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1 First Steps

1.1 Introduction

Janet is a calculus teacher. She is currently teaching her students how to find
volumes of solids of revolution via the “disk method.” She would like to produce
a diagram to illustrate the method—something like the diagram shown on page 3.
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As an experienced user of TikZ, Janet does not think she would have trouble
producing the diagram in the top left of the figure. She also believes she could
get the diagram in the bottom left with some fiddling. However, she simply
does not believe the three-dimensional capabilities of TikZ are up to drawing
a diagram like that in the top right—at least, not without far more time and
fiddling than Janet is willing to put in for a single diagram.

Janet’s husband Vincent is a programmer. He has some familiarity with the
programming language Asymptote, which is especially designed to produce vector
graphics and has some fairly substantial three-dimensional capabilities. Working
with her husband, Janet decides to try to draw the figure using Asymptote.

1.2 Hello World

Janet already has an up-to-date installation of TeXLive. On the off-chance
that this includes an Asymptote installation, she attempts a simple Hello World
program. She uses her favorite text editor1 to produce a document consisting of
the single line

label("Hello world!");

and saves it as hello_world.asy. She then goes to the command line and types
asy hello_world. The result is an eps file named hello_world.eps. Opening
it, she sees a single page with the following printed on it:2

Hello world!

Thus, to the surprise of both Janet and her husband, it appears that Asymptote
is already installed on her computer.3

Since Janet uses pdflatex, she finds it annoying to import eps files, and
would prefer that the “graphic” be output in another format. Adding one line
to her Asymptote file causes it to output a pdf file instead:

settings.outformat = "pdf";

label("Hello world!");

Vincent notes that every line should end with a semicolon. Since TikZ behaves
the same way, Janet does not find this too difficult to remember.

Now that Janet has a pdf file containing her “graphic,” she decides to import
it into a latex file. Having done so, she is pleased to notice that Hello World
is printed in the same font as the rest of her document (Computer Modern).

1She is inclined to use TeXShop, since she already has it, but Aquamacs would really
be more suitable. Vincent, who is a die-hard fan of the command line, recommends using
the command-line editor nano. On a Windows machine, the simplest thing to use would be
Notepad.

2Not including the yellow background, of course.
3This was more or less my experience, working on Mac OS X. If you are not fortunate enough

to have had this miracle happen to you, see Appendix B and the installation instructions in
the Asymptote manual.
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However, she considers it unfortunate that the font size in the “graphic” is larger
than in the rest of her document. Vincent asks her what size she would like
the font in her Asymptote graphics. Being told that the desired font size is 10
points, he proposes the following:

settings.outformat = "pdf";

defaultpen(fontsize(10pt));

label("Hello world!");

The result is

Hello world!

which looks nicer with the rest of the document.

1.3 Interpreting the documentation

The label() command used in the Asymptote code above is described in Section
4.4 of the Asymptote manual, with the following declaration:

void label(picture pic=currentpicture, Label L, pair position,

align align=NoAlign, pen p=currentpen,

filltype filltype=NoFill)

Janet finds this a bit overwhelming. Vincent suggests that she ignore everything
with an = sign in it, since those are all optional arguments, and think of such a
declaration simply as

label(Label L, pair position);

Essentially, if Janet wants to use this command to add a label to her picture,
she should tell what Label to add and where to add it. For instance, the line

label("Hello world", (0,0));

would add the text “Hello world” to the picture at position (0, 0). Given this
description, Janet wonders why the program she already wrote worked; shouldn’t
she have been required to specify a position? Vincent confirms that according
to the documentation, the line label("Hello world"); without any position
should not have worked. He admits that the documentation is sometimes not
completely accurate, which Janet does not find encouraging.

It seems rather peculiar to Janet that the equals sign should be what indicates
that an argument can be ignored. Vincent explains that the equals sign provides
a default value; when there is a default value, the program knows what to do if
the user does not specify a value.

Here are the optional arguments for the label command:
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type name default value

picture pic currentpicture

align align NoAlign

pen p currentpen

filltype filltype NoFill

These optional arguments behave something like key-value assignments. For
instance, if Janet had wanted to change the text size of just the single line, rather
than the entire picture, she could have set the key p to value fontsize(10pt)

as follows:

settings.outformat = "pdf";

label("Hello world", p = fontsize(10pt));

Note that fontsize(10pt) is an object of type pen, just as "Hello world"

(including the quotation marks) is an object of type Label.4 The output is the
same as before, since the picture has only one piece of text:

Hello world

Janet asks how to define a single key that can set several others, as in TikZ
styles. Vincent says that this is not possible in Asymptote, although he can see
how it might be useful.

2 Drawing a two-dimensional image

2.1 Lines and sizing

Having determined that Asymptote is already installed on her computer, Janet
decides to use it to draw a picture of the two-dimensional region that will be
revolved. She could do this using TikZ, but Vincent recommends that she get
some basic practice drawing with Asymptote before tackling a three-dimensional
picture. Here is, roughly, what Janet would like:

4Technically, "Hello world" is of type string, but strings can be treated as Labels in
Asymptote.
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First of all, she tries drawing the x-axis as a line from (−0.1, 0) to (2, 0), and
the y-axis as a line from (0,−.1) to (0, 2);

settings.outformat="pdf";

draw((-.1,0) -- (2,0));

draw((0,-.1) -- (0,2));

The result is a mark that is barely visible because it is so short. Vincent lets
Janet know this is because, by default, Asymptote interprets one unit to mean
one point—roughly 0.035 centimeters. Janet thinks that the TikZ default of 1
centimeter is much more reasonable. This can be arranged by adding the line
unitsize(1cm); to the code:

settings.outformat="pdf";

unitsize(1cm);

draw((-.1,0) -- (2,0));

draw((0,-.1) -- (0,2));

The final product should be larger still, but is kept this size for now to save
space.

There’s one more kind of sizing option for Asymptote: the size command.
In its simplest usage, this command takes a single length for an argument—in the
code below, 3cm—and makes the final picture as large as possible, keeping the
same height-to-width ratio, such that neither the width nor the height exceeds
the specified dimension (3 centimeters).
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settings.outformat="pdf";

size(3cm);

draw((-.1,0) -- (2,0));

draw((0,-.1) -- (0,2));

The size command has several important variations:

• size(real, real) takes two dimensions—a maximum width and a maxi-
mum height, in that order. Thus, for instance, code that begins with the
command size(2cm, 3cm); will ordinarily produce a picture that is either
2 centimeters wide (and ≤ 3 centimeters tall) or a picture that is 3 centime-
ters tall (and ≤ 2 centimeters wide). In either case, the height-to-width
ratio is preserved.

• If either argument in size(real, real) is zero, it is ignored. Thus,
for instance, a picture that includes the command size(4cm, 0); will
ordinarily be scaled so that the width is exactly 4 centimeters. The height
will be the “natural” height for this scaling factor.

• The command size(real, real, keepAspect=false); will scale the
width and height independently so that the resulting picture has exactly
the specified width and height, but the height-to-width ratio is allowed to
change. Thus, for instance, if a circle is drawn on a picture that has this
type of size command, the circle is likely to end up looking like an ellipse.

One of Janet’s frustrations with TikZ has been that it is difficult to produce a
picture that has exactly the desired width (or height). She is gratified to learn
that this will be much easier with Asymptote.

2.2 Arrowheads

With the axis lines drawn, Janet thinks that they should have arrows indicating
the directions. Vincent agrees that the axes should have arrows. Janet’s students
do not care about arrows.

Arrows can be added on the end of the line by using the optional parameter
arrow in the draw command:

settings.outformat="pdf";

unitsize(1cm);

draw((-.1,0) -- (2,0), arrow=Arrow);

draw((0,-.1) -- (0,2), arrow = Arrow);

Vincent thinks this looks fairly nice. Janet wants to imitate the TEX-style
arrowheads →, as she is used to being done in TikZ. Looking in the Asymptote
manual, she and Vincent find the following styles for arrowheads:
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Asymptote code appearance

draw((0,0)--(1,0),arrow=Arrow());

draw((0,0)--(1,0),arrow=ArcArrow());

draw((0,0)--(1,0),arrow=Arrow(SimpleHead));

draw((0,0)--(1,0),arrow=ArcArrow(SimpleHead));

draw((0,0)--(1,0),arrow=Arrow(HookHead));

draw((0,0)--(1,0),arrow=ArcArrow(HookHead));

draw((0,0)--(1,0),arrow=Arrow(TeXHead));

The last, the TeXHead style, is more what Janet has in mind:

settings.outformat="pdf";

unitsize(1cm);

draw((-.1,0) -- (2,0), arrow=Arrow(TeXHead));

draw((0,-.1) -- (0,2), arrow = Arrow(TeXHead));

2.3 Curved paths

Next, Janet would like to draw the parabola function, which is supposed to look
something like the graph of y =

√
x. Here’s a first attempt, with a path through

the three points (0, 0), (1, 1), and (2,
√

2):

settings.outformat="pdf";

unitsize(1cm);

draw((-.1,0) -- (2,0),

arrow=Arrow(TeXHead));

draw((0,-.1) -- (0,2), arrow =

Arrow(TeXHead));

draw((0,0) -- (1,1) -- (2,sqrt(2)));

This does not look very nice at all. Substituting .. for the connector -- can at
least make the path look smooth:

settings.outformat="pdf";

unitsize(1cm);

draw((-.1,0) -- (2,0),

arrow=Arrow(TeXHead));

draw((0,-.1) -- (0,2), arrow =

Arrow(TeXHead));

draw((0,0) .. (1,1) .. (2,sqrt(2)));
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While this is a significant improvement, Janet would also like to make the tangent
at the origin vertical. This can also be specified:

settings.outformat="pdf";

unitsize(1cm);

draw((-.1,0) -- (2,0),

arrow=Arrow(TeXHead));

draw((0,-.1) -- (0,2), arrow =

Arrow(TeXHead));

draw((0,0){up} .. (1,1) ..

(2,sqrt(2)));

This looks more or less like what Janet had in mind.
Note that up is really just short for (1,0). If Janet wanted a direction other

than up (or down, right, or left, which are similar), she could specify the
tangent direction explicitly as an ordered pair. For instance, here is a rough
approximation of a sine curve:

settings.outformat = "pdf";

unitsize(0.5cm);

draw((0,0){(1,1)} .. {right}(pi/2,1)

.. {(1,-1)}(pi,0) ..

{right}(3*pi/2,-1)

.. {(1,1)}(2*pi, 0));

Without the tangent directions specified, Asymptote does a very nice job of
connecting the dots to form a smooth curve, but it doesn’t really look like a sine
curve. The ends in particular are much too steep:

settings.outformat = "pdf";

unitsize(0.5cm);

draw((0,0) .. (pi/2,1) .. (pi,0)

.. (3*pi/2,-1) .. (2*pi, 0));

Except at the first and last points, the tangent direction at a point can be
specified either before or after the point—or, if a corner is desired, at both:

settings.outformat = "pdf";

unitsize(0.5cm);

draw((0,2) .. {(1,-3)}(2,0){(1,1/3)}

.. (4,2));
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2.4 Markers on paths

If Janet wants to see what the points on a path were actually specified, she can
use the marker option to the draw command:

settings.outformat="pdf";

unitsize(0.5cm);

draw((0,0) .. (pi/2,1) .. (pi,0)

.. (3*pi/2,-1) .. (2*pi, 0),

marker=MarkFill[0]);

Designing your own markers is not that difficult, but requires more knowledge
than is currently available. Here are the built-in markers:

built-in option description appearance

Mark[0] open circle

MarkFill[0] filled circle

Mark[1] open triangle

MarkFill[1] filled triangle

Mark[2] open square

MarkFill[2] filled square

Mark[3] open pentagon

MarkFill[3] filled pentagon

Mark[4]
open triangle
(upside down)

MarkFill[4]
filled triangle
(upside down)

Mark[5] x-mark

Mark[6] asterisk

2.5 Circles and ellipses

The path

unitcircle

is a unit circle. The function

path circle(pair c, real r);
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returns a circle centered at c with radius r. The function

path ellipse(pair c, real a, real b);

produces an ellipse centered at c with horizontal diameter 2a and vertical
diameter 2b.

settings.outformat="pdf";

size(3cm);

draw(circle((0,1), 0.5), red);

draw(circle((1,0), 1.5), blue);

draw(ellipse((1,0), 1.5, 0.5));

2.6 Boxes and polygons

The function

path box(pair a, pair b);

returns a cyclic path that is a rectangle of which a and b are opposite corners:

settings.outformat="pdf";

unitsize(1cm);

draw(box((0,0), (2,1)));

The function

path polygon(int n);

returns a cyclic path that is a regular polygon with n sides, all of whose corners
lie on the unit circle:

settings.outformat="pdf";

unitsize(1.5cm);

draw(unitcircle);

draw(polygon(5), blue);

2.7 Transformations: shifting, scaling, rotating, etc.

Janet observes that the polygon function above seems to be quite limited. What
happens if she wants to draw a polygon at a different position, or a different
size? Or upside down? Obviously, she could simply construct the path directly,
but she thinks that the polygon function ought to allow for more flexibility.
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After consulting the documentation, Vincent realizes that such flexibility is
not necessary: Janet can still change the path after it has been created, but
before it is drawn, using the transform type. Here’s an example of using a
shift transform to draw several polygons side by side:

settings.outformat="pdf";

size(5cm);

for (int n = 3; n <= 7; ++n) {

draw(shift(2.2*n, 0) *

polygon(n));

}

Note also the use of a for loop to repeat the same code multiple times.

!
Warning: Since Vincent is an experienced programmer in C-like lan-
guages, his first instinct is to use n++ instead of ++n to increment n.

Unfortunately, this does not work in Asymptote; the creators decided to omit
it because the corresponding n-- notation would interfere with the use of the
notation p -- q to indicate a line segment.

Here is some code demonstrating a number of useful transforms:

settings.outformat = "pdf";

size(3cm,0);

path p = box((0,0), (1,1));

draw(p, black + linewidth(2.0pt));

draw(shift(1,2)*p, blue);

draw(xscale(1.6)*p, green);

draw(yscale(1.4)*p, orange);

draw(scale(1.8)*p, red);

draw(rotate(60)*p, purple); /*Rotate 60

degrees*/

Transforms can be composed with one another using the * operator. For
instance, to halve the height of a path, rotate it by 45◦, and translate it two to
the left (in that order), you can do the following:

settings.outformat = "pdf";

size(3cm,0);

path p = unitcircle;

draw(p, black);

path q = shift(-2,0) * rotate(45) *

yscale(0.5) * p;

draw(q, blue);
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2.8 Arcs and margins

The function

path arc(pair c, real r, real angle1, real angle2);

creates an arc centered at c with radius r from angle1 to angle2 specified in
degrees:

settings.outformat="pdf";

size(2cm,0);

draw((3,0)--(0,0)--(0,4));

draw((2,1) -- arc((2,1), 2, 60, 80) -- cycle);

The arc goes counterclockwise if angle1 < angle2, clockwise otherwise:

settings.outformat="pdf";

size(3cm,0);

draw((-1.2,0)--(1.2,0));

draw((0,-1.2)--(0,1.2));

/* An arc from 270 to 0 goes clockwise. */

draw(arc((0,0), r=1, angle1=270, angle2=0),

arrow=Arrow(TeXHead));

settings.outformat="pdf";

size(3cm,0);

draw((-1.2,0)--(1.2,0));

draw((0,-1.2)--(0,1.2));

/* An arc from -90 to 0 goes

counterclockwise. The same effect could be

achieved by drawing an arc from 270 to

360. */

draw(arc((0,0), r=1, angle1=-90, angle2=0),

arrow=Arrow(TeXHead));

There is another useful function for drawing arcs:

path arc(pair c, explicit pair z1, explicit pair z2,

bool direction = CCW);

This function produces an arc centered at c, starting at the point z1 and ending
on the line from c to z2. The direction is specified by either direction = CW

(clockwise) or the default direction=CCW (counterclockwise). This function can
be quite convenient for specifying an arc from one line to another:
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settings.outformat="pdf";

size(3cm,0);

draw((3,0) -- (0,0) -- (3,4));

draw(arc((0,0), (2,0), (3,4)),

arrow=Arrow(TeXHead), red);

draw(arc((0,0), (2,0), (3,4), direction=CW),

arrow=Arrow(TeXHead), blue);

dot((0,0)); dot((2,0)); dot((3,4));

While this looks good at first glance, Janet is distressed that upon magnification,
the two arrow tips both cross into the black line rather than stopping at its edge.
Here is the code to fix this using the optional parameter margin= for the draw()

command:

settings.outformat="pdf";

size(3cm,0);

draw((3,0) -- (0,0) -- (3,4));

real linewidth = linewidth(currentpen);

/* A path drawn with margin=ArrowMargins will

be shortened at the end by 0.5 linewidth

and at the beginning by the full

linewidth. */

margin ArrowMargins = TrueMargin(linewidth, 0.5 linewidth);

draw(arc((0,0), (2,0), (3,4)), arrow=Arrow(TeXHead), red,

margin=ArrowMargins);

draw(arc((0,0), (2,0), (3,4), direction=CW),

arrow=Arrow(TeXHead), blue, margin=ArrowMargins);

The dots have been omitted to show the full effect, which will nevertheless be
visible only on close inspection (probably with high zoom).

2.9 Filling a region

Next, Janet would like to fill the region under the half-parabola. This may be
accomplished by creating a cyclic path and filling it with the fill command:

settings.outformat="pdf";

unitsize(1cm);

draw((-.1,0) -- (2,0), arrow=Arrow(TeXHead));

draw((0,-.1) -- (0,2), arrow = Arrow(TeXHead));

draw((0,0){up} .. (1,1) .. (2,sqrt(2)));

fill((0,0){up} .. (1,1) .. (2,sqrt(2))

-- (2,0) -- cycle);
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Note the use of cycle to close the path. Also note that the .. and -- operators
can be combined to produce a path that is curved some places and straight
others. If .. cycle were used instead of --cycle, the path would be closed
smoothly:

settings.outformat="pdf";

unitsize(1cm);

draw((-.1,0) -- (2,0), arrow=Arrow(TeXHead));

draw((0,-.1) -- (0,2), arrow = Arrow(TeXHead));

draw((0,0){up} .. (1,1) .. (2,sqrt(2))

-- (2,0) .. cycle);

Returning to the originally desired picture, Janet really wants it filled with a
gray color rather than black. This is not hard to achieve—she can just add an
option to the fill command specifying what color she wants used.

