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1.1 Properties of the duality map

Let E be an n.v.s. The duality map F is defined for every x ∈ E by

F (x) = {f ∈ E∗ ∶ ∥f∥ = ∥x∥ and ⟨f, x⟩ = ∥x∥2}

1. Prove that
F (x) = {f ∈ E∗ ∶ ∥f∥ ≤ ∥x∥ and ⟨f, x⟩ = ∥x∥2}.

and deduce that F (x) is nonempty, closed, and convex.

Proof. To discard with the trivial case, observe that when x = 0, the statement follows from the fact that
∥f∥ ≥ 0 for all f ∈ E∗. Hence, we may assume WLOG that x ≠ 0. Fix nonzero x ∈ E and define Sx ∶= {f ∈
E∗ ∶ ∥f∥ ≤ ∥x∥ and ⟨f, x⟩ = ∥x∥2}. Clearly F (x) ⊂ Sx, moreover for any f ∈ Sx, ⟨f, x⟩ = ∥x∥2 implies that
∥x∥ = ⟨f, x

∥x∥ ⟩ ≤ ∥f∥ ≤ ∥x∥, so that ∥f∥ = ∥x∥. Hence f ∈ F (x), and it follows that F (x) = Sx.

The fact that F (x) is nonempty follows from the Hahn-Banach theorem and is the content of Corollary
1.3. To see that F (x) is closed, let Jx ∈ E∗∗ ∶ f ↦ ⟨f, x⟩ be the embedding of x in E∗∗ and observe that

F (x) = Sx = BE∗(0, ∥x∥) ∩ J−1x ({∥x∥2}), which is closed by the continuity of Jx. Finally, to see that F (x) is
convex, fix f, g ∈ F (x) and λ ∈ [0,1]. Observe that ∥λf+(1−λ)g∥ ≤ λ∥f∥+(1−λ)∥g∥ ≤ ∥x∥, and ⟨λf+(1−λ)g, x⟩ =
λ⟨f, x⟩ + (1 − λ)⟨g, x⟩ = λ∥x∥2 + (1 − λ)∥x∥2 = ∥x∥2. Hence, λf + (1 − λ)g ∈ Sx = F (x) for all f, g ∈ F (x) and
λ ∈ [0,1], proving convexity.

2. Prove that if E∗ is strictly convex, then F (x) contains a single point.

Proof. Fix x ∈ E, f, g ∈ F (x) and suppose E∗ is strictly convex. If x = 0, then ∥f∥ = ∥g∥ = 0 implies that

f = g = 0, so we may assume WLOG that x ≠ 0. By the convexity of F (x), f+g
2
∈ F (x) so that ∥ f+g

2
∥ = ∥x∥.

Define f ′ ∶= f
∥x∥ and g′ ∶= g

∥x∥ and observe that ∥f ′∥ = ∥g′∥ = 1 and ∥ f
′

2
+ g′

2
∥ = 1

∥x∥∥
f+g
2
∥ = 1. Since E∗ is strictly

convex, this is only possible if f ′ = g′, and by rescaling, we see that f = g, which gives the desired result.

3. Prove that

F (x) = {f ∈ E∗ ∶ 1
2
∥y∥2 − 1

2
∥x∥2 ≥ ⟨f, y − x⟩ ∀y ∈ E}.

Proof. Fix x, y ∈ E, f ∈ F (x) and define Rx ∶= {f ∈ E∗ ∶ 12∥y∥
2 − 1

2
∥x∥2 ≥ ⟨f, y − x⟩ ∀y ∈ E}. Observe that

⟨f, y − x⟩ = ⟨f, y⟩ − ∥x∥2 ≤ ∥f∥∥y∥ − ∥x∥2 = ∥x∥(∥y∥ − ∥x∥). There are two cases to consider: when ∥y∥ ≥ ∥x∥,
we have that ∥x∥ ≤ ∥y∥+∥x∥

2
and ∥y − ∥x∥ ≥ 0, so that ⟨f, y − x⟩ ≤ ∥x∥(∥y∥ − ∥x∥) ≤ (∥y∥+∥x∥)

2
(∥y∥ − ∥x∥), and the

desired inequality follows. Otherwise, when ∥y∥ ≤ ∥x∥, then ∥x∥ ≥ ∥y∥+∥x∥
2

and ∥y∥ − ∥x∥ < 0, so that again

⟨f, y − x⟩ ≤ ∥x∥(∥y∥ − ∥x∥) ≤ 1
2
∥y∥2 − 1

2
∥x∥2. This shows that the desired inequality holds for all y ∈ E, and

therefore f ∈ Rx giving the first inclusion F (x) ⊂ Rx.

Towards showing the other inclusion, suppose that f ∈ Rx. Then for any λ > 1, we have that (λ − 1)⟨f, x⟩ ≤
λ2−1
2
∥x∥2 and it follows that ⟨f, x⟩ ≤ λ+1

2
∥x∥2 for all λ > 1. Taking the limit as n → 1 gives ⟨f, x⟩ ≤ ∥x∥2.
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Similarly, we see that for all λ ∈ (0,1), ⟨f, x⟩ ≥ λ+1
2
∥x∥2 and, in the limit, we see that ⟨f, x⟩ = ∥x∥2. Using what

we just showed, it follows that for all y ∈ E, ⟨f, y⟩ ≤ 1
2
∥y∥2 + 1

2
∥x∥2 and therefore for any ε > 0, we have

∥f∥ = sup
y∈E,∥y∥=1

⟨f, y⟩ = 1

ε
sup

y∈E,∥y∥=ε
⟨f, y⟩ ≤ ε

2
+ 1

2ε
∥x∥2.

Assuming that x ≠ 0, taking ε = ∥x∥ gives ∥f∥ ≤ ∥x∥ so that f ∈ F (x). In the case where x = 0, note that for
every y ∈ E, we have that ⟨f, y⟩ = 1

ε
⟨f, εy⟩ ≤ ε

2
∥y∥2 for all ε > 0. It follows that f = 0 ∈ F (0), proving that

F (x) = Rx for all x ∈ E.

4. Deduce that
⟨F (x) − F (y), x − y⟩ ≥ 0 ∀x, y ∈ E,

and more precisely that

⟨f − g, x − y⟩ ≥ 0 ∀x, y ∈ E, ∀f ∈ F (x), ∀g ∈ F (y).

Show that, in fact,

⟨f − g, x − y⟩ ≥ (∥x∥ − ∥y∥)2 ∀x, y ∈ E, ∀f ∈ F (x), ∀g ∈ F (y).

Proof. Fix x, y ∈ E, f ∈ F (x) and g ∈ F (y). From (3), we have

⟨f − g, x − y⟩ = −⟨f, y − x⟩ − ⟨g, x − y⟩ ≥ (1
2
∥x∥2 − 1

2
∥y∥2) + (1

2
∥y∥2 − 1

2
∥x∥2) = 0,

proving the first inequality.

For the second inequality, we have

⟨f − g, x − y⟩ = ⟨f, x⟩ − ⟨f, y⟩ − ⟨g, x⟩ + ⟨g, y⟩
= ∥x∥2 − ⟨f, y⟩ − ⟨g, x⟩ + ∥y∥2

≥ ∥x∥2 − ∥f∥∥y∥ − ∥g∥∥x∥ + ∥y∥2

= (∥x∥ − ∥y∥)2.

5. Assume again that E∗ is strictly convex and let x, y ∈ E be such that

⟨F (x) − F (y), x − y⟩ = 0.

Show that Fx = Fy.

Proof. From the last inequality in (4), we see that (∥x∥ − ∥y∥)2 ≤ ⟨F (x) − F (y), x − y⟩ = 0, so that ∥x∥ = ∥y∥.
Moreover, since 0 = ∥x∥2 − ⟨Fx, y⟩ + ∥y∥2 − ⟨Fy,x⟩ and ∥x∥2 − ⟨Fx, y⟩ ≥ ∥x∥2 − ∥Fx∥∥y∥ = 0 and similarly

∥y∥2 − ⟨Fy,x⟩ ≥ 0, it follows that ⟨Fx, y⟩ = ∥x∥2 = ⟨Fy,x⟩. Since ⟨ 1
2
Fx
∥x∥ +

1
2
Fy
∥x∥ ,

x
∥x∥ ⟩ = 1, it follows that

∥ 1
2
Fx
∥x∥ +

1
2
Fy
∥x∥∥ ≥ 1. Finally, observing that ∥ Fx

∥x∥∥ = ∥
Fy
∥x∥∥ = 1, the fact that E∗ is strictly convex implies that

Fx = Fy.

1.2

Let E be a vector space of dimension n and let (ei)1≤i≤n be a basis of E. Given x ∈ E, write x = ∑n
i=1 xiei with xi ∈ R;

given f ∈ E∗, set fi = ⟨f, ei⟩.

2. Consider on E the norm
∥x∥∞ = max

1≤i≤n
∣xi∣.

(a) Compute explicitly, in terms of the f ′is, the dual norm ∥f∥E∗ of f ∈ E∗.
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Solution

Fix f ∈ E∗ and note that for any x ∈ E, ⟨f, x⟩ = ∑i xifi ≤ ∑i ∣xi∣∣fi∣ ≤ ∥x∥∞(∑i ∣fi∣). Thus, ∥f∥E∗ ≤ ∑i ∣fi∣.
Now let y ∶= (sgn(fi))1≤i≤n, where we set sgn(fi) = 1 if fi = 0. Clearly ⟨f, y⟩ = ∑i ∣fi∣ and ∥y∥∞ = 1, hence
∥f∥ = ∑i ∣fi∣.

(b) Determine explicitly the set F (x) (duality map) for every x ∈ E.

Solution

Fix x ∈ E and suppose that f ∈ F (x). Then ∑i xifi = ∥x∥2∞ = maxi ∣xi∣2 and maxi ∣xi∣ = ∥f∥ = ∑i ∣fi∣.
Note that maxi ∣xi∣2 = ∑i xifi ≤ ∑i ∣xi∣∣fi∣ ≤ ∥f∥∥x∥∞ = maxi ∣xi∣2. It follows that for each i, xifi ≥ 0. Let
A ∶= {1 ≤ i ≤ n ∶ ∣xi∣ = maxi ∣xi∣}. I claim that for all j ∉ A, fj = 0. Towards proving this claim, suppose
for a contradiction that for some j ∉ A, ∣fj ∣ > 0. Then maxi ∣xi∣2 = ∑i ∣xi∣∣fi∣ = ∣xj ∣(maxk ∣xk ∣ − ∑i≠j ∣fj ∣) +
∑i≠j ∣xi∣∣fi∣ < maxk ∣xk ∣2 −maxk ∣xk ∣∑i≠j ∣fi∣ +maxk ∣xk ∣∑i≠j ∣fi∣, a contradiction. Hence, F (x) = {f ∈ E∗ ∶
∑i∈A xifi =max1≤i≤n ∣xi∣ and ∀j ∉ A ∶ fj = 0 and ∀j ∈ A ∶ xjfj ≥ 0}.

1.3

Let E = {u ∈ C([0,1]; R) ∶ u(0) = 0} with its usual norm

∥u∥ = max
t∈[0,1]

∣u(t)∣.

Consider the linear functional

f ∶ u ∈ E ↦ f(u) = ∫
1

0
u(t)dt.

1. Show that f ∈ E∗ and compute ∥f∥E∗ .

Proof. The linearity of f follows from the linearity of the integral over [0,1]. Note that for any u ∈ E,

f(u) ≤ ∫
1
0 ∣u(t)∣dt ≤ maxt∈[0,1] ∣u(t)∣ ∫

1
0 dt = ∥u∥. Thus, f ∈ E∗ and ∥f∥E∗ ≤ 1. To see that ∥f∥ = 1, for each

n ≥ 1, define un ∈ E by un(t) =
⎧⎪⎪⎨⎪⎪⎩

nx 0 ≤ t ≤ 1
n

1, 1
n
≤ t ≤ 1.

Clearly ∥un∥ = 1 for all n and f(un) = (1 − 1
n
) + 1

2n
= 1 − 1

2n
. It

follows that ∥f∥E∗ ≥ 1 − 1
2n

for all n ≥ 1, so that ∥f∥E∗ = 1.

2. Can one find some u ∈ E such that ∥u∥ = 1 and f(u) = ∥f∥E∗?

Solution

No. Observe that for any u ∈ E with ∥u∥ = 1, the fact that u is continuous and u(0) = 0 implies that there
exists some ε > 0 such that ∣u(t)∣ < 1

2
for all t ∈ [0, ε). Thus,

f(u) ≤
RRRRRRRRRRR
∫

1

0
u(t)dt

RRRRRRRRRRR
≤ ∫

1

0
∣u(t)∣dt < ε

2
+ ∫

1

ε
∣u(t)∣dt ≤ ε

2
+ (1 − ε) = 1 − ε

2
< ∥f∥E∗ .

1.6

Let E be an n.v.s. and let H ⊂ E be a hyperplane. Let V ⊂ E be an affine subspace containing H.

1. Prove that either V =H or V = E.

Proof. Let f be a linear functional on E and α ∈ R such that H = [f = α]. Since V is an affine subspace, there
exists a linear subspace V ′ of E and v0 ∈ E such that V = v0 + V ′. Observe that WLOG, we may assume that
⟨f, v0⟩ = α, so that v0 ∈ H. Indeed, if ⟨f, v0⟩ ≠ α, then there must exist some w ∈ V ′ such that ⟨f, v0 +w⟩ = α,
and we can simply take V = (v0+w)+V ′. With this assumption in mind, observe that for any w ∈ V ′, w ∈ ker f
implies that ⟨f, v0+w⟩ = α, so that v0+w ∈H, showing that v0+ker f ⊂H. Moreover, since H ⊂ V , if w ∈ V ′ such
that v0 +w ∈H, then ⟨f, v0 +w⟩ = ⟨f, v0⟩, which implies that w ∈ ker f . Thus, we have H = v0 + ker f . Suppose
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that V ≠ H so that V ′ ≠ ker f . Then there must exist some w0 ∈ V ′ such that ⟨f,w0⟩ ≠ 0. By homogeneity, it
follows that for all t ∈ R, there exists some wt ∈ V ′ such that ⟨f,wt⟩ = t. Clearly E = ⋃t∈R[f = t]. Fix t0 ∈ R
and y ∈ [f = t0]. Then taking w−t0 ∈ V ′. we have that y +w−t0 ∈ ker f ⊂ V ′, so that y = (y +w−t0) −w−t0 ∈ V ′.
It follows that E = ⋃t∈R[f = t] ⊂ V ′, which proves that V = E.

2. Deduce that H is either closed or dense in E.

Proof. Let v0 ∈H and observe that since H = v0 +ker f ⊂ v0 +ker f , the fact that v0 +ker f is an affine subspace
containing H implies that either H = v0 + ker f , so that H is closed, or H = v0 + ker f = v0 + ker f = E, so that
H is dense in E.

1.8

Let E be an n.v.s. with norm ∥ ∥. Let C ⊂ E be an open convex set such that 0 ∈ C. Let p denote the gauge of C.

1. Assuming C is symmetric (i.e., −C = C) and C is bounded, prove that p is a norm which is equivalent to ∥ ∥.

Proof. The gauge p is defined by p(x) = inf{α > 0 ∶ x ∈ αC}. From Lemma 1.2 (9) and (10), we see that there
exists a constant M such that 0 ≤ p(x) ≤M∥x∥ ∀x ∈ E, and C = {x ∈ E ∶ p(x) < 1}. The triangle inequality
holds for p by definition. Towards proving homogeneity of p, fix λ ≤ 0, x ∈ E and observe that for any α > p(x),
x ∈ αC by the definition of p. By the symmetry of C, it follows that −x ∈ αC so that p(−x) ≤ α. Thus,
p(−x) ≤ p(x). By symmetry, it’s clear that p(−x) = p(x). It follows that p(λx) = p(−∣λ∣x) = ∣λ∣p(−x) = ∣λ∣p(x),
proving homogeneity. To finish the proof that p defines a norm on E, note that it suffices to find some m > 0
such that m∥x∥ ≤ p(x) for all x ∈ E. Since C is bounded, there exists some c > 0 such that ∥x∥ ≤ c for all x ∈ C.
Pick y ∈ E, fix ε > 0 and note that 1

p(y)+εy ∈ C so that 1
p(y)+ε∥y∥ ≤ c. It follows that 1

c
∥y∥ ≤ p(y) + ε. Since

this inequality holds for all ε > 0 and y ∈ E, we have m = 1
c
> 0 gives the desired constant. Note that since

m∥x∥ ≤ p(x) ≤M∥x∥ for all x ∈ E, p and ∥ ∥ are equivalent norms.

2. Let E = C([0, 1]; R) with its usual norm
∥u∥ = max

t∈[0,1]
∣u(t)∣.

Let

C = {u ∈ E ∶ ∫
1

0
∣u(t)∣2dt < 1}.

Check that C is convex and symmetric and that 0 ∈ C. Is C bounded in E? Compute the gauge p of C and
show that p is a norm on E. Is p equivalent to ∥ ∥?

Solution

Fix u1, u2 ∈ C and λ ∈ [0,1]. By the convexity of x↦ x2, we have

∫
1

0
∣λu1(t) + (1 − λ)u2(t)∣2dt ≤ λ∫

1

0
∣u1(t)∣2dt + (1 − λ)∫

1

0
∣u2(t)∣2dt < 1.

Since λu1 + (1 − λ)u2 is obviously continuous, λu1 + (1 − λ)u2 ∈ C which shows that C is convex. That C is

symmetric simply follows from the fact that for all u ∈ C, −u is continuous and ∫
1
0 ∣ −u(t)∣

2dt = ∫
1
0 ∣u(t)∣

2dt < 1.
Since 0 ∈ E and ∫

1
0 ∣0(t)∣

2dt = 0 < 1, 0 ∈ C. Observe that C is not bounded: for each n ≥ 1, un ∶=
⎧⎪⎪⎨⎪⎪⎩

√
n(1 − nt), 0 ≤ t ≤ 1

n

0, 1
n
≤ t ≤ 1

∈ E and ∫
1
0 ∣un(t)∣2dt = 1

2
< 1, so that un ∈ C. The fact that ∥un∥ =

√
n → ∞ as

n→∞ proves that C is unbounded in E.

Towards computing the gauge p of C, note that for any α > 0, α−1u ∈ C if and only if ∥u∥2L2([0,1]) < α
2. Thus,

after taking square roots, taking the inf over all such α gives p(u) = ∥u∥L2([0,1]). That ∥ ∥L2([0,1]) is a norm on
E is immediate given that E can be realized as a subspace of L2([0,1]). Clearly ∥ ∥ and ∥ ∥L2([0,1]) are not
equivalent norms on E since C ⊂ E is bounded with respect to the latter and unbounded with respect to the
former.
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1.14

Let E = ℓ1 and consider the two sets

X = {x = (xn)n≥1 ∈ E ∶ x2n = 0 ∀n ≥ 1}

and

Y = {y = (yn)n≥1 ∈ E ∶ y2n =
1

2n
y2n−1 ∀n ≥ 1}.

1. Check that X and Y are closed linear spaces and that X + Y = E.

Solution

Fix x,x′ ∈ X and λ ∈ R. Observe that (x + x′)2n = x2n + x′2n = 0, (λx)2n = λx2n = 0 and 02n = 0 for all n ≥ 1,
which shows that X is linear subspace of E. Now suppose that (xk)k≥1 ⊂ X converges in ℓ1 to some point
x ∈ E. Then for any n ≥ 1, since ∣x2n∣ = ∣xk

2n − x2n∣ ≤ ∑m ∣xk
m − xm∣ = ∥xk − x∥ → 0 as k → ∞, it follows that

x ∈X, and so X is a closed linear space.

Now fix y, y′ ∈ Y and observe that (y+y′)2n = 1
2n

y2n−1 + 1
2n

y′2n−1 = 1
2n
(y+y′)2n−1, (λy)2n = 1

2n
λy2n−1, and 02n =

0 = 1
2n

02n−1 for all n ≥ 1, which shows that Y is also a linear subspace of E. Suppose that (yk)k≥1 ⊂ Y converges

in ℓ1 to some point y ∈ E. Then for all n ≥ 1, ∣y2n − 1
2n

y2n−1∣ ≤ ∣y2n −yk2n∣ + 1
2n
∣yk2n−1 −yn−1∣ ≤ (1+ 1

2n
)∥y−yk∥ → 0

as k →∞, proving that Y is a closed linear space.

Towards proving that X + Y = E, fix (an)n≥1 ∈ E. For each N ≥ 1, define the elements xN ∈ X and yN ∈ Y as
follows: for n > 2N , define xN

n = yNn = 0 and for 1 ≤ n ≤ N , define y2n−1 = 2na2n, y2n = 1
2n

y2n−1, x2n = 0 and

x2n−1 = a2n−1 − 2na2n. Note that (xN + yN)n = an for all 0 ≤ n ≤ 2N , and so ∥a− (xN + yN)∥ = ∑n≥2N+1 ∣an∣ → 0
as N →∞. Thus, a ∈X + Y , which proves that X + Y = E.

2. Let c ∈ E be defined by
⎧⎪⎪⎨⎪⎪⎩

c2n−1 = 0 ∀n ≥ 1,
c2n = 1

2n
∀n ≥ 1.

Check that c ∉X + Y .

Solution

Towards a contradiction, suppose that c ∈ X + Y . Then c = x + y for some x ∈ X and y ∈ Y . Since x2n = 0 for
all n ≥ 1, it follows that y2n = 1

2n
and therefore y2n−1 = 2ny2n = 1 for all n ≥ 1. But then obviously ∥y∥ = ∞,

contradicting the fact that y belongs to ℓ1. Thus, c ∉X + Y

3. Set Z = X − c and check that Y ∩ Z = ∅. Does there exist a closed hyperplane in E that separates Y and Z?
Compare with Theorem 1.7 and Exercise 1.9.

Solution

That Y ∩Z = ∅ follows immediately from part 2. since otherwise there would be some y ∈ Y such that y = x− c
for some x ∈ X, contradicting that c ∉ X + Y . To see that no closed hyperplane in E separates Y and Z,
suppose for a contradiction that there were some nonzero f ∈ E∗ and α such that ⟨f, y⟩ ≤ α ≤ ⟨f, x − c⟩ for all
y ∈ Y and x ∈X. Since X and Y are both linear subspaces, the only way this is possible is if ker f ⊃X,Y . But
then X + Y ⊂ ker f , so that E = X + Y ⊂ ker f = ker f , contradicting our assumption that f is nonzero. Note
that this result does not conflict with the Hahn-Banach, second geometric form (Theorem 1.7) since neither X
nor Y are compact (it’s easy to see that neither are bounded in ℓ1).

4. Same questions in E = ℓp, 1 < p < ∞, and in E = c0.
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Solution

Checking that X and Y are still closed linear subspaces when we set E = ℓp or E = c0 is a matter of adding
a pth power or using the sup norm in place of the ℓ1 norm above, and is trivial. Similarly, my proof that
X + Y = E works equally well with E = ℓp or E = c0, just adding a power of p or observing that the trailing
sequence converges to 0. My proofs for 3. and 4. work without any changes.

1.16

Let E = ℓ1, so that E∗ = ℓ∞. Consider N = c0 as a closed subspace of E∗. Determine

N⊥ = {x ∈ E ∶ ⟨f, x⟩ = 0 ∀f ∈ N}

and
N⊥⊥ = {f ∈ E∗ ∶ ⟨f, x⟩ = 0 ∀x ∈ N⊥}.

Check that N⊥⊥ ≠ N .

Solution

Note that N⊥ = {0}. To see why this holds, fix x ∈ N⊥ and n ∈ N and observe that (δi,n)i≥1 clearly belongs to
N so that 0 = ⟨(δi,n)i≥1, x⟩ = xn. The claim then follows by noting that this identity holds for all n ≥ 1. Thus,
N⊥⊥ = {f ∈ E∗ ∶ ⟨f, x⟩ = 0 ∀x ∈ {0}} = E∗ = ℓ∞. Since (1)i≥1 ∈ ℓ∞ ∖ c0, it follows that N⊥⊥ ≠ N .

1.17

Let E be an n.v.s. and let f ∈ E∗ with f ≠ 0. Let M be the hyperplane [f = 0].

1. Determine M⊥.

Solution

Clearly span(f) ⊂M⊥. Fix x ∈ E ∖M so that ⟨f, x⟩ ≠ 0. Observe that for any y ∈ E, ⟨f, y − ⟨f,y⟩)⟨f,x⟩ x⟩ = 0, so that

y − ⟨f,y⟩⟨f,x⟩x ∈M for all y ∈ E. It follows that for all g ∈M⊥ and all y ∈ E, ⟨g, y⟩ = ⟨g,x⟩⟨f,x⟩ ⟨f, y⟩. Thus, g ∈ span(f),
proving that M⊥ = span(f).

2. Prove that for every x ∈ E, dist(x, M) = infy∈M ∥x − y∥ = ∣⟨f,x⟩∣∥f∥ .

Proof. From Example 1.3 of section 1.4 and part 1. above, we have that for any x ∈ E,

dist(x, M) = max
g∈M⊥,∥g∥≤1

∣⟨g, x⟩∣ =max
λ∈R

∣⟨λf, x⟩∣
∥λf∥

= ∣⟨f, x⟩∣
∥f∥

.

3. Assume now that E = {u ∈ C([0, 1]; R) ∶ u(0) = 0} and that

⟨f, u⟩ = ∫
1

0
u(t)dt, u ∈ E.

Prove that dist(u, M) = ∣ ∫
1
0 u(t)dt∣ ∀u ∈ E. Show that infv∈M ∥u − v∥ is never achieved for any u ∈ E ∖M .

Solution

I showed in problem 1.3 part 1. that ∥f∥ = 1, so that by part 2. above, for all u ∈ E, dist(u,M) = ∣⟨f,u⟩∣∥f∥ =
∣ ∫

1
0 u(t)dt∣. In part 2. of problem 1.3, I showed that there exists no u ∈ E such that ∥u∥ = 1 and ⟨f, u⟩ = 1 = ∥u∥.

Since ∣⟨f, u⟩∣ ≤ ∥f∥∥u∥ = ∥u∥ for all u ∈ E, it’s clear from the previous sentence that for all nonzero u ∈ E,
∣⟨f, u⟩∣ < ∥u∥. Thus, for all u ∈ E ∖M and all v ∈ M , ∥u − v∥ > ∣⟨f, u − v⟩∣ = ∣⟨f, u⟩∣ = dist(u, M), which proves
that infv∈M ∥u − v∥ is never achieved for any u ∈ E ∖M .
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2.1 Continuity of convex functions.

Let E be a Banach space and let φ ∶ E → (−∞,+∞] be a convex l.s.c. function. Assume x0 ∈ IntD(φ).

1. Prove that there exist two constants R > 0 and M such that

φ(x) ≤M ∀x ∈ E with ∥x − x0∥ ≤ R.

Proof. Since x0 ∈ IntD(φ), there exists a neighborhood V of x0 such that φ(y) < ∞ for all y ∈ V . Hence, there

exists some ρ > 0 such that B(x0, ρ) ⊂ V . Now for each n ≥ 1, define Fn ∶= {x ∈ E ∶ ∥x − x0∥ ≤ ρ and φ(x) ≤ n}.
Note that ⋃∞n=1 Fn = B(x0, ρ) and each Fn is closed by the lower semicontinuity of φ since Fn = B(x0, ρ)∩[φ ≤ n].
By the Baire category theorem, the fact that B(x0, ρ) is not meager implies that there must exist some n0 ≥ 1
such that IntFn0 ≠ ∅. It follows that there exists some y0 ∈ Fn0 and ε > 0 such that B(y0, ε) ⊂ Fn0 . Observe

that for any x ∈ B(x0,
ε
2
), x = 1

2
(y + 2(x − x0)) + 1

2
(x0 + (x0 − y)). Applying the convexity of φ, we have

that φ(x) ≤ 1
2
φ(y + 2(x − x0)) + 1

2
φ(x0 + (x0 − y)). Observing that y + 2(x − x0) ∈ B(y, ε), it follows that

φ(x) ≤ n0

2
+ 1

2
φ(x0 + (x0 − y)) for all x ∈ B(x0,

ε
2
). Since x0 + (x0 − y) ∈ B(x0, ρ) ⊂D(φ), we can take R = ε

2
and

M = n0

2
+ 1

2
φ(2x0 + y).

2. Prove that ∀r < R,∃L ≥ 0 such that

∣φ(x1) − φ(x2)∣ ≤ L∥x1 − x2∥ ∀x1, x2 ∈ E with ∥xi − x0∥ ≤ r, i = 1,2.

More precisely, one may choose L = 2[M−φ(x0)]
R−r .

Proof. Clearly we may assume WLOG that x0 = 0. Fix r ≥ 0 with r < R and x1, x2 ∈ B(0, r). The inequality is
trivial if x1 = x2, so WLOG assume that x1 ≠ x2. Let y = R

∥x1−x2∥(x1 − x2). Then x1 = ty + (1 − t)x2 for some

t ∈ [0,1], so that φ(x1) ≤ tφ(y)+(1− t)φ(x2) ≤ tM +(1− t)φ(x2). It follows that φ(x1)−φ(x2) ≤ t(M −φ(x2)).
Since x1 − x2 = t(y − x2), it follows that ∥x1 − x2∥ ≥ t(R − r), and so φ(x1) − φ(x2) ≤ ∥x1−x2∥

R−r (M − φ(x2)).
Applying the same reasoning except replacing x1 with 0, we have that φ(0) − φ(x2) ≤ t(M − φ(x2)). Since

−x2 = t(y−x2), so that ∥x2∥ = t∥(− ∥x2∥
R
−1)x2∥. Solving for t, we get that t = ∥x2∥

R+∥x2∥ ≤
1
2
. Hence, φ(0)−φ(x2) ≤

1
2
(M − φ(x2)). Rearranging, we have −φ(x2) ≤ M − 2φ(0). Plugging this back into our prior inequality, we

have φ(x1)−φ(x2) ≤ 2(M−φ(0))
R−r ∥x1 −x2∥. By symmetry, we must also have φ(x2)−φ(x1) ≤ 2(M−φ(0))

R−r ∥x2 −x1∥,
and the desired inequality follows.

2.3

Let E and F be two Banach spaces and let (Tn) be a sequence in L(E, F ). Assume that for every x ∈ E, Tnx
converges as n→∞ to a limit denoted by Tx. Show that if xn → x in E, then Tnxn → Tx in F .

Proof. Suppose that xn → x ∈ E. Because Tny → Ty for all y ∈ E, it follows that ∥Tny∥ → ∥Ty∥ for all y ∈ E, so that
supn ∥Tny∥ < ∞ for all y ∈ E. By the uniform boundedness principle, there exists C ∈ R such that supn ∥Tn∥ ≤ C.
Thus, for all n ≥ 1

∥Tnxn − Tx∥ ≤ ∥Tn(xn − x)∥ + ∥Tnx − Tx∥ ≤ C∥xn − x∥ + ∥Tnx − Tx∥ → 0 as n→∞.

2.4

Let E and F be two Banach spaces and let a ∶ E × F → R be a bilinear form satisfying:

(i) for each fixed x ∈ E, the map y ↦ a(x, y) is continuous;

(ii) for each fixed y ∈ F , the map x↦ a(x, y) is continuous.

Prove that there exists a constant C ≥ 0 such that

∣a(x, y)∣ ≤ C∥x∥∥y∥ ∀x ∈ E, ∀y ∈ F.
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Proof. For every x ∈ E, define Tx ∶ y ∈ F ↦ a(x, y). By assumption each Tx ∈ F ∗. Define the map T ∶ E → F ∗; x↦ Tx.
Note that the proof will be complete if I can show that T is a bounded linear operator since then for any x ∈ E and
y ∈ F ,

∣a(x, y)∣ = ∣⟨Tx, y⟩∣ ≤ ∥Tx∥∥y∥ ≤ ∥T ∥∥x∥∥y∥.

That T is linear follows from the fact that a is bilinear: ∀x1, x2 ∈ E ∀λ1, λ2 ∈ R ∀y ∈ F ∶ ⟨T (λ1x1 + λ2x2), y⟩ =
a(λ1x1+λ2x2, y) = λ1a(x1, y)+λ2a(x2, y) = ⟨λ1T (x1)+λ2T (x2), y⟩. To prove that T is bounded, let T (B) ∶= {T (x) ∶
∥x∥ ≤ 1} ⊂ F ∗. Fix y ∈ F and observe that by the assumed continuity of the linear map x ↦ a(x, y), there exists
Cy ∈ R such that ∣a(x, y)∣ ≤ Cy∥x∥ for all x ∈ E. Hence, for all T (x) ∈ T (B)

∣⟨T (x), y⟩∣ = ∣a(x, y)∣ ≤ Cy∥x∥ ≤ Cy.

It follows that for each y ∈ F , the set ⟨T (B), y⟩ is bounded in R and so by corollary 2.5, T (B) is bounded in F ∗.
That is, there exists C ∈ R such that ∥T (x)∥ ≤ C for all x ∈ E with ∥x∥ ≤ 1. This proves that T is bounded and has
operator norm ∥T ∥ ≤ C. The desired inequality follows.

2.5

Let E be a Banach space and let εn be a sequence of positive numbers such that lim εn = 0. Further, let (fn) be a
sequence in E∗ satisfying the property

⎧⎪⎪⎨⎪⎪⎩

∃r > 0, ∀x ∈ E with ∥x∥ < r, ∃C(x) ∈ R such that

⟨fn, x⟩ ≤ εn∥fn∥ +C(x) ∀n.

Prove that (fn) is bounded.

Proof. For each n ≥ 1, define 1
1+εn∥fn∥fn. Fix x ∈ E. I claim that the set ⟨(gn)n≥1, x⟩ is bounded in R. If x = 0, this

statement is obvious so suppose WLOG that x ≠ 0. Then by assumption, for all n ≥ 1,

⟨gn,
r

2∥x∥
x⟩ = 1

1 + εn∥fn∥
⟨fn,

r

2∥x∥
x⟩

≤
εn∥fn∥ +C( r

2∥x∥x)
1 + εn∥fn∥

≤ 1 +C( r

2∥x∥
x).

It follows that for all x ∈ E and n ≥ 1, ⟨gn, x⟩ ≤ 2∥x∥
r
(1 + C( r

2∥x∥x)). Hence, for all x ∈ E, the set ⟨(gn)n≥1, x⟩

is bounded and so by corollary 2.5, the set (gn)n≥1 is a bounded subset of E∗. That is, there exists some C ∈ R
supn ∥gn∥ = supn 1

1+εn∥fn∥∥fn∥ ≤ C. Thus, for any n such that ∥fn∥ > 0, 1 − εn ≤ C
∥fn∥ . Since εn → 0, there exists N

such that εn ≤ 1
2
for all n ≥ N , so that for all n ≥ N such that ∥fn∥ > 0, ∥fn∥ ≤ 2C, proving that (fn) is bounded in

E∗.

2.7

Let α = (αn) be a given sequence of real numbers and let 1 ≤ p ≤ ∞. Assume that ∑∣αn∣∣xn∣ < ∞ for every element

x = (xn) in ℓp. Prove that α ∈ ℓp
′
.

Proof. For p = ∞, set (xn)n≥ = (1)n≥1 and observe that ∑∣αn∣ = ∑ ∣αn∣∣xn∣ < ∞, so that α ∈ ℓ1. For p = 1, suppose for
a contradiction that α ∉ ℓ∞. Then for each k,N ≥ 1, there must exist some nk ≥ N such that ∣αnk

∣ ≥ 2k. Thus, we can
construct an increasing sequence (nk) such that ∣αnk

∣ ≥ 2k for all k ≥ 1. For each k, define (xn)n≥1 = ∑k(∂n,nk

1
2k
)n≥1

and note that (xn) ∈ ℓ1 but ∑n ∣αn∣∣xn∣ ≥ ∑k ∣αnk
∣ 1
2k
= ∞. By contradiction, α ∈ ℓ∞.

Having dealt with the cases p = 1 and p = ∞, we may assume WLOG that 1 < p < ∞. For each n ≥ 1, define the
map Tn ∶ ℓp → R; (xj) ↦ ∑n

j=1 αjxj . Clearly each Tn is a continuous linear functional and, by assumption, for all
x ∈ ℓp, ⟨Tn, x⟩ converges as n→∞ to some point which we shall denote Tx. Then by corollary 2.3, T ∈ ℓp∗ and so there
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exists C ∈ R such that ∣∑n αnxn∣ = ∣⟨T,x⟩∣ ≤ C∥x∥p for all x ∈ ℓp. Now for each n, define αk,n ∶=
⎧⎪⎪⎨⎪⎪⎩

αk, k ≤ n
0, k > n.

