
Math 133, Lecture 1: Introduction to Differential

Equations

Charles Staats

Monday, 26 March 2012

Some logistics

• The first tutorial will be on Thursday, March 29. You will be assigned to
tutorial sessions by then. Please email me if you have a preference between
the two tutors. I will try to accommodate requests, but I can make no
guarantees.

• I will be taking additional steps to encourage tutorial attendance this
quarter. These will include the following:

– Pop quizzes will be given at the beginning of some tutorials. These
quizzes are intended to be easy for anyone who was paying attention
in class. They will count toward your final average.

– Tutors will take attendance and report it to me. I will contact anyone
who is frequently absent.

– Certain “hard” problems in the homework will be designed to be
discussed in tutorial.

If you feel that tutorial is a waste of your time, please talk to your tutor
or to me about it. (If you talk to me, I will not share your name with
your tutor.)

• I’m going to wait to select office hours until I have a better idea of my own
schedule. I will set them on Saturday at the latest. In the mean time, feel
free to email me and ask for appointments; I’m always happy to help.

• I will specify, on homework sets, that certain problems “will be graded
carefully.” At the discretion of your tutor, the remaining problems may
be graded for completion only. However, you should still hand them in
unless the homework set specifically says not to.

• The first assignment will be due Friday. I have not yet selected it, but I
soon will.
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1 What is a differential equation?

In algebra, you take equations relating x and y, and try to put one variable in
terms of the other. For instance, you might take the equation

x2 + y2 = 1

and solve for y in terms of x, obtaining

y = ±
√

1− x2.

There are plenty of equations that we do not have the means to solve—or at
least, the solution cannot be expressed as a formula. For instance, try solving

y + sin y = x

for y. There is a “solution” in the sense that y can be given as a function of x;
however, there is no formula for this function. This, as you may recall, was one
of my primary motivations for introducing functions way back at the beginning
of first quarter: sometimes, we have solutions that cannot be given by a formula,
so we talk about functions rather than formulas.

In calculus, we can talk about solving a whole new kind of equation: differ-
ential equations.

Definition. A differential equation is an equation relating x, y, and dy/dx.
(Note that the term also applies if the two variables are called something other
than x and y.)

[Note that I am not telling you the entire truth here. Technically, a dif-
ferential equation can also involve higher derivatives—d2y/dx2, d3y/dx3, . . . . It
can even involve more than two variables. However, unless something comes up
that I do not expect, the differential equations we deal with will all fit into the
definition above.]

Solving a differential equation is a matter of finding all functions f such that
the equation is satisfied when y = f(x).

Example 1. Solve the differential equation

dy

dx
= x.

Solution. y = 1
2x

2 + C, for any real number C.

The simplest type of differential equation, as demonstrated above, is of the
form

dy

dx
= [function in x].

Solving these is simply a matter of finding antiderivatives, i.e., indefinite inte-
grals. However, even for these “simple” equations, there is not always a solution
given by a formula.
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Example 2. The differential equation

dy

dx
= e−x2

has a solution (as a function), which is extremely important in statistics and
probability. However, this function cannot be given by a formula.

2 Separation of Variables

The examples of differential equations given in the previous section are really
just slightly different ways of restating the problem of “indefinite integration.”
However, there are plenty of important differential equations that are not quite
so simple.

Example 3. Solve the differential equation

dy

dx
= y.

Solution.

dy

dx
= y

1

y
dy = dx

∫
1

y
dy =

∫
dx

ln|y|+ C1 = x + C2

ln|y| = x + C2 − C1 = x + C3 where C3 := C2 − C1

|y| = ex+C3 = eC3ex

y = ±eC3ex = Cex,

where C := ±eC3 .

Note that in solving equations like this one, we freely re-assign the names
of our constants to make the formulas look nicer. Also note that we have to be
more careful with the constants than we were last quarter; adding “+C” once
you’ve done everything else will not work.

This particular technique for solving differential equations is called separa-
tion of variables. Here’s the idea: if we can somehow rewrite our differential
equation in the form

f(y) dy = g(x) dx,

we have “separated” the variables and can integrate the two sides separately.
Like all techniques for solving differential equations, this one does not always
work. But when it does work, it can be extremely useful.
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Example 4. Solve the differential equation

dy

dx
= xy.

Solution.

dy

dx
= xy

1

y
dy = x dx

∫
1

y
dy =

∫
x dx

ln|y|+ C1 = 1
2x

2 + C2

ln|y| = 1
2x

2 + C3

|y| = eC3e
1
2x

2

y = Ce
1
2x

2

.

3 Differential equations in real life

The reason differential equations are so important is that they come up often in
problems about the “real world”—in physics, chemistry, and engineering, but
also in population studies, economics, medicine, and any number of other things.
(I once used a differential equation to help me understand a computer game.)
I will be putting more emphasis than the textbook on how to translate a real-
world problem into a differential equation, and less emphasis on actually solving
the differential equation (in part because so many differential equations cannot
be solved by formulas). Consequently, I will be writing significant portions of
the first two assignments myself, which is part of why I have not yet selected
them.

Example 5. Assume that in a given population (of bacteria, or of people), the
population P grows according to the following law:

The rate of growth is directly proportional to the number of people
already present.

State this law as a differential equation.

Solution. The rate of growth of population (with respect to time) is dP/dt. The
“number of people already present” is the population, P . So, the law states that
dP/dt is directly proportional to P . As an equation,

dP

dt
= kP,
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where k is the constant of proportionality. Note that the information we have
been given is not enough to determine k.

Example 6. (“density/collision problem”) A disease is spreading through a
population of 10, 000 people. Let I be the number of people infected. Any
time an infected person meets an uninfected person, there is a chance that the
uninfected person becomes infected.

If we assume that these meetings are completely “at random,” then the
frequency of such meetings should be

• directly proportional to the number I of infected people, and

• directly proportional to the number 10, 000− I of uninfected people.

Consequently, it should be directly proportional to their product, and we have
the differential equation

dI

dt
= k · I · (10, 000− I).

Again, k is a constant of proportionality that we cannot determine without
further data.

Although the assumption that “meetings are completely random” is clearly
false, disease epidemics are, surprisingly enough, often described by the sort of
differential equation given in the example above. This sort of equation is called
an equation for logistic growth; we may have time to discuss it more later.
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Math 133, Lecture 2: What to do with a DifEq

once you’ve solved it

Charles Staats

Wednesday, 28 March 2012

1 How to use differential equations to get actual
information

Suppose you are given a real life situation and asked to write a differential
equation. For instance, someone might tell you that a particular population
grows at a rate proportional to the existing population. The corresponding
differential equation is

dP

dt
= kP,

where k is the constant of proportionality, t represents time, and P (t) is the
population at time t. If we solve this differential equation, we end up with

P (t) = Cekt.

Unfortunately, this does not actually tell us what the population is at any given
time: we still have two constants, C and k, floating around, and no one has
told us what their values are. This is actually a good thing: the differential
equation dP/dt = kP can describe all sorts of populations, from bacteria in
a Petri dish to world population. If this equation, by itself, were enough to
completely determine the function P , then all of these different populations
would be determined by it, and hence be equal to each other—which is absurd.
However, it does leave us with something of a conundrum: how can we actually
calculate population at a given time? The answer is that we need more data.
Typically, for each constant that shows up in the equation, we need one data
point (t0, P0) telling us what the population is at some particular time t0.

Here’s the general procedure for how to proceed when you are given a real-
world problem relating x and y, including both “rate of change” information
and one or more data points (x0, y0).

1. Write a differential equation relating x, y, and dy/dx.

2. Solve it. The resulting “solution” will express y as a function of x, but
will probably include at least one constant you don’t know the value of.
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3. Substitute in known values of x and y and solve for the constant(s).

Example 1. The number of bacteria P in a Petri dish started out at 5, 000,
but was equal to 10, 000 after 3 hours. Assuming that the population growth
rate is proportional to the existing population, find P as a function of time t.

Solution. We are told that “the population growth rate is proportional to the
existing population;” we can translate this into the differential equation

dP

dt
= kP,

for some constant of proportionality k. We are also given the data points

P (0) = 5000

P (3) = 10000.

Let’s follow the procedure.

1. Write a differential equation relating x, y, and dy/dx. We just did
this:

dP

dt
= kP.

2. Solve it. We use separation of variables:

dP

dt
= kP

dP

P
= k dt

∫
dP

P
=

∫
k dt

ln|P |+ C1 = kt + C2

ln|P | = kt + C3

|P | = ekt+C3 = eC3ekt

P = ±eC3ekt = Cekt.

We find that P (t) = Cekt, for some constants C and k.

3. Substitute in known values of x and y and solve for the con-
stant(s). Our two data points give

P (0) = 5000 P (3) = 10000

Cek·0 = 5000 Ce3k = 10000.

Since ek·0 = e0 = 1, the first equation gives

5000 = Cek·0 = C · 1 = C.
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Substituting C = 5000 into the second equation gives

5000e3k = 10000

e3k = 10000/5000 = 2

3k = ln 2

k = 1
3 ln 2.

Thus, we have
P (t) = Cekt = 5000e

1
3 t ln 2.
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Assignment 1: due Friday, March 30

The problems from the handout. They will all be graded carefully. Hopefully,
they will go reasonably quickly, once you get the hang of them.

Assignment 2: due Monday, April 2

Section 3.9, Problems 1, 2, 7, and 8. Problems 2 and 8 will be graded carefully.

Section 6.5, Problems 1, 2, 5, and 6. Problems 2 and 6 will be graded carefully.
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Math 133, Lecture 3: Linear differential

equations; Inverse Trig Functions

Charles Staats

Friday, 30 March 2012

1 Linear Differential Equations

Recall that a differential equation is separable if we can write it as

f(y) dy = g(x) dx.

If a differential equation is separable, we can solve it (or attempt to solve it) by
writing it in the form above and taking indefinite integrals of both sides.

In general, “solution techniques” to differential equations involve the follow-
ing idea: if we can put a differential equation in a certain form, then we can
apply a certain trick that lets us solve it just by taking antiderivatives (i.e.,
indefinite integrals). Separability is one of the simplest of these: if we can put
the differential equation into the form f(y) dy = g(x) dx, then we can solve it
by integrating both sides.

Another form of equation that has a “trick” for solving it is called a linear
differential equation.

Definition. A first-order1 linear differential equation is a differential equation
that can be put in the form

dy

dx
+ p(x)y = q(x),

for some functions p and q.

Example 1. When you solved the mortgage problem on the homework set, you
should have gotten the differential equation

dy

dx
= .05y − 6000,

where y represents the debt and x represents time in years. If we rewrite this
as

dy

dx
+ (−.05)y = −6000,

1“First-order” just means that first derivatives appear, but no second derivatives, third
derivatives, etc.
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we have put it into the form

dy

dx
+ p(x)y = q(x),

where p(x) = −.05 and q(x) = −6000 are both constant functions. Thus, we
see that this differential equation is a first-order linear differential equation.

The technique (or “trick”) for solving differential equations of this form relies
on the following:

Exercise 2. Let p(x) be a function of x, and suppose that P is an antiderivative
of p. In other words,

P ′(x) = p(x)∫
p(x) dx = P (x) + C.

Show that
d

dx

(
y · eP (x)

)
= eP (x)

(
dy

dx
+ p(x)y

)
.

Solution:

d

dx

(
yeP (x)

)
=
dy

dx
eP (x) + y

d

dx
eP (x)

=
dy

dx
eP (x) + yeP (x)P ′(x)

=
dy

dx
eP (x) + yeP (x)p(x)

= eP (x)

(
dy

dx
+ p(x)y

)
.

Now, here’s the general technique for solving a differential equation of the
form y′ + p(x)y = q(x):

1. Find an antiderivative P (x) =
∫
p(x) dx.

2. Multiply both sides of the differential equation by eP (x). Then we get

dy

dx
+ p(x)y = q(x)

eP (x)

(
dy

dx
+ p(x)y

)
= eP (x)q(x).
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By the exercise,

d

dx

(
y · eP (x)

)
= eP (x)q(x)

y · eP (x) =

∫
eP (x)q(x) dx

y = e−P (x)

∫
eP (x)q(x) dx.

The last step is obtained by multiplying both sides by e−P (x), which is
equivalent (by properties of exponents) to dividing by eP (x).

Example 3. Consider the differential equation

dy

dx
+ (−.05)y = −6000

that came from the mortgage problem. Here we have

p(x) = −.05∫
p(x) dx = −.05x+ C,

so P (x) = −.05x is an antiderivative of p(x). Thus, our method tells us that we
should multiply both sides of the differential equation by e−.05x.

e−.05x
dy

dx
− .05e−.05xy = −6000e−.05x

d

dx

(
e−.05xy

)
= −6000e−.05x

e−.05xy = −6000

∫
e−.05x dx.

Let

u = −.05x

du = −.05 dx

−20u = dx.

Then we have
∫
e−.05x dx =

∫
eu · (−20) du

= −20

∫
eu du = −20eu + C1 = −20e−.05x + C1.
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Consequently,

e−.05xy = −6000

∫
e−.05x dx

= −6000(−20e−.05x + C1)

= 120, 000e−.05x + C2

y = e.05x(120, 000e−.05x + C2)

= 120, 000 + C2e
.05x.

We end up with
y = 120, 000 + Ce.05x

for some constant C.

Exercise 4. In the original mortgage problem, the debt starts out at $100, 000;
in other words, at time zero (when x = 0), we should have y = 100, 000. Use
this data point to find the value of the constant C and express y as a function
of x. Then, use that function to calculate how long (approximately) it will take
before the mortgage is paid off.

2 Inverse Trig Functions

Much of mathematics is about solving “inverse problems.” For instance: if y =
x2, and someone gives us x, we can find y. But we can also “invert” this
question: if someone gives us y, how do we find x? In this particular case, we
would like to define a new function

√
, by

√
x := “the number whose square is x.”

There are two issues with this definition. The first is that if x < 0, then there
is no number whose square is x. To handle this, we say that the

√
function is

only defined on the interval [0,∞), i.e., on numbers x ≥ 0.
The second issue is that if x > 0, then the rule is ambiguous: there are two

different numbers whose square is x. For instance, if x = 1, then “the number
whose square is 1” could refer to either 1 or −1. Functions, by definition, are
not allowed to be ambiguous. To handle this, we only consider nonnegative
numbers whose square is x—we discard the negative solution. Thus, we obtain
the following definition of

√
:

Definition. For x in the interval [0,∞), we define
√
x to be the number in the

interval [0,∞) whose square is x.

A similar procedure will allow us to define an “inverse” for the trigonometric
functions sin, cos, and tan. We denote these “inverses” by arcsin, arccos, and
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arctan. When we measure angle in radians, the measure of an angle corresponds
to the length of the corresponding arc on the unit circle. So, you can think
of, e.g., arcsin y as an abbreviated form of “the angle (arc) whose sine is y.”
Unfortunately, if we try to define the arcsin function by

arcsin y := “the angle (in radians) whose sine is y”,

we encounter the same two difficulties as we did for defining
√
x. The first diffi-

culty is that the sine of an angle is always in the interval [−1, 1]. (If you recall,
the sine of the angle is always a y-coordinate on the unit circle.) Consequently,
we need to say that arcsin is only defined on the interval [−1, 1].

The second difficulty is that the definition is ambiguous: for any given y-
coordinate in [−1, 1], there are infinitely many different angles with this same
y. There are two types of ambiguities we need to avoid.

