
MATH 131, LECTURE 1

CHARLES STAATS

1. Introduction

Loosely speaking, there are two sides to mathematics: the ideas and the technical
skills. Most people who say that they hate math have probably gotten hung up on
the technical side. And it is an unfortunate fact that the technical side cannot be
done away with. However, the ideas are what make the technical side interesting.
Without them, no one would ever have discovered the technical side, and certainly
no one would care to study mathematics as their life’s work.

In this course, I will try to flavor the technical details with the ideas that explain
why people were thinking like this in the first place. Think of studying mathematics
like studying a map. One can simply sit down and try to memorize all the rivers,
lakes, and mountain ranges. Or one can imagine how an explorer might travel, and
bring the landforms to life. A river, for instance, becomes at once an obstacle, a
water source, and a highway. Some rivers you can wade across; others are difficult
enough that you may want to build a bridge. My goal is to present the mathematical
“landforms” with some kind of narrative about how the first explorers might have
seen them, and why they built the things they did.

The situation with calculus is especially tricky. The basics of calculus, as invented
by Newton and Leibniz in the late 1600s, might be seen as “exploring on top of the
clouds.” There are plenty of interesting things to explore on top of these clouds, but
you can never be sure what’s under your feet. You might step on a spot that looks
solid, only to find yourself standing on air. In the 1800s, mathematicians (most
notably Cauchy and Weierstrass) built a solid “foundation” to fix this problem,
which is not so much a foundation as a skyscraper. In this course, we will try to
explore both the “castle in the clouds” and the skyscraper—called analysis—that
holds it up. Even if you have seen some calculus before, you have almost certainly
not seen much of the skyscraper.

2. Proofs

One of the key things that distinguishes mathematics from other disciplines is
the presence of logical proofs. In physics, you know that a ball will fall when you
release it because it has done so every time you released it in the past. But in
some sense, there is no absolute reason why it would have to keep behaving in this
fashion. One can imagine that gravity might suddenly stop working tomorrow.

One of the key facts about analysis is that there is no least positive number. The
way we prove this is called proof by contradiction: imagine a world in which there
were a least positive number, and show that this world does not even make sense.
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Thus, our initial assumption—that there exists a least positive number—must have
been mistaken.

Before we can start on the proof, we need to clarify a couple things. First,
what do we mean by “number”? If the only numbers we consider are the “whole
numbers” 1, 2, 3, 4, . . . , then there clearly is a least positive number: 1. However,
if we consider numbers that include also 0.1, 0.01, 0.001, 0.0001, . . . , the statement
that “there is no least positive number” becomes more plausible.

In this course, we will deal with two kinds of numbers:

Definition. The integers are the numbers (including negative numbers) with no
fractional part. For example, 0, 1, 2, 17, −1, −2, and −411 are all integers, but
4.1,
√

2, and −π are not.

Definition. The real numbers are all those numbers (including positive numbers,
negative numbers, and zero) that can be written with a (possibly infinite) decimal
expansion. Every integer is a real number, so 0, 1, 2, 17, −1, −2, and −411 are all
real numbers. But there are also real numbers like 4.1,

√
2, and −π that are not

integers.

The other thing that needs clarifying is what exactly is meant by “least number.”

Definition. A number x is the least number in a collection of numbers if

• x lies in the collection and
• for every number y in the collection, x ≤ y.

In other words, x is the least number if x is smaller than every other number.

Now, we’re ready to give the proof.

Theorem. There is no least positive real number.

Proof. Suppose, by way of contradiction, that there were a least positive real num-
ber. Call it x. Then 1

2x would also be a positive real number.

• Since x is the least positive real number, it is smaller than every other
positive real number. In particular, x ≤ 1

2x.
• Since x is positive, we can multiply the inequality

0 < 1
2 < 1

through by x, obtaining

0x < 1
2x < 1x

0 < 1
2x < x.

Thus, x > 1
2x.

We have shown that x ≤ 1
2x and that x > 1

2x. These cannot both be true: we have
obtained a contradiction.

Therefore, our initial assumption—that there exists a least positive real number—
must have been mistaken. �
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In-class Exercise. Show that there is no greatest negative real number.

Proof. Suppose, by way of contradiction, that there were a least positive real
number. Call it x. Then 1

2x would also be a positive real number.

• Since x is the least positive real number, it is smaller than every other
positive real number. In particular, x ≤ 1

2x.
• Since x is positive, we can multiply the inequality

0 < 1
2 < 1

through by x, obtaining

0x < 1
2x < 1x

0 < 1
2x < x.

Thus, x > 1
2x.

We have shown that x ≤ 1
2x and that x > 1

2x. These cannot both be true: we
have obtained a contradiction.

