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This document gives some illustration of using model theory to state and
apply the Lefschetz Principle. Although no references are given, nothing in
here should be taken to be original. For a discussion in which Brian Conrad
gives specific references for alternative (and probably stronger) versions of the
Lefschetz Principle based on flatness rather than model theory, see the remarks
after http://mathoverflow.net/questions/44758#44758.

The “baby” version of the Lefschetz principle through model theory is the
following:

Theorem 1. Let k be an algebraically closed field, and K an algebraically
closed extension of k. Let P be any first-order statement in the language of
fields. Then P is true for k iff P is true for K.

This is a “baby” version because very few statements of interest in alge-
braic geometry can be expressed by a single first-order statement in the lan-
guage of fields. For instance, one cannot directly express the statement that “k
is algebraically closed.” This is because the statement we care about involves
quantifying over polynomials, rather than just over elements of the field.

However, this method becomes surprisingly powerful if one considers state-
ments that are equivalent to infinite collections {Pi} of first-order statements.
Let S be the statement we care about (which cannot be expressed as a first-
order statement about the base field). Then we might be able to do something
like

S holds over k ⇐⇒ for each i, Pi holds over k

⇐⇒ for each i, Pi holds over K

⇐⇒ S holds over K.

As an example of how a statement might be “divided” into infinitely many
first-order statements, consider the example mentioned earlier, the statement
that “k is algebraically closed.” While this statement (call it S) cannot be
expressed in the first-order language, the statement “Every polynomial of degree
≤ n has a root” (call this Sn) can be expressed in the first-order language. For
instance, if n = 3, we write

∀a0∀a1∀a2∀a3∃x(a0 + a1x+ a2xx + a3xxx = 0).
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Then S holds iff for all n, Sn holds. Consequently, we can use Theorem 1 to
deduce that “k is algebraically closed iff K is algebraically closed.” This is hardly
impressive, since k and K are both algebraically closed by hypothesis. However,
I should note that the reduction of S to {Sn} was in fact crucial to the proof of
Theorem 1.

For a somewhat more impressive example, I will use Theorem 1 to deduce
the following statement:

Proposition 2. Let A be a finitely generated k-algebra. Then A is reduced iff
A⊗k K is reduced.

For the first step, we note that A can be expressed as

A = k[x1, . . . , xn]/(f1, . . . , fk).

We will also assume that f1, . . . , fk form a Gröbner basis, with the following
key consequence:

There exists a function φ : N → N such that, if f ∈ I and deg(f) ≤ d,
then f =

∑
i
aifi for some ai of degree ≤ φ(n).

(1)

In other words, once we have bounded the degree of f , we can test whether f ∈ I
by testing whether it can be written as a linear combination of the fi, in which
the coefficients have bounded degree. This is significant since we can quantify
over polynomials of bounded degree (by quantifying over their coefficients), but
we can never quantify over all polynomials.

The statement S that “A is reduced” is, by definition, equivalent to the
statement that “for all f ∈ k[x1, . . . , xn] and all m ∈ N, if fm ∈ I, then f ∈ I.”
A first potential obstacle to overcome is that we cannot quantify over integers.
However, this is easy to patch: since A is Noetherian, every ideal of nilpotents is
itself nilpotent. Thus, there exists m0 such that f ∈ A is nilpotent iff fm0 = 0.
Consequently, S is equivalent to the statement

For all f ∈ k[x1, . . . , xn], if f
m0 ∈ I, then f ∈ I.

Remark. Note: we have not actually constructed any statement of this form,
since we have no idea whatm0 is. However, for the purpose of applying Theorem
1, we don’t need to explicitly construct our statements equivalent to S; we need
only prove that they exist.

Remark. I believe that the technique below could also be used, in principle,
to “quantify” over infinitely many m by dividing the statement into infinitely
many weaker statements. If I am correct here, then the reduction to a single
m0 was a convenient shortcut, but not strictly necessary.

Our next difficulty is that we cannot quantify over all polynomials f . How-
ever, by quantifying over coefficients, we can quantify over all polynomials of
degree ≤ d. Thus, let Sd be the statement
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For all f ∈ k[x1, . . . , xn] of degree ≤ d, if fm0 ∈ I, then f ∈ I.

Now, using (1), we may rewrite Sd as the statement

For all f ∈ k[x1, . . . , xn] of degree ≤ d, if there exist ai of degree
≤ φ(m0d) such that fm0 =

∑
i
aifi, then there exist bi of degree

≤ φ(d) such that f =
∑

i
bifi.

This, at last, is a statement that can be expressed in the first-order language of
fields (by quantifying over the coefficients of f , the ai, and the bi. Note that the
fi are fixed, so we don’t need to quantify over their coefficients.) By Theorem
1, for each d, Sd holds over k iff Sd holds over K. Since A is reduced iff Sd holds
over k for every d, and

A⊗k K = K[x1, . . . , xn]/(f1, . . . , fk)

is reduced iff Sd holds over K for every d, we conclude that A is reduced iff
A⊗k K is reduced.

Remark. I have seen at least one paper that formalizes the method above by
using a language that allows “infinite conjunctions” and the like. (The key
characteristic is that all the infinite logical operations must occur outside all
the quantifiers.) While it is nice to have a single stronger statement rather than
a vague, example-based technique for strengthening a weaker statement, I am
not convinced that the stronger statement is actually useful in trying to analyze
specific statements about algebraic geometry.

The following exercise is considerably more involved than the example done
in the text, but offers a nice example of the model theory interacting with the
geometry.

Exercise 1. Use the statements above to prove the following statement: If A
is a finitely generated, integrally closed domain over k, then the natural group
homomorphism A× → (A ⊗k K)× is an isomorphism. (Hint: First, use purely
algebro-geometric techniques to show that the groups in question are finitely
generated. The same techniques can be used to obtain the necessary bounds on
degree.)
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