a Banach space with respect to the subspace topology.
Then T : E — R(T) is a surjective bounded linear operator and so by the Open Mapping Theorem, there exists
some ¢ > 0 such that T(Bg(0,1)) o Br(0,¢) n R(T'), where Bp(0,c¢) and Bg(0,1) are open balls. It follows
that Br(ry= Brn R(T) c %T(BE). Since Br(r) is a closed subset of a compact set, Br(r) is compact, and it
follows that R(T) must be finite dimensional. O

2. Assume, in addition, that dim N(7T') < co. Prove that dim F < oo.

Proof. Since dim N(T') < oo, N(T') has a complement G ¢ E. That is, there exists some closed subspace G c E
such that E = N(T') ® G. Since G is closed, G is a Banach space and clearly T|¢ : G - R(T) is bijective. It

follows by the Open Mapping Theorem that T'|g is a bounded linear isomorphism between G and R(T). Thus,
dim F =dim(N(T) ® G) =dim N(T) + dim R(T") < oo. O

6.10

Let Q(t) = ¥:7_, ajt* be a polynomial such that Q(1) # 0. Let E be a Banach space, and let T € £(E). Assume that
Q(T) e K(E).

1. Prove that dim N(I -T) < oo, and that R(I -T) is closed. More generally, prove that (I -T)(Ep) is closed for
every closed subspace Ey c E.
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Proof. Define the polynomial Q(t) = e (X5 a;)t*1 and observe that Q(¢)(1-t) = Q(1) - Q(t). Thus,
if ue N(I-T), then 0 = Q(T) o (I -T)(u) = Q(I)u - Q(T)u, which implies that u € N(I - ﬁQ(T))
Since Q(T) is compact, so is ﬁ@(T)7 and so applying the Fredholm Alternative Theorem, we have that
dim N(I-T)<N(I- ﬁQ(T)) < 0.

Towards proving the latter statement, consider a convergent sequence (u,, — Tu,) ¢ R(I —=T) with limit f € F.
Then observe that for all n,
= Q(T))(un) =

——Q(T) (up - Tup) ~ Q(T)(f) asn— .

(- Q(l) Q(l) Q(l)

Again, applying the Fredholm Alternative Theorem, it follows that f € R(I - )Q(T)) and so there exists

(1
some u € F such that

Q(l)(Q(l)I Q(T))(w)

- 5T e U -T)w)

= (I~ T)(Q(T)( 50 ))

Thus, f e R(I-T), proving that R(I - T) is closed. Thus, I - T satisfies property (A) of Exercise 6.9, and by
the equivalence of property (C), it follows that (I - T')(FEy) is closed for every closed subspace Ey c E. O

. Prove that N(I-T)={0} < R(I-T)=E.

Proof. Suppose that N(I —T) = {0} and assume for a contradiction that £y = R(I -T) # E. Then since Ej is
closed by part 1, E; is a Banach space and we have that T'(E1) c Ey. Thus Ey = (I -T)(F1) c E is a closed
subspace of E; (by part 1). Since I - T is injective, F5 # E;. Letting E,, = (I - T)™(E), we obtain a (strictly)
decreasing sequence of closed subspaces. Using Riesz’s lemma we may construct a sequence (uy) such that
Up € By, |u,| =1 and dist(un, Eps1) > 3. We have

Q(Tun = Q(T)um = =(Q(V)un = Q(T)un) + (Q(1)um = Q(T)um) + (Q(1)un = Q(1)tm).

Note that for any 1, Q(1)ttn - Q(T)un = Q(T)o(I-T)(un) = Q(T)o (I-T)((I-T)"(u)) = (I-TY"(O(T)(u))
for some u € E, and so Q(1)u, — Q(T)uy, € E,y1. Thus, if n > m, then since E, 1 ¢ E,, ¢ Eppyy1 € By, we have
that

-(Q(Dun - Q(Tun) + (Q(Vum — Q(T)Tum) + Q(1)ty € By

It follows that [Q(T)un — Q(T)um| 2 dist(Q(1)tm, Ems1) 2 198 which contradicts the fact that Q(T)(Bg)
is compact. Thus, by contradiction, R(I -T) = E.

Conversely, suppose that R(I -T) = E. Then by Corollary 2.18, we have that N(I -T*) = R(I -T)* = {0}.
Since Q(T™) = (Q(T))* € K(E*), we can apply the preceding step to conclude that R(I - T*) = E*, so that
N(I-T)=R(I-T*)" = E** = {0}. O

. Prove that dim N(J -T) =dim N(I - T").

Proof. Set d = dim N(I -T) and d* = dim N(I - T*). Towards a contradiction, suppose that d < d*. Since
N(I-T) is finite dimensional, there exists a closed complement G c E such that E=G @& N(I-T). It follows
that there exists a continuous projection P from E onto N(I-T). Since R(I-T)=N{I-T*)* (since R(I-T)
is closed) and N (I —T"*) is finite dimensional by applying part 1 to Q(T™), it follows that R(I —T') has finite
codimension d* in E and so there exists a complement F' in E such that F = R(I -T) @ F and dim F = d*.
Since d < d*, there exists an injection that is not surjective A : N(I -T) - F. Set S =T+ Ao P. Observe
that since A o P has finite rank, (Ao P)™ oT™ and T™ o (A o P)™ are finite rank operators for any n,m > 1.
It follows that Q(S) = ¥7_, ak(T + Ao P)k = Q(T) + ¥ {finite-rank operators} is a compact operator. Since
N(I-1S5)={0}, it follows by part 2 that R(I - S) = E, which is absurd since A o P is not surjective, so there is
some f € F\AoP(FE), and noting that FnR(I-T) = {0}, therefore f ¢ R(I-T)+AoP(F)=R(I-S5). Thus,
by contradiction, dim N(I - T) > dim N(I - T™*). Applying this fact to T, it follows that dim N(I - T**) <
dimN(I -T*) <dim N(I -T). But N(I-T**)> N(I-T) and so N(I -T) = N(I - T*). O
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6.11

Let K be a compact metric space, and let F = C(K; R) equipped with the usual norm |u| = maxgex [u(x)|. Let
F c E be a closed subspace. Assume that every function u € F' is Holder continuous, i.e.,

YueF 3Jae(0,1] and 3L such that
() —u(y)| < Ld(z,y)* Vr,yeK.

The purpose of this exercise is to show that F' is finite-dimensional.

1. Prove that there exist constants v € (0,1] and C' > 0 (both independent of «) such that
ju(x) - u()] < Cluld(z,y)” VueF, YayeK.

Proof. For eachn > 1 define F,, = {u € F: |u(x)-u(y)| < nd(x,y)"/™ Vz,y e K}. Observe that each F), is closed
in F. Indeed, if (ux) c F, is a convergent sequence with limit u € F', fix ¢ > 0 and pick k such that |us —u| < e.
Then, for all 2,y € K, we have that [u(z)-u(y)| < [u(z) —ug(2)|+ug () —ur ()| +ue (v) —u(y)| < 2e +nd(z, y) /™.
Thus, u € F,, verifying that F), is a closed subset of F. Moreover, since every u € F' is Holder continuous, it’s clear
that for every u € F', there exists some n > 1 such that u € F,,. Thus, F' = U F},. Since F' is a closed subspace
of a complete metric space, F' is a complete metric space and so by the Baire category theorem, there must exist
some n such that Int(F;,) # @. It follows that there exists some € > 0 and u € F}, such that B(u,e)nF c F,. Fix
nonzero v € I and pick 0 = 5. Since u+6v € B(u,e)nF, we have that |u(z)+dv(z)-u(y)-o0v(y)| < nd(z,y)"/"
for all z,y € K. Thus,

So(x) = v(y)| < [u(z) - u(y)| + nd(z,y)"/"
< 2nd(z,y)'™.

