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The following proof was taught to me by Madhav Nori, who learned it from
Pavaman Murthy, who read it in Matsumura’s book Commutative Ring Theory

[Mat89]. Having reviewed Matsumura’s version, I have to say that although it
is recognizably the same proof, I think that the exposition has improved signifi-
cantly in the course of being passed down through several other mathematicians.

Lemma. Let A be a ring (commutative, with unit), and M an A-module that
is an increasing union of submodules Mn. (Assume M0 = 0.) Suppose that for
all n, the quotient Mn+1/Mn is free. Then M is free.

Proof. First, we inductively construct compatible isomorphisms

φn :

n⊕

i=1

Mi/Mi−1 → Mn.

The base case n = 1 is obvious.
For the induction step, consider the short exact sequence

0 → Mn−1 → Mn → Mn/Mn−1 → 0.

Since Mn/Mn−1 is free, the sequence splits. Thus, there is a (non-natural)
isomorphism

Mn−1 ⊕Mn/Mn−1 → Mn.

Applying the isomorphism φn−1 that exists by inductive hypothesis, we obtain
the desired φn.

Since the φn are compatible, we may take

φ := lim
−→

φn :

∞⊕

i=1

Mi/Mi−1 → M.

Since the lim
−→

is a functor, it takes isomorphisms to isomorphisms. Since {φn}
is an isomorphism of directed systems, the direct limit φ is an isomorphism.
(Alternately, it is easy to verify injectivity and surjectivity by looking at ele-
ments.)

Remark. The argument above actually shows that if the Mn+1/Mn are all pro-
jective, then M is (non-naturally) isomorphic to their direct sum.
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We now progress to the main result. Throughout the following, let A be a
fixed Noetherian integral domain. Call an A-algebra B “nice” if for every finite
B-module M , there exists nonzero f ∈ A such that Mf is free as an Af -module.

Theorem. (Generic freeness) Every finitely generated A-algebra is nice.

Proof. We prove this theorem via a series of exercises.

Exercise 1. Show that A is nice as an A-algebra.

Exercise 2. Reduce to the following statement: If B is a nice Noetherian
A-algebra, so is the polynomial ring B[T ]. (Hint: induct on the number of
generators of B as an A-algebra.)

Assume B is a nice A-algebra, and let M be a finite B[T ]-module. Let
S ⊂ M be a finite set that generates M as a B[T ]-module. Let M1 be the
sub-B-module of M generated by S. Inductively define

Mn+1 = Mn + TMn,

a sub-B-module of M . Observe that, as a B-module, M is the increasing union
of the Mn.

Exercise 3. For n ≫ 0, the B-module Mn/Mn−1 is isomorphic to Mn+1/Mn.
(Hint: Note that for all n, T defines a surjectiveB-module morphismMn/Mn−1 →
Mn+1/Mn. Apply the ascending chain condition on M1.)

Exercise 4. There exists nonzero f ∈ A such that (Mn+1/Mn)f is free as an
Af -module, for all n. (As n ranges over the natural numbers, Mn+1/Mn only
hits finitely many isomorphism classes.)

Applying the Lemma, we see that Mf is free as an Af -module.
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