• If we start at angle t, and go all the way around the unit circle (i.e., add
2π to our angle), we obtain another angle t+2π that has exactly the same
(x, y)–coordinates on the unit circle. In other words, t + 2π has exactly
the same cosine and sine as t. To avoid this ambituity, we restrict our
definition to be “the angle in the interval (−π, π] whose sine is y.” This
way, once we specify a point on the unit circle, we have a unique angle it
produces.

• Even with this restriction, there can be more than one point on the unit
circle with the same sine (i.e., same y-coordinate); see the picture I did
not have time to include in these notes, but will draw on the board (and
which you should copy down). To avoid this sort of ambitugity, we further
restrict our definition to give only angles in [−π/2, π/2].

Thus, arcsin is defined by

Definition. For y in the interval [−1, 1], we define arcsin y to be the number
in the interval [−π/2, π/2] whose sine is y.
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Assignment 2: due Monday, April 2

Section 3.9, Problems 1, 2, 7, and 8. Problems 2 and 8 will be graded carefully.

Section 6.5, Problems 1, 2, 5, and 6. Problems 2 and 6 will be graded carefully.

Assignment 3: due Wednesday, April 4

Section 6.6, Problems 1, 2, 7, and 8. Problems 2 and 8 will be graded carefully.

Section 6.8, Problems 1 and 2. Problem 2 will be graded carefully.

Exercise 4 in Lecture 3 (p. 4). This problem will be discussed in tutorial on
Tuesday. It will be graded carefully.
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Math 133, Lecture 4: Inverse Trig Functions,

continued

Charles Staats

Monday, 2 April 2012

1 The f−1 notation

If f is a function, the “inverse function of f” describes the “solution” to the
equation y = f(x). More precisely, the inverse function, usually called f−1, is
defined by

f−1(y) = the number x such that f(x) = y.

Note that this definition does not always make sense: for instance, if f(x) = x2,
then f−1(y) is undefined for y < 0 (there is no number whose square is y) and
ambiguous for y > 0 (if f(x) = y, then f(−x) = y also, so it is not clear whether
f−1(y) should be x or −x). There are ways of handling this: we can restrict
the domain of f—artificially declare that f(x) is only defined for x ≥ 0. Then
f−1 does exist, defined by f−1(y) =

√
y. We have eliminated the ambiguity by

throwing out the x-values that give extra solutions for f .
The essential defining property for f−1 may be restated as

f−1(y) = x if and only if y = f(x).

In other words, if we are trying to do algebra, and we have an unwanted f
around one side of the equation, we can get rid of it by applying f−1 to both
sides of the equation. Likewise, if we have an unwanted f−1, we can get rid of
it by applying f to both sides of the equation. Or in other words,

f−1(f(x)) = x whenever f(x) is defined, and

f(f−1(y)) = y whenever f−1(y) is defined.

If we rewrite these using the language of “composition of functions,” we get that

(f−1 ◦ f)(x) = x

(f ◦ f−1)(y) = y.

Since this is kind of like the statement that x · x−1 = 1 = x−1 · x, where
x−1 = 1/x, it provides some explanation for the notation f−1. Unfortunately,
this can produce some confusion.
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Warning. f−1(x) is almost never equal to (f(x))−1. The former means “the
number y such that f(y) = x;” the latter means 1/f(x).

In particular, the inverse trigonometric functions arcsin, arccos, and arctan
are often denoted sin−1, cos−1, and tan−1, respectively.

Warning. While conventional notation allows us to write

sin2 x = (sinx)2 cos2 x = (cosx)2 tan2 x = (tanx)2,

it is most emphatically not true that

sin−1 x =
1

sinx
cos−1 x =

1

cosx
tan−1 x =

1

tanx

2 The graphs of arcsin, arccos, and arctan
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3 Identities with inverse trig functions

4 The derivatives of arcsin, arccos, and arctan

d

dx
arcsinx =

1√
1− x2

d

dx
arccosx =

−1√
1− x2

d

dx
arctanx =

1

1 + x2
.
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Assignment 3: due Wednesday, April 4

Section 6.6, Problems 1, 2, 7, and 8. Problems 2 and 8 will be graded carefully.

Section 6.8, Problems 1 and 2. Problem 2 will be graded carefully.

Exercise 4 in Lecture 3 (p. 4). This problem will be discussed in tutorial on
Tuesday. It will be graded carefully.

Assignment 4: due Friday, April 6

Section 6.8, Problems 29–32 and 39–40. The even-numbered problems will be
graded carefully.

Without using calculus, find an expression for the area of the shaded region
below:

t

y

x

1

Then, express the area as a definite integral, without any trigonometric functions
(inverse or otherwise). You do not need to evaluate the definite integral—you
have already done that, without needing to use calculus. This problem will be
discussed in tutorial on Thursday. It will be graded carefully.
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Math 133, Lecture 5: Derivatives of the inverse

trig functions; Integration via trig substitution

Charles Staats

Wednesday, 4 April 2012

1 Office Hours

My weekly office hours will be

• Monday, 3:15 to 4:15

• Thursday, 1:45 to 2:45

• Friday, 4:15 to 5:15.

I am also open to appointments.

2 Derivatives of the inverse trig functions

First, let’s have a few exercises to get warmed up.

Exercise 1. Find an expression for cos(arcsinx) that does not involve trigono-
metric functions.

Solution.
1√

1− x2

Exercise 2. Find an expression for sin(arccosx) that does not involve trigono-
metric functions.

Solution.
1√

1− x2
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Exercise 3. Find an expression for cos(arctanx) that does not involve trigono-
metric functions.

Solution.
x√

1 + x2

Now, let’s find the derivatives of arcsin, arccos, and arctan, via the technique
of “implicit differentiation.”

Example 4. Find d
dx arcsinx.

Solution.

y = arcsinx

sin y = x.

Differentiating both sides with respect to x,

d

dx
sin y =

d

dx
x

d

dy
(sin y) · dy

dx
= 1

cos y · dy
dx

= 1

dy

dx
=

1

cos y

=
1

cos(arcsinx)

=
1√

1− x2
.
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Exercise 5. Show that

d

dx
arccos(x) =

−1√
1− x2

.

Solution.
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NOTE: Recall that
d

dx
tanx = sec2 x =

1

cos2 x
.

Example 6. Find
d

dx
arctanx.

Solution.

y = arctanx

tan y = x

d

dx
tan y =

d

dx
x

1

cos2 y
· dy
dx

= 1

dy

dx
= cos2 y

= (cos y)2

= (cos arctanx)2

=

(
1√

1 + x2

)2

=
1

1 + x2
.

3 Corresponding integral rules

We’ve just found several “new” differentiation rules. This allows us to write
down corresponding rules for finding antiderivatives, i.e., definite integrals.

∫
du√

1− u2
= arcsinu + C (1)

∫
du

1 + u2
= arctanu + C. (2)

Together with the rule

∫
du

u
= ln|u|+ C, (3)

these might be termed the “surprising rules” of integration: you start with
a perfectly nice, simple function like 1/(1 + x2) or 1/x, and when you go to
integrate it, a “transcendental” function like arctan or ln pops out of nowhere.
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Now, mathematicians have a sort of a love-hate relationship with surprises.
On the one hand, having an unexpected solution pop out of our logical, system-
atic reasoning is exciting, even the sort of thing that many of us live for. On the
other hand, we can’t help but feel that if we really, truly understood what was
going on, this “surprising” result would not be so surprising. Thus, surprises are
an opportunity to delve deeper into the subject: to understand why we should
have expected this surprising result all along, if only we were wiser. Part of the
difficulty with explaining the joy of mathematics to non-mathematicians is that
few except mathematicians ever have the joy of making this sort of discovery
for themselves.

In the case of
∫
u−1 du = ln|u| + C, there’s really not much to be done, as

far as I know. The power rule for integration in this case would give us 1
0u

0,
which makes no sense, so there is no option but to invent a new function, called
ln, and define it to be the integral of u−1. And if you recall, this is how ln was
defined to begin with.

On the other hand, for the “inverse trig” rules, there is a more general
technique, called trigonometric substitution. Like the best discoveries, this one
not only “explains” the previously surprising results, but allows us to extend
them to integrate other kinds of functions as well.

4 Trig substitution

The key to trig substitution is the Pythagorean identity

cos2 x + sin2 x = 1;

dividing both sides by cos2 x gives the sister identity

1 + tan2 x = sec2 x,

which is at least as important for our purposes—perhaps even more so.
The key idea is that we can use these identities, together with u-substitution,

to get rid of the expressions 1 + x2, 1 − x2, and x2 − 1 when they show up in
unfortunate places—say, under a

√
symbol, or in the denominator (or both).

Applying a trigonometric u-substitution can allow us to condense one of these
expressions into a single term via the Pythagorean identities. Here’s the basic
technique:

• To eliminate 1 + x2, substitute x = tanu. Then

1 + x2 = 1 + tan2 u = sec2 u.

• To eliminate 1− x2, substitute x = sinu. Then

1− x2 = 1− sin2 u = cos2 u.
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• To eliminate x2 − 1, substitutie x = secu. Then

x2 − 1 = sec2 u− 1 = tan2 u.

Here’s an example of an integral for which these techniques are applicable,
that does not appear on our list inspiring the techniques.

Example 7. ∫ √
1− x2 dx.

Solution. Substitute

x = sinu

dx = cosu du.

Then we have
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Assignment 4: due Friday, April 6

Section 6.8, Problems 29–32 and 39–40. The even-numbered problems will be
graded carefully.

Without using calculus, find an expression for the area of the shaded region
below:

t

y

x

1

Then, express the area as a definite integral, without any trigonometric functions
(inverse or otherwise). You do not need to evaluate the definite integral—you
have already done that, without needing to use calculus. This problem will be
discussed in tutorial on Thursday. It will be graded carefully.

Assignment 5: due Monday, April 9

Section 6.8, Problems 19, 20, 43, 44, 61, and 62. Problems 20, 44, and 62 will
be graded carefully.

Find the derivative of x lnx with respect to x. Bonus: find an antiderivative of
lnx. (Hint: take x lnx− g(x), for some very simple function g.)

This will be graded carefully.
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Math 133, Lecture 6: Integration

techniques—review

Charles Staats

Monday, 9 April 2012

1 Basic rules of antidifferentiation

For every basic rule of differentiation, there is a corresponding basic rule of
antidifferentiation. The book has what its authors consider a “short list” of such
rules (only seventeen items, after all) on pp. 383-84. I agree with the textbook
authors that the basic rules should be not only memorized, but ingrained to the
point that they can be used without thinking. However, I think their list is a
bit long, so I will offer a shorter one.

Exercise 1. (Powers: two cases)

∫
ur du =





1

r + 1
ur+1 + C if r 6= −1,

ln|u|+ C if r = −1.

Exercise 2. (sin and cos)

∫
sinu du = − cosu+ C

∫
cosu du = sinu+ C.

Exercise 3. (exponentials)
∫
eu du = eu + C

∫
au du =

au

ln a
+ C.
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Note that the second rule only applies for a a positive real number not equal
to one. (If a is not positive, au is not defined for many u. If a = 1, the rule
will not make sense.)

2 Techniques of antidifferentiation

For finding derivatives, you had some basic rules to differentiate simple functions
like xn or sinx, together with a few general techniques—most notably, the chain
rule and the product rule—stating how, when you see a complicated function
that is assembled from simple functions, you can combine the simple rules to
obtain the derivative.

For integration, the first concept is the same: every simple rule of differenti-
ation gives you a correspondingly simple rule for antidifferentiation. The second
step—applying general techniques to deal with more complicated functions—is
also there, but only after a fashion. There are essentially two general techniques
for integration: u-substitution (which corresponds to the chain rule) and inte-
gration by parts (which you have not yet seen; it corresponds to the product rule
for differentiation). Unfortunately, these “general techniques” are not nearly as
powerful as the corresponding differentiation techniques. You can use them to
change one integral into another, but you have to use them very carefully, guided
by experience (or rote memorization of an extensive list of possibilities), in or-
der to make sure that the new integral is actually more tractable than the first.
When the general techniques don’t work, there is a third alternative: a “bag
of tricks” that may allow you to rewrite a function as another, more tractable
function.

To recap:

1. Every rule of differentiation gives a corresponding rule of antidifferenti-
ation. For instance, the differentiation rule Dx sinx = cosx gives the
corresponding integration rule

∫
cosx dx = sinx+ C.

2. If you are asked to do an integral for which none of the basic rules applies,
you may be able to use the techniques of u-substitution (which you have
seen) and/or integration by parts (which you will see) to transform the
integral into a simpler integral. For instance, consider

∫
cos 2x dx.
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If we let u = 2x, so that du = 2 dx and 1
2du = dx, we find that

∫
cos 2x dx =

∫
cosu 1

2du

=
1

2

∫
cosu du

Now, a basic rule applies, telling us that this is

=
1

2
sinu+ C

=
1

2
sin 2x+ C.

3. Even if there is no obvious way to apply u-substitution or integration by
parts, it may be possible to use “tricks” to reveal less obvious ways. For
instance, consider the integral

∫
cos2 x dx,

which we encountered at the end of the last lecture. To integrate this, we
apply the trig identity1

cos2 x = 1
2 (cos 2x+ 1).

Applying this identity gives us
∫

cos2 x dx = 1
2

∫
(cos 2x+ 1) dx

= 1
4

∫
cos(2x) · (2 dx) + 1

2

∫
1 dx

= 1
4 sin(2x) + 1

2x+ C.

Note that the substitution u = 2x, du = 2 dx was used implicitly in going
from the second to the third line.

3 Some examples

I’ll give three examples in this section. The first two will be examples from
the textbook, intended to refresh you on u-substitution techniques you should
already be familiar with—at least in principle. The third example will be more
complex, dealing with some unfinished business from last lecture.

1You will need to have this identity memorized, or at least be able to derive it, for the
test; but you should not feel bad if you do not recognize it—I’m not sure you have ever seen
it before.
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Example 4. (Example 5, p. 385 in the textbook)

∫
x cosx2 dx =

1

2

∫
cosu du u = 2x, du = 2x dx, x dx = 1

2 du

= 1
2 sinu+ C

= 1
2 sinx2 + C.

Example 5. (Example 3, p. 384 in the textbook)

∫
6e1/x

x2
dx.

Try getting rid of the thing inside the exponent. Set u = 1/x = x−1, so
that du = −x−2dx. Then we have

∫
6e1/x

x2
dx =

∫
6e1/x · x−2 dx

=

∫
6eu · (− du)

= −6

∫
eu du

= −6eu + C

= −6e1/x + C.

Example 6. (Demonstration of Trig Substitution, from last time)

∫ √
1− x2 dx

Solution. Recall that the Pythagorean identity

cos2 θ + sin2 θ = 1

cos2 θ = 1− sin2 θ

suggests that to simplify an expression like 1−x2, we should substitute x = sin θ.
Then we get

x = sin θ

dx = cos θ dθ,
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and so

∫ √
1− x2 dx =

∫ √
1− sin2 θ · cos θ dθ

=

∫ √
cos2 θ · cos θ dθ

=

∫
cos θ · cos θ dθ

=

∫
cos2 θ dθ.

Recalling the identity cos2 θ = 1
2 (cos 2θ + 1), the above is

=

∫
1
2 (cos 2θ + 1) dθ

= 1
4

∫
cos 2θ · 2 dθ + 1

2

∫
1 dθ.

substituting u = 2θ and du = 2 dθ in the first integral, we get

= 1
4 sin 2θ + 1

2θ + C.