The result follows with C' = 4n/e and v = 1/n. O
2. Prove that Bp is compact and conclude.

Proof. For any u € B, we have that |u(z) - u(y)| < Cd(z,y)”, and so clearly Bp is equicontininuous. Since
Br is also equibounded, being a subset of the closed unit ball in C(K), Br is a compact subset of C'(K) by
Arzela-Ascoli. Since Br = F n Bg, and both F' and Bpg, is closed, it follows that Bp = Bp is compact. Because
the closed unit ball in a Banach space is compact iff the Banach space is finite dimensional, it follows that F'
is finite dimensional. O

6.12 A lemma of J.-L. Lions

Let X, Y, and Z be three Banach spaces with norms | |x, || |[v,and | |z. Assume that X c Y with compact
injection and that Y c Z with continuous injection. Prove that

Ve > 03C; >0 satisfying |uly <elu|x + Cellullz Vue X.

Proof. Towards a contradiction, suppose not. Then there exists some ¢ > 0 such that for all ¢ >0, |u¢]y > ellue] x +
t|lu¢]|z for some uy; € X. Thus, we can construct a sequence (u,) ¢ X such that |u,|y > elun|x + nu,|z for
all n. Moreover, by possibly rescaling, we may assume WLOG that ||u,|y = 1 for all n. Since for all n, we have
that ellup|x <1-nfunlz <1, by the compactness of the injection X c Y, there exists a subsequence (u,, ) and
some u € 1Bx  such that |u,, —uly - 0 as k - oco. Moreover, since the injection Y ¢ Z is continuous, it follows

that |un, —ulz - 0 as k - oco. Because |unlz < % for all n, u, - 0 in Z so that v = 0. But then
1= |un, |y = |un, —uly — 0, which is absurd. Thus, the statement follows by contradiction. O
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6.14
Let E be a Banach space, and let T € L(F) with |T] < 1.
1. Prove that (I -T) is bijective and that

(T -1)" <1/ = |T]).

Proof. By Proposition 6.7, o(T) c [-||T|,+|T||] € (-1,1). Thus, 1 e R\ o(T) = p(T). By the definition of the
resolvent set p(T') of T, it follows that T'— I is bijective from E onto itself, and so I -T = —(T —I) is bijective.
Moreover, for any u € F,

I(Z=T) | < [(1=T)" (u=Tw)| + (I~ T)'Tul
< Jull + 17 =T) 1T [l
=@+ =-D) T ul-

It follows that (I - T)™'| <1+ |(I-T)7'||T|. The desired inequality follows after rearranging. O
2. Set S, =T +T +--+T" 1. Prove that
10 = (I =T)7 M < |T1" /@~ ]T]).
Proof. Observe that (S, — (I -T) ) o(I-T)=(-T")-1=T". Thus, for all ue E we have that

[0S = (1 =T) Dl < [(Sn = (I =T)" )T = T)ull + |80 = (T =T)|T ]
= |T"ull + 18 = (1 =) || T fu
<7l + 180 = (L =T) T ul
<P full + 180 = (1 =T) T ul
= (71" + 180 = (T =T) T [l
where the third line is justified inductively by noting that for any u € E, |T"u| < ||T|||T" *u|. It follows that
1S = (I =T) | <= |T|™ +||Sn = (I =T) ||T||. The desired inequality follows after rearranging. O

6.15

Let E be a Banach space and let T € L(E).
1. Let A € R be such that || > |T'||. Prove that

7+ MT =MD < T /(N = 7]
Proof. For all u € E, we have that

I+ AT = A1) Yul = [T+ NT=AD ™ )(u - Tu) + 1 Tw)]

1 1 _
< N(u=3Tu) —ul + NH“ MT =D ]
1 _
< N(HTH T+ ANT = 2D THIT ul-

It follows that |A[|I+X(T=XI)7Y| < | T+ |I+A(T=MI)71||T|. The desired inequality follows after rearranging.
O

2. Let A e p(T). Check that
(T-AD)'T=T(T-\I)7",

and prove that
dist(\, (7)) > 1/|(T - XI)7.
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Proof. Fix u e FE and set f = (T — AI)™'u so that T'f — A\f = u. Then
T(T-M) " u=Tf=u+\f =u+\NT-X)"'u
= (T - X)) (Tu-Mu) + M(T - X)) 'u
= (T -\)"'Tu.
This gives the first part of the problem.

Towards proving the second part, fix v € R with [A=~| < 1/[(T'=AI)™|. Fix f € E. To show that v ¢ o(T), we
want to show that the equation Tu—~u = f has a unique solution for some u € E. Write Tu—Au = f+ (Au—~yu),
so that u = (T-AI)"'(f+(A=7)u). Define K¢ : E - E by Ky(u) = (T-AI)"*(f+(A=~)u). Clearly it suffices to
prove that K ; has a unique fixed point. Observe that |K(u1)—Ks(ua)| < [A=y|[(T=AT) 7| [ur—uz|| < [u1-usz].
By the Banach Fixed Point Theorem, it follows that K; has a unique fixed point and so T' - I is bijective,
proving that v ¢ o(T). It follows that dist(X,o(T)) > 1/ (T - AI)7!]. O

. Assume that 0 € p(T). Prove that
o(T™) = 1/a(T).

Proof. Fix A€ o(T). Since T — AI is not bijective, either there exists f € E~ R(T - AI), or there exists u; # ug
such that Tu; — Au; = Tus — Aug. In the first case, we have that for all uw € E, Tu - Au # f, so that for all
ueE, T 'u - %u # —%T‘lf. Thus, —%T‘lf ¢ R(T™ - %I), proving that % e o(T71). In the second case, we

have that T 'uy = fuy = T ug — $ug, so that 77! = $1 is not injective and therefore ; € o(T~). This proves

that 1/U(T) co(T1). Applying the preceding reasoning to 7! in place of T, we have that 1/0(T‘1) co(T),
which is equivalent to saying that o(77!) c 1 / o(T). The statement follows. O

In what follows assume that 1 € p(T'); set
U=(T+D)(T-I)'=T-1)Y(T+1I).
. Check that 1€ p(U) and give a simple expression for (U — I)~! in terms of T

Proof. Observe that
U-I1=T(T-0I)'+(T-0)"-1I
=T(T-D)+ (-0 = (T-I)(T-I)"!

=2(T-1)"
Thus, (U-1)"' = 2(T-1) and 1 € p(U). O
. Prove that T'= (U + I)(U -1)7%.
Proof. (U+I)(U-I)"'=L((T+I)(T-1I)+I)(T-1)=T. O

. Consider the function f(¢) = (¢ + 1)/(t —-1),t € R. Prove that
o(U) = f(o(T)).