...

fill((0,0){up} .. (1,1) .. (2,sqrt(2)) -- (2,0)

-- cycle, mediumgray);

Janet almost immediately notices a problem: the filled area is covering other
things, including half the arrowhead on the x-axis. This can be fixed by putting
the fill command earlier, so that the other things get drawn on top of the filled
area:

settings.outformat="pdf";

unitsize(1cm);

fill((0,0){up} .. (1,1) .. (2,sqrt(2))

-- (2,0) -- cycle, mediumgray);

draw((-.1,0) -- (2,0), arrow=Arrow(TeXHead));

draw((0,-.1) -- (0,2), arrow = Arrow(TeXHead));

draw((0,0){up} .. (1,1) .. (2,sqrt(2)));

Janet thinks that looks much better. Vincent agrees.

2.10 Drawing a dot at a point

One thing Janet imagines the fill command might be useful for is if she wants
to draw a point—say, for a scatter plot:
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settings.outformat="pdf";

size(5cm,5cm);

draw((0,0) -- (50,0), arrow=Arrow(TeXHead));

draw((0,0) -- (0,10), arrow=Arrow(TeXHead));

real r = 0.5;

fill(circle((2,1),r));

fill(circle((35,8),r));

fill(circle((42,9),r));

Vincent believes there may be trouble here, however, in case the plot needs to
be rescaled. For data plots like this, the actual x and y scales are typically not
in the same units, so there is no reason to keep the aspect ratio constant:

settings.outformat = "pdf";

size(5cm,5cm, keepAspect=false);

draw((0,0) -- (50,0),

arrow=Arrow(TeXHead));

draw((0,0) -- (0,10),

arrow=Arrow(TeXHead));

real r = 0.5;

fill(circle((2,1),r));

fill(circle((35,8),r));

fill(circle((42,9),r));

Unfortunately, this highlights a key weakness of drawing points by filling circles:
the “points” obtained thus can change size and even shape when the picture is
rescaled.

Fortunately, there is a command designed for precisely this sort of thing: the
dot command, which draws a dot at a specified point that will remain the same
size and shape even after rescaling.

settings.outformat = "pdf";

size(5cm,5cm, keepAspect=false);

draw((0,0) -- (50,0),

arrow=Arrow(TeXHead));

draw((0,0) -- (0,10),

arrow=Arrow(TeXHead));

dot((2,1));

dot((35,8));

dot((42,9), red);

In the picture above, the last dot is drawn in red simply to demonstrate how to
do such a thing.
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2.11 Named paths and variables

One thing that is starting to bother Vincent is that there is now a certain
amount of duplicate code. If Janet were to decide that she wanted to use, say,
a quarter-circle rather than a parabola, she’d have to remember to change the
path in two different places, or she’d end up with something like this:

Janet thinks she can probably avoid such mistakes, but Vincent insists that
even the most experienced computer programmers make mistakes like this unless
they take measures to avoid redundant code. Fortunately, in Asymptote, such
measures are not difficult: create a single path with a name (like s, for instance),
and then use the name of the path rather than re-writing it entirely. Here’s how
this might work for the example in question:

settings.outformat="pdf";

unitsize(1cm);

path s = (0,0){up} .. (1,1) .. (2,sqrt(2));

fill(s -- (2,0) -- cycle, mediumgray);

draw((-.1,0) -- (2,0), arrow=Arrow(TeXHead));

draw((0,-.1) -- (0,2), arrow = Arrow(TeXHead));

draw(s);

Janet asks Vincent what the word “path” is doing on the third line; why
would it not work just to write something like

s = (0,0){up} .. (1,1) .. (2,sqrt(2));

to define s? Vincent replies that this is a feature of C-like programming languages,
including Asymptote. The letter s is something called a variable. This basically
means that the programmer is allowed to assign—and later reassign—what the
symbol s means. In this way, it is a lot like a macro in TEX or LATEX. However,
unlike macros in TEX, variables in most programming languages have a specified
type. Thus, for instance, the variable s above has type path. One characteristic
of C-like languages is that the type of the variable must be specified the first
time the variable is used. This is more or less how Asymptote knows that you
are creating a new variable rather than re-assigning one that has already been
created. If Janet were to omit the word path from the declaration
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path s = (0,0){up} .. (1,1) .. (2,sqrt(2));

then Asymptote would assume she was trying to reassign an already existing
path variable named s. If there were no such variable, or if the existing variable
were not of type path, Asymptote would exit with an error message.

In any case, with the code set up this way, changing the definition of s will
automatically change both the curve drawn and the region filled:

...

path s = (0,0){up} .. (2-sqrt(2), sqrt(2)) ..

(2,2);

fill(s -- (2,0) -- cycle, mediumgray);

...

draw(s);

There’s at least one more redundancy in the code as currently written: the
arrowhead should be the same for both axes. To make sure this happens,
Janet decides to create a variable called axisarrow and assign it the value
Arrow(TeXHead). Vincent tells her the type of this variable should be arrowbar.

Janet wonders why the type is called arrowbar rather than simply arrow.
As it turns out, the creators of Asymptote decided that defining a bar on the end
of a path (like the one on the left of the arrow 7→) is quite similar to defining an
arrow tip. So, they combined the two into a single type and called it arrowbar.
Janet will find herself putting both arrows and bars on the end of a line segment
before the end of this tutorial.

While not an issue of redundancy, the code could also be made more readable
by making the ranges of the axes into named variables. The type real, short
for “real number,” is the appropriate type to use for this variable. Vincent notes
that this is a departure from conventional C-like languages, which use double,
primarily for historical reasons.

As long as Janet is deliberately making the code more readable, Vincent
suggests that she should also add in some blank lines to group similar kinds of
statements together. And since it does not really seem to make much difference
whether the curve is drawn before or after the axes, Janet also switches the order
to group related commands together. Note, however, that if she were to draw
the path s before filling it, that would make a difference in the appearance of
the picture. As a final note, Janet also takes advantage of the xmax variable in
drawing and filling the path.
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settings.outformat = "pdf";

unitsize(1cm);

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

path s = (0,0){up} .. (1,1) .. (xmax,sqrt(xmax));

fill(s -- (xmax,0) -- cycle, mediumgray);

draw(s);

arrowbar axisarrow = Arrow(TeXHead);

draw((xmin,0) -- (xmax,0), arrow=axisarrow);

draw((0,ymin) -- (0,ymax), arrow = axisarrow);

This is probably as good a place as any to mention that another important
type in Asymptote is pair:

settings.outformat = "pdf";

size(1.5cm, 0);

pair botleft = (-1,0);

pair topright = (2.5,1.4);

draw(box(botleft, topright));

dot(botleft);

2.12 Clipping a picture

Janet will soon be doing some more detailed work on the image, which will
benefit greatly from enlargement. In order to save space in this tutorial, we’ll
show how to clip graphics. The key is to use the clip command, together with
a path specifying the area to be clipped. One key difference from TikZ that
catches Janet somewhat by surprise is that in Asymptote, the clip command
clips everything that came before it, but not what comes afterwards. (In TikZ,
it’s the other way around.) Here’s an example, in which the blue square indicates
the clipped area. The green path, which is drawn before the clip command, is
clipped; the red path, which is drawn afterwards, is not.
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settings.outformat="pdf";

size(2cm);

path thebox = box((0,0),(1,1));

fill(thebox, blue);

draw(shift(.5,.5)*thebox,green+linewidth(5pt));

clip(thebox);

draw(shift(-.5,-.5)*thebox,red+linewidth(5pt));

2.13 Path times and subpaths

Now, Janet would like to draw the strip that will, in the 3d version, be revolved
to make a disk. Here’s a first attempt (at the 2d version):

settings.outformat="pdf";

unitsize(4cm);

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

path s = (0,0){up} .. (1,1) ..

(xmax,sqrt(xmax));

fill(s -- (xmax,0) -- cycle, mediumgray);

draw(s);

arrowbar axisarrow = Arrow(TeXHead);

draw((xmin,0) -- (xmax,0), arrow=axisarrow);

draw((0,ymin) -- (0,ymax), arrow = axisarrow);

real x = 1.4;

real dx = .05;

draw((x,0) -- (x,sqrt(x)) -- (x+dx,sqrt(x+dx))

-- (x+dx,0) -- cycle, blue);

clip(box((1,ymin),(1.6,1.5)));

Janet immediately notices that the top of the strip is too high. She realizes that
in fact it is the curve that is too low; it’s supposed to resemble the graph of

√
x,

but clearly it’s a bit off. However, before figuring out how to improve the curve,
Vincent wants to figure out how to make the top of the strip match the curve
that was actually drawn.
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A promising-looking command is subpath(path p, real a, real b);. Ac-
cording to the documentation, this “returns the subpath of p running from path
time a to path time b”. Vincent and Janet aren’t sure what exactly “path time”
means, but they decide to experiment rather than looking it up first:

settings.outformat="pdf";

unitsize(4cm);

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

path s = (0,0){up} .. (1,1) ..

(xmax,sqrt(xmax));

fill(s -- (xmax,0) -- cycle, mediumgray);

draw(s);

arrowbar axisarrow = Arrow(TeXHead);

draw((xmin,0) -- (xmax,0), arrow=axisarrow);

draw((0,ymin) -- (0,ymax), arrow = axisarrow);

real x = 1.4;

real dx = .05;

path striptop = subpath(s,x,x+dx);

draw((x,0) -- striptop

-- (x+dx,0) -- cycle, blue);

clip(box((1,ymin),(1.6,1.5)));

At first glance, it appears to work perfectly. Unfortunately, something dreadful
happens when Janet inserts the point (1/2,

√
1/2) into the path s in an effort to

make it more closely resemble the graph of y =
√
x:
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settings.outformat="pdf";

size(5cm,0);

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

path s = (0,0){up} ..

(1/2,sqrt(1/2)) .. (1,1) ..

(xmax,sqrt(xmax));

fill(s -- (xmax,0) -- cycle,

mediumgray);

draw(s);

arrowbar axisarrow = Arrow(TeXHead);

draw((xmin,0) -- (xmax,0), arrow=axisarrow);

draw((0,ymin) -- (0,ymax), arrow = axisarrow);

real x = 1.4;

real dx = .05;

path striptop = subpath(s,x,x+dx);

draw((x,0) -- striptop -- (x+dx,0) -- cycle, blue);

Looking through the documentation more closely, Janet and Vincent realize
that “path time” is dependent on the number of “nodes” on a path, i.e., the
number of points that are specified when the path is defined. Consequently,
inserting an extra point to help guide the path drastically changes the path
times, even though it does not actually change the shape of the path that much.

2.14 The Law of Janet

After this fiasco, Janet and Vincent formulate the following guideline, and
jokingly call it the “Law of Janet”:

The Law of Janet. After a path is created, it should not be used in any way
that depends on how it was created. In particular, if one path is substituted for
another with identical appearance, the rest of the code should still produce the
same result.

2.15 Intersections and arrays and subpaths

At first glance, the Law of Janet appears to exclude any use of path times—which
would be a pity, since a number of useful commands like subpath rely on them.
However, after further examining the documentation, Vincent realizes that there
are other commands that give the path times at which one path intersects
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another. By using only path times produced by these commands, it is possible
to use subpaths without violating the Law of Janet.

The particular command most useful at the moment is the function real[]

times(path p, real x) which according to the documentation “returns all
intersection times of path p with the vertical line through (x,0).”

It should be noted that the return type of this function is not simply real

(a real number), but real[]; the function returns an array of real numbers. To
make sense of this, Janet gets a minimal introduction from Vincent on arrays.

Essentially, an array is an indexed list of objects of a specified type. For
instance, a real[] (read “a real array”) is an index list of reals. If a real[] is
named, for instance, a, then the elements of this list can be accessed as a[0],
a[1], . . . , a[n-1], where n is the length of the array. The indices themselves
can be variables or expressions. For instance, if a is a real[], the code

int n = a.length;

real r = a[n-1];

will set r equal to the last element of the list.
Arrays are useful when a function needs to be able to return more than one

value. Since a function can return only one object, it puts all of the values into
a single object—an array. In particular, the times() function above can return
multiple different path times, which can then be plugged into the subpath()

method. Here’s an example:

settings.outformat="pdf";

size(4cm,0);

path p = (-2,0) .. (0,7/4) .. (6/4,0)

.. (0,-5/4) .. (-4/4,0) .. (0,3/4)

.. (2/4,0) .. (0,-1/4) .. (0,0);

draw(p, arrow=ArcArrow(TeXHead,

position=0.5));

real[] isections = times(p,1/3);

draw(subpath(p,isections[0],isections[1]), blue+linewidth(0.8),

arrow=MidArcArrow(TeXHead));

draw(subpath(p,isections[2],isections[3]), red+linewidth(0.8),

arrow=MidArcArrow(TeXHead));

draw((1/3,-1.5) -- (1/3,2), gray + linewidth(0.2));

In the example above, the four points of intersection are specified by the path
times isections[0], isections[1], isections[2], and isections[3]; and
they are arranged in the order they occur as the spiral is traced out.

For what Janet wants, there is only one point of intersection of the path
with any vertical line, so what she wants is entry [0] of the array returned by
times(s,x):
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settings.outformat="pdf";

size(5cm,0);

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

path s = (0,0){up} ..

(1/2,sqrt(1/2)) .. (1,1) ..

(xmax,sqrt(xmax));

fill(s -- (xmax,0) -- cycle,

mediumgray);

draw(s);

arrowbar axisarrow = Arrow(TeXHead);

draw((xmin,0) -- (xmax,0), arrow=axisarrow);

draw((0,ymin) -- (0,ymax), arrow = axisarrow);

real x = 1.4;

real dx = .05;

real t0 = times(s,x)[0];

real t1 = times(s,x+dx)[0];

path striptop = subpath(s,t0,t1);

draw((x,0) -- striptop -- (x+dx,0) -- cycle, blue);

There are times when it is desirable to know the intersection of a path with
something more general than a vertical line. The most general version of this is
to know the intersection points of two paths. The simplest function for this is

real[] intersect(path p, path q);

Assuming the two paths p and q intersect at least once, this function returns
an array of length 2. Entry [0] gives the path time, along path p, of one point
of intersection. Entry [1] gives the path time along path q of the same point.
Thus, the two pieces of code below, which are identical except for the last line,
give exactly the same result:

settings.outformat="pdf";

unitsize(1cm);

path p = (-1,1) .. (0,0) .. (-1,-1);

path q = (1/2,0) .. (-1/3,0) .. (1/2,-1/2) ..

(1,0) .. (-1/2,1/2);

draw(p,blue, arrow=MidArcArrow());

draw(q,green, arrow=MidArcArrow());
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real[] isections = intersect(p,q);

dot(point(p,isections[0]));

settings.outformat="pdf";

unitsize(1cm);

path p = (-1,1) .. (0,0) .. (-1,-1);

path q = (1/2,0) .. (-1/3,0) .. (1/2,-1/2) ..

(1,0) .. (-1/2,1/2);

draw(p,blue, arrow=MidArcArrow());

draw(q,green, arrow=MidArcArrow());

real[] isections = intersect(p,q);

dot(point(q,isections[1]));

Note that the two paths shown above have more than one point of intersection.
To get all of them, Janet can use the function

real[][] intersections(path p, path q);

which returns an array of real[]s, i.e., an array of arrays. If the real[][]

returned is called, say, a, then a[0] is an array of two real numbers, representing
the path times for p and for q of an intersection point. Significantly, when this
function is used, the points are ordered according to which comes first on p.
Thus, subpath(p, a[0][0], a[1][0]) will be the subpath of p going from the
first intersection point to the second intersection point:

settings.outformat="pdf";

unitsize(1cm);

path p = (-1,1) .. (0,0) .. (-1,-1);

path q = (1/2,0) .. (-1/3,0) .. (1/2,-1/2) ..

(1,0) .. (-1/2,1/2);

draw(p,blue, arrow=MidArcArrow());

draw(q,green, arrow=MidArcArrow());

real[][] a = intersections(p,q);

draw(subpath(p,a[0][0], a[1][0]), red+linewidth(0.8),

arrow=MidArrow(TeXHead));

If Janet were only interested in getting the intersection points, rather than
path times to use for subpaths, she could use the convenience functions

pair intersectionpoint(path p, path q);

for a single point of intersection, and

pair[] intersectionpoints(path p, path q);

for a list of all intersection points (in no particular order, or at least none specified
by the manual).
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2.16 Tangent lines

As a calculus teacher, Janet needs a way to draw a tangent line to a curve,
even though that is not needed for this particular diagram. In the past (when
using TikZ), her strategy has been to specify the curve by an explicit formula,
and differentiate that formula by hand to determine the slope of the tangent
line. However, Asymptote has a better way: the function dir(path p, real t)

returns the unit tangent vector to the path p at path time t. As previously
discussed, path times cannot be used directly without violating the Law of Janet,
but they can be constructed from intersections.

settings.outformat="pdf";

size(3.5cm, 0);

path p = (1/2,0) .. (-1/3,0) .. (1/2,-1/2)

.. (1,0) .. (-1/2,1/2);

path l = (-1,-1) -- (1,1);

draw(l,dashed+gray);

draw(p, gray);

for (real[] pathtime : intersections(p,l)) {

real t = pathtime[0];

pair tangent = dir(p, t);

draw(shift(point(p,t)) * scale(1/2) * ((0,0) -- tangent),

arrow=Arrow);

}

2.17 Drawing disconnected paths

Technically speaking, an object of type path is always connected in Asymptote.
Nevertheless, it is possible to form a “disconnected path”—actually an array of
paths—using the “pen lift” operator ^^:

settings.outformat="pdf";

size(5cm,0);

draw((0,0) -- (0,1) ^^ (1,0) ..

(3/2,1) .. (2,0) ^^ (3,0) --

(4,1));

The draw() command used here accepts an object of type path[] rather than
path. The relevant drawing command5 is

5Technically, there are two commands. The first accepts as its mandatory argument an
explicit path[] rather than simply a path[]; this means that the command will not implicitly
convert something else to a path[], even if Asymptote knows how to do the conversion. A
second draw command with mandatory argument a guide[] is also provided, which converts
the guide[] to a path[] by an explicit conversion.
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void draw(picture pic=currentpicture, path[] g,

pen p=currentpen, Label legend=null,

marker marker=nomarker);

The only required argument is an array of paths.

!
Warning: The optional arguments for the draw(path[]) command are
not the same as those for the more conventional draw(path) command.

In particular, there are no arguments for adding labels, arrows, or bars.

For the purposes of this tutorial, the only important optional argument is the
pen p, which can be used to set the color and width of the paths drawn (as well
as other attributes).

2.18 Graphing functions

Extrapolating a path from four points is very impressive, but Janet wonders if
there is a way she could simply tell Asymptote to graph the function y =

√
x

for her. There is—in fact, graphing functions in a somewhat efficient manner is
one of the strengths of Asymptote over a purely TeX-based system like TikZ.
However, it requires that she use a piece of code that has already been written
in Asymptote to do this for her. Fortunately, that is easy enough: in practice, it
just means that the line import graph; must show up in her file before she can
start making graphs. Janet thinks this is a lot like importing a LATEX package;
her husband Vincent thinks it is like using a code library. In any case, this is
called importing a module in Asymptote.