Clearly

(ak,n)k≥1 ∈ ℓp for all n. For each n, define βn ∶ N→ R; k ↦ sgn(αk,n)∣αk,n∣p
′−1

∥(αm,n)m≥1∥p
′/p

p′
. Note that ∥βn∥pp = ∑

n
k=1

∣αk ∣pp
′−p

∥(αm,n)m≥1∥p
′

p′
= 1

and ⟨T,βn⟩ = ∑n
k=1

∣αk ∣p
′

∥(αm,n)m≥1∥p
′/p

p′
= (∑n

k=1 ∣αk ∣p
′
)

1
p′
. Thus, for all n ≥ 1, (∑n

k=1 ∣αk ∣p
′
)

1
p′ = ⟨T,βn⟩ ≤ C∥βn∥p = C,

proving that α ∈ ℓp
′
.

2.8

Let E be a Banach space and let T ∶ E → E∗ be a linear operator satisfying

⟨Tx,x⟩ ≥ 0 ∀x ∈ E.

Prove that T is a bounded operator.

Proof. Since T is a linear operator between two Banach spaces E and E∗, by the closed graph theorem, to prove that
T is a bounded operator, it suffices to prove that T is closed. To this end, suppose that (xn, Txn) ⊂ E×E∗ converges to
a point (x, f) in E×E∗. We have that for all y ∈ E, ⟨Txn−Ty, xn−y⟩ ≥ 0. Since each T (xn−y) ∈ E∗, T (xn−y) → f−Ty
and xn − y → x − y as n → ∞, we can apply problem 2.3 to get that ⟨f − Ty, x − y⟩ = limn→∞⟨T (xn − y), xn − y⟩ ≥ 0,
which holds for all y ∈ E. Thus, fixing u ∈ E and taking y = x− 1

n
u, we have that for all n ≥ 1 ⟨f −Tx+ 1

n
Tu, 1

n
u⟩ ≥ 0,

which implies that ⟨f − Tx + 1
n
Tu,u⟩ ≥ 0 and taking the limit as n → ∞, we get that ⟨f − Tx,u⟩ ≥ 0 for all u ∈ E.

Doing the same trick but replacing − 1
n
u with 1

n
u, we see that also ⟨f − Tx,u⟩ ≤ 0 for all u ∈ E, proving that f = Tx.

By the closed graph theorem, T is a bounded linear operator.

2.20

Let E and F be two Banach spaces. Let T ∈ L(E, F ) and let A ∶ D(A) ⊂ E → F be an unbounded operator that is
densely defined and closed. Consider the operator B ∶D(B) ⊂ E → F defined by

D(B) =D(A), B = A + T.

1. Prove that B is closed.

Proof. Suppose that (xn,Bxn) ⊂ D(B) × F converges to some point (x, f) ∈ E × F . Then xn → x in E and
since T is continuous, Txn → Tx in F . Note that since (xn,Axn) = (xn,Bxn − Txn) → (x, f − Tx) as n → ∞,
the fact that A is closed and (xn) ⊂ D(B) = D(A) implies that x ∈ D(A) and Ax = f − Tx. Thus, x ∈ D(B)
and f = Bx, proving that B is closed.

2. Prove that D(B∗) =D(A∗) and B∗ = A∗ + T ∗.

Proof. Fix v ∈ D(A∗). By definition, there exists C ∈ R such that ∣⟨v,Au⟩∣ ≤ C∥u∥ for all u ∈ D(A) = D(B).
Thus, for all u ∈ D(B), ∣⟨v,Bu⟩∣ = ∣⟨v,Au + Tu⟩∣ ≤ (C + ∥T ∥)∥u∥, and it follows that v ∈ D(B∗) so that
D(A∗) ⊂ D(B∗). Further, if v ∈ D(B∗), then there exists some C ∈ R such that for all u ∈ D(B) = D(A),
∣⟨v,Bu⟩∣ ≤ C∥u∥. It follows that for all u ∈ D(A), ∣⟨v,Au⟩∣ ≤ ∣⟨v,Bu⟩∣ + ∣⟨v, Tu⟩∣ ≤ (C + ∥T ∥)∥u∥, so that
v ∈ D(A∗), which proves that D(A∗) = D(B∗). Note that for any v ∈ D(B∗) = D(A∗) and u ∈ D(B) = D(A),
⟨B∗v, u⟩ = ⟨v,Bu⟩ = ⟨v,Au+Tu⟩ = ⟨A∗v+T ∗v, u⟩. By the continuity of B∗ and A∗+T ∗ and the fact that D(B)
is dense in E, it follows that for all v ∈D(B∗) =D(A∗), B∗v = A∗v + T ∗v, proving that B∗ = A∗ + T ∗.

2.21

Let E be an infinite dimensional Banach space. Fix an element a ∈ E, a ≠ 0, and a discontinuous linear functional
f ∶ E → R. Consider the operator A ∶ E → E defined by

D(A) = E, Ax = x − f(x)a.

1. Determine N(A) and R(A).
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Solution

Clearly N(A) ⊂ span(a). In fact, if λa ∈ N(A) and λ ≠ 0, then λa = λf(a)a ⇐⇒ a = f(a)a ⇐⇒ f(a) = 1.
Hence, either f(a) ≠ 1 and N(A) = {0} or f(a) = 1 and N(A) = span(a). Towards finding R(A), note that if
x ∈ N(f) then Ax = x − f(x)a = x, which shows that N(f) ⊂ R(A). In fact, if f(a) = 1, then u ∈ R(A) implies
that for some x ∈ E, f(u) = f(Ax) = f(x) − f(x)f(a) = 0, which shows that R(A) = N(f) when f(a) = 1. If

f(a) ≠ 1, then for any u ∈ E, set x = u + f(u)
1−f(a)a and note that Ax = u + f(u)

1−f(a)a − f(u)a −
f(u)

1−f(a)f(a)a = u,

showing that R(A) = E when f(a) ≠ 1.

2. Is A closed?

Solution

No. Since A is a linear operator from the Banach space E to itself, if A were closed then it would be continuous
by the closed graph theorem. In particular, it would be continuous at 0. However, since f is discontinuous,
it is necessarily discontinuous at 0 and so there exists a sequence xn ⊂ E that converges to 0 such that f(xn)
does not converge to 0. But then Axn cannot converge to 0, and so A cannot be closed as it is not continuous.

3. Determine A∗

Solution

Suppose that v ∈D(A∗), then there exists C such that for all x ∈ E,

∣f(x)∣∣⟨v, a⟩∣ − ∣∣⟨v, x⟩∣ ≤ ∣∣⟨v, x⟩∣ − ∣f(x)∣∣⟨v, a⟩∣∣
≤ ∣⟨v, x − f(x)a⟩∣
≤ C∥x∥.

Observe that this forces ⟨v, a⟩ = 0, since otherwise we would have that for all x ∈ E, ∣f(x)∣ ≤ (C+∥v∥)∣⟨v,a⟩∣ ∥x∥,
contradicting the assumption that f is discontinuous. Thus, D(A∗) ⊂ N(a ∈ E∗∗). Clearly if v ∈ N(a ∈ E∗∗),
then for all x ∈ E, ∣⟨v,Ax⟩∣ = ∣⟨v, x⟩∣ ≤ ∥v∥∥x∥, which shows that D(A∗) = N(a ∈ E∗∗). Thus, it follows that for
all v ∈D(A∗) and for all x ∈ E, ⟨A∗v, x⟩ = ⟨v, x − f(x)a⟩ = ⟨v, x⟩, showing that A∗ = IdD(A∗).

4. Determine N(A∗) and R(A∗).

Solution

From part 3. above, it follows that N(A∗) = {0} and R(A∗) =D(A∗) = N(a ∈ E∗∗).

5. Compare N(A) with R(A∗)⊥ as well as N(A∗) with R(A)⊥.

Solution

R(A∗)⊥ = {x ∈ E ∶ ⟨v, x⟩ ∀v ∈ D(A∗)} = span(a) (equality follows from an obvious application of Hahn-
Banach, second geometric form). Comparing this to N(A), we see that N(A) = {0} ⊊ R(A∗)⊥ if f(a) ≠ 1 and
N(A) = span(a) = R(A∗)⊥ if f(a) = 1. Further, R(A)⊥ = {0} = N(A∗) since by problem 1.6, the fact that N(f)
is not closed implies that N(f) is dense in E. (That N(f) is not closed follows from the closed graph theorem
and the fact that f is discontinuous.)

6. Compare with the results of Exercise 2.18 (skipping since 2.18 was not included in the assignment).

2.22

The purpose of this exercise is to construct an unbounded operator A ∶D(A) ⊂ E → E that is densely defined, closed,

and such that D(A∗) ≠ E∗. Let E = ℓ1, so that E∗ = ℓ∞. Consider the operator A ∶D(A) ⊂ E → E defined by

D(A) = {u = (un) ∈ ℓ1 ∶ (nun) ∈ ℓ1} and Au = (nun).

1. Check that A is densely defined and closed.
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Solution

Towards first proving that A is densely defined, fix x = (xn) ∈ ℓ1 and ε > 0. Pick N such that ∑∞n=N+1 ∣xn∣ < ε

and define u = (un) =
⎛
⎝

⎧⎪⎪⎨⎪⎪⎩

xn, n ≤ N
0, n > N

⎞
⎠
n≥1

. Clearly u ∈ ℓ1 and (nun) ∈ ℓ1 since the sum is finite. The fact that

∥x − u∥1 = ∑n>N ∣xn∣ < ε proves that D(A) is dense in ℓ1.

To see that A is closed, suppose that xn = (xk,n) ⊂D(A) is a sequence that converges to some point x = (xk) ∈ ℓ1,
and Axn = (kxk,n) converges to f = (fk) in ℓ1. Then ∣kxk,n − fk ∣ ≤ ∥Axn − f∥1 → 0 as n → ∞, so that fk =
limn→∞ kxn,k for each k ≥ 1. But also ∣kxk −kxk,n∣ ≤ k∥x−xn∥1 → 0 as n→∞, so that fk = limn→∞ kxn,k = kxk.
Thus, x ∈D(A) and f = Ax, proving that A is closed.

2. Determine D(A∗), A∗, and D(A∗).

Solution

Note that for all v = (vn) ∈D(A∗), there exists some C such that for every x = (xn) ∈ ℓ1, ∣⟨v,Ax⟩∣ = ∣∑n nvnxn∣ ≤
C∥x∥1 < ∞. By exercise 2.7, (nvn) ∈ ℓ∞ and so D(A∗) ⊂ {v ∈ ℓ∞ ∶ (nvn) ∈ ℓ∞}. Clearly if v ∈ ℓ∞ and (nvn) ∈ ℓ∞,
then for all x ∈ ℓ1, ∣⟨v,Ax⟩∣ = ∣∑n nvnxn∣ ≤ ∥(nvn)∥∞∥x∥1, which shows that D(A∗) = {v ∈ ℓ∞ ∶ (nvn) ∈ ℓ∞}. For
any v ∈ D(A∗), (A∗v)j = ⟨A∗v, (∂n,j)⟩ = ⟨v,A(∂n,j)⟩ = jvj , which shows that A∗v = (nvn) on D(A∗). Clearly
for every v ∈D(A∗), there must exist some C ∈ R such that ∣nvn∣ ≤ C for all n, which implies that ∣vn∣ ≤ C/n→ 0

as n → ∞. Hence, D(A∗) ⊂ c0. Using the same method as above to show that D(A) is dense in ℓ1, it is clear

that D(A∗) is dense in c0, so that D(A∗) = c0 ⊊ ℓ∞.

3.1

Let E be a Banach space and let A ⊂ E be a subset that is compact in the weak topology σ(E, E∗). Prove that A
is bounded.

Proof. By Corollary 2.4, to prove that A is bounded it suffices to prove that for every f ∈ E∗, the set f(A) is bounded
in R. To this end, fix f ∈ E∗ and for each x ∈ A, define Ux = {y ∈ E ∶ ∣⟨f, y − x⟩∣ < 1}. Clearly each Ux is weakly open
and the collection {Ux}x∈A covers A. Since A is weakly compact, there exist x1, . . . , xn ∈ A such that A ⊂ ⋃n

i=1Uxi .
Thus, for any y ∈ A, there is some xi such that ∣⟨f, y⟩∣ < 1 + ∣⟨f, xi⟩∣ ≤ 1 +max1≤k≤n ∣⟨f, xk⟩∣ < ∞, proving that f(A) is
bounded for each f ∈ E∗. It follows that A is bounded.

3.2

Let E be a Banach space and let (xn) be a sequence such that xn ⇀ x in the weak topology σ(E, E∗). Set

σn =
1

n
(x1 + x2 +⋯ + xn).

Prove that σn ⇀ x in the weak topology σ(E, E∗).

Proof. Fix f ∈ E∗. Since xn ⇀ x, ⟨f, xn⟩ → ⟨f, x⟩. Fix ε > 0 and pick N1 such that ∣⟨f, x − xn⟩∣ < ε
2
for all n ≥ N1.

Pick N2 large enough such that 1
N2
∑N1

i=1 ∣⟨f, x − xi⟩∣ < ε
2
. Then for all n ≥max(N1,N2),

∣⟨f, x − σn⟩∣ ≤
n

∑
i=1

1

n
∣⟨f, x − xi⟩∣

≤ 1

N2

N1

∑
i=1
∣⟨f, x − xi⟩∣ +

1

n

n

∑
i=N1+1

∣⟨f, x − xi⟩∣

< ε.

Thus, ⟨f, σn⟩ → ⟨f, x⟩. Since ⟨f, σn⟩ → ⟨f, x⟩ for every f ∈ E∗, it follows that σn ⇀ x in the weak topology
σ(E, E∗).
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Lemma 1

Let X be a first countable topological vector space and suppose that C ⊂ X is convex. Then the closure of C is
convex.

Proof. Suppose that a, b ∈ C and λ ∈ [0,1]. Since the topology on X is first countable, C is equal to the set of all limits
of sequences in C. Thus, there exist sequences (an), (bn) ⊂ C such that an → a and bn → b. Since λan + (1−λ)bn ∈ C
for all n and λan +(1−λ)bn → λa+(1−λ)b by the continuity of the addition and scalar multiplication operations on
X, it follows that λa + (1 − λ)b ∈ C, proving the convexity of C.

3.3

Let E be a Banach space. Let A ⊂ E be a convex subset. Prove that the closure of A in the strong topology and
that in the weak topology σ(E, E∗) are the same.

Proof. Define A to be the strong closure of A and Āσ the weak closure of A. Since the strong and weak topologies on
an n.v.s. are obviously first countable, it follows by Lemma 1 above that A and Āσ are both convex subsets. Thus,
by Theorem 3.7, A is a weakly closed subset including A, proving that Āσ ⊂ A. Since all weakly closed subsets are
strongly closed, Āσ is a strongly closed subset including A, proving that A = Āσ.

3.5

Let E be a Banach space and let K ⊂ E be a subset of E that is compact in the strong topology. Let (xn) be a
sequence in K such that xn ⇀ x weakly σ(E, E∗). Prove that xn → x strongly.

Proof. Suppose for a contradiction that xn does not converge strongly to x. Then there must exist some ε > 0 and
a subsequence (xnk

) of (xn) such that ∥xnk
− x∥ > ε. In particular, no subsequence of (xnk

) converges to x. Since
the strong topology on E is obviously metrizable, K being strongly compact is equivalent to K being sequentially
compact with respect to the norm on E. Thus, the sequence (xnk

) ⊂K has a convergent subsequence (xnkm
) which

must converge to a point y ∈K. But then by Proposition 3.5, xnkm
⇀ y in σ(E, E∗). Since xnkm

⇀ x and σ(E, E∗)
is Hausdorff, it follows that xnmk

→ y = x, a contradiction. Thus, by contradiction xn → x strongly.

3.7

Let E be a Banach space and let A ⊂ E be a subset that is closed in the weak topology σ(E, E∗). Let B ⊂ E be a
subset that is compact in the weak topology σ(E, E∗).

1. Prove that A +B is closed in σ(E, E∗).

Proof. Let O ∶= E ∖ (A +B) and fix a point x ∈ O. For each b ∈ B, since A + b is weakly closed and x ∉ A + b,
there exists a weakly open neighborhood Ub of 0 such that (x+Ub)∩(A+b) = ∅. Moreover, since σ(E, E∗) is a
locally convex topology, we can assume WLOG that each Ub is convex. Finally, it is clear from the local bases
of 0 in the weak topology that we can make the further assumption that each Ub is symmetric. Observe that the
collection { 1

2
Ub+b}b∈B is a weak open cover of B and so by weak compactness, there exist 1

2
Ub1+b1, . . . , 12Ubn+bn

that cover B. Thus, A +B ⊂ A +⋃n
i=1( 12Ubi + bi). I claim that (x +⋂n

i=1
1
2
Ubi) ∩ (A +B) = ∅. Towards proving

this claim, suppose for a contradiction that there exists u ∈ ⋂n
i=1

1
2
Ubi such that x+u ∈ A+B. Then there exists

some a ∈ A, 1 ≤ k ≤ n and u′ ∈ 1
2
Ubk such that x + u = a + u′ + bk. But then by the symmetry and convexity

of Ubk , u − u′ ∈ Ubk , so that x + u − u′ ∈ (x + Ubk) ∩ (A + bk), which is impossible. Thus, by contradiction,
(x + ⋂n

i=1Ubi) ∩ (A + B) = ∅. Since x + ⋂n
i=1Ubi ⊂ O is a weak open neighborhood of x, it follows that O is

weakly open, proving that E ∖O = A +B is weakly closed.

2. Assume, in addition, that A and B are convex, nonempty, and disjoint. Prove that there exists a closed
hyperplane strictly separating A and B.
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Proof. Note that since B is weakly compact and convex, so is −B. By part 1. above, A −B is weakly closed
and therefore strongly closed. Since the sum of two convex sets is convex, A − B is a nonempty, convex,
strongly closed subset of E that does not include {0} (since A ∩B = ∅). By the second geometric form of the
Hahn-Banach theorem, there exists f ∈ E∗ and α ∈ R such that f(a − b) < α < f(0) = 0 for all a ∈ A and b ∈ B.
It follows that f(a) < α + f(b) < f(b) for all a ∈ A and b ∈ B. Thus, supa∈A f(a) ≤ α + infb∈B f(b) < infb∈B f(b).
Pick α′ ∈ (supa∈A f(a), infb∈B f(b)) and ε > 0 such that (α′ − ε,α′ + ε) ⊂ (supa∈A f(a), infb∈B f(b)) and observe
that for all a ∈ A and b ∈ B, f(a) < α′−ε < α′+ε < f(b). Thus, A and B are strictly separated by the hyperplane
[f = α′].

3.8

Let E be an infinite-dimensional Banach space. Our purpose is to show that E equipped with the weak topology is
not metrizable. Suppose, by contradiction, that there is a metric d(x, y) on E that induces on E the same topology
as σ(E, E∗).

1. For every integer k ≥ 1 let Vk denote a neighborhood of 0 in the topology σ(E, E∗), such that

Vk ⊂ {x ∶ d(x,0) <
1

k
}.

Prove that there exists a sequence (fn) in E∗ such that every g ∈ E∗ is a (finite) linear combination of the f ′ns.

Proof. We may assume WLOG that for each k, there exist εk > 0 and bounded linear functionals fk,1, . . . , fk,nk
∈

E∗ such that Vk = {x ∈ E ∶ ∣⟨fk,i, x⟩∣ < εk ∀i ∶ 1 ≤ i ≤ nk}. Let (fn) be an ordering of these functionals fk,i for all

k ≥ 1 and 1 ≤ i ≤ nk. Fix g ∈ E∗. I claim that there exists m1, . . . ,mj and λ1, . . . , λj ∈ R such that g = ∑j
i=1 λifmi .

Observe that by Lemma 3.2, to prove this claim, it suffices to prove that there exists m1, . . . ,mj such that

⋂j
i=1 ker fmi

⊂ ker g. Suppose for a contradiction that for any finite subset F ⊂ N, ⋂i∈F ker fi is not a subset of
ker g. Then for every k ≥ 1, there exists xk ∈ ⋂nk

i=1 ker fk,i such that x ∉ ker g. Then λxk ∈ ⋂nk

i=1 ker fk,i ∖ ker g
for all λ ≠ 0 and so by potentially rescaling each xk, we may assume WLOG that ⟨g, xk⟩ = 1

2
. But since

each xk clearly belongs to Vk, it follows that d(xk,0) < 1
k
→ 0 as k → ∞ and so xk ⇀ 0 weakly, forcing

1
2
= ⟨g, xk⟩ → ⟨g,0⟩ = 0, which is clearly absurd. Thus, by contradiction, g must be equal to a finite linear

combination of the functionals in the sequence (fn).

2. Deduce that E∗ is finite-dimensional.

Proof. From part 1. we have a sequence (fn) ⊂ E∗ such that every g ∈ E∗ is equal to a finite linear combination
of the fn’s. Now for each n ≥ 1, define Fk = span(f1, . . . , fk) and observe that each Fk is a finite-dimensional
subspace so strongly closed in E∗. Since ⋃n≥1 Fn = E∗ and E∗ is a complete metric space with respect to
the operator norm, it follows by the Baire category theorem that there exists some N such that Int(FN) ≠ ∅.
That is, there exists some g ∈ FN and an open neighborhood V of 0 such that g + V ⊂ FN . It follows that
V = (g +V ) − g ⊂ FN . Using the bases for the topology induced by the operator norm on E∗, there exists some
ε > 0 such that BE∗(0, ε) ⊂ V ⊂ FN . Observe that if {bi}i∈I is a basis for E∗, and bi is any vector belonging
to this basis, then ε

2∥bi∥bi ∈ V ⊂ FN and so bi ∈ FN , proving that {bi}i∈I ⊂ FN . Since FN is finite-dimensional

and {bi}i∈I ⊂ FN is a linearly independent collection of vectors in FN , it follows that ∣I ∣ < ∞. That is, E∗ is
finite-dimensional.

3. Conclude.

Solution

Towards proving that E∗ can never be finite-dimensional when E is infinite-dimensional, fix a linearly inde-
pendent collection f1, . . . , fn ∈ E∗. Define the map φ ∶ E → Rn; x ↦ (f1(x), . . . , fn(x)). Since φ is linear,
continuous and its image is finite-dimensional well its domain is infinite-dimensional, φ cannot be injective and
so there must exist nonzero x ∈ ⋂n

i=1 ker fi. By Corollary 1.6, there exists f ∈ E∗ such that ⟨f, x⟩ = ∥x∥2 ≠ 0 and
so ⋂n

i=1 ker fi is not a subset of ker f , which implies that f cannot be a linear combination of the fi’s. Thus,
E∗ cannot be finite-dimensional, contradicting our conclusion from part 2. above. By contradiction, the weak
topology σ(E, E∗) on E cannot be metrizable when E is an infinite-dimensional Banach space.
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4. Prove by a similar method that E∗ equipped with the weak∗ topology σ(E∗, E) is not metrizable.

Proof. Suppose for a contradiction that there exists a metric d(f, g) in E∗ that induces the same topology as
σ(E∗, E). For every integer k ≥ 1 let Vk denote a neighborhood of 0 in the topology σ(E∗, E), such that

Vk ⊂ {f ∶ d(f,0) <
1

k
}.

Then we may assume WLOG that for each k, there exists εk > 0 and xk,1, . . . , xk,nk
∈ E such that Vk = {f ∈

E∗ ∶ ∣⟨f, xk,i⟩∣ < εk ∀i ∶ 1 ≤ i ≤ nk}. Let (xn) be an ordering of the xk,i’s and fix x ∈ E. I claim that x must
be equal to a finite linear combination of the xn’s. Again using Lemma 3.2, to prove this claim, it suffices to
find m1, . . . ,mn ∈ N such that ⋂n

i=1 kerJ(xi) ⊂ kerJ(x), where J is the embedding of E into E∗∗ (since then
there will exist λ1, . . . , λn ∈ R such that ⟨f, x − ∑n

i=1 λixmi
⟩ = 0 for all f ∈ E∗, so that ∥x − ∑n

i=1 λixmi
∥ = 0).

Suppose for a contradiction that x were not a finite linear combination of some of the xn’s. Then for all
k ≥ 1, there would exist fk ∈ ⋂nk

i=1 kerJ(xk,i) ∖ kerJ(x), and we may assume WLOG that ⟨fk, x⟩ = 1
2
. Since

each fk ∈ Vk, d(fk,0) < 1
k
→ 0 as n → ∞, implying that fk

∗Ð⇀ 0 in σ(E∗, E). However, this implies that
1
2
= ⟨fk, x⟩ = ⟨J(x), fk⟩ → 0, a contradiction. Thus, by contradiction, x is a finite linear combination of the

xn’s. For each n, define Fn = span(x1, . . . , xn) ⊂ E. Each Fn is a finite-dimensional subspace of E so strongly
closed in E, and from our conclusion above, it follows that E = ⋃n≥1 Fn. Since E is a complete metric space
with respect to the metric induced by its norm, by the Baire category theorem, there exists some N ≥ 1
such that Int(FN) ≠ ∅. And the same reasoning as in part 2. above shows that E would then by finite-
dimensional, contradicting our assumption that E is infinite-dimensional. By contradiction, it follows that the
weak∗ topology on E∗ cannot be metrizable whenever E is infinite-dimensional.

3.10

Let E and F be two Banach spaces. Let T ∈ L(E, F ), so that T ∗ ∈ L(F ∗, E∗). Prove that T ∗ is continuous from
F ∗ equipped with σ(F ∗, F ) into E∗ equipped with σ(E∗, E).

Proof. Note that, by definition, σ(E∗, E) is the weakest topology that makes all maps Jx ∶ f ∈ E∗ ↦ ⟨f, x⟩ for each
x ∈ E continuous. Thus, by Proposition 3.2, to prove that T ∗ ∶ (F ∗, σ(F ∗, F )) → (E∗, σ(E∗, E)) is continuous, it
suffices to check that for each x ∈ E, the map Jx ○ T ∗ is continuous. But for any v ∈ F ∗, Jx ○ T ∗(v) = ⟨T ∗v, x⟩E∗,E =
⟨v, Tx⟩F ∗,F , and since v ∈ F ↦ ⟨v, Tx⟩F ∗,F is a continuous map from (F ∗, σ(F ∗, F )) into R by the definition of
σ(F ∗, F ), it follows that T ∗ is continuous between the weak∗ topologies.

3.13

Let E be a Banach space. Let (xn) be a sequence in E and let x ∈ E. Set

Kn = conv
⎛
⎝

∞
⋃
i=n
{xi}
⎞
⎠
.

1. Prove that if xn ⇀ x weakly σ(E, E∗), then
∞
⋂
i=1

Kn = {x}.

Proof. Note that if the sequence (xn)n≥1 converges weakly to x in σ(E, E∗) then clearly all subsequence of
(xn) also converge weakly to x and, in particular, all sequences (xk)k≥n for any n. Thus, by Mazur’s lemma,

for each n ≥ 1, there exists a sequence (yk) ⊂ conv(⋃∞i=n{xi}) such that yk → x strongly. It follows that for

all n ≥ 1, x ∈ Kn and so {x} ⊂ ⋂∞n=1Kn. Now fix y ∈ ⋂∞n=1Kn. Towards proving that y = x, fix ε > 0, nonzero
f ∈ E∗ and pick N such that ∣⟨f, xn − x⟩∣ < ε

2
for all n ≥ N . Since y ∈ KN , there exists n1, . . . , nm ≥ N and
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λ1, . . . , λm ∈ [0,1] with ∑m
i=1 λi = 1 such that ∥y −∑m

i=1 λixmi∥ < ε
2∥f∥ . Thus,

∣⟨f, x − y⟩∣ ≤ ∣⟨f, x −
m

∑
i=1

λixni⟩∣ + ∣⟨f,
m

∑
i=1

λixni − y⟩∣

= ∣⟨f,
m

∑
i=1

λi(x − xni)⟩∣ + ∣⟨f,
m

∑
i=1

λixni − y⟩∣

≤
m

∑
i=1

λi
ε

2
+ ∥f∥∥

m

∑
i=1

λixni − y∥ < ε.

Since ε > 0 and f ∈ E∗ were arbitrary, it follows that ⟨f, x−y⟩ = 0 for all f ∈ E∗. Thus, ∥x−y∥ = 0, and so x = y.
The statement to prove follows.

2. Assume that E is reflexive. Prove that if (xn) is bounded and if ⋂∞n=1Kn = {x}, then xn ⇀ x weakly σ(E, E∗).

Proof. Towards a contradiction, suppose that xn does not converge weakly to x. Then, there would necessary
exist a subsequence (xnk

) of (xn), f ∈ E∗ and ε > 0 such that ∣⟨f, xnk
−x⟩∣ > ε for all k ≥ 1. Since E is reflexive

and (xnk
) is bounded, by Theorem 3.18 there exists a subsequence (xnkm

) of (xnk
) that converges weakly to a

point y ∈ E. Observe that for any n ≥ 1, there exists N such that for all m ≥ N , nkm ≥ n, so that xnkm
∈Kn for

all m ≥ N . It follows that y is a weak limit point of each Kn and since each Kn is convex and strongly closed,
each Kn is also weakly closed, so y ∈ ⋂∞i=1Kn = {x}. It follows that xnkm

⇀ x weakly, and so ⟨g, xnkm
⟩ → ⟨g, x⟩

as m→∞ for all g ∈ E∗. But then there must exist some m such that ∣⟨f, xnkm
−x⟩∣ < ε, a contradiction. Thus,

by contradiction, xn ⇀ x weakly.

3. Assume that E is finite-dimensional and ⋂∞i=1Kn = {x}. Prove that xn → x.

Proof. I claim that (xn) must be a bounded sequence. Towards proving this claim, suppose for a contradiction
that (xn) is unbounded. Fix a basis v1, . . . , vn for E and let ⟨⋅, ⋅⟩E be the canonical inner product on E that
makes the basis v1, . . . , vn orthonormal. Let ∥ ⋅ ∥E be the norm induced by this inner product. Since all norms
defined on a finite-dimensional vector space are equivalent, the sequence (xn) is bounded if and only if it is
bounded with respect to ∥ ⋅ ∥E . For m ≥ 1, let (xm,1, . . . , xm,n) be the components of xm with respect to the
fixed basis v1, . . . , vn. Then since (xn) must be unbounded with respect to ∥ ⋅ ∥E , it follows that there must
exist 1 ≤ i ≤ n such that (xm,i) is an unbounded sequence in R. For all m ≥ 1, writing Km with respect to the
basis v1, . . . , vn gives

Km = {(∑
k∈F

λkxk,1, . . . ,∑
k∈F

λkxk,n) ∶ F ⊂ {m,m + 1, . . .} and ∣F ∣ < ∞ and λ1, . . . , λk ∈ [0,1] ∶ ∑
k∈F

λk = 1}.

Thus, since {(x1, . . . , xn)} = ⋂∞n=1Kn, we must have that {xi} = conv(⋃∞j=m{xj,i}) ⊃ [lim infj→∞ xj,i, lim supj→∞ xj,i].
Clearly we must therefore have that lim supj→∞ xj,i = lim infj→∞ xj,i = xi, but this contradicts the sequence
(xm,i)m≥1 being unbounded. Thus, by contradiction, (xn) is a bounded sequence. Since E is finite-dimensional,
E is reflexive. By part 2., xn ⇀ x weakly. But since the weak topology on any finite-dimensional Banach space
is the same as the strong topology, it follows that xn → x strongly.

4. In ℓp, 1 < p < ∞, construct a sequence (xn) such that ⋂∞n=1Kn = {x}, and (xn) is not bounded.

Solution

Define the function o ∶ N→ N by o(n) =
⎧⎪⎪⎨⎪⎪⎩

n, n odd

0, n even
, and define the sequence (o(n)∂n,m)n≥1. Observe that for

all n ≥ 1, ∥(o(n)∂n,m)∥2 = o(n) and so (o(n)∂n,m)n≥1 ⊂ ℓ2 is unbounded. Now suppose that y ∈ ⋂∞n=1Kn. Then
for all n ≥ 1, since y ∈ Kn+1, it follows that the nth component of y must be equal to 0 and so y = 0. Clearly
0 ∈ ⋂∞n=1Kn, proving that ⋂∞n=1Kn = {0}.
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3.16

Let E be a Banach space.

1. Let (fn) be a sequence in E∗ such that for every x ∈ E, ⟨fn, x⟩ converges to a limit. Prove that there exists

some f ∈ E∗ such that fn
∗Ð⇀ f in σ(E∗, E).

Proof. For each x ∈ E, denote the limit limn→∞⟨fn, x⟩ by ⟨f, x⟩. By Corollary 2.3, f ∈ L(E,R) = E∗. Since

⟨f − fn, x⟩ → 0 for all x ∈ E, it follows that fn
∗Ð⇀ f in σ(E∗, E).

2. Assume here that E is reflexive. Let (xn) be a sequence in E such that for every f ∈ E∗, ⟨f, xn⟩ converges to
a limit. Prove that there exists some x ∈ E such that xn ⇀ x in σ(E, E∗).

Proof. Let J ∶ E → E∗∗ be the embedding of E in E∗∗. Observe that (J(xn)) is a sequence in E∗∗ = (E∗)∗
such that for all f ∈ E∗, ⟨J(xn), f⟩ = ⟨f, xn⟩ converges to a limit. Applying part 1., it follows that there exists

some ξ ∈ E∗∗ such that J(xn)
∗Ð⇀ ξ in σ(E∗∗, E∗). Since E is reflexive, there exists some x ∈ E such that

ξ = J(x). Moreover, for every f ∈ E∗, ⟨f, x − xn⟩ = ⟨J(x) − J(xn), f⟩ → 0 as n → ∞. Thus, xn ⇀ x weakly in
E.

3. Construct an example in a nonreflexive space E where the conclusion of 2 fails.

Solution

Take E = c0 (which is not reflexive since c∗∗0 = (ℓ1)∗ = ℓ∞) and for each n ≥ 1, define the sequence 1n ∶ N →

{0,1};k ↦
⎧⎪⎪⎨⎪⎪⎩

1, k ≤ n
0, k > n

. Fix some f ∈ c∗0 = ℓ1. Observe that ⟨f,1n⟩ = ∑n
i=1 fi, which converges as n → ∞ since

the series ∑∞i=1 fi is absolutely convergent. However, for any x ∈ c0, since xn → 0, there exists some N such that
∣xN ∣ < 1

2
, and so ∣⟨∂N,k,1n − x⟩∣ = ∣1 − xN ∣ > 1

2
for all n ≥ N , proving that 1n does not converge weakly to x for

any x ∈ c0.

3.17

1. Let (xn) be a sequence in ℓp with 1 ≤ p ≤ ∞. Assuming xn ⇀ x in σ(ℓp, ℓp
′
) prove that:

(a) (xn) is bounded in ℓp,

Proof. This is just Proposition 3.5 (iii) for p < ∞ and Proposition 3.13 (iii) for p = ∞.

(b) xn
i ÐÐÐ→n→∞

xi for every i, where xn = (xn
1 , x

n
2 , . . .) and x = (x1, x2, . . .).

Proof. First suppose that 1 ≤ p < ∞. For each n ≥ 1, the projection map πn ∶ ℓp → R;x ↦ xn is obviously
bounded and linear for all 1 ≤ p < ∞ and so πn ∈ ℓp

′
. Since xn ⇀ x in σ(ℓp, ℓp

′
), it follows that for every

i ≥ 1, xn
i = ⟨πi, x

n⟩ → ⟨πi, x⟩ = xi as n→∞. Now when p = ∞, we have that xn ∗Ð⇀ x in the weak∗ topology
σ(ℓ∞, ℓ1). Thus, for any y ∈ ℓ1, ⟨xn, y⟩ → ⟨x, y⟩. Fix i ≥ 1 and note that πi = (∂i,n)n≥1 ∈ ℓ1 so that
xn
i = ⟨xn, πi⟩ → ⟨x,πi⟩ = xi as n→∞ for all i ≥ 1.

2. Conversely, suppose (xn) is a sequence in ℓp with 1 < p ≤ ∞. Assume that (a) and (b) hold (for some limit

denoted by xi). Prove that x ∈ ℓp and that xn ⇀ x in σ(ℓp, ℓp
′
).

Proof. First consider 1 < p < ∞. Suppose for a contradiction that xn does not weakly converge to x. Then there
must exist some subsequence (xnk) as well as some y ∈ ℓp

′
and ε > 0 such that ∣⟨y, xnk − x⟩∣ > ε for all k ≥ 1.

