Theorem 1. Let X be a topological space. The following are equivalent:

- (i) X is connected.
- (ii) If $f: X \to \mathbb{R}$ is continuous and there exist $a, b \in X$ such that f(a) < 0 and f(b) > 0, then there exists $c \in X$ such that f(c) = 0.
- (iii) No continuous map $f: X \to \mathbb{R} \setminus \{0\}$ takes both positive and negative values.

Proof. (ii) says "A continuous function $X \to \mathbb{R}$ that takes both positive and negative values has a zero." (iii) says "A continuous function $X \to \mathbb{R}$ that has no zero does not take both positive and negative values." These are contrapositives, so $(ii) \iff (iii)$.

 $(i) \Longrightarrow (iii)$: Suppose $f: X \to \mathbb{R} \setminus \{0\}$ is continuous. Then $U = f^{-1}((0, \infty))$, $V - f^{-1}((-\infty, 0))$ are open sets, and

$$U \cup V = f^{-1}((0, \infty) \cup (-\infty, 0)) = X$$

$$U \cap V = f^{-1}((0, \infty) \cap (-\infty, 0)) = \emptyset.$$

Since X is connected, this implies U or V must be empty.

 $(iii) \Longrightarrow (i)$: Assume X is disconnected. Let $X = U \cup V$ be a separation of X. Define $f: X \to \mathbb{R} \setminus \{0\}$ by

$$f(x) = \begin{cases} -1 & \text{if } x \in U, \\ 1 & \text{if } x \in V. \end{cases}$$

By the local criterion for continuity, f is continuous. Since U, V are both non-empty, f takes positive and negative values.

Lemma 2. Let $f: [a,b] \to \mathbb{R}$ be a continuous map such that f(a) < 0 and f(b) > 0. Then there exists $c \in [a,b]$ such that f(b) = 0. (i.e., $\mathbb{R} \setminus \{0\}$ is not path connected.)

<u>Proof.</u> Let $A = f^{-1}((-\infty,0))$, $B = f^{-1}([0,\infty))$. Thus, $\overline{f(A)} \subset (-\infty,0]$, $\overline{f(B)} \subset [0,\infty)$. Let $c = \sup A$. Thus, $c \in \overline{A}$. Since $f(\overline{A}) \subset \overline{f(A)}$, we see that $f(c) \leq 0$.

Since f(b) > 0, we know $c \neq b$. Let $(d, e) \subset [a, b]$ be an open interval about c, and let $x \in (d, e)$. Since c is an upper bound on $A, x \notin A$; hence, $x \in B$. Since an arbitrary open interval about c intersects $B, c \in \overline{B}$. Hence, $f(c) \in \overline{f(B)} \subset [0, \infty)$, i.e., $f(c) \geq 0$. Therefore, f(c) = 0.

Theorem 3. Any path connected space is connected.

Proof. Let X be path connected, $a,b \in X$, and $f: X \to \mathbb{R}$ a continuous map such that f(a) < 0, f(b) > 0. Let $\phi: I \to X$ be a path from a to b. Then $f \circ \phi \colon [0,1] \to \mathbb{R}$ is a continuous map, $(f \circ \phi)(0) < 0$, and $(f \circ \phi)(1) > 0$. By the Lemma, there exists $c \in [0,1]$ such that $(f \circ \phi)(c) = 0$. Then $\phi(c) \in X$ is a zero of f.