Here’s an example of how she might draw the square root function by graphing
it:

1 settings.outformat="pdf";

2 unitsize(3cm);

3 import graph;

4 real f(real x) {

5 return sqrt(x);

6 }

7 path g = graph(f,0,2);

8 draw(g);

There are several features worth noticing here:

• Lines 4–6 create a function: for the rest of the code, whenever t is of type
real (i.e., a real number), f(t) will be interpreted as the real number
sqrt(t).
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• Line 7 creates, but does not draw, the graph of the just-defined function
f : R → R over the domain x ∈ [0, 2]. The mandatory arguments for
the function graph are a function and the minimum and maximum x-
coordinates to plot.

At first glance, the result does not look bad. However, looking more closely,
Janet notices at least one corner, and it bothers her:

Vincent thinks it’s hardly noticeable, but agrees to see what he can find in
the manual. As it turns out, there are (at least) two ways to attempt to deal
with this by adding optional arguments to the graph command. The first is
simply to increase the number of points plotted, using a parameter called n:

settings.outformat="pdf";

unitsize(2cm);

import graph;

real f(real x) {

return sqrt(x);

}

path g = graph(f,0,2,

n=200);

draw(g);

The second is to tell Asymptote to connect the points with a smooth curve rather
than with line segments. This is done by adding the argument operator ..

(The default operator, according to the manual, seems to be operator --.)
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settings.outformat="pdf";

unitsize(2cm);

import graph;

real f(real x) {

return sqrt(x);

}

path g = graph(f,0,2,

operator ..);

draw(g);

In this case, the second method—telling Asymptote to draw a smooth curve—
seems to work better. However, that is not always the case. Compare the
following three renditions of the graph of y = sinx cos 57x:

The picture on the right, which was produced using operator .., is clearly
inferior to the picture in the middle, which was produced using n=1000. Here is
the code for the three pictures:

settings.outformat

= "pdf";

import graph;

unitsize(0.9cm);

real f(real x) {

return sin(x) *

cos(57*x); }

path g = graph(f,

0, pi);

draw(g);

settings.outformat

= "pdf";

import graph;

unitsize(0.9cm);

real f(real x) {

return sin(x) *

cos(57*x); }

path g = graph(f,

0, pi, n=1000);

draw(g);

settings.outformat

= "pdf";

import graph;

unitsize(0.9cm);

real f(real x) {

return sin(x) *

cos(57*x); }

path g =

graph(f,0,pi,

operator..);

draw(g);

It is, of course, possible to use the option operator .. together with the n=

option, but it is not always wise.
Note: operator .. can be problematic for graphing functions because it is

designed to take full advantage of the two-dimensional drawing space, whereas
functions are supposed to be somewhat limited in how they can move left and
right. A better choice in this case is called Hermite, which creates curves without
producing the awful scribble.

settings.outformat = "pdf";
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import graph;

unitsize(2cm);

real f(real x) { return sin(x)*cos(57*x); }

path g = graph(f, 0, pi, n=200, Hermite);

draw(g);

The result:

2.19 Parametric graphs

Janet’s brother Jason teaches physics. In a particular example problem, a ball is
thrown so that its height (in meters) after t seconds is given by

y(t) = − 1
2gt

2 + vy,0t+ y0

= −4.5t2 + 3.0t+ 1.0 ;

the horizontal distance is given by

x(t) = vxt+ x0

= 1.3t .

Jason would like to be able to draw this path (for the first 0.9 seconds) without
having to rewrite y in terms of x. He can do this using parametric graphs in
Asymptote:

settings.outformat="pdf";

unitsize(2cm);

import graph;

pair F(real t) {

return (1.3*t, -4.5*t^2 + 3.0*t + 1.0);

}

path g = graph(F, 0, 0.9);

draw(g, arrow=Arrow(TeXHead));
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As a calculus teacher, Janet observes that the jagged corner visible in the
square root graph on p. 29 is probably caused by the use of points with the
x-distances evenly spaced. Since the slope of the function is very high near
zero (and infinite at zero), small changes in x produce large changes in y and,
consequently, long—and obtrusive—line segments. She wonders if this could be
fixed by graphing x as a function of y—i.e., by graphing x = y2 as y ranges from
0 to

√
2, rather than graphing y =

√
x as x ranges from 0 to 2.

Even more generally, she would like to be able to draw a parametric graph,
in which x and y are both given as functions of a third parameter t. Thus, for
instance, the graph of

(x, y) = (t2, t)

with evenly spaced choices of t might give a nicer-looking result than simply
graphing y =

√
x. The graph module of Asymptote allows this more sophisticated

kind of graphing as well:

settings.outformat="pdf";

unitsize(3cm);

import graph;

pair f(real t) { return (t^2, t); }

path g = graph(f, 0, sqrt(2));

draw(g);

Even though this graph is actually made up of line segments, the spacing is
better so that the corners are far less noticeable.

Here’s one last example that uses parametric graphing to plot the function
f(x) = sin(1/x), the “topologist’s sine curve,” which is notoriously difficult to
graph:
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settings.outformat="pdf";

size(4cm,3cm, keepAspect=false);

import graph;

pair f(real t) {

return (1/t, sin(t));

}

draw(graph(f, 1, 10^4, n=5*10^5),

thin());

draw((0,-1.1)--(0,1.3), arrow=Arrow(TeXHead));

draw((0,0)--(1.05,0), arrow=Arrow(TeXHead));

Note the use of the pen thin(), which shows up on a screen as being exactly
one pixel thick (at every zoom level), making it possible to zoom in and see more
of the oscillations before they completely obscure one another as x → 0. For
some reason, this particular image also seems to render much more quickly on
the computer screen with the thin() pen than with a pen whose line width is
specified; however, it may not print very nicely.

2.20 Implicitly defined curves; building arrays

Asymptote also has the capability to graph curves that are defined implicitly.
This requires the module contour rather than graph. The relevant function is

contour(real f(real, real), pair a, pair b, real[] c);

it returns a guide[][] (i.e., an array of arrays of guides). If this returned
guide[][] is saved as a variable names thegraphs, then for each i, the entry
thegraphs[i] is a guide[] representing the (possibly disconnected) graph of
the equation f(x, y) = c[i]. For example, the graph of y2 = x3 − x (equivalently,
y2 − (x3 − x2) = 0) restricted to the rectangular region with corners (−2,−2)
and (2, 2) may be obtained as follows:

settings.outformat="pdf";

size(4cm,0);

import contour;

real f(real x, real y) { return y^2 -

(x^3 - x); }

guide[][] thegraphs = contour(f,

a=(-2,-2), b=(2,2), new real[] {0});

/* The next line draws the first (and

only) entry in thegraphs. This entry

is itself an array, since it

represents a disconnected path. */

draw(thegraphs[0]);
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!
Warning: If you draw the paths returned by the contour() function,
you may unwittingly assume that the drawing will automatically include

the points a and b. This assumption is false. Drawing the paths alone will
only include the smallest rectangle that contains the graphs. If you want to
include the entire rectangle with corners a and b, you must do something extra,
such as drawing axes or drawing the disconnected path a ^^ b using the pen
invisible.

Note the use of the expression new real[] {0} to build an array containing
exactly one entry, namely the real number 0. This is a general technique for
building arrays. For instance, the expression new pair[] {(0,0), (1,0),

(0,1), (0,1)} produces an array with the four entries (0, 0), (1, 0), (0, 1), (0, 1).
Likewise, the expression

(0,0)--(0,1) ^^ (1,0)..(3/2,1)..(2,0) ^^ (3,0)--(4,1)

is essentially6 equivalent to the expression

new path[] {(0,0)--(0,1), (1,0)..(3/2,1)..(2,0), (3,0)--(4,1)}

An alternative way to build an array is to declare the array and then add the
items to the end one by one using the array.push() command. For example,
the following code creates an array consisting of all nonzero integers from −5 to
15 (inclusive):

int[] myarray;

for (int i = -5; i <= 15; ++i) {

if (i != 0) myarray.push(i);

}

2.21 The filldraw command

Returning to the original problem, Janet and Vincent have now progressed as
far as being able to draw the following:

6To make it even more equivalent, change new path[] to new guide[]. The difference
between paths and guides is explained in the official Asymptote documentation in the section
“paths and guides” of the Programming chapter.
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settings.outformat="pdf";

size(5cm,0);

import graph;

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

path s = graph(sqrt, 0, 2,

operator..);

fill(s -- (xmax,0) -- cycle,

mediumgray);

draw(s);

arrowbar axisarrow = Arrow(TeXHead);

draw((xmin,0) -- (xmax,0), arrow=axisarrow);

draw((0,ymin) -- (0,ymax), arrow = axisarrow);

real x = 1.4;

real dx = .05;

real t0 = times(s,x)[0];

real t1 = times(s,x+dx)[0];

path striptop = subpath(s,t0,t1);

draw((x,0) -- striptop -- (x+dx,0) -- cycle, blue);

What Janet actually wanted, for the blue box, was a box filled in black—and
perhaps also outlined, for good measure. This can be accomplished by replacing
the draw command in the final line of the code above with filldraw:

...

filldraw((x,0) -- striptop -- (x+dx,0) -- cycle,

black);

...

//code to clip picture goes here

2.22 Adding text

There are a number of different ways to add text to an Asymptote diagram.
Probably the simplest is to use the command

void label(Label L, pair position);
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which has optional arguments

type name default value

picture pic currentpicture

align align NoAlign

pen p currentpen

filltype filltype NoFill

Thus, to place the text “$x$” at the point (xmax,0), Janet can add the command
label("$x$",(xmax,0)) to the end of her Asymptote code. Here’s the result
after clipping:

x

First, Janet notes that the string “$x$” was translated exactly into its LATEX
equivalent, which she appreciates. However, there is a more pressing issue: she
did not want the text positioned exactly on top of the end of the x-axis, but to
the right. For this, she can add the option “align=E”:

x

label("$x$", (xmax,0), align=E);

This is much more what she had in mind. Other standard alignments include N,
S, W, NE, SE, . . . . It should also be noted that these are really abbreviations for
ordered pairs: E, for instance, really means (0,1). As such, alignments can be
added to each other and multiplied by real numbers:

x

label("$x$", (xmax,0), align=2.5E + S/2);

Labels can also be added directly to paths when they are drawn, using the
optional parameter Label L of the draw() command. When this is done, it is
typically necessary to construct a Label explicitly using the Label() function

Label Label(string s);

with optional parameters
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type name default value

string size ""

position position no default7

align align NoAlign

pen p nullpen

embed embed Rotate

filltype filltype NoFill

The most important optional parameter here is position=. Typical values
include position=EndPoint, position=MidPoint, or position=BeginPoint.
More generally, position=Relative(r) will take the real number r ∈ [0, 1] to
specify the location of the Label as a fraction of the total arclength of the path.
For instance, MidPoint is defined to be Relative(0.5).

x

y

z

settings.outformat = "pdf";

size(2.5cm, 0);

Label Lx= Label("$x$", position=EndPoint);

Label Ly = Label("$y$", position=BeginPoint);

Label Lz = Label("$z$", position=MidPoint);

draw((0,0) -- (0,4), arrow=Arrow(TeXHead),

L=Lx);

draw((1,0) -- (1,4), arrow=Arrow(TeXHead),

L=Ly);

draw((2,0) -- (2,4), arrow=Arrow(TeXHead),

L=Lz);

The default alignments are reasonably sensible. However, they can be changed
by using the optional paramater align in creating the label with Label. For
instance, the lower of the following two images is more like the one Janet is going
to want in her diagram:

dx
settings.outformat="pdf";

unitsize(0.3cm);

Label L = Label("$dx$", position=MidPoint);

draw((0,0) -- (1,0), L=L, bar=Bars);

dx settings.outformat="pdf";

unitsize(0.3cm);

Label L = Label("$dx$", position=MidPoint, align=2N);

draw((0,0) -- (1,0), L=L, bar=Bars);

7An “optional parameter with no default” is obtained by overloading the function, i.e., by
defining multiple functions with the same name but different arguments.
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Note the use of the option bar=Bars on the draw command to produce bars
perpendicular to the ends of the path. The other options for this parameter are
None (the default), BeginBar, EndBar, and Bar (which is the same as EndBar).

Another label that Janet wants to add to her diagram is one indicating the
height of the dx× f(x) strip. For this, she wants a vertical line with arrows and
bars on both ends, and with the label f(x) right on top of the midpoint. For the
latter effect, the option align=(0,0) in the construction of the label is called
for:

f(x)

settings.outformat="pdf";

unitsize(3cm);

defaultpen(fontsize(10pt));

Label L = Label("$f(x)$", align=(0,0),

position=MidPoint);

draw((0,0) -- (0,sqrt(1.4)), L=L, arrow=Arrows(),

bar=Bars);

There is, unfortunately, one more problem: the part of the line behind the label
f(x) needs to be hidden for readability. Or, to put it another way, a box around
the label needs to be filled, with the same color as the background, to hide the line
behind it. Janet can accomplish this by using the option filltype=Fill(white)

in the construction of the label, where white should be replaced by whatever
the background color really is.

f(x)

settings.outformat="pdf";

unitsize(3cm);

defaultpen(fontsize(10pt));

Label L = Label("$f(x)$", align=(0,0),

position=MidPoint, filltype=Fill(white));

draw((0,0) -- (0,sqrt(1.4)), L=L, arrow=Arrows(),

bar=Bars);

2.23 Adding multiple labels to a single path

To add multiple labels to the same path, construct the labels separately using
Label and then apply the method label(Label L, path g):

settings.outformat="pdf";

defaultpen(fontsize(10pt));

size(12cm, 0);

path p =(0,0) .. (4,.3) .. (5,-.3) .. (5,-4);

draw(p);

Label L1 = Label("BeginPoint", position=BeginPoint);
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label(L1, p);

Label L2 = Label("MidPoint", position=MidPoint);

label(L2, p);

Label L3 = Label("EndPoint", position=EndPoint);

Label L4 = Label("Relative(0.25)", position=Relative(0.25));

label(L3, p);

label(L4, p);

BeginPoint MidPoint

EndPoint

Relative(0.25)

Janet thinks it is unfortunate that it takes two8 lines of code to add each label
to the path, and also that there is no obvious way to make the text of the label
slope along the path. After consulting the source code in plain_Label.asy,
she and Vincent manage to cobble together a new command, which they call
pathlabel, that seems to alleviate both these issues:

void pathlabel(picture pic = currentpicture, Label L, path g,

real position=0.5, align align=NoAlign, bool sloped=false,

pen p=currentpen, filltype filltype=NoFill) {

Label L2 = Label(L, align, p, filltype,

position=Relative(position));

if (sloped) {

pair direction = dir(g, reltime(g, position));

real angle = degrees(atan2(direction.y, direction.x));

L2 = rotate(angle)*L2;

8This can be abbreviated to a single arguably more confusing line of code by defining the
Label within the label command, e.g., label(Label("MidPoint",position=MidPoint),p);

39



}

label(pic, L2, g);

}

size(12cm, 0);

defaultpen(fontsize(10pt));

settings.outformat="pdf";

path p =(0,0) .. (4,.3) .. (5,-.3) .. (5,-4);

draw(p);

pathlabel("BeginPoint", p, position=0);

pathlabel("Relative(0.25)", p, position=0.25);

pathlabel("MidPoint", p, position=0.5, align=Relative(W),

sloped=true);

pathlabel("EndPoint", p, align=Relative(E), position=1.0);

BeginPoint

Relative(0.25) MidPoint

EndPoint

Note also the use of the option align=Relative(pair), which tells Asymp-
tote to align the label relative to the path, with “north” pointing in the tangent
direction to the path. In particular, align=Relative(E) will put the label to the
right of the path direction (i.e., below the path, if it is going from left to right),
while align=Relative(W) will put the label to the left of the path direction
(above the path, if it is going from left to right).

2.24 Drawing objects of a fixed (unscalable) size

If we combine all that we have done so far toward the desired image, we get the
following:
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y = f(x)
dx

f(x)

x

y

settings.outformat="pdf";

unitsize(4cm);

defaultpen(fontsize(10pt));

import graph;

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

real f(real x) { return sqrt(x); }

path s = graph(f, 0, 2, operator..);

pen fillpen = mediumgray;

fill(s -- (xmax,0) -- cycle, fillpen);

draw(s, L=Label("$y=f(x)$", position=EndPoint));

real x = 1.4;

real dx = .05;

real t0 = times(s,x)[0];

real t1 = times(s,x+dx)[0];

path striptop = subpath(s,t0,t1);

filldraw((x,0) -- striptop -- (x+dx,0) -- cycle, black);
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real barheight = f(x) + .1;

Label dxlabel = Label("$dx$", position=MidPoint, align=2N);

draw((x,barheight) -- (x+dx, barheight), L=dxlabel, bar=Bars);

real barx = x + dx + 0.1;

Label fxlabel = Label("$f(x)$", align=(0,0), position=MidPoint,

filltype=Fill(fillpen));

draw((barx,0) -- (barx, f(x)), L=fxlabel, arrow=Arrows(),

bar=Bars);

arrowbar axisarrow = Arrow(TeXHead);

Label xlabel = Label("$x$", position=EndPoint);

draw((xmin,0) -- (xmax,0), arrow=axisarrow, L=xlabel);

Label ylabel = Label("$y$", position=EndPoint);

draw((0,ymin) -- (0,ymax), arrow = axisarrow, L=ylabel);

This is getting close to the desired result, but there are a few missing bits.
First of all, Janet wants a tick mark on x-axis which labels the horizontal position
of the strip as x. Moreover, this tick should remain the same size—say, 1.5
millimeters long—even if the image is rescaled. Fortunately, there is a variant of
the draw command that draws a scale-proof object at a scalable location (like
(x, 0), which will change if the image is rescaled). This variant is called when the
first parameter passed to the draw command is an ordered pair. Note that in
the two examples below, the tick mark is the same size even though the scaling
is different:
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f(x)

x

size(2cm);

...

path tick = (0,0) --

(0,-0.15cm);

Label ticklabel =

Label("$x$",

position=EndPoint);

draw((x,0), tick,

L=ticklabel);

path clippath=circle((x,0),

0.5);

draw(clippath, blue);

clip(clippath);

x

size(2cm);

...

path tick = (0,0) --

(0,-0.15cm);

Label ticklabel =

Label("$x$",

position=EndPoint);

draw((x,0), tick,

L=ticklabel);

path clippath=circle((x,0),

0.2);

draw(clippath, blue);

clip(clippath);

Another detail Janet finds unsatisfying is the way that the dx length is
indicated:

dx

These bars are clearly too close together for a construction like to be
reasonable. To have this look “nicer,” Janet would like to imitate a style she
saw in a textbook in which arrows pointing in from the either side: .
Furthermore, the lengths of these arrows should be given in absolute measure-
ments that do not change with scaling; say, each arrow should be 3 millimeters
long. This could be done using the draw command discussed above. However,
for something like this, it is easier to use the arrow command: arrow(pair b,

pair dir, real length=arrowlength) will draw an arrow pointing to b from
direction dir, with length length specified in absolute (unscalable) units.

settings.outformat="pdf";

size(1cm,0);

draw((0,0) -- (1,0), bar=Bars);

arrow((0,0), W, length=0.3cm);

arrow((1,0), E, length=0.3cm);

Unfortunately, Janet thinks that there is a bit too much space at the arrow tips.
Vincent consults the documentation and realizes that this is a consequence of the
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default option margin=EndMargin, which is designed for an arrow pointing to
a label. Predefined alternatives include using arrow(..., margin=NoMargin);

( ) and arrow(..., margin=DotMargin); ( ). Of these, the best
alternative for this situation seems to be margin=DotMargin, which was designed
for an arrow pointing to a dot created with the dot command. As desired, the
resulting arrows remain the same length when the picture is scaled differently:

dx

size(2cm);

...

real myarrowlength = 0.3cm;

margin arrowmargin =

DotMargin;

arrow((x,barheight), W,

length=myarrowlength,

margin=arrowmargin);

arrow((x+dx,barheight), E,

length=myarrowlength,

margin=arrowmargin);

path clippath = circle(

(x+dx/2,barheight), 0.5);

draw(clippath, blue);

clip(clippath);

dx

size(2cm);

...

real myarrowlength = 0.3cm;

margin arrowmargin =

DotMargin;

arrow((x,barheight), W,

length=myarrowlength,

margin=arrowmargin);

arrow((x+dx,barheight), E,

length=myarrowlength,

margin=arrowmargin);

path clippath = circle(

(x+dx/2,barheight), 0.2);

draw(clippath, blue);

clip(clippath);

2.25 Drawing objects shifted by an unscalable amount

Let’s review the full, unclipped version of what Janet has accomplished so far:
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y = f(x)
dx

f(x)

x

y

x

Janet at first thinks that the two-dimensional drawing is now finished. However,
she believes she will need to make the scale a bit smaller for the final drawing, so
she decides to try a different size just to make sure the picture scales correctly:

y = f(x)dx

f(x)

x

y

x

settings.outformat = "pdf";

size(5cm, 0);

...