Since ℓp is reflexive and (xn) is bounded, by Theorem 3.18, there exists a subsequence (xnkm ) that converges in
the weak topology σ(ℓp, ℓp

′
). Let a ∈ ℓp be the weak limit of (xnkm ) and observe that by (b) above, x

nkm

i → ai
as m →∞ for all i ≥ 1. Since xn

i → xi for all i ≥ 1, it follows that a = x. But then ⟨y, xnkm − x⟩ → 0 as m →∞,

contradicting that ∣⟨y, xnk − x⟩∣ > ε for all k ≥ 1. Thus, by contradiction, xn ⇀ x in σ(ℓp, ℓp
′
).
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Now suppose that p = ∞ and fix y ∈ ℓ1 as well as ε > 0. Pick N1 such that ∑∞n=N+1 ∣yi∣ < ε
2max(sup ∥xn∥∞+∥x∥∞,1)

(which we can do since (∥xn∥∞) is bounded). Choose N2 large enough such that for any n ≥ N2 and 1 ≤ i ≤ N1

where yi ≠ 0, ∣xn
i − xi∣ < ε

2N1∣yi∣ . Then for all n ≥ N2,

∣⟨xn − x, y⟩ℓ∞,ℓ1 ∣ ≤
∞
∑
i=1
∣yi∣∣xn

i − xi∣

≤
N1

∑
i=1

ε

2N1
+ (sup

n
∥xn∥∞ + ∥x∥∞)

∞
∑

i=N1+1
∣yi∣

< ε.

It follows that ∣⟨xn − x, y⟩ℓ∞,ℓ1 ∣ → 0 as n→∞ for all y ∈ ℓ1, and so xn ∗Ð⇀ x in σ(ℓ∞, ℓ1).

3.18

For every integer n ≥ 1 let
en = (∂n,m)m≥1.

1. Prove that en ÐÐÐ⇀
n→∞

0 in ℓp weakly σ(ℓp, ℓp
′
) with 1 < p ≤ ∞.

Proof. For 1 < p < ∞, that en ⇀ 0 weakly simply expresses the fact that for any y ∈ ℓp
′
, ⟨y, en⟩ = yn → 0 as

n→∞, which follows from the fact that ∑∞i=1 ∣yi∣p
′
< ∞. The case p = ∞ is essentially the same: for any y ∈ ℓ1,

⟨en, y⟩ = yn → 0 as n→∞ since ∑∞i=1 ∣yi∣ < ∞. Thus, en
∗Ð⇀ 0 in the weak∗ topology σ(ℓ∞, ℓ1).

2. Prove that there is no subsequence (enk) that converges in ℓ1 with respect to σ(ℓ1, ℓ∞).

Proof. Fix a subsequence (enk) and x ∈ ℓ1. Pick N such that ∑∞i=N ∣xi∣ < 1
2
. Define 1≥N(k) =

⎧⎪⎪⎨⎪⎪⎩

0, k < N
1, k ≥ N

∈ ℓ∞

and observe that for all k such that nk ≥ N , ∣⟨1≥N , enk − x⟩∣ = ∣1 − ∑∞i=N xi∣ > 1
2
, proving that (enk) cannot

converge weakly to x for any x ∈ ℓ1.

3. Construct an example of a Banach space E and a sequence (fn) in E∗ such that ∥fn∥ = 1 ∀n and such that
(fn) has no subsequence that converges in σ(E∗, E). Is there a contradiction with the compactness of BE∗ in
the topology σ(E∗, E)?

Proof. Pick E = ℓ∞. Let J ∶ ℓ1 → (ℓ∞)∗ be the canonical embedding of ℓ1 inside (ℓ1)∗∗. For each n ≥ 1, set
fn = J(en) ∈ J(ℓ1) ⊂ (ℓ∞)∗. Since J is an isometry, ∥fn∥E∗ = ∥en∥1 = 1 for all n. Towards a contradiction,
suppose that the sequence (fn) has a subsequence (fnk

) that converges in σ((ℓ∞)∗, ℓ∞). Then for any x ∈ ℓ∞,

⟨fnk
, x⟩(ℓ∞)∗.ℓ∞ must converge in R as k → ∞. Define a sequence x ∈ ℓ∞ by xn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, n ∉ {nk ∶ k ≥ 1}
1, n = nk and k is odd

−1, n = nk and k is even

.

Observe that ⟨fnk
, x⟩ = ⟨x, enk⟩ =

⎧⎪⎪⎨⎪⎪⎩

1, k is odd

−1, k is even.
, which clearly does not converge in R as k →∞, a contradic-

tion. Thus, (fn) is a sequence with the desired properties. Note that this conclusion does not contradict the
compactness of B(ℓ∞)∗ in the weak∗ topology σ((ℓ∞)∗, ℓ∞) since compactness is only equivalent to sequential
compactness for metric spaces and B(ℓ∞)∗ is not metrizable in the weak∗ topology as ℓ∞ is not separable.

3.19

Let E = ℓp and F = ℓq with 1 < p < ∞ and 1 < q < ∞. Let a ∶ R→ R be a continuous function such that

∣a(t)∣ ≤ C ∣t∣p/q ∀t ∈ R.
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Given
x = (x1, x2, . . . , xi, . . .) ∈ ℓp,

set
Ax = (a(x1), a(x2), . . . , a(xi), . . .).

1. Prove that Ax ∈ ℓq and that the map x↦ Ax is continuous from ℓp (strong) into ℓq (strong).

Proof. Fix x ∈ ℓp and observe that ∑n≥1 ∣a(xn)∣q ≤ ∑n≥1C
q ∣xn∣p = Cq∥x∥pp < ∞, proving that Ax ∈ ℓq. Towards

proving that A is continuous between the strong topologies on ℓp and ℓq, fix ε > 0 and a sequence (xk) ⊂ ℓp
that converges to some point x ∈ ℓp. Then since (xk

n)n≥N → (xn)n≥N strongly in ℓp for any N ≥ 1, it follows
that ∥(xk

n)n≥N∥pp → ∥(xn)n≥N∥pp for any N ≥ 1. Observe also that for each n ≥ 1, xk
n → xn as k → ∞. Pick

N1 such that ∑n≥N1
∣xn∣p < εq

6Cq , pick N2 such that ∣∥(xk
n)n≥N1∥pp − ∥(xn)n≥N1∥pp∣ < εq

3Cq for all k ≥ N2, and by

the continuity of a, pick N3 such that ∣a(xk
n) − a(xn)∣ < 1

3
εq

2n
for every n ≤ N1 and k ≥ N3. Then for every

k ≥max(N1,N2,N3)

∥Axk −Ax∥qq = ∑
n≥1
∣a(xk

n) − a(xn)∣q

< 1

3

N1−1
∑
n=1

εq

2n
+Cq ∑

n≥N1

(∣xk
n∣p + ∣xn∣p)

< εq

3
+Cq( εq

3Cq
+ 2 ∑

n≥N1

∣xn∣p)

< εq.

Thus, Axk → Ax strongly in ℓq, proving that A is a continuous map between the strong topologies on ℓp and
ℓq.

2. Prove that if (xn) is a sequence in ℓp such that xn ⇀ x in σ(ℓp, ℓp
′
) then Axn ⇀ Ax in σ(ℓq, ℓq

′
).

Proof. Suppose that (xn) is a sequence in ℓp such that xn ⇀ x in σ(ℓp, ℓp
′
). Then by Exercise 3.17, (xn)

is bounded in ℓp and xn
i → xi for every i ≥ 1. Using the inequality from part 1. above, we have that

∥Axn∥qq ≤ Cq∥xn∥pp ≤ Cq(supk≥1 ∥xk∥p)p, so that (Axn) is a bounded sequence in ℓq. Moreover, by the continuity
of a, (Axn)i = a(xn

i ) → a(xi) = (Ax)i as n → ∞ for all i ≥ 1. Thus, again by Exercise 3.17, Axn ⇀ Ax in

σ(ℓq, ℓq
′
).

3. Deduce that A is continuous from BE equipped with σ(E, E∗) into F equipped with σ(F, F ∗).

Proof. Since 1 < p′ < ∞ and 1 < q′ < ∞, ℓp
′
= E∗ and ℓq

′
= F ∗ are both separable and so, by Theorem 3.29, BE

and CqBF ⊃ A(BE) are metrizable in the weak topologies σ(E, E∗) and σ(F, F ∗), respectively. Since metric
spaces are first countable and sequentially continuous functions between first countable spaces are continuous,
we conclude by part 2. that A is continuous from BE equipped with σ(E, E∗) into CqBF ⊂ F equipped
with (the subspace topology induced by) σ(F, F ∗). Finally, since the inclusion map i ∶ (CqBF , σ(F, F ∗))Ð→
(F, σ(F, F ∗)) is obviously continuous, it follows that A is continuous from BE equipped with σ(E, E∗) into
F equipped with σ(F, F ∗).

3.21

Let E be a separable Banach space and let (fn) be a bounded sequence in E∗. Prove directly–without using the
metrizability of E∗–that there exists a subsequence (fnk

) that converges in σ(E∗, E).

Proof. Let {xn} be a countable dense subset of BE . Since (fn) is a bounded sequence in E∗, the sequence (⟨fn, x1⟩)
is bounded in R and therefore, by Bolzano-Weierstrass, there exists a subsequence (f1

n) ⊂ (fn) such that ⟨f1
n, x1⟩

converges. Now suppose that we have defined subsequences (fk
n) ⊂ (fk−1

n ) ⊂ ⋯ ⊂ (f1
n) ⊂ (fn) such that for all

1 ≤ i ≤ k, ⟨f i
n, xi⟩ converges as n → ∞. Then observe that since ⟨fk

n , xk+1⟩ is a bounded sequence in R, there exists
a subsequence (fk+1

n ) ⊂ (fk
n) such that ⟨fk+1

n , xk+1⟩ converges as n → ∞. Thus, we inductively have a sequence of
nested subsequences (fk

n)k≥1 such that for all k ≥ 1, ⟨fk
n , xk⟩ converges. For each k ≥ 1, define fnk

= fk
k . Observe that
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by the construction of the nested subsequences, for any m ≥ 1, the sequence ⟨fnk
, xm⟩ converges as k →∞. Moreover,

for any x ∈ E and ε > 0, there exists m such that ∥x − ∥x∥xm∥ < ε
2(sup ∥fn∥+1) , as well as N such that for all k, j ≥ N ,

∣⟨fnk
− fnj , xm⟩∣ < ε

2(∥x∥+1) . Thus, for any k, j ≥ N ,

∣⟨fnk
− fnj , x⟩∣ ≤ ∣⟨fnk

, x − ∥x∥xm⟩∣ + ∣⟨fnk
− fnj , ∥x∥xm⟩∣ + ∣⟨fnj , x − ∥x∥xm⟩∣

≤ 2 sup
n
∥fn∥∥x − ∥x∥xm∥ + ∥x∥∣⟨fnk

− fnj , xm⟩∣

< ε.

It follows that for every x ∈ E, the sequence (⟨fnk
, x⟩) is Cauchy and therefore converges to some point in R. By

Corollary 2.3, f = limk→∞ fnk
∈ E∗ and since ⟨f − fnk

, x⟩ → 0 as k → ∞ for all x ∈ E, it follows that fnk

∗Ð⇀ f in
σ(E∗, E).

Lemma 1

Let V be an n.v.s. and suppose that M is a closed proper subspace of V . Then for any ε > 0, there exists some unit
vector x ∈ E such that dist(x,M) ≥ 1 − ε.

Proof. Fix ε > 0 and some y ∉M . Let λ = dist(y,M). Since M is closed, λ > 0. Pick some δ > 0 such that δ
λ+δ ≤ ε.

Note that by the definition of dist, there must exist some m ∈M such that ∥y−m∥ ≤ λ+δ, and since y ∉M , ∥y−m∥ > 0.
Set x = y−m

∥y−m∥ . Then for any m′ ∈M ,

∥x −m′∥ =
XXXXXXXXXXX

y −m
∥y −m∥

−m′
XXXXXXXXXXX

=
XXXXXXXXXXX

y − (m − ∥y −m∥m′)
∥y −m∥

XXXXXXXXXXX

≥ λ

λ + δ
≥ 1 − ε.

3.22

Let E be an infinite-dimensional Banach space satisfying one of the following assumptions:

(a) E∗ is separable,

(b) E is reflexive.

Prove that there exists a sequence (xn) in E such that

∥xn∥ = 1 ∀n and xn ⇀ 0 weakly σ(E, E∗).

Proof. (a) If E∗ is separable, then BE is metrizable in the weak topology σ(E, E∗) by Theorem 3.29. Now
since E is infinite-dimensional, we saw in Example 1 of Chapter 3 that the weak closure of the unit sphere
S = {x ∈ E ∶ ∥x∥ = 1} is S̄σ(E,E∗) = BE . It follows that S is a dense subset of the metric space BE (with respect
to σ(E, E∗)), and so every point x ∈ BE is equal to the weak limit of some sequence in S. In particular, there
must exist some sequence (xn) ⊂ S such that xn ⇀ 0 weakly.

(b) Suppose that E is reflexive and infinite-dimensional. Using Lemma 1 above, I shall construct a sequence {xn}
such that ∥xn∥ = 1 and ∥xn−xm∥ ≥ 1

2
for any n ≠m. Begin by picking any x1 ∈ E such that ∥x1∥ = 1. Now suppose

that we have picked x1, . . . , xk ∈ E with the desired properties. Since span(x1, . . . , xk) is a closed proper subspace
of E, by Lemma 1, there exists some unit vector xk+1 ∈ E such that ∥xk+1−xi∥ ≥ dist(xk+1, span(x1, . . . , xk)) ≥ 1

2
.

Thus, we can continue inductively to get the desired sequence (xn) ⊂ E. Since (xn) is a bounded sequence
and E is reflexive, by Theorem 3.18, there exists a weakly convergent subsequence (xnk

). Let x ∈ E be the
weak limit of this subsequence. By potentially removing at most one point in this subsequence, we may assume
WLOG that ∥xnk

− x∥ ≥ 1
4
for all k (if there were some k0 such that ∥x − xnk0

∥ < 1
4
, then for all k ≠ k0,
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∥x− xnk
∥ ≥ ∣∥x− xnk0

∥ − ∥xnk0
− xnk

∥∣ ≥ 1
4
, then just remove xnk0

from the sequence). Define the sequence (yk)
by yk =

xnk
−x

∥xnk
−x∥ . Observe that for all k, ∥yk∥ = 1 and for any f ∈ E∗,

∣⟨f, yk⟩∣ =
RRRRRRRRRRR
⟨f, xnk

− x
∥xnk

− x∥
⟩
RRRRRRRRRRR

≤ 4∣⟨f, xnk
− x⟩∣ → 0,

as k →∞. Thus, yk ⇀ 0 in σ(E, E∗).

3.25

Let K be a compact metric space that is not finite. Prove that C(K) is not reflexive.

Proof. Since K is a compact metric space with infinitely many points, only finitely many of the points in K can be
isolated points (or else K would not be compact) and so there must exist some a ∈K that is a limit point of K. That
is, there exists some sequence (an) ⊂K∖{a} that converges to a. Define a function f ∶ C(K) → R; u↦ ∑∞n=1 1

2n
u(an).

To see that f is well-defined, fix u ∈ C(K) and observe that ∑∞n=1 ∣ 12nu(an)∣ ≤ supx∈K ∣u(x)∣∑
∞
n=1

1
2n
= ∥u∥C(K) < ∞,

and so ∑∞n=1 1
2n

u(an) converges absolutely for all u ∈ C(K). Observe that since the sum converges absolutely
over C(K), it follows that for any u1, u2 ∈ C(K) and λ1, λ2 ∈ R, f(λ1u1 + λ2u2) = ∑∞n=1(λ1u1 + λ2u2)(an) =
λ1∑∞n=1 u1(an) + λ2∑∞n=1 u2(an) = λ1f(u1) + λ2f(u2). Thus, f is a linear functional such that for any u ∈ C(K),
∣f(u)∣ ≤ ∥u∥C(K). It follows that f ∈ C(K)∗ and ∥f∥ ≤ 1.

Define M = {u ∈ C(K) ∶ u(a) = 0}. Clearly M is a linear subspace of C(K) and since for any (un) ⊂ M such
that un → u in C(K), then un → u uniformly and so 0 = un(a) → u(a), which shows that M is a closed linear
subspace of C(K). By Proposition 3.20, to prove that C(K) is not reflexive, it suffices to prove that M is not
reflexive. To this end, set g = f ∣M . Clearly g ∈ M∗ and ∥g∥ ≤ ∥f∥ = 1. To see that ∥g∥ = 1, observe that for any
n ≥ 1, the map un = nd(x, a) ∧ 1 ∈ M and ∣g(un)∣ ≥ ∑n

k=1
1
2k
→ 1 as n → ∞. Fix u ∈ M with ∥u∥ = 1 and observe

that since an → a and u is continuous, there exists some N such that for all n ≥ N , ∣u(an)∣ = ∣u(an) − u(a)∣ < 1
2
.

Thus, ∣g(u)∣ ≤ ∑∞n=1 1
2n
∣u(an)∣ ≤ ∑N

n=1
1
2n
+ 1

2 ∑
∞
n=N+1

1
2n
< ∑∞n=1 1

2n
= 1. It follows that, for every u ∈M with ∥u∥ = 1,

∣g(u)∣ < 1. Let J ∶ M → M∗∗ be the canonical embedding of M into its double dual. Since g ∈ M∗, by the Hahn-
Banach theorem, there exists some ξ ∈ M∗∗ such that ⟨ξ, g⟩ = ∥g∥2 = 1 and ∥ξ∥ = ∥g∥ = 1. Observe that ξ ∉ J(M)
since for any u ∈ M with ∥u∥ = ∥J(u)∥ = ∥ξ∥ = 1, ⟨J(u), g⟩ = g(u) < 1. Thus, M is not reflexive which proves that
C(K) cannot be reflexive.

3.26

Let F be a separable Banach space and let (an) be a dense subset of BF . Consider the linear operator T ∶ ℓ1 → F
defined by

Tx =
∞
∑
i=1

xiai with x = (x1, x2, . . . , xn, . . .) ∈ ℓ1.

1. Prove that T is bounded and surjective.

Proof. First observe that T is well defined since for any x ∈ ℓ1, the sequence ∑n
i=1 xiai is Cauchy (since

∥∑m
i=n xiai∥ ≤ ∑m

i=n ∣xi∣ → 0 as n,m → ∞) and therefore converges to a unique limit in F . Fix x ∈ ℓ1 with
unit norm and note that ∥Tx∥F = limn→∞ ∥∑n

i=1 xiai∥ ≤ limn→∞∑n
i=1 ∣xi∣∥ai∥F ≤ limn→∞∑n

i=1 ∣xi∣ = 1. Thus,
T ∈ L(ℓ1, F ) with ∥T ∥ ≤ 1.

Clearly to prove that T is surjective, it suffices to prove that BF ⊂ T (ℓ1). To this end, fix a ∈ BF . Since
(an) is dense in BF , there exists some n1 such that ∥a − an1∥ < 1

2
. Now suppose we have found n1, . . . , nk

such that ni ≠ nj for i ≠ j and ∥a − an1 − 1
2
an2 − ⋯ − 1

2k−1 ank
∥ < 1

2k
. Since F is a metric space with no

isolated points (with respect to the norm on F ), a dense set excluding finitely many points is still dense.
Thus, the sequence ( 1

2k
an)n∉{n1,...,nk} is dense in 1

2k
BF , and so there exists some nk+1 ∉ {n1, . . . , nk} such that

∥(a−an1 −⋯− 1
2k−1 ank

)− 1
2k
ank+1∥ < 1

2k+1 . Continuing this process inductively, we get an injection ξ ∶ k ∈ N↦ nk
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such that ∑∞k=1 1
2k−1 ank

= a. Take the inverse ξ−1 ∶ ξ(N) → N of this sequence and define the sequence x by

xn =
⎧⎪⎪⎨⎪⎪⎩

1

2ξ−1(n)−1
, n ∈ ξ(N)

0, n ∉ ξ(N).
Note that x ∈ ℓ1 since ∑∞n=1 ∣xn∣ ≤ ∑∞n=0 1

2n
= 2 (since ∑∞n=0 1

2n
is absolutely convergent

and so unconditionally convergent). Moreover, by a change of variables, we have that

Tx = ∑
n∈ξ(N)

1

2ξ−1(n)−1
an

= ∑
k∈N

1

2k−1
ank
= a.

Thus, BF ⊂ T (ℓ1), which proves that T is surjective.

In what follows, we assume, in addition, that F is infinite-dimensional and that F ∗ is separable.

2. Prove that T has no right inverse.

Proof. Towards a contradiction, suppose that there exists some S ∈ L(F, ℓ1) such that IdF = TS. Since F is
infinite-dimensional and F ∗ is separable, by Exercise 3.22 there must exist some sequence (bn) ⊂ F such that
∥bn∥ = 1 for all n and bn ⇀ 0 weakly σ(F, F ∗). By Theorem 3.10, S is continuous from σ(F, F ∗) on F to
σ(ℓ1, ℓ∞) on ℓ1. Thus, Sbn ⇀ 0 in σ(ℓ1, ℓ∞) and by Schur’s theorem, it follows that Sbn → 0 strongly so that
∥Sbn∥ → 0 as n → ∞. However, for all n, 1 = ∥bn∥ = ∥TSbn∥ ≤ ∥Sbn∥, a contradiction. Thus, by contradiction,
T has no right inverse.

3. Deduce that N(T ) has no complement in ℓ1.

Proof. By Theorem 2.12, N(T ) does not admit a complement in ℓ1.

4. Determine T ∗.

Solution

For any f ∈ F ∗, define Af = (⟨f, ai⟩)
i≥1

. Observe that Af ∈ ℓ∞ for all f ∈ F ∗ since supn ∣⟨f, an⟩∣ ≤ ∥f∥. For

any f ∈ F ∗ and x ∈ ℓ1 we have ⟨T ∗f, x⟩ = ⟨f, Tx⟩ = ⟨f,∑∞i=1 xiai⟩ = ∑∞i=1 xi⟨f, ai⟩ = ⟨Af,x⟩. It follows that

T ∗f = Af = (⟨f, ai⟩)
i≥1

.

3.27

Let E be a separable Banach space with norm ∥ ∥. The dual norm on E∗ is also denoted by ∥ ∥. The purpose of
this exercise is to construct an equivalent norm on E that is strictly convex and whose dual norm is also strictly convex.

Let (an) ⊂ BE be a dense subset of BE with respect to the strong topology. Let (bn) ⊂ BE∗ be a countable subset
of BE∗ that is dense in BE∗ for the weak∗ topology σ(E∗, E). Why does such a set exist?

Solution

By Theorem 3.23, the weak∗ topology on BE∗ is metrizable and by Banach-Alaoglu, BE∗ is weak∗ compact. Since
every compact metric space is separable, BE∗ is separable with respect to σ(E∗, E). (Let K be a compact metric
space and for each n ≥ 1, consider the covering of K by 1

n
-balls indexed over x ∈K. Apply compactness to conclude

that the 1
n
-balls indexed over some finite set Fn ⊂K cover K. Then ⋃n∈N Fn is a countable dense subset of K.)

Given f ∈ E∗, set

∥f∥1 =
⎧⎪⎪⎨⎪⎪⎩
∥f∥2 +

∞
∑
n=1

1

2n
∣⟨f, an⟩∣2

⎫⎪⎪⎬⎪⎪⎭

1
2

.
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1. Prove that ∥ ∥1 is a norm equivalent to ∥ ∥.

Proof. The homogeneity and positive-definiteness of ∥ ∥1 are obvious. Note that my proof of the strict convexity
of ∥ ∥1 in part 2. below does not rely on ∥ ∥1 being a norm and so to prove that the triangle inequality is
satisfied, I may use the fact that ∥ ∥1 satisfies the strict convexity property. Fix f, g ∈ E∗ and observe that if
f = g or one of f or g are zero, then the triangle inequality follows trivially. Thus, we may assume WLOG that
f, g ≠ 0 and f ≠ g. Then since ∥ ∥1 satisfies strict convexity (my proof given below just uses the strict convexity
of x↦ x2), it follows that

1

(∥f∥ + ∥g∥)
∥f + g∥ =

XXXXXXXXXXX

∥f∥
∥f∥ + ∥g∥

f

∥f∥
+ (1 − ∥f∥

∥f∥ + ∥g∥
) g

∥g∥

XXXXXXXXXXX1
< 1.

Thus ∥ ∥1 is a norm on E∗. Clearly for any f ∈ E∗, ∥f∥2 ≤ ∥f∥21 and so ∥f∥ ≤ ∥f∥1. Moreover, ∥f∥21 ≤
∥f∥2 +∑∞n=1 1

2n
∥f∥2∥an∥ ≤ 2∥f∥2. It follows that, ∥f∥ ≤ ∥f∥1 ≤

√
2∥f∥, proving that ∥ ∥ and ∥ ∥1 are equivalent

norms on E∗.

2. Prove that ∥ ∥1 is strictly convex.

Proof. Fix t ∈ (0,1) and f, g ∈ E∗ such that ∥f∥1 = ∥g∥1 = 1 and f ≠ g. Since (an) is dense in BE and f ≠ g,
there must exist some n0 such that ⟨f, an0⟩ ≠ ⟨g, an0⟩. Thus, by the strict convexity of x ↦ x2, it follows that
∣⟨tf + (1 − t)g, an0⟩∣2 < t∣⟨f, an0⟩∣2 + (1 − t)∣⟨g, an0⟩∣2. Then again using the convexity of the x ↦ x2, it follows
that

∥tf + (1 − t)g∥21 < t∥f∥2 + (1 − t)∥g∥2 + t
∞
∑
n=1

1

2n
∣⟨f, an⟩∣2 + (1 − t)

∞
∑
n=1

1

2n
∣⟨g, an⟩∣2

= t∥f∥21 + (1 − t)∥g∥21 = 1.

It follows that ∥tf + (1 − t)g∥1 < 1, proving that ∥ ∥1 is strictly convex.

Given x ∈ E, set

∥x∥2 =
⎧⎪⎪⎨⎪⎪⎩
∥x∥21 +

∞
∑
n=1

1

2n
∣⟨bn, x⟩∣2

⎫⎪⎪⎬⎪⎪⎭

1
2

.

where ∥x∥1 = sup∥f∥1≤1⟨f, x⟩.

3. Prove that ∥ ∥2 is a strictly convex norm that is equivalent to ∥ ∥.

Proof. Again, homogeneity and positive-definiteness of ∥ ∥2 are both obvious. Observe that my proof that ∥ ∥1
satisfies the triangle inequality only made use of the fact that ∥ ∥1 satisfies the strict convexity property. Thus,
to complete our verification that ∥ ∥2 defines a norm on E, it suffices to prove that ∥ ∥2 satisfies the strict
convexity property. To this end, fix t ∈ (0,1) and x, y ∈ E such that ∥x∥2 = ∥y∥2 = 1 and x ≠ y. I claim that
there must exist some n such that ⟨bn, x⟩ ≠ ⟨bn, y⟩. To see why this is the case, observe that if it weren’t, so
that ⟨bn, x− y⟩ = 0 for all n, then for any f ∈ BE∗ and δ > 0, since (bn) is weak∗ dense in BE∗ , there must exist
some n such that δ > ∣⟨bn − f, x − y⟩∣ = ∣⟨f, x − y⟩∣. But then ⟨f, x − y⟩ = 0 for all f ∈ BE∗ , which would force
the contradiction that x = y. Thus, there exists some n such that ⟨bn, x⟩ ≠ ⟨bn, y⟩. By the strict convexity of
x↦ x2, ∣⟨bn, tx + (1 − t)y⟩∣2 < t∣⟨bn, x⟩∣2 + (1 − t)∣⟨bn, y⟩∣2. Applying the convexity of x↦ x2, it follows that

∥tx + (1 − t)y∥22 = ∥tx + (1 − t)y∥21 +
∞
∑
n=1

1

2n
∣⟨bn, tx + (1 − t)y⟩∣2

< t∥x∥21 + (1 − t)∥y∥21 + t
∞
∑
n=1

1

2n
∣⟨bn, x⟩∣2 + (1 − t)

∞
∑
n=1

1

2n
∣⟨bn, y⟩∣2

= t∥x∥22 + (1 − t)∥y∥22 = 1.

Taking square-roots, it follows that ∥tx+(1− t)y∥2 < 1, proving that ∥ ∥2 satisfies the strict convexity property.
Thus, from the comments above, ∥ ∥2 is a strictly convex norm on E.
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Towards proving that ∥ ∥2 and ∥ ∥ are equivalent norms, fix x ∈ E and observe that for any f ∈ E∗ such that
∥f∥1 ≤ 1, since ∥f∥ ≤ ∥f∥1 ≤ 1, it follows that ⟨f, x⟩ ≤ ∥f∥∥x∥ ≤ ∥x∥. Hence, ∥x∥1 ≤ ∥x∥. Thus,

∥x∥22 ≤ ∥x∥2 +
∞
∑
n=1

1

2n
∣⟨bn, x⟩∣2 ≤ 2∥x∥2,

so that ∥x∥2 ≤
√
2∥x∥. Now applying Hahn-Banach, pick some f ∈ E∗ such that ⟨f, x⟩ = ∥x∥2 and ∥f∥ = ∥x∥.

Then ∥ 1√
2∥x∥

f∥
1
≤ ∥f∥∥x∥ = 1 and ⟨ 1√

2∥x∥
f, x⟩ = 1√

2
∥x∥, so that 1√

2
∥x∥ ≤ ∥x∥1 ≤ ∥x∥2, which proves that ∥ ∥2 and ∥ ∥

are equivalent norms on E.

3.28

Let E be a uniformly convex Banach space. Let F denote the (multivalued) duality map from E into E∗. Prove
that for every f ∈ E∗ there exists a unique x ∈ E such that f ∈ Fx.

Proof. Fix some f ∈ E∗. By Hahn-Banach, there exists some ξ ∈ E∗∗ such that ⟨ξ, f⟩ = ∥f∥2 and ∥ξ∥ = ∥f∥. Since
E is uniformly convex, by the Milman-Pettis Theorem, E is reflexive. Thus, letting J ∶ E → E∗∗ be the canonical
embedding of E in E∗∗, it follows that there exists some x ∈ E such that ξ = J(x). Hence, ∥x∥ = ∥J(x)∥ = ∥f∥ and
⟨f, x⟩ = ⟨J(x), f⟩ = ∥f∥2 = ∥x∥2. It follows that f ∈ Fx. Towards showing that x is the unique element of E such that
f ∈ Fx, fix some y ∈ E such that f ∈ Fy. Then ∥y∥ = ∥f∥ = ∥x∥ and ⟨f, y⟩ = ∥y∥2. Clearly if x = 0, then y is forced to be

0, so we may assume WLOG that x ≠ 0. Observe that ⟨ f
∥x∥ ,

x+y
2∥x∥⟩ = 1, and since ∥ f

∥x∥∥ = 1, it follows that ∥
x+y
2∥x∥∥ ≥ 1.

Since x
∥x∥ ,

y
∥x∥ both belong to BE , by uniform convexity, there cannot exist any ε > 0 such that ∥ x

∥x∥ −
y
∥x∥∥ > ε. That

is, x = y.

3.29

Let E be a uniformly convex Banach space.

1. Prove that ∀M > 0,∀ε > 0,∃δ > 0 such that

XXXXXXXXXXX

x + y
2

XXXXXXXXXXX

2

≤ 1

2
∥x∥2 + 1

2
∥y∥2 − δ

∀x, y ∈ E with ∥x∥ ≤M, ∥y∥ ≤M and ∥x − y∥ > ε.

Proof. Suppose for a contradiction that there exists some M > 0 and ε > 0 such that for all δ > 0, there exists

some x, y ∈ E with ∥x∥ ≤M , ∥y∥ ≤M and ∥x− y∥ > ε but ∥x+y
2
∥
2

> 1
2
∥x∥2 + 1

2
∥y∥2 − δ. Then for each n ≥ 1, there

exists xn, yn ∈ E with ∥xn∥, ∥yn∥ ≤ M , ∥xn − yn∥ > ε and ∥xn+yn

2
∥
2

> 1
2
∥xn∥2 + 1

2
∥yn∥2 − 1

n
. Since (∥xn∥) is a

bounded sequence in R, there exists some subsequence (∥xnk
∥) that converges, and since (∥ynk

∥) is a bounded
sequence, there exists a subsequence (∥ynkj

∥) that converges. Note that (∥xnkj
∥) also converges, and so we may

assume WLOG that (∥xn∥) and (∥yn∥) are both convergent sequences with limits a and b, respectively. Then

1
2
a2 + 1

2
b2 = limn→∞

1
2
∥xn∥2 + 1

2
∥yn∥2 − 1

n
≤ lim supn→∞ ∥

xn+yn

2
∥
2

≤ lim supn→∞ ( 12∥xn∥ + 1
2
∥yn∥)

2

= ( 1
2
a + 1

2
b)

2

.

By the strict convexity of x↦ x2, it follows that limn ∥xn∥ = a = b = limn ∥yn∥. Thus, we have that there exists

some N such that for all n ≥ N , ∥ xn

∥xn∥ −
yn

∥yn∥∥ >
ε

a+ 1
2

. Then by uniform convexity, there exists some δ′ > 0 such

that ∥
1

∥xn∥xn+ 1
∥yn∥yn

2
∥ < 1 − δ′ for all n ≥ N . But then

lim sup
n→∞

XXXXXXXXXXX

xn + yn
2

XXXXXXXXXXX

2

= lim sup
n→∞

∥xn∥2
XXXXXXXXXXX

1
∥xn∥xn + 1

∥yn∥yn

2

XXXXXXXXXXX

2

< a2(1 − δ′)

< 1

2
a2 + 1

2
b2,

contradicting what we found above. Hence, the statement is proven by contradiction.
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2. Same question when ∥ ∥2 is replaced by ∥ ∥p with 1 < p < ∞.

Proof. Since x ↦ xp is strictly convex on (0,∞) for all 1 < p < ∞, the exact same proof above but replacing 2
by p works.

3.30

Let E be a Banach space with norm ∥ ∥. Assume that there exists on E an equivalent norm, denoted by ∣ ∣, that is
uniformly convex.

Prove that given any k > 1, there exists a uniformly convex norm [[ ]] on E such that

∥x∥ ≤ [[x]] ≤ k∥x∥ ∀x ∈ E.

Proof. Fix k > 1. Since ∣ ∣ is equivalent to ∥ ∥, there exist constants c,C > 0 such that c∥x∥ ≤ ∣x∣ ≤ C∥x∥ for all

x ∈ E. Set α = k2−1
C2 > 0 and define [[ ]] ∶ E → [0,∞) by [[x]] =

√
∥x∥2 + α∣x∣2. Observe that for all x ∈ E,

∥x∥ ≤ [[x]] and [[x]]2 ≤ (1+αC2)∥x∥2 = k2∥x∥2, so that [[x]] ≤ k∥x∥. Thus, if we can show that [[ ]] is a uniformly
convex norm on E, then we are done. That [[ ]] satisfies homogeneity and positive-definiteness is obvious. To
prove the triangle inequality, note that for all t ∈ (0,1) and x, y ∈ E such that [[x]], [[y]] ≤ 1, [[tx + (1 − t)y]]2 =
∥tx + (1 − t)y∥2 + α∣tx + (1 − t)y∣2 ≤ t∥x∥2 + (1 − t)∥y∥2 + tα∣x∣2 + (1 − t)α∣y∣2 = t[[x]]2 + (1 − t)[[y]]2 ≤ 1, so that
[[tx + (1 − t)y]] ≤ 1. Thus, for all x, y ∈ E,

1

([[x]] + [[y]])
[[x + y]] =

⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎣

[[x]]
[[x]] + [[y]]

x

[[x]]
+
⎛
⎝
1 − [[x]]
[[x]] + [[y]]

⎞
⎠

y

[[y]]

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
≤ 1,

proving that [[ ]] is a norm on E. It remains to prove that [[ ]] is uniformly convex. To this end, fix ε > 0. Define

β =
√

1
c2
+ α and γ =

√
1
C2 + α and observe that for all z ∈ E, γ∣z∣ ≤ [[z]] ≤ β∣z∣. By Exercise 3.29, there exists some

δ > 0 such that for all x, y ∈ E with ∣x∣, ∣y∣ ≤ 1
γ
and ∣x − y∣ > ε

β
, we have the inequality ∣x+y

2
∣
2

≤ 1
2
∣x∣2 + 1

2
∣y∣2 − δ. Fix

x, y ∈ E such that [[x]], [[y]] ≤ 1 and [[x − y]] > ε. Thus, ∣x∣, ∣y∣ ≤ 1
γ
and ∣x − y∣ > ε

β
. It follows that

[[x + y
2
]]

2

= ∥x + y
2
∥
2

+ α∣x + y
2
∣
2

≤ 1

2
∥x∥2 + 1

2
∥y∥2 + α(1

2
∣x∣2 + 1

2
∣y∣2 − δ)

= 1

2
[[x]]2 + 1

2
[[y]]2 − αδ

≤ 1 − αδ.

