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1 More on Quotients

Universal Property of Quotients. Let X be a topological space with equiv-
alence relation ∼. Suppose that f : X → Y is continuous and f(x) = f(y)
whenever x ∼ y. Then there exists a unique continuous map X/ ∼→ Y such
that the diagram
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commutes.

Proposition 1. Let f : C → H be a continuous bijection, C compact, H
Hausdorff. Then f is a homeomorphism.

Proof. Closed subsets of C are compact. Thus, their images in H are compact,
hence closed.

Corollary 2. Let X be compact, Y Hausdorff, and suppose that f : X → Y is
continuous and surjective. Then Y is homeomorphic to the quotient X/ ∼

X
f

//

""
EE

EE
EE

EE
Y

X/ ∼

∼=

<<zzzzzzzz

where x ∼ y iff f(x) = f(y).

Definition 3. A closed (topological) n-manifold is a compact Hausdorff space
such that every point has a neighborhood homeomorphic to Rn.

Proposition 4. Let M be a closed n-manifold, and U ⊂ M an open set home-
omorphic to Rn. Let C = M r U , and let M be the quotient space obtained by
identifying C to a point. Then M is homeomorphic to the n-sphere Sn.

1



Proof. Let p ∈ Sn be a point. Identify Sn r {p} with Rn ∼= U by stereographic
projection. Sending M r U to p gives a surjective map g from M to Sn. By
Corollary 2, it suffices to show that this map is continuous.

Let V ⊂ Sn be open. If V does not contain p, then g−1(V ) is open since
g|U is a homeomorphism. If V does contain p, then V c is a compact set not
containing p. Since g|U is a homeomorphism, g−1(V c) is compact, hence closed
in M . Thus,

g−1(V ) = g−1(V )cc = g−1(V c)c

is open in M .

Theorem 5. Every closed manifold can be embedded as a subspace of RN for
N � 0.

Proof. Since M is compact, we can cover it by finitely many open sets U1, . . . , Uk

each homeomorphic to Rn. Let fi : M → Sn be the map given by collapsing U c
i

to a point. Then

f1 × · · · × fk : M → (Sn)k ↪→ R(n+1)k

is injective and continuous. Since M is compact and R(n+1)k is Hausdorff, it is
a homeomorphism onto its image.

2 Connectedness

Notation. For this section, X will denote a topological space, and I the closed
interval [0, 1] ⊂ R.

Definition 6. A path in X is a continuous map γ : I → X . If x = γ(0) and
y = γ(1), we say that γ is a path from x to y.

Definition 7. X is path-connected if for every x, y ∈ X , there exists a path in
X from x to y.

Definition 8. Let γ, δ be paths in X such that γ(1) = δ(0). The inverse γ of
γ is the path

γ(t) = γ(1 − t).

The composite γ · δ is the path

(γ · δ)(t) =

{

γ(2t) if t ∈ [0, 1
2 ],

δ(2t − 1) if t ∈ [ 12 , 1].

Definition 9. We say that x ∼p y if there is a path in X from x to y. Using
inverse and composite paths, it is easy to see that ∼p is an equivalence relation.
The equivalence classes are called path components ; they are the maximal path-
connected subsets of X .
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Example 10. For n ≥ 2, Rn r {0} is path-connected. As we will see later,
R r {0} has two path components.

Proposition 11. The continuous image of a path-connected space is path-
connected.

Proof. Assume X is path-connected and f : X → Y is continuous. Let x, y ∈
f(X). Then there exist x′, y′ ∈ X such that f(x′) = x and f(y′) = y. Let γ be
a path from x′ to y′. Then f ◦ γ is a path in f(X) from x to y.

It follows that, for n ≥ 1, the n-sphere is path-connected, via the map

Rn+1 r {0} → Sn

x 7→
x

‖x‖
.

Definition 12. A separation of X is an expression of X as the disjoint union
of two nonempty open subsets. X is connected if it has no separation.

Thus, R r {0} = (−∞, 0) ∪ (0,∞) is not connected.

Theorem 13. X is connected iff every continuous map X → R taking both
positive and negative values has a zero.