While the result is not awful, there are a couple of issues. Most obviously, the
label f(x) goes over the bar. Less problematic, but still irritating to Janet, is
the way the arrow to the lower right of the dx label goes into the shaded region,
rather than remaining strictly above it.

Vincent points out that in both cases, the problem was that specific distances
were scaled that should not have been: the dx label should have remained the
same height above the black strip no matter how the scaling changed, and the f(x)
label should have remained the same distance to the right. Unfortunately, after
extensively consulting the documentation, neither Janet nor Vincent can find a
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completely satisfactory way to include an unscalable length in the positioning of
an object.

Finally, after weeks of considering the problem on-and-off and even consulting
the source code for the basic Asymptote modules, Vincent manages to create
a drawing command that does what is required. First, he adds the following
definition9 to the beginning of the file:

void drawshifted(path g, pair trueshift, picture pic =

currentpicture, Label label="", pen pen=currentpen,

arrowbar arrow=None, arrowbar bar=None, margin

margin=NoMargin, marker marker=nomarker)

{

pic.add(new void(frame f, transform t) {

picture opic;

draw(opic, L=label, shift(trueshift)*t*g, p=pen,

arrow=arrow, bar=bar,

margin=margin, marker=marker);

add(f,opic.fit());

});

pic.addBox(min(g), max(g), trueshift+min(pen),

trueshift+max(pen));

}

With this definition in place, the command, for instance, drawshifted(g,

(0.4cm, 0)) should draw the path g shifted exactly 3 millimeters to the right
of its “natural” position; and this shift of 4 millimeters will remain the same,
regardless of the scaling. Consider, for instance, the following code:

1 void drawshifted(path g, pair trueshift, picture pic =

currentpicture, Label label="", pen pen=currentpen,

arrowbar arrow=None, arrowbar bar=None, margin

margin=NoMargin, marker marker=nomarker)

2 {

3 pic.add(new void(frame f, transform t) {

4 picture opic;

5 draw(opic, L=label, shift(trueshift)*t*g, p=pen,

arrow=arrow, bar=bar,

6 margin=margin, marker=marker);

7 add(f,opic.fit());

8 });

9 pic.addBox(min(g), max(g), trueshift+min(pen),

trueshift+max(pen));

10 }

9The original definition here was erroneous; the error was pointed out by user mauvia in
the discussion thread at https://sourceforge.net/p/asymptote/discussion/409349/thread/
d0bc619b/?limit=25, who also provided the core of the partial correction.
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12 settings.outformat="pdf";

13 size(***);

14 draw(unitcircle);

15 drawshifted(unitcircle, trueshift=(0.4cm,0), pen=blue);

No matter how the scaling is set by changing the measurement in the size

command (replacing the *** on line 13), the blue circle will always be exactly
four millimeters to the right of the black circle:

!
Warning: If the drawshifted() method above is used with fixed-size
elements such as a label, arrow, and/or bar, then any subsequent occur-

rences of the functions min(currentpicture) and max(currentpicture) will
ignore these fixed-size elements and may consequently be incorrect.

Recall that the vertical line with the f(x) label was created with the following
code:

real barx = x + dx + 0.1;

Label fxlabel = Label("$f(x)$", align=(0,0), position=MidPoint,

filltype=Fill(fillpen));

draw((barx,0) -- (barx, f(x)), L=fxlabel, arrow=Arrows(),

bar=Bars);

The vertical strip has coordinate x on the left and x+ dx on the right; in this
code, the label is shifted right by a distance of 0.1 scalable units. To use instead
an unscalable shift of 4.2 millimeters, Janet replaces the code above with the
following:

/* Note: the following code will only work after the

drawshifted() command has been defined as above. */

real barx = x + dx;

pair barshiftx = (0.42cm, 0);

Label fxlabel = Label("$f(x)$", align=(0,0), position=MidPoint,

filltype=Fill(fillpen));

drawshifted((barx,0) -- (barx, f(x)), trueshift=barshiftx,

label=fxlabel, arrow=Arrows(), bar=Bars);

The dx label dx is a bit trickier, because it includes both a scalable part

(the line with bars on both ends) and an unscalable part (the arrows pointing in).
Janet’s solution is to use the drawshifted() command for the scalable part,
and the draw() variant described earlier (p. 42) to draw the arrows. See lines
40–52 of the code on page 49.
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2.26 The two-dimensional picture: final result

The code:

1 //Basic settings

2 settings.outformat="pdf";

3 size(11cm, 0);

4 defaultpen(fontsize(10pt));

5 import graph;

7 //Define the command drawshifted, to be used later

8 void drawshifted(path g, pair trueshift, picture pic =

currentpicture, Label label="", pen pen=currentpen,

arrowbar arrow=None, arrowbar bar=None, margin

margin=NoMargin, marker marker=nomarker)

9 {

10 pic.add(new void(frame f, transform t) {

11 picture opic;

12 draw(opic, L=label, shift(trueshift)*t*g, p=pen,

arrow=arrow, bar=bar,

13 margin=margin, marker=marker);

14 add(f,opic.fit());

15 });

16 pic.addBox(min(g), max(g), trueshift+min(pen),

trueshift+max(pen));

17 }

19 //Save some important numbers.

20 real xmin = -0.1;

21 real xmax = 2;

22 real ymin = -0.1;

23 real ymax = 2;

25 //Draw the graph and fill the area under it.

26 real f(real x) { return sqrt(x); }

27 path s = graph(f, 0, 2, operator..);

28 pen fillpen = mediumgray;

29 fill(s -- (xmax,0) -- cycle, fillpen);

30 draw(s, L=Label("$y=f(x)$", position=EndPoint));

32 //Fill the strip of width dx

33 real x = 1.4;

34 real dx = .05;

35 real t0 = times(s,x)[0];

36 real t1 = times(s,x+dx)[0];

37 path striptop = subpath(s,t0,t1);

38 filldraw((x,0) -- striptop -- (x+dx,0) -- cycle, black);
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40 //Draw the bars labeling the width dx

41 real barheight = f(x+dx);

42 pair barshifty = (0, 0.2cm);

43 Label dxlabel = Label("$dx$", position=MidPoint, align=2N);

44 drawshifted((x,barheight) -- (x+dx, barheight),

trueshift=barshifty, label=dxlabel, bar=Bars);

46 //Draw the arrows pointing inward toward the dx label

47 real myarrowlength = 0.3cm;

48 margin arrowmargin = DotMargin;

49 path leftarrow = shift(barshifty) * ((-myarrowlength, 0) --

(0,0));

50 path rightarrow = shift(barshifty) * ((myarrowlength, 0) --

(0,0));

51 draw((x, barheight), leftarrow, arrow=Arrow(),

margin=arrowmargin);

52 draw((x+dx, barheight), rightarrow, arrow=Arrow(),

margin=arrowmargin);

54 //Draw the bar labeling the height f(x)

55 real barx = x + dx;

56 pair barshiftx = (0.42cm, 0);

57 Label fxlabel = Label("$f(x)$", align=(0,0), position=MidPoint,

filltype=Fill(fillpen));

58 drawshifted((barx,0) -- (barx, f(x)), trueshift=barshiftx,

label=fxlabel, arrow=Arrows(), bar=Bars);

60 //Draw the axes on top of everything that has gone before

61 arrowbar axisarrow = Arrow(TeXHead);

62 Label xlabel = Label("$x$", position=EndPoint);

63 draw((xmin,0) -- (xmax,0), arrow=axisarrow, L=xlabel);

64 Label ylabel = Label("$y$", position=EndPoint);

65 draw((0,ymin) -- (0,ymax), arrow = axisarrow, L=ylabel);

67 //Draw the tick mark on the x-axis

68 path tick = (0,0) -- (0,-0.15cm);

69 Label ticklabel = Label("$x$", position=EndPoint);

70 draw((x,0), tick, L=ticklabel);
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The result:

y = f(x)

dx

f(x)

x

y

x

Here’s a rescaled version, obtained by substituting size(7cm,0) for line 3, to
show that rescaling actually works properly:

y = f(x)dx

f(x)

x

y

x
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3 Three-dimensional images

With the two-dimensional image done, Janet turns her attention to the image of
the surface of revolution. Here is the sort of thing she has in mind:

3.1 Hello Sphere

Here is perhaps the simplest reasonable three-dimensional image that can be
drawn (as a pdf file) using Asymptote:

1 settings.outformat = "pdf";

2 settings.prc = false;

3 size(5cm,0);

4 import three;

6 draw(unitsphere);

Here is a line-by-line explanation for what is going on (especially in the preamble):

1 settings.outformat = "pdf"; This line configures Asymptote to output
a pdf file rather than the default eps file, as discussed on page 4.
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2 settings.prc = false; By default, when Asymptote does 3d stuff and
outputs a pdf file, the 3d information will be embedded in the pdf file as prc data.
This means that if the pdf file is viewed using Adobe Reader, it will be possible
to rotate the image interactively. Vincent thinks this is really cool. Janet thinks
that for some complex mathematical objects, it may be impossible to see all
the important features from any one point of view; in such cases, an interactive
image is a great boon. Unfortunately, there is also an important drawback to
interactive images: if an image is rotated, then labels can move away from the
objects they are labeling or can be obscured when other objects move in front of
them. For instance, the image below looks good when viewed from one point of
view, but when it is rotated the letter A gets submerged in the cube:

Thus, it is important to decide early on whether an image will be interactive
or not. Either choice comes with its own challenge:

• If you are creating an interactive image, then you have to make sure that
the image (especially the labels) look good from every angle.

• If you are creating a non-interactive image, then you need to make sure
that all the important aspects of the image are visible from a single point
of view.

Janet decides to go with a non-interactive image because of the following
technical considerations:

• Janet wants to be able to print out and make copies of a handout containing
her image. (This is also why she has largely been working in grayscale.)

• The interactive functionality is only available when the pdf file is viewed
with Adobe Reader, which is not the default pdf viewer on Janet’s Mac.
The rotating functionality is also lost whenever an Asymptote image is
included in a TEX file via the näıve \includegraphics command.

• Although this has not been discussed in this tutorial, it is possible to
create images in a LATEX document by including Asymptote code directly
in the tex file; in fact, this method has been used to produce most of the
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images in this tutorial. When this is done, especially for many images, the
most efficient compilation method by far is to use latexmk as described
in the Asymptote manual. And unfortunately, latexmk seems to choke
when given an interactive 3d image from Asymptote, at least on Janet’s
computer.

!
Warning: when using settings.prc=true;—The rest of this tutorial
will proceed under the assumption that the image to be produced is from

a fixed (non-interactive) viewpoint. However, users wishing to experiment with
interactive images should be aware of the following technical issue. Due to a bug
in the version of Asymptote that ships with MacTeX 2013, if settings.prc is
set to true (as it is by default), then sometimes the image shows up blank unless
the viewer activates the interactive functionality. In particular, for either of the
two cases described above, the image appears completely blank. Fortunately,
this can be fixed by adding the line settings.embed=true; (which is supposed
to be true by default).

3 size(5cm,0); This command behaves exactly as it does for two-dimensional
drawing: the scaling factor will be set such that the final image is five centimeters
wide (if possible). Without some sizing command like this, the image would
be of a sphere with radius one point, which would be tiny. With the command
size(5cm,2cm);, the image would be scaled such that either the width was 5 cm
and the height ≤ 2 cm, or the width was ≤ 5 cm and the height was 2 cm. With
the command unitsize(1cm);, the image would be a sphere with radius 1 cm.

4 import three; Much of the code for dealing with three-dimensional objects
is written in the Asymptote language. Like the code for graphing functions
(see p. 28), this code is not loaded by default, but is contained in a module—
in this case, the module three. This code is not loaded by default; the line
import three; makes these features available.

!
Warning: Any changes to settings.outformat, settings.prc, or
settings.render must take place before importing the module three

or any module (such as graph3) that imports it.

6 draw(unitsphere); There is a pre-constructed object unitsphere of type
surface that represents a sphere of radius one. This is the command to draw it.

3.2 Drawing lines in 3d

As a first step, Janet decides to try drawing the x- and y-axes. And, just to
make the picture slightly more interesting, she adds a z-axis. These are drawn
in different colors for now, so that we can tell which is which.
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settings.outformat="pdf";

settings.prc = false;

import three;

size(4cm,0);

draw((0,0,0)--(2,0,0), blue); //x-axis

draw((0,0,0)--(0,2,0), green); //y-axis

draw((0,0,0)--(0,0,2), red); //z-axis

The code can be shortened slightly by using a few handy built-in aliases for the
vectors ~0, ~ı, ~, and ~k:

vector alias

(0, 0, 0) O (letter oh)
(1, 0, 0) X

(0, 1, 0) Y

(0, 0, 1) Z

Thus, the triple (2,-4,5) could equivalently be expressed as 2X - 4Y + 5Z.
Note that triples can be manipulated like vectors, via addition and scalar
multiplication.

Using these aliases, the three draw commands above can be shortened to

draw(O--2X, blue); //x-axis

draw(O--2Y, green); //y-axis

draw(O--2Z, red); //z-axis

3.3 Vector graphics in 3d

One thing that Janet immediately notices is that the image appears somewhat
grainy.10 Her first thought is surprise that Asymptote, the “vector graphics
programming language,” is producing rasterized graphics at all. As she explains
to Vincent, a rasterized picture is saved by saving the color of each pixel. By
contrast, a vector graphic actually saves a bunch of line segments and other
information exactly. Vector graphics have a number of advantages over rasterized
graphics; for one, they tend to look much better at high zoom levels, where
a rasterized picture starts to look like a bunch of colored squares. In some
renderers, they also look much better when zoomed out, since the renderer will
know it still has to draw a line even if that line is less than a pixel thick.

The setting in Asymptote that controls resolution is settings.render. It
is possible to produce three-dimensional vector graphics using Asymptote by
setting render=0:

10 Depending on your pdf viewer, it may look just fine, or it may appear grainy or fuzzy or
even be missing bits until you zoom in.
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settings.outformat="pdf";

settings.prc = false;

settings.render = 0;

import three;

size(4cm,0);

draw(O--2X, blue); //x-axis

draw(O--2Y, green); //y-axis

draw(O--2Z, red); //z-axis

Unfortunately, Asymptote’s algorithm for turning three-dimensional graphics
into two-dimensional vector drawings has some serious problems. Here is a näıve
attempt to draw a sphere with a radius (which ought to be completely contained
in the sphere, and thus invisible):

settings.outformat="pdf";

settings.prc=false;

settings.render=0;

import three;

size(4cm,0);

draw(unitsphere);

// The following line should be

contained within the sphere.

draw(O--X, blue);

If you know how to work around these limitations, it is possible to produce some
fairly nice vector graphics:

settings.outformat="pdf";

settings.prc=false;

settings.render=0;

import graph3;

size(4cm,0);

path3 myarc = rotate(18,Z) * Arc(c=O,

normal=X, v1=-Z, v2=Z, n=10);

surface backHemisphere =

surface(myarc, angle1=0,

angle2=180, c=O, axis=Z, n=10);

surface frontHemisphere = surface(myarc, angle1=180,

angle2=360, c=O, axis=Z, n=10);

draw(backHemisphere, surfacepen=material(white+opacity(0.8),

ambientpen=white), meshpen=gray(0.4));

draw(O--X, blue+linewidth(1pt));
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draw(frontHemisphere, surfacepen=material(white+opacity(0.8),

ambientpen=white), meshpen=gray(0.4));

Such workarounds are time-consuming, limited, and I sincerely hope destined
for obsolescence. Thus, I shall not take the time to explain the ones I know.

3.4 High-resolution rasterized images

The more versatile alternative is to use a rasterized image, but at a higher
resolution. The setting that controls how high the resolution is computed is
called settings.render. If you set settings.render = 1;, it computes one
pixel per postscript point11; if you set settings.render = 16;, it computes
pixels per postscript point (which actually means that the rasterized image
contains 162 = 256 times as many pixels, and is likely to take a lot longer
to compile and be significantly larger). Unfortunately, Janet finds that there
is a limit to how far she can improve the resolution using this setting alone.
For instance, the first three images below were produced with code that was
identical except for making settings.render equal to 1, 4, and 16, respectively;
arguably, the one with settings.render=4; looks better than the one with
settings.render=16;.

(a) (b) (c) (d) (e) (f)

There are (at least) two ways to improve the actual resolution beyond the
apparent “limit” illustrated in (c).