Finally, going back to our original substitution x = sin θ, and correspondingly
θ = arcsinx, we get

= 1
4 sin(2 arcsinx) + 1

2 arcsinx+ C

= 1
4 · 2 sin(arcsinx) cos(arcsinx) + 1

2 arcsinx+ C

= 1
2 · x ·

√
1− x2 + 1

2 arcsinx+ C.
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Assignment 5: due Wednesday, April 11

Section 6.8, Problems 19, 20, 43, 44, 61, and 62. Problems 20, 44, and 62 will
be graded carefully.

Find the derivative of x lnx with respect to x. Bonus: find an antiderivative of
lnx. (Hint: take x lnx− g(x), for some very simple function g.)

This will be graded carefully.

Assignment 6: due Friday, April 13

Section 6.8, Problems 45–48. Problems 46 and 48 will be graded carefully.

Section 7.1, Problems 1–4 and 10–13. The even-numbered problems will be
graded carefully.

Section 7.1, Problem 56. This will be discussed in tutorial on Thursday. It will
be graded carefully.
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Math 133, Lecture 7: Integration by parts

Charles Staats

Wednesday, 11 April 2012

1 The Theory

I told you last lecture that there are two major “general techniques” for inte-
gration: u-substitution, which corresponds to the chain rule and which you had
already seen, and integration by parts, which corresponds to the product rule
and which you had not seen. Today, we will discuss the latter: integration by
parts. It is less powerful than the product rule for differentiation, since it is
only useful for some products; but it is nevertheless an important tool to have
in your arsenal.

Let’s start with the product rule for differentiation:

d

dx
(uv) = u

dv

dx
+ v

du

dx
,

or in differential form,

d(uv) = u dv + v du.

If we integrate both sides, we get

∫
d(uv) =

∫
u dv +

∫
v du,

i.e.,

uv + C1 =

∫
u dv +

∫
v du.

If we rearrange the equation so that there is an indefinite integral on each side,
then the constant C1 can be absorbed into one of the indefinite integrals:

uv −
∫

v du =

∫
u dv.
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This formula, for “integration by parts,” is typically used to write one integral,∫
u dv, in terms of another, hopefully easier integral,

∫
v du. Just to make this

clear, I’ll rewrite it as ∫
u dv = uv −

∫
v du.

In actual examples, the hardest part tends to be finding a useful way to rewrite
an integrand like x cosx dx as u dv. (In this particular case, the useful choice
is u = x and dv = cosx dx.)

There’s also a picture, in which I’ve substituted x for u and y for v. Like
many of our pictures, it’s more than a mnemonic device but less than a proof.

x

y

(x, y)

∫
x dy

∫
y dx

x

y Area = xy =
∫
x dy +

∫
y dx

As the picture suggests, we can use integration by parts to handle inverse
functions as well as products: If we know how to integrate y = f(x), and want
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to know how to integrate x = f−1(y), we can take

∫
f−1(y) dy =

∫
x dy

= xy −
∫

y dx

= xy −
∫

f(x) dx.

2 Examples

Example 1. (Example 1, p. 387 in the textbook) Using integration by parts,
find ∫

x cosx dx.

Hint: take u = x and dv = cosx dx.

Solution. To get dv = cosx dx, we need to let v be an antiderivative of
cosx, for instance, v = sinx. Then we have

u = x v = sinx

du = dx dv = cosx dx.

Applying this to the integration by parts formula

∫
u dv = uv −

∫
v du,

we obtain

∫
(x)(cosx dx) = (x)(sinx) −

∫
(sinx)(dx)

∫
x cosx dx = x sinx−

∫
sinx dx

= x sinx− (− cosx) + C

= x sinx + cosx + C.

Note that, in order to make this work, it was important that v du be simpler
to integrate than u dv. In this case, u = x was chosen so that passing to du = dx
would give something simpler, and with dv = cosx dx, we at least have that
passing from dv to v = sinx does not make things any more complicated.

By contrast, if we had attempted to set u = cosx and dv = x dx, we’d have
that passing from dv to v = 1

2x
2 actually makes things more complicated. And
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indeed, integration by parts gives that

∫
x cosx dx =

∫
u dv

= uv −
∫

v du

= (cosx)( 1
2x

2) −
∫

1
2x

2(− sinx dx).

This is correct, but not helpful : we’ve expressed the integral we wanted in terms
of a more complicated integral that is even harder to integrate.

Exercise 2. Using integration by parts, find

∫
x sinx dx.

Hint: take u = x and dv = sinx dx.

Solution. To get dv = sinx dx, we need to let v be an antiderivative of
sinx, for instance, v = − cosx. Then we have

u = x v = − cosx

du = dx dv = sinx dx.

Applying this to the integration by parts formula

∫
u dv = uv −

∫
v du,

we obtain

∫
(x)(sinx dx) = (x)(− cosx) −

∫
(− sinx)(dx)

∫
x sinx dx = −x cosx +

∫
cosx dx

= −x cosx + sinx + C.
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Example 3. Find ∫
lnx dx

via two different approaches: First, considering this as a product; second, by
considering y = lnx to be the inverse function of x = ey. (Both approaches are,
in the end, different ways of looking at “integration by parts.”)
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Assignment 6: due Friday, April 13

Section 6.8, Problems 45–48. Problems 46 and 48 will be graded carefully.

Section 7.1, Problems 1–4 and 10–13. The even-numbered problems will be
graded carefully.

Section 7.1, Problem 56. This will be discussed in tutorial on Thursday. It will
be graded carefully.

Assignment 7: due Monday, April 16

Section 7.2, Problems 1–8 and 37–38. The even-numbered problems will be
graded carefully.

Test some time next week

Tentatively, the test will be on Wednesday and cover everything up to and
including integration by parts. I’ll try to give more specific information by next
lecture about to what extent this includes trig substitution.

Note: you will not be required to SOLVE any differential equations using
the techniques of Section 6.6 in the textbook. However, there are many related
questions (including other ways of solving differential equations) I could ask
you, so please be very careful before assuming a particular type of question will
not show up. When in doubt, ask me (in person, in class, and/or by email).
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Math 133, Lecture 8: Integrating trig functions

Charles Staats

Friday, 13 April 2012

1 The scalpel and the hammer

We already know how to integrate sinnx or cosnx. In today’s lecture, we will
be considering how to integrate more complicated trig functions, like sin4x or
sin 3x cos 4x. There are essentially two basic ideas. In many situations, it is
possible, by a clever choice of u and du, to use a simple u-substitution rewrite
the integral as ∫

f(u) du,

where f(u) does not involve any trig functions. This is what I call the “scalpel”—
a delicate choice of u allows one to “get rid of” the trig operations altogether.

If a clever u-substitution does not work, it is often possible to use the product-
to-sum formulas to rewrite the integral as a nicer trig function. As a very basic
example, the product-to-sum formulas allow us to rewrite the product

sinx cosx = 1
2 sin(2x)

as a “sum” (of only one term, in this case). This technique does not get rid
of the trig functions, but if carried out repeatedly, can convert any product of
sines and cosines into a sum that we already know how to integrate. I’ve called
it a “hammer” because it is more powerful than the “scalpel,” in that anything
that can be done by the first method can, in principle, be done by the second
method. But the first method will often give a nicer result.

2 The scalpel: u-substitution for odd exponents

First, let’s see an example.

Example 1. Find

∫
sin2 x cosx dx.
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Solution. Let u = sinx, so that du = cosx dx. Then we have

∫
sin2 x︸ ︷︷ ︸

u2

cosx dx︸ ︷︷ ︸
du

=

∫
u2 du

= 1
3u

3 + C

= 1
3 sin3 x+ C.

Note that when we rewrote the integral in terms of u, we completely lost
all of the trig functions. We had to re-insert them at the end to put things
back in terms of x, but to do the actual integral, all we needed to know was
how to integrate a polynomial in u—arguably, the most straightforward type of
integral.

More complicated examples often take the form sinn x, cosn x, or even sinn x cosm x.
The important criterion for such things is this:

Is the exponent (or at least one exponent) odd?

If the answer is “yes”, then the scalpel is likely to work, although you will need
to remember the following consequences of the Pythagorean identities:

sin2 x+ cos2 x = 1

cos2 x = 1 − sin2 x

sin2 x = 1 − cos2 x.

If the answer is “no,” then you probably need to skip to the next section and
apply the “hammer” of the product-to-sum formulas.

Example 2. Find

∫
sin7 x dx.

Solution. Since the exponent of sinx is odd, we will want to let du =
sinx dx. Antidifferentiating, we see that an appropriate u-substitution
may be u = − cosx. Then we have

u = − cosx

du = sinx dx,
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and so
∫

sin7 x dx =

∫
sin6 x · sinx dx

=

∫
( sin2 x︸ ︷︷ ︸
1−cos2 x

)3 · sinx dx

=

∫
(1 − cos2 x)3︸ ︷︷ ︸

(1−u2)3

sinx dx︸ ︷︷ ︸
du

=

∫
(1 − u2)3 du

=

∫
(1 − 3u2 + 3u4 − u6) du

= u− u3 + 3
5u

5 − 1
7u

7 + C

= − cosx+ cos3 x− 3
5 cos5 x+ 1

7 cos7 x+ C.
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Exercise 3. Find

∫
cos7 x dx.

Solution. Since the exponent of cosx is odd, we will want to let du =
cosx dx. Antidifferentiating, we see that an appropriate u-substitution
may be u = sinx. Then we have

u = sinx

du = cosx dx,

and so
∫

cos7 x dx =

∫
cos6 x · cosx dx

=

∫
( cos2 x︸ ︷︷ ︸
1−sin2 x

)3 · cosx dx

=

∫
(1 − sin2 x)3︸ ︷︷ ︸

(1−u2)3

cosx dx︸ ︷︷ ︸
du

=

∫
(1 − u2)3 du

=

∫
(1 − 3u2 + 3u4 − u6) du

= u− u3 + 3
5u

5 − 1
7u

7 + C

= sinx− sin3 x+ 3
5 sin5 x− 1

7 sin7 x+ C.

I’ll let the tutors go over examples of the form sinn x cosm x where at least
one of n,m is odd.

3 The hammer: the product-to-sum formulas

There are three basic trig formulas that you should memorize:

Product-to-Sum Formulas:

sinα cosβ = 1
2 [sin(α+ β) − sin(α− β)] (1)

sinα sinβ = − 1
2 [cos(α+ β) − cos(α− β)] (2)

cosα cosβ = 1
2 [cos(α+ β) + cos(α− β)] (3)

As the name suggests, these formulas allow you to convert a product of trig
functions to a sum of (other) trig functions. They can be very useful when the
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“scalpel” does not apply (or for that matter, when it does, if you prefer this
approach).

Example 4. Find
∫

sin4 x dx.

Solution. Since the exponent is even, the “scalpel” will not work. However, the
product-to-sum formulas will, if we apply them repeatedly.

sin2 x = sinx sinx

= − 1
2 [cos(x+ x) − cos(x− x)]

= − 1
2 [cos 2x− cos 0]

= − 1
2 (cos 2x− 1).

Thus,

sin4 x =
(
sin2 x

)2

=
[
− 1

2 (cos 2x− 1)
]2

= 1
4 (cos 2x− 1)2

= 1
4 (cos2 2x− 2 cos 2x+ 1)

= 1
4 cos2 2x− 1

2 cos 2x+ 1
4 .

Finally, we use the product-to-sum formulas again to deal with the cos2 2x term:

cos2 2x = cos 2x cos 2x

= 1
2 [cos(2x+ 2x) + cos(2x− 2x)]

= 1
2 [cos 4x+ cos 0]

= 1
2 [cos 4x+ 1].

Hence,

sin4 x = 1
4 cos2 2x− 1

2 cos 2x+ 1
4

= 1
4 · 1

2 [cos 4x+ 1] − 1
2 cos 2x+ 1

4

= 1
8 cos 4x+ 1

8 − 1
2 cos 2x+ 1

4

= 1
8 cos 4x− 1

2 cos 2x+ 3
8 .

Now, at long last, we’re ready to do the integral:
∫

sin4 x dx =
1

8

∫
cos 4x︸︷︷︸

u

dx︸︷︷︸
1
4du

−1

2

∫
cos 2x︸︷︷︸

v

dx︸︷︷︸
1
2dv

+
3

8

∫
dx

=
1

32

∫
cosu du− 1

4

∫
cos v dv +

3

8

∫
dx

= 1
32 sinu− 1

4 sin v + 3
8x+ C

= 1
32 sin 4x− 1

4 sin 2x+ 3
8x+ C.
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Given the length of the above solution, perhaps you can see why the “scalpel”
method is preferable, when it is available.

Example 5. Find

∫
sin 3x cos 2x dx.

Solution.
∫

sin 3x cos 2x dx =

∫
1
2 [sin(3x+ 2x) − sin(3x− 2x)] dx

=
1

2

∫
sin 5x︸︷︷︸

u

dx︸︷︷︸
1
5du

−1

2

∫
sinx dx

=
1

10

∫
sinu du− 1

2

∫
sinx dx

= − 1
10 cosu+ 1

2 cosx+ C

= − 1
10 cos 5x+ 1

2 cosx+ C.

4 When different methods give different-looking
answers

The extensive collection of trig identities often allow one to show that completely
different-looking expressions are in fact equal. Many of you may have seen this
in exercises like the following:

Exercise 6. (Exercise 12(a), Section 0.7, page 48) Verify that

cos 3t = 4 cos3 t− 3 cos t.

Sometimes, when the same trig integral is done using different methods, we
end up with different-looking answers that are (non-obviously) equal up to a
constant.
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Assignment 7: due Monday, April 16

Section 7.2, Problems 1–8 and 37–38. The even-numbered problems will be
graded carefully.

Test Wednesday, April 18

The test will cover everything up to and including integration by parts. You
may be required to perform the integrals

∫
dx

1+x2 and/or
∫

dx√
1−x2

. I recommend

that you do these via trig substitution, since this will allow you to receive
partial credit, and since studying this technique will help you on future tests
also. However, since the book does include these integrals in its list of seventeen
“standard integral forms,” you will receive full credit for simply memorizing the
answer (correctly). Incorrect memorization will receive no credit.

Note: you will not be required to SOLVE any differential equations using
the techniques of Section 6.6 in the textbook. However, there are many related
questions (including other ways of solving differential equations) I could ask
you, so please be very careful before assuming a particular type of question will
not show up. When in doubt, ask me (in person, in class, and/or by email).

Assignment 8: due Friday, April 20

Section 7.2, Problems 43 and 44. Problem 44 will be graded carefully.

Section 7.3, Problems 1 and 3.

Section 7.4, Problems 9 and 10. These will be discussed in tutorial on Thursday.

Verify the product-to-sum identities (from Lecture 8) using the more familiar
angle-sum and angle-difference formulas.
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Math 133, Lecture 9: Trig substitution

Charles Staats

Monday, 16 April 2012

1 Test

Please note that there will be a test on Wednesday, April 18 (i.e., next class
meeting). The test will cover everything up to and including integration by
parts. You may be required to perform the integrals

∫
dx

1+x2 and/or
∫

dx√
1−x2

.

I recommend that you do these via trig substitution, since this will allow you
to receive partial credit, and since studying this technique will help you on
future tests also. However, since the book does include these integrals in its
list of seventeen “standard integral forms,” you will receive full credit for sim-
ply memorizing the answer (correctly). Incorrect memorization will receive no
credit.