So [[x+y
2
]] ≤

√
1 − αδ < 1, and we can pick any δ0 such that 1 − δ0 >

√
1 − αδ, proving that [[ ]] is uniformly

convex.

3.31

Let E be a uniformly convex Banach space.

1. Prove that

∀ε > 0, ∀α ∈ (0, 1
2
), ∃δ > 0 such that

∥tx + (1 − t)y∥ ≤ 1 − δ

∀t ∈ [α,1 − α], ∀x, y ∈ E with ∥x∥ ≤ 1, ∥y∥ ≤ 1 and ∥x − y∥ ≥ ε.

Proof. Fix ε > 0, α ∈ (0, 1
2
). By the uniform convexity of E, there exists some δ > 0 such that for all x, y ∈ E

with ∥x∥, ∥y∥ ≤ 1 and ∥x − y∥ ≥ 2αε we have the inequality ∥x+y
2
∥ ≤ 1 − δ. Fix x, y ∈ E with ∥x∥, ∥y∥ ≤ 1 and
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∥x−y∥ ≥ ε. Then for any t ∈ [α, 1
2
], define z = 2tx+y−2ty and observe that since ∥z∥ ≤ 2t∥x∥+(1−2t)∥y∥ ≤ 1 and

∥y−z∥ = 2t∥x−y∥ ≥ 2tε ≥ 2αε, it follows that ∥tx+(1−t)y∥ = ∥y+z
2
∥ ≤ 1−δ. Moreover, for any t ∈ ( 1

2
,1−α], define

z = 2tx−2ty+2y−x and observe that ∥z∥ ≤ (2t−1)∥x∥+(2−2t)∥y∥ ≤ 1 and ∥z−x∥ = (2−2t)∥x−y∥ ≥ (2−2t)ε ≥ 2αε,
so that ∥tx + (1 − t)y∥ = ∥x+z

2
∥ ≤ 1 − δ. Hence, ∥tx + (1 − t)y∥ ≤ 1 − δ for all t ∈ [α,1 − α].

2. Deduce that E is strictly convex.

Proof. Fix x, y ∈ E such that ∥x∥ = ∥y∥ = 1 and suppose that x ≠ y. Then there exists some ε > 0 such that
∥x − y∥ > ε. Fix t ∈ (0,1) and pick α ∈ (0,min(t,1 − t)) ⊂ (0, 1

2
). Observe that t ∈ [α,1 − α] and so by part 1.

above, there exists some δ > 0 such that ∥tx + (1 − t)y∥ ≤ 1 − δ < 1. Thus, ∥tx + (1 − t)y∥ < 1 for all t ∈ (0,1) and
it follows that E is strictly convex.

3.32 Projection on a closed convex set in a uniformly convex Banach
space.

Let E be a uniformly convex Banach space and C ⊂ E a nonempty closed convex set.

1. Prove that for every x ∈ E,
inf
y∈C
∥x − y∥

is achieved by some unique point in C, denoted by PCx.

Proof. Observe that since E is uniformly convex, E is reflexive by the Milman-Pettis Theorem. Thus, by
Theorem 3.18, every bounded sequence in E has a weakly convergent subsequence. Fix x ∈ E and for every
n ≥ 1, pick some yn ∈ C such that ∥x− yn∥ < infy∈C ∥x− y∥ + 1

n
. Since for every n, ∥yn∥ ≤ infy∈C ∥x− y∥ + ∥x∥ + 1,

(yn) is a bounded sequence in E and therefore there exists a subsequence (ynk
) that converges weakly to a point

y ∈ E. Since C is strongly closed and convex, by Theorem 3.7 C is weakly closed. Thus, the fact that (ynk
) ⊂ C

and ynk
⇀ y implies that y ∈ C. Since x − ynk

⇀ x − y, by Proposition 3.5, ∥x − y∥ ≤ lim infk→∞ ∥x − ynk
∥ ≤

lim infk→∞(infz∈C ∥x−z∥+ 1
nk
) = infz∈C ∥x−z∥. This proves that infz∈C ∥x−z∥ is achieved by y. Towards proving

that y is the unique such point in C, suppose for a contradiction that z ∈ C such that ∥x − z∥ = infz∈C ∥x − z∥
and z ≠ y. Then there exists some ε > 0 such that ∥(x − z) − (x − y)∥ = ∥z − y∥ > ε, and by the convexity of
C, z+y

2
∈ C. Moreover, since ∥x − z∥, ∥x − y∥ ≤ ∥x − y∥, by Exercise 3.29, there exists some δ > 0 such that

∥x − z+y
2
∥
2

≤ 1
2
∥x − y∥2 + 1

2
∥x − z∥2 − δ = infz∈C ∥x − z∥2 − δ, which is clearly absurd. Thus, y is the unique point

in C that achieves the distance from x to C.

2. Prove that every minimizing sequence (yn) in C converges strongly to PCx.

Proof. I shall first prove that yn ⇀ PCx. Suppose for a contradiction that (yn) does not converge weakly to PCx.
Then there must exist a subsequence (ynk

), ε > 0 and f ∈ E∗ such that ∣⟨f, ynk
−PCx⟩∣ > ε. Since E is reflexive

and (ynk
) is a bounded sequence (as there exists some N such that for all k ≥ N , ∥ynk

∥ ≤ infy∈C ∥x−y∥+∥x∥+1),
it follows that (ynk

) has a weakly convergent subsequence (ynkj
), converging weakly to some point y ∈ E. Since

(ynkj
) ⊂ C and C is strongly closed and convex, so weakly closed, it follows that y ∈ C. Moreover, since

x − ynkj
⇀ x − y, by Proposition 3.5, ∥x − y∥ ≤ lim inf ∥x − ynkj

∥ = infz∈C ∥x − z∥. But then from part 1., we

conclude that y = PCx, and so ⟨f, ynkj
− PCx⟩ → 0, a contradiction. Thus, by contradiction, yn ⇀ PCx weakly.

To complete the proof, note that because x − yn ⇀ x − PCx weakly and ∥x − yn∥ → ∥x − PCx∥, it follows by
Proposition 3.32 that x − yn → x − PCx strongly, and therefore yn → PCx strongly.

3. Prove that the map x↦ PCx is continuous from E strong into E strong.

Proof. See part 4. below.

4. More precisely, prove that PC is uniformly continuous on bounded subsets of E.
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Proof. Towards a contradiction, suppose that there exists a bounded subset B ⊂ E and ε > 0 such that for all
δ > 0, there exists x, y ∈ B with ∥x−y∥ < δ and ∥PCx−PCy∥ ≥ ε. Then we can construct sequences (xn), (yn) ⊂ B
such that ∥xn − yn∥ → 0 as n → ∞ and infn ∥PCxn − PCyn∥ ≥ ε. Moreover, since B is bounded, there exists a
constant M > 0 such that ∥xn∥, ∥yn∥ ≤M for all n. Note that by the convexity of C and the definition of PC ,

∥xn − PCxn∥ ≤
XXXXXXXXXXX
x − PCxn + PCyn

2

XXXXXXXXXXX

≤
XXXXXXXXXXX

xn + yn
2

− PCxn + PCyn
2

XXXXXXXXXXX
+ 1

2
∥xn − yn∥.

Similarly, ∥yn−PCyn∥ ≤ ∥xn+yn

2
− PCxn+PCyn

2
∥+ 1

2
∥xn−yn∥. Thus, we have that 1

2
∥xn−PCxn∥2+ 1

2
∥yn−PCyn∥2 ≤

∥xn+yn

2
− PCxn+PCyn

2
∥
2

+ o(n). Now, with the intent of applying Exercise 3.29, I claim that (∥xn − PCxn∥) and
(∥yn−PCyn∥) are bounded sequences. Indeed, for any n ≥ 1, ∥xn−PCxn∥ ≤ ∥xn−PCx1∥ ≤ ∥xn−x1∥+∥x1−PCx1∥ ≤
2M + ∥x1 − PCx1∥. (The proof for (∥yn − PCyn∥) being bounded follows by the exact same argument.) Since
∥xn − yn∥ → 0, there must exist some N such that for all n ≥ N , ∥xn − yn∥ < ε

2
and it follows that for all n ≥ N ,

∥(xn −PCxn) − (yn −PCyn)∥ ≥ ∣∥PCxn −PCyn∥ − ∥xn − yn∥∣ ≥ ε
2
. Thus, by Exercise 3.29, there exists some δ > 0

such that for every n ≥ N ,

XXXXXXXXXXX

xn + yn
2

− PCxn + PCyn
2

XXXXXXXXXXX

2

≤ 1

2
∥xn − PCxn∥2 +

1

2
∥yn − PCyn∥2 − δ.

This conclusion gives us the desired contradiction since, when combined with the above inequality, 1
2
∥xn −

PCxn∥2 + 1
2
∥yn − PCyn∥2 ≤ ∥xn+yn

2
− PCxn+PCyn

2
∥
2

+ o(n), we get 0 < δ ≤ o(n), which is absurd.

Let φ ∶ E → (−∞,+∞] be a convex l.s.c. function, φ /≡ +∞.

5. Prove that for every x ∈ E and every integer n ≥ 1,

inf
y∈E
{n∥x − y∥2 + φ(y)}

is achieved at some unique point, denoted by yn.

Proof. Fix x ∈ E and n ≥ 1. Since φ /≡ +∞, there exists some y ∈ E such that α = n∥x − y∥2 + φ(y) < ∞. Since
y ↦ n∥x − y∥2 is continuous and φ is l.s.c., y ↦ n∥x − y∥2 + φ(y) is l.s.c. Moreover, for any y1, y2 ∈ E and
t ∈ (0,1),

n∥x − (ty1 + (1 − t)y2)∥2 + φ(ty1 + (1 − t)y2) ≤ n∥t(x − y1) + (1 − t)(x − y2)∥2 + tφ(y1) + (1 − t)φ(y2)
≤ t(n∥x − y1∥2 + φ(y1)) + (1 − t)(n∥x − y2∥2 + φ(y2)).

It follows that y ↦ n∥x−y∥2 +φ(y) is convex and l.s.c. and so C = {y ∈ E ∶ n∥x−y∥2 +φ(y) ≤ α} is a nonempty,
closed, convex subset of E. By Proposition 1.10, there exists some f ∈ E∗ such that for all y ∈ E, ⟨f, y⟩ ≤ φ(y).
Thus, for any y ∈ E such that φ(y) < 0, ∣φ(y)∣ ≤ ∣⟨f, y⟩∣ ≤ ∥f∥∥y∥, and it follows that for all y ∈ E such that
φ(y) < 0,

n∥x − y∥2 + φ(y) ≥ n∥x − y∥2 − ∥f∥∥y∥ ≥ n∥y∥2 − (2n∥x∥ + ∥f∥)∥y∥ + n∥x∥2,
which is a positive quadratic polynomial in ∥y∥ and so is bounded below. Thus, β = infy∈E{n∥x− y∥2 +φ(y)} >
−∞. Now we argue exactly as we did in part 1: fix some sequence (yn) ⊂ C such that n∥x − yn∥2 + φ(yn) → β.
Note that (yn) is a bounded sequence since n∥x − yn∥2 + φ(yn) is a convergent sequence, so bounded, and
φ(yn) is bounded, so that ∥x−yn∥2 must be bounded. Thus, since E is reflexive, (yn) has a weakly convergent
subsequence (ynk

) with weak limit point y. By Corollary 3.9 y ↦ n∥x−y∥2 +φ(y) is l.s.c. in the weak topology
σ(E, E∗), and so ynk

⇀ y implies that n∥x − y∥2 + φ(y) ≤ lim infk→∞ n∥x − ynk
∥2 + φ(ynk

) = β. Thus, y ∈ E
achieves the desired infimum. To see that y is the unique point in E that achieves this minimum, suppose for
a contradiction that z ∈ E such that n∥x − z∥2 + φ(z) = n∥x − y∥2 + φ(y) and z ≠ y. Then ∥y − z∥ ≥ ε for some

ε > 0 and so by Exercise 3.29 there exists some δ > 0 such that ∥x − x+y
2
∥
2

≤ 1
2
∥x − y∥2 + 1

2
∥x − z∥2 − δ. But then

n∥x − x+y
2
∥
2

+ φ(x+y
2
) ≤ 1

2
n∥x − y∥2 + 1

2
n∥x − z∥2 + 1

2
φ(y) + 1

2
φ(z) − δ = infy∈E{n∥x − y∥2 + φ(y)} − δ, which is

impossible. Thus, by contradiction y is the unique point in E that achieves this minimum.
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6. Prove that yn ÐÐÐ→
n→∞

PCx, where C =D(φ).

Proof. Note that for any n ≥ 1, n∥x − yn∥2 +φ(yn) ≤ n∥x− y∥2 +φ(y) for all y ∈ E. In particular, for any n ≥ 1,
n∥x−yn∥2+φ(yn) ≤ n∥x−yn+1∥2+φ(yn) and (n+1)∥x−yn+1∥2+φ(yn+1) ≤ (n+1)∥x−yn∥2+φ(yn). Thus, by playing
around with these two inequalities, we get that ∥x− yn+1∥2 ≤ (n+ 1)∥x− yn∥2 −n∥x+ yn+1∥2 +φ(yn+1)−φ(yn) ≤
∥x− yn∥2, and so ∥x− yn+1∥ ≤ ∥x− yn∥ for all n ≥ 1. It follows that (x− yn) is a bounded sequence, so that (yn)
is a also a bounded sequence, and since E is reflexive, (yn) has a weakly convergent subsequence (ynk

) with
weak limit y ∈ E. Moreover, since x − ynk

⇀ x − y weakly, it follows that ∥x − y∥2 ≤ lim infk ∥x − ynk
∥2. Since

(∥x− yn∥) is a monotonically decreasing sequence, bounded below by 0, it follows that ∥x− yn∥ converges, and
since ∥x− y∥ ≤ lim infk ∥x− ynk

∥ = limn ∥x− yn∥, it follows that ∥x− y∥ ≤ ∥x− yn∥ for all n ≥ 1. Note that for any
n ≥ 1, n∥x−y∥2+φ(yn) ≤ n∥x−yn∥2+φ(yn) ≤ n∥x−z∥2+φ(z) for all z ∈ E. From my reasoning in part 5. above,

we know that φ(yn) ∈D(φ) for all n, and so we have that for all z ∈ E and n ≥ 1, ∥x−y∥2 −∥x−z∥ ≤ φ(z)−φ(yn)
n

.
Using Proposition 1.10 again, we have an f ∈ E∗ such that if φ(z) < 0, then ∣φ(z)∣ ≤ ∥f∥∥z∥. Combining this
insight with the fact that (yn) is a bounded sequence, say with bound M > 0, we have that for all n ≥ 1 and

z ∈ E, ∥x− y∥2 −∥x− z∥2 ≤ φ(z)+∥f∥M
n

. Taking the limit over n, we get that for any z ∈D(φ), ∥x− y∥2 ≤ ∥x− z∥2,
and it follows that y = PCx (since each yn ∈D(φ) ⊂ C and C is the strong closure of a convex space, so weakly

closed, the fact that ynk
⇀ y implies that y ∈ C). Finally, since for any z ∈D(φ), ∥x−yn∥−∥x−z∥ ≤ φ(z)+∥f∥M

n
→ 0

as n→∞, it follows that ∥x−yn∥ → ∥x−PCx∥, so that (yn) ⊂ C is a minimizing sequence of C. Since C =D(φ)
is a nonempty closed convex set, by part 2. above, yn → PCx strongly.

Except where otherwise stated, Ω denotes a σ-finite measure space.

4.1

Let α > 0 and β > 0. Set
f(x) = {1 + ∣x∣α}−1{1 + ∣ log ∣x∣∣β}−1, x ∈ RN .

Under what conditions does f belong to Lp(RN)?

Solution

Observe that since 1
1+∣ log ∣x∣∣β ≤ 1 and 1

1+∣x∣α ≤ 1 for all α,β > 0, f ∈ L∞(RN). Now, for 1 ≤ p < ∞, we perform a

spherical change of coordinates to get that ∫RN f(x)pdx < ∞ if and only if ∫
∞
0

rN−1
(1+rα)p(1+∣ log r∣β)p dr < ∞, if and only if

∫
∞
2

rN−1
(1+rα)p(1+∣ log r∣β)p dr < ∞. Observe that rN−1

(1+rα)p(1+∣ log r∣β)p =
1

rαp−N+1∣ log r∣βp(1+r−α)p(1+∣ log r∣−β)p ≤
C

rαp−N+1∣ log r∣βp for

some constant C > 0, and it’s therefore clear that f ∈ Lp(RN) if and only if α > N
p
, or α = N

p
and β > 1

p
.

4.3

1. Let f, g ∈ Lp(Ω) with 1 ≤ p ≤ ∞. Prove that

h(x) =max{f(x), g(x)} ∈ Lp(Ω).

Proof. Observe that for all x ∈ Ω, ∣h(x)∣ ≤ ∣f(x)∣+∣g(x)∣. Thus, if p = 1 then ∫Ω ∣h∣dµ ≤ ∫Ω ∣f ∣+∣g∣dµ ≤ ∥f∥1+∥g∥1 <
∞. If p = ∞, we have that {∣h∣ > ∥f∥∞ + ∥g∥∞} ⊂ {∣f ∣ > ∥f∥∞} ∪ {∣g∣ > ∥g∥∞}, which is a µ-null set. Finally if
1 < p < ∞, we have that

∫
Ω
∣h∣pdµ ≤ ∫

Ω

2p

2
∣f ∣p + 2p

2
∣g∣pdµ

≤ 2p−1(∥f∥pp + ∥g∥pp) < ∞.

Thus, in all cases, h ∈ Lp(Ω).

2. Let (fn) and (gn) be two sequences in Lp(Ω) with 1 ≤ p ≤ ∞ such that fn → f in Lp(Ω) and gn → g in Lp(Ω).
Set hn =max{fn, gn} and prove that hn → h in Lp(Ω).
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Proof. We have

∥h − hn∥p = ∥
1

2
(∣f − g∣ + f + g) − 1

2
(∣fn − gn∣ + fn + gn)∥p

≤ 1

2
∥∣f − g∣ − ∣fn − gn∣∥p +

1

2
∥f − fn∥p +

1

2
∥g − gn∥p.

Thus, it suffices to prove that ∣fn − gn∣ → ∣f − g∣ in Lp(Ω). Since ∣∣f − g∣ − ∣fn − gn∣∣ ≤ ∣(f − g) − (fn − gn)∣ over Ω,
we get that ∥∣f − g∣ − ∣fn − gn∣∥p ≤ ∥(f − fn) + (gn − g)∥p ≤ ∥f − fn∥p + ∥g − gn∥p → 0 as n→∞, and the statement
follows.

3. Let (fn) be a sequence in Lp(Ω) with 1 ≤ p < ∞ and let (gn) be a bounded sequence in L∞(Ω). Assume fn → f
in Lp(Ω) and gn → g a.e. Prove that fngn → fg in Lp(Ω).

Proof. Note that ∥fg − fngn∥p ≤ ∥f(g − gn)∥p + ∥gn(f − fn)∥p ≤ ∥f(g − gn)∥p + supn ∥gn∥∞∥f − fn∥p, and since
supn ∥gn∥∞ < ∞ and ∥f−fn∥p → 0 as n→∞, it suffices to prove that ∥f(g−gn)∥p → 0 as n→∞. Because gn → g
a.e., it follows that f(g−gn) → 0 a.e. and, moreover, ∣g∣ ≤ supn ∥gn∥ a.e. so that ∣f(g−gn)∣p ≤ (2 supn ∥gn∥∞)p∣f ∣p.
Thus, we can apply the dominated convergence theorem to conclude that ∥f(g − gn)∥p → 0 as n →∞, and the
statement follows.

4.5

Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞.

1. Prove that L1(Ω) ∩L∞(Ω) is a dense subset of Lp(Ω).

Proof. Note first that for any f ∈ L1(Ω) ∩L∞(Ω), ∫ ∣f ∣pdµ = ∫ ∣f ∣∣f ∣p−1dµ ≤ ∥f∥1∥f∥p−1∞ < ∞. Thus, f ∈ Lp(Ω),
proving that L1(Ω) ∩ L∞(Ω) ⊂ Lp(Ω). Now fix f ∈ Lp(Ω), let (Fn) be a measurable sequence such that

⋃∞n=1 Fn = Ω and ∣Fn∣ < ∞ for all n, and for each n ≥ 1 let Tn be the truncation function on R defined in the
proof of Theorem 4.12. Then for each n ≥ 1, Tn○(fχFn) clearly belongs to L1(Ω)∩L∞(Ω), ∣Tn○(fχFn)−f ∣p → 0
a.e. as n→∞ and ∣Tn ○(fχFn)−f ∣p ≤ ∣f ∣p. By the dominated convergence theorem, Tn ○(fχFn) → f in Lp(Ω),
which proves that L1(Ω) ∩L∞(Ω) is dense in Lp(Ω).

2. Prove that the set
{f ∈ Lp(Ω) ∩Lq(Ω) ∶ ∥f∥q ≤ 1}

is closed in Lp(Ω).

Proof. Fix a sequence (fn) ⊂ {f ∈ Lp(Ω) ∩ Lq(Ω) ∶ ∥f∥q ≤ 1} that converges to some point f in Lp(Ω). Since
fn → f in Lp(Ω), it follows that there exists some subsequence (fnk

) that converges a.e. to f . Now, when
1 ≤ q < ∞, applying Fatou’s lemma, we have that ∫ ∣f ∣qdµ ≤ lim infk ∫ ∣fnk

∣qdµ ≤ 1, which proves that f ∈ Lq(Ω)
and ∥f∥q ≤ 1. And when q = ∞, fnk

→ f a.e. and ∥fnk
∥∞ ≤ 1 for all k implies that ∣f ∣ ≤ 1 a.e. The statement

follows.

3. Let (fn) be a sequence in Lp(Ω) ∩Lq(Ω) and let f ∈ Lp(Ω). Assume that

fn → f in Lp(Ω) and ∥fn∥q ≤ C.

Prove that f ∈ Lr(Ω) and that fn → f in Lr(Ω) for every r between p and q, r ≠ q.

Proof. The statement is trivial when C = 0, so we may assume WLOG that C > 0. From part 2 above, since
1
C
fn → 1

C
f in Lp(Ω) and ∥ 1

C
fn∥

q
≤ 1, it follows that 1

C
f ∈ Lq(Ω) and ∥ 1

C
f∥

q
≤ 1. Fix r between p and q with

r ≠ q. For convenience, assume p ≤ r < q. Observe that for all p ≤ s ≤ q Lp(Ω) ∩ Lq(Ω) ⊂ Ls(Ω) since, when
q < ∞, ∫Ω ∣f ∣

sdµ = ∫{∣f ∣≤1} ∣f ∣
sdµ + ∫{∣f ∣>1} ∣f ∣

sdµ ≤ ∥f∥pp + ∥f∥qq < ∞, and if q = ∞ then ∫ ∣f ∣sdµ = ∫ ∣f ∣p∣f ∣s−pdµ ≤
∥f∥s−p∞ ∥f∥pp < ∞. Since 1

q
< 1

r
≤ 1

p
, there must exist some t ∈ (0,1] such that 1

r
= t

p
+ 1−t

q
. Then since rt and

(1 − t)r are both between p and q, we can apply the interpolation inequality to get that

∥fn − f∥r ≤ ∥fn − f∥tp∥fn − f∥1−tq ≤ (2C)1−t∥fn − f∥p → 0,

as n→∞.
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4.7

Let 1 ≤ q ≤ p ≤ ∞. Let a(x) be a measurable function on Ω. Assume that au ∈ Lq(Ω) for every function u ∈ Lp(Ω).
Prove that a ∈ Lr(Ω) with

r =
⎧⎪⎪⎨⎪⎪⎩

pq
p−q if p < ∞,

q if p = ∞.

Proof. If p = ∞ then taking u = χΩ ∈ L∞(Ω), we have that a = au ∈ Lq(Ω) = Lr(Ω). When p < ∞, define the map
T ∶ Lp(Ω) → Lq(Ω);u↦ au. Note that T is linear. To see that T is a bounded linear operator, suppose that (un) is a
convergent sequence in Lp(Ω) with limit u, and that Tun → f in Lq(Ω) as n→∞. Then there exists a subsequence
(unk
) such that unk

→ u a.e., and since Tunk
→ f in Lq(Ω), there exists a subsequence (unkl

) such that unkl
→ u

a.e. and Tunkl
→ f a.e. For convenience, we shall write this subsequence as (ul). Thus, we have that aul = Tul → f

a.e. and since ul → u a.e., it follows that aul → au a.e., so that f = au = Tu a.e. This proves that the graph of T is
closed and, thus, by the Closed Graph Theorem, T is a bounded linear operator. It follows that for all u ∈ L

p
q (Ω),

since ∣u∣
1
q ∈ Lp(Ω), ∫ ∣a∣q ∣u∣dµ ≤ ∥T ∥q∥∣u∣1/q∥qp = ∥T ∥q∥u∥p/q, so that φ ∶ L

p
q (Ω) → R;u↦ ∫ ∣a∣qudµ is a bounded linear

functional. Observe that the conjugate of p
q
is p/q

p/q−1 =
p

p−q . By the Riesz Representation Theorem, there exists unique

f ∈ L
p

p−q (Ω) such that ∫ ∣a∣qudµ = ∫ fudµ for all u ∈ Lp/q(Ω). By the usual argument, we see that ∫K ∣∣a∣
q − f ∣dµ

for any measurable subset K with finite measure, so that ∣a∣q = f a.e. on Ω. Hence, ∣a∣q ∈ L
p

p−q (Ω), proving that
a ∈ Lr(Ω).

4.11(a) The spaces Lα
(Ω) with 0 < α < 1.

Let 0 < α < 1. Set
Lα(Ω) = {u ∶ Ω→ R ∶ u is measurable and ∣u∣α ∈ L1(Ω)}

and

[u]α = (∫ ∣u∣α)
1/α

.

Check that Lα is a vector space but that [ ]α is not a norm. More precisely, prove that if u, v ∈ Lα(Ω), u ≥ 0 a.e.
and v ≥ 0 a.e., then

[u + v]α ≥ [u]α + [v]α.

Proof. Fix u, v ∈ Lα and λ ∈ R. Since u is measurable and ∣u∣α ∈ L1(Ω), λu is measurable and ∣λu∣α = ∣λ∣α∣u∣α ∈ L1(Ω),
so that λu ∈ Lα. Moreover, u+v is measurable, being the sum of measurable functions, and ∣u+v∣α ≤ 2αmax(∣u∣α, ∣v∣α).
Since 2αmax(∣u∣α, ∣v∣α) ∈ L1(Ω) by Exercise 4.3 Part 1, it follows that ∣u + v∣α ∈ L1(Ω), so that u + v ∈ Lα. Thus, Lα

is a vector space. To see that [ ]α is not a norm, note that for all u, v ∈ Lα such that u ≥ 0 a.e. and v ≥ 0 a.e.,

[u]α + [v]α = ∫
⎛
⎝
(∫ ∣u∣α)

1/α−1

∣u∣α + (∫ ∣v∣α)
1/α−1

∣v∣α
⎞
⎠

≤ ∫ ([u]α + [v]α)
1−α
∣u + v∣α

= ([u]α + [v]α)
1−α
[u + v]αα.

Rearranging, we have that [u]α + [v]α ≤ [u + v]α. Now taking any u, v ∈ Lα such that u, v ≥ 0 a.e. and [u]α + [v]α <
[u + v]α, we see that [ ]α cannot satisfy the triangle inequality, so it cannot be a norm.

4.13(c)

Let (fn) be a sequence in L1(Ω) and let f be a function in L1(Ω) such that

(i) fn(x) → f(x) a.e.,

(ii) ∥fn∥1 → ∥f∥.
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Prove that ∥fn − f∥1 → 0.

Proof. Note that for all n ≥ 1, ∣∣fn∣ − ∣fn − f ∣∣ ≤ ∣f ∣ and ∣fn∣ − ∣fn − f ∣ → ∣f ∣ a.e. Thus, since f ∈ L1(Ω), we can apply
the Dominated Convergence Theorem to conclude that limn→∞ (∥f∥1 − ∥f − fn∥1) = limn→∞ ∫ (∣fn∣ − ∣f − fn∣) = ∥f∥1.
Rearranging, we have that limn→∞ ∥f − fn∥1 = 0.

4.15

Let Ω = (0,1).

1. Consider the sequence (fn) of functions defined by fn(x) = ne−nx. Prove that

(i) fn → 0 a.e.

Proof. Fix x ∈ (0,1) and observe that by L’Hôpital’s rule, y ↦ y
eyx has limit equal to 0 as y →∞, proving

that fn(x) = ne−nx → 0 as n→∞. Thus, fn → 0 pointwise as n→∞.

(ii) fn is bounded in L1(Ω).

Proof. ∥fn∥1 = ∫Ω ∣fn∣ = ∫
1
0 ne−nxdx = 1 − e−n ≤ 1 for all n ≥ 1.

(iii) fn /→ 0 in L1(Ω) strongly.

Proof. From above, we see that limn→∞ ∥fn∥1 = limn→∞ 1 − e−n = 1 ≠ ∥0∥1. By the continuity of ∥ ∥1 on
L1(Ω), it follows that fn /→ 0 in L1(Ω).

(iv) fn /⇀ 0 weakly σ(L1, L∞). More precisely, there is no subsequence that converges weakly σ(L1, L∞).

Proof. Observe that for any g ∈ Cc(Ω), there exists a < b ∈ (0,1) such that ∣ ∫
1
0 gfn∣ ≤maxx∈Ω ∣g(x)∣ ∫

b
a ∣fn∣ =

maxx∈Ω ∣g(x)∣(e−an − e−bn) → 0 as n→∞, so that ⟨g, fn⟩L∞,L1 → 0 for all g ∈ Cc(Ω) ⊂ L∞(Ω). Suppose for
a contradiction that there exists some subsequence (fnk

) and f ∈ L1(Ω) such that fnk
⇀ f weakly. Then

for all g ∈ Cc(Ω), ∫ gf = limk→∞ ∫ gfnk
= 0. Applying Corollary 4.24, it follows that f = 0 a.e. on Ω. But

then since fnk
⇀ f and χΩ ∈ L∞(Ω), we have that 0 = ∫ f = ∫ χΩf = limk→∞ ∫ χΩfnk

= limk→∞ ∥fnk
∥1 = 1,

a contradiction. Thus, no subsequence of (fn) converges weakly.

2. Let 1 < p < ∞ and consider the sequence (gn) of functions defined by gn(x) = n1/pe−nx. Prove that

(i) gn → 0 a.e.

Proof. Observe that 0 ≤ gn ≤ fn on Ω. Since fn → 0 pointwise as n →∞, it follows that gn → 0 pointwise
as n→∞.

(ii) (gn) is bounded in Lp(Ω).

Proof. ∥gn∥pp = ∫
1
0 ne−pnxdx = 1−e−pn

p
≤ 1 for all n ≥ 1.

(iii) gn /→ 0 in Lp(Ω) strongly.

Proof. From above, we see that limn→∞ ∥gn∥pp = limn→∞
1−e−pn

p
= 1

p
≠ ∥0∥p. By the continuity of ∥ ∥p on

Lp(Ω), it follows that fn /→ 0 in Lp(Ω).

(iv) gn ⇀ 0 weakly σ(Lp, Lp′).

Proof. Observe that for any f ∈ Cc(Ω), ∣ ∫
1
0 fgn∣ ≤ maxx∈Ω ∣f(x)∣ ∫

1
0 gn = n1/p−1maxx∈Ω ∣f(x)∣(1 − e−n) → 0

as n →∞, so that ⟨f, gn⟩Lp′ ,Lp → ⟨f,0⟩Lp′ ,Lp for all f ∈ Cc(Ω). Since Cc(Ω) is dense in Lp′(Ω), it follows
that gn ⇀ 0 weakly σ(Lp, Lp′).
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4.18 Rademacher’s functions.

Let 1 ≤ p ≤ ∞ and let f ∈ Lp
loc(R). Assume that f is T -periodic, i.e. f(x + T ) = f(x) a.e. x ∈ R. Set

f = 1

T
∫

T

0
f(t)dt.

Consider the sequence (un) in Lp(0,1) defined by

un(x) = f(nx), x ∈ (0,1).

1. Prove that un ⇀ f in Lp(0,1) with respect to the topology σ(Lp, Lp′).

Proof. Case 1 ≤ p < ∞: Fix g ∈ C∞c (0,1) and observe that

∫
1

0
gun = ∫

1

0
g(x)f(nx)dx

= ∫
1

0
g(x)f( n

T
Tx)dx

= 1

n
∫

mT

0
g(x

n
)f(x)dx + 1

n
∫

n

mT
g(x

n
)f(x)dx

≈ 1

n

m

∑
k=0

g(kT
n
)∫

T

0
f(x)dx + 1

n
∫

n

mT
g(x

n
)f(x)dx

= 1

m

m

∑
k=0

g(kT
n
) 1

T + n−mT
m

∫
T

0
f(x)dx + 1

n
∫

n

mT
g(x

n
)f(x)dx

→ ∫
1

0
g(x)fdx,

where m is the integer remainder of T
n
, and the use of ≈ becomes exact in the limit by noting that if we

take n large enough, since g is smooth, g( x
n
) will be equal to g(kT

n
) + o(n) on [kT

n
, (k+1)T

n
], where o(n) is a

function that goes to 0 as n → ∞. The limit in the final line is justified by observing that n−mT
m
≤ T

m
→ 0

and 1
n ∫

n
mT g( x

n
)f(x)dx ≤ maxx∈(0,1) ∣g(x)∣

n ∫
T
0 ∣f ∣ → 0, and noting that the sum on the left is just a Riemann sum,

which is equal to the integral in the limit. Since C∞c (0,1) is dense in Lp(0,1), the case 1 ≤ p < ∞ follows.

Observe that since we are taking the weak∗ limit for the case p = ∞, we can use the exact same argument,
concluding by noting that C∞c (0,1) is dense in L1(0,1).

2. Determine limn→∞ ∥un − f∥p.

Solution

For 1 ≤ p < ∞, we have

∥un − f∥pp = ∫
1

0
∣f(nx) − f ∣pdx

= 1

n
∫

n

0
∣f(x) − f ∣pdx

= 1

n
∫

mT

0
∣f(x) − f ∣pdx + 1

n
∫

n

mT
∣f(x) − f ∣pdx

= 1

T − n−mT
m

∫
T

0
∣f(x) − f ∣pdx + 1

n
∫

n

mT
∣f(x) − f ∣pdx

→ 1

T
∫

T

0
∣f(x) − f ∣pdx,
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where the limit follows from the fact that 1
n ∫

n
mT ∣f(x) − f ∣

pdx ≤ 1
n ∫

T
0 ∣f(x) − f ∣

pdx→ 0. Thus,

lim
n→∞

∥un − f∥p = (
1

T
∫

T

0
∣f(x) − f ∣pdx)

1/p
.

For p = ∞, clearly limn→∞ ∥un − f∥L∞(0,1) = limn→∞ ∥f − f∥L∞(0,n) = ∥f − f∥L∞[0,T ].

3. Examine the following examples:

(i) un(x) = sinnx

Solution

Observe that T = 2π and f = 1
2π ∫

2π
0 sinxdx = 0. Thus, we conclude from our analysis above that

un = sinnx⇀ 0 in the topology σ(Lp, Lp′) on Lp(0,1) for 1 ≤ p ≤ ∞. We also have that limn→∞ ∥ sinnx∥p =

( 1
2π ∫

2π
0 ∣ sinx∣pdx)

1/p
for 1 ≤ p < ∞ and limn→∞ ∥ sinnx∥∞ = 1.

(ii) un(x) = f(nx) where f is 1-periodic and

f(x) =
⎧⎪⎪⎨⎪⎪⎩

α for x ∈ (0,1/2),
β for x ∈ (1/2,1).

The functions of example (ii) are called Rademacher’s functions.