1. Changing the format from pdf to the format png, which is used for ras-
terized images, will cause high values of settings.render to produce
high-resolution images, as seen in (d). This is the simpler method, and
usually the recommended one. The main drawback to this method is that
with a png file, any two-dimensional parts to the image will be rasterized

11one postscript point = 1
72

inches ≈ 0.0353 centimeters

56



as well. Thus, this method is not ideal for producing images with mixed
two- and three-dimensional output, such as the one on page 3.

2. Alternatively, adding the line

shipout(scale(4.0)*currentpicture.fit());

to the end of the code will cause the entire Asymptote picture (including
any text) to be scaled up by a factor of 4.0. (Other factors can, of
course, be substituted.) This increases the threshold for higher values
of settings.render to produce better results, as seen in (e). [Note
that scaling up the image without increasing settings.render does not
do any good, as seen in (f).] The main disadvantage of this method,
aside from its complexity, is that the resulting image must be scaled
back down. Thus, for instance, (e) and (f) were each included in a .tex

file using the line \includegraphics[scale=0.25]{filename.pdf} (with
filename replaced by the actual file name). It would also have worked in
this case to replace [scale=0.25] by [width=1.2cm]; this is, in fact, the
only viable option for producing high-resolution rasterized images with the
Asymptote code written into a LATEX file via the asymptote package.

A second disadvantage is that this method can make small changes to the
dimensions of the resulting picture; in the images above, the two rightmost
images are both taller and wider than the preceeding four images. This is
unlikely to cause problems as long as you are consistent in which method
you use.

Here is the code that was used to produce the images above. The lines of code
under discussion are in red.

(a)

settings.outformat="pdf";

settings.render=1;

settings.prc = false;

import three;

size(1cm,0);

draw((0,0,0) -- (1,1,1),

linewidth(2pt));

(b)

settings.outformat="pdf";

settings.render=4;

settings.prc = false;

import three;

size(1cm,0);

draw((0,0,0) -- (1,1,1),

linewidth(2pt));

(c)

settings.outformat="pdf";

settings.render=16;

settings.prc = false;

import three;

size(1cm,0);

draw((0,0,0) -- (1,1,1),

linewidth(2pt));

(d)

settings.outformat="png";

settings.render=16;

import three;

size(1cm,0);

draw((0,0,0) -- (1,1,1),

linewidth(2pt));

57



(e)

settings.outformat="pdf";

settings.render=16;

settings.prc = false;

import three;

size(1cm,0);

draw((0,0,0) -- (1,1,1),

linewidth(2pt));

shipout(scale(4.0) *

currentpicture.fit());

(f)

settings.outformat="pdf";

settings.prc = false;

import three;

size(1cm,0);

draw((0,0,0) -- (1,1,1),

linewidth(2pt));

shipout(scale(4.0) *

currentpicture.fit());

3.5 Three-dimensional paths

The built-in type for a three-dimensional path in Asymptote is path3. An
intermediate type is guide3; functions will often return a guide3 when you want
a path3, but this is fine since Asymptote can automatically convert the former
to the latter. Much as in the case of two-dimensional paths, the -- operator
connects two points by a line segment, while .. uses a smooth curve. Either can
be followed by the another, already constructed path or by the keyword cycle,
which closes the curve. Another useful function is dot(triple), which draws a
small sphere at the indicated point; in the following code, this is used together
with the pen lift operator ^^ to dot several points in one fell swoop.

settings.outformat="png";

settings.render=8;

import three;

size(4cm,0);

draw(-X -- X .. Y .. X-Y+Z .. cycle);

dot(-X ^^ X ^^ Y ^^ X-Y+Z);

Another interesting operator is ---. Like the operator --, it draws a line
segment between two points; unlike that operator, it tries to keep the path
smooth beyond those two points if possible. Note that this operator works in
the two-dimensional context also.

settings.outformat="png";

settings.render=8;

import three;

size(4cm,0);

draw(-X --- X .. Y .. X-Y+Z .. cycle);

dot(-X ^^ X ^^ Y ^^ X-Y+Z);
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3.5.1 Parallelograms and 3d boxes

To draw the outline of a parallelogram with sides given by the vectors u and v

starting at the point O, use the function

path3 plane(triple u, triple v, triple O=O);

Here’s an example:

settings.outformat="png";

settings.render=16;

import three;

size(4cm,0);

draw(O--2X ^^ O--2Y ^^ O--2Z, black);

draw(plane(O=X, Y-X, Z-X), blue);

Somewhat confusingly, a parameter named O need not have the value O=(0,0,0),
although that is its default value.

To draw the outline of a rectangular solid with opposite vertices at v1 and
v2, use the function

path3[] box(triple v2, triple v2);

Here’s an example:

settings.outformat="png";

settings.render=16;

import three;

size(4cm,0);

draw(O--2X ^^ O--2Y ^^ O--2Z);

draw(box(O, (0.5, 1.5, 1)), blue);

3.5.2 Circles and arcs

The function

path3 circle(triple c, real r, triple normal=Z);

creates an approximate circle in three-dimensional space with center c and radius
r that lies in the plane normal to normal:
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settings.outformat="png";

settings.render=16;

import three;

size(4cm,0);

draw(O--2X ^^ O--2Y ^^ O--2Z);

triple circleCenter = (Y+Z)/sqrt(2) +

X;

path3 mycircle =

circle(c=circleCenter, r=1,

normal=Y+Z);

draw(plane(O=sqrt(2)*Z, 2X, 2*unit(Y-Z)), gray + 0.1cyan);

draw(mycircle, blue);

draw(shift(circleCenter) * (O -- Y+Z), green, arrow=Arrow3());

The most convenient function to create arcs in three dimensions is

path3 arc(triple c, triple v1, triple v2, triple normal=O);

which draws an arc centered at c from v1 to the line through c and v2. By
default, the arc drawn will be ≤ 180◦. If it is exactly 180◦—i.e., if v1, v2, and
c are all collinear—then the normal is necessary to determine the plane of the
arc. Otherwise, the normal vector is optional, but can be used to force the
complementary arc (greater than 180◦).

settings.outformat="png";

settings.render=16;

import three;

size(4cm);

draw(-2X--2X,

arrow=Arrow3(emissive(black)));

draw(-2Y--2Y, arrow=Arrow3(emissive(black)));

draw(-2Z--2Z, arrow=Arrow3(emissive(black)));

draw(path3(box((-2,-2),(2,2))), gray);

draw(arc(c=O, Y, Z), blue, arrow = Arrow3(TeXHead2,

emissive(blue)));

draw(arc(c=O, -Y, Z), blue, arrow = Arrow3(TeXHead2,

emissive(blue)));

draw(arc(c=(1,1,0), Y, 2X, normal=Z), green, arrow =

Arrow3(TeXHead2(normal=Z), emissive(green)));

draw(arc(c=(1,1,0), Y, 2X, normal=-Z), red, arrow =

Arrow3(TeXHead2(normal=Z), emissive(red)));
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3.5.3 Planar curves

To convert a two-dimensional path variable into a three-dimensional path3, use
the function

path3 path3(path p, triple plane(pair) = XYplane);

By default, this function treats maps the path into the xy-plane by applying
(x, y) 7→ (x, y, 0). If the optional argument is changed to ZXplane or YZplane,
then (x, y) maps to (y, 0, x) or (0, x, y), respectively.

settings.outformat = "png";

settings.render=16;

import three;

size(4.15cm, 0);

path p = box((0,-0), (3,1));

draw(path3(p), black);

draw(path3(p, plane=ZXplane), blue);

draw(path3(p, plane=YZplane), red);

Janet can use this to start lifting her two-dimensional diagram to three
dimensions:

//Basic settings

settings.outformat = "png";

settings.render = 8;

import graph;

import three;

size(4.15 cm, 0);

//Save some important numbers.

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

//Construct the graph.

real f(real x) { return sqrt(x); }

path s = graph(f, 0, 2, operator..);

//Draw the graph and the axes.

draw(path3(s));

draw(xmin*X -- xmax*X);

draw(ymin*Y -- ymax*Y);
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She is dissatisfied with the result, since the axes are lying down in a horizontal
plane rather than standing upright. This will be corrected later, by playing with
the point of view—specifically the up parameter, which controls which way is up.

3.5.4 Parametric curves

For drawing complicated three-dimensional curves in Asymptote, assembling
them point-by-point is not generally feasible. Instead, it is better to describe
the curve by a parametric function and then plot it using the graph function
from the graph3 module:

settings.outformat="png";

settings.render=16;

import graph3;

size(4.15cm, 0);

currentprojection =

orthographic(0,2,1);

triple f(real t) {

return (t*cos(t), t*sin(t), t);

}

path3 spiral = graph(f, 0, 8pi, operator ..);

draw(spiral);

3.6 Surfaces of revolution

The most interesting surface Janet needs to draw is not a sphere, but a surface
obtained by revolving the graph of y =

√
x about the x-axis. She is prepared

to work out how to define it as a parametric surface, but is gratified to learn
that there is a simpler way: Asymptote has a facility for producing surfaces of
revolution directly.

!
Warning: The surface() function that I am about to introduce to
create surfaces of revolution is undocumented. Thus, it could conceivably

cease to work without notice in future versions of Asymptote. If this should
happen, it should still be possible to create surfaces of revolution in a slightly
longer way using the solids module, which is documented.

The documentation recommends creating surfaces of revolution using func-
tions from the module solids, which allows additional options such as drawing
silhouettes. However, if all you want to do is create a surface of revolution (with
no silhouettes, skeletons, etc.), then the following function from the module three
is typically simpler to use. The function is defined in the file three_surface.asy,
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which is automatically included when the three module is loaded. Here is the
specification12 of the function, including only the required parameters:

surface(triple c, path3 g, triple axis);

The type triple, as discussed earlier, represents an ordered triple (a, b, c);
depending on context, this can be a point or a vector in three-dimensional space
R3. The type path3 represents a path in three dimensions; objects of this type
behave very similarly to paths in two dimensions (of type path). In particular,
a line segment in three dimensions like O -- 2X is an object of type path.

The effect of this function is to revolve the path g about the line c -- c+axis,
i.e., the line through the point c in the direction ~axis, and return the resulting
surface of revolution. The surface may then be drawn with the draw() function.

settings.outformat="png";

settings.render=8;

import three;

size(5cm,0);

//create segment

path3 segment = (0,1.2,0) --

(0,0.6,1.5);

//create surface of revolution

surface lampshade =

surface(segment, c=O, axis=Z);

//draw surface

draw(lampshade, yellow);

//draw revolved segment for reference

draw(segment, black);

//draw axes for reference

draw(O--2X, blue); //x-axis

draw(O--2Y, green); //y-axis

draw(O--2Z, red); //z-axis

Here’s a first stab at using this to construct the surface of revolution in
Janet’s diagram. (Recall that s was the name of the two-dimensional graph of
y =
√
x.)

12This is a special kind of function called a constructor. Its return type is the same as its
name, in this case surface.
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...

path3 p3 = path3(s);

draw(p3);

surface solidsurface = surface(p3,

c=O, axis=X);

draw(solidsurface, white);

draw(xmin*X -- xmax*X);

draw(ymin*Y -- ymax*Y);

3.6.1 optional parameters

Since this function seems to be undocumented, here are the optional parameters,
as defined by the source code, together with Vincent’s best guesses about what
they mean.

type name default value

int n nslice (usually 12)
real angle1 0

real angle2 360

pen(int,real) color null

The function creates a surface by revolving the given surface from angle1 to
angle2 (in degrees) about the specified axis. The parameter n can be used to
refine the mesh, making the surface more accurate (for higher values of n) or
faster to produce and draw (for lower values of n).

The parameter color() is a function that can be used to vary color within
the surface, overriding any color parameter passed to the draw() command when
applied to the surface. The first parameter of color() represents distance along
the path (in the sense of “path times”), while the second parameter represents
the number of slices of the revolution.

Here’s an example that uses all of these optional parameters:
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settings.outformat = "png";

settings.render=16;

size(345.0pt,0);

import graph3;

currentprojection = perspective(30*dir(75,0));

real r1=5, r0=1;

int nu = 36, nv = 36;

path3 crossSection = Circle(r=r0, c=(r1,0,0), normal=Y, n= nu);

pen colorFunction(int u, real theta) {

real z = sin(u/nu * 2pi);

real t = (z + 1) / 2;

return t*red + (1-t)*lightblue;

}

surface torus = surface(crossSection, c=(0,0,0), axis=Z, n=nv,

angle1=90, angle2=410, color=colorFunction);

draw(torus);

3.7 Points of view; projections

For non-interactive images, choosing a good point of view is something of an
art. The way to select a point of view in Asymptote is to set the value of the
predefined variable currentprojection, of type projection. Here are the most
relevant options:

3.7.1 Oblique projection

Janet is used to a very simple setup for drawing three-dimensional objects on a
two-dimensional chalkboard (or paper): the x and y axes are drawn as usual,
and the z axis is drawn pointing down and to the left with a slope of 1. The
z-axis is supposed to be imagined as sticking out of the page. This setup is
especially nice for drawing surfaces of revolution on the board, since one can
draw the curve exactly as usual in the xy-plane and then talk about revolving it
about the x or y axis.

Asymptote does support this setup: it is called an oblique projection. Unfor-
tunately, this surface of revolution about the y-axis looks much stranger here
than it does on the chalkboard:
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settings.outformat="png";

settings.render=8;

defaultpen(fontsize(10pt));

import three;

size(5cm,0);

currentprojection = oblique;

draw(O -- 2X, L=Label("$x$",

position=EndPoint));

draw(O -- 3.5Y, L=Label("$y$",

position=EndPoint));

draw(O -- 2Z, L=Label("$z$",

position=EndPoint));

draw(box(O, (1,1.5,1.25)),

blue+linewidth(0.6pt));

draw(surface(2Y -- 3Y+X, c=O,

axis=Y), yellow);

Janet wonders if this is a bug in Asymptote. Vincent does some research and
finds out that the problem is something inherent in the oblique projection:
fundamentally, it is an unrealistic simplification of the projection of three-
dimensional space onto a two-dimensional plane. For some objects it looks okay,
but some things—especially surfaces of revolution (including some arrowheads
in Asymptote)—just look weird.

In spite of the weirdness visible here, oblique projections are occasionally
useful, so it is worthwhile to note that Asymptote also has projections called
obliqueX and obliqueY, with the x and y axes (respectively) sticking “out of
the page.” The obliqueZ projection is the same as just plain oblique.

...

currentprojection = obliqueX;

...

3.7.2 Perspective

On the other end of the spectrum lies vanishing point perspective, which is
“realistic”: closer objects appear larger. The line

currentprojection = perspective(5,2,3);

tells Asymptote to draw the image as though it were produced by a camera
located at the point (5, 2, 3). The following three images show the same scene
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in perspective as the camera moves farther and farther away from the origin.
Note that in the first image especially, text that is closer to the camera is
visibly larger than text that is farther away. If this behavior is undesired, it
can be prevented by including the two lines Embedded.targetsize = true;

Billboard.targetsize = true; after the imports, although this will look funny
if an interactive view is desired.

settings.outformat="png";

settings.render=16;

defaultpen(fontsize(10pt));

import three;

size(5cm,0);

currentprojection =

perspective(5,2,3);

draw(O -- 2X, L=Label("$x$",

position=EndPoint));

draw(O -- 3.5Y, L=Label("$y$",

position=EndPoint));

draw(O -- 2Z, L=Label("$z$", position=EndPoint));

draw(box(O, (1,1.5,1.25)), blue+linewidth(0.6pt));

draw(surface(2Y -- 3Y+X, c=O, axis=Y), yellow);

...

currentprojection =

perspective(2*(5,2,3));

...

...

currentprojection =

perspective(4*(5,2,3));

...

The optional argument up=triple tells Asymptote to rotate the camera (without
changing where it is pointing) so that the specified vector will appear to point
up:
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...

size(4cm,0);

currentprojection =

perspective(3*(5,2,3), up=Y);

...

One of the features Janet wants is that the x-axis should appear exactly
horizontal and the y-axis exactly vertical. Theoretically, modifying the previous
example to put the camera in the xz-plane while keeping up=Y ought to do this.

...

currentprojection =

perspective(3*(5,0,3), up=Y);

...

This basically works, but the effect is slightly spoiled when the axes appear to
get bigger as they grow closer.

3.7.3 Orthographic projection

After the line

currentprojection=orthographic((5,2,3));

the image is drawn as if it were a zoomed-in picture taken by a camera very far
away in the direction of the vector (5, 2, 3):
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settings.outformat="png";

settings.render=4;

defaultpen(fontsize(10pt));

import three;

size(5cm,0);

currentprojection =

orthographic((5,2,3));

draw(O -- 2X, L=Label("$x$",

position=EndPoint));

draw(O -- 3.5Y, L=Label("$y$", position=EndPoint));

draw(O -- 2Z, L=Label("$z$", position=EndPoint));

draw(box(O, (1,1.5,1.25)), blue+linewidth(0.6pt));

draw(surface(2Y -- 3Y+X, c=O, axis=Y), yellow);

The optional argument triple up tells Asymptote to rotate the camera in place
so that the specified vector will appear to point up:

...

size(4cm,0);

currentprojection = orthographic(5,2,3,

up=Y);

...

Setting the y-coordinate equal to zero makes the x and z axes precisely horizontal:

...

currentprojection = orthographic(5,0,3,

up=Y);

...
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3.7.4 General recommendation

After learning some of the techniques yet to be discussed, Janet recommends
that some form of orthographic projection be used by default. Orthographic
projections provide some degree of realism while allowing for certain tricks that
involve moving an object directly toward or away from the camera without
changing the object’s size. However, she acknowledges that both perspective
and oblique projections have their uses and should not be disdained.

For her particular image, Janet chooses an orthographic projection. Crucially,
she sets up=Y to make the image orient itself correctly.

...

currentprojection =

orthographic(5,0,10, up=Y);

...

3.8 Predefined solids

There are a number of predefined surfaces that can be used to draw basic shapes
and solids. We’ve already met one in 3.1—the unit sphere:

settings.outformat="png";

settings.render=16;

import three;

size(3.55cm, 0);

draw(-1.5X -- 1.5X,

arrow=Arrow3(TeXHead2), L=Label("$x$",

position=EndPoint, align=W));

draw(-1.5Y -- 1.5Y,

arrow=Arrow3(TeXHead2), L=Label("$y$",

position=EndPoint));

draw(-1.5Z -- 1.5Z, arrow=Arrow3(TeXHead2), L=Label("$z$",

position=EndPoint));

draw(unitsphere, surfacepen = material(white, emissivepen =

gray(0.2)));
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Here are some additional examples.