Note: you will not be required to SOLVE any differential equations using
the techniques of Section 6.6 in the textbook. However, there are many related
questions (including other ways of solving differential equations) I could ask
you, so please be very careful before assuming a particular type of question will
not show up. When in doubt, ask me (in person, in class, and/or by email).

2 Trig substitution

Recall the following versions of the Pythagorean identities:

1− sin2 θ = cos2 θ

1 + tan2 θ = sec2 θ

sec2 θ − 1 = tan2 θ.

In all three of these cases, we have something on the left that is not (obviously)
a square, and something on the right that is a square. Thus, if we are asked
to take the square root of the thing on the left, we might be well-advised to
convert it to the thing on the right. This inspires the technique of trigonometric
substitution, a “trick” that is used to figure out a clever u-substitution to get
rid of an unfortunate square root in an integral. Here are the general guidelines:
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1. To get rid of a radical of the form
√
a2 − x2, with a > 0, substitute

u = arcsin
(x
a

)

x

a
= sinu

x = a sinu

dx = −a cosu du.

This will have the effect that
√
a2 − x2 =

√
a2 − a2 sin2 u = |a|

√
1− sin2 u = a

√
cos2 u = a cosu,

where |a| = a since a > 0 and |cosu| = cosu since, by definition of the arcsin
function, cosu ≥ 0. The arcsin function always takes angles in the right half of
the unit circle:

x

u = arcsinx

(cosu, sinu)

2. To get rid of a radical of the form
√
a2 + x2, with a > 0, substitute

u = arctan
(x
a

)

x

a
= tanu

x = a tanu

dx = a sec2 u du.

This will have the effect that
√
a2 + x2 =

√
a2 + a2 tan2 u = a

√
1 + tan2 u = a

√
sec2 u = a secu.
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Note that, once again, we know that secu = 1
cosu is positive, because u =

arctanx, and like the arcsine function, the arctangent function always takes
angles in the right half of the unit circle, where the cosine is positive.

3. To get rid of a radical of the form
√
x2 − a2, substitute

u = arcsec
(x
a

)
= arccos

(a
x

)

a

x
= cosu

x

a
= secu

x = a secu

dx = a secu tanu du.

This will have the effect that
√
x2 − a2 =

√
a2 sec2 u− a2 = a

√
sec2 u− 1 = a

√
tan2u = ±a tanu.

Unfortunately, we cannot really get rid of the absolute value here, since tanu
represents the slope of a line with angle u, and both positive and negative slopes
are found in any semicircle of the unit circle.

All of this was a bit long; the part that you really need to remember to do
the actual integrals is summarized in this table, which is more or less copied
from p. 400 of the textbook:

If you see Sustitute

1. a2 − x2 x = a sinu

2. a2 + x2 x = a tanu

3. x2 − a2 x = a secu

3 Examples

Our two examples might well show up on the test Wednesday. They do not
really require trig substitution, but I recommend you learn how to do them this
way rather than by rote memorization.

Example 1. Find

∫
dx√

1− x2
.

Solution. Seeing an inconvenient occurrence of 1− x2, we substitute

x = sinu

dx = cosu du.
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Our integral becomes
∫

dx√
1− x2

=

∫
cosu du√
1− sin2 u

=

∫
cosu du√

cos2 u

=

∫
cosu du

cosu
,

since we’re really taking u = arcsinx, so cosu ≥ 0

=

∫
du

= u+ C

= arcsinx+ C.

Example 2. Find

∫
dx

1 + x2
.

Solution. Seeing an inconvenient occurrence of 1 + x2, we substitute

x = tanu

dx = sec2 u du.

Our integral becomes

∫
dx

1 + x2
=

∫
sec2 u du

1 + tan2 u

=

∫
sec2 u du

sec2 u

=

∫
du

= u+ C

= arctanx+ C.

Now, for some “more serious” examples.

Example 3. Find

∫
x
√

4− x2 dx.

Solution. This is a “trick question.” You don’t need trig substitution, since a
simpler u-substitution will do: Set

u = 4− x2
du = −2x dx

x dx = − 1
2du.
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Then we have
∫
x
√

4− x2 dx = −1

2

∫ √
u du

= −1

2

∫
u1/2 du

= −1

2
· 2

3
u3/2 + C

= −1

3
(4− x2)3/2 + C.

The previous example is meant to underscore an important principle:

Never use trig substitution until you’ve checked to see if a more basic
technique will work.

However, sometimes it is necessary.

Example 4. Find

∫
x2
√

4− x2 dx.

Solution. Seeing an inconvenient 4− x2 = 22 − x2, with no obvious way to get
rid of it by a u-substitution, we use trig substitution:

u = arcsin
(x

2

)

x = 2 sinu

dx = 2 cosu du.

Then we have
∫
x2
√

4− x2 dx =

∫
4 sin2 u

√
4− 4 sin2 u · 2 cosu du

=

∫
4 sin2 u · 2 cosu · 2 cosu du

= 16

∫
sin2 u cos2 u du.

The product-to-sum formulas show us that

sinu · sinu = − 1
2 cos(u+ u) + 1

2 cos(u− u)

= − 1
2 cos 2u+ 1

2

cosu · cosu = 1
2 cos(u+ u) + 1

2 cos(u− u)

= 1
2 cos 2u+ 1

2 .
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Thus,

∫
x2
√

4− x2 dx = 16

∫ (
− 1

2 cos 2u+ 1
2

) (
1
2 cos 2u+ 1

2

)
du

= 4

∫
(1− cos 2u)(1 + cos 2u) du

= 4

∫
(1− cos2 2u) du

= 4

∫
du− 4

∫
cos2 2u︸︷︷︸

v

du︸︷︷︸
1
2dv

= 4

∫
du− 2

∫
cos2 v dv.

As above,
cos2 v = 1

2 cos 2v + 1
2 ,

so
∫
x2
√

4− x2 dx = 4

∫
du−

∫
(cos 2v + 1) dv

= 4

∫
du−

∫
cos 2v︸︷︷︸

w

dv︸︷︷︸
1
2dw

−
∫
dv

= 4

∫
du−

∫
dv − 1

2

∫
cosw dw

= 4u− v − 1
2 sinw + C

= 4u− v − 1
2 sin 2v + C

= 4u− 2u− 1
2 sin 4u+ C

= 2u− 1
2 sin 4u+ C

= 2 arcsin
(x

2

)
− 1

2
sin
(

4 arcsin
(x

2

))
+ C

To finish the problem, one should find an algebraic expression for sin(4 arcsin θ),
but I somehow suspect we’ll be out of time at this point.
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Assignment 7: due Monday, April 16

Section 7.2, Problems 1–8 and 37–38. The even-numbered problems will be
graded carefully.

Test Wednesday, April 18

The test will cover everything up to and including integration by parts. You
may be required to perform the integrals

∫
dx

1+x2 and/or
∫

dx√
1−x2

. I recommend

that you do these via trig substitution, since this will allow you to receive
partial credit, and since studying this technique will help you on future tests
also. However, since the book does include these integrals in its list of seventeen
“standard integral forms,” you will receive full credit for simply memorizing the
answer (correctly). Incorrect memorization will receive no credit.

Note: you will not be required to SOLVE any differential equations using
the techniques of Section 6.6 in the textbook. However, there are many related
questions (including other ways of solving differential equations) I could ask
you, so please be very careful before assuming a particular type of question will
not show up. When in doubt, ask me (in person, in class, and/or by email).

Assignment 8: due Friday, April 20

Section 7.2, Problems 43 and 44. Problem 44 will be graded carefully.

Section 7.3, Problems 1 and 3.

Section 7.4, Problems 9 and 10. These will be discussed in tutorial on Thursday.

Verify the product-to-sum identities (from Lecture 8) using the more familiar
angle-sum and angle-difference formulas.
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Math 133, Lecture 10: l’Hôpital’s Rule

Charles Staats

Friday, 20 April 2012

1 A couple notes from the test

Although I have not yet finished grading the tests, I have observed a couple
errors that should be corrected.

1. Don’t use the same letter to mean two different things. For instance, I
had more than one person write something like

x = tanx

dx = sec2 x dx

This is incredibly confusing. Apart from other considerations, mixing up
letters like this, while understandable in the heat of the moment, makes
it very difficult for me as grader to tell what you were thinking, which
makes it hard to give you partial credit. If you have not already used u
for something else, you might write something like

x = tanu

dx = sec2 u du

for the above. If you have already used u, then you need to be creative
and come up with a different symbol. You might consider v, w, t, z, or
for a trig substitution like this one, θ or φ.

2. When you do integration by parts, remember that you should use a minus
sign rather than a plus sign.

∫
u dv = uv

↓
−
∫
v du.

2 Trig substitution: wrap-up

First of all, I’d like to note that to use trig substitution facilely, you may want
to memorize the following formulas, which I have so far avoided using more than
necessary:

1



d

dx
secx = secx tanx

d

dx
tanx = sec2 x

∫
secu du = ln |secu+ tanu|+ C.

The last formula, for
∫

secu du, you should have derived on a homework exercise
(Section 7.1, Problem 56).

As I final example, let’s do Example 5 from p. 401 of the textbook.

Example 1. (Example 5, p. 401) Find

∫
dx√

9 + x2
.

Solution. First, recall the table from the previous lecture:

If you see Sustitute

1. a2 − x2 x = a sinu

2. a2 + x2 x = a tanu

3. x2 − a2 x = a secu

In our case, the unfortunate thing we are trying to simplify is
√

9 + x2, which
has the second form: 32 + x2. Thus, we should substitute

u = arctan(x/3)

x = 3 tanu

dx = 3 sec2 u du.

The last comes from the derivative for the tangent function, which I have just
asked you to memorize. Now, this substitution gives

∫
dx√

9 + x2
=

∫
3 sec2 u du√
9 + 9 tan2 u

=

∫
3 sec2 u du

3
√

1 + tan2 u

=

∫
3 sec2 u du

3
√

sec2 u

=

∫
sec2 u du

secu
,

where we are using the fact that when u = arctanx, u is an angle in the right
half of the unit circle, and so cosu (and its reciprocal secu) are both positive

=

∫
secu du

= ln |secu+ tanu|+ C.
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Now, by definition, tanu = x/3. Looking at the right triangle

√
9 + x2

3

x

u

we see that

secu =
1

cosu
=

√
9 + x2

3
,

and so we obtain

∫
dx√

9 + x2
= ln

∣∣∣∣∣

√
9 + x2

3
+
x

3

∣∣∣∣∣+ C

= ln

∣∣√9 + x2 + x
∣∣

|3| + C

= ln
∣∣∣
√

9 + x2 + x
∣∣∣− ln 3 + C

= ln
∣∣∣
√

9 + x2 + x
∣∣∣+ C1,

where C1 = C − ln 3.

3 Using derivatives to compute limits: l’Hôpital’s
Rule

If you recall the so-called “Main Limit Theorem” from Math 131, one of the
important parts of it was that “limits distribute over quotients”:

lim
x→x0

f(x)

g(x)
=

lim
x→x0

f(x)

lim
x→x0

g(x)

whenever the expression on the right makes sense.

If the expression on the right does not make sense—for instance, if the limits
on the right come down to 0/0 or ∞/∞—then our previous method was to
try some fancy re-arrangement. Now, we are going to introduce a more direct
method for dealing with such limits.
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Theorem. Suppose that
lim

x→x0

f(x)

lim
x→x0

g(x)

is of the form 0/0 or ∞/∞ (and, in particular, the Main Limit Theorem does
not apply näıvely). Then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
,

provided that the expression on the right makes sense (i.e., f ′ and g′ are defined,
and their ratio has a limit).

An example, to show the usefulness of this rule:

Example 2. Compute lim
x→0

sin 3x

5x
.

Solution. First, we compute the limits of the numerator and denominator, using
continuity:

lim
x→0

sin 3x = sin(3 · 0) = 0

lim
x→0

5x = 5 · 0 = 0.

Thus, this is of the form 0/0, and so it is legal to attempt l’Hôpital’s rule:

lim
x→0

sin 3x

5x
= lim

x→0

3 cos 3x

5
by l’Hôpital

= 3
5 cos(3 · 0)

= 3
5 .

You may recall that proving this sort of limit was rather trying to evaluate back
when we first discussed it at the beginning of last quarter.

Warning. You may be tempted to apply l’Hôpital’s rule whenever you have a
fraction to take a limit of. This is, most emphatically, wrong. You can only
apply l’Hôpital’s rule after first checking to make sure that your limit is of the
form 0/0 or ∞/∞.

Example 3. (Example 5, p. 425) Find lim
x→0

1− cosx

x2 + 3x
.

Wrong solution.

lim
x→0

1− cosx

x2 + 3x
= lim

x→0

sinx

2x+ 3

↓
= lim

x→0

1

2
=

1

2
.

This mistaken solution includes two uses of l’Hôpital’s rule. The first is correct,
since the expression is of the form 0/0. The second is wrong.
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Correct solution. Note that

1− cos 0 = 1− 1 = 0

02 + 3(0) = 0.

Thus, we may apply l’Hôpital’s rule to obtain

lim
x→0

1− cosx

x2 + 3x
= lim

x→0

sinx

2x+ 3
.

At this point, l’Hôpitalis no longer needed: the Main Limit Theorem, plus
continuity, suffices.

=
sin 0

2 · 0 + 3
=

0

3
= 0.

In a sense, the cardinal sin in the the wrong solution was to apply l’Hôpital’s
rule when the main limit theorem applied (and hence l’Hôpital was illegal). In
spite of its ease of use, you always need to remember that l’Hôpital is a “backup”
tool, to be used when the more direct Main Limit Theorem “breaks.” If it ain’t
broke, don’t fix it.
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Assignment 9: due Monday, April 23

Section 7.3, Problems 2, 4, 5, and 6. Problems 4 and 6 will be graded carefully.

Section 7.4, Problems 11–14. Problems 12 and 14 will be graded carefully.

Section 8.1, Problems 1 and 2.

Assignment 10: due Wednesday, April 25

Section 7.3, Problems 13 and 14. Problem 14 will be graded carefully.

Section 7.4, Problems 17 and 18. You may want to look at Example 7 on p. 402.
Problem 18 will be graded carefully.

Section 8.1, Problems 3–6. Problems 4 and 6 will be graded carefully.

Section 8.2, Problems 1 and 2.

Recall the following problem from Assignment 1:

A clown starts out with a huge bucket of 5000 identical tiny blue
marbles. Once every thirty seconds, he randomly removes a marble.
If it is blue, he replaces it by an identical red marble; if it is red,
he does not replace it by anything, and the total number of marbles
decreases. Write a pair of differential equations that describes the
numbers R of red marbles and B of blue marbles over time.

Without solving the differential equations, use l’Hôpital’s rule to compute

lim
t→t0

R

B

at the one time t0 where l’Hôpital’s rule applies to this limit. Also find this
time t0. This problem will be discussed in tutorial on Tuesday. It will be
graded carefully.

[Note: this limit will have no physical meaning, since in reality, you can only
have an integer number of balls.]
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Math 133, Lecture 11: Indeterminate forms

Charles Staats

Monday, 23 April 2012

1 Indeterminate forms

In considering how a function f(t) behaves as t approaches a limit, it is often
useful to think in terms of “forces” battling over control of the function. For
instance, if we look at

lim
t→∞

t2 + 1

e−t
,

the top function approaches infinity while the bottom function approaches zero.
Thus, we might say this represents the “form” ∞/0+. (The “plus” sign in 0+

indicates that the denominator is always positive.) As the numerator gets really
big, it represents a “force” trying to push the function to ∞. The denominator
is getting really small; since dividing by a very small number gives something
very big, this “force” is also trying to push the overall function to infinity. Thus,
there is no mystery here: both the “forces” are trying to push the function to
infinity, so

∞/0+ =∞.