Solution

We have f = ∫
1
0 f(x)dx = 1

2
α + 1

2
β, so that un ⇀ 1

2
α + 1

2
β in the topology σ(Lp, Lp′) on Lp(0,1) for

1 ≤ p ≤ ∞. We also have that limn→∞ ∥un − 1
2
α − 1

2
β∥p = ( ∫

1
0 ∣f(x) −

1
2
α − 1

2
β∣pdx)

1/p
= 1

21/p ∣α − β∣ for
1 ≤ p < ∞ and limn→∞ ∥un − 1

2
α − 1

2
β∥∞ = 1

2
∣α − β∣.

4.21

Given a function u0 ∶ R→ R, set un(x) = u0(x + n).

1. Assume u0 ∈ Lp(R) with 1 < p < ∞. Prove that un ⇀ 0 in Lp(R) with respect to the weak topology σ(Lp, Lp′).

Proof. Fix nonzero g ∈ Cc(R). Note that there exists N1 such that g(x) = 0 for all ∣x∣ > N1. Moreover, since
u0 ∈ Lp(R), for any ε > 0, there exists N2 such that ∣u0(x)∣ < ε

2N1∥g∥∞ for almost all ∣x∣ ≥ N2. Thus, we have

that for all n ≥ N1 +N2

RRRRRRRRRRR
∫ gun

RRRRRRRRRRR
≤ ∫

N1

−N1

∣g(x)u0(x + n)∣dx

≤ ∥g∥∞ ∫
N1

−N1

∣u0(x + n)∣dx < ε.

Thus, limn→∞ ∫ gun = 0 for all g ∈ Cc(R), and since Cc(R) is dense in Lp′(R), it follows that un ⇀ 0 weakly in

σ(Lp, Lp′).

2. Assume u0 ∈ L∞(R) and that u0(x) → 0 as ∣x∣ → ∞ in the following weak sense:

for every δ > 0 the set [∣u0∣ > δ] has finite measure.

Prove that un
∗Ð⇀ 0 in L∞(R) weak∗ σ(L∞, L1).
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Proof. Fix nonzero g ∈ Cc(R) and ε > 0. Again, let N1 be such that g(x) = 0 for all ∣x∣ > N1. By assumption

[∣u0∣ > ε
2N1∥g∥∞ ] has finite measure. In particular, there must exist a finite interval (−N2,N2) such that

RRRRRRRRRRR
[∣u0∣ > ε

2N1∥g∥∞ ] ∖ (−N2,N2)
RRRRRRRRRRR
< ε
∥g∥∞∥u0∥∞ (obviously we may assume WLOG that ∥u0∥∞ > 0). Thus, we have

that for all n ≥ N1 +N2

RRRRRRRRRRR
∫ gun

RRRRRRRRRRR
≤ ∫

N1

−N1

∣g(x)u0(x + n)∣dx

≤ ∫
[−N1,N1]∩[u0>ε/(2N1∥g∥∞)]

∣g(x)u0(x + n)∣dx + ε

≤ ∥g∥∞∥u0∥∞
RRRRRRRRRRR
[∣u0∣ >

ε

2N1∥g∥∞
] ∖ (−N2,N2)

RRRRRRRRRRR
+ ε < 2ε.

It follows that limn→∞ ∫ gun = 0 for all g ∈ Cc(R), and since Cc(R) is dense in L1(R), this proves that un
∗Ð⇀ 0

in σ(L∞, L1).

3. Take u0 = χ(0,1). Prove that there exists no subsequence (unk
) that converges in L1(R) with respect to

σ(L1, L∞).

Proof. Towards a contradiction, suppose that there exists some u ∈ L1(R) and a subsequence (unk
) such that

unk
⇀ u in σ(L1, L∞). Then we must have that 0 = limk→∞ ∫ χR(unk

− u) = 1 − ∫ u, so that ∫ u = 1. Thus,

there must exist some finite interval (a, b) ⊂ R such that ∫ χ(a,b)u = ∫
b
a u > 1

2
. Since unk

⇀ u, it follows that

limk→∞ ∫
b
a χ(−nk,1−nk) = limk→∞ ∫ χ(a,b)unk

= ∫ χ(a,b)u > 1
2
, which is absurd since (a, b) is a finite interval.

By contradiction, it follows that there exists no subsequence (unk
) that converges in L1(R) with respect to

σ(L1, L∞).

4.23

Let f ∶ Ω→ R be a measurable function and let 1 ≤ p ≤ ∞. The purpose of this exercise is to show that the set

C = {u ∈ Lp(Ω) ∶ u ≥ f a.e.}

is closed in Lp(Ω) with respect to the topology σ(Lp, Lp′).

1. Assume first that 1 ≤ p < ∞. Prove that C is convex and closed in the strong Lp topology. Deduce that C is
closed in σ(Lp, Lp′).

Proof. First, to see that C is convex, observe that for any u1, u2 ∈ C and t ∈ (0,1), tu1+(1−t)u2 ≥ tf+(1−t)f = f
a.e. so that tu1 + (1 − t)u2 ∈ C. Now suppose that (un) ⊂ C is a sequence such that un → u in Lp(Ω) for some
u ∈ Lp(Ω). Then there exists a subsequence (unk

) such that unk
→ u a.e., and since unk

≥ f a.e. for all k ≥ 1,
it follows that u ∈ C. Thus, C is convex and strongly closed in Lp. It follows by Theorem 3.7 that C is weakly
closed in σ(Lp, Lp′).

2. Taking p = ∞, prove that

C =
⎧⎪⎪⎨⎪⎪⎩
u ∈ L∞(Ω) ∶ ∫ uφ ≥ ∫ fφ ∀φ ∈ L1(Ω) with fφ ∈ L1(Ω) and φ ≥ 0 a.e.

⎫⎪⎪⎬⎪⎪⎭
.

Proof. Clearly if u ∈ C then for all φ ∈ L1(Ω) with fφ ∈ L1(Ω) and φ ≥ 0 a.e., since u ≥ f a.e., it follows that
uφ ≥ fφ a.e. so that ∫ uφ ≥ ∫ fφ. Thus, one direction is clear. Towards proving the other direction, suppose
that u ∈ L∞(Ω) has the property that for all φ ∈ L1(Ω) such that fφ ∈ L1(Ω) and φ ≥ 0 a.e., ∫ uφ ≥ ∫ fφ. Con-
sider first the case where f ∈ L∞(Ω). Then for all measurable subsets F ⊂ Ω with finite measure, we have that

∫F (u − f) = ∫ χF (u − f) ≥ 0. Thus, applying the fact that Ω is σ-finite, pick an increasing sequence of subsets
(Fn) of finite measure such that ⋃n Fn = Ω and observe that since for all n and k ≥ 1 ∫Fn∩[u−f<− 1

k ]
(u − f) ≥ 0,
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it follows that for all k ≥ 1, [u − f < − 1
k
] = limn→∞ Fn ∩ [u − f < − 1

k
] = 0. Thus, u ≥ f proving that u ∈ C, and

the statement follows in the case where f ∈ L∞(Ω).

If f ∉ L∞(Ω), for each n ≥ 1 define ωn = [∣f ∣ ≤ n]. Clearly Ω = ⋃n ωn. Since for any n, f ∣ωn ∈ L∞(ωn) and
u∣ωn ∈ L∞(ωn) and for any φ ∈ L1(ωn) with φ ≥ 0 a.e., we have that ∫ωn

u∣ωnφ ≥ ∫ωn
f ∣ωnφ, the situation above

applies and we can conclude that u ≥ f a.e. on ωn for all n. It follows that u ≥ f a.e. on Ω so that u ∈ C, and
the statement follows.

3. Deduce that when p = ∞, C is closed in σ(L∞, L1).

Proof. Observe that since L1(Ω) is separable, BL∞(Ω) is metrizable with respect to the weak∗ topology

σ(L∞, L1). Thus, since C is convex, by the Krein-Šmulian Theorem, to prove that C is closed in σ(L∞, L1),
it suffices to prove that every bounded weak∗ convergent sequence in C converges in σ(L∞, L1) to some point
in C with the same bound. To this end, fix a sequence (un) ⊂ C ∩ nBL∞(Ω) and suppose that there exists

some u ∈ L∞(Ω) such that un
∗Ð⇀ u in σ(L∞, L1). Then ∥u∥∞ ≤ lim infn ∥un∥∞ ≤ n and for any φ ∈ L1(Ω) with

fφ ∈ L1(Ω) and φ ≥ 0 a.e., we have that ∫ uφ = limn→∞ ∫ unφ ≥ ∫ fφ, proving that u ∈ C ∩nBL∞(Ω). It follows
that C is closed in σ(L∞, L1).

4. Let f1, f2 ∈ L∞(Ω) with f1 ≤ f2 a.e. Prove that the set

C = {u ∈ L∞(Ω) ∶ f1 ≤ u ≤ f2 a.e.}

is compact in L∞(Ω) with respect to the topology σ(L∞, L1).

Proof. To see that C is closed in σ(L∞, L1), observe that C = {u ∈ L∞(Ω) ∶ u ≥ f1 a.e.} ∩ {−u ∈ L∞(Ω) ∶
u ≥ −f2 a.e.}. From part 3 above and the fact that u ↦ −u is continuous on L∞(Ω), it follows that C
is the intersection of weak∗ closed subsets, so is closed in σ(L∞, L1). Moreover, note that for any u ∈ C,
∣u∣ ≤max(∣f1∣, ∣f2∣) a.e. so that ∥u∥∞ ≤ ∥f1∥∞ + ∥f2∥∞, proving that C is a σ(L∞, L1) closed bounded subset of
L∞(Ω). Thus, by the Banach-Alaoglu Theorem, C is compact in σ(L∞, L1).

4.25 Regularization of functions in L∞(Ω).

Let Ω ⊂ RN be open.

1. Let u ∈ L∞(Ω). Prove that there exists a sequence (un) in C∞c (Ω) such that

(a) ∥un∥∞ ≤ ∥u∥∞ ∀n,
(b) un → u a.e. on Ω,

(c) un
∗Ð⇀ u in L∞(Ω) weak∗ σ(L∞, L1).

Proof. Extend u to a function u ∈ L∞(R) by defining u(x) =
⎧⎪⎪⎨⎪⎪⎩

u(x) if x ∈ Ω,
0 otherwise.

For each n define

Kn = {x ∈ Ω ∶ dist(x,Ωc) ≥ 2

n
and ∣x∣ ≤ n},

so that ⋃∞n=1Kn = Ω and each Kn is a compact subset of RN . Set gn = χKnu and un = ρn ⋆ gn, where (ρn) is
a sequence of mollifiers. Observe that by Proposition 4.18, supp un ⊂ supp gn + supp ρn ⊂ Kn +B(0,1/n) and
since each gn ∈ L1

loc(R), applying Proposition 4.20, we have that each un ∈ C∞c (R). Moreover, observe that

Kn + B(0,1/n) ⊂ Ω so that for each n, un ∶= un∣Ω ∈ C∞c (Ω). Note that for any x ∈ Ω, ∣un(x)∣ = ∣ ∫Kn
ρn(x −
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y)u(y)dy∣ ≤ ∥u∥∞ ∫Kn
ρn ≤ ∥u∥∞, which verifies that ∥un∥∞ ≤ ∥u∥∞ for all n. Moreover, for any x ∈ Ω, we have

that for all n large enough,

∣un(x) − u(x)∣ ≤ ∫
B(0,1/n)

∣u(x − y) − u(y)∣ρn(y)dy

≤ ∥ρn∥∞ ∫
B(0,1/n)

∣u(x − y) − u(y)∣dy

= nN ∫
B(0,1/n)

∣u(x − y) − u(y)∣dy → 0 a.e.

by Lebesgue’s Differentiation Theorem. Thus, un → u a.e. on Ω. Finally, toward proving that un
∗Ð⇀ u, fix

φ ∈ C∞c (Ω) and note that

∫
Ω
unφ = ∫

Kn

(ρn ⋆ u)φ

= ∫
Kn

u(ρ̆n ⋆ φ)

= ∫
Ω
u(ρ̆n ⋆ φ) − ∫

Ω∖Kn

u(ρ̆n ⋆ φ)

ÐÐÐ→
n→∞ ∫Ω

uφ,

where ρ̆n(x) = ρn(−x), and the final line above is justified by observing that since ρ̆n is again a sequence of
mollifiers, by Theorem 4.22 ρ̆n ⋆ φ → φ in L1(Ω) as n → ∞. Thus, ∫Ω u(ρ̆n ⋆ φ) → ∫Ω uφ as n → ∞, and

the second integral can be bounded by ∣ ∫Ω∖Kn
u(ρ̆n ⋆ φ)∣ ≤ ∥u∥∞ ∫Ω∖Kn

φ → 0 as n → ∞ since φ is compactly

supported on Ω. Since C∞c (Ω) is dense in L1(Ω) by Theorem 4.23, it follows that un
∗Ð⇀ u in σ(L∞, L1).

2. If u ≥ 0 a.e. on Ω, show that one can also take

(d) un ≥ 0 on Ω ∀n.

Proof. If u ≥ 0 a.e. on Ω, then for each n ∈ N and x ∈ Ω, we have that un(x) = ∫Kn
u(x − y)ρn(y)dy ≥ 0 since

u(x − y)ρn(y) ≥ 0 a.e. on Kn.

3. Deduce that C∞c (Ω) is dense in L∞(Ω) with respect to the topology σ(L∞, L1).

Proof. Fix u ∈ L∞(Ω) and a weak∗ open neighborhood V ⊂ L∞(Ω) of u. By part 1 above, there exists a

sequence (un) ⊂ C∞c (Ω) such that un
∗Ð⇀ u in L∞(Ω) weak∗ σ(L∞, L1). Thus, there must exist some N such

that un ∈ V for all n ≥ N . It follows that every nonempty weak∗ open neighborhood V ⊂ L∞(Ω) contains a
point in C∞c (Ω), and so C∞c (Ω) is dense in L∞(Ω) with respect to σ(L∞, L1).

4.33

Fix a function φ ∈ Cc(R), φ /≡ 0, and consider the family of functions

F =
∞
⋃
n=1
{φn},

where φn(x) = φ(x + n), x ∈ R.

1. Assume 1 ≤ p < ∞. Prove that ∀ε > 0∃δ > 0 such that

∥τhf − f∥p < ε ∀f ∈ F and ∀h ∈ R with ∣h∣ < δ.
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Proof. Fix ε > 0. Since φ ∈ Cc(R), φ is uniformly continuous on R and so there exists some δ > 0 such that
∣φ(x) −φ(y)∣ < ε

∣K∣1/p for all ∣x− y∣ < δ, where K ⊂ R is a compact subset containing supp φ+B(0, δ). Thus, for
all f ∈ F , there exists some n ∈ N such that f = φn, and so for all ∣h∣ < δ

∥τhf − f∥pp = ∫R
∣φ(x + n + h) − φ(x + n)∣pdx

= ∫
K
∣φ(x + h) − φ(x)∣pdx

< εp.

The statement follows.

2. Prove that F does not have compact closure in Lp(R).

Proof. Let N ∈ N be such that φ(x) = 0 for all ∣x∣ > N . Consider the sequence (φ2kN)k≥1 ⊂ F . Observe that
for any j ≠ k,

∥φ2kN − φ2jN∥pp = ∫R
∣φ(x + 2kN) − φ(x + 2jN)∣pdx

= ∫
−(2k−1)N

−(2k+1)N
∣φ(x + 2kN)∣pdx + ∫

−(2j−1)N

−(2j+1)N
∣φ(x + 2jN)∣pdx

= 2∥φ∥pp,

and so (φ2kN) has no convergent subsequence. Since a subset of a metric space is compact if and only if it is
sequentially compact, it follows that the closure of F is not compact in Lp(R).

In what follows, H will always denote a Hilbert space equipped with the scalar product ( , ) and the corre-
sponding norm ∣ ∣.

5.2 Lp is not a Hilbert space for p ≠ 2.

Let Ω be a measure space and assume that there exists a measurable set A ⊂ Ω such that 0 < ∣A∣ < ∣Ω∣. Prove that
the ∥ ∥p norm does not satisfy the parallelogram law for any 1 ≤ p ≤ ∞, p ≠ 2.

Proof. Clearly we’re going to need more than just the assumption that there exists 0 < ∣A∣ < ∣Ω∣. For example, if
Ω = {1,2}, ∣{1}∣ = 1 and ∣{2}∣ = ∞, then we can pick A = {1} and 0 < ∣A∣ < ∣Ω∣ is satisfied and it’s obvious that
for any 1 ≤ p ≤ ∞, Lp(Ω) = {f ∶ f(2) = 0}, so that ∥f∥p = ∣f(1)∣ for all f ∈ Lp(Ω). But then for any f, g ∈ Lp(Ω),

∥ f−g
2
∥
2

p
+ ∥ f+g

2
∥
2

p
= ∣f(1)−g(1)∣

2

4
+ ∣f(1)+g(1)∣

2

4
= 1

2
(∣f(1)∣2 + ∣g(1)∣2) = 1

2
(∥f∥2p + ∥g∥2p). I think the most general condition

required to prove the result is this: In addition to some measurable A with 0 < ∣A∣ < ∣Ω∣, we also have measurable
B ⊂ Ω with A ∩B = ∅ and 0 < ∣B∣ < ∣Ω∣. Then observe that for any p ≠ 2 with 1 ≤ p < ∞, we have that for any x > 0

∥
xχA − 1

∣B∣1/pχB

2
∥
2

p
+ ∥

xχA + 1
∣B∣1/pχB

2
∥
2

p
= 1

2
(xp∣A∣ + 1)

2/p
(1)

and

1

2
∥xχ1∥2p +

1

2
∥ 1

∣B∣1/p
χ2∥2p =

1

2
x2∣A∣2/p + 1

2
. (2)

Differentiating the RHS of (1) with respect to x, we get xp−1∣A∣(xp∣A∣ + 1)(2−p)/p and then differentiating the RHS of
(2) with respect to x, we get x∣A∣2/p. Now picking x = 1

∣A∣1/p , we see that the derivative of (1) simplifies to 2(2−p)/p∣A∣1/p

and the derivative of (2) simplifies to ∣A∣1/p. Since these two terms are equal if and only if p = 2, it follows that (1)
and (2) cannot be equal for all x > 0, proving that the parallelogram law does not hold for p ≠ 2 with 1 ≤ p < ∞.

For p = ∞, observe that ∥ 2χA−χB

2
∥
2

∞
+ ∥ 2χA+χB

2
∥
2

∞
= 2 ≠ 5

2
= 1

2
∥2χA∥2∞ + 1

2
∥χB∥2∞.
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5.3

Let (un) be a sequence in H and let (tn) be a sequence in (0,∞) such that

(tnun − tmum, un − um) ≤ 0 ∀m,n.

1. Assume that the sequence (tn) is nondecreasing (possibly unbounded). Prove that the sequence (un) converges.

Proof. Observe that

2(tnun − tmum, un − um) = 2tn∣un∣2 − 2(tn + tm)(un, um) + 2tm∣um∣2

= 2tn∣un∣2 − tm∣un∣2 + tm∣un∣2 − tn∣um∣2 + tn∣um∣2 + 2tm∣um∣2 − 2(tn + tn)(un, um)
= (tn + tm)(∣un∣2 + ∣um∣2 − 2(un, um)) + (tn − tm)(∣un∣2 − ∣um∣2)
= (tn + tm)∣un − um∣2 + (tn − tm)(∣un∣2 − ∣um∣2).

Thus, for all m ≤ n we have (tm + tn)∣un − um∣2 ≤ (tm − tn)(∣un∣2 − ∣um∣2). Since (tn) is nondecreasing, it
follows that if un ≠ um, then tm < tn. Since the LHS of the inequality is strictly positive, this forces that
∣un∣2 − ∣um∣2 < 0, so that ∣un∣ < ∣um∣. Thus, (∣un∣) is a nonincreasing sequence in R, bounded below by 0, and
therefore converges to a limit. Finally, observe that for all n,m we have that

∣un − um∣2 ≤
tn − tm
tn + tm

(∣um∣2 − ∣un∣2) ≤ ∣um∣2 − ∣un∣2,

and since (∣un∣2) is a Cauchy sequence in R, it follows that (un) is a Cauchy sequence in H and therefore
converges.

2. Assume that the sequence (tn) is nonincreasing. Prove that the following alternative holds:

(i) either ∣un∣ → ∞,

(ii) or (un) converges.

If tn → t > 0, prove that (un) converges, and if tn → 0, prove that both cases (i) and (ii) may occur.

Proof. Observe that for all m ≤ n

0 ≤ ∣un − um∣2 ≤
tm − tn
tm + tn

(∣un∣2 − ∣um∣2) ≤ ∣un∣2 − ∣um∣2,

and it follows that (∣un∣) is a nondecreasing sequence. Thus, either (∣un∣) has some finite limit and is therefore
a Cauchy sequence in R, which forces (un) to be a Cauchy sequence in H by the same inequality, and therefore
converge, or (∣un∣) diverges to infinity. Thus, the first part of the question is proven. Towards proving the
second part, assume first that tn → t > 0. Then observe that (hn) ∶= ( 1

tn
) is a nondecreasing sequence and we

have that

0 ≥ (tnun − tmum, un − um)
= ((tnun) − (tmum), hn(tnun) − hm(tmum))
= (hnvn − hmvm, vn − vm),

for all n,m where vn ∶= tnun. It follows by part 1 above that (vn) converges to some limit v ∈ H, and
since for all n we have that t∣un∣ ≤ tn∣un∣ = ∣vn∣ → ∣v∣, it follows that (∣un∣) is bounded, proving from our
reasoning above that (un) converges. When tn → 0, observe that the constant sequence (un) = (u) always
converges and obviously (tnu − tmu,u − u) ≤ 0, so case (ii) can definitely occur. Moreover, for u ≠ 0, the
sequence (un) = (hnu) obviously has the property that ∣un∣ → ∞ since hn = 1

tn
→ ∞, and we have that

(tnun − tmum, un − um) = (u − u, hnu − hmu) ≤ 0. Thus, case (i) is also possible.
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5.5

1. Let (Kn) be a nonincreasing sequence of closed convex sets in H such that ∩nKn ≠ ∅. Prove that for every
f ∈H the sequence un = PKnf converges (strongly) to a limit and identify the limit.

Proof. Fix f ∈ H and for each n ≥ 1, set un = PKnf . By assumption ∩nKn is nonempty and closed, being the
intersection of closed sets. Moreover, since for any u, v ∈ ∩nKn and t ∈ (0,1), tu + (1 − t)v ∈ Kn ∀n by the
convexity of each Kn, so that tu + (1 − t)v ∈ ∩nKn, it follows that ∩nKn is a nonempty, closed and convex
subset of Km for all m. Define u = P∩nKnf . I claim that un → u. Since Km ⊃ Kn ⊃ ∩jKj for all m ≤ n,
from the definition of the projection, it follows that ∣f − um∣ ≤ ∣f − un∣ ≤ ∣f − u∣. Thus, (∣f − un∣) is a upper-
bounded, nondecreasing sequence in R and therefore converges to some limit. Observe that for any m ≤ n, by
the convexity of Km ⊃ Kn and the definition of the projection, we have that ∣f − um∣ ≤ ∣f − um+un

2
∣. It follows

by the parallelogram law that for all m ≤ n,

1

4
∣un − um∣2 + ∣f − um∣2 ≤

RRRRRRRRRRR
f − un + um

2

RRRRRRRRRRR

2

+
RRRRRRRRRRR

un − um

2

RRRRRRRRRRR

2

= 1

2
∣f − un∣2 +

1

2
∣f − um∣2.

Thus, for all m ≤ n, we have that ∣un −um∣2 ≤ 2(∣f −un∣2 − ∣f −um∣2). Taking the lim sup with respect to n ≥m,
and then with respect to m ≥ 1, it follows that (un) is a Cauchy sequence and therefore converges to some
point u′. Since (un) is eventually entirely contained in Km for each m, and each Km is closed, it follows that
u′ ∈ ∩nKn. But because ∣f − u′∣ = limn→∞ ∣f − un∣ ≤ ∣f − u∣ = minv∈∩nKn ∣f − v∣, and u is the unique element of
∩nKn that minimizes the distance to f , it follows that limn→∞ un = u = P∩nKnf , as claimed.

2. Let (Kn) be a nondecreasing sequence of nonempty closed sets in H. Prove that for every f ∈H the sequence
un = PKnf converges (strongly) to a limit and identify the limit.

Proof. Fix f ∈ H and for each n set un = PKnf . Since for all m ≤ n, we have that Km ⊂ Kn, it follows by the
definition of the projection function that ∣f −un∣ ≤ ∣f −um∣, and so (∣f −un∣) is a lower-bounded, nonincreasing
sequence in R and therefore converges to some limit. Observe that by the convexity of each Kn and the fact that

Km ⊂Kn for eachm ≤ n, applying the definition of the projection we have that ∣f−un∣ ≤ ∣f−un+um

2
∣. By the same

parallelogram law argument as above, we therefore have that for all m ≤ n, ∣un −um∣2 ≤ 2(∣f −um∣2 − ∣f −un∣2).
Taking the lim sup with respect to n ≥m and then with respect to m, we see that (un) is a Cauchy sequence
and therefore converges to some limit u ∈H. Define F = ⋃nKn. Since Kn ⊂Kn+1 ⊂ ⋯, it’s clear that ⋃nKn is
convex by virtue of each Kn being convex, and since the closure of a convex subset is convex, it follows that F
is a nonempty, closed convex set. I claim that u = PF f . Indeed, observe that for all m, um ∈Km ⊂ ⋃nKn ⊂ F ,
and it follows that u = limn→∞ un ∈ F . Moreover, we have that for any v ∈ ⋃nKn, there exists some N such
that v ∈ KN so that ∣f − u∣ ≤ ∣f − uN ∣ ≤ ∣f − v∣. Since ⋃nKn is dense in F , the continuity of ∣ ∣ implies that
∣f − u∣ ≤ ∣f − v∣ for all v ∈ F , proving that u = PF f as claimed.

Let φ ∶ H → R be a continuous function that is bounded from below. Prove that the sequence αn = infKn φ
converges and identify the limit.

Proof. Let C be a finite lower bound for φ. Observe that for any m ≤ n and u ∈ Km ⊂ Kn, we have C ≤
αn = infKn φ ≤ φ(u). Taking the inf over all u ∈ Km, we have that C ≤ αn ≤ αm. Thus, (αn) is a lower-
bounded, nonincreasing sequence in R and therefore converges to some limit. Let F be as defined above. I
claim that limn→∞ αn = infF φ. Since Kn ⊂ F for each n, it’s clear by the same argument as before that
infF φ ≤ infKn φ = αn ∀n. On the other hand, for any v ∈ ⋃nKn, there must exist some N such that v ∈ KN

and so limn→∞ αn ≤ αN = infKN
φ ≤ φ(v). Since ⋃nKn is dense in F , applying the continuity of φ, it follows

that limn→∞ αn ≤ φ(v) for all v ∈ F , and so limn→∞ αn ≤ infF φ. The claim follows.
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5.8

Let Ω be a measure space and let h ∶ Ω→ [0,+∞) be a measurable function. Let

K = {u ∈ L2(Ω) ∶ ∣u(x)∣ ≤ h(x) a.e. on Ω}.

Check that K is a nonempty closed convex set in H = L2(Ω). Determine PK .

Proof. Clearly we have that 0(x) = 0 ≤ h(x) ∀x ∈ Ω, and since 0 ∈ L2(Ω), it follows that 0 ∈ K, confirming that K
is nonempty. Moreover, for any u1, u2 ∈ K and t ∈ (0,1), we have that t∣u1∣ ≤ th a.e. on Ω and (1 − t)∣u2∣ ≤ (1 − t)h
a.e. on Ω. Thus, ∣tu1 + (1 − t)u2∣ ≤ t∣u1∣ + (1 − t)∣u2∣ ≤ th + (1 − t)h = h a.e. on Ω, which confirms that K is convex.
Now towards proving that K is closed in L2(Ω), suppose that a sequence (un) ⊂K converges (strongly in L2(Ω)) to
some point u ∈ L2(Ω). Then there exists some subsequence (unk

) such that unk
→ u a.e. on Ω. Let Nu ⊂ Ω be the

null set where unk
/→ u, and for each k, let Nk ⊂ Ω be the null set where ∣unk

∣ > h. Then Nu ∪ (⋃k Nk) is a null set
and for all x ∉ Nu ∪ (⋃k Nk), we have that ∣u(x)∣ = limk→∞ ∣unk

(x)∣ ≤ h(x), proving that u ∈K and therefore that K
is a nonempty closed convex subset of L2(Ω).

Observe that for any f ∈ L2(Ω), PKf is the unique element u ∈K satisfying ∫Ω(f − u)(v − u)dx ≤ 0 for all v ∈K.
Define u = sgn(f)min(∣f ∣, h). Then u is measurable and we have that ∣u∣ ≤ ∣f ∣ on Ω so that u ∈ L2(Ω). Moreover,
∣u∣ ≤ h on Ω so that u ∈ K. Fix v ∈ K and define A = [(f − u)(v − u) > 0]. Observe that for all x ∈ A, either we
have u(x) < f(x), so that u(x) = h(x), and h(x) = u(x) < v(x), or we have f(x) < u(x), so that u(x) = −h(x), and
v(x) < u(x) = −h(x). In either case, ∣v(x)∣ > h(x) and it follows that A is a null set. Thus, (f − u)(v − u) ≤ 0 a.e. on
Ω, so that ∫ (f − u)(v − u)dx ≤ 0. Since this inequality holds for all v ∈K, it follows that u = PKf .

5.10

Let F ∶ H → R be a convex function of class C1. Let K ⊂ H be convex and let u ∈ H. Show that the following
properties are equivalent:

(i) F (u) ≤ F (v) ∀v ∈K,

(ii) (F ′(u), v − u) ≥ 0 ∀v ∈K.

Example: F (v) = ∣v − f ∣2 with f ∈H given.

Proof. This statement is not true in general: take H = R, u = −1, K = {2} and f = x2. I’m going to assume here Brezis
meant to write ”let u ∈K”. With this assumption in mind, fix F ∶H → R ∈ C1(H), K convex and u ∈K. Assume (i)
holds. Then by the convexity of K, for any t ∈ (0,1) and v ∈K, we have that t(v − u) + u = tv + (1 − t)u ∈K, so that
F (u) ≤ F (t(v − u) + u). It follows that for all t ∈ (0,1) and v ∈ K, (F ′(u), v − u) + o(t) = F (t(v − u) + u) − F (u) ≥ 0.
Taking the limit as t → 0, we get (F ′(u), v − u) ≥ 0, proving that (i) Ô⇒ (ii). Now assume (ii) holds. Fix v ∈ K
and observe that by the convexity of F , for all t ∈ (0,1) we have t(F (v) − F (u)) ≥ F (t(v − u) + u) − F (u) ≥
F (t(v − u) + u) − F (u) − (F ′(u), v − u) = o(t). Thus, F (v) − F (u) ≥ 1

t
o(t) for all t ∈ (0,1), and taking the limit as

t→ 0, we see that F (v) − F (u) ≥ 0, proving that (ii)Ô⇒ (i).

5.11

Let M ⊂H be a closed linear subspace that is not reduced to {0}. Let f ∈H, f ∉M⊥.

1. Prove that
m = inf

u∈M
∣u∣=1

(f, u)

is uniquely achieved.

Proof. Set K =M ∩BH and note that since M and BH are both closed and convex, K is closed and convex.
Define φ ∶H → R; u↦ (f, u). Clearly φ is a bounded linear functional on H and so is convex and l.s.c. Since H
is reflexive, φ /≡ ∞ and K is bounded, we can apply Corollary 3.23 to conclude that φ achieves its minimum on
K. Let u be a minimum for φ. Towards proving that ∣u∣ = 1, observe that because f ∉M⊥, it follows that there
exists some v ∈ M such that (f, v) < 0, and by potentially scaling v, we may assume WLOG that v ∈ K, so
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that (f, u) ≤ (f, v) < 0. Now we have that u
∣u∣ ∈K, and so if it were the case that ∣u∣ ≠ 1, then since u ∈ BH , we

would have that ∣u∣ < 1, so that (f, u
∣u∣) =

1
∣u∣(f, u) < (f, u), which is absurd. Thus, since {v ∈M ∶ ∣v∣ = 1} ⊂ K,

it follows that u achieves the minimum infv∈M
∣v∣=1
(f, v). Finally, to see that u uniquely achieves this minimum,

suppose towards a contradiction that there exists some u′ ∈K such that (f, u′) = (f, u) and u′ ≠ u. We showed
above that every minimum of K must have norm 1. However, we have that 1

2
u + 1

2
u′ ∈ K and this element

achieves the minimum since (f, u) = (f, 1
2
u + 1

2
u′), which produces a contradiction as H is uniformly convex,

so strictly convex, implying that ∣ 1
2
u + 1

2
u′∣ < 1. Thus, u is the unique element that achieves the minimum

m = infv∈M
∣v∣=1
(f, v).

2. Let φ1, φ2, φ3 ∈ H be given and let E denote the linear space spanned by {φ1, φ2, φ3}. Determine m in the
following cases:

(i) M = E,

Solution

By possibly performing Gram-Schmidt, we may assume WLOG that φ1, φ2, φ3 is an orthonormal basis
for E. Observe that f = PEf + PE⊥f , and so for all u ∈ E, we have (f, u) = (PEf + PE⊥f, u) = (PEf, u).
Thus, for all u ∈ E with ∣u∣ = 1, we have (f, u) = (PEf, u) ≥ −∣PEf ∣. Set u0 = − PEf

∣PEf ∣ ∈ E and observe that

∣u0∣ = 1 and (f, u) = −∣PEf ∣. It follows that m = −∣PEf ∣ = −∣∑i(φi, f)φi∣ = −
√
∑i ∣(φi, f)∣2.

(ii) M = E⊥

Solution

Regurgitating the exact same argument as above but replacing E with E⊥, we see that m = −∣PE⊥ ∣. Since
∣f ∣2 = ∣PEf ∣2 + ∣PE⊥f ∣2, it follows that m = −

√
∣f ∣2 − ∣PEf ∣2 = −

√
∣f ∣2 −∑i ∣(f,φi)∣2.

3. Examine the case in which H = L2(0, 1), φ1(t) = t, φ2(t) = t2, φ3(t) = t3.

Solution

After performing Gram-Schmidt on φ1, φ2, φ3, we get the orthonormal basis e1(t) =
√
3t, e2(t) =

√
5(4t2 −

3t), e3(t) =
√
7(15t3 − 20t2 + 6t). From our results in part 2 above, it follows that

mE = −

¿
ÁÁÁÀ3
RRRRRRRRRRR
∫

1

0
f(t)t dt

RRRRRRRRRRR

2

+ 5
RRRRRRRRRRR
∫

1

0
f(t)(4t2 − 3t)dt

RRRRRRRRRRR

2

+ 7
RRRRRRRRRRR
∫

1

0
f(t)(15t3 − 20t2 + 6t)dt

RRRRRRRRRRR

2

,

and mE⊥ =
√
∣f ∣2 −m2

E .

5.14

Let a ∶H ×H → R be a bilinear continuous form such that

a(v, v) ≥ 0 ∀v ∈H.

Prove the the function v ↦ F (v) = a(v, v) is convex, of class C1, and determine its differential.

Proof. Since a is a continuous bilinear form, there exists C ≥ 0 such that ∣a(u, v)∣ ≤ C ∣u∣∣v∣ for all u, v ∈ H. Thus,
if un → u, then ∣F (un) − F (u)∣ = ∣a(un − u,un) − a(u − un, u)∣ ≤ C ∣un − u∣(∣un∣ + ∣u∣) → 0. Since H is a metric

40



space, this proves that F is continuous. Fix v, u ∈ H and t ∈ (0,1). Since a(u − v, u − v) ≥ 0, it follows that
a(u, v) + a(v, u) ≤ F (u) + F (v), and therefore

F (tv + (1 − t)u) ≤ t2F (v) + (1 − t)2F (u) + t(1 − t)(F (u) + F (v))
= t(tF (v) + (1 − t)(F (u) + F (v))) + (1 − t)2F (u)
= t((1 − t)F (v) + (tF (v) + (1 − t)F (u)) + (1 − t)2F (u)
= (1 − t)((1 − t)F (u) + tF (v)) + t(tF (v) + (1 − t)F (u))
= tF (v) + (1 − t)F (u),

proving that F is convex. Towards proving that F ∈ C1, observe that for all u,h ∈H,

∣F (u + h) − F (u) − a(u,h) − a(h,u)∣
∣h∣

= ∣a(u + h,u + h) − a(u,u + h) − a(h,u)∣
∣h∣

= ∣a(h,h)∣
∣h∣

≤ C ∣h∣.