Therefore, our initial assumption—that there exists a least positive real
number—must have been mistaken. �
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3. Assignment 0 (due Friday, 5 October)

“Problems” 1 and 3 on page 33 of the book you will find at http://www.phy.

duke.edu/~rgb/Class/intro_physics_1/intro_physics_1.pdf. These “prob-
lems” involve doing some reading—three times—and writing a couple of short
essays. This portion of the book gives advice on how to learn. It’s by one of
my favorite professors when I was a college student. The essays will be collected
and graded (by the instructor).

Additional instructions:

(1) The essay(s) about your own past learning experience(s) are about your
experiences. The reading assignment should help you think about the past
experiences, but Prof. Brown’s essay is not the subject. (On the other hand,
his technique is, to some extent, the subject of the final “essay.”)

(2) I encourage you to submit multiple drafts of the same essay, rather than
three different essays. However, I also require that each draft should be
written without looking at the previous drafts. [This is something of an
experiment; let me know how it goes.]

One final note: The assignment will be literally impossible to complete unless you
start it by Wednesday, since part of the assignment is to work on three different
days.
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1. Analysis is about inequalities, not equations

Traditional mathematics is about equations—determining when two quantities
are equal. To “calculate” a quantity means, typically, to find an equal quantity
that is easier to work with. For instance, when we convert a fraction to a decimal,
we obtain the same number in a form that is easier to add to other numbers.

However, this notion breaks down when we try to deal with irrational numbers
like
√

2. No matter how many digits of
√

2 we calculate, we will never find a decimal
number equal to

√
2. The most we can do is to approximate

√
2. Thus, for instance,

when we state that the first few digits of
√

2 are 1.414, we are really stating that

1.414 ≤
√

2 ≤ 1.415;

since all quantities are positive, we can square them to obtain the equivalent in-
equality

1.4142 ≤ 2 ≤ 1.4152,

a statement that can be tested without already “knowing” the value of
√

2.
When we want to deal with real numbers (and in particular, with irrational

numbers), we almost always end up dealing with inequalities and approximations
rather than actual equations. Thus, we are going to spend some time reviewing
how exactly inequalities may be manipulated.

A word on things to come: the “skyscraper” of analysis is all about inequal-
ities. However, once we get to the “cloud castle” of calculus, we will be back to
caring mostly about equations. Thus, somehow, in the process of climbing to
the top of the skyscraper, the inequalities get translated back into equalities.
This is done using rules like the following:

Theorem. (to be proved later in the course) Let x be a nonnegative real
number. If we want to show that x = 0, it suffices to show the following: for
every positive number ε,

x < ε.

Typically, when you see the symbol ε (Greek letter epsilon), you should
think “small positive number.” This is purely psychological: the statement
would be just as correct if you replaced every ε with a y. Nevertheless, this
“psychological” choice of variable can provide an important guide for intuition.
When you see a statement like the theorem above, you should get the following
idea:

Date: 3 October 2012.

1



2 CHARLES STAATS

“If we can do a good enough job of showing that x is really
close to zero, we’ll know that x is actually equal to zero.”

2. Rules for manipulating inequalities

If you read Section 0.2 of the textbook, you’ll see a lot of talk about “solving”
inequalities. The homework problems will use this term, so you’ll need to make
sure you understand what the authors mean by it. However, I prefer to think of
“manipulating” inequalities rather than “solving” them. For instance, if you use
the authors’ methods to “solve” the inequality

x2 < 2,

you’ll get something like

−
√

2 < x <
√

2.

However, since
√

2 is hard to calculate, the initial inequality may be easier to work
with than the “solved” version.

Nevertheless, the basic tools are the same whether you want to “solve” inequal-
ities or simply “manipulate” them. I’ve distributed a handout of rules that you
should use for reference. I am also going to draw pictures showing how these oper-
ations work on the number line, which may help you understand why the inequality
sign is reversed in some cases, but not others.

• Rule 1:
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• Rules 2 and 3:

Here are a few “traps” you may be tempted to run into, if you’re used to solving
equations rather than inequalities:

• “I can multiply both sides by the same number.” ISSUE: You need to
check the sign first. If you’re multiplying by a positive number, you’re fine.
But if you’re multiplying by a negative number, you need to reverse the
direction of the inequality sign.
• “I can square both sides.” ISSUE: This only works if both sides are posi-

tive.
• “If I have an inequality like (x−a)(x−b) < 0, where a product is compared

to zero, I can split it into the factors: x−a < 0, x− b < 0.” ISSUE: What
you can actually say in this particular case is that x − a and x − b have
opposite signs. In other words, one is positive and the other is negative.
Quadratic inequalities are more complicated than quadratic equations.