Things get interesting when you have two competing “forces.” For instance,
consider instead

lim
t→∞

t2 + 1

et
.

In this case, the “form” is∞/∞. The two “forces” are in conflict: you are taking
a numerator that is getting really big (trying to push the function to ∞) and
dividing it by a denominator that is also getting really big (hence trying to push
the function to 0). Thus, ∞/∞ is considered an “indeterminate form,” because
knowing the form alone does not determine the limit: you need to understand
the relative “strength” of the two competing “forces.”

For the indeterminate forms ∞/∞ and 0/0, we have already discussed a
powerful tool that can often be applied: l’Hôpital’s rule.
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Exercise 1. Find lim
t→∞

t2 + 1

et
.

Solution.

There are seven “standard indeterminate forms”:

0/0, ∞/∞, 0 · ∞, ∞−∞, 00, ∞0, and 1∞.

Only the first two can be solved by direct applications of l’Hôpital’s rule. How-
ever, it is often possible to transform the others into the first two.

Example 2. (0 · ∞) Find lim
x→0+

x lnx.

Solution. As x → 0+, we see that x → 0 and lnx → −∞. Thus, this follows
the indeterminate form 0 ·∞ (or, if you want to keep track of signs, 0+ · (−∞)).
Since it is not a fraction, we can’t apply l’Hôpital’s rule directly. But it is easy
enough to make this into a fraction:

lim
x→0+

x lnx = lim
x→0+

lnx

1/x

(∞
∞
)

= lim
x→0+

1/x

−1/x2
l’Hôpital

= lim
x→0+

x−1

−x−2
= lim

x→0+
−x−1+2

= lim
x→0+

−x

= 0.

Example 3. (∞−∞) (Example 6, p. 431 in the textbook) Find

lim
x→1+

(
x

x− 1
− 1

lnx

)
.

Solution. Both the left and the right term go to infinity as x → 1+, so this an
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instance of the indeterminate form ∞−∞. We combine the fractions:

lim
x→1+

(
x

x− 1
− 1

lnx

)
= lim

x→1+

x lnx− 1 · (x− 1)

(x− 1) lnx

= lim
x→1+

x lnx− x + 1

(x− 1) lnx

(
0

0

)
.

The rest of the solution is left as an in-class exercise.

The three remaining indeterminate forms are the “exponential forms”: 00,
∞0, and 1∞. The same trick typically works for all three: evaluate the loga-
rithm of the limit, rather than the limit itself. This transforms these forms into
versions of the indeterminate form 0 · ∞ (ignoring signs):

ln 00 = 0 ln 0 = 0 · (−∞)

ln∞0 = 0 ln∞ = 0 · ∞
ln 1∞ =∞ ln 1 =∞ · 0.

We’ll just do one example.

Example 4. Find lim
x→∞

(
1 +

1

x

)x

.

Solution. Note that this is of the form 1∞. Let

y =

(
1 +

1

x

)x

.

3



Then we have

ln y = x ln
(
1 + x−1

)

lim
x→∞

ln y = lim
x→∞

x ln(1 + x−1) (∞ · 0)

= lim
x→∞

ln(1 + x−1)

1/x

(
0

0

)

=

...

...

...

= 1.

Warning. When you take the limit of the logarithm of the thing you want, do
not forget to get rid of the logarithm afterwards by exponentiating.

Consequently,

lim
x→∞

y = lim
x→∞

exp(ln y)

= exp
(

lim
x→∞

ln y
)

since exp(z) = ez is continuous

= exp(1)

= e.

2 Why does l’Hôpital’s rule work?

I’m running out of time in typing this up. In any case, I have the feeling that
my first attempt to explain this will be terribly confusing, so I’d rather not have
it committed to paper. But please, please ask questions here; I find that I am
able to produce much more satisfying explanations of things when I have your
questions to inspire me.
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Assignment 10: due Wednesday, April 25

Section 7.3, Problems 13 and 14. Problem 14 will be graded carefully.

Section 7.4, Problems 17 and 18. You may want to look at Example 7 on p. 402.
Problem 18 will be graded carefully.

Section 8.1, Problems 3–6. Problems 4 and 6 will be graded carefully.

Section 8.2, Problems 1 and 2.

Recall the following problem from Assignment 1:

A clown starts out with a huge bucket of 5000 identical tiny blue
marbles. Once every thirty seconds, he randomly removes a marble.
If it is blue, he replaces it by an identical red marble; if it is red,
he does not replace it by anything, and the total number of marbles
decreases. Write a pair of differential equations that describes the
numbers R of red marbles and B of blue marbles over time.

Without solving the differential equations, use l’Hôpital’s rule to compute

lim
t→t0

R

B

at the one time t0 where l’Hôpital’s rule applies to this limit. Also find this one
special time t0 where l’Hôpital’s rule works. This problem will be discussed in
tutorial on Tuesday. It will be graded carefully.

[Note: this limit will have no physical meaning, since in reality, you can only
have an integer number of balls.]

Assignment 11: due Friday, April 27

Section 7.4, Problem 29. This will be graded carefully. It will be discussed in
tutorial on Thursday.

Section 8.1, Problems 9 and 10. Problem 10 will be graded carefully.

Section 8.2, Problems 3–6, 19, and 21. Problems 4, 6, 19, and 21 will be graded
carefully.
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Math 133, Lecture 12: Improper integrals

Charles Staats

Wednesday, 25 April 2012

1 Integrals over unbounded x-values

Today, we will discuss an apparent paradox: infinite regions with finite area.
In so doing, we will give our first theoretical extension of the definition of the
integral. Fortunately, this should be a good deal simpler and faster than our
initial definition of the integral using Riemann sums.

From a technical perspective, actually computing these “improper integrals”
often requires a combination of skills we have so far discussed separately: finding
integrals, and computing limits (often with l’Hôpital’s rule).

Here’s the first conceptual hurdle:
∫ b

a
f(x) dx is a function of a and b. If you

find this somewhat confusing, perhaps you will find an example less so.

Exercise 1. Find

∫ b

a

xe−x dx.

Solution. First, find the indefinite integral, using integration by parts. To
find

∫
xe−x dx, take

u = x v = −e−x

du = dx dv = e−x dx.

Then we have
∫

xe−x dx = −xe−x −
∫

(−e−x) dx

= −xe−x −
∫

e−x(−dx)

= −xe−x − e−x + C.

Now, substitute in a and b, as usual for finding a definite integral:
∫ b

a

xe−x dx =
[
−xe−x − e−x

]b
x=a

= (−be−b − e−b)− (−ae−a − e−a)

= −be−b − e−b + ae−a + e−a.
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Definition. We will define notation as follows:

∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx.

Having defined these, we use them to define

∫ ∞

−∞
f(x) dx =

∫ 0

−∞
f(x) dx +

∫ ∞

0

f(x) dx.

These integrals are called improper integrals.

Exercise 2. Find

∫ ∞

0

xe−x dx.

Solution. By definition,

∫ ∞

0

xe−x dx = lim
b→∞

∫ b

0

xe−x dx

= lim
b→∞

−be−b − e−b + 0e−0 + e−0

=

(
lim
b→∞

−be−b
)
− 0 + 0 + 1

=

(
lim
b→∞

−b
eb

)
+ 1

(∞
∞
)

=

(
lim
b→∞

−1

eb

)
+ 1

= 0 + 1

= 1.

What do “improper integrals” like these really mean? The function f(x) =
xe−x looks like this:
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x

f(x)

The integral
∫∞
0

xe−x dx is the area of the dark shaded region, that is, the area
under the curve over the entire infinite interval [0,∞). Looking at it, you may
find it plausible that this area is finite, even though the interval is infinite.

On the other hand, the integral
∫ 0

−∞ xe−x dx represents the (negative of)1

the area of the light gray region. Although I will not do the calculation in an
effort to save time, you should find it plausible enough that this integral is −∞.
Likewise,

∫ ∞

−∞
xe−x dx =

∫ 0

−∞
xe−x +

∫ ∞

0

xe−x dx

= (−∞) + 1

= −∞.

This brings us to another definition:

Definition. An improper integral is said to converge if the limit defining it
exists and is finite.

Just because an integral “looks” like the region might have finite area, does

not necessarily mean it does. Consider the improper integral

∫ ∞

1

1

x
dx. The

region looks like this:

1Since this area is under the x-axis, the integral is negative.
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x

f(x)

Exercise 3. Show that

∫ ∞

1

1

x
dx diverges.

Solution.

∫ ∞

1

1

x
dx = lim

b→∞

∫ b

1

1

x
dx

= lim
b→∞

[ln|x|]bx=1

= lim
b→∞

(ln|b| − ln|1|)

= lim
b→∞

ln |b|

=∞.

2 Integrals over unbounded y-values

Example 4. ∫ 1

0

lnx dx

Example 5. (Fig. 1, p. 442 in the textbook)

∫ 1

−2
x−2 dx
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Assignment 11: due Friday, April 27

Section 7.4, Problem 29. This will be graded carefully. It will be discussed in
tutorial on Thursday.

Section 8.1, Problems 9 and 10. Problem 10 will be graded carefully.

Section 8.2, Problems 3–6, 19, and 21. Problems 4, 6, 19, and 21 will be graded
carefully.

Assignment 12: due Monday, April 30

Section 8.2, Problems 7 and 8. Problem 8 will be graded carefully.

Section 8.3, Problems 1–6. Problems 2, 4, and 6 will be graded carefully.

Section 8.4, Problems 1 and 2. Neither of these will be graded carefully, unless
your tutor tells you otherwise.
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Math 133, Lecture 14: Infinite sequences

Charles Staats

Friday, 30 April 2012

1 What is an infinite sequence?

Definition (1). An infinite sequence {an} is an infinite list of numbers

a1, a2, a3, a4, . . . , an, . . . .

Example 1. The infinite sequence

0,
1

2
,

2

3
,

3

4
,

4

5
,

5

6
, . . .

is given by the formula

an = 1− 1

n
.

Thus,

a1 = 1− 1

1
= 0

a2 = 1− 1

2
=

1

2

a3 = 1− 1

3
=

2

3

a4 = 1− 1

4
=

3

4

a5 = 1− 1

5
=

4

5

a6 = 1− 1

6
=

5

6
...

...

an = 1− 1

n
=
n− 1

n
.

Note that there is also a function f defined by the same formula,

f(x) = 1− 1

x
.

This motivates the more formal definition.

1



Definition (2). An infinite sequence {an} is a function a whose domain consists
only of the positive integers. Thus, a(x) is defined when x = 1, 2, 3, 4, . . . , but
not (necessarily) when x = 3

2 or x = π. Customarily, we denote a(n) by an.

Thus, a sequence is a “rule” that associates to each n a number an. Given
an infinite list (as in our previous definition), we define an to be the nth item
on the list.

The “rule” is not always given by an obvious formula.

Example 2 (The Fibonacci Sequence). In the infinite sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

each number is obtained by adding the previous two. We write this “rule” as

a1 = 1

a2 = 1

an = an−2 + an−1 for n ≥ 3.

Note that a1 and a2 have to be defined explicitly because for the first and second
item on the list, there are no “previous two items” to add.

2 Limits and of sequences

Intuitively, we say that
lim

n→∞
an = `,

if “a∞ = `.” However, remember the infinity beast: you want to see what
it sees and go where it goes, but you can’t touch it directly. So, you use a
“saddle,” made up of the notions of “arbitrarily [large/small]” and “sufficiently
[large/small],” to insulate yourself from actually touching the beast.

For arbitrarily small ε,︸ ︷︷ ︸
∀ε>0,

for sufficiently large n,︸ ︷︷ ︸
∃N s.t. ∀n≥N,

an is within ε of `.︸ ︷︷ ︸
|an−`|<ε.

It may also help to recall the “courtroom metaphor:” the opponent goes first
(choosing ε), then we get to say what “sufficiently large” means (choosing N),
and finally the judge decides “who won” by saying whether, for all n ≥ N , an
is within ε of `. Giving an ε-N proof amounts to planning out an unbeatable
strategy before we even go into the courtroom.

Definition. Each of the statements

• lim
n→∞

an = `

• an → ` as n→∞

• the sequence an converges to `

2



means the following:

∀ε > 0,∃N s.t. ∀n ≥ N, |an − `| < ε.

Example 3. Show that
1

n
→ 0

as n→∞.

[Include picture here.]

Proof. Let ε > 0 be given. Set N =
2

ε
. Then for all n ≥ N , we have

|an − `| =
∣∣∣∣
1

n
− 0

∣∣∣∣

=

∣∣∣∣
1

n

∣∣∣∣

=
1

n

≤ 1

N
since n ≥ N

=
1

2/ε

=
ε

2
< ε since ε > 0.

All of the standard limit theorems we learned earlier apply; for instance,

lim
n→∞

(an ± bn) =
(

lim
n→∞

an

)
±
(

lim
n→∞

bn

)
,

provided that the expression on the right makes sense. Unfortunately, you
cannot exactly apply l’Hôpital’s Rule to a sequence, since ∆n can only ever be
an integer, so the “derivative”

da

dn
= lim

∆n→0

∆an
∆n

makes no sense. However, the following more or less obvious theorem often
saves us.

Theorem. Let f be a function on the positive real numbers, and define a
sequence an by

an = f(n).

If lim
x→∞

f(x) = `, then lim
x→∞

an = `.

3



Proof. The statement lim
x→∞

f(x) = ` means precisely that

∀ε > 0,∃N s.t. ∀x ≥ N, |f(x)− `| < ε.

Since an = f(n), this implies that

∀ε > 0,∃N s.t. ∀n ≥ N, |an − `| < ε,

which is precisely what it means to say that lim
x→∞

an = `.

Exercise 4. Show that an = (lnn)/en converges to 0.

Solution.

Sometimes, we can determine whether a sequence converges or diverges1,
even if we cannot compute its limit.

Example 5. Define sequences an and bn by

an =
n∑

i=1

1

n2

bn =
n∑

i=1

1

n3
.

Using the techniques of the next two sections, it will be easy to see that both
an and bn converge. However, it is highly non-obvious that

an →
π2

6
,

and there is no known formula for the limit of bn other than “the limit of this
sequence.”

[Discuss axiom: if a sequence is nondecreasing and bounded above, then it
converges.]

1A sequence diverges if it does not converge.
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Assignment 13: due Wednesday, May 2

Section 7.4, Problems 21–23. Problems 22 and 23 will be graded carefully.

Section 8.3, Problems 7, 8, and 25. (On 25, use trig substitution rather than
“partial fractions.”) Problems 8 and 25 will be graded carefully. Problem 25
will be discussed in tutorial on Tuesday.

Section 8.4, Problems 3–6. Problems 4 and 6 will be graded carefully.

Assignment 14: due Friday, May 4

Section 8.2, Problems 9 and 10. Problem 10 will be graded carefully.

Section 8.4, Problems 9 and 10. Problem 10 will be graded carefully.

Section 9.1, Problems 1–4. Problems 2 and 4 will be graded carefully.

Consider the two functions

f(x) = 1

g(x) = cos2(πx).