Thus, the LHS goes to 0 as ∣h∣ → 0, and since the map φu ∶ h ∈H ↦ a(u,h) + a(h,u) is a continuous linear functional
on H, it follows that F ∈ C1 and F ′(u) = φu.

5.15

Let G ⊂H be a linear subspace of a Hilbert space H; G is equipped with the norm of H. Let F be a Banach space.
Let S ∶ G → F be a bounded linear operator. Prove that there exists a bounded linear operator T ∶ H → F that
extends S and such that

∥T ∥L(H,F ) = ∥S∥L(G,F ).

Proof. By Exercise 1.6, G is either dense or closed in H. If G is dense in H then S extends uniquely to some bounded
linear operator T on H since S is bounded and so uniformly continuous on a dense subset of H. That is, for any
u ∈ H, we pick any sequence (un) ⊂ G that converges to u in H. Since ∣S(un − um)∣F ≤ ∥S∥∣un − um∣H , (Sun) is a
Cauchy sequence in F and therefore converges to some point Tu ∈ F . Observe that if (vn) ⊂ G is another sequence
converging to u, then ∣Tu −Svn∣ ≤ ∣Tu − Sum∣ + ∥S∥∣um − vn∣ → 0, and so T is a well defined function from H into F .
That T is linear and extends S is clear. To see that T is bounded, fix v ∈H and pick a sequence (un) ⊂ G such that
un → v. Then ∣Tv∣ = limn→∞ ∣Sun∣ ≤ limn→∞ ∥S∥∣un∣ = ∥S∥∣v∣. Hence, T is bounded and ∥T ∥L(H,F ) ≤ ∥S∥L(G,F ). Since
T extends S, it’s clear that ∥S∥L(G,F ) ≤ ∥T ∥L(H,F ), and the case where G is dense in H follows.

Suppose now that G is not dense in H so that G is a closed linear subspace. Define T ∶H → F by Tv = S ○ PGv.
Since PGu = u for all u ∈ G, T extends S. Moreover, because S ∈ L(G,H) and PG ∈ L(H,G), it follows that
T ∈ L(H,F ). For any v ∈ H, we have ∥Tv∥ ≤ ∥S∥∥PG∥∣v∣ = ∥S∥∣v∣, proving that ∥T ∥L(H,F ) ≤ ∥S∥L(G,F ). Again, since
T is an extension of S, the inequality in the other direction follows, and so ∥T ∥L(H,F ) = ∥S∥L(G,F ), as required.

5.16 The triplet V ⊂H ⊂ V ⋆.

Let H be a Hilbert space equipped with the scalar product ( , ) and the corresponding norm ∣ ∣. Let V ⊂ H
be a linear subspace that is dense in H. Assume that V has its own norm ∥ ∥ and that V is a Banach space for
∥ ∥. Assume also that the injection V ⊂ H is continuous, i.e., ∣v∣ ≤ C∥v∥∀v ∈ V . Consider the operator T ∶ H → V ⋆

defined by
⟨Tu, v⟩V ⋆,V = (u, v) ∀u ∈H, ∀v ∈ V.

1. Prove that ∥Tu∥V ⋆ ≤ C ∣u∣ ∀u ∈H.

Proof. Fix u ∈ H. Note that for all v ∈ V , ∣⟨Tu, v⟩∣ = ∣(u, v)∣ ≤ ∣u∣∣v∣ ≤ C ∣u∣∥v∥, and so ∥Tu∥V ⋆ ≤ C ∣u∣ for all
u ∈H.

2. Prove that T is injective.
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Proof. Fix u,u′ ∈ H and suppose that Tu = Tu′. Then for all v ∈ V , (u − u′, v) = ⟨T (u − u′), v⟩ = 0. Since V is
dense in H, the continuity of ( , ) implies that (u−u′, v) = 0 for all v ∈H, and so u−u′ = 0, proving that T
is injective.

3. Prove that R(T ) is dense in V ⋆ if V is reflexive.

Proof. Towards a contradiction, suppose that V is reflexive but R(T ) is not dense in V ⋆. Since R(T ) is a
linear subspace of V ⋆, the fact that R(T ) is not dense in V ⋆ implies that R(T ) is closed (by Exercise 1.6).
Pick some f ∉ R(T ) and apply the second geometric form of the Hahn-Banach theorem to get a bounded linear
functional ξ ∈ V ⋆⋆ and some ε > 0 such that ⟨ξ, Tu⟩ < ⟨ξ, f⟩ − ε for all u ∈ H. It follows that ⟨ξ, Tu⟩ = 0 for all
u ∈ H and ξ /≡ 0. But since V is reflexive, there exists some u ∈ V such that ⟨ξ, v∗⟩V ⋆⋆,V ⋆ = ⟨v∗, u⟩V ⋆,V for all
v∗ ∈ V ⋆ and it follows that 0 = ⟨ξ, Tu⟩ = ⟨Tu,u⟩ = ∣u∣2, so that u = 0 which is absurd because we then have that
⟨f,0⟩ = ⟨ξ, f⟩ > 0. By contradiction, if V is reflexive then R(T ) is dense in V ⋆.

4. Given f ∈ V ⋆, prove that f ∈ R(T ) iff there is a constant a ≥ 0 such that ∣⟨f, v⟩V ⋆,V ∣ ≤ a∣v∣ ∀v ∈ V .

Proof. Fix f ∈ V ⋆. Clearly if f ∈ R(T ), then we have some u ∈ H such that for all v ∈ V , ∣⟨f, v⟩∣ = ∣⟨Tu, v⟩∣ =
∣(u, v)∣ ≤ ∣u∣∣v∣, and so we can choose a = ∣u∣ ≥ 0. Now suppose that there exists some a ≥ 0 such that ∣⟨f, v⟩∣ ≤ a∣v∣
for all v ∈ V . Then f ∣V is a bounded linear functional on the subspace V ⊂ H with respect to the norm ∣ ∣,
and so by the analytic form of the Hahn-Banach theorem, there exists an extension F ∈H⋆ of f . By the Riesz
Representation Theorem for Hilbert spaces, there exists some u ∈ H such that ⟨F, v⟩ = (u, v) for all v ∈ H. It
follows that for all v ∈ V , ⟨Tu, v⟩ = (u, v) = ⟨F, v⟩ = ⟨f, v⟩, and so f ∈ R(T ).

5.20

Assume that S ∈ L(H) satisfies (Su,u) ≥ 0∀u ∈H.

1. Prove that N(S) = R(S)⊥.

Proof. Fix u ∈ N(S). Observe that for all v ∈H, since 0 ≤ (S(v−u), v−u) = (Sv, v−u), it follows that ((Sv, u) ≤
(Sv, v). Now fix v ∈H. For every t > 0 we have that (S(tv), u) ≤ (S(tv), tv), so that (Sv, u) ≤ t(Sv, v). Taking
the limit as t → 0, we have that (Sv, u) ≤ 0. We also have that for all t < 0, (S(tv), u) ≤ (S(tv), tv), and so
(Sv, u) ≥ t(Sv, v). Taking the limit as t → 0, we get (Sv, u) ≥ 0, showing that u ⊥ Sv. Since this holds for all
v ∈H, we have that u ∈ R(S)⊥. Thus, N(S) ⊂ R(S)⊥ = N(S⋆). Observe that (Su,u) ≥ 0 ∀u ∈H implies that
(S⋆u,u) = (u,Su) ≥ 0 ∀u ∈H. Thus, N(S⋆) ⊂ R(S⋆)⊥ = N(S), proving that N(S) = N(S⋆) = R(S)⊥.

2. Prove that I + tS is bijective for every t > 0.

Proof. Fix t > 0. Suppose that u ∈ N(I + tS), so that u = −tSu. Then 0 ≤ (Su,u) = −t(Su,Su) = −t∣Su∣2, which
implies that u ∈ N(S). Thus, u = −tSu = 0, proving that I + tS is injective. Towards proving that I + tS is
surjective, fix v ∈ H and define the bilinear form a ∶ H ×H → R; (x, y) ↦ (x + tSx, y). Observe that for all
x, y ∈ H, ∣a(x, y)∣ ≤ ∣x + tSx∣∣y∣ ≤ (1 + t∥S∥)∣x∣∣y∣ and a(x,x) = ∣x∣2 + t(Sx,x) ≥ ∣x∣2, proving that a is continuous
and coercive. Thus, by Lax-Milgram, there exists a unique element u ∈ H such that a(u,x) = ⟨φ,x⟩ for all
x ∈H, where φ ∶ x ∈H ↦ (v, x). That is, there exists unique u ∈H such that (u + tSu, x) = (v, x) for all x ∈H,
proving that u + tSu = v. It follows that I + tS is a bijection.

3. Prove that
lim

t→+∞
(I + tS)−1f = PN(S)f ∀f ∈H.

Proof. Suppose first that f ∈ N(S). Fix t > 0 and set ut = (I + tS)−1f . Observe that since N(S) = R(S)⊥,
we have (Sut, ut) + t∣Sut∣2 = (Sut, f) = 0. Since (Sut, ut) and t∣Sut∣2 are both at nonnegative, it follows that
∣Sut∣ = 0 so that f = ut + tSut = ut. Thus, limt→∞(I + tS)−1f = f for all f ∈ N(S).

Now suppose that f ∈ R(S). Then there exists v ∈ H such that f = Sv. Fix t > 0 and set ut = (I + tS)−1f , so
that ut + tSut = Sv. Since ut + S(tut − v) = 0, it follows that (ut, tut − v) = −(S(tut − v), tut − v) ≤ 0. Thus,
t∣ut∣2 ≤ (ut, v) ≤ ∣ut∣∣v∣, and so ∣ut∣ ≤ 1

t
∣v∣. Taking the limit as t→∞, we have limt→∞(I + tS)−1f = limt→∞ ut = 0.
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Applying Exercise 5.15 with G = R(S), it follows that limt→∞(I + tS)−1∣R(S) = 0.

Since H = N(S) ⊕N(S)⊥ = N(S) ⊕ (R(S)⊥)⊥ = N(S) ⊕R(S), for any f ∈H, we have that

lim
t→∞
(I + tS)−1f = lim

t→∞
(I + tS)−1(PN(S)f + PR(S)f) = PN(S)f.

5.22

Let C ⊂H be a nonempty closed convex set and let T ∶ C → C be a nonlinear contraction, i.e.,

∣Tu − Tv∣ ≤ ∣u − v∣ ∀u, v ∈ C.

1. Let (un) be a sequence in C such that

un ⇀ u weakly and (un − Tun) → f strongly.

Prove that u − Tu = f .

Proof. Note that since C is convex and strongly closed, C is weakly closed and so u ∈ C. Moreover, since T is
a contraction, we have the following chain of inequalities

∣un − u∣2 ≥ ∣Tun − Tu∣2

= ∣(u − Tu) − (un − Tun) − (u − un)∣2

= ∣(u − Tu) − (un − Tun)∣2 + ∣un − u∣2 − 2((u − Tu) − (un − Tun), u − un).

Thus, it follows that ∣(u−Tu)−(un−Tun)∣2 ≤ 2((u−Tu)−(un−Tun), u−un) for all n. Since (u−Tu)−(un−Tun) →
u− Tu− f strongly and u− un ⇀ 0 weakly, it follows that ∣(u− Tu) − f ∣2 = limn→∞ ∣(u − Tu) − (un − Tun)∣2 = 0.
Thus, u − Tu = f , as required.

2. Deduce that if C is bounded and T (C) ⊂ C, then T has a fixed point.

Proof. Fix a ∈ C and ε ∈ (0,1). Observe that for any u ∈ C, (1 − ε)Tu + εa ∈ C by the convexity of C. Define
Fε ∶ C → C; u ↦ (1 − ε)Tu + εa. Note that Fε is a strict contraction since for any u, v ∈ C, ∣Fεu − Fεv∣ =
(1 − ε)∣Tu − Tv∣ ≤ (1 − ε)∣u − v∣. Since C is closed subspace of H, C is a complete metric space with respect to
the metric induced by the norm on C, and so by the Banach-fixed point theorem, there exists unique uε ∈ C
such that (1 − ε)Tuε + εa = Fεuε = uε. For each n ≥ 1, define un ∶= u 1

n
. Since C is bounded, (un) is a bounded

sequence in H and therefore there exists subsequence (unk
) that converges weakly to some u ∈ H. Moreover,

unk
− Tunk

= 1
nk
(a − Tunk

) → 0 strongly as k → ∞ (since (Tunk
) ⊂ C is bounded). Thus, by part 1 above,

u − Tu = 0, and so T has a fixed point.

5.26

Assume that (en) is an orthonormal basis of H.

1. Check that en ⇀ 0 weakly.

Proof. Fix u ∈ H and observe that by Parseval’s identity, ∑n ∣(en, u)∣2 = ∣u∣2 < ∞. Thus, ∣(en, u)∣2 → 0 as
n→∞, and it follows that (en, u) → 0 as n→∞ for all u ∈H, so that en ⇀ 0 weakly.

Let (an) be a bounded sequence in R and set un = 1
n ∑

n
i=1 aiei.

2. Prove that ∣un∣ → 0.

Proof. By assumption, there exists C ≥ 0 such that ∣an∣ ≤ C for all n. Observe that ∣un∣2 = 1
n2 ∑n

i=1 ∣ai∣2 ≤
1
n2 ∑n

i=1C
2 = 1

n
C2. It follows that for all n, ∣un∣ ≤ 1√

n
C, which goes to 0 as n→∞.
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3. Prove that
√
nun ⇀ 0 weakly.

Proof. Fix v ∈H. Observe that for any m ≥ 1 and for all n ≥m, we have that (
√
nun, em) = am√

n
→ 0 as n→∞.

It follows that for all v ∈ span(ei)i≥1, (
√
nun, v) → 0 as n → ∞. Since span(ei)i≥1 is dense in H, there exists

a sequence (vn) ⊂ span(ei)i≥1 such that vn → v strongly. Fix ε > 0 and pick M such that ∣vm − v∣ < ε
2C

for all
m ≥M . Choose N such that ∣(

√
nun, vM)∣ < ε

2
. Then for all n ≥ N

∣(
√
nun, v)∣ ≤ ∣(

√
nun, vM)∣ + ∣(

√
nun, v − vM)∣

≤ ε

2
+C ∣v − vM ∣ < ε.

It follows that limn→∞(
√
nun, v) = 0 for all v ∈H, proving that

√
nun ⇀ 0 weakly.

5.28

Assume that H is separable.

1. Let V ⊂H be a linear subspace that is dense in H. Prove that V contains an orthonormal basis of H.

Proof. Since H is separable, so is V . Let (vn) be a countable dense subset of V . Let Fk denote the linear
subspace of V spanned by {v1, . . . , vk}. The sequence (Fk) is a nondecreasing sequence of finite dimensional
subspaces of V such that ⋃∞k=1{vn} ⊂ ⋃∞k=1 Fk is dense in V , and therefore in H. Now pick any unit vector
e1 ∈ F1 and assume that we have picked a nondecreasing sequence of orthonormal bases for F1, . . . , Fk−1, which
we shall denote by {e1} ⊂ ⋯ ⊂ {e1, . . . , enk−1}. Then we can construct an orthonormal basis of Fk that includes
{e1, . . . , enk−1} as follows: if span(e1, . . . , enk−1) = Fk then choose {e1, . . . , enk−1}. Otherwise pick any vector vk ∈
Fk ∖ span(ei)k−1i=1 and perform Gram-Schmidt to get the orthonormal basis {e1, . . . , enk−1 , ek} ⊃ {e1, . . . , enk−1}
of Fk. Repeating this process for each k ≥ 1, we get an orthonormal sequence (en) ⊂ V whose span is equal to

⋃∞k=1 Fk, which is dense in H. Thus, (en) ⊂ V is an orthonormal basis of H, as required.

2. Let (en)n≥1 be an orthonormal sequence in H, i.e., (ei, ej) = δij . Prove that there exists an orthonormal basis
of H that contains ⋃∞n=1{en}.

Proof. Let E = span(en). If E = H, then we’re done so suppose WLOG that E ⫋ H. Clearly (en) is an
orthonormal basis for E. Since E⊥ is a closed linear subspace of H, E⊥ is a separable Hilbert space with
respect to the inner product ( , ), and so by Theorem 5.11, E⊥ has an orthonormal basis (vn)∞n=1 ⊂ E⊥.
Define (un)∞n=1 by u2n = en and u2n−1 = vn. Since en ⊥ vm for all n,m, it’s clear that (un) is an orthonormal

sequence. Moreover, span(un) ⊃ span(en) = E and span(un) ⊃ span(vn) = E⊥. Since span(un) is a linear

subspace of H, it follows that H = E ⊕ E⊥ ⊂ span(yn), proving that (un) is an orthonormal basis of H
containing ⋃∞n=1{en}.

5.30

Let (en)n≥1 be an orthonormal sequence in H = L2(0,1). Let p(t) be a given function in H.

1. Prove that for every t ∈ [0,1], one has

∞
∑
n=1

RRRRRRRRRRR
∫

t

0
p(s)en(s)ds

RRRRRRRRRRR

2

≤ ∫
t

0
∣p(s)∣2ds. (1)

Proof. Since L2(0,1) is separable, we can apply Exercise 5.28 to extend (en) to an orthonormal basis (un) of
L2(0,1). Observe that ∣pχ[0,1]∣ ≤ ∣p∣ for all x ∈ (0,1), and so pχ[0,1] ∈ L2(0,1). Applying Parseval’s identity, we
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have

∞
∑
n=1

RRRRRRRRRRR
∫

t

0
p(s)en(s)ds

RRRRRRRRRRR

2

=
∞
∑
n=1

RRRRRRRRRRR
∫

1

0
p(s)χ[0,t](s)en(s)ds

RRRRRRRRRRR

2

≤
∞
∑
n=1

RRRRRRRRRRR
∫

1

0
p(s)χ[0,t](s)un(s)ds

RRRRRRRRRRR

2

= ∫
1

0
∣p(s)χ[0,t](s)∣2ds

= ∫
t

0
∣p(s)∣2ds.

2. Deduce that
∞
∑
n=1
∫

1

0

RRRRRRRRRRR
∫

t

0
p(s)en(s)ds

RRRRRRRRRRR

2

dt ≤ ∫
1

0
∣p(t)∣2(1 − t)dt. (2)

Proof. Applying the inequality from part 1 above, we have

∞
∑
n=1
∫

1

0

RRRRRRRRRRR
∫

t

0
p(s)en(s)ds

RRRRRRRRRRR

2

dt = ∫
1

0

∞
∑
n=1

RRRRRRRRRRR
∫

t

0
p(s)en(s)ds

RRRRRRRRRRR

2

dt (Monotone Convergence Theorem)

≤ ∫
1

0
∫

t

0
∣p(s)∣2dsdt

= ∫
1

0
∫

1

0
∣p(s)∣2χ[s≤t](s, t)dsdt

= ∫
1

0
∫

1

0
∣p(s)∣2χ[s≤t](s, t)dtds (Fubini’s Theorem)

= ∫
1

0
∣p(s)∣2(1 − s)ds.

3. Assume now that (en)n≥1 is an orthonormal basis of H. Prove that (1) and (2) become equalities.

Proof. Since (en) is an orthonormal basis, we don’t need to extend (en) to the basis (un) in part 1 above, and
so the line with the inequality is removed, giving equality. E.g., we apply Parseval’s identity with (en) to get

∑∞n=1 ∣(en, pχ[0,t])∣2 = ∥pχ[0,t]∥22. Observe that the only inequality in my proof of part 2 is now an equality, and
so (2) also becomes an equality.

4. Conversely, assume that equality holds in (2) and that p(t) ≠ 0 a.e. Prove that (en)n≥1 is an orthonormal basis.

Proof. Observe from the chain of (in)equalities in part 2 that equality in (2) forces that

0 = ∫
1

0
∫

t

0
∣p(s)∣2ds −

∞
∑
n=1

RRRRRRRRRRR
∫

t

0
p(s)en(s)ds

RRRRRRRRRRR

2

dt

= ∫
1

0

RRRRRRRRRRR
∫

t

0
∣p(s)∣2ds −

∞
∑
n=1

RRRRRRRRRRR
∫

t

0
p(s)en(s)ds

RRRRRRRRRRR

2RRRRRRRRRRR
dt,

and it follows that ∑∞n=1 ∣ ∫
t
0 p(s)en(s)ds∣

2

= ∫
t
0 ∣p(s)∣

2ds for almost all t ∈ [0,1]. Thus, equality in (2) im-

plies equality for almost all t ∈ [0,1] in (1). Extend (en) to an orthonormal basis (un) of L2(0,1). To-
wards a contradiction, suppose that there exists some m such that um ∉ (en). Then we have that for t a.e.

∑∞n=1 ∣(un, pχ[0,t])∣2 = ∥pχ[0,1]∥22 = ∑
∞
n=1 ∣(en, pχ[0,t])∣2, which forces that ∣(um, pχ[0,t])∣ = 0 for almost all t ∈ [0,1].

That is, ∫
t
0 um(s)p(s)ds = 0 for almost all t ∈ [0,1], and since t ↦ ∫

t
0 um(s)p(s)ds is a continuous function, it
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follows that ∫
t
0 um(s)p(s)ds = 0 for all t ∈ [0,1]. Thus, ∫

t2
t1

um(s)p(s)ds = 0 for all (t1, t2) ⊂ [0,1], which implies

that ump = 0 a.e. on [0,1]. Since p ≠ 0 a.e. on [0,1], we must have that um = 0 a.e., so that ∥um∥22 = ∫
1
0 ∣um∣2 = 0,

which contradicts the fact that um is a unit vector. Thus, by contradiction, ⋃n{en} = ⋃n{un}, proving that
(en) is an orthonormal basis for L2(0,1).

6.1

Let E = ℓp with 1 ≤ p ≤ ∞. Let (λn) be a bounded sequence in R and consider the operator T ∈ L(E) defined by

Tx = (λ1x1, λ2x2, . . . , λnxn, . . .),

where
x = (x1, x2, . . . , xn, . . .).

Prove that T is a compact operator from E into E iff λn → 0.

Proof. It’s clear that T ∈ L(ℓp) with ∥T ∥ = supn ∣λn∣. Observe that for any n with λn ≠ 0, δnm ∈ N(T − λnI),
where δnm is the sequence with 1 in the nth position and zeroes elsewhere. Hence, N(T − λnI) ⫌ {0}, proving that
{λn ∶ λn ≠ 0} ⊂ EV(T ) ∖ {0} ⊂ σ(T ) ∖ {0}. Thus, by Lemma 6.2, if T ∈ K (ℓp), then either {λn ∶ λn ≠ 0} is finite or
{λn ∶ λn ≠ 0} is a subset in R with limit point 0. In either case, the sequence (λn) converges to 0, proving the ”only
if” direction.

For the ”if” direction, suppose that λn → 0. Then for each n, define Tn ∈ L(ℓp); x ↦ (λ1x1, . . . , λnxn,0, . . .).
Clearly each Tn has finite rank and is therefore compact. Observe that for any x ∈ ℓp

∥(T − Tn)x∥p = ∥(0, . . . ,0, λn+1xn+1, λn+2xn+2, . . .)∥p ≤max
m≥n
∣λm∣∥x∥p,

proving that ∥T − Tn∥ ≤ maxm≥n ∣λm∣ → 0 as n → ∞. Thus, T is a compact operator, being the limit of compact
operators.

6.2

Let E and F be two Banach spaces, and let T ∈ L(E, F ).

1. Assume that E is reflexive. Prove that T (BE) is closed (strongly).

Proof. By Kakutani’s Theorem, E reflexive implies that BE is weakly compact. Since T is continuous from E
with the weak topology σ(E, E⋆) into F with the weak topology σ(F, F ⋆) by Theorem 3.10, it follows that
T (BE) is a weakly compact subset of F . In particular, T (BE) is weakly closed and therefore strongly closed
in F .

2. Assume that E is reflexive and that T ∈ K (E, F ). prove that T (BE) is compact.

Proof. By part 1 above, T (BE) is (strongly) closed. Thus, since T is a compact operator, T (BE) = T (BE) is
(strongly) compact.

3. Let E = F = C([0,1]) and Tu(t) = ∫
t
0 u(s)ds. Check that T ∈ K (E). Prove that T (BE) is not closed.

Proof. It’s clear that T is a bounded linear operator (linearity is obvious, the range of T being contained in

C([0,1]) follows by the continuity of t ↦ ∫
t
0 u for any (locally integrable) u, and boundedness follows by the

fact that ∥Tu∥C([0,1]) = maxt∈[0,1] ∣Tu(t)∣ ≤ maxt∈[0,1] ∫
t
0 ∣u∣ = ∥u∥C([0,1])). Now towards proving that T is a

compact operator, observe that for any u ∈ BE and t ∈ [0,1]

∣Tu(t + h) − Tu(t)∣ =
RRRRRRRRRRR
∫

t+h

t
u(s)ds

RRRRRRRRRRR
≤ ∣h∣.
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Thus, clearly T (BE) is an equicontininuous subset of C([0,1]). Moreover, for any u ∈ BE , ∥Tu∥C([0,1]) ≤ ∥T ∥ =
1, and so T (BE) is equibounded. By Arzelà-Ascoli, it follows that T (BE) is a compact subset of C([0,1]),
and so T ∈ K (E).

Finally, towards proving that T (BE) is not closed, observe that by the Fundamental Theorem of Calculus
Part I, T (BE) ⊂ C1([0,1]) and so it suffices to construct a sequence (un) ⊂ BE such that Tun converges to a
function not belonging to C1([0,1]). Define the sequence (un) ⊂ BE by

un(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, t ∈ [0, 1
2
],

n(t − 1/2), t ∈ [ 1
2
, 1
2
+ 1

n
],

1, t ∈ [ 1
2
+ 1

n
,1].

Clearly limn→∞ Tun(t) = (t − 1
2
)χ[ 12 ,1](t), and since this function is not differentiable at t = 1

2
, it follows that

limn→∞ Tun ∉ C1([0,1]). Thus, T (BE) is not closed.

6.3

Let E and F be two Banach spaces, and let T ∈ K (E, F ). Assume dimE = ∞. Prove that there exists a sequence
(un) in E such that ∥un∥E = 1 and ∥Tun∥F → 0.

Proof. Towards a contradiction, suppose that there exists no sequence (un) ⊂ SE such that ∥Tun∥F → 0. Then there
must exist some ε > 0 such that ∥Tu∥ ≥ ε for all u ∈ SE (or else we could clearly construct a sequence (un) ⊂ SE such
that ∥Tun∥F → 0). It follows that for all u ∈ E, ∥Tu∥ ≥ ε∥u∥. Since dimE = ∞, applying Riesz’s Lemma, there exists
a sequence (un) ⊂ SE such that ∥un − um∥E ≥ 1

2
for all n ≠m. But then for all n ≠m,

∥Tun − Tum∥ ≥ ε∥un − um∥ ≥
ε

2
,

and so (Tun) is a sequence in T (BE) without any convergent subsequence, which is absurd since T is a compact
operator. Thus, by contradiction, there must exist a sequence (un) ⊂ BE such that ∥Tun∥F → 0.

6.5

Let (λn) be a sequence of positve numbers such that limn→∞ λn = +∞. Let V be the space of sequences (un)n≥1 such
that

∞
∑
n=1

λn∣un∣2 < ∞.

The space V is equipped with the scalar product

((u, v)) =
∞
∑
n=1

λnunvn.

Prove that V is a Hilbert space and the V ⊂ ℓ2 with compact injection.

Proof. Observe that for any (un), (vn) ∈ V and α1, α2 ∈ R, by the convexity of x↦ x2

∞
∑
n=1

λn∣α1un + α2vn∣2 ≤ ∣α1∣
∞
∑
n=1

λn∣un∣2 + ∣α2∣
∞
∑
n=1

λn∣vn∣2 < ∞,

and since the zero sequence clearly belongs to V , it follows that V is a vector space. Towards proving that V ⊂ ℓ2,
suppose that (un) ∉ ℓ2, so that ∑∞n=1 ∣un∣2 = ∞. Then for any N ≥ 1, ∑∞n=N ∣un∣2 = ∞, and since λn → +∞, there
exists some N0 such that λn ≥ 1 for all n ≥ N0. Thus, ∑∞n=1 λn∣un∣2 ≥ ∑∞n=N0

λn∣un∣2 ≥ ∑∞n=N0
∣un∣2 = ∞, proving that

(un) ∉ V . It follows that V ⊂ ℓ2.

Towards proving that V is a Hilbert space with respect to (( , )), note that (( , )) is clearly a symmetric,
positive-definite bilinear form on V , and so it suffices to verify that V is a Banach space with respect to the norm
induced by (( , )). To this end, fix a Cauchy sequence (un) ⊂ V . Then we have that ∑∞n=1 λn∣um1

n − um2
n ∣2 → 0
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as m1,m2 →∞. It follows that (
√
λnu

m
n )m≥1 is a Cauchy sequence in ℓ2 and therefore converges to some (un) ∈ ℓ2.

Observe that ∑∞n=1 λn∣ 1√
λn

un∣
2

= ∥u∥22 < ∞, so that ( 1√
λn

un) ∈ V . Moreover,

∞
∑
n=1

λn∣um
n −

1√
λn

un∣
2

=
∞
∑
n=1
∣
√
λnu

m
n − un∣

2

→ 0 as m→∞.

It follows that (un) converges to u ∈ V with respect to (( , )), and so V is a Hilbert space.

Finally, to see that the injection ι ∶ V → ℓ2 is a compact operator, note first that ι ∈ L(V, ℓ2). Indeed, it’s obvious
that ι is linear and if (un) ⊂ V converges in V to (un) ∈ V , then let N be such that λn ≥ 1 for all n ≥ N and note
that

∞
∑
n=1
∣um

n − un∣2 ≤
1

mini∈{1,...,N} λi

∞
∑
n=1

λn∣um
n − un∣2 → 0 as m→∞.

It follows that ι(un) → ι(u) in ℓ2, which verifies that ι is a bounded linear operator. For each n, define ιn ∈
L(V, ℓ2); (u1, . . . , un, un+1, . . .) ↦ (u1, . . . , un,0, . . .). Clearly each ιn has finite rank and for any u ∈ V ,

∥ι(u) − ιn(u)∥2 =
∞
∑

k=n+1
∣uk ∣2 ≤

1

mini≥n+1 λi

∞
∑
n=1

λn∣un∣2 =
1

mini≥n+1 λi
∥u∥V .

Since mini≥n λn →∞, it follows that ιn → ι in L(V, ℓ2), and so ι is a compact operator.

6.7

Let E and F be two Banach spaces, and let T ∈ L(E, F ). Consider the following properties:

⎧⎪⎪⎨⎪⎪⎩

For every weakly convergent sequence (un) in E

un ⇀ u, then Tun → Tu strongly in F.
(P)

⎧⎪⎪⎨⎪⎪⎩

T is continuous from E equipped with the weak topology

σ(E, E⋆) into F equipped with the strong topology.
(Q)

1. Prove that
(Q) ⇐⇒ T is a finite-rank operator.

Proof. Suppose that T is a finite-rank operator. Then define T ′ ∈ L(E, R(T )) by T ′(u) = T (u), and let
ι ∶ R(T ) → F be the inclusion. Since dimR(T ) < ∞, it follows that the weak and strong topologies on R(T )
are equivalent, and since T ′ is continuous from E weak into R(T ) weak, it follows that T ′ is continuous from
E weak into R(T ) strong. Since T = ι○T ′ and ι is continuous (with respect to the strong topologies), it follows
that T is continuous from the weak topology on E into the strong topology on F .

Finally, suppose that (Q) holds. Then there exists u⋆1, . . . , u
⋆
n ∈ E⋆ and δ > 0 such that {u ∈ E ∶ ∣⟨u⋆i , u⟩∣ <

δ ∀i ∈ {1, . . . , n}} ⊂ T −1(BE). Since ⋂n
i=1N(u⋆i ) has finite codimension, it follows that there exists a finite

dimensional subspace G ⊂ E such that E = G + ⋂n
i=1N(u⋆i ) and G ∩ ⋂n

i=1N(u⋆i ) = {0}. Moreover, for any
u ∈ ⋂n

i=1N(u⋆i ), we have that ⟨u⋆i , λu⟩ = 0 for all λ ∈ R so that ∥T (λu)∥F ≤ 1 for all λ ∈ R. It follows that Tu = 0
and so dimR(T ) = dimT (G⊕⋂n

i=1N(u⋆i )) = dimT (G) < ∞.

2. Prove that T ∈ K (E, F ) Ô⇒ (P ).

Proof. Suppose that T ∈ K (E, F ) and fix a sequence (un) ⊂ E that converges weakly to some point u ∈ E.
Then since T is continuous from E weak into F weak, it follows that Tun ⇀ Tu weakly in F and so (∥Tun∥) is
a bounded sequence. Thus, there exists some M > 0 such that (Tun) ⊂ T (MBE) =MT (BE). Since MT (BE)
is a (strongly) compact subset of F , we can apply Exercise 3.5 to conclude that Tun → Tu strongly. Property
(P ) follows.
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3. Assume that either E = ℓ1 or F = ℓ1. Prove that every operator T ∈ L(E, F ) satisfies (P ).

Proof. Fix T ∈ L(E, F ). By Schur’s Theorem, a sequence in ℓ1 converges strongly to some point iff the sequence
converges weakly to that point. Thus, if E = ℓ1 and un ⇀ u ∈ E, then un → u strongly and so Tun → Tu strongly.
And if F = ℓ1 and un ⇀ u ∈ E then Tun ⇀ Tu weakly in F = ℓ1 and so Tun → Tu strongly. Thus, property (P )
holds for all T ∈ L(E, F ).

In what follows we assume that E is reflexive.

4. Prove that T ∈ K (E, F ) ⇐⇒ (P ).

Proof. The left direction follows from part 3. Suppose (P ). Fix a sequence (Tun) ⊂ T (BE). Since (un) ⊂ E
is a bounded sequence and E is reflexive, there exists a subsequence (unk

) that converges weakly to some
point u ∈ E. Applying property (P ), we have that Tunk

→ Tu strongly. Since every sequence in T (BE) has
a (strongly) convergent subsequence, it follows that the closure T (BE) is sequentially compact, and therefore
compact since the strong topology on E is metrizable. Thus, T ∈ K (E, F ), as required.

5. Deduce that every operator T ∈ L(E, ℓ1) is compact.

Proof. By part 3, every T ∈ L(E, ℓ1) satisfies (P ). By part 4, it follows that every T ∈ L(E, ℓ1) is compact.

6. Prove that every operator T ∈ L(c0, E) is compact.

Proof. Fix T ∈ L(E, c0). Observe that T ⋆ ∈ L(E⋆, c⋆0) = L(E⋆, ℓ1). Thus, by part 5, T ⋆ is a compact operator,
and by Schauder’s theorem, it follows that T is a compact. Hence, every T ∈ L(E, c0) is compact.

6.8

Let E and F be two Banach spaces, and let T ∈ K (E, F ). Assume that R(T ) is closed.

1. Prove that T is a finite-rank operator.

Proof. Since R(T ) is closed, it follows that R(T ) is a Banach space with respect to the subspace topology.
Then T ∶ E → R(T ) is a surjective bounded linear operator and so by the Open Mapping Theorem, there exists
some c > 0 such that T (BE(0,1)) ⊃ BF (0, c) ∩R(T ), where BF (0, c) and BE(0,1) are open balls. It follows

that BR(T ) = BF ∩R(T ) ⊂ 1
c
T (BE). Since BR(T ) is a closed subset of a compact set, BR(T ) is compact, and it

follows that R(T ) must be finite dimensional.

2. Assume, in addition, that dimN(T ) < ∞. Prove that dimE < ∞.

Proof. Since dimN(T ) < ∞, N(T ) has a complement G ⊂ E. That is, there exists some closed subspace G ⊂ E
such that E = N(T ) ⊕G. Since G is closed, G is a Banach space and clearly T ∣G ∶ G → R(T ) is bijective. It
follows by the Open Mapping Theorem that T ∣G is a bounded linear isomorphism between G and R(T ). Thus,
dimE = dim(N(T ) ⊕G) = dimN(T ) + dimR(T ) < ∞.

6.10

Let Q(t) = ∑p
k=1 akt

k be a polynomial such that Q(1) ≠ 0. Let E be a Banach space, and let T ∈ L(E). Assume that
Q(T ) ∈ K (E).