...

draw(-1.1X -- 1.1X,

arrow=Arrow3(TeXHead2), L=Label("$x$",

position=EndPoint, align=W));

draw(-1.1Y -- 1.1Y,

arrow=Arrow3(TeXHead2), L=Label("$y$",

position=EndPoint));

draw(-Z -- 1.1Z, arrow=Arrow3(TeXHead2), L=Label("$z$",

position=EndPoint));

draw(unitdisk, surfacepen=white);

...

draw(unitplane, surfacepen=white);

...

draw(unitcube, surfacepen=white);

...

draw(unitcylinder, surfacepen=white);
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...

draw(-.5Z -- 1.5Z, arrow=Arrow3(TeXHead2),

L=Label("$z$", position=EndPoint));

currentprojection = orthographic(4,2,-1.5);

draw(unitcone, surfacepen =

material(white, emissivepen =

gray(0.3)));

...

draw(unitsolidcone, surfacepen =

material(white, emissivepen =

gray(0.3)));

...

draw(unithemisphere, surfacepen = white);

3.9 Three-dimensional transforms

By themselves, the predefined surfaces are quite limited. However, they can be
made much more flexible using three-dimensional transforms. For instance, to
construct a sphere with radius r (of type real) centered at the ordered triple c,
we can write

surface s = shift(c) * scale3(r) * unitsphere;

Three-dimensional transforms have type transform3. Like two-dimensional
transforms (of type transform), they can be applied (on the left) and composed
using the * operator. Here’s an illustration of some useful transforms:
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settings.outformat="png";

settings.render=16;

import three;

size(4cm);

currentprojection =

orthographic(1,10,1);

for (int theta = 0; theta < 360; theta += 90) {

/* Rotate by ’angle’ degrees about the line u--v */

draw( rotate(angle=theta, u=(0,0,-1), v=(0,1,-1)) *

unithemisphere, surfacepen=white);

}

/* Rotate by 180 degrees about the y-axis , then shift three

units along the x-axis and double the height*/

draw( scale(1,1,2) * shift(3X) * rotate(180, Y) * unitcone,

surfacepen=white);

/* illustrating more shifts */

draw(shift(3,0,0) * unitcylinder, surfacepen = white);

draw(shift(3,0,1) * unitdisk, surfacepen = emissive(white));

One point that is perhaps not adequately brought out by this example are
the subtleties of scaling. Here’s a table that may help matters.

function resulting transform

scale3(real r) scaling factor r

scale(real a, real b,

real c)

scale by a in the x-direction, b in the
y-direction, and c in the z-direction

scale(triple t) equivalent to scale(t.x, t.y,

t.z)

xscale3(real r) equivalent to scale(r, 1, 1)

yscale3(real r) equivalent to scale(1, r, 1)

zscale3(real r) equivalent to scale(1, 1, r)

Note that scale(real r) will always give a two-dimensional transform; if you
try to apply it to a three-dimensional object, you will get an error.

There is one other function for producing a transform3: reflect(triple
u, triple v, triple w) produces a reflection about the plane through the
three points u,v,w. Three reflections are of particular note:
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transform effect

reflect(O, Z, X+Y) switch x and y

reflect(O, Y, X+Z) switch x and z

reflect(O, X, Y+Z) switch y and z

Any permutation of x, y, z can be expressed as a product of these three. Here
are two important use cases:

• To switch the xy and xz planes, apply reflect(O, X, Y+Z).

• To switch the xy and yz planes, apply reflect(O, Z, X+Y) * reflect(O,

X, Y+Z).

3.10 Simple planar surfaces

Janet wants to add a symbol to her three-dimensional diagram that looks some-
thing like a piece of paper representing the plane of the original, two-dimensional
drawing. She could do this by applying appropriate three-dimensional transfor-
mations to a unitplane. Vincent tells her there is a simpler way to construct
planar surfaces—use a version of the surface() method that takes a single,
two-dimensional path as a parameter. The result is a surface in the xy-plane
whose boundary is the provided path.

//Basic settings

settings.outformat = "png";

settings.render = 8;

defaultpen(fontsize(10pt));

import graph;

import three;

size(4.15cm, 0);

currentprojection =

orthographic(5,0,10, up=Y);

//Save some important numbers.

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

real margin = 0.2;

//Construct the graph.

real f(real x) { return sqrt(x); }

path s = graph(f, 0, 2, operator..);
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//Draw the graph and the axes.

path3 p3 = path3(s);

draw(p3);

surface solidsurface = surface(p3, c=O, axis=X);

draw(solidsurface, white);

draw(xmin*X -- xmax*X);

draw(ymin*Y -- ymax*Y);

//Draw the plane.

path planeoutline = box((xmin, ymin), (xmax+margin,

ymax+margin));

draw(surface(planeoutline), surfacepen=white);

Note: There is also a surface constructor that accepts a three-dimensional
cyclic path3 and attempts to construct a surface with that path as the outline.
In the author’s experience, this does not turn out nearly as well as the two-
dimensional version.

3.11 Lighting

Janet is perplexed and frustrated that even though she said the plane should
be drawn “white,” it came out looking dark gray. Vincent tells her that this
is because of the lighting: the plane is showing up as dark because the light is
hitting it at a bad angle. This can be changed using the light parameter of the
draw() command. The built-in options are Viewport, White, Headlamp (the
default), and nolight. The effect of each on a sphere is shown below:

...

draw(unitsphere, white, light=Viewport);

...

draw(unitsphere, white, light=White);

...

draw(unitsphere, white, light=Headlamp);
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...

draw(unitsphere, white, light=nolight);

In this case, Janet thinks the first three lights behave similarly. Vincent
agrees: in his experience, playing around with the lighting is rarely helpful. But
there are exceptions; See, for instance, the picture of a spiral cone on p. 93, and
see what happens when you compile it without the line currentlight = White;.

!
Warning: The White light, like snow, is actually very slightly blue. A
typical human will not consciously perceive the difference, but a book

printing company will want you to pay for color printing on images that use this
lighting (or, more likely, convert them to grayscale).

The crucial example for our current purposes is the fourth, which has light
= nolight. The effect of nolight is to make Asymptote take the color parameter
(surfacepen) literally and throw out all lighting considerations. For a sphere,
this looks bad indeed. But for a planar surface, it is often exactly what is desired.

path planeoutline = box((xmin, ymin),

(xmax+margin, ymax+margin));

draw(surface(planeoutline),

surfacepen=lightgray,

light=nolight);

Note that in the end, Janet decided that a lightgray rectangle gave a more
realistic impression of a piece of paper than a pure white one.

Two more notes. First, the default value of light is actually currentlight,
which can be changed. Second, striking effects can be produced by creating your
own lighting:

settings.outformat = "png";

settings.render = 8;

import three;

size(1.7cm, 0);

currentlight = light(diffuse = new pen[] {cyan, orange},

specular = new pen[] {black, white},
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position = new triple[] {-Y+Z, X+Y});

draw(unitsphere, surfacepen=white);

However, such effects are complex to implement and more often distracting than
helpful. In the opinion of both Janet and Vincent, a better alternative is usually
provided by playing with the surfacepen parameter; see 3.18.1 on p. 89.

3.12 Planar surfaces with holes

Next, Janet would like to add a gray area under the curve, imitating the two-
dimensional picture. Unfortunately, when she tries adding it as a second planar
surface, the result is . . . strange:

...

size(4.8cm, 0);

...

//Construct the graph and the area

under it.

real f(real x) { return sqrt(x); }

path s = graph(f, 0, 2, operator..);

path fillregion = s -- (xmax,0) --

cycle;

...

//Draw the plane.

path planeoutline = box((xmin,

ymin), (xmax+margin,

ymax+margin));

draw(surface(planeoutline), surfacepen=lightgray,

light=nolight);

//Fill the area under the graph.

draw(surface(fillregion), surfacepen=gray(0.6), light=nolight);

Even more peculiarly, the picture changes in unexpected ways when small changes
are made to the size parameter.

The trouble, as Vincent explains, is that Janet has set up two surfaces occu-
pying exactly the same space. In two dimensions (or with settings.render=0),
the surface drawn second would be the one to show up on top. But in three
dimensions, which surface is displayed is determined entirely by which one is
in front of the other (closer to the camera). With two surfaces in exactly the
same place, Asymptote has no good way to decide which surface is in front of
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(a) Good (b) Bad: both coun-
terclockwise

the other, so the results can be unpredictable. Here’s another illustration of the
effect:

settings.outformat = "png";

settings.render = 8;

import three;

size(3cm, 0);

draw(surface(scale(2)*unitcircle), lightgray, nolight);

draw(surface(unitcircle), darkgray, nolight);

When Asymptote cannot decide which surface it is supposed to be drawing, it
comes up with an unpredictable mishmash.

The preferred solution is to tell Asymptote to leave a hole in one surface,
which will be filled by the other surface. To leave a hole in a surface, pass the
surface() function a disconnected path (a.k.a. path[]) consisting of the outline
of the surface, together with the outline of the hole in the opposite direction (see
the figure). Here’s an example using this technique to draw an annulus. Note
that reversing the outer circle makes it go clockwise, so that the inner circle is
going in the opposite direction:

settings.outformat = "png";

settings.render = 8;

import three;

size(4cm, 0);

surface s = surface(reverse(scale(2)*unitcircle) ^^ unitcircle);

draw(s, lightgray, light=nolight);

And here’s how to use it to draw a light gray disk with a dark gray center:

settings.outformat = "png";

settings.render = 8;

import three;
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size(4cm, 0);

draw(surface(scale(2)*unitcircle ^^ reverse(unitcircle)),

lightgray, nolight);

draw(surface(unitcircle), darkgray, nolight);

To place a planar surface in a plane other than the xy-plane, move it around
using three-dimensional transforms (see 3.9, p. 72). In particular, there are
transformations described in that section explicitly to move a surface from the
xy plane into the xz or yz plane:

settings.outformat = "png";

settings.render = 8;

import three;

size(3.8cm, 0);

currentprojection = orthographic(5,2,3);

// counterclockwise ^^ clockwise

surface annulus = surface(unitcircle ^^

reverse(scale(2)*unitcircle));

// xy plane:

draw(annulus, black, nolight);

// Switch xy and xz planes:

draw(reflect(O, X, Y+Z) * annulus, gray, nolight);

// Switch xy and yz planes:

draw(reflect(O, Z, X+Y) * reflect(O, X, Y+Z) * annulus,

lightgray, nolight);

Transformations aside, when Janet adds a whole in the plane, the area under
the curve looks the way it is supposed to:
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...

//Construct the graph and the area

under it.

real f(real x) { return sqrt(x); }

path s = graph(f, 0, 2, operator..);

//clockwise

path fillregion = s -- (xmax,0) --

cycle;

...

//Draw the plane.

path planeoutline = box((xmin,

ymin), (xmax+margin,

ymax+margin));

//counterclockwise ^^ clockwise

draw(surface(planeoutline ^^ fillregion), surfacepen=lightgray,

light=nolight);

//Fill the area under the graph.

draw(surface(fillregion), surfacepen=gray(0.6), light=nolight);

3.13 Arrowheads in three dimensions

At this point, Janet would like to go ahead and add the arrowheads to the axes.
As in the two-dimensional case, the basic method here is to pass an arrowhead
to the arrow= parameter of the draw() command. Unfortunately, arrowheads in
three dimensions are somewhat more complex than in two dimensions because of
lighting issues. There are basically two approaches: trying to make arrowheads
look “fancy” and three-dimensional, or trying to make arrows look “plain” and
two-dimensional.

3.13.1 Fancy 3d arrowheads

In principle, a default three-dimensional arrow is the simplest instruction, re-
quiring only the parameter arrow=Arrow3().

settings.outformat = "png";

settings.render = 8;

import three;

size(2cm, 0);

draw(O -- Y, arrow=Arrow3(), p=gray(0.6));
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This often works, but it has the consequence that the arrowhead often appears
significantly darker than the line or path it is on. If this effect is undesirable,
there are at least two ways to compensate:

1. Pass the parameter light=currentlight to the draw() command. This
way, the line will be shaded (as a cylinder) to match the arrowhead.

draw(O -- Y, arrow=Arrow3(), p=gray(0.6),

light=currentlight);

2. Pass a lighter color to the Arrow3() function (or whatever variant you are
using). This way, the arrowhead will be lightened, potentially matching
the line more closely.

draw(O -- Y, p=gray(0.6), arrow =

Arrow3(arrowheadpen=material(gray(0.4),

emissivepen=gray(0.3))));

The arrowheadpen= parameter is actually a material; using the informa-
tion of 3.18.1 (p. 89), you can exert much finer control over the appearance
of the arrowhead. In particular, you can lighten the darkest part of the
shadow.

The first option is the simplest, but it has the disadvantage of altering the color
of the line in sometimes confusing ways. The second option may be necessary if
you want to make sure several different lines pointed in different directions have
the same color.

Here are the basic available styles for arrowheads with three-dimensional
appearance:

arrow= appearance

Arrow3()

ArcArrow3()

Arrow3(HookHead3)

ArcArrow3(HookHead3)

Arrow3(TeXHead3)
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Here is the code used to produce the image for Arrow3():

settings.outformat = "png";

settings.render=8;

import three;

unitsize(1.5cm);

draw(-X -- X, arrow=Arrows3(), p=linewidth(1pt));

draw(-Y -- Y, arrow=Arrows3(), p=lightgray+linewidth(1pt),

light=currentlight);

There are several things to note here:

• The line width was doubled (the default is 0.5 points) to make the arrow-
heads larger and easier to see.

• The function Arrows3() is a variation on Arrow3() that puts arrowheads
at both ends of the path. ArcArrows3(), Arrows(), and ArcArrows() are
similar.

• The light=currentlight option was used for simplicity. However, it was
not needed for the black line, since the principle desired effect was to
darken the line to match the arrowhead. (Black lines are already as dark
as possible.)

3.13.2 Plain arrowheads in 3d

Janet thinks that the three-dimensional shaded arrowheads are distracting.
What she wants is something that imitates the appearance of two-dimensional
arrowheads. Vincent tells her that Asymptote does have the capability to do
this. (For the record, Vincent thinks the shaded arrowheads are awesome.)

The main difficulty with the “plain” arrowheads is that, by default, Asymptote
will still try to shade them. This can look rather bizarre:

settings.outformat = "png";

settings.render = 8;

import three;

size(3cm, 0);

draw(O -- X, arrow=Arrow3(TeXHead2), p=green+linewidth(1pt));

In this example, the “shading” makes the arrowhead much darker than it should
be.

Janet thinks that this should be solved by setting the arrowhead to have
lighting nolight so that it will follow the suggested pen color without any
shading. Vincent agrees in principle; but there is no easy way to control the
lighting of an arrowhead. Fortunately, there is an alternative: setting the
arrowheadpen= parameter to (say) emissive(green) will have the same effect
as setting it to green and specifying nolight (if that were possible):
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settings.outformat = "png";

settings.render = 8;

import three;

size(3cm, 0);

draw(O -- X, arrow=Arrow3(TeXHead2, emissive(green)),

p=green+linewidth(1pt));

For surfaces in general, an emissive material is an alternative to setting
light=nolight with essentially the same effect; for more details, see 3.18.1
(p. 89).

Here are the basic options for a “plain” arrowhead in three dimensions:

arrow= appearance

Arrow3(DefaultHead2, emissive(〈color〉))

ArcArrow3(DefaultHead2, emissive(〈color〉))

Arrow3(HookHead2, emissive(〈color〉))

ArcArrow3(HookHead2, emissive(〈color〉))

Arrow3(TeXHead2, emissive(〈color〉))

Here is the code used to produce the image for Arrow3(DefaultHead2,

emissive(〈color〉)):

settings.outformat = "png";

settings.render=8;

import three;

unitsize(1.5cm);

draw(-X -- X, arrow=Arrows3(DefaultHead2, emissive(black)));

draw(-Y -- Y, arrow=Arrows3(DefaultHead2, emissive(gray)),

p=gray);

Again, Arrows3() is a variation on Arrow3() that puts arrowheads at both ends
of the path. ArcArrows3(), Arrows(), and ArcArrows() are similar.

For her diagram, Janet opts for the TeXHead2 option. Unfortunately, it does
not work quite as expected—half the top arrowhead is missing:
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...

draw(xmin*X -- xmax*X,

arrow=Arrow3(TeXHead2,

emissive(black)));

draw(ymin*Y -- ymax*Y,

arrow=Arrow3(TeXHead2,

emissive(black)));

...

To embed arrowheads in a plane, Janet can use DefaultHead2(), TeXHead2(),
etc. as functions with a normal= parameter:

settings.outformat = "png";

settings.render=8;

import three;

size(2cm, 0);

draw(surface(box((-2,0),(2,2))), lightgray);

draw(O -- Y, p=linewidth(1pt), arrow=Arrow3(TeXHead2(normal=Z),

emissive(black)));

Without the normal= parameter, the arrowhead will be oriented to best
approximate a two-dimensional arrowhead as seen from the camera. (If the
camera is moved—say, in interactive viewing mode—it won’t look good.) Setting
the normal= to a vector normal to the plane rotates the arrowhead to lie within
the plane. Even if the perspective change is not as obvious as above, this prevents
the plane from blocking out part of the arrowhead:

...

draw(xmin*X -- xmax*X,

arrow=Arrow3(TeXHead2(normal=Z),

emissive(black)));

draw(ymin*Y -- ymax*Y,

arrow=Arrow3(TeXHead2(normal=Z),

emissive(black)));

...
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3.13.3 3d arrows in interactive mode

The plain arrows (except when embedded in a plane) are designed to be viewed
from a single angle, so they tend not to look good in interactive mode. In
general, the “fancy” three-dimensional arrowheads hold up better when the
person viewing the picture starts changing the point of view.

An additional note: Janet thinks that the shading, gleaming “fancy” ar-
rowheads, while impressive, are also distracting. If she wishes to use these
arrowheads without the fancy shading, she can give them an emissive(〈color〉)
parameter, just as with the “plain” arrowheads. There’s a corresponding warning,
however: without the fancy shading, a three-dimensional arrowhead pointed
straight at the camera will look like a circle.

3.14 Labels in three dimensions

The basic methods of adding labels in three dimensions are the same as those in
two dimensions (2.22, p. 35). However, there are—inevitably—some complica-
tions.