Proof. Fix X\ € R. Observe that A € o(U) iff it is not the case that the equation Uu — Au = f has a unique
solution u € E for every f € E. Moreover, we have that

Uu-u=f

- _1?>\U”Jr 12—/\A“:_1:f

— (U+I)u—i\ti(U—I)u:%((U—I)f—(U+I)f)
— (U—I)‘I(U+I)u—itiu:%(f—(U—I)‘l(U+I)f)
— Tu—itiu:%(Tf—f).
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Thus, f ¢ R(U - \I) iff ﬁ(Tf - f) ¢ R(T - %I), and similary U — Al is not injective iff T - %I is not
injective. It follows that o(T) = f(c(U)). Rearranging, we have that o(U) = f(o(T)). O
6.16
Let E be a Banach space and let T € L(E).

1. Assume that 72 = I. Prove that o(T) c {-1,+1} and determine (T — A\I)~! for \ # +1.

Proof. Since T? = I, T is bijective and so 0 € p(T). By Exercise 6.15, o(T) = o(T7!) = 1/0(T)7 so that
o(T)% = 1. Tt follows that o(T) c {-1,+1}. Fix A # +1 and u € E. Observe that

(T +XI)(T =MD =T%*u - Nu=(1-\)u,

and so (T - AI)™' = (T + AI). O

2. More generally, assume that there is an integer n > 2 such that 7™ = I. Prove that o(T) c {-1,+1} and
determine (T — AI)~! for A # 1.

Proof. Fix A\ # £1. Observe that

n—-1 n n-1
( Z )\nlek)(T _ )\I) — Z )\nfka _ Z )\nfk‘Tk
k=1 k=0

k=0
=T - \"T
= (1-A")I.
It follows that o(T) c {-1,+1} and (T - \I)~! = 5 Sp2g A F-1Tk, O

3. Assume that there is an integer n > 2 such that T™ = 0. Prove that o(T") = {0} and determine (T - A\I)~! for
A#0.

Proof. Fix A # 0 and observe that

n-1

STANFAITR T - NI) = T" - \"T = -\"1.

k=0
Thus, o(T) c {0} and (T - XI)™! = = X725 A™*"1T*. Since T™ = 0, T cannot be injective (since if n is the least
integer such that 7™ = 0, then there exists u € £ with 7" 'u # 0 and T'(T" 'u) = 0) and so o(T) = {0}. O

4. Assume that there is an integer n > 2 such that |7"| < 1. Prove that I — T is bijective and give an expression
for (I -T)™! in terms of (I —7T™)™! and the iterates of T.

Proof. Since |T"| <1 and o(T™) c [-|T™|, IT™|]] < (-1,1) by Proposition 6.7, it follows that 1 € p(T™) and
therefore that I —7T™ is invertible. Observe that

k=0

(I—T)(HZ_:IT’“)(I—T")l =(I-T"(I-T")"'=1.
Thus, (I - T) is bijective and (I - 7)™ = (i T%)(1 - 1") . 0

6.17

Let E =P with 1 <p < oo and let (A,,) be a bounded sequence in R. Consider the multiplication operator M € L(E)
defined by
Max = (A21, Moo, .. ., ApTn,...), where = (21,Z9,...,Zn,...).

Determine EV (M) and o(M).
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Solution

Observe that for any n, we have that Mz - A\pyz = (A — A\n)x1, -, (A1 = An)Tn-1,0, (Ant1 — An)Zn+t,-..) and
so en € N(M - A\, I). Thus, U,{\n} ¢ EV(M). Moreover, if A ¢ U,{\n}, then Mz — Az = 0 implies that for each
n, (An=A)z, =0, and since A # A, we must have that ,, = 0. Thus, N(M-AI) = {0}, proving that U,{\,} = EV (M).

I claim that o(M) = U, {\n}. Since EV(M) c o(M) and o(M) is compact by Proposition 6.7, it follows that
Un{An} ca(M). Fix XA ¢ U,{ A} and observe that there exists some C > 0 such that [A— A, | >C. Thus, if 1 <p< oo

J2
then for any x € E, we have that >, ‘ﬁxn‘ < &5 llz|B < o0, so that (=52 )n>1 € 7. And if p = oo then for all

n, |ﬁxn‘ < %Hxﬂm, so that (ﬁxn)nzl € £>. Since (M—)J)(ﬁxn)nzl =z, it follows that M — \I is surjective.

Since A ¢ EV (M), M — \I is also injective and so A € p(M), proving that o (M) c U,{ A}, and the claim follows.

6.18 Spectral properties of the shifts.

An element x € E = ¢? is denoted by = = (21, 22,...,2,,...). Consider the operators
Spx=(0,21,T2, ..., Tp1,...),
and
Sex = (T2, T3,y Tpg1y---),

respectively called the right shift and left shift.

1. Determine |S,| and |S¢||. Does S, or S; belong to K(FE)?

Solution

Fix z € £? and observe that |S,z|3 = 0°+Y,, 22 = |z|3, and so S, is an isometry and has operator norm | S| = 1.
Moreover, | Sez|3 = 3,50 72 < |x[3, so that |Se| < 1. Since |Seea| = 1, it follows that | S| = 1. It’s clear that
S¢(Bg) = Bg and since dim F = oo, Bg is not compact and so Sy is not a compact operator. Moreover, since
S, is an isometry, its image is a closed subspace of £2 which includes the linearly independent subset U,,s2{en }
Thus, S.(Bg) = Bs,(g) and since S,(E) is an infinite dimensional Banach space, Bg, (g) is not compact so
that .S, is not a compact operator.

Prove that EV(S,) = @.

Proof. Fix X € R and suppose that x € N(S,. = AI). Then for all n > 2, ,_1 - Ax,, =0 and -Azq =0. If A =0,
we immediately get that = 0, and if A # 0, it follows by an obvious inductive argument that z, =0 for all n
and so N (S, —AI) = {0} for all A e R. Thus, EV(S,) = @. O

Prove that o(S,) = [-1,+1].

Proof. Since ||S,| = 1, it follows by Proposition 6.7 that o(S,) c [-1,+1]. Fix X € [-1,+1]. To show that
A € o(S,), it suffices to construct some z € ¢? with = ¢ (S, — A[)(E). Clearly (-),0,0,...) € £2. I claim
that (-X,0,0,...) ¢ S,(E). Suppose for a contradiction that there existed x € £2 such that (S, — \XI)(z) =
(-X,0,0,...). Then z1 =1 and x,, = Axp41 for n > 1. Solving this relation recursively (and noting that 1 = Az
forces that A # 0), we get that = = (%)nzy But then ¢ (% since 17— + 0 as n — oo. Thus, A € 0(S5,),
proving that o(S,) = [-1,+1]. O

. Prove that EV (S;) = (-1,+1). Determine the corresponding eigenspaces.

Proof. Fix A € R and suppose that A € EV(S;). Then there exists nonzero z € ¢? such that x,,; = Az, for
all n > 1. Thus, z,, = A" 'a; for all n > 1, and since z,, - 0 as n — oo, it follows that A € (-=1,+1), proving
that EV(Sy) c (-1,+1). Now fix A € (=1,+1) and observe that z = (A\"1),,5; € £2 (by, for example, the ratio
test. If A = 0, pick = = e;) and Sez = 0 so that N(S, - AI) 2 {0}. It follows that X\ € EV(S;), proving that
EV(S¢) = (-1,+1). Moreover, from our analysis, we see that for any A € EV (.Sy), the eigenspace E) associated
to \ is given by E) =span{(A"!),51}. O
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10.

Prove that o(S;) = [-1,+1].