1. Prove that dimN(I −T ) < ∞, and that R(I −T ) is closed. More generally, prove that (I −T )(E0) is closed for
every closed subspace E0 ⊂ E.
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Proof. Define the polynomial Q̃(t) = ∑p
k=1(∑

p
j=k aj)t

k−1 and observe that Q̃(t)(1 − t) = Q(1) − Q(t). Thus,

if u ∈ N(I − T ), then 0 = Q̃(T ) ○ (I − T )(u) = Q(I)u − Q(T )u, which implies that u ∈ N(I − 1
Q(1)Q(T )).

Since Q(T ) is compact, so is 1
Q(1)Q(T ), and so applying the Fredholm Alternative Theorem, we have that

dimN(I − T ) ≤ N(I − 1
Q(1)Q(T )) < ∞.

Towards proving the latter statement, consider a convergent sequence (un − Tun) ⊂ R(I − T ) with limit f ∈ F .
Then observe that for all n,

(I − 1

Q(1)
Q(T ))(un) =

1

Q(1)
Q̃(T )(un − Tun) →

1

Q(1)
Q̃(T )(f) as n→∞.

Again, applying the Fredholm Alternative Theorem, it follows that f ∈ R(I − 1
Q(1)Q(T )), and so there exists

some u ∈ E such that

f = 1

Q(1)
(Q(1)I −Q(T ))(u)

= 1

Q(1)
Q̃(T ) ○ (I − T )(u)

= (I − T )
⎛
⎝
Q̃(T )( 1

Q(1)
u)
⎞
⎠
.

Thus, f ∈ R(I − T ), proving that R(I − T ) is closed. Thus, I − T satisfies property (A) of Exercise 6.9, and by
the equivalence of property (C), it follows that (I − T )(E0) is closed for every closed subspace E0 ⊂ E.

2. Prove that N(I − T ) = {0} ⇐⇒ R(I − T ) = E.

Proof. Suppose that N(I − T ) = {0} and assume for a contradiction that E1 = R(I − T ) ≠ E. Then since E1 is
closed by part 1, E1 is a Banach space and we have that T (E1) ⊂ E1. Thus E2 = (I − T )(E1) ⊂ E1 is a closed
subspace of E1 (by part 1). Since I − T is injective, E2 ≠ E1. Letting En = (I − T )n(E), we obtain a (strictly)
decreasing sequence of closed subspaces. Using Riesz’s lemma we may construct a sequence (un) such that
un ∈ En, ∥un∥ = 1 and dist(un, En+1) ≥ 1

2
. We have

Q(T )un −Q(T )um = −(Q(1)un −Q(T )un) + (Q(1)um −Q(T )um) + (Q(1)un −Q(1)um).

Note that for any n, Q(1)un−Q(T )un = Q̃(T )○(I−T )(un) = Q̃(T )○(I−T )((I−T )n(u)) = (I−T )n+1(Q̃(T )(u))
for some u ∈ E, and so Q(1)un −Q(T )un ∈ En+1. Thus, if n >m, then since En+1 ⊂ En ⊂ Em+1 ⊂ Em, we have
that

−(Q(1)un −Q(T )un) + (Q(1)um −Q(T )Tum) +Q(1)un ∈ Em+1.

It follows that ∥Q(T )un −Q(T )um∥ ≥ dist(Q(1)um, Em+1) ≥ ∣Q(1)∣2
, which contradicts the fact that Q(T )(BE)

is compact. Thus, by contradiction, R(I − T ) = E.

Conversely, suppose that R(I − T ) = E. Then by Corollary 2.18, we have that N(I − T ⋆) = R(I − T )⊥ = {0}.
Since Q(T ⋆) = (Q(T ))⋆ ∈ K (E⋆), we can apply the preceding step to conclude that R(I − T ⋆) = E⋆, so that
N(I − T ) = R(I − T ⋆)⊥ = E⋆⊥ = {0}.

3. Prove that dimN(I − T ) = dimN(I − T ⋆).

Proof. Set d = dimN(I − T ) and d⋆ = dimN(I − T ⋆). Towards a contradiction, suppose that d < d⋆. Since
N(I − T ) is finite dimensional, there exists a closed complement G ⊂ E such that E = G⊕N(I − T ). It follows
that there exists a continuous projection P from E onto N(I −T ). Since R(I −T ) = N(I −T ⋆)⊥ (since R(I −T )
is closed) and N(I − T ⋆) is finite dimensional by applying part 1 to Q(T ⋆), it follows that R(I − T ) has finite
codimension d⋆ in E and so there exists a complement F in E such that E = R(I − T ) ⊕ F and dimF = d⋆.
Since d < d⋆, there exists an injection that is not surjective Λ ∶ N(I − T ) → F . Set S = T + Λ ○ P . Observe
that since Λ ○ P has finite rank, (Λ ○ P )m ○ Tn and Tn ○ (Λ ○ P )m are finite rank operators for any n,m ≥ 1.
It follows that Q(S) = ∑p

k=1 ak(T + Λ ○ P )
k = Q(T ) + ∑{finite-rank operators} is a compact operator. Since

N(I −S) = {0}, it follows by part 2 that R(I −S) = E, which is absurd since Λ ○P is not surjective, so there is
some f ∈ F ∖Λ○P (E), and noting that F ∩R(I −T ) = {0}, therefore f ∉ R(I −T )+Λ○P (E) = R(I −S). Thus,
by contradiction, dimN(I − T ) ≥ dimN(I − T ⋆). Applying this fact to T ⋆, it follows that dimN(I − T ⋆⋆) ≤
dimN(I − T ⋆) ≤ dimN(I − T ). But N(I − T ⋆⋆) ⊃ N(I − T ) and so N(I − T ) = N(I − T ⋆).
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6.11

Let K be a compact metric space, and let E = C(K; R) equipped with the usual norm ∥u∥ = maxx∈K ∣u(x)∣. Let
F ⊂ E be a closed subspace. Assume that every function u ∈ F is Hölder continuous, i.e.,

⎧⎪⎪⎨⎪⎪⎩

∀u ∈ F ∃α ∈ (0,1] and ∃L such that

∣u(x) − u(y)∣ ≤ Ld(x, y)α ∀x, y ∈K.

The purpose of this exercise is to show that F is finite-dimensional.

1. Prove that there exist constants γ ∈ (0,1] and C ≥ 0 (both independent of u) such that

∣u(x) − u(y)∣ ≤ C∥u∥d(x, y)γ ∀u ∈ F, ∀x, y ∈K.

Proof. For each n ≥ 1 define Fn = {u ∈ F ∶ ∣u(x)−u(y)∣ ≤ nd(x, y)1/n ∀x, y ∈K}. Observe that each Fn is closed
in F . Indeed, if (uk) ⊂ Fn is a convergent sequence with limit u ∈ F , fix ε > 0 and pick k such that ∥uk −u∥ < ε.
Then, for all x, y ∈K, we have that ∣u(x)−u(y)∣ ≤ ∣u(x)−uk(x)∣+∣uk(x)−uk(y)∣+∣uk(y)−u(y)∣ ≤ 2ε+nd(x, y)1/n.
Thus, u ∈ Fn verifying that Fn is a closed subset of F . Moreover, since every u ∈ F is Hölder continuous, it’s clear
that for every u ∈ F , there exists some n ≥ 1 such that u ∈ Fn. Thus, F = ⋃∞n=1 Fn. Since F is a closed subspace
of a complete metric space, F is a complete metric space and so by the Baire category theorem, there must exist
some n such that Int(Fn) ≠ ∅. It follows that there exists some ε > 0 and u ∈ Fn such that B(u, ε)∩F ⊂ Fn. Fix
nonzero v ∈ F and pick δ = ε

2∥v∥ . Since u+δv ∈ B(u, ε)∩F , we have that ∣u(x)+δv(x)−u(y)−δv(y)∣ ≤ nd(x, y)1/n

for all x, y ∈K. Thus,

δ∣v(x) − v(y)∣ ≤ ∣u(x) − u(y)∣ + nd(x, y)1/n

≤ 2nd(x, y)1/n.

The result follows with C = 4n/ε and γ = 1/n.

2. Prove that BF is compact and conclude.

Proof. For any u ∈ BF , we have that ∣u(x) − u(y)∣ ≤ Cd(x, y)γ , and so clearly BF is equicontininuous. Since
BF is also equibounded, being a subset of the closed unit ball in C(K), BF is a compact subset of C(K) by
Arzelà-Ascoli. Since BF = F ∩BE , and both F and BE is closed, it follows that BF = BF is compact. Because
the closed unit ball in a Banach space is compact iff the Banach space is finite dimensional, it follows that F
is finite dimensional.

6.12 A lemma of J.-L. Lions

Let X, Y , and Z be three Banach spaces with norms ∥ ∥X , ∥ ∥Y , and ∥ ∥Z . Assume that X ⊂ Y with compact
injection and that Y ⊂ Z with continuous injection. Prove that

∀ε > 0∃Cε ≥ 0 satisfying ∥u∥Y ≤ ε∥u∥X +Cε∥u∥Z ∀u ∈X.

Proof. Towards a contradiction, suppose not. Then there exists some ε > 0 such that for all t ≥ 0, ∥ut∥Y > ε∥ut∥X +
t∥ut∥Z for some ut ∈ X. Thus, we can construct a sequence (un) ⊂ X such that ∥un∥Y > ε∥un∥X + n∥un∥Z for
all n. Moreover, by possibly rescaling, we may assume WLOG that ∥un∥Y = 1 for all n. Since for all n, we have
that ε∥un∥X < 1 − n∥un∥Z ≤ 1, by the compactness of the injection X ⊂ Y , there exists a subsequence (unk

) and
some u ∈ 1

ε
BX

Y
such that ∥unk

− u∥Y → 0 as k → ∞. Moreover, since the injection Y ⊂ Z is continuous, it follows

that ∥unk
− u∥Z → 0 as k → ∞. Because ∥un∥Z < 1−ε∥un∥X

n
for all n, un → 0 in Z so that u = 0. But then

1 = ∥unk
∥Y = ∥unk

− u∥Y → 0, which is absurd. Thus, the statement follows by contradiction.
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6.14

Let E be a Banach space, and let T ∈ L(E) with ∥T ∥ < 1.

1. Prove that (I − T ) is bijective and that

∥(I − T )−1∥ ≤ 1/(1 − ∥T ∥).

Proof. By Proposition 6.7, σ(T ) ⊂ [−∥T ∥,+∥T ∥] ⊂ (−1,1). Thus, 1 ∈ R ∖ σ(T ) = ρ(T ). By the definition of the
resolvent set ρ(T ) of T , it follows that T − I is bijective from E onto itself, and so I −T = −(T − I) is bijective.
Moreover, for any u ∈ E,

∥(I − T )−1u∥ ≤ ∥(I − T )−1(u − Tu)∥ + ∥(I − T )−1Tu∥
≤ ∥u∥ + ∥(I − T )−1∥∥T ∥∥u∥
= (1 + ∥(I − T )−1∥∥T ∥)∥u∥.

It follows that ∥(I − T )−1∥ ≤ 1 + ∥(I − T )−1∥∥T ∥. The desired inequality follows after rearranging.

2. Set Sn = I + T +⋯ + Tn−1. Prove that

∥Sn − (I − T )−1∥ ≤ ∥T ∥n/(1 − ∥T ∥).

Proof. Observe that (Sn − (I − T )−1) ○ (I − T ) = (I − Tn) − I = Tn. Thus, for all u ∈ E we have that

∥(Sn − (I − T )−1)u∥ ≤ ∥(Sn − (I − T )−1)(I − T )u∥ + ∥Sn − (I − T )−1∥∥T ∥∥u∥
= ∥Tnu∥ + ∥Sn − (I − T )−1∥∥T ∥∥u∥
≤ ∥Tn∥∥u∥ + ∥Sn − (I − T )−1∥∥T ∥∥u∥
≤ ∥T ∥n∥u∥ + ∥Sn − (I − T )−1∥∥T ∥∥u∥
= (∥T ∥n + ∥Sn − (I − T )−1∥∥T ∥)∥u∥,

where the third line is justified inductively by noting that for any u ∈ E, ∥Tnu∥ ≤ ∥T ∥∥Tn−1u∥. It follows that
∥Sn − (I − T )−1∥ ≤= ∥T ∥n + ∥Sn − (I − T )−1∥∥T ∥. The desired inequality follows after rearranging.

6.15

Let E be a Banach space and let T ∈ L(E).

1. Let λ ∈ R be such that ∣λ∣ > ∥T ∥. Prove that

∥I + λ(T − λI)−1∥ ≤ ∥T ∥/(∣λ∣ − ∥T ∥).

Proof. For all u ∈ E, we have that

∥(I + λ(T − λI)−1)u∥ = ∥(I + λ(T − λI)−1)((u − 1

λ
Tu) + 1

λ
Tu)∥

≤ ∥(u − 1

λ
Tu) − u∥ + 1

∣λ∣
∥I + λ(T − λI)−1∥∥T ∥∥u∥

≤ 1

∣λ∣
(∥T ∥ + ∥I + λ(T − λI)−1∥∥T ∥)∥u∥.

It follows that ∣λ∣∥I+λ(T −λI)−1∥ ≤ ∥T ∥+∥I+λ(T −λI)−1∥∥T ∥. The desired inequality follows after rearranging.

2. Let λ ∈ ρ(T ). Check that
(T − λI)−1T = T (T − λI)−1,

and prove that
dist(λ,σ(T )) ≥ 1/∥(T − λI)−1∥.
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Proof. Fix u ∈ E and set f = (T − λI)−1u so that Tf − λf = u. Then

T (T − λI)−1u = Tf = u + λf = u + λ(T − λI)−1u
= (T − λI)−1(Tu − λu) + λ(T − λI)−1u
= (T − λI)−1Tu.

This gives the first part of the problem.

Towards proving the second part, fix γ ∈ R with ∣λ− γ∣ < 1/∥(T −λI)−1∥. Fix f ∈ E. To show that γ ∉ σ(T ), we
want to show that the equation Tu−γu = f has a unique solution for some u ∈ E. Write Tu−λu = f +(λu−γu),
so that u = (T −λI)−1(f+(λ−γ)u). Define Kf ∶ E → E by Kf(u) = (T −λI)−1(f+(λ−γ)u). Clearly it suffices to
prove thatKf has a unique fixed point. Observe that ∥Kf(u1)−Kf(u2)∥ ≤ ∣λ−γ∣∥(T−λI)−1∥∥u1−u2∥ < ∥u1−u2∥.
By the Banach Fixed Point Theorem, it follows that Kf has a unique fixed point and so T − γI is bijective,
proving that γ ∉ σ(T ). It follows that dist(λ,σ(T )) ≥ 1/∥(T − λI)−1∥.

3. Assume that 0 ∈ ρ(T ). Prove that
σ(T −1) = 1/σ(T ).

Proof. Fix λ ∈ σ(T ). Since T − λI is not bijective, either there exists f ∈ E ∖R(T − λI), or there exists u1 ≠ u2

such that Tu1 − λu1 = Tu2 − λu2. In the first case, we have that for all u ∈ E, Tu − λu ≠ f , so that for all
u ∈ E, T −1u − 1

λ
u ≠ − 1

λ
T −1f . Thus, − 1

λ
T −1f ∉ R(T −1 − 1

λ
I), proving that 1

λ
∈ σ(T −1). In the second case, we

have that T −1u1 − 1
λ
u1 = T −1u2 − 1

λ
u2, so that T −1 − 1

λ
I is not injective and therefore 1

λ
∈ σ(T −1). This proves

that 1/σ(T ) ⊂ σ(T −1). Applying the preceding reasoning to T −1 in place of T , we have that 1/σ(T −1) ⊂ σ(T ),
which is equivalent to saying that σ(T −1) ⊂ 1/σ(T ). The statement follows.

In what follows assume that 1 ∈ ρ(T ); set

U = (T + I)(T − I)−1 = (T − I)−1(T + I).

4. Check that 1 ∈ ρ(U) and give a simple expression for (U − I)−1 in terms of T .

Proof. Observe that

U − I = T (T − I)−1 + (T − I)−1 − I
= T (T − I)−1 + (T − I)−1 − (T − I)(T − I)−1

= 2(T − I)−1.

Thus, (U − I)−1 = 1
2
(T − I) and 1 ∈ ρ(U).

5. Prove that T = (U + I)(U − I)−1.

Proof. (U + I)(U − I)−1 = 1
2
((T + I)(T − I)−1 + I)(T − I) = T .

6. Consider the function f(t) = (t + 1)/(t − 1), t ∈ R. Prove that

σ(U) = f(σ(T )).

Proof. Fix λ ∈ R. Observe that λ ∈ σ(U) iff it is not the case that the equation Uu − λu = f has a unique
solution u ∈ E for every f ∈ E. Moreover, we have that

Uu − λu = f

⇐⇒ − 2

1 − λ
Uu + 2λ

1 − λ
u = − 2

1 − λ
f

⇐⇒ (U + I)u − λ + 1
λ − 1

(U − I)u = 1

1 − λ
((U − I)f − (U + I)f)

⇐⇒ (U − I)−1(U + I)u − λ + 1
λ − 1

u = 1

1 − λ
(f − (U − I)−1(U + I)f)

⇐⇒ Tu − λ + 1
λ − 1

u = 1

λ − 1
(Tf − f).
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Thus, f ∉ R(U − λI) iff 1
λ−1(Tf − f) ∉ R(T −

λ+1
λ−1I), and similary U − λI is not injective iff T − λ+1

λ−1I is not
injective. It follows that σ(T ) = f(σ(U)). Rearranging, we have that σ(U) = f(σ(T )).

6.16

Let E be a Banach space and let T ∈ L(E).

1. Assume that T 2 = I. Prove that σ(T ) ⊂ {−1,+1} and determine (T − λI)−1 for λ ≠ ±1.

Proof. Since T 2 = I, T is bijective and so 0 ∈ ρ(T ). By Exercise 6.15, σ(T ) = σ(T −1) = 1/σ(T ), so that

σ(T )2 = 1. It follows that σ(T ) ⊂ {−1,+1}. Fix λ ≠ ±1 and u ∈ E. Observe that

(T + λI)(T − λI)u = T 2u − λ2u = (1 − λ2)u,

and so (T − λI)−1 = 1
1−λ2 (T + λI).

2. More generally, assume that there is an integer n ≥ 2 such that Tn = I. Prove that σ(T ) ⊂ {−1,+1} and
determine (T − λI)−1 for λ ≠ ±1.

Proof. Fix λ ≠ ±1. Observe that

⎛
⎝

n−1
∑
k=0

λn−k−1T k⎞
⎠
(T − λI) =

n

∑
k=1

λn−kT k −
n−1
∑
k=0

λn−kT k

= Tn − λnI

= (1 − λn)I.

It follows that σ(T ) ⊂ {−1,+1} and (T − λI)−1 = 1
1−λn ∑n−1

k=0 λ
n−k−1T k.

3. Assume that there is an integer n ≥ 2 such that Tn = 0. Prove that σ(T ) = {0} and determine (T − λI)−1 for
λ ≠ 0.

Proof. Fix λ ≠ 0 and observe that

⎛
⎝

n−1
∑
k=0

λn−k−1T k⎞
⎠
(T − λI) = Tn − λnI = −λnI.

Thus, σ(T ) ⊂ {0} and (T − λI)−1 = −∑n−1
k=0 λ

−k−1T k. Since Tn = 0, T cannot be injective (since if n is the least
integer such that Tn = 0, then there exists u ∈ E with Tn−1u ≠ 0 and T (Tn−1u) = 0) and so σ(T ) = {0}.

4. Assume that there is an integer n ≥ 2 such that ∥Tn∥ < 1. Prove that I − T is bijective and give an expression
for (I − T )−1 in terms of (I − Tn)−1 and the iterates of T .

Proof. Since ∥Tn∥ < 1 and σ(Tn) ⊂ [−∥Tn∥, ∥Tn∥] ⊂ (−1,1) by Proposition 6.7, it follows that 1 ∈ ρ(Tn) and
therefore that I − Tn is invertible. Observe that

(I − T )
⎛
⎝

n−1
∑
k=0

T k⎞
⎠
(I − Tn)−1 = (I − Tn)(I − Tn)−1 = I.

Thus, (I − T ) is bijective and (I − T )−1 = (∑n−1
k=0 T

k)(I − Tn)−1.

6.17

Let E = ℓp with 1 ≤ p ≤ ∞ and let (λn) be a bounded sequence in R. Consider the multiplication operator M ∈ L(E)
defined by

Mx = (λ1x1, λ2x2, . . . , λnxn, . . .), where x = (x1, x2, . . . , xn, . . .).

Determine EV (M) and σ(M).
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Solution

Observe that for any n, we have that Mx − λnx = ((λ1 − λn)x1, . . . , (λn−1 − λn)xn−1,0, (λn+1 − λn)xn+1, . . .) and
so en ∈ N(M − λnI). Thus, ⋃n{λn} ⊂ EV (M). Moreover, if λ ∉ ⋃n{λn}, then Mx − λx = 0 implies that for each
n, (λn−λ)xn = 0, and since λ ≠ λn, we must have that xn = 0. Thus, N(M−λI) = {0}, proving that ⋃n{λn} = EV (M).

I claim that σ(M) = ⋃n{λn}. Since EV (M) ⊂ σ(M) and σ(M) is compact by Proposition 6.7, it follows that

⋃n{λn} ⊂ σ(M). Fix λ ∉ ⋃n{λn} and observe that there exists some C > 0 such that ∣λ−λn∣ ≥ C. Thus, if 1 ≤ p < ∞
then for any x ∈ E, we have that ∑∞n=1 ∣ 1

λn−λxn∣
p

≤ 1
Cp ∥x∥pp < ∞, so that ( 1

λn−λxn)n≥1 ∈ ℓp. And if p = ∞ then for all

n, ∣ 1
λn−λxn∣ ≤ 1

C
∥x∥∞, so that ( 1

λn−λxn)n≥1 ∈ ℓ∞. Since (M −λI)( 1
λn−λxn)n≥1 = x, it follows that M −λI is surjective.

Since λ ∉ EV (M), M − λI is also injective and so λ ∈ ρ(M), proving that σ(M) ⊂ ⋃n{λn}, and the claim follows.

6.18 Spectral properties of the shifts.

An element x ∈ E = ℓ2 is denoted by x = (x1, x2, . . . , xn, . . .). Consider the operators

Srx = (0, x1, x2, . . . , xn−1, . . .),

and
Sℓx = (x2, x3, . . . , xn+1, . . .),

respectively called the right shift and left shift.

1. Determine ∥Sr∥ and ∥Sℓ∥. Does Sr or Sℓ belong to K (E)?

Solution

Fix x ∈ ℓ2 and observe that ∥Srx∥22 = 02+∑n x
2
n = ∥x∥22, and so Sr is an isometry and has operator norm ∥Sr∥ = 1.

Moreover, ∥Sℓx∥22 = ∑n≥2 x
2
n ≤ ∥x∥22, so that ∥Sℓ∥ ≤ 1. Since ∥Sℓe2∥ = 1, it follows that ∥Sℓ∥ = 1. It’s clear that

Sℓ(BE) = BE and since dimE = ∞, BE is not compact and so Sℓ is not a compact operator. Moreover, since
Sr is an isometry, its image is a closed subspace of ℓ2 which includes the linearly independent subset ⋃n≥2{en}.
Thus, Sr(BE) = BSr(E) and since Sr(E) is an infinite dimensional Banach space, BSr(E) is not compact so
that Sr is not a compact operator.

2. Prove that EV (Sr) = ∅.

Proof. Fix λ ∈ R and suppose that x ∈ N(Sr − λI). Then for all n ≥ 2, xn−1 − λxn = 0 and −λx1 = 0. If λ = 0,
we immediately get that x = 0, and if λ ≠ 0, it follows by an obvious inductive argument that xn = 0 for all n
and so N(Sr − λI) = {0} for all λ ∈ R. Thus, EV (Sr) = ∅.

3. Prove that σ(Sr) = [−1,+1].

Proof. Since ∥Sr∥ = 1, it follows by Proposition 6.7 that σ(Sr) ⊂ [−1,+1]. Fix λ ∈ [−1,+1]. To show that
λ ∈ σ(Sr), it suffices to construct some x ∈ ℓ2 with x ∉ (Sr − λI)(E). Clearly (−λ,0,0, . . .) ∈ ℓ2. I claim
that (−λ,0,0, . . .) ∉ Sr(E). Suppose for a contradiction that there existed x ∈ ℓ2 such that (Sr − λI)(x) =
(−λ,0,0, . . .). Then x1 = 1 and xn = λxn+1 for n ≥ 1. Solving this relation recursively (and noting that 1 = λx2

forces that λ ≠ 0), we get that x = ( 1
λn−1 )n≥1. But then x ∉ ℓ2 since 1

λn−1 /→ 0 as n → ∞. Thus, λ ∈ σ(Sr),
proving that σ(Sr) = [−1,+1].

4. Prove that EV (Sℓ) = (−1,+1). Determine the corresponding eigenspaces.

Proof. Fix λ ∈ R and suppose that λ ∈ EV (Sℓ). Then there exists nonzero x ∈ ℓ2 such that xn+1 = λxn for
all n ≥ 1. Thus, xn = λn−1x1 for all n ≥ 1, and since xn → 0 as n → ∞, it follows that λ ∈ (−1,+1), proving
that EV (Sℓ) ⊂ (−1,+1). Now fix λ ∈ (−1,+1) and observe that x = (λn−1)n≥1 ∈ ℓ2 (by, for example, the ratio
test. If λ = 0, pick x = e1) and Sℓx = 0 so that N(Sℓ − λI) ⫌ {0}. It follows that λ ∈ EV (Sℓ), proving that
EV (Sℓ) = (−1,+1). Moreover, from our analysis, we see that for any λ ∈ EV (Sℓ), the eigenspace Eλ associated
to λ is given by Eλ = span{(λn−1)n≥1}.
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5. Prove that σ(Sℓ) = [−1,+1].

Proof. We know by Proposition 6.7 and the fact that ∥Sℓ∥ = 1 that σ(Sℓ) ⊂ [−1,+1]. From part 4, we see
that (−1,+1) = EV (Sℓ) ⊂ σ(Sℓ). Thus, we only need to check that ±1 ∈ σ(Sℓ). Observe that x = ( 1

n
)n≥1 ∈ ℓ2.

I claim that x ∉ (Sℓ − I)(E). Indeed, if there existed some y ∈ ℓ2 such that (Sℓ − I)(y) = x, then we would
have that yn+1 = yn + 1

n
= y1 + ∑n

k=1
1
k
. But then yn → +∞ as n → ∞ so that y ∉ ℓ2. Thus, 1 ∈ σ(Sℓ).

To see that −1 ∈ σ(Sℓ), observe that x = ((−1)n 1
n
)n≥1 ∈ ℓ2 and if (Sℓ + I)(y) = x, then we would have

that yn+1 = −yn + (−1)n 1
n
= (−1)n(y1 + ∑n

k=1
1
k
), which does not converge to 0 for any choice of y1. Thus,

((−1)n 1
n
)n≥1 ∉ (Sℓ + I)(E), proving that −1 ∈ σ(Sℓ). It follows that σ(Sℓ) = [−1,+1].

6. Determine S⋆r and S⋆ℓ .

Solution

Observe that for any x, y ∈ ℓ2, we have that (Srx, y) = ∑∞n=1 xnyn+1 = (x,Sℓy), so that S⋆r = Sℓ and S⋆ℓ = Sr.

7. Prove that for every λ ∈ (−1,+1), the spaces R(Sr−λI) and R(Sℓ−λI) are closed. Give an explicit representation
of these spaces.

Proof. Fix λ ∈ (−1,+1). Observe that ∥Srx − λx∥2 ≥ ∣∥Srx∥2 − ∣λ∣∥x∥2∣ = ∣∥x∥2 − ∣λ∣∥x∥2∣ = (1 − ∣λ∣)∥x∥2 Thus,
if (Srx

n − λxn) ⊂ R(Sr − λI) converges in ℓ2 to x ∈ ℓ2, then xn converges in ℓ2 to some limit y ∈ ℓ2 and
by the continuity of (Sr − λI), it follows that (Sr − λI)(y) = limn→∞(Sr − λI)(xn) = x, proving that x ∈
R(Sr−λI). Moreover, since span{(λn−1)n≥1} = E(Sℓ, λ) = N(Sℓ−λI) = R(Sr−λI)⊥, it follows that R(Sr−λI) =
span{(λn−1)n≥1}⊥. Finally, since R(Sr −λI) is closed, we can apply Theorem 2.19 to conclude that R(Sℓ −λI)
is closed and R(Sℓ − λI) = N(Sr − λI)⊥ = ∅⊥ = E.

8. Prove that the spaces R(Sr ± I) and R(Sℓ ± I) are dense and that they are not closed.

Proof. Since R(Sr ± I) and R(Sℓ ± I) are all subspaces of ℓ2 and all subspaces of an n.v.s. are either closed
or dense by Exercise 1.6, it suffices to prove that neither R(Sr ± I) nor R(Sℓ ± I) are closed. Observe that
R(Sr ± I) are closed iff R(Sℓ ± I) are closed by Theorem 2.19, and so it suffices to prove that R(Sr ± I) are
not closed. Applying Theorem 2.19 again, we see that if it were the case that R(Sr ± I) were closed, then we
would have that R(Sℓ ± I) = N(Sr ± I)⊥ = ∅⊥ = ℓ2. But by our proof of part 5, we know that R(Sℓ ± I) ⫋ ℓ2, so
that R(Sr ± I) cannot possibly be closed. The statement follows.

Consider the multiplication operator M defined by

Mx = (α1x1, α2, x2, . . . , αnxn, . . .),

where (αn) is a bounded sequence in R.

9. Determine EV (Sr ○M).

Solution

Suppose for some λ ∈ R and x ∈ ℓ2, (Sr ○M − λI)x = 0. Then −λx1 = 0 and for all n ≥ 1 αnxn = λxn+1. If λ ≠ 0
then x1 = 0 and we get inductively that xn = 0 for all n so that x = 0. Thus, EV (Sr ○M) ⊂ {0}. If λ = 0, the

only way we can satisfy αnxn = λxn+1 for some nonzero xn is if αn = 0, and so EV (Sr ○M) =
⎧⎪⎪⎨⎪⎪⎩

∅ if 0 ∉ (αn)
{0} otherwise.

10. Assume that αn → α as n→∞. Prove that

σ(Sr ○M) = [−∣α∣,+∣α∣].
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Proof. Observe that if α = 0, then by Exercise 6.1, M is compact so that Sr ○M is compact, and so by Theorem
6.8, 0 ∈ σ(Sr ○M) and σ(Sr ○M)∖{0} = EV (Sr ○M)∖{0} = ∅, so the statement follows. Thus, we may assume
WLOG that α ≠ 0. Now suppose that λ ∈ R and ∣λ∣ > ∣α∣. Observe that since αn − α → 0, by Exercise 6.1,
M −αI is compact. Let K =M −αI and observe that Sr ○M −λI = Sr ○ (K +αI) −λI = Sr ○K +αSr −λI. By
part 3, αSr − λI is bijective and so we can define the compact function K1 = (αSr − λI)−1 ○ Sr ○K to get that
Sr ○M −λI = (αSr −λI) ○ (I +K2). Since αSr −λI is bijective, it suffices to check that I +K2 is surjective. By
the Fredholm Alternative Theorem, I +K2 is surjective iff N(I +K2) = {0}. Again using the fact that αSr −λI
is bijective, this holds iff N(Sr ○M − λI) = N((αSr − λI) ○ (I +K2)) = {0}, which is true by part 9. Thus, I
have shown that σ(Sr ○M) ⊂ [−∣α∣,+∣α∣]. Towards proving the opposite direction, fix λ ∈ [−∣α∣,+∣α∣]. For a
contradiction, suppose that Sr ○M −λI is bijective. Applying essentially the same trick as above, we can write
Sr − λ

α
I = 1

α
(Sr ○M − λI) − 1

α
Sr ○K = 1

α
(Sr ○M − λI)−1(I − (S ○M − λI) ○ Sr ○K) = J ○ (I +K2) where J is

bijective and K2 is compact. By part 3, Sr − λ
α
I. Applying Theorem 6.6, we have that N(I +K2) = {0} iff

R(I +K2) = E, so that Sr − λ
α
I is injective iff it is surjective. However, from part 2 and 3, we have that Sr − λ

α
I

is injective but not surjective. By contradiction, λ ∈ σ(Sr ○M), and the statement follows.

11. Assume that for every integer n, α2n = a and α2n+1 = b with a ≠ b. Determine σ(Sr ○M).

Solution

Observe that (Sr ○M)2 = (ab)S2
r so that ∥(Sr ○M)2∥ = ∣ab∣∥S2

r ∥ = ∣ab∣. Thus, if ∣λ∣ >
√
∣ab∣, then ∥( 1

λ
Sr ○M)2∥ =

∣ab∣
λ2 < 1. By Exercise 6.16 part 4, it follows that I − 1

λ
S ○M is bijective so that λ ∉ σ(Sr ○M). Thus,

σ(Sr○M) ⊂ [−
√
∣ab∣,+

√
∣ab∣]. Conversely, if λ ∈ [−

√
∣ab∣,+

√
∣ab∣], then observe that (−1,0,0, . . .) ∉ R(Sr○M−λI)

since writing (−λx1, bx2 − λx1, . . .) = (−1,0, . . .), we see that x2n+1 = (ab)
n

λ2n = ( abλ2 )
n

which does not converge to

0. Thus, σ(Sr ○M) = [−
√
∣ab∣,+

√
∣ab∣].

6.19

Let E be a Banach space and let T ∈ L(E).

1. Prove that σ(T ⋆) = σ(T ).

Proof. Observe that if λ ∈ ρ(T ), applying Corollary 2.18, we have that N(T ⋆ − λI) = R(T − λI)⊥ = E⊥ = {0}
and since R(T − λI) = E is closed, by Theorem 2.19 R(T ⋆ − λI) = N(T − λI)⊥ = {0}⊥ = E⋆. Thus, λ ∈ ρ(T ⋆).
Moreover, if λ ∈ σ(T ) then either N(T ⋆ − λI) = R(T − λI)⊥ ⫌ {0} or R(T ⋆ − λI) ⊂ N(T − λI)⊥ ⫋ E⋆, so that
λ ∈ σ(T ⋆). Thus, σ(T ) = σ(T ⋆).

2. Give examples showing that there is no general inclusion relation between EV (T ) and EV (T ⋆),

Proof. From Exercise 6.18, we have that EV (Sr) = ∅ ⫋ (−1,+1) = EV (Sℓ) = EV (S⋆r ), and since S⋆ℓ = Sr, we
also have that EV (S⋆ℓ ) ⫋ EV (Sℓ), which verifies that there exist no general inclusion relations between EV (T )
and EV (T ⋆).

6.20

Let E = Lp(0,1) with 1 ≤ p < ∞. Given u ∈ E, set

Tu(x) = ∫
x

0
u(t)dt.

1. Prove that T ∈ K (E).
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Proof. For any u ∈ BE , extend Tu to Lp(R) by setting Tu(x) = 0 for x ∉ [0,1]. With this extension in mind,
set F = T (BE) to be a subset of Lp(R). By Jensen’s inequality, we have that for any Tu ∈ F

∫
R
∣Tu∣pdx ≤ ∫

1

0

⎛
⎝∫

x

0
∣u(t)∣dt

⎞
⎠

p

dx

≤ ∫
1

0
∫

x

0
∣u(t)∣pdt dx

≤ ∥u∥pp = 1.

Thus, ∥Tu∥p ≤ 1 for all Tu ∈ F , proving that F is a bounded subset of Lp(0,1). Observe that the above
analysis also shows that ∥T ∥ ≤ 1. Towards proving that F is equicontinuous, fix ε > 0, u ∈ BE , and a sequence
of mollifiers (ρn). Then for δ > 0 and ∣h∣ < δ, we have that for all n > 1

δ
, ∥(ρn ⋆ u) − u∥p < ε so that

∥τhTu − Tu∥pp ≤ ∥τhTu − τhT (ρn ⋆ u)∥pp + ∥τhT (ρn ⋆ u) − T (ρn ⋆ u)∥pp + ∥T (ρn ⋆ u) − Tu∥pp

≤ 2ε + ∫
1

0

RRRRRRRRRRR
∫

x+h

x
(ρn ⋆ u)(t)dt

RRRRRRRRRRR

p

dx

≤ 2ε + hp∥ρn ⋆ u∥p∞
≤ 2ε + hp∥∇ρn∥p′∥u∥p
≤ 2ε + hp∥∇ρn∥p′ .