(a) Graph these two functions for 0 ≤ x ≤ 8.

(b) Show that the two sequences

an = 1

bn = cos2(πn)

are in fact the same sequence.

(c) Explain why this seems to contradict the second definition of infinite se-
quence in Lecture 14, but does not actually contradict the definition.

This problem will be discussed in tutorial on Thursday. It will be graded care-
fully.
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Math 133, Lecture 15: Infinite series

Charles Staats

Wednesday, 2 May 2012

1 Review of ε-N definition of convergence

Let {an}∞n=1 be an infinite sequence. The tails of the sequence are the “sub-
sequences” obtained by removing the first N−1 terms, for some N . For instance,
the tails for N = 5 and N = 17 are the sequences

a5, a6, a7, a8, a9, . . . (N = 5)

a17, a18, a19, a20, a21, . . . (N = 17)

Example 1. Let an = 1
n . Then the tails for N = 5 and N = 17 are

1

5
,

1

6
,

1

7
,

1

8
,

1

9
, . . . (N = 5)

1

17
,

1

18
,

1

19
,

1

20
,

1

21
, . . . (N = 17)

We say that the sequence {an}∞n=1 is ultimately within the interval (`−ε, `+ε)
if one of its tails is within this interval. For instance, in the sequence an = 1

n ,
the sequence is ultimately within the interval (− 1

16 ,
1
16 ) because its seventeenth

tail lies within this interval:

[picture here]

This is true even though neither the sequence nor its fifth tail lie within the
interval. (Both the sequence and its fifth tail contain the term 1

16 , which does
not lie within the interval (− 1

16 ,
1
16 ).)

The sequence {an} converges to ` if for every ε > 0, the sequence is ulti-
mately within the interval (`− ε, `+ ε).

It should strike you as rather remarkable that we are able to prove any
sequence converges at all, using this definition. For instance, for the sequence
an = 1

n , if I give you an ε > 0, it will not be too difficult for you to find a tail
that lies within the interval (−ε, ε). But given a finite amount of time to work,
how do you find tails for every single ε?

1



2 Terminology: sequence versus series

Last lecture we dealt with infinite sequences, i.e., infinite lists:

a1, a2, a3, a4, . . . , an, . . .

This lecture we will deal with infinite series, i.e., infinite sums:
∞∑

n=1

an.

The terminology here could be confusing, but is important to remember:

• An infinite sequence is an infinite list.

• An infinite series is an infinite sum.

2.1 Partial Sums

Given any series
∞∑

i=1

ai = a1 + a2 + a3 + · · ·+ ai + · · · ,

there is an associated sequence of partial sums, defined by

Sn =

n∑

i=1

ai.

Thus,

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

S4 = a1 + a2 + a3 + a4

...

Sn = a1 + a2 + a3 + a4 + · · ·+ an

...

Exercise 2. Consider the series

∞∑

i=1

10−i = 0.1 + 0.01 + 0.001 + 0.0001 + · · · .

What is its sequence of partial sums?

Solution.
0.1, 0.11, 0.111, 0.1111, . . . .

2



3 Convergence

A series is said to converge if its sequence of partial sums converges (to a finite
limit); it diverges if the sequence of partial sums diverges. If the series converges,
we say that the infinite sum is the limit of the partial sums.

Notationally,
∞∑

i=1

ai = lim
n→∞

n∑

i=1

ai

is how we define the left-hand side.
Sometimes, we can determine whether a series converges or diverges, even if

we cannot compute its limit.

Theorem (Integral test for positive series). If f is a continuous, nonincreasing,

positive function on [1,∞), then the series
∞∑

i=1

f(i) and the improper integral

∫ ∞

1

f(x) dx converge or diverge together.

It is important to note that the integral test can tell us whether a series
converges, but not what it converges to.

Example 3. Consider the series

∞∑

i=1

1

i2

∞∑

i=1

1

i3
.

3



The integral test shows that both of these series converge:

However, it is not at all obvious that

∞∑

i=1

1

i2
=
π2

6
,

and there is no known formula for the limit of
∑∞

i=1
1
i3 better than

∑∞
i=1

1
i3 .
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Assignment 14: due Friday, May 4

Section 8.2, Problems 9 and 10. Problem 10 will be graded carefully.

Section 8.4, Problems 9 and 10. Problem 10 will be graded carefully.

Section 9.1, Problems 1–4. Problems 2 and 4 will be graded carefully.

Consider the two functions

f(x) = 1

g(x) = cos2(πx).

(a) Graph these two functions for 0 ≤ x ≤ 8.

(b) Show that the two sequences

an = 1

bn = cos2(πn)

are in fact the same sequence.

(c) Explain why this seems to contradict the second definition of infinite se-
quence in Lecture 14, but does not actually contradict the definition.

This problem will be discussed in tutorial on Thursday. It will be graded care-
fully.

Assignment 15: due Monday, May 7

Section 8.3, Problems 11 and 12. Problem 12 will be graded carefully.

Section 9.1, Problems 5, 6, and 21–24. Problems 6, 22, and 24 will be graded
carefully.

Section 9.2, p. 460, Concepts Review 1–4. Try to do these without looking
anything up. Then check your answers.

Section 9.3, Problem 1.

5



Math 133, Lecture 16: Infinite series, continued

Charles Staats

Friday, 4 May 2012

Quiz retake policy

Given that quizzes are more important in this class as a learning tool than as
a testing tool, I’ve decided on the following policy for retaking quizzes: If you
took a quiz, and are not satisfied with your performance, you may contact me
to schedule a re-take at a mutually convenient time. You may re-take several
different quizzes at once. However, the following limitations apply:

1. If you missed a quiz because of an un-excused absence from tutorial, your
grade for that quiz will go down as a zero, regardless of any re-takes.
(However, if you just want to re-take the quiz for practice, I will be willing
to give you an “unofficial” grade on a re-take.)

2. Once a test has been given, you may not officially re-take any quizzes from
before the test. (This is to discourage last-minute studying for the final
exam.)

I may at some point give a survey to find out how helpful people find the
“easy” quizzes versus the “test-like” quizzes. In the mean time, please feel free
to ask me questions of the following type:

1. I have just written an answer to this question (from the homework, or a
list of possible test questions, or . . . ). Would you grade it to give me an
idea how I would have done if I wrote this on the test?

2. Would you please write up a solution to such-and-such a question?

I will not necessarily answer “yes” to either of these, but there is no harm in
asking. I would also note that a request for a solution writeup will be more
persuasive if it comes from someone who has already done their own writeup,
or if more than one person asks for a writeup of the same question.

1 Some basic facts about series convergence

Axiom (Monotone Convergence). A positive series either converges, or diverges
to infinity.

1



This is called a “theorem” by the book, but it’s really more of an axiom. If
you want to discuss this in greater detail, come to my office hours or make an
appointment.

Note how this was used in proving the Integral Test: We showed, via a
picture, that (for f a positive decreasing function)

∞∑

i=1

f(i) ≤ f(1) +

∫ ∞

1

f(x) dx.

Thus, if the right-hand side is finite, then the series on the left-hand side cannot
diverge to infinity. Consequently, it must converge.

You may be asked on a test to explain how the Monotone Conver-
gence Axiom is used in the proof of the Integral Test.

Here’s another basic result.

Theorem. If
∞∑

i=1

ai converges, then ai → 0 as i→∞.

Proof. The statement should strike you as more or less “obvious,” but here is a
proof just in case it does not. Assume

∞∑

i=1

ai = lim
n→∞

n∑

i=1

ai

converges. Then

an =

(
n∑

i=1

ai

)
−
(

n−1∑

i=1

ai

)

lim
n→∞

an =

(
lim

n→∞

n∑

i=1

ai

)
−


 lim

n→∞

n−1∑

i=1

ai




=

( ∞∑

i=1

ai

)
−
( ∞∑

i=1

ai

)

= 0 since
∑∞

i=1 ai is finite.

2



Exercise 1. What is the contrapositive of the statement of this theorem? Can
you use the theorem to prove that a series converges?

Solution.

There are also some basic properties of sums that extend to infinite sums in
a natural manner.

Theorem. 1. (Distributive Law) If c is a nonzero constant, then

∞∑

i=1

cai = c
∞∑

i=1

ai.

In particular, the sum on the right-hand side converges if and only if the sum
on the left-hand side converges.

2. ∞∑

i=1

(ai + bi) =

∞∑

i=1

ai +

∞∑

i=1

bi,

provided that the two series on the right-hand side converge.

Exercise 2. Give an example of two series
∑
ai,
∑
bi, neither of which con-

verges, but such that
∑
ai + bi does converge. (Hint: try ai = 1 and bi = −1.)

One final note is that whether or not a series converges depends only on its
tail.

2 Some standard series

There are a few series you should simply know.

1. A geometric series is a series of the form

∞∑

i=0

ari = a+ ar + ar2 + ar3 + · · · ,

3



where a 6= 0. If |r| < 1, the series converges to

a

1− r ;

if |r| ≥ 1, the series diverges. Whether the series converges or diverges
can be proved using the integral test; for a fairly nice explanation of what
it converges to, see Example 1, p. 456 in the textbook. I’ll try to give a
geometric explanation in class if I have time.

2. A p-series is a series of the form

∞∑

i=1

1

ip
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · · .

The series converges if and only if p > 1. However, as I mentioned last
lecture, it is not at all easy to say what the series converges to.

Example 3. A coin is tossed as many times as necessary until it lands on
“heads.” What is the probability that the coin does, in fact, eventually land on
“heads”?

Solution.

3 The ratio test

Consider the series ∞∑

k=0

2k

k!
.

We will see later that this series is extremely important, and converges to e2.
The first step in doing this is to prove that this series, and other series like it,

4



converge. However, the integral test is not feasible, because k! is only defined
when k is an integer.1

In situations like this, we need other tests for convergence. And, as it turns
out, these tests are often easier to use than the integral test. For today, we’ll
concentrate on the Ratio Test.

Theorem (Ratio Test). If
∑
an is a positive series (i.e., all the an are positive)

and
lim
n→∞

an+1

an
= ρ

exists, we have:

(i) If ρ < 1, the series converges.

(ii) If ρ = 1, anything could happen. (The Ratio Test is inconclusive, and we
need to try something else.)

(iii) If ρ > 1 (in particular, if ρ =∞), then the series diverges.

Idea: the series behaves like a geometric series.

Example 4 (Textbook, p. 472, Example 5). Determine whether the series

∞∑

n=1

2n

n!

converges or diverges.

1It is possible to extend k! to a natural function on [1,∞), but the function that results
is not elementary or easy to integrate. In any case, even making this definition requires the
tools we are now developing.

5



Assignment 15: due Monday, May 7

Section 8.3, Problems 11 and 12. Problem 12 will be graded carefully.

Section 9.2, p. 460, Concepts Review 1–4. Try to do these without looking
anything up. Then check your answers.

Section 9.3, Problem 1.

Assignment 16: due Wednesday, May 9

Section 8.4, Problems 11 and 12. Problem 12 will be graded carefully.

Section 9.1, Problems 25 and 26. Problem 26 will be graded carefully.

Section 9.2, Problem 33. This will be discussed in tutorial on Tuesday. It will
be graded carefully.

Section 9.3, Problems 2–5. Problems 2 and 4 will be graded carefully.

Section 9.4, Problems 5 and 6. Problem 6 will be graded carefully.
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Math 133, Lecture 17: Infinite series, continued

Charles Staats

Monday, 7 May 2012

Test Next Week

I anticipate giving a test next week (week 8), probably on Wednesday.

1 Improved explanation from last time

Last lecture, I gave a rather incoherent explanation of the fact that, if the series∑
n an converges, then an → 0. Here is a (hopefully) more coherent explanation

of that fact.
If
∑

n an converges to s, then for every ε > 0, the partial sums are “ulti-
mately within ε of s.” Consequently, the sequence an must be “ultimately within
ε of 0;” otherwise, if some term an were not within ε of 0, adding an would kick
the partial sum outside ε of s.

[picture]

2 Two comparison tests

Theorem (Ordinary Comparison Test). Suppose
∑

n an and
∑

n bn are positive
series such that an ≤ bn for all n. If

∑
n bn converges, then

∑
n an converges

too.

Proof. This proof is not precisely rigorous—we should really be working with
partial sums—but I think you will be convinced. If an ≤ bn for all n, then

∞∑

n=1

an ≤
∞∑

n=1

bn <∞,

where we know
∑

n bn <∞ since
∑

n bn converges. Since
∑∞

n=1 an is a positive
series that does not diverge to infinity, it converges.

Essentially, we’re saying that “if an ≤ bn, and
∑

n bn does not diverge to
infinity, then neither does

∑
n an.

Here’s another test along the same lines, but a bit easier to use (most of the
time) and a bit harder to prove (see p. 470 of the textbook).

1



Theorem (Limit Comparison Test). Suppose that
∑

n an and
∑

n bn are pos-
itive series (i.e., the an and bn are all positive)1. Also assume that limn→∞

an

bn
exists.

• If 0 < lim
n→∞

an
bn

<∞, then
∑

n an and
∑

n bn converge or diverge together.

• If lim
n→∞

an
bn

= 0, then if
∑

n bn converges, then
∑

n an also converges.

The idea of the proof is the following: To determine the convergence or
divergence of a series, we can look only at the “tail,” i.e., ignore the first N
terms, for any finite N . Once we do this, the limit will tell us that the series
ultimately behave like constant multiples of each other.

Example 1. (Example 4, p. 471 in the textbook) Determine whether the series∑∞
n=1

lnn
n2 converges or diverges.

Exercise 2. Determine whether the series
∑∞

n=1
lnn
n3 converges or diverges.

Solution.

1This also works if the an are allowed to be zero, as long as they don’t turn negative.
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3 Ratio test, recalled

Let us recall the ratio test, which allows us to “compare a series to itself” to
determine whether it converges or diverges—at least sometimes.

Theorem (Ratio Test). If
∑
an is a positive series (i.e., all the an are positive)

and
lim
n→∞

an+1

an
= ρ

exists, we have:

(i) If ρ < 1, the series converges.

(ii) If ρ = 1, anything could happen. (The Ratio Test is inconclusive, and we
need to try something else.)

(iii) If ρ > 1 (in particular, if ρ =∞), then the series diverges.

Idea: the series behaves like a geometric series.

Example 3 (Textbook, p. 472, Example 5). Determine whether the series

∞∑

n=1

2n

n!

converges or diverges.

4 Absolute convergence

So far, we have concerned ourselves almost exclusively with “positive series.”
Here’s a theorem showing how to apply these same techniques to series with
negative terms:

Definition. We say the series
∑

n an converges absolutely if
∑

n|an| converges.

Theorem. If a series converges absolutely, then it converges.

In fact, if a series converges, but does not converge absolutely, it is not a
very nice kind of convergence, for the following (somewhat surprising reason): If
a series converges, but not absolutely, then you can change what it converges to
by re-arranging the order of the terms. Thus, such a series is called conditionally
convergent.

We will be concerned primarily with whether a series converges absolutely.
It is a less surprising, but difficult to prove, theorem that if a series converges
absolutely, then rearranging the order of its terms does not affect what it con-
verges to.
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Assignment 16: due Wednesday, May 9

Section 8.4, Problems 11 and 12. Problem 12 will be graded carefully.

Section 9.1, Problems 25 and 26. Problem 26 will be graded carefully.

Section 9.2, Problem 33. This will be discussed in tutorial on Tuesday. It will
be graded carefully.