Proof. We know by Proposition 6.7 and the fact that ||S;| = 1 that o(S;) c [-1,+1]. From part 4, we see
that (-1,+1) = EV(S¢) ¢ o(S;). Thus, we only need to check that +1 € g(S;). Observe that @ = (£),51 € £%.

I claim that = ¢ (S, — I)(E). Indeed, if there existed some y € £2 such that (S, - I)(y) = x, then we would

have that y,.1 = yn +% =y + Xp % But then g, — +oco0 as n — oo so that y ¢ ¢2. Thus, 1 € (Sy).

To see that —1 € o(S;), observe that = = ((—1)"%)@1 € ¢? and if (S + I)(y) = =, then we would have
that Yn+1 = —Yn + (—1)"% = (-D)™(y1 + Xp %), which does not converge to 0 for any choice of y;. Thus,
((-1)"L)p51 ¢ (Se + I)(E), proving that —1 € o(S;). It follows that o(Sg) = [-1,+1]. O

Determine S, and S;.

Solution

Observe that for any x,y € £2, we have that (S,z,y) = Yoy Tnyns1 = (7, Sey), so that S} = S, and S) = S,..

Prove that for every A € (-1, +1), the spaces R(S,—AI) and R(S¢—AI) are closed. Give an explicit representation
of these spaces.

Proof. Fix A € (=1,+1). Observe that | S,z — Az|2 > ||Syz|2 — [A||z|2] = |[|z]2 = |Al|z]2] = (1 = |A])|z|2 Thus,
if (S,z™ - Az™) c R(S, — AI) converges in % to x € £?, then 2" converges in £ to some limit y € /% and
by the continuity of (S, — AI), it follows that (S, — AI)(y) = limy~e (S, — AI)(2™) = x, proving that x €
R(S,—\I). Moreover, since span{(A\"1),51} = E(Sg,\) = N(S¢=\I) = R(S,—\I)*, it follows that R(S,—\I) =
span{(A"71),,51}*. Finally, since R(S, — AI) is closed, we can apply Theorem 2.19 to conclude that R(S, - \I)
is closed and R(S; - AI)=N(S,-A)'=g* =E. O

Prove that the spaces R(S, +I) and R(S¢ +I) are dense and that they are not closed.

Proof. Since R(S, +I) and R(S; + I) are all subspaces of £? and all subspaces of an n.v.s. are either closed
or dense by Exercise 1.6, it suffices to prove that neither R(S, +I) nor R(S; +I) are closed. Observe that
R(Sy £1I) are closed iff R(Sg = I) are closed by Theorem 2.19, and so it suffices to prove that R(S, + I) are
not closed. Applying Theorem 2.19 again, we see that if it were the case that R(S, + I) were closed, then we
would have that R(S,+1) = N(S, +I)* = @* = (2. But by our proof of part 5, we know that R(S¢+1I) & ¢2, so
that R(S, +I) cannot possibly be closed. The statement follows. O

Consider the multiplication operator M defined by
Mz = (a1@1,02,%2, .., QpTpy - - .),

where (a,) is a bounded sequence in R.

Determine EV (S, o M).

Solution

Suppose for some A € R and x € £2, (S, o M — XI)z =0. Then —Az; =0 and for all n > 1 a, @, = Arpir. A 20
then x1 =0 and we get inductively that x,, = 0 for all n so that = 0. Thus, EV (S, o M) c {0}. If A =0, the

g if0¢(an)

only way we can satisfy «,x, = Ax,+1 for some nonzero z,, is if a;, = 0, and so EV (S0 M) = {{O} therwi
otherwise.

Assume that a,, > « as n - co. Prove that

o (Sr 0 M) = [~|af, +[af].
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Proof. Observe that if o = 0, then by Exercise 6.1, M is compact so that S, o M is compact, and so by Theorem
6.8,0€0(S,oM) and (S, o M)\{0} = EV(S,oM)\{0} = @, so the statement follows. Thus, we may assume
WLOG that o # 0. Now suppose that A € R and |A| > |a|. Observe that since «,, — @ — 0, by Exercise 6.1,
M - ol is compact. Let K = M — oI and observe that S, o M - A =S, 0 (K+al)-A =S,0K +aS,-Al. By
part 3, @S, — Al is bijective and so we can define the compact function K = (aS, — A )™ oS, o K to get that
SpoM =M = (S, —A)o (I+Ks). Since aS, — Al is bijective, it suffices to check that I + K5 is surjective. By
the Fredholm Alternative Theorem, I + K is surjective iff N(I+ K3) = {0}. Again using the fact that «S, — AT
is bijective, this holds iff N(S,. o M - XI) = N((aS, = AI)o (I + K3)) = {0}, which is true by part 9. Thus, I
have shown that o(S, o M) c [—|a|,+|a|]. Towards proving the opposite direction, fix A € [~|al, +|a|]. For a
contradiction, suppose that S,. o M — AI is bijective. Applying essentially the same trick as above, we can write
Sp=2T=L(S, 0o M-A)-18, 0 K=21(S, o M-AI)(I-(SoM-A)oS,0K)=Jo(I+Kj) where J is
bijective and K5 is compact. By part 3, S, — %I. Applying Theorem 6.6, we have that N(I + Ky) = {0} iff
R(I+K5) = E, so that S, — %I is injective iff it is surjective. However, from part 2 and 3, we have that S, — %I
is injective but not surjective. By contradiction, A € o (S, o M), and the statement follows. O

11. Assume that for every integer n, ag, = a and @g,11 = b with a # b. Determine o (S, o M).

Solution

Observe that (S, o M)? = (ab)S? so that [ (S, o M)?| = |ab||S?| = |abl. Thus, if [\| > \/|ab], then | (55, 0 M)?| =
% < 1. By Exercise 6.16 part 4, it follows that I — %S o M is bijective so that A ¢ o(S, o M). Thus,

o (S,oM) c [—+/|abl, ++/]ab|]. Conversely, if A € [—y/|ab|, +1/|ab|], then observe that (-1,0,0,...) ¢ R(S,oM—-\I)

n n
since writing (-Az1,bxs — Az1,...) = (-1,0,...), we see that xg,41 = <§Zl = (‘;—2) which does not converge to

0. Thus, (S, o M) = [—\/]ab], +v/]ab]].

6.19

Let E be a Banach space and let T € L(E).

1. Prove that o(T™) = o(T).
Proof. Observe that if X\ € p(T), applying Corollary 2.18, we have that N(T* — X\I) = R(T - AI)* = E* = {0}
and since R(T — AI) = E is closed, by Theorem 2.19 R(T* - A\I) = N(T' - AI)* = {0}* = E*. Thus, A € p(T™).
Moreover, if A € o(T") then either N(T* - M) = R(T - X\I)* 2 {0} or R(T* - XI[) c N(T - M) & E*, so that
Aeo(T*). Thus, o(T) =o(T™). O
2. Give examples showing that there is no general inclusion relation between EV (T') and EV (T*),
Proof. From Exercise 6.18, we have that EV(S,) = @ & (-1,+1) = EV(Se) = EV(S}), and since S; = S,, we

also have that EV'(S;) & EV(S;), which verifies that there exist no general inclusion relations between EV (T')
and EV(T™). O

6.20

Let E = LP(0,1) with 1 <p<oo. Given u € F, set

Tu(z) = fo " u(t)dt.

