Theorem 1. Let X be a topological space. The following are equivalent:
(i) X is connected.
(ii) If $f: X \rightarrow \mathbb{R}$ is continuous and there exist $a, b \in X$ such that $f(a)<0$ and $f(b)>0$, then there exists $c \in X$ such that $f(c)=0$.
(iii) No continuous map $f: X \rightarrow \mathbb{R} \backslash\{0\}$ takes both positive and negative values.

Proof. (ii) says "A continuous function $X \rightarrow \mathbb{R}$ that takes both positive and negative values has a zero." (iii) says "A continuous function $X \rightarrow \mathbb{R}$ that has no zero does not take both positive and negative values." These are contrapositives, so $(i i) \Longleftrightarrow$ ($i i i$).
$(i) \Longrightarrow(i i i)$: Suppose $f: X \rightarrow \mathbb{R} \backslash\{0\}$ is continuous. Then $U=f^{-1}((0, \infty))$, $V-f^{-1}((-\infty, 0))$ are open sets, and

$$
\begin{aligned}
& U \cup V=f^{-1}((0, \infty) \cup(-\infty, 0))=X \\
& U \cap V=f^{-1}((0, \infty) \cap(-\infty, 0))=\emptyset
\end{aligned}
$$

Since X is connected, this implies U or V must be empty.
$($ iii $) \Longrightarrow(i)$: Assume X is disconnected. Let $X=U \cup V$ be a separation of X. Define $f: X \rightarrow \mathbb{R} \backslash\{0\}$ by

$$
f(x)= \begin{cases}-1 & \text { if } x \in U \\ 1 & \text { if } x \in V\end{cases}
$$

By the local criterion for continuity, f is continuous. Since U, V are both nonempty, f takes positive and negative values.

Lemma 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous map such that $f(a)<0$ and $f(b)>0$. Then there exists $c \in[a, b]$ such that $f(b)=0$. (i.e., $\mathbb{R} \backslash\{0\}$ is not path connected.)
Proof. Let $A=f^{-1}((-\infty, 0)), B=f^{-1}([0, \infty))$. Thus, $\overline{f(A)} \subset(-\infty, 0]$, $\overline{f(B)} \subset[0, \infty)$. Let $c=\sup A$. Thus, $c \in \bar{A}$. Since $f(\bar{A}) \subset \overline{f(A)}$, we see that $f(c) \leq 0$.

Since $f(b)>0$, we know $c \neq b$. Let $(d, e) \subset[a, b]$ be an open interval about c, and let $x \in(d, e)$. Since c is an upper bound on $A, x \notin A$; hence, $x \in B$. Since an arbitrary open interval about c intersects $B, c \in \bar{B}$. Hence, $f(c) \in \overline{f(B)} \subset[0, \infty)$, i.e., $f(c) \geq 0$. Therefore, $f(c)=0$.

Theorem 3. Any path connected space is connected.
Proof. Let X be path connected, $a, b \in X$, and $f: X \rightarrow \mathbb{R}$ a continuous map such that $f(a)<0, f(b)>0$. Let $\phi: I \rightarrow X$ be a path from a to b. Then $f \circ \phi:[0,1] \rightarrow \mathbb{R}$ is a continuous map, $(f \circ \phi)(0)<0$, and $(f \circ \phi)(1)>0$. By the Lemma, there exists $c \in[0,1]$ such that $(f \circ \phi)(c)=0$. Then $\phi(c) \in X$ is a zero of f.