It follows that ∥τhTu − Tu∥pp ≤ 2ε + hp∥∇ρn∥p′ for all Tu ∈ F for n fixed. Thus, limh→0 ∥τhTu − Tu∥pp ≤ 2ε
uniformly in h over Tu ∈ F , and since ε > 0 was arbitrary, it follows that ∥τhTu−Tu∥p → 0 uniformly in h over
Tu ∈ F . By the Fréchet-Kolmogorov theorem, it follows that F = T (BE) is a compact subset of Lp(0,1).

2. Determine EV (T ) and σ(T ).

Solution

Suppose for some u ∈ Lp(0,1) and λ ∈ R ∖ {0}, we have ∫
x
0 u(t)dt = λu(x) for almost all x. Then u ∈ C([0,1])

and is differentiable with u(x) = λu′(x). Solving this differential equation we get that u(x) = Ceλx for some

constant C. But then we have that C = u(0) = ∫
0
0 u(t)dt = 0, so that u = 0. It follows that EV (T ) ⊂ {0}. And

if λ = 0, then ∫
x
0 u(t)dt = 0 for almost all x implies that u ≡ 0 (since Tu is continuous so that ∫

x
0 u(t)dt = 0 for

all x ∈ [0,1]). Thus, EV (T ) = ∅. Since T is compact, σ(T )∖{0} = EV (T )∖{0} = ∅, so that σ(T ) ⊂ {0}. Since
T (E) ⊂ C([0,1]) ⫋ E, it follows that σ(T ) = {0}.

3. Give an explicit formula for (T − λI)−1 when λ ∈ ρ(T ).

Solution

Fix λ ∈ ρ(T ), so that λ ≠ 0, and f ∈ C([0,1]). Set u = (T − λI)−1f . Then f(x) = ∫
x
0 u(t)dt − λu(x), or

equivalently f(x) = v(x) − λv′(x), v(0) = 0, where v(x) = ∫
x
0 u(x)dx. Solving this initial value problem, we

get that u(x) = − 1
λ2 e

1
λxT (f ⋅ exp1/λ)(x) − 1

λ
f(x). By the density of C([0,1]) in Lp(0,1) and the continuity

of the expression with respect to f , it follows that (T − λI)−1f(x) = − 1
λ2 e

1
λxT (f ⋅ exp1/λ)(x) − 1

λ
f(x) for all

f ∈ Lp(0,1).

4. Determine T ⋆.
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Solution

Fix u ∈ Lp(0,1) and v ∈ Lp′(0,1). We have that

∫
1

0
Tu(x)v(x)dx = ∫

1

0
∫

x

0
u(t)dt v(x)dx

=∬
[0,1]2

u(t)v(x)χ[0,x](t, x)dt dx

=∬
[0,1]2

u(t)v(x)χ[t,1](t, x)dxdt

= ∫
1

0
u(t)∫

1

t
v(x)dxdt.

Thus, T ⋆v(x) = ∫
1
x v(t)dt.

6.22

Let E be a Banach space, and let T ∈ L(E). Given a polynomial Q(t) = ∑p
k=0 akt

k with ak ∈ R, let Q(T ) = ∑p
k=0 akT

k.

1. Prove that Q(EV (T )) ⊂ EV (Q(T )).

Proof. Fix λ ∈ EV (T ). By definition, there exists some nonzero u ∈ E with Tu = λu. Observe that Q(T )u =
∑p

k=0 akλ
ku = Q(λ)u, so that u ∈ N(Q(T ) −Q(λ)I). Thus, Q(λ) ∈ EV (Q(T )) and it follows that Q(EV (T )) ⊂

EV (Q(T )).

2. Prove that Q(σ(T )) ⊂ σ(Q(T )).

Proof. Suppose that λ ∈ Q(σ(T )). By part 1, we may assume WLOG that T − λI is injective, so that T − λI
must not be surjective. Observe that since the polynomial P (t) = Q(t)−Q(λ) has λ as a root, there exists some
polynomials Q̃ such that (t−λ)Q̃(t) = P (t) = Q(t)−Q(λ). Thus, we have that (T −λI)○Q̃(T ) = Q(T )−Q(λ)I,
and it is immediate that Q(T ) −Q(λ)I is not surjective since T − λI is not surjective. It follows that Q(λ) ∈
σ(Q(T )), proving that Q(σ(T )) ⊂ σ(Q(T )).

3. Construct an example in E = R2 for which the above inclusions are strict.

Solution

Pick A to be rotation by π/2 and observe that A has no eigenvalues but A2 = −I has the eigenvalue -1. Since
σ(T ) = EV (T ) whenever dimE < ∞, this example works for both the spectrum and the set of eigenvalues.

In what follows we assume that E is a Hilbert space (identified with its dual space H⋆) and that T = T ⋆.

4. Assume here that the polynomial Q has no real root, i.e., Q(t) ≠ 0 ∀t ∈ R. Prove that Q(T ) is bijective.

Proof. Fix λ > 0 and let t2 + bt+ c be a polynomial in R with no real roots. Define the bilinear form a ∶ E ×E →
R; (u, v) ↦ (T 2u+bTu+cu, T 2v+bTv+cv). Clearly a is a bounded bilinear form by the continuity of T 2+bT +cI
and for any u ∈ E, we have that

a(u,u) = ((T + b

2
I)2u + (c − b2

4
)u, (T + b

2
I)2u + (c − b2

4
)u)

= ∣(T + b

2
I)2u∣2 + 2(c − b2

4
)∣(T + b

2
I)u∣2 + (c − b2

4
)2∣u∣2

≥ (c − b2

4
)2∣u∣2

, so that a is also coercive. Thus, by the Lax-Milgram Theorem, for each f ∈ E, there exists a unique
element u ∈ E such that (T 2u + bTu + cu, T 2v + bTv + cv) = a(u, v) = (f, T 2v + bTv + cv) for all v ∈ E,
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proving that T 2 + bT + cI is bijective. Since every polynomial in R with no real roots can be decomposed as

c(t2 + b1t + c1)n1⋯(t2 + bkt + ck)nk for some b1, . . . , bk, c1, . . . , ck ∈ R such that ci − b2i
4
> 0 for each i ∈ {1, . . . , k}

and c ≠ 0, it follows that Q(T ) = c(T 2 + b1T + c1I)n1 ○⋯○ (T 2 + bkT + ckI)nk which, from our above analysis, is
the composition of bijections and is therefore bijective.

5. Deduce that for every polynomial Q, we have

(i) Q(EV (T )) = EV (Q(T )),
(ii) Q(σ(T )) = σ(Q(T )).

Proof. Fix λ ∈ EV (Q(T )). Then since Q(T ) − λI is not injective, it follows from part 4 that the polynomial
Q(t)−λmust have a root α ∈ R. Thus, we can decompose the polynomialQ(t)−λ as (t−α1)n1 . . . (t−αk)nkQ̃(t) =
Q(t) − λ for some polynomial Q̃(t) with no real roots, and such that n1 ≥ 1. Then Q̃ ○ (T − α1I)n1 ○ ⋯ ○ (T −
αkI)nk(T ) = Q(T )−λI. By part 4, we know that Q̃(T ) is bijective and sinceQ(T )−λI is not injective, it must be
the case that (T −αiI)ni is not injective for some i, so that T −αiI is not injective. Thus, αi ∈ EV (T ). Since αi

is a root of Q(t)−λ, it follows that Q(αi) = λ, so that λ ∈ Q(EV (T )). It follows that Q(EV (T )) = EV (Q(T )).
Notice that replacing ”injective” above with ”bijective” proves part (ii).

6.23 Spectral radius.

Let E be a Banach space and let T ∈ L(E). Set

an = log ∥Tn∥, n ≥ 1.

1. Check that
ai+j ≤ ai + aj ∀i, j ≥ 1.

Proof. Fix u ∈ E and i, j ≥ 1, and observe that

∥T i+ju∥ = ∥T i(T ju)∥
≤ ∥T i∥∥T j∥∥u∥,

so that ai+j = log ∥T i+j∥ ≤ log(∥T i∥∥T j∥) = ai + aj .

2. Deduce that
lim

n→+∞
(an/n) exists and coincides with inf

m≥1
(am/m).

Proof. Fix m ≥ 1 and for any n, let n =mq+r where r is the remainder when dividing n by m, so that 0 ≤m < r.
Thus, we have that an ≤ amq + ar ≤ qam + ar ≤ n

m
am + ar, so that an

n
≤ am

m
+ ar

n
≤ am

m
+ 1

n
maxi∈{0,...,m−1} ∣ai∣.

It follows that lim supn→+∞
an

n
≤ am

m
. Since this inequality holds for all m ≥ 1, we have that lim supn→+∞

an

n
≤

infm≥1
am

m
≤ lim infm→+∞

am

m
. Thus, limn→+∞(an/n) exists and is equal to infm≥1(am/m).

3. Conclude that r(T ) = limn→∞ ∥Tn∥1/n exists and that r(T ) ≤ ∥T ∥. Construct an example in E = R2 such that
r(T ) = 0 and ∥T ∥ = 1. The number r(T ) is called the spectral radius of T .

Proof. Since limn→∞
1
n
log ∥Tn∥ = limn→∞ log ∥Tn∥1/n exists from part 2, by the continuity of exp, it follows that

r(T ) = limn→∞ ∥Tn∥1/n = limn→∞ exp(log ∥Tn∥1/n) exists. Moreover, observe that r(T ) = exp(limn→∞ an/n) ≤
exp(infm≥1 am/m) ≤ exp(a1) = ∥T ∥. Take

A = (0 1
0 0
)

and observe that Ae2 = e1 and A2 = 0, so that An = 0 for all n ≥ 2. It follows that ∥A∥ = 1 and r(A) = 0.

4. Prove that σ(T ) ⊂ [−r(T ),+r(T )]. Deduce that if σ(T ) ≠ ∅, then

max{∣λ∣ ∶ λ ∈ σ(T )} ≤ r(T ).
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Proof. By Exercise 6.22, we have that σ(T )n ⊂ σ(Tn) ⊂ [−∥Tn∥,+∥Tn∥], so that σ(T ) ⊂ [−∥Tn∥1/n,+∥Tn∥1/n]
for all n ≥ 1. It follows that σ(T ) ⊂ ⋂n≥1[−∥Tn∥1/n,+∥Tn∥1/n] ⊂ [−r(T ),+r(T )]. Thus, if there exists some
λ ∈ σ(T ), then λ ∈ [−r(T ),+r(T )], so that ∣λ∣ ≤ r(T ), and it follows that max{∣λ∣ ∶ λ ∈ σ(T )} ≤ r(T ).

5. Construct an example in E = R3 such that σ(T ) = {0}, while r(T ) = 1.

Solution

Fix the standard basis for R3 and take

A =
⎛
⎜
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎟
⎠
.

Then since A is a projection onto the x, y plane, followed by rotation in the x, y plane by π/2, it’s clear that A
has no eigenvalues and that ∥An∥ = 1 for all n, so that r(A) = 1.

In what follows we take E = Lp(0,1) with 1 ≤ p ≤ ∞. Consider the operator T ∈ L(E) defined by

Tu(t) = ∫
t

0
u(s)ds.

6. Prove by induction that for n ≥ 2,

(Tnu)(t) = 1

(n − 1)! ∫
t

0
(t − τ)n−1u(τ)dτ.

Proof. When n = 1, this is exactly the definition of Tu. Suppose that the relation holds for some n ≥ 1. Then
we have that

(Tn+1u)(t) = (T (Tnu))(t)

= ∫
t

0

1

(n − 1)! ∫
s

0
(s − τ)n−1u(τ)dτ ds

= ∫
t

0

1

(n − 1)!
u(τ)∫

t

τ
(s − τ)n−1dsdτ

= ∫
t

0

1

n!
(t − τ)nu(τ)dτ,

where the third equality is just an application of Fubini. Thus, we conclude that the relation holds for all n by
induction.

7. Deduce that ∥Tn∥ ≤ 1
n!

Proof. If p = ∞, then we have that for any u ∈ L∞(0,1) such that ∥u∥∞ ≤ 1 and for all t ∈ [0,1]

∣(Tnu)(t)∣ ≤ 1

(1 − n)! ∫
1

0
(1 − τ)n−1dτ = 1

n!
.

Thus, ∥Tn∥ ≤ 1
n!
. Moreover, if 1 ≤ p < ∞ then applying Young’s inequality, we have that for all u ∈ Lp(0,1)

with ∥u∥p ≤ 1,

∥Tnu∥pp ≤
1

(n − 1)!p ∫
1

0

⎛
⎝∫

1

0
(t − τ)n−1∣u(τ)∣dτ

⎞
⎠

p

dt

= 1

(n − 1)!p
∥tn−1 ⋆ ∣u∣∥pp

≤ 1

(n − 1)!p
∥tn−1∥p1∥u∥

p
p

= 1

n!p
.

Taking pth roots, we get that ∥Tnu∥p ≤ 1
n!

so that ∥Tn∥ ≤ 1
n!
.
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8. Prove that the spectral radius of T is 0.

Proof. By Stirling’s formula we have that

r(T ) = lim
n→∞

∥Tn∥1/n

≤ lim sup
n→∞

1

n!1/n

≤ lim sup
n→∞

e
√
2πn

1/n
n
= 0.

9. Show that σ(T ) = {0}. Compare with Exercise 6.20.

Proof. The cases 1 ≤ p < ∞ were already proven in Exercise 6.20. Thus, we may assume WLOG that p = ∞.
From part 4, we have that σ(T ) ⊂ [−r(T ),+r(T )] = {0}. Since T (L∞(0,1)) ⊂ C([0,1]) ⫋ L∞(0,1), it follows
that σ(T ) = {0}.

6.24

Assume that T ∈ L(H) is self-adjoint.

1. Prove that the following are equivalent:

(i) (Tu,u) ≥ 0 ∀u ∈H,

(ii) σ(T ) ⊂ [0,∞).

Proof. Suppose (i). Then by Proposition 6.9, σ(T ) ⊂ [infu∈H
∣u∣=1
(Tu,u), supu∈H

∣u∣=1
(Tu,u)] ⊂ [0, ∥T ∥] ⊂ [0,∞). Thus,

(i)Ô⇒ (ii). Now suppose (ii). Fix u ∈H and suppose for a contradiction that (Tu,u) < 0. Then clearly ∥u∥ ≠ 0
and (T u

∥u∥ ,
u
∥u∥) < 0, so that infu∈H

∣u∣=1
(Tu,u) < 0. But then by Proposition 6.9, we have that infu∈H

∣u∣=1
(Tu,u) ∈ σ(T ),

contradicting the fact that σ(T ) ⊂ [0,∞). Thus, by contradiction (ii)Ô⇒ (i).

2. Prove that the following properties are equivalent:

(iii) ∥T ∥ ≤ 1 and (Tu,u) ≥ 0 ∀u ∈H,

(iv) 0 ≤ (Tu,u) ≤ ∣u∣2 ∀u ∈H,

(v) σ(T ) ⊂ [0,1],
(vi) (Tu,u) ≥ ∣Tu∣2 ∀u ∈H.

Proof. Suppose (iii). Fix u ∈ H and observe that 0 ≤ (Tu,u) ≤ ∣Tu∣∣u∣ ≤ ∥T ∥∣u∣2 ≤ ∣u∣2. Thus, (iii) Ô⇒ (iv).
Suppose (iv). Then we have that for all u ∈ H such that ∣u∣ = 1, 0 ≤ (Tu,u) ≤ 1. Thus, by Proposition 6.9,
it follows that σ(T ) ⊂ [0,1] so that (iv) Ô⇒ (v). Suppose (v). Then for all ε > 0, we have that −ε ∈ ρ(T )
so that T + εI is invertible. Moreover, since σ(T ) ⊂ [0,1], it follows that σ(T + εI) ⊂ [ε,1 + ε], and so by
Exercise 6.15, σ((T + εI)−1) = σ(T + εI)−1 ⊂ [ 1

1+ε , ε
−1]. Thus, since (T + εI)−1 is self-adjoint, we can apply

Proposition 6.9 to conclude that ((T + εI)−1u,u) ≥ ∣u∣
2

1+ε for all u ∈ H. Fix u ∈ H and set f = Tu + εu. Then we

have that ∣Tu+εu∣2
1+ε = ∣f ∣

2

1+ε ≤ ((T + εI)
−1f, f) = (u,Tu + εu). Since this inequality holds for all ε > 0, we can take

the limit as ε → 0 to conclude that ∣Tu∣2 ≤ (Tu,u), and so (v) Ô⇒ (vi). Finally, suppose (vi). Then clearly
(Tu,u) ≥ ∣Tu∣2 ≥ 0 and ∣Tu∣2 ≤ (Tu,u) ≤ ∣Tu∣∣u∣, so that ∣Tu∣ ≤ ∣u∣, proving that ∥T ∥ ≤ 1. Thus, (vi)Ô⇒ (iii).

3. Prove that the following properties are equivalent:

(vii) (Tu,u) ≤ ∣Tu∣2 ∀u ∈H,

(viii) (0,1) ⊂ ρ(T ).
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Proof. Suppose (vii). Set U = 2T − I and observe that for all u ∈ H, ∣Uu∣2 = 4∣Tu∣2 − 4(Tu,u) + ∣u∣2 ≥ ∣u∣2,
so that ∣Uu∣ ≥ ∣u∣ for all u. Thus, for any λ ∈ (−1,+1), we have that ∣Uu − λu∣2 = ∣Uu∣2 − 2λ(Uu,u) + λ2∣u∣2 ≥
∣u∣2 − 2λ∣u∣2 + λ2∣u∣2 = (λ − 1)2∣u∣2. Since U − λI is self-adjoint, we can apply Theorem 2.20 to conclude that
U − λI is surjective. Clearly we also have that U − λI is also injective and so λ ∈ ρ(U) for all λ ∈ (−1,+1).
Applying Exercise 6.22 part 5, it follows that (−1,+1) ⊂ ρ(U) = 2ρ(T ) − 1, and so ρ(T ) ⊃ (0,1), which verifies
that (vii) Ô⇒ (viii). Suppose (viii). Then ρ(U) = 2ρ(T ) − 1 ⊃ (−1,+1) and so U is invertible, and applying
Exercise 6.22, we have that σ(U−1) = σ(U)−1 ⊂ [−1,+1]. By Proposition 6.9, it follows that ∥U−1∥ ≤ 1 and so
for all u ∈H, ∣u∣2 = ∣U−1Uu∣2 ≤ ∣Uu∣2 = 4∣Tu∣2 − 4(Tu,u) + ∣u∣2. The statement follows after rearranging.

Evan’s Sobolev Spaces Solutions

In these exercises U always denotes an open subset of Rn, with a smooth boundary δU . As usual, all given functions
are assumed smooth, unless otherwise stated.

1.

Assume 0 < β < γ ≤ 1. Prove the interpolation inequality

∥u∥C0,γ(U) ≤ ∥u∥
1−γ
1−β
C0,β(U)∥u∥

γ−β
1−β
C0,1(U).

Proof. Fix u ∈ C0,β(U). Then observe that since ∣u(x) − u(y)∣ ≤ C ∣x − y∣β ≤ C ∣x − y∣γ ≤ C ∣x − y∣ for all x, y ∈ U , it
follows that u ∈ C0,γ(U) ∩C0,1(U). Moreover, for any x ≠ y ∈ U , we have that

∣u(x) − u(y)∣
∣x − y∣γ

=
⎛
⎝
∣u(x) − u(y)∣
∣x − y∣β

⎞
⎠

1−γ
1−β ⎛
⎝
∣u(x) − u(y)∣
∣x − y∣

⎞
⎠

γ−β
1−β

≤ [u]
1−γ
1−β
β [u]

γ−β
1−β
1 ,

so that [u]γ ≤ [u]
1−γ
1−β
β [u]

γ−β
1−β
1 . It follows that

∥u∥C0,γ(U) ≤ ∥u∥
1−γ
1−β
∞ ∥u∥

γ−β
1−β
∞ + [u]

1−γ
1−β
β [u]

γ−β
1−β
1

= (∥u∥∞ + [u]β)
1−γ
1−β ⎛
⎝

∥u∥∞
∥u∥∞ + [u]β

⎛
⎝
∥u∥∞(∥u∥∞ + [u]β)

∥u∥∞
⎞
⎠

γ−β
1−β

+
[u]β

∥u∥ + [u]β
⎛
⎝
[u]1(∥u∥∞ + [u]β)

[u]β
⎞
⎠

γ−β
1−β ⎞
⎠

≤ (∥u∥∞ + [u]β)
1−γ
1−β (∥u∥∞ + [u]1)

γ−β
1−β

,

where I have applied the convexity of the map t↦ t
γ−β
1−β in the final inequality. The desired inequality follows.

3.

Assume n = 1 and u ∈W 1,p(0,1) for some 1 ≤ p < ∞.

(a) Show that u is equal a.e. to an absolutely continuous function and u′ (which exists a.e.) belongs to Lp(0,1).

Proof. By possibly adding a constant, we may assume WLOG that Since u ∈W 1,p(0,1), there exists v ∈ Lp(0,1)
such that ∫

1
0 uφ′ = −∫

1
0 vφ for all test functions φ ∈ C∞c (0,1). Set U(x) ∶= ∫

x
0 v(t)dt. Observe that for any test

function φ ∈ C∞c (0,1),

∫
1

0
(u(x) −U(x))φ′(x)dx = ∫

1

0
(u(x) − ∫

x

0
v(t)dt)φ′(x)dx

= ∫
1

0
u(x)φ′(x)dx − ∫

1

0
v(t)∫

1

t
φ′(x)dxdt

= −∫
1

0
v(x)φ(x)dx + ∫

1

0
v(t)φ(t)dt = 0.
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It follows that u = U a.e. on (0,1). From Analysis 1, we know that U(x) = ∫
x
0 v(t)dt is absolutely continuous,

and the statement follows.

(b) Prove that if 1 < p < ∞, then

∣u(x) − u(y)∣ ≤ ∣x − y∣1−
1
p
⎛
⎝∫

1

0
∣u′∣pdt

⎞
⎠

1/p

for a.e. x, y ∈ [0,1].

Proof. Since we may assume WLOG that u is absolutely continuous by part (a), and because the fundamental
theorem of calculus part II applies to absolutely continuous functions, it follow that u(y) − u(x) = ∫

y
x u′(t)dt

for a.e. x, y ∈ [0,1]. Thus, by applying Hölder’s inequality, we have that for a.e. x, y ∈ [0,1]

∣u(x) − u(y)∣ ≤ ∫
y

x
∣u′(t)∣dt

≤
⎛
⎝∫

1

0
χp′

[x,y]
⎞
⎠

1/p′
⎛
⎝∫

1

0
∣u′(t)∣pdt

⎞
⎠

1/p

= ∣x − y∣1−
1
p
⎛
⎝∫

1

0
∣u′(t)∣pdt

⎞
⎠

1/p

.

4.

Let U,V be open sets, with V ⊂⊂ U . Show there exists a smooth function ζ such that ζ ≡ 1 on V , ζ = 0 near ∂U .

Proof. Since we are working in Rn and V ⊂ U , there exists open W such that V ⊂ W ⊂ W ⊂ U , and since V is
compact, we can further take W to be compact. That is, we have V ⊂⊂ W ⊂⊂ U . Now let ρn be a sequence of
mollifiers and observe that for each n, ζn = χW ⋆ρn is smooth and for 1

n
< 1

2
min(dist(V , ∂W ),dist(W,∂U)), we have

that

ζn(x) = ∫
Rn

ρn(x − y)χW (y)dy

= ∫
W

ρn(x − y)dy

= ∫
W∩B1/n(x)

ρn(x − y)dy.

Thus, for all x ∈ V , we have that B1/n(x) ⊂W , so that ζn∣V ≡ 1, and for all x ∈ ∂U and z ∈ B1/n(x), ζn(z) = 0 (since
B1/n(x) ∩W = ∅). The statement follows.

5.

Let U be bounded, with a C1 boundary. Show that a “typical” function u ∈ Lp(U) (1 ≤ p < ∞) does not have a trace
on ∂U . More precisely, prove there does not exist a bounded linear operator

T ∶ Lp(U) → Lp(∂U)

such that Tu = u∣∂U whenever u ∈ C(U) ∩Lp(U).

Proof. Fix p and suppose for a contradiction that there exists a bounded linear operator T ∶ Lp(U) → Lp(∂U) such
that Tu = u∣∂U for all u ∈ C(U) ∩Lp(U). Consider the sequence of functions

un(x) =
1

1 + ndist(x, ∂U)
.

Observe that each un is continuous and 0 ≤ un ≤ 1, so that (un) ⊂ C(U) ∩ Lp(U). Moreover, we clearly have that
un → 0 pointwise, so that by the dominated convergence theorem, ∫U ∣un∣p → 0 as n → ∞. Since un∣∂U ≡ 1 for all
n, we have that Area(∂U) = ∥Tun∥pLp(∂U) ≤ ∥T ∥

p∥un∥pLp(U) → 0. That is, we find that ∂U has zero area, which is

impossible. The statement follows by contradiction.
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6.

Prove that for all u ∈ C∞c (U)
∥Du∥L2 ≤ C∥u∥1/2

L2 ∥D2u∥1/2
L2 .

Assume U is bounded, ∂U is smooth, and prove this inequality if u ∈H2(U) ∩H1
0(U).

Proof. Fix u ∈ C∞c (U). Integrating by parts (and using the fact that u has compact support), we see that

∥Du∥2L2 = ∫
U
Du ⋅Du

≤ C ∫
U
∣u∣∣D2u∣

≤ C∥u∥L2∥D2u∥L2 .

The first part of the problem follows.

For the second part, fix u ∈ H2(U) ∩H1
0(U) and pick sequences (vn) ⊂ C∞c (U) converging to u in H1

0(U) and
(wn) ⊂ C∞(U) converging to u in H2(U) (the first sequence exists by the definition of H1

0(U), and the second exists
since ∂U is smooth, so the we can extend U to U ⊂⊂ V , and C∞c (V ) is dense in H2(U)). Integrating by parts (and
using the fact that the terms have compact support), we have that for all n

∫
U
Dvn ⋅Dwn ≤ C ∫

U
∣vn∣∣D2wn∣

≤ C∥vk∥L2∥D2wk∥L2 .

Clearly the RHS goes to C∥u∥L2∥D2u∥L2 as n→∞. Moreover, we have that for all n,

∫
U
(Dvn ⋅Dwn − (Du)2) ≤ ∥Dvn∥L2∥Dwn −Du∥L2 + ∥Du∥L2∥Dvn −Du∥L2 → 0,

so that ∫U Dvn ⋅Dwn → ∥Du∥2L2 . It follows that ∥Du∥L2 ≤ C∥u∥1/2
L2 ∥D2u∥1/2

L2 , as required.

7.

Suppose U is connected and u ∈W 1,p(U) satisfies

Du = 0 a.e. in U.

Prove u is constant a.e. in U .

Proof. Let (ρn) be a sequence of mollifiers, fix ε > 0 and pick n > 1/ε. Set Un = {x ∈ U ∶ dist(x, ∂U) > 1
n
}. Observe

that un = ρn ⋆ u ∈ C∞(Un) and Dun(x) = ρn ⋆Du(x) = 0 for all x ∈ Un. Since Un is connected and un is smooth, it
follows that un is equal to a constant cn on Un. Thus, since un = cn → u in Lp(Um) for any fixed m, it follows that
there exists a subsequence (cnk

) such that cnk
→ u a.e. on Um. Thus, u is constant a.e. on each Um, and taking

m→∞, we have that u is constant a.e. on U .

8.

Give an example of an open set U ⊂ Rn and a function u ∈W 1,p(U), such that u is not Lipschitz continuous on U .

Solution

Pick U ∶= B0(0,2) ∖ {(x,0) ∶ x ≤ 0}. Using polar coordinates, define u(r, θ) = r sin(θ/2). Observe that u is smooth
and bounded in U so that u ∈W 1,p(U). Fix ε > 0 and, using polar coordinates, set Kε = {(r, θ) ∶ r ∈ [ 12 ,

3
2
] & θ ∈
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[−π+ ε, π− ε]} ⊂ U . If we pick x, y ∈Kε such that the polar coordinates of x are (1,−π+ ε) and the polar coordinates
of y are (1.π − ε), then we see that

sup
x≠y∈U

∣u(x) − u(y)∣
∣x − y∣

≥ sup
x≠y∈Kε

∣u(x) − u(y)∣
∣x − y∣

≥ ∣u(x) − u(y)∣
∣x − y∣

=
∣ sin(−π+ε

2
) − sin(π−ε

2
)∣

∣ cos(−π + ε) − sin(π − ε)∣

= 2 cos(ε/2)
∣ cos(−π + ε) − sin(π − ε)∣

→ ∞ as ε→ 0.

Thus, u is not Lipschitz continuous on U .

9.

Verify that if n > 1, the unbounded function u = log log (1 + 1
∣x∣) belongs to W 1,n(U), for U = B0(0,1).

Proof. Observe that u is differentiable at all points away from 0. To see that u has a weak derivative that coincides
with its strong derivatives away from 0, observe that for any ε > 0 and test function φ ∈ C∞c (U)

∫
U∖B(0,ε)

uφxi = −∫
U∖B(0,ε)

uxiφ + ∫
∂B(0,ε)

uφνidS

≤ −∫
U∖B(0,ε)

uxiφ +C∥φ∥∞ log
⎛
⎝
log(1 + 1/ε)

ε1/n−1
ε(n−1/n)

2⎞
⎠
.

Thus, if knew that u and each uxi belong to Ln(U), and therefore also to L1(U) by the boundedness of U , it would
follow that

∫
U
uφxi = lim

ε→0
∫
U∖B(0,ε)

uφxi

= lim
ε→0

⎛
⎝
− ∫

U∖B(0,ε)
uxiφ +C∥φ∥∞ log

⎛
⎝
log(1 + 1/ε)

ε1/n−1
ε(n−1/n)

2⎞
⎠
⎞
⎠

= − lim
ε→0
∫
U∖B(0,ε)

uxiφ

= −∫
U
uxiφ.

Hence, to finish the proof, it suffices to verify that u and each uxi belong to Ln(U). To this end, observe that since
u depends only only the radius of x ∈ U ,

∫
U
∣u∣n = ∫

1

0
∫
∂B(0,r)

∣u(s)∣ndS(s)dr

= Area(∂U)∫
1

0
rn−1∣u(r)∣ndr.

And since limr→0 r
n−1∣u(r)∣n = 0, it follows that u ∈ Ln(U) (to see why this limit is so, we apply L’Hôpital to get

that

lim
r→0

rn−1
RRRRRRRRRRR
log log (1 + 1

r
)
RRRRRRRRRRR

n

=
RRRRRRRRRRR
lim
r→0

−1
log(1 + 1/r)(1 + 1/r)r2(1/n − 1)r1/n−2

RRRRRRRRRRR

n

=
⎛
⎝

1

1 − 1
n

⎞
⎠

nRRRRRRRRRRR
lim
r→0

r1/n

log(1 + 1/r)

RRRRRRRRRRR

n

= lim
r→0

r2−1/n(1 + 1/r) = 0.)
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Finally, observe that ∣uxi(x)∣ ≤ 1
log(1+∣x∣)(∣x∣2+∣x∣) . And using the same method of estimation as above, we get that

∫
U
∣uxi ∣n = Area(∂U)∫

1

0
rn−1∣uxi(r)∣ndr

≤ C ∫
1

0

1

log(1 + 1/r)n(r2 + r)

= −∫
log(2)

∞

dy

yn
< ∞.

The statement follows.

10.

Fix α > 0 and let U = B0(0,1). Show that there exists a constant C, depending only on n and α, such that

∫
U
u2dx ≤ C ∫

U
∣Du∣2dx,

provided
∣{x ∈ U ∶ u(x) = 0}∣ ≥ α, u ∈H1(U).

Proof. Set E = {x ∈ U ∶ u(x) = 0}. By assumption, we have that ∣E∣ > 0 and uE ∶= ⨏E u(x)dx = 0. Thus, it clearly
suffices to prove that there exists a constant C such that ∥v−vE∥L2(U) ≤ C∥Dv∥L2(U) for all v ∈H1(U), C depending
only on n and U . For a contradiction, suppose not. Then for each k ≥ 1, there exists some uk ∈ H1(U) such that
∥uk − (uk)E∥L2(U) > k∥Duk∥L2(U). Now set

vk =
uk − (uk)E

∥uk − (uk)E∥L2(U)
.

Then we have that (vk)E = 0 and ∥vk∥L2(U) = 1, and so ∥Dvk∥ < 1
k
for each k. By the Rellich-Kondrachov Compactness

theorem, there exists a subsequence (vkj) and v ∈ L2(U) such that vkj → v in L2(U). By continuity, we have that
vE = 0 and ∥v∥L2(U) = 1. Moreover, we have that for all test functions φ ∈ C∞c (U),

∫
U
vφxi = lim

j→∞∫U
vkjφxi = − lim

j→∞∫U
vkj ,xiφ = 0.

Thus, v ∈ H1(U) and Dv = 0 a.e. Since U is connected, v is constant. But since vE = 0, v is constant on E and
∣E∣ > 0, it follows that v = 0, contradicting that ∥v∥L2(U) = 1. The statement follows by contradiction.

11.

Show that for each n ≥ 3 there exosys a constant C so that

∫
Rn

u2

∣x∣2
dx ≤ C ∫

Rn
∣Du∣2dx

for all u ∈H1(Rn)

Proof. Suppose first that u ∈ C∞c (Rn)∩L2(Rn). Set F (x) = x
∣x∣ , and observe that since our domain is Rn, integration

by parts gives that

∫ u2div(F ) = −∫ D(u2) ⋅ F = −2∫ Du ⋅ uF.

Thus, applying Cauchy Schwarz, we have

RRRRRRRRRRR
∫ u2div(F )

RRRRRRRRRRR
≤ 2∥Du∥2∥uF ∥2,
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or equivalently,

⎛
⎝∫

u2

∣x∣2
⎞
⎠

2

≤ 4

(n − 2)2 ∫
∣Du∣2dx∫

u2

∣x∣2
dx.

Thus, ∫ u2

∣x∣2 ≤
4

(n−2)2 ∫ ∣Du∣2 for all u ∈ C∞c (Rn) ∩L2(Rn). Now fix u ∈H1(Rn) and observe that H1(Rn) =H1
0(Rn),

so that there exists (un) ⊂ C∞c (Rn) ∩ L2(Rn) such that un → u in H1(Rn). By possibly picking a subsequence and
relabeling, we may assume WLOG that un → u pointwise a.e. Now by Fatou, we have that

∫
u2

∣x∣2
≤ lim inf

n
∫

un

∣x∣2
≤ 4

(n − 2)2
lim inf

n
∫ ∣Dun∣2 =

4

(n − 2)2 ∫
∣Du∣2.

12.

Assume F ∶ R→ R is C1, with F ′ bounded. Suppose U is bounded and u ∈W 1,p(U) for some 1 ≤ p ≤ ∞. Show

v ∶= F (u) ∈W 1,p(U) and vxi = F ′(u)uxi (i = 1, . . . , n).

Proof. By density, pick (uk) ⊂ C∞(U) ∩W 1,p(U) such that uk → u in W 1,p(U). Then using the fact that F ′ is
bounded, there exists some C such that

∣F (uk(x)) − F (uj(x))∣ ≤ C ∣uk(x) − uj(x)∣

for all x ∈ U . Thus, for any test function φ ∈ C∞c (U)

∫ F (u)Dφ = lim
k→∞∫ F (uk)Dφ = lim

k→∞
−∫ F ′(uk)Dukφ.

By possibly picking a subsequence of (uk) and relabeling, we may assume WLOG that uk → u a.e. and there
F ′(uk) → F (u) a.e. It follows that

RRRRRRRRRRR
∫ (F ′(uk)Duk − F ′(u)Du)φ

RRRRRRRRRRR
≤ C ∫ ∥Duk∥∞∣F ′(uk) − F ′(u)∣∣φ∣ + ∥F ′(u)∥∞∥uk − u∥W 1,p(U)∣φ∣ → 0

as k → ∞. Thus, ∫ F (u)Dφ = limk→∞ −∫ F ′(uk)Dukφ = ∫ F ′(u)Duφ. Finally, since U is bounded F ∈ C1 and
u ∈ Lp(U), F (u) ∈ Lp(U), and since F ′(u) is bounded, F ′(u)uxi ∈ Lp(U) (i = 1, . . . , n). Thus, F (u) ∈ W 1,p(U), as
required.
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