1. Prove that T € K(FE).
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Proof. For any u € Bg, extend Tu to LP?(R) by setting Tu(z) = 0 for = ¢ [0,1]. With this extension in mind,
set F =T(Bg) to be a subset of LP(R). By Jensen’s inequality, we have that for any Tu € F

fR TulPda < /0 1( fo $|u(t)|dt)pdx
< ﬁ 1 fo " ()Pt da

< Julp = 1.

Thus, [Tul, < 1 for all Tu € F, proving that F is a bounded subset of L”(0,1). Observe that the above
analysis also shows that |T'|| < 1. Towards proving that F is equicontinuous, fix € > 0, u € Bg, and a sequence
of mollifiers (p,,). Then for § >0 and |h| < 4, we have that for all n > %, [(pn * u) —u|, < € so that

[T = Tull2 < [7aTu = 7T (pn W) |2+ |70 (p * 0) = Tpn W) |2+ | T * w) = Tl
1 xz+h
325+f f (pn = w)(t)dt
0 x

<26+ B pp * ulf,
<2+ hP |V pulp
<2e+hP|Vppllp-

P
dx

It follows that |7,Tu — Tul} < 2e + h?[Vp, [ for all Tu € F for n fixed. Thus, limpo 77w - Tulh < 2¢
uniformly in h over Tu € F, and since € > 0 was arbitrary, it follows that |7,7u—Tu|, - 0 uniformly in h over
Tu € F. By the Fréchet-Kolmogorov theorem, it follows that F = T(Bg) is a compact subset of LP(0,1). O

2. Determine EV(T) and o(T).

Solution

Suppose for some u € LP(0,1) and A € R~ {0}, we have [’ u(t)dt = Au(z) for almost all 2. Then u e C([0,1])
and is differentiable with u(x) = Au/(x). Solving this differential equation we get that u(x) = Ce’® for some

constant C. But then we have that C' = (0) = [Oou(t)dt =0, so that u = 0. It follows that EV(T) c {0}. And
if A=0, then [,"u(t)dt =0 for almost all z implies that u =0 (since T is continuous so that [, u(t)dt =0 for
all z € [0,1]). Thus, EV(T) = @. Since T is compact, o(T)~ {0} = EV(T)~ {0} = @, so that o(T") c {0}. Since
T(E) cC([0,1]) ¢ E, it follows that o(T') = {0}.

3. Give an explicit formula for (7 - A\I)™' when \ € p(T).

Solution

Fix A € p(T), so that A # 0, and f € C([0,1]). Set uw = (T - AI)"'f. Then f(z) = [, u(t)dt - Au(z), or
equivalently f(z) = v(z) = M/(z), v(0) = 0, where v(z) = [ u(z)dz. Solving this initial value problem, we
get that u(z) = —%e%wT(f ~exp/M)(z) - %f(x) By the density of C'([0,1]) in L?(0,1) and the continuity
of the expression with respect to f, it follows that (T — AI)™' f(z) = —35eX*T(f - exp’ ) (z) - L f(x) for all
FeLP(0,1).

4. Determine T*.
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Solution

Fix u e LP(0,1) and v € L? (0,1). We have that

[OlTu(x)v(x)d:c: folfoxu(t)dtv(x)dx
- ff[o,m u(t)v(z)X[0,2) (¢t x)dt d

) —/f[0,1]2 u(yv(@)xqe) (¢, x)de dt

:folu(t)ftlv(o:)dxdt.

Thus, T*v(z) = [, v(t)dt.

6.22
Let E be a Banach space, and let T' e L(E). Given a polynomial Q(t) = Y% _, axt® with aj, € R, let Q(T) = X5 _, arT".
1. Prove that Q(EV(T)) c EV(Q(T)).
Proof. Fix A € EV(T). By definition, there exists some nonzero u € E with Tu = Au. Observe that Q(T)u =

P oaA u=Q(N)u, so that ue N(Q(T) - Q(M)I). Thus, Q(\) € EV(Q(T)) and it follows that Q(EV (T)) c
EV(Q(T)). O

2. Prove that Q(o(T)) co(Q(T)).

Proof. Suppose that A € Q(c(T')). By part 1, we may assume WLOG that T — A is injective, so that T — AT
must not be surjective. Observe that since the polynomial P(t) = Q(¢) - Q(\) has X as a root, there exists some
polynomials Q such that (t-A)Q(t) = P(t) = Q(t)-Q(\). Thus, we have that (T'-=AI)oQ(T) = Q(T) - Q(N)1,
and it is immediate that Q(T") — Q(A)! is not surjective since T'— A1 is not surjective. It follows that Q(\) €
o(Q(T)), proving that Q(o(T)) c o (Q(T)). O

3. Construct an example in E = R? for which the above inclusions are strict.

Solution

Pick A to be rotation by /2 and observe that A has no eigenvalues but A? = —I has the eigenvalue -1. Since
o(T) = EV(T) whenever dim F < oo, this example works for both the spectrum and the set of eigenvalues.

In what follows we assume that F is a Hilbert space (identified with its dual space H*) and that T =T".

4. Assume here that the polynomial @ has no real root, i.e., Q(¢) # 0 Vt e R. Prove that Q(T) is bijective.

Proof. Fix A >0 and let ¢2 + bt + ¢ be a polynomial in R with no real roots. Define the bilinear form a : Ex E —
R; (u,v) = (T?u+bTu+cu, T?v+bTv+cv). Clearly a is a bounded bilinear form by the continuity of 72 +bT +cl
and for any u € F, we have that

2

a(u,u) = ((T+ g[)2u+ (c- %)u, (T + SI)2u+ (c- v

)

1T+ 2 v 2= Er+ Loy + (e - K2
- 2 4 2 4
2

2 (e )P

, so that a is also coercive. Thus, by the Lax-Milgram Theorem, for each f € FE, there exists a unique
element u € E such that (T%u + bTu + cu,T?v + bTv + cv) = a(u,v) = (f,T?v + bTv + cv) for all v € E,
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proving that T2 + bT + ¢l is bijective. Since every polynomial in R with no real roots can be decomposed as

2
c(t? + byt +cp)™ (2 + byt + ¢ )™ for some by,...,bg,c1,...,cx € R such that ¢; - %’ >0 for each i e {1,...,k}
and ¢ # 0, it follows that Q(T) = ¢(T? + byT +c1I)™ o0 (T? + by T + ¢, I)™ which, from our above analysis, is
the composition of bijections and is therefore bijective. O

5. Deduce that for every polynomial @, we have

() Q(EV(T)) = EV(Q(T)),
(i) Q(o(T)) = o (Q(T)).

Proof. Fix A € EV(Q(T)). Then since Q(T) — Al is not injective, it follows from part 4 that the polynomial
Q(t)-A must have a root € R. Thus, we can decompose the polynomial Q()-\ as (t—aq)™ ... (1~ ak)”kQ(t) =
Q(t) - X for some polynomial Q(t) with no real roots, and such that nq > 1. Then Q o (T — a1 I)™ oo (T -
D)™ (T) = Q(T)-AI. By part 4, we know that Q(T') is bijective and since Q(T)- I is not injective, it must be
the case that (T'— ;)™ is not injective for some 4, so that T'— ;1 is not injective. Thus, a; € EV(T). Since oy
is a root of Q(t) — A, it follows that Q(«a;) = A, so that A e Q(EV(T)). It follows that Q(EV(T)) = EV(Q(T)).
Notice that replacing ”injective” above with "bijective” proves part (ii). O

6.23 Spectral radius.
Let E be a Banach space and let T € L(FE). Set

an =log [T"], n21.