Section 9.3, Problems 2–5. Problems 2 and 4 will be graded carefully.

Section 9.4, Problems 5 and 6. Problem 6 will be graded carefully.

Assignment 17: due Friday, May 11

Find all possible solutions to the differential equation

d3y

dx3
= 1.

(Hint: antidifferentiate three times.) Your “solution family” should have three
different constants. Find formulas for y(0), y′(0), and y′′(0) in terms of these
three constants. What should the value of the constants be to ensure that
y(0) = 1, y′(0) = 1, and y′′(0) = 1?

This problem will be discussed in tutorial on Thursday. It will be graded
carefully.

Section 9.3, Problems 6–8 and 13–14. In 13–14, you may use any test we have
discussed, even if it comes after Section 9.3. Problems 6, 8, and 14 will be
graded carefully.

Section 9.4, Problems 1, 2, 11, and 12. Problems 2 and 12 will be graded
carefully.

Bonus problem: Section 9.5, Problem 35.
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Math 133, Lecture 19: Power series, continued

Charles Staats

Friday, 11 May 2012

Test Wednesday

This section is just to note that there will be a test Wednesday.

1 Absolute Ratio Test

We covered the ratio test for convergence of positive series, but I did not cover
the Absolute Ratio Test very well. Since it is important to computing conver-
gence intervals for power series, I thought I should probably state it carefully.

Theorem (Absolute Ratio Test). Let
∑

n un be an infinite series, not neces-
sarily positive, such that for all n, un 6= 0. Suppose that the limit

lim
n→∞

|un+1|
|un|

= ρ

exists. Then we have

(i) If ρ < 1, the series converges absolutely (and, in particular, converges).

By definition,
∑

n un converges absolutely if the positive series
∑

n|un|
converges. By the Ratio Test we saw before,

∑
n|un| converges since

|un+1|/|un| → ρ < 1.

(ii) If ρ = 1, anything could happen.

(iii) If ρ > 1, the series
∑

n un diverges.

The proof is essentially this: if limn→∞|un+1|/|un| = ρ, then |un| eventu-
ally looks a lot like

a, ρa, ρ2a, ρ3a, . . .

for some a > 0. Since ρ > 1, we see that |un| → ∞. But for the series∑
n un to converge, we would have to have un → 0.

1



2 The radius of convergence of a power series

Remember that a power series is a series of the form

∞∑

n=0

cnx
n.

Significantly, this is a series of functions, rather than a series of numbers. Thus,
we should not ask simply whether it converges, but rather, for which values of
x (i.e., where) does it converge?

A basic example to start with is the series

∞∑

n=0

xn,

in which the coefficient cn is equal to 1 for every n. We saw, previously, that
this is a geometric series: it converges (absolutely) to

1

1− x
when |x| < 1, and diverges when |x| > 1.

The following theorem shows that this is typical convergence behavior for
power series:

Theorem. Let
∑

n cnx
n be a power series. Then there is a nonnegative “num-

ber” R (which could be in the interval [0,∞), or could in fact be ∞) such
that

(i) the series converges absolutely on the interval (−R,R), and

(ii) the series diverges when |x| > R.

Note that this theorem says absolutely nothing about what happens when
x = R; this should remind you of the Ratio Test and the Absolute Ratio Test.

If you think about it, this theorem is really quite remarkable. In the example
we’ve looked at, we have that

∞∑

n=0

xn =
1

1− x =: f(x)

where it converges. If you look at the graph of f ,
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f(x)

x

it seems quite reasonable that the series should be forced to diverge at x = 1,
since the function itself goes to infinity. But the function is perfectly smooth at
x = −1, so how does the series “know” it needs to stop converging for x < −1?

A “proper” proof of this theorem should really use some analysis that the
book skirts over. I would love to take the time to explain this properly, and in the
process give you a better feel for exactly what it means that the “real numbers
have no holes” and why you should believe the Monotone Convergence Axiom (a
positive series either converges, or diverges to infinity). Unfortunately, I don’t
have the luxury of unlimited time. So instead, I will offer you a “plausibility
argument” that resembles how the Ratio of Convergence is actually computed
in some examples, and invite anyone who wants a better understanding to come
to my office hours or schedule an appointment.

Plausibility argument. Suppose we have a power series

∞∑

n=0

cnx
n

with all the coefficients cn nonzero, and such that the limit

T = lim
n→∞

|cn+1|
|cn|

exists. Let’s see what the Absolute Ratio Test tells us.

lim
n→∞

|cn+1x
n+1|

|cnxn|
= lim

n→∞
|cn+1|
|cn|

· |x|

= |x| · lim
n→∞

|cn+1|
|cn|

= |x| · T.
Thus,

3



• For every x-value such that |x| < 1

T
, we have

|x| < 1

T
|x| · T < 1

lim
n→∞

|cn+1x
n+1|

|cnxn|
< 1;

hence, by the Absolute Ratio Test,
∑

n cnx
n converges absolutely when

|x| < 1

T
.

• When |x| > 1

T
, we have

lim
n→∞

|cn+1x
n+1|

|cnxn|
= |x| · T >

1

T
· T = 1,

hence
∑

n cnx
n diverges by the Absolute Ratio Test.

Thus,
∑

n cnx
n converges absolutely when |x| < 1/T , and diverges when |x| >

1/T . In other words, the theorem holds, with radius of convergence

R =
1

T
.

3 Power series in x− a

If we have a series of the form
∑

n

cn(x− a)n,

substitute
u = x− a,

and consider this as a power series in u. Then do all the computations, and
finally reverse the substitution.

Example 1 (Example 5, p. 483). Find the convergence set for
∞∑

n=0

(x− 1)n

(n+ 1)2
.

Ignore the endpoints.
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Assignment 18: due Monday, May 14

Section 9.4: Concepts Review 1–4; Problems 13–16. Problems 14 and 16 will
be graded carefully.

Section 9.6, Problems 9, 10, and 29. Problem 29 will be graded carefully.

Test Wednesday, May 16

The test will cover lectures 1–18, with emphasis on lectures 8–18. The assign-
ments corresponding to the emphasized material are Assignments 8–18. I should
note that some problems will require techniques from earlier.

Assignment 19: due Friday, May 18

Section 9.6, Problems 11–14. You don’t need to say what happens at the end-
points. Problems 12 and 14 will be graded carefully.

5



Math 133, Lecture 20: Taylor and Maclaurin

Series

Charles Staats

Monday, 14 May 2012

Test Wednesday

This section is just to note that there will be a test Wednesday.

1 A common error

There is an error that many people made on a quiz that I have been meaning
to bring up for some time, but have kept forgetting. Perhaps I will remember
if I include it in my lecture notes.

Remember that for any series

∞∑

i=1

ai

there is a corresponding sequence, the “sequence of partial sums,” given by

Sn =
n∑

i=1

ai.

Thus, in “expanded version,” the series is the sum

a1 + a2 + a3 + a4 + · · ·

while the sequence of partial sums is the list

a1︸︷︷︸
S1

, a1 + a2︸ ︷︷ ︸
S2

, a1 + a2 + a3︸ ︷︷ ︸
S3

, a1 + a2 + a3 + a4︸ ︷︷ ︸
S4

, . . . .

The sequence of partial sums is significant in that the sum of the series is defined
to be the limit of the sequence of partial sums:

∞∑

i=1

ai := lim
n→∞

Sn.
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2 Uniqueness of power series expansion

We have seen that, sometimes, a function f(x) may be represented by a power
series that converges absolutely to f on an interval. For instance, we have

1

1− x
=
∞∑

n=0

xn = 1 + x + x2 + x3 + x4 + · · ·

ex =

∞∑

n=0

xn

n!
= 1 + x +

x2

2
+

x3

3!
+

x4

4!
+ · · ·

where the first equality holds on the interval (−1, 1) and the second holds on
the interval (−∞,∞). The first equality was computed via a geometric series;
the second was an apparently miraculous result of the fact that the power series∑

n x
n/n! is its own derivative.

A number of natural questions occur at once here. Two of them are these:
First, is there some method (other than a “miraculous guess”) that would allow
us to obtain the power series for ex? Second, if we produce power series for the
same function by two different methods1, are they guaranteed to be the same?
In both cases, the answer is “yes.” When we know a function, we will give a
formula for the only possible power series that might converge to it. This power
series series is not guaranteed to converge to the function; but it is the only
power series that possibly could, and we have a formula for it.

Remember the following theorem: if the power series
∑

n cnx
n converges to

the function f(x) on an open interval, then the term-by-term derivative of the
power series converges to f ′(x) on the same open interval. Thus, suppose we
have f(x) =

∑∞
n=0 cnx

n on some open interval. Then on that interval, we will
have

f(x) = c0 + c1x + c2x
2 + c3x

3 + · · ·+ cnx
n + · · ·

f ′(x) = c1 + 2c2x + 3c3x
2 + 4c4x

3 + · · ·+ (n + 1)cn+1x
n + · · ·

f ′′(x) = 2c2 + (3 · 2)c3x + (4 · 3)c4x
2 + (5 · 4)c5x

3 + · · ·+ (n + 2)(n + 1)cn+2x
n + · · ·

f ′′′(x) = 3!c3 + (4 · 3 · 2)c4x + (5 · 4 · 3)c5x
2 + (6 · 5 · 4)c6x

3 + · · ·+ (n + 3)(n + 2)(n + 1)cn+3x
n + · · ·

1This question will seem more interesting once we have seen different methods to produce
power series.
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Evaluating at x = 0, all terms except the constant term disappear:

f(0) = c0

f ′(0) = c1

f ′′(0) = 2c2

f ′′′(0) = 3!c3

f (4)(0) = 4!c4

...

f (n)(0) = n!cn

Solving the general equation for cn, we find that

cn =
f (n)(0)

n!
.

(Note that f (0) is obtained by “differentiating f zero times,” i.e., doing nothing
at all to f ; consequently, f (0)(x) = f(x). Similarly, 0! = 1.) This shows the
following theorem:

Theorem. If

f(x) =
∞∑

n=0

cnx
n,

where the series converges on an open interval including the point x = 0, then
f has all of its derivatives defined at 0, and

cn =
f (n)(0)

n!
.

Thus, given a function (with infinitely many derivatives at 0), we can produce
a power series, called the Maclaurin series, for the function, by the formula

∞∑

n=0

cnx
n =

∞∑

n=0

f (n)(0)

n!
xn

In particular, if the function in question is f(x) = ex, then we have

f (n)(x) = f (n−1)(x) = · · · = f ′(x) = f(x) = ex;

thus,
f (n)(0) = e0 = 1

for all n, and so the Maclaurin series for ex is

∞∑

n=0

1

n!
xn.

Note that, if someone gives us a function f and we compute its Maclaurin
series, it is not guaranteed that the Maclaurin series converges to f . Rather,
the Maclaurin series is the “only hope” for a power series that converges to f .
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Test Wednesday, May 16

The test will cover lectures 1–18, with emphasis on lectures 8–18. The assign-
ments corresponding to the emphasized material are Assignments 8–18. I should
note that some problems will require techniques from earlier.

Assignment 19: due Friday, May 18

Section 9.6, Problems 11–14. You don’t need to say what happens at the end-
points. Problems 12 and 14 will be graded carefully.
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Math 133, Lecture 21: Taylor Series

Charles Staats

Friday, 18 May 2012

1 Maclaurin series of polynomials

Last lecture, as you hopefully recall, we made the following definition:

Definition. The Maclaurin series for a function f is the power series

∞∑

n=0

f (n)(0)

n!
xn,

where f (n)(x) denotes the nth derivative of f at x and, by convention the “zeroth
derivative” is just f itself.

This definition came out of a computation, which also proved the following
theorem:

Theorem. If f is a function such that some power series

∞∑

n=0

cnx
n

converges to f with a positive radius of convergence, then this power series is
necessarily the Maclaurin series for f . In other words, f has infinitely many
derivatives at 0, and

cn =
f (n)(0)

n!

for all n.

One can get a “cute” application by looking at finite power series, i.e.,
polynomials.

Example 1. Let f be the polynomial

f(x) = x3 − 7x2 + 2x + 9.

Give the formula, in “standard form,” for the translation of f one unit to the
right.
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Solution. Let g be the translation of f one unit to the right; in other words,

g(x) = f(x− 1)

= (x− 1)3 − 7(x− 1)2 + 2(x− 1) + 9.

We could figure out the “standard form” for g by expanding the products and
combining like terms. But Maclaurin series give us an alternative. Since the
“standard form” for g is necessarily going to look like

g(x) =
∞∑

n=0

cnx
n

(with cn = 0 whenever n is large), the Maclaurin Series theorem tells us that
for all n,

cn =
g(n)(0)

n!
.

Thus, let’s first differentiate g (without expanding it):

g(x) = (x− 1)3 − 7(x− 1)2 + 2(x− 1) + 9

g′(x) = 3(x− 1)2 − 14(x− 1) + 2

g′′(x) = 6(x− 1) − 14

g′′′(x) = 6

g(n)(x) = 0 whenever n ≥ 4.

Thus, we have

c0 =
g(0)

0!
=

(−1)3 − 7(−1)2 + 2(−1) + 9

1
= −1 − 7 − 2 + 9 = −1

c1 =
g′(0)

1!
=

3(−1)2 − 14(−1) + 2

1
= 3 + 14 + 2 = 19

c2 =
g′′(0)

2!
=

6(−1) − 14

2
=

−20

2
= −10

c3 =
g′′′(0)

3!
=

6

6
= 1

cn = 0 whenever n ≥ 4.

Consequently, we have

g(x) = (−1) + 19x− 10x2 + x3.

2



Exercise 2. Find the “standard form” of the polynomial

g(x) = 2(x + 1)3 + (x + 1)2 − 2(x + 1) + 1

using Maclaurin series.

Solution.

2 Taylor series

In a previous lecture, I mentioned the possibility of power series “about a,” i.e.,
power series of the form

∞∑

n=0

cn( x− a )n.

The idea was to substitute in u = x − a, do everything for power series in u,
and then, at the end, rewrite everything back in terms of x.

Let’s see what happens when we do this for the Maclaurin series formula.
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Suppose we want to find a power series for f about a, i.e., write

f(x) =
∞∑

n=0

cn(x− a)n.

Substituting u = x− a and, consequently, x = u + a, we obtain

f(u + a) =

∞∑

n=0

cnu
n

g(u) =

∞∑

n=0

cnu
n

where
g(u) = f(u + a)

g(n)(u) = f (n)(u + a)
, the derivatives coming from the Chain Rule. By

the Maclaurin Series Theorem,

g(u) =
∞∑

n=0

g(n)(0)

n!
un

f(u + a) =
∞∑

n=0

f (n)(0 + a)

n!
un

f(x) =
∞∑

n=0

f (n)(a)

n!
(x− a)n.

Thus, we obtain the following more general formula:

Definition. The Taylor series about a for a function f is the power series

∞∑

n=0

f (n)( a )

n!
( x− a )n

Thus, the “Maclaurin series” is identical to the “Taylor series about 0.”
Thus, there is no real need to remember the term “Maclaurin series.”

As in the case of Maclaurin series, we have the following theorem:

Theorem. If we have a function f and a power series

∞∑

n=0

cn(x− a)n

that converges to f on an open interval about x = a, then this series can only
be the Taylor series for f about a.
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Exercise 3. Rewrite the polynomial

f(x) = 2x− 2x2 + x3

as a polynomial in (x− 1), by finding its Taylor series about a = 1.