Proof. We show that X has a separation iff there exists a continuous map
f : X → (−∞, 0) ∪ (0,∞) taking both positive and negative values.
(=⇒) If X = U ∪ V is a separation, define f to be 1 on U , −1 on V .
(⇐=) X = f−1(−∞, 0) ∪ f−1(0,∞) is a separation.

Corollary 14. Every path-connected space is connected.

Proof. Let X be path-connected, and suppose f : X → R is continuous and
f(x) < 0, f(y) > 0. Let γ be a path from x to y; then f ◦ γ : I → R takes both
positive and negative values. By the Intermediate Value Theorem, f ◦ γ has a
zero, and so f has a zero.

It follows that Sn is connected and R r {0} is not path-connected.

Example 15. Let G ⊂ R2 be the graph of the function (0,∞) → R given
by x 7→ sin(1/x). The topologist’s sine curve is the closure of G in R2. It is
connected but not path-connected.

Definition 16. If x, y ∈ X , we say that x is connected to y if there exists a
connected subset Y ⊂ X containing both x and y. (For instance, Y might be
the image of a path.) This is an equivalence relation on X . Equivalence classes,
called components, are the maximal connected subsets.

Example 17. The rationals Q and the Cantor set are topological spaces in
which the components are all points, but the topology is not discrete.
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3 The Product Topology

Definition 18. Given a family {Xλ : λ ∈ Λ} of topological spaces, the product
topology on

∏

λ∈Λ Xλ is the coarsest topology such that the projection maps

πµ :
∏

λ

Xλ → Xµ

are all continuous.

Proposition 19. A sequence in the product converges iff it converges compo-
nentwise. I.e., if xn is a sequence of points in the product, then xn → x iff for
all λ, πλ(xn) → πλ(x).

Remark 20. If U ⊂
∏

λ Xλ is a nonempty open subset, then πλ : U → Xλ is
surjective for all but finitely many λ. In particular, something like (0, 1)∞ is
not open as a subset of [0, 1]∞.

Theorem 21. (Tychonoff) A product of compact spaces is compact.

Remark 22. The product topology on Rn is the same as the usual topology.

4 Spaces of Maps

In this section, we explore topologies on the set of maps from X to Y , de-
noted Maps(X, Y ), and on the set of continuous maps from X to Y , denoted
Cont(X, Y ).

Definition 23. The topology of pointwise convergence is the coarsest topology
on Maps(X, Y ) such that the evaluation map

evx : Maps(X, Y ) → Y

f 7→ f(x)

is continuous for all x ∈ X .

The topology of pointwise convergence is equivalent to the product topology
on

Maps(X, Y ) =
∏

x∈X

Y.

A sequence of functions fn converges to f in this topology iff it converges point-
wise.

Note that evx is continuous iff for every open subset U ⊂ Y , {f | f(x) ∈
U} = ev−1

x (U) is open. Thus, the topology of pointwise convergence is the
coarsest topology on Maps(X, Y ) such that for every x ∈ X and every open
U ⊂ Y , the set

{f : f(x) ∈ U}
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is open. In this formulation, it is clear that the topology of pointwise convergence
makes absolutely no reference to the topology on X .

One standard way to generalize statements to include more topology is to
replace finite (or in this case, singleton) sets by compact sets.

Definition 24. The compact-open topology on Cont(X, Y ) is the coarsest topol-
ogy such that for every compact subset C ⊂ X and every open U ⊂ Y ,

{f : f(C) ⊂ U} is open.

The compact-open topology is “the” standard topology to put on Cont(X, Y ).

Remark 25. Assume Y is a metric space. Then fn → f in the compact-open
topology iff fn|C → f |C uniformly on every compact subset C ⊂ X . This
form of convergence, known as “uniform convergence on compact subsets,” has
very nice properties. For instance, if X is locally compact Hausdorff, fn are
continuous, and fn → f uniformly on compact subsets, then f is necessarily
continuous (the same does not hold for the topology of pointwise convergence).

Likewise, if U ⊂ C is open, fn : U → C are holomorphic, and fn → f
uniformly on compact subsets, then f is necessarily holomorphic.

The following remark gives a hint as to how the compact-open topology can
be useful in algebraic topology.

Remark 26. If X is locally compact Hausdorff and f, g : X → Y are continuous,
then a homotopy from f to g is precisely a path in Cont(X, Y ) from f to g.
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