1. Check that
At £ai+aj VZ,jZl

Proof. Fix ue F and 4,7 > 1, and observe that

|7l = T (T7 )|
< [T [,

so that a;,; = log [T | <log(|T*||T7]) = a; + a;. O

2. Deduce that
lim (a,/n) exists and coincides with infl(am/m).
n—+oo m2

Proof. Fix m > 1 and for any n, let n = mq+r where r is the remainder when dividing n by m, so that 0 <m < r.
Thus, we have that a, < amq + ar < qam + @y < 7=y, + @y, S0 that oo < m 4 e g Gm g lmauxle{o me1y lal.
It follows that limsup,,_, 100 @n < @m - Since this mequahty holds for all m > 1, we have that lim SUD,, 400 2 <

inf,,51 %= <liminf,, 40 52, Thus, lim,, ;0 (a,/n) exists and is equal to mfmzl(am/m) O

3. Conclude that (T = lim,,_,e | T"||*/™ exists and that r(T) < |T|. Construct an example in E = R? such that
r(T) =0 and |T| = 1. The number r(T) is called the spectral radius of T.

Proof. Since limy.co 2 log |77 = limy,.e log |7 | /™ exists from part 2, by the continuity of exp, it follows that
(T = limy, oo [T Y™ = lim,, e exp(log |77 |*/™) exists. Moreover, observe that 7(T) = exp(litiy, e0 tp /1) <
exp(inf,,»1 am/m) < exp(ay) = |T'|. Take
0 1
(6 0)

and observe that Aes = e; and A% = 0, so that A™ =0 for all n > 2. It follows that |A[ =1 and r(A) = 0. O

4. Prove that o(T) c [-r(T),+r(T)]. Deduce that if o(T') + @, then

max{|A|: Aeo(T)} <r(T).
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Proof. By Exercise 6.22, we have that o(T)" c o(T™) c [-|T"|, +|T™|], so that o(T) c [=|T"|*™, +|T™| /"]
for all n > 1. It follows that o(T) ¢ Mot [=|T™ /™, +|T7|*"] ¢ [-r(T),+r(T)]. Thus, if there exists some
Aeo(T), then A e [-r(T),+r(T)], so that |\ <r(T), and it follows that max{|\: A e o(T)} < r(T). O

. Construct an example in E = R3 such that o(T) = {0}, while 7(T) = 1.

Solution

Fix the standard basis for R3 and take

0 -1 0
A=l1 0 0].
0 0 O

Then since A is a projection onto the x,y plane, followed by rotation in the x,y plane by 7/2, it’s clear that A
has no eigenvalues and that ||[A™| = 1 for all n, so that r(A) = 1.

In what follows we take E = £7(0,1) with 1 < p < co. Consider the operator T € L(E) defined by
t
Tu(t) = / u(s)ds.
0
. Prove by induction that for n > 2,

(T"u)(t)_W [ = tu(ryar

Proof. When n =1, this is exactly the definition of Tu. Suppose that the relation holds for some n > 1. Then
we have that

(T u)(t) = (T(T"u)) ()
= /0 7(71_11)! /()S(s—T)"_lu(T)des

B ﬁt (n_ll)lu(T) /;t(S -7)" Ydsdr

:/t%(t—T)nu(T)dT7

0

where the third equality is just an application of Fubini. Thus, we conclude that the relation holds for all n by
induction. O

. Deduce that |T"| < ni

Proof. If p = oo, then we have that for any u € L*(0,1) such that |u|. <1 and for all ¢ € [0,1]

|(T"u)(t)|£ (:l_:l’n)!fol(].—T)n_ldT: l

n!

Thus, |T7| < % Moreover, if 1 < p < oo then applying Young’s inequality, we have that for all u € LP(0,1)

with |u], <1,
”Tnullp_( 1),p/ (/ (t-7)"" 1|u(7)|d7)

1 _
= It Jull

(n-1)P
1

< —"
(n=-1)lr
1

nlp’

[ Rl

Taking pth roots, we get that |T"ul, < - so that [T < 5. O
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8. Prove that the spectral radius of T is 0.

Proof. By Stirling’s formula we have that
r(T) = lim |T"|"/"
<li b
= el i

e
<limsup ———— =0.
nwee /2t n

9. Show that o(T) = {0}. Compare with Exercise 6.20.

Proof. The cases 1 < p < oo were already proven in Exercise 6.20. Thus, we may assume WLOG that p = oo.
From part 4, we have that o(7T") c [-r(T),+r(T)] = {0}. Since T'(L*=(0,1)) c C([0,1]) & L**(0,1), it follows
that o(T) = {0}. O

6.24

Assume that T e L(H) is self-adjoint.
1. Prove that the following are equivalent:

(i) (Tu,u) >0 VueH,
(ii) o(T) c [0, 00).

Proof. Suppose (i). Then by Proposition 6.9, o(T") c [infyepr (Tu,w), supyer (Tu,u)] c [0, |T]|] < [0, 00). Thus,
Ju|=1 Jul=1

(i) = (ii). Now suppose (ii). Fix u € H and suppose for a contradiction that (Tu,u) < 0. Then clearly ||u| #0

and (THTU\V m) < 0, so that inf yepr (Tu, w) < 0. But then by Proposition 6.9, we have that inf ;e (T'u, u) € o(T),
ul=1 |ul=1
contradicting the fact that o(T) c [0, 00). Thus, by contradiction (ii) = (i). O

2. Prove that the following properties are equivalent:

(iii) |7 <1 and (Tu,u) 20 VYueH,
(iv) 0< (Tu,u) <|uf* YueH,

v) o(T) < [0,1],

(vi) (Tu,u) > |Tul* VueH.

Proof. Suppose (iii). Fix u € H and observe that 0 < (Tu,u) < |Tullu| < |T[|ul* < [uf*>. Thus, (iii)) = (iv).
Suppose (iv). Then we have that for all u € H such that |u| = 1, 0 < (Tw,u) < 1. Thus, by Proposition 6.9,
it follows that o(7") c [0,1] so that (iv) = (v). Suppose (v). Then for all € > 0, we have that — € p(T")
so that T + el is invertible. Moreover, since o(T') c [0,1], it follows that o(T +¢el) c [e,1 +¢], and so by
Exercise 6.15, o((T +eI)7!) = o(T +eI)™' ¢ [1-,e7!]. Thus, since (T +eI)7! is self-adjoint, we can apply

1+e?