As in the two-dimensional case, there are three basic commands to choose
from. The simplest is often to label a path as you draw it using the L= parameter
of the draw() command:

settings.outformat = "png";

settings.render = 8;

defaultpen(fontsize(10pt));

import three;

size(2.5cm, 0);

draw(O -- X, arrow=Arrow3, L=Label("$x$", position=EndPoint,

align=W));

draw(O -- Y, arrow=Arrow3, L=Label("$y$", position=EndPoint));

draw(O -- Z, arrow=Arrow3, L=Label("$z$", position=EndPoint));

Not the Label() function (p. 36). There is also a label() function that can
be used to add a label to a path3, in case the path has already been drawn. But
there is a problem when Janet tries to use these to label her axes:

draw(xmin*X -- xmax*X,

arrow=Arrow3(TeXHead2(normal=Z),

emissive(black)),

L=Label("$x$", align=E,

position=EndPoint));

draw(ymin*Y -- ymax*Y,

arrow=Arrow3(TeXHead2(normal=Z),

emissive(black)),

L=Label("$y$", align=N,

position=EndPoint));
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The axis labels are partially hidden behind the plane! Once again, Janet has
run afoul of the fact that in three dimensions, drawing precedence is determined
entirely by distance from the camera. The label, unlike the plane, is turned to
face the camera, which involves moving at least part of it farther away from the
camera. The part that gets rotated away from the camera gets hidden by the
plane.

The solution here is, unfortunately, a bit of a hack: layering can be simulated
by moving the labels directly toward (or away from) the camera. The preferred
way to do this is using yet another variation on the label() command:

void label(Label L, triple position);

with the following optional parameters:

type name default value

picture pic currentpicture

align align NoAlign

pen p currentpen

light light nolight

string name ""

render render defaultrender

interaction interaction LabelInteraction()

In particular, the position= parameter will allow Janet to place a label at a
point far away from any path.

!
Warning: Another way to move labels around is to applying a transform3
to a Label object. However, this has the side effect of aligning the label

toward the xy-plane rather than toward the camera position. This side effect
is a huge bother unless it is deliberately sought, in which case it can be quite
handy (see 3.17, p. 89).

3.15 Layering: moving objects closer to the camera

When the current projection is orthographic, moving it a given distance of units
toward the camera is quite simple: just add unit(currentprojection.camera)

(or apply shift(unit(currentprojection.camera))).
[Note that the unit() function takes a pair or a triple and returns the

length one vector in the same direction; e.g., unit((1,1)) is a decimal approxi-
mation of ( 1

2

√
2, 12
√

2).]
For determining the direction toward the camera when allowing for a per-

spective projection, Vincent comes up with the following:

triple cameradirection(triple pt, projection

P=currentprojection) {

if (P.infinity) {

return unit(P.camera);

} else {
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return unit(P.camera - pt);

}

}

triple towardcamera(triple pt, real distance=1, projection

P=currentprojection) {

return pt + distance * cameradirection(pt, P);

}

The first function returns the direction from a point to the camera. The second
function returns the result of moving a point a specified distance closer to the
camera. Note that both of these work better for orthographic than perspective
projections. Apart from all other considerations, in a perspective projection,
Asymptote will actually move the camera if it gets “too close” to the objects
being viewed, which can cause functions like this to behave in undesirable ways.

In any case, here is what happens when Janet incorporates these new functions
and uses them, together with the label() command described previously:

...

//Direction of a point toward the camera.

triple cameradirection(triple pt, projection

P=currentprojection) {

if (P.infinity) {

return unit(P.camera);

} else {

return unit(P.camera - pt);

}

}

//Move a point closer to the camera.

triple towardcamera(triple pt, real distance=1, projection

P=currentprojection) {

return pt + distance * cameradirection(pt, P);

}

...

//Label the axes.

label("$x$", align=E, position=towardcamera(xmax*X));

label("$y$", align=N, position=towardcamera(ymax*Y));

The effect is much improved.
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3.16 Complex scaling with unitsize()

Unfortunately, Janet notices something that bothers her about this: the plane
does not “contain” the labels. The issue would be fixed by making the picture
a bit bigger—but if she made it too much bigger, the plane would be too big.
Basically, no matter how the image is scaled, the margin at the edge of the plane
needs to be about 0.4 cm.

Vincent scratches his head, but cannot devise a solution similar to what was
done for the two-dimensional case. Instead, he and Janet decide to start using
unitsize() instead of size() to control the scaling of the image. This means
that setting the overall size of the image has to be done by trial and error, but
Janet and Vincent think it’s worth it to have more flexible scaling.

real unit = ***;

real truecm = cm / unit;

unitsize(unit);

Once these are established, it is easy enough to combine scaled and unscaled
lengths. For instance, 3 + 1 truecm represents three (scaled) units plus one
centimeter (which does not scale).

Using this technique, Janet is able to create a version of the image that
reserves just enough space on the edge of the plane to accommodate the labels,
regardless of the scaling.

...

real unit = 1.1cm;

real truecm = cm / unit;

unitsize(unit);

...

real xmin = -0.1;

real xmax = 2;

real ymin = -0.1;

real ymax = 2;

real margin = 0.4 truecm;

...

//Draw the plane.

path planeoutline = box((xmin, ymin), (xmax+margin,

ymax+margin));

...
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Compare with what happens when unit is set to 2cm instead of 1.1cm. The
entire picture scales up except for the margin in the plane that contains the
x and y labels, which remains exactly 0.4 cm. This is precisely the effect that
Janet wanted.

3.17 Writing on surfaces

3.18 Subtleties in drawing surfaces

In this subsection, we will be concerned with various techniques to control the
appearance of surfaces once constructed and positioned. The draw command
used for surfaces has the following optional parameters we will be considering
here:

type name default value

material surfacepen currentpen

pen meshpen nullpen

light light currentlight

light meshlight nolight

3.18.1 Shading, lighting, and material

The coloring of a surface is based on the interaction of a material and a light
source (the parameters surfacepen and light, respectively).

Minimal rules of thumb First, Vincent introduces Janet to the following
rules of thumb about using these two parameters:
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• To draw flat surface in a particular color (say lightgray), set surfacepen
= lightgray and light=nolight. If the light parameter is unavail-
able (as in specifying arrowheads), an equivalent setting is surfacepen =

emissive(lightgray).

• To draw a non-flat surface in a particular color, set surfacepen equal to
a lighter version of that color. For instance, to get a light gray sphere or
cube, set surfacepen = white.

• The parameter light= can usually be left alone. For more details, see 3.11,
p. 75.

For instance, here’s a picture of a light gray sphere with a white plane poking
out of it:

settings.outformat = "pdf";

settings.render = 8;

import three;

size(3.5cm, 0);

draw(unitsphere, surfacepen=white);

draw(surface(box((-1,-1),(1,1))),

surfacepen=emissive(white));

Janet is unsatisfied with the second rule of thumb and would like to know how
to have finer control. For instance, what if she wants a surface in a lighter color
than surfacepen = white can provide?

The answer to that question is, unfortunately, somewhat complex. Here’s
what Vincent is able to come up with.

First of all, the surfacepen= parameter that determines color is actually of
type material, which is more complex than the type pen that determines color
in two-dimensional drawings. (Actually pen determines other things too, such
as line width, font size, and dashing pattern; but that’s a tangent.)

Here’s the constructor for a material object:

material(pen diffusepen=black, pen ambientpen=black,

pen emissivepen=black, pen specularpen=mediumgray,

real opacity=opacity(diffusepen),

real shininess=defaultshininess);

All parameters are optional. For almost all purposes, the only parameters
that need to be dealt with are diffusepen=, emissivepen=, and specularpen=.
Here’s what they do:

• The diffuse pen controls the way the object interacts with light sources.
Portions of the surface aimed directly at the light source show up exactly
this color; the color gradually fades to black as the surface approaches a
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90 degree angle to the light source. It corresponds roughly to the diffuse
component of the Phong reflection model13.

settings.render = 8;

settings.outformat = "png";

import three;

size(2.5cm, 0);

draw(unitsphere,

surfacepen=material(diffusepen=gray,

emissivepen=black, specularpen=black));

• The emissive pen controls object coloring that is completely independent
of the lighting. A surface colored with emissivepen=red and no other
pens will show up completely red no matter what direction it is aimed. It
corresponds roughly to the ambient component of the Phong reflection
model.

settings.render = 8;

settings.outformat = "png";

import three;

size(2.5cm, 0);

draw(unitsphere,

surfacepen=material(diffusepen=black,

emissivepen=gray(0.2),

specularpen=black));

• The specular pen controls the extent to which the object gleams like a
mirror. This pen only affects portions of the surface aimed directly at
the light source (or close to it). It corresponds roughly to the specular
component of the Phong reflection model.

settings.render = 8;

settings.outformat = "png";

import three;

size(2.5cm, 0);

draw(unitsphere,

surfacepen=material(diffusepen=black,

emissivepen=black, specularpen=white));

The three components are added together to form the final result:

13https://en.wikipedia.org/wiki/Phong_reflection_model
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Note that the emissive component is the only one that contributes to the deepest
shadow.

3.18.2 Transparency

3.18.3 Gridlines

4 Building surfaces

4.1 Predefined solids

See 3.8, p. 70.

4.2 Cylinders and cones over an arbitrary base

A cylinder with an arbitrary base can be constructed using the function

surface extrude(path3 p, triple axis = Z);

The second parameter axis indicates the height of the cylinder, as a vector.

settings.outformat="png";

settings.render=16;

import three;

size(4.3, 0);

currentprojection =

orthographic(5,2,3);

surface cyl1 = extrude(circle(c=O, r=1/2, normal=Z), axis=2Z);

surface cyl2 = extrude(circle(c=2Y, r=1/2, normal=Z), axis = 2Z

- 1.5Y);

surface cyl3 = extrude(shift(4Y) * (-0.5Y {X} .. {X} 0.5Y ..

cycle), axis=2Z);

surface cyl4 = extrude( shift(6Y) * ((1/2,0,0) .. (0,1/2,-1) ..

(-1/2,0,0) .. (0,-1/2, -1) .. cycle), axis = 2Z);

draw(cyl1, white);

draw(cyl2, white);

draw(cyl3, white);

draw(cyl4, white);
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draw(O -- 3Z, L=Label("$z$", position=EndPoint));

draw(O -- 8Y, L=Label("$y$", position=EndPoint));

draw(O -- 2X, L=Label("$x$", position=EndPoint));

Another useful function for constructing surfaces is

surface extrude(path3 p, path3 q);

Basically, this function builds a surface that connects the two paths p and q;
more precisely, it connects two points that occur at the same path time. This
can cause problems if the two paths do not have the same length (in the sense
of path times); in general, this function should be used only with care. However,
there is one special case that is easy to use: if v is a point in space (i.e., a triple)
and g is a path3, then the expression

extrude(g, v -- cycle)

constructs a cone with base g and vertex v.

settings.outformat="png";

settings.render=16;

import three;

size(4.3cm, 0);

currentlight = White;

path3 spiral = path3((-2,0) .. (0,7/4) .. (6/4,0) .. (0,-5/4)

.. (-4/4,0) .. (0,3/4) .. (2/4,0) .. (0,-1/4) .. (0,0));

triple vertex = (0,-1, -2);

draw(extrude(spiral, vertex -- cycle), material(gray,

emissivepen=gray));

draw(spiral);

4.3 Surfaces of revolution

Surfaces of revolution are discussed in 3.6, p. 62.

4.4 Parametric surfaces

Parametric graphing is by far the most flexible way to produce a surface. Of
all the kinds of surfaces discussed so far, the only ones that cannot easily be
imitated by a single parametric surface are the cube and the solid cone: the solid
cone would require two parametric surfaces, while the unit cube would require
six (one for each face). The primary disadvantage of using parametric surfaces is
that they require a certain amount of mathematics beforehand to determine the
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right formulas. Janet thinks this is fine; Vincent is a bit intimidated, although
he will find that complex programming can often be substituted for complex
mathematics.

Parametric graphing requires the graph3 module (which automatically im-
ports the three module). Here’s an example in which parametric equations are
used to draw a Möbius band:

settings.outformat="png";

settings.prc=false;

settings.render=8;

size(5cm,0);

import graph3;

triple F(pair uv) {

real t = uv.x;

real r = uv.y;

return (cos(t) + r*cos(t)*sin(t/2),

sin(t) + r*sin(t)*sin(t/2),

r*cos(t/2));

}

real r = 0.2;

surface moeb = surface(F, (0,-r), (2pi,r));

draw(moeb, surfacepen=material(white, emissivepen=0.2 white));

The key function from the graph module is called surface(). Its required
parameters are a function of type triple(pair) and two ordered pairs a and b.
The ordered pairs specify the domain over which the function should be graphed;
in the code above, the function is graphed over the domain 0 ≤ u ≤ 2π,
−r ≤ v ≤ r.

Additional optional parameters include nu and nv, which set the resolution
of the graph. Both of these parameters default to the variable nmesh, which is
normally 10. Changing only nu will automatically change nv as well; to change
only nu, you should pass in nv=nmesh. Here’s the result of using these parameters
to produce a somewhat nicer picture of the Möbius band:

...

surface moeb = surface(F, (0,-r),

(2pi,r), nu=20, nv=1);

...

While a definite improvement, this picture still does not appear smooth. The
way to get Asymptote to plot a smooth surface is to add the word Spline after
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all the other parameters14. The parameters nu and nv can still be adjusted, but
in this case that is unnecessary:

...

surface moeb = surface(F, (0,-r),

(2pi,r), Spline);

...

While Janet is very comfortable with this, Vincent dislikes the amount of
algebra required to obtain the parametric equations for the Möbius band. Here
is an example of a parametric function that is defined by programming rather
than by formulas:

settings.outformat="png";

settings.render=8;

settings.prc=false;

size(5cm,0);

import graph3;

currentprojection =

perspective(10,5,-8);

path center_path = (0,0) --- (0,3)

.. (1.5,3) .. (0,0.3) --- (0,0);

real bottomradius = 0.6;

real topradius = 0.1;

path radius_graph = (0,bottomradius) {up} ::

(0.3,1.2*bottomradius) --- (0.6, 1.2*bottomradius) ::

(1.2,topradius) --- (2,topradius) :: {up} (3,bottomradius);

radius_graph = xscale(1/3) * radius_graph;

radius_graph = (shift(-1,0)*radius_graph) & radius_graph &

(shift(1,0)*radius_graph);

real radius(real t) {

return point(radius_graph, times(radius_graph, t)[0]).y;

}

14Exception: if you are using a bool(pair) condition to exclude part of the rectangular
domain, that condition should be specified after Spline.
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triple F(pair w) {

real t = w.x % 2.0;

bool reverse = (t >= 1.0);

t %= 1.0;

real relt = reltime(center_path, t);

real theta = w.y;

triple center = YZplane(point(center_path, relt));

pair tangent = dir(center_path, relt);

if (reverse) tangent *= -1;

triple normal = X;

triple binormal = cross(YZplane(tangent), normal);

triple v = normal*cos(theta) + binormal*sin(theta);

return center + radius(t)*v;

}

surface kleinbottle = surface(F, (0.5,0), (1.5, 2pi), nu=32,

nv=16, Spline);

draw(kleinbottle, white);

Note, in particular, that the helper function radius() is not defined by a
formula; instead, its graph is created as a path (which is never drawn), and the
times() function is used to find where that graph intersects a given vertical line
in order to evaluate the function. This trick is expensive for the computer, but
can be useful when you have a good idea what a function’s graph should look
like and don’t want to have to come up with a formula for it.

4.5 Graphs of functions of two variables

Consider the function

f(x, y) =
(
6
5 − 1

2x
2
)
·
(
− 1

2y
4 + 1

15y
3 + y2 + 1

5y + 1
)

which Janet designed for a calculus test; it has two local maxima and one saddle

point within the domain
(
−
√

12
5 ,
√

12
5

)
×
(
−
√

12
5 ,
√

12
5

)
. Here’s how she can

graph it using the graph3 module:
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settings.outformat="png";

settings.render=4;

settings.prc=false;

size(5cm,0);

import graph3;

currentprojection =

orthographic(10,4,7);

real f(pair xy) {

real x = xy.x; real y = xy.y;

return (6/5 - x^2/2) * (-y^4/2 + y^3/15 + y^2 + y/5 + 1);

}

real xmax = sqrt(12/5); real xmin = -xmax;

real ymax = sqrt(12/5); real ymin = -ymax;

surface s = surface(f, (xmin,ymin), (xmax,ymax), Spline);

draw(s, surfacepen=white);

Again, the key function from the graph3 module is called surface(). Its
required parameters are a function of type real(pair) and two ordered pairs
a and b. The ordered pairs specify the corners of the rectangular domain over
which the function should be graphed.

Additional optional parameters include nx and ny, which set the resolution
of the graph. Both of these parameters default to the variable nmesh, which is
normally 10. Changing only nx will automatically change ny as well; to change
only nx, you should pass in ny=nmesh.

Passing in the parameter Spline, as above, causes a smooth surface to be
drawn. Sometimes the smooth surface may appear wavy; the simplest way to
counteract this is to increase nx and/or ny. (Sometimes it may be necessary to
increase nx and/or ny to the point that the surface appears smooth even without
the Spline option.)

4.6 Implicitly defined surfaces

Implicitly defined surfaces may be drawn using either the older module contour3
or, courtesy of yours truly, the newer module smoothcontour3. The newer
module produces nicer results if the function is differentiable (and sometimes if
it is not—no guarantees), but typically takes longer to compute.

4.6.1 The smoothcontour3 module

The smoothcontour3 module is so new that many Asymptote installations will
not include it. (It was first included in version 2.33.) In Janet’s case, the
code below would not work for her until she copied the smoothcontour3.asy

file from http://github.com/charlesstaats/smoothcontour3 into the same
directory as the asy file she was trying to compile. Here’s how to graph
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an implicitly defined function using the smoothcontour3 module. (This ex-
ample was created by the author for use both in this tutorial and in pack-
age documentation, including in the official Asymptote manual. The exam-
ple draws from http://math.stackexchange.com/a/349914/455 and http:

//mathematica.stackexchange.com/a/20913.)

settings.outformat="png";

settings.render=8;

import smoothcontour3;

size(5cm, 0);

currentprojection=perspective((18,20,10));

real tuberadius = 0.69;

// Convert to cylindrical coordinates to draw

// a circle revolved about the z axis.

real toruscontour(real x, real y, real z) {

real r = sqrt(x^2 + y^2);

return (r-2)^2 + z^2 - tuberadius^2;

}

// Take the union of the two tangent tori (by taking

// the product of the functions defining them). Then

// add (or subtract) a bit of noise to smooth things

// out.

real f(real x, real y, real z) {

real f1 = toruscontour(x - 2 - tuberadius, y, z);

real f2 = toruscontour(x + 2 + tuberadius, y, z);

return f1 * f2 - 0.1;

}

// The smoothed function extends a bit farther than the union of

// the two tori, so include a bit of extra space in the box.

triple max = (2*(2+tuberadius), 2+tuberadius, tuberadius) +

(0.1, 0.1, 0.1);

// Draw the implicit surface.

surface s = implicitsurface(f, -max, max, overlapedges=true,

nx=20, nz=5);

draw(s, surfacepen=white);

The key function is called implicitsurface(). Its required parameters are
a function of type either real(triple) or real(real, real, real) and two
ordered triples a and b. The ordered triples specify the rectangular solid over
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which the graph should be plotted.
Additional optional parameters include nx, ny, and nz, which set the initial

resolution of the graph. The algorithm is adaptive, so the mesh can and probably
will be finer in some places. But it is helpful if, for instance, the initial rectangular
solids are close to being cubes. Setting one of these three parameters does not
affect the other two; to set them all at once, use the optional parameter n.