Solution.
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Assignment 20: due Monday, May 21

Section 9.6, Problems 1–4. Ignore the endpoints. Problems 2 and 4 will be
graded carefully.

Section 9.8, Problems 1, 2, 19, 20, 23, and 24. Problems 2, 20, and 24 will
be graded carefully.

Assignment 21: due Wednesday, May 23

To be decided.
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Math 133, Lecture 22: Taylor Series, continued

Charles Staats

Monday, 21 May 2012
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Assignment 21: due Wednesday, May 23

Section 9.7, Problems 1–6. Problems 2, 4, and 6 will be graded carefully.

Assignment 23: due Friday, May 25

To be decided.
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Math 133, Lecture 23: Operations on power series

Charles Staats

Wednesday, 23 May 2012

1 Some building blocks

Recall an important theme of Taylor series:

(i) The Taylor series is the only power series that could possibly converge to
a function. Consequently,

(ii) If we somehow find a power series that converges to a function, it must be
the Taylor series in disguise.

When we know a few basic Taylor series, there are any number of “tricks” that
can be used to combine these to give us other Taylor series. Recall the basic
“building blocks” we have already found:

1

1 − x
= 1 + x + x2 + x3 + x4 + x5 + · · · =

∞∑

n=0

xn (1)

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑

n=0

xn

n!
(2)

sinx = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · · =

∞∑

n=0

(−1)n

(2n + 1)!
x2n+1 (3)

Power series (1) is an example of exactly the sort of thing I am talking about.
We know it converges to the function 1/(1−x) on the interval (−1, 1) based on
our prior understanding of geometric series. While we could derivatives to verify
that it is, in fact, the Taylor series for 1/(1 − x), we don’t have to: any power
series that converges to 1/(1− x) is necessarily its Taylor series, no matter how
we found it.

The series (2) and (3) were actually computed as Taylor series. I should
probably note that we have not, technically, proved—yet—that series (3) actu-
ally converges to sinx, only that it is the Taylor series for sinx and converges
to something. For the moment, I shall conveniently ignore this gap.
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2 Substitution

Let’s proceed by examples.

Example 1. Find the Taylor series for
1

1 + x
about x = 0.

Solution. (Hint: substitute −x for x in a series we already know.)

Example 2. Find the Taylor series for e−x
2

.

Solution.

The examples given so far suggest that substitution is a very “easy” technique—
which it often is. But not always.

Example 3. Find the Taylor series for sin(sinx).
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The trick here would be to compose the Taylor series:

sin(sinx) = sin

(
x− x3

3!
+

x5

5!
− · · ·

)

=

(
x− x3

3!
+

x5

5!
− · · ·

)

−

(
x− x3

3! + x5

5! − · · ·
)3

3!

+

(
x− x3

3! + x5

5! − · · ·
)5

5!
− · · ·

= · · ·

You will be relieved to know that you will not be expected to know how to do
any of this more complicated kind of substitution.

3 Differentiation and integration

The next neat trick, which we have already seen some of, is differentiation and
integration. The basic facts are these:

• d

dx

( ∞∑

n=0

cnx
n

)
=

∞∑

n=0

d

dx
(cnx

n) =

∞∑

n=0

(n + 1)cn+1x
n

•
∫ x

0

( ∞∑

n=0

cnt
n

)
dt =

∞∑

n=0

∫ x

0

cnt
n dt =

∞∑

n=1

cn−1
n

xn

• The integral and derivative of a power series have the same radius of
convergence as the power series itself.
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Example 4. Find the Taylor series for cosx.

Solution.

Example 5. Find the Taylor series for ln(1 + x).

Solution.
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Example 6. Find the Taylor series for
∫ x

0
e−t

2

dt.

Solution.

This last example is particularly interesting because

f(x) =

∫ x

0

e−t
2

dt

is an extremely important function that does not have a formula—at least, not
a finite formula. But clearly, it does have a very nice infinite formula.
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Assignment 22: due Friday, May 25

Section 9.7, Problems 7–11 and 13–16. Problems 8, 10, 11, 14, and 16 will be
graded carefully. Problem 11 will be discussed in tutorial on Thursday.

No class Monday

Monday, May 28 is Memorial Day.

Assignment 23: due Wednesday, May 30

To be decided. (Which I don’t feel too guilty about this time, since it’s not due
until Wednesday.)
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Math 133, Lecture 24: Algebraic operations on

power series

Charles Staats

Friday, 25 May 2012

Exam

The final exam will be Friday, June 8, in Social Sciences 108, 10:30–12:30. Be
there.

1 Important Taylor series

Here is a list of some important Taylor series with which you should be familiar.
(It is borrowed, with modifications, from p. 495 of the textbook.)

1

1− x
= 1 + x + x2 + x3 + x4 + · · · =

∞∑

n=0

xn − 1 < x < 1

(1)

1

1 + x
= 1− x + x2 − x3 + x4 − · · · =

∞∑

n=0

(−1)nxn − 1 < x < 1

(2)

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · =

∞∑

n=1

(−1)n+1

n
xn − 1 < x ≤ 1

(3)

arctanx = x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · · =

∞∑

n=0

(−1)n

2n + 1
x2n+1 − 1 ≤ x ≤ 1

(4)

1



ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑

n=0

1

n!
xn −∞ < x <∞

(5)

sinx = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · · =

∞∑

n=0

(−1)n

(2n + 1)!
x2n+1 −∞ < x <∞

(6)

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− · · · =

∞∑

n=0

(−1)n

(2n)!
x2n −∞ < x <∞

(7)

Note that you are not required to know, for the interval of convergence, whether
the inequality sign is < (>) or ≤ (≥, respectively).

These may, perhaps, be remembered as follows:

(1) The geometric series: 1 + r + r2 + r3 + · · · = 1/(1− r), as long as |r| < 1.

(2) Substitute −x for x in (1).

(3) Integrate (2); remember
∫
0

dx
1+x = ln(1 + x).

(4) Substitute x2 for x in (2), and then integrate. Remember
∫
0

dx
1+x2 =

arctanx.

For (5)–(7), it may be best to remember the formula for general Taylor series
about zero

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5 + · · ·

=
∞∑

n=0

f (n)(0)

n!
xn

(which you should, in any case, know) and then remember the pattern of the
derivatives at zero:

f(x) f(0) f ′(0) f ′′(0) f ′′′(0) f (4)(0) f (5)(0) · · ·
ex 1 1 1 1 1 1 1 1 · · ·

sinx 0 1 0 −1 0 1 0 −1 · · ·
cosx 1 0 −1 0 1 0 −1 0 · · ·

2



No class Monday

Monday, May 28 is Memorial Day.

Assignment 23: due Wednesday, May 30

Section 9.6, Problems 5–8 and 15–16. Ignore the endpoints. Problems 6 and 16
will be graded carefully.

Section 9.8, Problems 1, 3, 4, 5, 7, 8, 10, 25, and 38. Problems 1, 4, 8, and 38
will be graded carefully. Problems 25 and 38 will be discussed in tutorial on
Tuesday.

Section 9.9, Concepts Review 1 and 2.

Section 9.9, Problems 1–5. You may use your calculator once you have written
down the polynomial. Problems 2 and 4 will be graded carefully.
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Math 133, Lecture 25: What does the Taylor

series converge to?

Charles Staats

Wednesday, 30 May 2012

Logistics

• The final exam will be Friday, June 8, in Social Sciences 108,
10:30–12:30. Be there.

• Friday’s lecture will be a review session. Please come with questions.

• I will be holding extra office hours this afternoon (Wednesday), 1:30–2:30.

1 General Principles

Consider the following two general principles:

• There should be a “nice” function f(t) such that the function is zero
for t ≤ 0 but nonzero for t > 0. This principle is derived from physical
intuition: we expect there should be a “nice” function to describe the path
of an object that starts off at rest, but then—say, after a push—begins to
move.

• If a function is “nice,” then its Taylor series converges to it in a neighbor-
hood of every point where the function is defined.

The difficulty with these two principles is that they do not play well together.
If we have a function f(t) that is nice enough that all of its derivatives exist at
every point, and f(t) = 0 for all t ≤ 0, then f ′(t) = 0 for all t ≤ 0—and the
same for f ′′, f ′′′, f (4), etc. In particular,

f(0) = f ′(0) = f ′′(0) = f ′′′(0) = f (4)(0) = · · · = 0.

Consequently, the Taylor series about zero is, quite simply,

0 + 0t + 0t2 + 0t3 + 0t4 + 0t5 + · · · = 0.

If this Taylor series converges to f in a neighborhood of zero, as the second
principle says it should, then f(t) = 0 on an open interval including zero; so,
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we cannot have f(t) > 0 for all t > 0, which appears to contradict the first
principle.

In truth, perhaps surprisingly, the first principle is true and the second
principle is false: there does exist such a function, and its Taylor series about
zero does not, in fact, converge to it anywhere to the right of zero.

2 Example: The Taylor series for f can converge
to something other than f

When we calculated, for instance, the Taylor series for sinx,

Exercise 1. What is the Taylor series for sinx? (You should probably have
this memorized.)

we then showed that the series has infinite radius of convergence; that is,
the power series converges, absolutely, to some function. However, we did not
actually show that this function was sinx.

To see that this is, in fact, a question, consider the function

f(x) =

{
0 if x ≤ 0,

e−1/x if x > 0.

Here’s the graph of f :

−2 −1 1 2 3 4

0.2

0.4

0.6

x

f(x)

Some of you may recall my emphasis that functions need not be given by explicit
formulas; and, in fact, that this is, to a large extent, the whole point of functions:
sometimes, we need to study things that cannot be given by a single, explicit
formula. In such a study, the function f that I have just defined is an example
of an extremely important kind of function. It exhibits a couple of extremely
important properties we have not seen before—at least, not together:

• All the derivatives (first, second, third, fourth, . . . ) exist at every point—
just like for a function given by a single “nice” formula.
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• The function is constant on part of its domain—but only part.

Physically, you might imagine this function as describing the path of an object
that starts off stationary (not moving), but then, at some point, begins to
move—without any sudden jerks (discontinuities in higher derivatives). And so,
in some sense, you might expect such a function to exist; but we have not seen
it until now.

On the other hand, mathematically, it presents something of a quandary.
First, let’s compute a the first and second derivatives at zero, just to convince
you that they do exist.

By definition,

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

f(h)

h
.

Given the way f is defined, we had best compute the left and right-hand limits
separately.

lim
h→0−

f(h)

h
= lim

h→0−

0

h
= 0.

lim
h→0+

f(h)

h
= lim

h→0+

e−1/h

h

= lim
u→∞

e−u

u−1
where u = 1/h = h−1

= lim
u→∞

u

eu

(∞
∞
)

= lim
u→∞

1

eu

= 0.

Since both the one-sided limits are zero, we have

f ′(0) = lim
h→0

f(h)

h
= 0.

Consequently, we have that

f ′(x) =

{
0 if x ≤ 0,

x−2e−1/x if x > 0.

Let’s do the same to find f ′′(0):

f ′′(0) = lim
h→0

f ′(0 + h)− f ′(0)

h

= lim
h→0

f ′(h)

h
.
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Given the way f ′ is defined, we had best compute the left and right-hand limits
separately.

lim
h→0−

f ′(h)

h
= lim

h→0−

0

h
= 0.

lim
h→0+

f ′(h)

h
= lim

h→0+

h−2e−1/h

h

= lim
u→∞

u2e−u

u−1
where u = 1/h = h−1

= lim
u→∞

u3

eu

(∞
∞
)

= 0.

Since both the one-sided limits are zero, we have

f ′′(0) = lim
h→0

f ′(h)

h
= 0.

Consequently, we have that

f ′′(x) =

{
0 if x ≤ 0,

(x−4 − 2x−3)e−1/x if x > 0.

It would be perhaps to complex to continue from here, but perhaps you will
take my word that when we are evaluating the nth derivative of f at 0, we will
always end up looking at

lim
u→∞

polynomial in u

eu
,

which is necessarily zero.
Thus, we end up with the following result:

f (n)(0) = 0 for all n.

Exercise 2. (a) What is the Taylor series for f about zero?

(b) For what values of x does this series converge?

(c) For what values of x does this series converge to f(x)?
The first two questions have answers so simple you will wonder if you did

something wrong. The third question is the interesting one; its answer is not
the same as the answer to the second question.

3 The Taylor series for sinx

On the other hand, the fact of the matter is that for most of the functions you
encounter in this class, the Taylor series (if it is defined) will, in fact, converge
to the function. There are a number of different ways to do this. Here is one
way that sometimes works:
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1. Find the Taylor series for f .

2. Show that the Taylor series converges to some function g. We want to
show that g = f .

3. Find a differential equation that this Taylor series satisfies. Thus, g nec-
essarily satisfies the differential equation.

4. Solve the differential equation to show that g = f .

You have already seen this once: we used this technique to show that ex is equal
to its Taylor series about zero. (In fact, this showed up on the last test, and may
well show up on the final exam.) Perhaps now, you will have more appreciation
for the technique.

Example 3. We already carried this procedure out for f(x) = ex. The key
step was, once we had found the Taylor series

g(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · · ,

to differentiate the Taylor series and note that we get exactly the same series
back: g′(x) = g(x). Setting y = g(x), this shows that g satisfies the differential
equation

dy

dx
= y,

which we then solved to show that g(x) = f(x).

Exercise 4. Let

g(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+ · · ·

Show that this power series satisfies the differential equation

d2y

dx2
= −y.

Solution.

(next page)
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Here is a trick to solve this differential equation (which you will not need to
know for the test): Define a new variable/function

v =
dy

dx
.

(The v stands for “velocity,” which makes sense sometimes.)
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Then we have

d2y

dx2
=

d

dx

(
dy

dx

)
=

dv

dx

dv

dy
=

dv

dx
· dx
dy

chain rule

=
dv

dx
· 1

dy/dx

=
dv

dx
· 1

v

=
d2y

dx2
· 1

v

=
1

v
· (−y).

Thus,

dv

dy
=
−y
v∫

v dv =

∫
(−y) dy

1
2v

2 = − 1
2y

2 + C1

v2 = −y2 + C2
(
dy

dx

)2

= C2 − y2

dy

dx
= ±

√
C2 − y2

∫
dy√

C2 − y2
=

∫
±dx

arcsin

(
y√
C2

)
= ±x + C3

y√
C2

= sin(C3 ± x)

y =
√
C2 sin(C3 ± x)

= ±
√
C2 sin(x± C3)

= A sin(x− x0),

where A = ±√C2 and −x0 = ±C3.

= A sinx cosx0 −Asinx0 cosx

= a sinx + b cosx,

7



where a = A cosx0 and b = −A sinx0. Thus,

g(x) = a sinx + b cosx

for some constants a and b. Now, let’s bring in additional information we have
about g to determine a and b. Let’s restate the definition of g, which we defined
as an infinite series:

g(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+ · · · g(0) = 0

g′(x) = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− x10

10!
+ · · · g′(0) = 1

Thus,

0 = g(0) = a sin 0 + b cos 0 = a · 0 + b · 1 = b,

i.e., b = 0, so

g(x) = a sinx

g′(x) = a cosx

1 = g′(0) = a cos 0 = a.

Since a = 1, we conclude that

g(x) = sinx,

i.e. that

sinx = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+ · · · ;

i.e., sinx is equal to the limit of its Taylor series. This is precisely what we were
trying to show.
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