Proposition 6.9 to conclude that ((T +el)  u,u) > % for all wue H. Fix u € H and set f =Tu+eu. Then we
have that |T1ff€“|2 = % <((T+el)™ f, f) = (u,Tu +eu). Since this inequality holds for all € > 0, we can take

the limit as € - 0 to conclude that |Tu|*> < (Tu,u), and so (v) == (vi). Finally, suppose (vi). Then clearly
(Tu,u) > |Tul? >0 and |Tu|? < (Tu,u) < [Tul|ul, so that [T < |u|, proving that |T| < 1. Thus, (vi) = (iii). O

3. Prove that the following properties are equivalent:
(vii) (Tu,u) <|Tul* VYueH,
(viii) (0,1) c p(T).
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Proof. Suppose (vii). Set U = 2T — I and observe that for all v € H, |Uul?* = 4|Tul|? - 4(Tu,u) + |u]* > |ul?,
so that |Uu| > |u| for all u. Thus, for any A € (-=1,+1), we have that |[Uu — Auf* = |Uu|? = 2A\(Uu,u) + N|ul* >
[ul? = 2Mu|? + A2[u? = (A = 1)?|ul*>. Since U - A is self-adjoint, we can apply Theorem 2.20 to conclude that
U — A is surjective. Clearly we also have that U — Al is also injective and so A € p(U) for all A e (-1,+1).
Applying Exercise 6.22 part 5, it follows that (=1,+1) c p(U) = 2p(T) - 1, and so p(T') > (0,1), which verifies
that (vil) = (viii). Suppose (viii). Then p(U) =2p(T)-12(-1,+1) and so U is invertible, and applying
Exercise 6.22, we have that o(U™!) = ¢(U)™! c [-1,+1]. By Proposition 6.9, it follows that |[U~}| <1 and so
for all v e H, |u|2 |UU)? < |Uul? = 4Tul? = 4(Tu,u) + |uf?>. The statement follows after rearranging. O

Evan’s Sobolev Spaces Solutions

In these exercises U always denotes an open subset of R™, with a smooth boundary dU. As usual, all given functions
are assumed smooth, unless otherwise stated.

1.

Assume 0 < 8 <~ < 1. Prove the interpolation inequality

1 J
lullcom(uy < H“”co syl o @y

Proof. Fix u € C%?(U). Then observe that since |u(z) - u(y)| < Clz —y|® < Clz —y|¥ < Clz - y| for all z,y € U, it
follows that u e C%Y(U) n C%Y(U). Moreover, for any = # y € U, we have that

18
u(z) —u(y)| _ [ lu(z) - u(y)| [u(z) - u(y)|
o =y |z - y|? |z -]
1 -8
<fulg” [uli™,
1-y =8
so that [u], <[u];™ [u],;™". It follows that
1 3 1 3 % ’I;[j
ull ooy < [ul 5 ul S & +[ulg " luly ™
=8 =8

@
Q

-

(tal s tar Y [l (TuloCule +[uls) \ ™ [uls [ (el +[u]s) | ™
= (oo + [u]5) (Iuloo 5( ] oo ) |u|+[u]ﬁ( [u]s )

1

‘QQ
R‘E

< (lullo + [15)

(lulloo + [uls

|

where I have applied the convexity of the map ¢ — 1 in the final inequality. The desired inequality follows. O

3.

Assume n =1 and u € WHP(0,1) for some 1< p < co.

(a) Show that u is equal a.e. to an absolutely continuous function and v’ (which exists a.e.) belongs to LP(0,1).

Proof. By possibly adding a constant, we may assume WLOG that Since u € WP (0, 1), there exists v € LP(0,1)
such that [01 up' = —jol vep for all test functions ¢ € C(0,1). Set U(x) := [, v(t)dt. Observe that for any test
function ¢ € C°(0,1),
1 1 T
[ (@) - U@)¢' @z = [ (@)~ [T o@dt)e (@)ds
0 0 0
1 1 1
= f u(z)'(z)dx - f v(t) f o' (x)dzdt
0 0 t

:_/ély(x)gp(x)dxw—folv(t)@(t)dt=0
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It follows that u =U a.e. on (0,1). From Analysis 1, we know that U(x) = [,  v(t)dt is absolutely continuous,
and the statement follows. O

(b) Prove that if 1 <p < oo, then
1 1/p
1
u(z) - u(y)| <z - y|( A |u'|Pdt)
0
for a.e. x,y€[0,1].
Proof. Since we may assume WLOG that u is absolutely continuous by part (a), and because the fundamental

theorem of calculus part II applies to absolutely continuous functions, it follow that u(y) — u(z) = [/ u'(t)dt
for a.e. z,y €[0,1]. Thus, by applying Holder’s inequality, we have that for a.e. x,y €[0,1]

u(@) =)l < [ @l
1, 1 1
g( JA xfm,y]) ( A |u'(t>|pdt)
) 1 1/p
:|x_y|1-p(f0 |u’(t)|pdt) .

1/p

4.

Let U,V be open sets, with V cc U. Show there exists a smooth function ¢ such that (=1 on V, { =0 near 0U.

Proof. Since we are working in R™ and V c U, there exists open W such that V ¢ W ¢ W c U, and since V is
compact, we can further take W to be compact. That is, we have V cc W cc U. Now let p, be a sequence of
mollifiers and observe that for each n, ¢, = xw * p, is smooth and for £ < 2 min(dist(V,0W), dist(W,0U)), we have
that

Gu(@)= [ o=y )y
:prn(x—y)dy

= n - d .
anBl/n(x)p (z-y)dy

Thus, for all x € V, we have that By/,(z) c W, so that (,|y =1, and for all z € U and z € By, (), (n(2) = 0 (since
Bijn(z) nW = @). The statement follows. O

5.

Let U be bounded, with a C! boundary. Show that a “typical” function u € LP(U) (1 < p < oo) does not have a trace
on QU. More precisely, prove there does not exist a bounded linear operator

T:LP(U) - LP(OU)
such that Tu = u|py whenever u e C(U) n LP(U).
Proof. Fix p and suppose for a contradiction that there exists a bounded linear operator 7': LP(U) — LP(9U) such
that Tu = ulpy for all uwe C(U)n LP(U). Consider the sequence of functions

1

() = T e 0

Observe that each u, is continuous and 0 < u,, < 1, so that (u,) ¢ C(U) n LP(U). Moreover, we clearly have that
u, — 0 pointwise, so that by the dominated convergence theorem, fU [unl? = 0 as n — oo. Since uy|oy = 1 for all
n, we have that Area(dU) = HTunHzp(aU) < ||TH”HunHZ£p(U) — 0. That is, we find that OU has zero area, which is

impossible. The statement follows by contradiction. O
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6.

Prove that for all ue C(U)
| Dul 2 < Cllul {7 D>ul 1

Assume U is bounded, QU is smooth, and prove this inequality if u e H*(U) n Hg(U).

Proof. Fix u e C°(U). Integrating by parts (and using the fact that w has compact support), we see that
|Du|3 2 = / Du- Du
U
<C f lu|| D24l
U
< Clul 2| D*ul| 2.
The first part of the problem follows.

For the second part, fix u € H2(U) n H}(U) and pick sequences (v,,) ¢ C°(U) converging to v in H}(U) and
(w,) € C*=(U) converging to u in H2(U) (the first sequence exists by the definition of H}(U), and the second exists
since OU is smooth, so the we can extend U to U cc V, and C°(V) is dense in H2(U)). Integrating by parts (and
using the fact that the terms have compact support), we have that for all n

[Dvn~Dwn£C[|vn||D2wn|
U U
< Cllo| 2| D*wi] 2

Clearly the RHS goes to C|u 2| D?*u| 2 as n — co. Moreover, we have that for all n,

/ (Dvn - Dw,, - (Du)z) < ||Dvy | 2 | Dwy, — Du| 2 +
U

|Du| 2| Dvy, — Dul g2 = 0,

so that [;; Dv, - Dw,, — | Du|%,. It follows that |Duz2 < CHquL/Q2 HDQuHi/zz, as required. O

7.

Suppose U is connected and u € WP (U) satisfies
Du=0 a.e inU.

Prove w is constant a.e. in U.