The optional parameter overlapedges deserves special note. As an artifact,
the rendering engine will often show gaps between patches of the surface, even
if mathematically the edges are exactly aligned. Setting overlapedges=true

can compensate, at least partially. For additional details, see the package
documentation.

4.6.2 The contour3 module

For completeness, Janet also tries out the older contour3 module (which does
not have to be downloaded separately). Here is how it plots the same function:

settings.outformat="png";

settings.render=8;

import contour3;

size(5cm, 0);

...

// Draw the implicit surface.

surface s = surface(contour3(f, -max, max, nx=20, ny=10, nz=5));

draw(s, surfacepen=white);

The compilation was vastly faster than that of the previous image. However,
when Janet attempts to increase the mesh resolution to approximate a smooth
appearance, she finds that the compilation runs out of memory long before
the appearance reaches anything like the smoothness of the example using
smoothcontour3.

There are two key functions for this module, called contour3() and surface().
The required parameters of contour3() are a function of type real(real,

real, real) and two ordered triples a and !b!, the diagonally opposite corners
of the plotting domain. The optional parameters nx, ny, and nz control the
mesh size. The default is 10; but note that changes in nx are reflected in ny and
!nz! if they are not set.

The surface() function in question takes exactly one parameter: whatever15

was produced by contour3().

15This is actually a vertex[][], where vertex is a type defined in the contour3 module.
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4.7 Cropping surfaces

A The complete code

Here is the complete code for the image on page 3 (including the yellow back-
ground).

1 //Function to return a brace path

2 real innerangle = radians(60);

3 real outerangle = radians(70);

4 real midangle = radians(0);

5 path brace(pair a, pair b, real amplitude = .14*length(b-a)) {

6 transform t = identity();

7 real length = length(b-a);

8 real sign = 1;

9 if (amplitude < 0) {

10 // amplitude *= -1;

11 sign = -1;

12 }

13 path brace = (0,0){expi(sign*outerangle)} ::

{expi(sign*midangle)}(length/4, amplitude/2)

14 :: {expi(sign*innerangle)} (length/2, amplitude)

{expi(-sign*innerangle)}

15 :: {expi(-sign*midangle)}(3*length/4, amplitude/2) ::

{expi(-sign*outerangle)} (length,0);

16 real angle = degrees(atan2((b-a).y, (b-a).x));

17 t = rotate(angle)*t;

18 t = shift(a) * t;

19 return t * brace;

20 }

22 //Define the command drawshifted, to be used later

23 void drawshifted(path g, pair trueshift, picture pic =

currentpicture, Label label="", pen pen=currentpen,

arrowbar arrow=None, arrowbar bar=None, margin

margin=NoMargin, marker marker=nomarker)

24 {

25 pic.add(new void(frame f, transform t) {

26 picture opic;

27 draw(opic, L=label, shift(trueshift)*t*g, p=pen,

arrow=arrow, bar=bar,

28 margin=margin, marker=marker);

29 add(f,opic.fit());

30 });

31 pic.addBox(min(g), max(g), trueshift+min(pen),

trueshift+max(pen));
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32 }

34 usepackage("amsmath");

36 real yellowPart = 0.2;

37 real unit = 2cm;

38 real truecm = cm / unit;

39 unitsize(unit);

40 pen backgroundpen = yellowPart*yellow + (1-yellowPart)*white;

41 frame finish() {

42 currentlight.background = backgroundpen;

43 frame toreturn = bbox(backgroundpen, Fill);

44 currentpicture = new picture;

45 unitsize(unit);

46 return toreturn;

47 }

49 /*------------------------------*/

51 //Basic settings

52 settings.outformat="pdf";

53 defaultpen(fontsize(10pt));

54 import graph;

56 //Save some important numbers.

57 real xmin = -0.1;

58 real xmax = 2;

59 real ymin = -0.1;

60 real ymax = 2;

62 //Draw the graph and fill the area under it.

63 real f(real x) { return sqrt(x); }

64 path s = graph(f, 0, 2, operator..);

65 path fillregion = s -- (xmax,0) -- cycle;

66 pen fillpen = mediumgray;

67 fill(fillregion, fillpen);

68 draw(s, L=Label("$y=f(x)$", position=EndPoint));

70 //Fill the strip of width dx

71 real x = 1.4;

72 real dx = .05;

73 real t0 = times(s,x)[0];

74 real t1 = times(s,x+dx)[0];

75 path striptop = subpath(s,t0,t1);

76 filldraw((x,0) -- striptop -- (x+dx,0) -- cycle, black);
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78 //Draw the bars labeling the width dx

79 real barheight = f(x+dx);

80 pair barshifty = (0, 0.2cm);

81 Label dxlabel = Label("$dx$", position=MidPoint, align=2N);

82 drawshifted((x,barheight) -- (x+dx, barheight),

trueshift=barshifty, label=dxlabel, bar=Bars);

84 //Draw the arrows pointing inward toward the dx label

85 real myarrowlength = 0.3cm;

86 margin arrowmargin = DotMargin;

87 path leftarrow = shift(barshifty) * ((-myarrowlength, 0) --

(0,0));

88 path rightarrow = shift(barshifty) * ((myarrowlength, 0) --

(0,0));

89 draw((x, barheight), leftarrow, arrow=Arrow(),

margin=arrowmargin);

90 draw((x+dx, barheight), rightarrow, arrow=Arrow(),

margin=arrowmargin);

92 //Draw the bar labeling the height f(x)

93 real barx = x + dx;

94 pair barshiftx = (0.42cm, 0);

95 Label fxlabel = Label("$f(x)$", align=(0,0), position=MidPoint,

filltype=Fill(fillpen));

96 drawshifted((barx,0) -- (barx, f(x)), trueshift=barshiftx,

label=fxlabel, arrow=Arrows(), bar=Bars);

98 //Draw the axes on top of everything that has gone before

99 arrowbar axisarrow = Arrow(TeXHead);

100 Label xlabel = Label("$x$", position=EndPoint);

101 draw((xmin,0) -- (xmax,0), arrow=axisarrow, L=xlabel);

102 Label ylabel = Label("$y$", position=EndPoint);

103 draw((0,ymin) -- (0,ymax), arrow = axisarrow, L=ylabel);

105 //Draw the tick mark on the x-axis

106 path tick = (0,0) -- (0,-0.15cm);

107 Label ticklabel = Label("$x$", position=EndPoint);

108 draw((x,0), tick, L=ticklabel);

110 frame pic2dFrame = finish();

112 /* ----------------------------------------------------- */

114 settings.prc = false;

115 settings.render=16;

116 import three;
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118 currentprojection = orthographic(5,0,10, up=Y);

119 //currentprojection=oblique;

120 //currentprojection=perspective(6,0,10,up=Y);

122 pen color = white;

123 material surfacepen = material(diffusepen=color+opacity(1.0),

emissivepen=0.2*color);

124 material planepen = material(diffusepen=opacity(0.6),

emissivepen=0.8*color);

125 pen diskpen = black+opacity(1.0);

127 path3 p3 = path3(s);

128 draw(p3);

130 surface FilledRegion = surface(fillregion);

131 draw(FilledRegion, surfacepen = gray(0.6) + opacity(0.8));

133 surface solidsurface = surface(p3, c=O, axis=X);

134 draw(solidsurface, surfacepen=surfacepen);

136 /*

137 int n = length(p3);

138 for (real i = 0; i <= n; i += n/10) {

139 if (i >= n) i -= .01;

140 draw(solidsurface.vequals(i), gray(0.3));

141 }

142 */

143 draw(solidsurface.vequals(length(p3) - .001), gray(0.3));

145 real extra = 0.4 truecm;

146 path planeboundary = (xmin,ymin) -- (xmax+extra,ymin) --

(xmax+extra,ymax+extra) -- (xmin,ymax+extra) -- cycle;

147 path planeoutside = planeboundary -- fillregion -- cycle;

148 draw(surface(planeoutside), surfacepen=planepen);

150 transform pushoutside = shift(0,.001);

151 striptop = pushoutside*striptop;

152 path3 dVtop = path3(striptop);

153 path3 openStrip = (x,0,0) -- dVtop -- (x+dx,0,0);

154 surface disk = surface(openStrip, c=O, axis=X);

155 draw(disk, diskpen);

157 triple cameraDirection(triple pt, projection P =

currentprojection) {

158 if (P.infinity) {
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159 return unit(P.camera);

160 } else {

161 return unit(P.camera - pt);

162 }

163 }

165 triple towardCamera(triple pt, real dist = 1 truecm, projection

P = currentprojection) {

166 return pt + dist*cameraDirection(pt, P);

167 }

169 draw(xmin*X -- xmax*X, arrow=Arrow3(TeXHead2(normal=Z)));

170 draw(ymin*Y -- ymax*Y, arrow=Arrow3(TeXHead2(normal=Z)));

171 label("$x$", position=towardCamera(xmax*X), align = E);

172 label("$y$", position=towardCamera(ymax*Y), align=N);

174 frame pic3dFrame = finish();

176 /* ----------------------------------------------------- */

178 currentprojection=orthographic((3,0,10), up=Y);

180 diskpen = mediumgray;

181 draw(disk, diskpen);

183 transform3 T = rotate(10, X);

184 path3 brace = T*path3(brace((x+dx,barheight), (x+dx,0)));

185 draw(brace--cycle);

186 label("$r=f(x)$", position=midpoint(brace), align=E);

188 //Draw the bars labeling the width dx

189 path3 dxlabelpath = T * ((x, barheight, 0) -- (x+dx, barheight,

0));

190 draw(dxlabelpath, L=dxlabel, Bars3);

192 arrow(relpoint(dxlabelpath,0), dir=W, length=myarrowlength,

margin=DotMargin3, arrow=Arrow3(emissive(black)));

193 arrow(relpoint(dxlabelpath,1), dir=E, length=myarrowlength,

margin=DotMargin3, arrow=Arrow3(emissive(black)));

195 draw(xmin*X -- xmax*X, arrow=Arrow3(TeXHead2(normal=Z)));

196 draw(ymin*Y -- ymax*Y, arrow=Arrow3(TeXHead2(normal=Z)));

197 label("$x$", position=towardCamera(xmax*X), align = E);

198 label("$y$", position=towardCamera(ymax*Y), align=N);

200 frame oneSlice = finish();
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201 /* ----------------------------------------------------- */

203 label(minipage("\raggedright Dimensions of infinitesimally thin

sheet:

204 \begin{description}

205 \item[Area:] $\pi r^2 = \pi [f(x)]^2$

206 \item[Thickness:] $dx$

207 \item[Volume:] $dV = \text{Area}\cdot\text{thickness} = \pi

[f(x)]^2\;dx$

208 \end{description}"

209 ,6cm));

211 frame labelFrame = finish();

213 /* ----------------------------------------------------- */

215 unit = 1;

216 unitsize(unit);

217 add(pic3dFrame);

218 add(labelFrame, position=(max(pic3dFrame).x, min(pic3dFrame).y

- 1cm), align=SW);

219 pic3dFrame = finish();

221 /* ----------------------------------------------------- */

223 //unitsize(1); // Set the usual (postscript) coordinates.

224 add(pic2dFrame);

225 add(pic3dFrame, position=max(pic2dFrame), align=SE);

226 add(oneSlice, position=min(pic2dFrame)+(0,-1cm), align=SE);

228 // Scale up by 4 in order to increase resolution.

229 shipout(scale(4)*finish());

B Installing Asymptote

• For a Mac OS X system, Asymptote is automatically installed during a
standard installation of MacTeX. The version installed will be updated only when
TeX Live is rebuilt and re-installed, which is typically once a year. (Running
TeX Live Utility will not update Asymptote.) If you want the cutting-edge
version of Asymptote, or if the TeX Live installation does not work for whatever
reason, see the following information:
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– This website16 provides pre-built binaries, albeit with some specific depen-
dencies that many systems may not satisfy.

– Section 2.6 of the manual17 gives information on compiling from the source
code. This is the recommended method, but does not always interact
well with the most up-to-date version of Mac OS X. As of this writing,
version 3.31 of Asymptote works with the latest OS, but previous versions
of Asymptote do not.

– There is information at http://sourceforge.net/p/asymptote/discussion/
409349/thread/4542fb8e on installing Asymptote using Homebrew. The-
oretically, this should be quite easy; however, the author of this tutorial was
unable to get this to work, and the software reported that it was attempting
to install Asymptote version 2.23 at a time when version 2.24 had been
available for several months (but not yet on TeX Live).

• For a Windows system, the official installation instructions are fairly
good. As of this writing, the most recent version of the setup.exe file can
be downloaded from http://sourceforge.net/projects/asymptote/files/

2.35/.

• For a Unix-like system, a version of Asymptote is included in TeX Live,
but there may be additional dependencies; see, for instance, http://tex.

stackexchange.com/a/155284/484. You should also consult the following two
pages from the official documentation:

– http://asymptote.sourceforge.net/doc/UNIX-binary-distributions.

html gives information on existing binary distributions of Asymptote.

– http://asymptote.sourceforge.net/doc/Compiling-from-UNIX-source.

html gives information on compiling Asymptote directly from the source
code.

16http://asymptote.sourceforge.net/doc/MacOS-X-binary-distributions.html
17http://asymptote.sourceforge.net/doc/Compiling-from-UNIX-source.html
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* operator
with transforms, 13

++ operator, unexpected behavior, 13
-- operator

decrementing a number, 13
drawing, 7, 16

.. operator, 9–10, 16
using in graphs, 29

[]

array indices, 24
array types, 24

[][], 26
^^ operator, 27

align=, 36
Aquamacs, 4
arc(), 14–15
ArcArrow(), 9
ArcArrow3(), 81
array, 24

building, 34
length, 24
push(), 34

array of arrays, 26, 33
Arrow(), 9, 19
Arrow3(), 81
arrow=, 8

ArcArrow(), 9
ArcArrow3(), 81
ArcArrow3(DefaultHead2), 83
ArcArrow3(HookHead2), 83
ArcArrow3(HookHead3), 81
ArcArrow(HookHead), 9
ArcArrow(SimpleHead), 9
Arrow(), 9
Arrow3(), 81
Arrow3(DefaultHead2), 83
Arrow3(HookHead2), 83
Arrow3(HookHead3), 81
Arrow3(TeXHead2), 83
Arrow3(TeXHead3), 81
Arrow(HookHead), 9
Arrow(SimpleHead), 9

Arrow(TeXHead), 9
arrowbar, 19
arrows, 8–9
aspect ratio, 17
asy, 4
Asymptote manual, 5
avoiding redundant code, 18

bar=, 38
bars, 38
blank lines, 19
blue, 12
box(), 12
building arrays, 34

circle(), 11
clip(), 20–21
code

avoiding redundant, 18
readability, 19

contour module, 33
contour(〈function〉), 33
curved paths, 9–10
cycle, 16

default argument, 37
DefaultHead2, 83
defaultpen(), 5
default argument, 5
dir(path,real), 27
direction=, 14
disconnected path, 27
dot(), 15, 17, 58
double, C variable type, 19
down, 10
draw(), 7

unscalable object, 42
L=, 36
line, 7
marker=, 11
path, 9–10

draw(path[]), 27
p=, 28
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drawing order, 16, 19
drawshifted(), 46–47
duplicate code, 18

E (east), 36
ellipse(), 12
embed=, 37
eps, 4

fill(), 15–16
filldraw(), 35
Fill(pen), 38
filltype=, 37, 38
font size, 5
fontsize(), 5, 6
for loop, 13
function

overloading, 37
functions

defining, 28
graphing, 28–31
graphing parametric, 31–33

graph
smooth, 29

graph module, 28, 32
graph(function), 31
graph(function), 28, 29

n=, 29
graphing functions, 28–31
graphing parametric functions, 31–33
guide3, 58

height-to-width ratio, 8
hello world.asy, 4
Hermite, 30
HookHead, 9
HookHead2, 83
HookHead3, 81

if, 34
import, 28
importing modules, 28
indices, of arrays, 24
intersect(), 25, 26
intersection

intersect(), 25, 26

intersectionpoint(), 26
intersectionpoints(), 26
times(), 24, 25

intersectionpoint(), 26
intersectionpoints(), 26
invisible

invisible, 34

keepAspect=, 8, 17
key-value, 6

L=, 36
Label(), 36
Label, 35ff
label(), 4–6, 35
label()

align=, 36
labeling paths, 36

multiple labels, 38
sloped, 39

LATEX, 36
Law of Janet, 23
left, 10
length

of an array, 24
line, 7
linewidth(), 13

manual, 5
margin, 15, 44
margin=, 15
marker=, 11
mediumgray, 16
module, 28

n=, 29
named path, see variable
nano text editor, 4
NE (northeast), 36
new, 34
N (north), 36
Notepad, 4

operator .., 29
optional arguments, 5
order of drawing, 19
overloading functions, 37
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p=, 28, 37
pair, 20
path

disconnected, 27
path, 27
path time, 22–26
path3, 58, 63
paths

labeling, 36
multiple labels, 38

path, variable type, 18
pdflatex, 4
pen

blue, 12
fontsize(), 5
green, 13
invisible, 34
linewidth(), 13
mediumgray, 16
orange, 13
purple, 13
red, 12
white, 38

pen, 6, 28
point, see dot()

point, unit of measurement, 7
polygon(), 12
position=, 37
push(), 34

readable code, 19
real, 19
real[], 24
rectangle, see box()

red, 12
redundant code, avoiding, 18
regular polygon, see polygon()

Relative(pair), 40
right, 10
rotate(), 13

scale(), 13
scatter plot, 16
semicolon, 4
SE (southeast), 36
settings.outformat, 4

shift(), 13
SimpleHead, 9
size(), 7–8

keepAspect=, 8, 17
size=, 37
sloped label, 39
smooth graph, 29
sqrt(), 9
square root, 9
S (south), 36
string, 6
subpath(), 22–26

tangent, 27
tangent direction, 10
TeXHead, 9, 19
TeXHead2, 83
TeXHead3, 81
TeXShop, 4
thin() pen, 33
tick mark, 42
TikZ, 4

clipping, 20
styles, 6

times(), 24, 25
topologist’s sine curve, 32
transform, 12–13
TrueMargin(), 15
type, 18

unit, 7
unitcircle, 11
unitsize(), 7
up, 10

variable, 18–19
array, 24
type, 18

white, 38
W (west), 36

xscale(), 13

yscale(), 13
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