Proof. Let (p,) be a sequence of mollifiers, fix £ > 0 and pick n > 1/e. Set U, = {z € U : dist(z,0U) > %} Observe
that u, = pp, x u e C*(U,) and Du,(z) = pp, » Du(z) =0 for all x € U,. Since U, is connected and u,, is smooth, it
follows that w,, is equal to a constant ¢, on U,. Thus, since u,, = ¢, > u in LP(U,,) for any fixed m, it follows that
there exists a subsequence (¢, ) such that ¢,, — uw a.e. on Uy,,. Thus, u is constant a.e. on each U, and taking
m — oo, we have that u is constant a.e. on U. O

8.

Give an example of an open set U ¢ R™ and a function u € W1P(U), such that u is not Lipschitz continuous on U.

Solution

Pick U := B°(0,2) \ {(x,0) : = < 0}. Using polar coordinates, define u(r,0) = rsin(6/2). Observe that u is smooth

and bounded in U so that u e W'?(U). Fix € > 0 and, using polar coordinates, set K. = {(r,0) :re[1,2] & 0¢
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[-m+e,m—e]} cU. If we pick x,y € K, such that the polar coordinates of z are (1,-m +¢) and the polar coordinates
of y are (1.7 —¢), then we see that

) —u@ @) =)

sup >
z#yeU |z -yl wHyeKe [z -yl
 Ju(@) ~u()
|~y
) | sin( _7r2+€ - sin(”T_E)|
|cos(—m + &) —sin(m — €)|
2cos(g/2)

= 5 € = 0.
|cos(—7r+5)—sin(7r—5)|_)oo we

Thus, u is not Lipschitz continuous on U.

9.
Verify that if n > 1, the unbounded function u = loglog (1 + ﬁ) belongs to W1 (U), for U = B°(0,1).

Proof. Observe that u is differentiable at all points away from 0. To see that u has a weak derivative that coincides
with its strong derivatives away from 0, observe that for any € > 0 and test function ¢ € C°(U)

v = — o+ ‘ds
fU\B(O,e) Woa: [U\B(o,s)u ¥ fas(o,s) il

log(1+1/e) (o1/m)?
<[ uziw+0|so||wlog((1,,,_/)e< 1”).
UNB(0,¢) €

Thus, if knew that u and each u,, belong to L™(U), and therefore also to L'(U) by the boundedness of U, it would
follow that

f UPy,; = lim UP,
U e—=>0 JU~NB(0,¢)

. log(1+1/) (n-1/n)?
- lim| - f 2.0 + C[ @]l oo log | == 5" 1/™
lim ( UB(o.e "o ? T Clelelog ( Sy

=-lim U
e~>0 JUNB(0,¢)

= - [ Uy, P
U

Hence, to finish the proof, it suffices to verify that u and each w,, belong to L™(U). To this end, observe that since
u depends only only the radius of x € U,

fU | = fo ' fa oy NS () dr

1
:Area(aU)/O " Hu(r)["dr.

z; P

And since lim,_o 7" Hu(r)|" = 0, it follows that u € L™(U) (to see why this limit is so, we apply L’Hopital to get
that

n

-1
- |n
0 log(1+1/r)(1+1/r)r2(1/n - 1)ri/n-2

1 " T "

20 log(1+ 1/r)
= limr® " (141/r) = 0.)

lin(l) r"loglog (1 + %)

r—

1/n
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Finally, observe that |u,, (z)| < And using the same method of estimation as above, we get that

N U
log (1+[a]) (|=[>+[=[) -

1
fU|uzi|":Area(6U)f 7“"_1|uxi(r)|"dr
0

1 1
- Cfo log(1+ 1/r)™(r2+1)

flog(2) dy
= - — < o0
oo yn

The statement follows. O

10.

Fix o> 0 and let U = B°(0,1). Show that there exists a constant C, depending only on n and «, such that

[qung/|Du|2dx,
U U

{xeU:u(z)=0}>a, ueH (V).

provided

Proof. Set E = {xz € U : u(x) = 0}. By assumption, we have that |E| > 0 and up := fu(z)da = 0. Thus, it clearly
suffices to prove that there exists a constant C' such that |v—-vg| 2y < C|Dv| p2(ry for all ve H'(U), C' depending
only on n and U. For a contradiction, suppose not. Then for each k > 1, there exists some uy € H'(U) such that
Huk - (Uk)EHLQ(U) > kHDuk HLQ(U)- Now set

= (ur)E
lur = (ur) Bl 220

Then we have that (v;)p = 0 and |vg | r2(r) = 1, and so | Duy| <  for each k. By the Rellich-Kondrachov Compactness
theorem, there exists a subsequence (vj,) and v € L?(U) such that vy, - v in L*(U). By continuity, we have that
vg =0 and |[v]|z2¢) = 1. Moreover, we have that for all test functions ¢ € C2°(U),

v, = lim Ve, .:—limfv.. =0.
/[; Pa; j—>oofU k;Px; v Ju kjziP

Thus, v € H*(U) and Dv = 0 a.e. Since U is connected, v is constant. But since vg = 0, v is constant on E and
|E| >0, it follows that v = 0, contradicting that ||v] z2¢yy = 1. The statement follows by contradiction. O

11.

Show that for each n > 3 there exosys a constant C' so that

w2
f —szC'f |Dul*dx
R |z|? R

for all u e H'(R™)

Proof. Suppose first that u € C2°(R™)n L2(R™). Set F(x) = I%I’ and observe that since our domain is R", integration

by parts gives that
[ W2div(F) = - f D(u?) - F = —2[ Du-uF.

Thus, applying Cauchy Schwarz, we have

<2[Dulla|uF |2,

‘ f w2div(F)
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or equivalently,

(f |x|2) G Ipuas [ e

Thus, [ Izlz < oy 2)2 [ |Dul? for all ue C®(R™) n L*(R™). Now fix u e H'(R") and observe that H'(R") = H}(R"),
so that there exists (u,) c C2°(R™) n L?(R") such that u,, — u in H'(R™). By possibly picking a subsequence and
relabeling, we may assume WLOG that u,, - u pointwise a.e. Now by Fatou, we have that

4
2 2
[ BE <hm1nff 22 < ( hmmf/ |Duy,|* = CEDE / |Dul”.

12.
Assume F:R - R is C!, with F’ bounded. Suppose U is bounded and u e WP (U) for some 1 < p < co. Show
vi= F(u) e WYP(U) and  w,, = F'(w)u,, (i=1,...,n).

Proof. By density, pick (ug) c¢ C*(U) n W'P(U) such that uy — u in WHP(U). Then using the fact that F’ is
bounded, there exists some C' such that

|F(ur(x)) = F(uj(x))] < Clug () - u; ()
for all € U. Thus, for any test function ¢ € C°(U)
[ F(u)Dy = klim f F(ug)Dy = klim - f F'(ug)Duyp.

By possibly picking a subsequence of (u) and relabeling, we may assume WLOG that ur — u a.e. and there
F'(u) = F(u) a.e. Tt follows that

‘f(F'(Uk)DUk—F'(U)DU)SO SC[HDUkHooIF'(Uk)—F'(U)||<P|+I\F'(U)HooHUk—UHWLP(U)ISOI—>0

as k > co. Thus, [ F(u)D¢ = limgeo — [ F'(ug)Durp = [ F'(u)Dugp. Finally, since U is bounded F € C*' and
ue LP(U), F(u) € LP(U), and since F'(u) is bounded, F'(u)u,, € LP(U) (i =1,...,n). Thus, F(u) e Wh?(U), as
required. O
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