If there’s an “interesting idea” in manipulating inequalities, it’s this: in some situ-
ations (for instance, in quadratic inequalities), we divide into cases, connected by
words like and and or. At this point, we are not only doing algebraic manipula-
tions. We are also playing around with the logical relationships among the different
inequalities. Here’s an example:

Example. (Example 3, Section 0.2 in text) Consider the inequality x2−x < 6.
Much as in the case of quadratic equations, we start out by making one side
zero and factoring the other side:

x2 − x < 6

x2 − x− 6 < 0 (subtract 6 from both sides)

(x− 3)(x + 2) < 0 (factor)

Now, this single inequality is equivalent to the statement that x− 3 and x + 2
have opposite signs.
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At this point, the purely algebraic route would be to consider four cases
separately, and see which numbers are encompassed by each case:

However, it turns out that looking at a more geometric picture, involving a
number line, can help to elucidate the process:

The number line suggests that we only need to consider three cases:

x < −2

−2 < x < 3

3 < x

This is a “shortcut” to seeing certain redundancies: for instance, if x < −2,
then we don’t have to specify whether x is less than 3—we already know.

0pt50pt

0pt50pt
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Assignment 0 (due Friday, 5 October)

“Problems” 1 and 3 on page 33 of the book you will find at http://www.phy.

duke.edu/~rgb/Class/intro_physics_1/intro_physics_1.pdf. These “prob-
lems” involve doing some reading—three times—and writing a couple of short
essays. This portion of the book gives advice on how to learn. It’s by one of
my favorite professors when I was a college student. The essays will be collected
and graded (by the instructor).

Additional instructions:

(1) The essay(s) about your own past learning experience(s) are about your
experiences. The reading assignment should help you think about the past
experiences, but Prof. Brown’s essay is not the subject. (On the other hand,
his technique is, to some extent, the subject of the final “essay.”)

(2) I encourage you to submit multiple drafts of the same essay, rather than
three different essays. However, I also require that each draft should be
written without looking at the previous drafts. [This is something of an
experiment; let me know how it goes.]

One final note: The assignment will be literally impossible to complete unless you
start it by Wednesday, since part of the assignment is to work on three different
days.

Assignment 1 (due Monday, 9 October)

Read “A Bit of Logic” and “Quantifiers” on pp. 4–6.
Problem Set 0.1, numbers 27, 28, 45, 46, 63, and 64. Problems 27, 45, and 46 will
be graded carefully.

Read pp. 8–9.
Problem Set 0.2, numbers 3, 4, and 12. Problems 4 and 12 will be graded carefully.
DO NOT use the quadratic formula on problem 12.

Bonus Exercise. Show that the following three conditions on a positive real num-
ber x are equivalent:

(i) x <
√

2.
(ii) x2 < 2.
(iii) There exists y such that (x < y and y2 < 2). (Hint: use the Theorem on

page ??.)
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1. Statements and conditions

A mathematical statement is either true or false. For instance, 0 < 1 is true,
while 0 = 1 is false.

We can build statements out of other statements using the logical operators and,
or, and not.

Statement In Words True or False?
(0 < 1) or (0 = 1) At least one of the two state-

ments (0 < 1), (0 = 1) is true.
True

(0 < 1) and (0 = 1) Both of the statements (0 < 1),
(0 = 1) are true.

False

not (0 < 1) The statement (0 < 1) is false. False

Sometimes a statement may involve a variable. The statement x < 1 is either
true or false, but we can’t tell which until someone tells us what x is. This sort of
statement might be called a condition on x.

Two conditions on x are equivalent if they hold for exactly the same values of x.
For instance, the condition x 6= 0 is equivalent to the condition

(
(x > 0) or (x <

0)
)
, since in both cases, the statement is true precisely when x is nonzero. There

are several ways to say this:

P (x) is equivalent to Q(x).
P (x) if and only if Q(x).

P (x) ⇐⇒ Q(x)

They all mean the same thing.

2. Sets and interval notation

When we have a condition on numbers, we can consider the set of all numbers
that satisfy this condition. Thus, for instance,

{x | x ≤ 3}

means “the set of all numbers x fulfilling the condition that x ≤ 3,” or more simply,
“the set of all numbers ≤ 3.”

There are certain important sets that are commonly denoted using what is called
interval notation.
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Notation Meaning Picture

(a, b) {x | a < x < b}
a b

[a, b] {x | a ≤ x ≤ b}
a b

(a, b]
a b

[a,∞)
a

To go from a set back to the condition, we use the symbol ∈, read “is an element
of” or more simply “in.”

Example. Write the condition

x ∈ [−1, 4)

without using any set-theoretic notation.

Solution. −1 ≤ x < 4 �

Two conditions are equivalent if and only if the corresponding sets are equal.

Warning. There is an important semantic distinction between a condition and
the corresponding set. A condition on x is either true or false, depending on
the value of x. A set cannot be true or false—it simply is.

In the other direction, two sets are equal if they contain exactly the same
numbers. Two conditions can be equivalent, but it does not really make sense
to ask whether they are equal.

In short: A set is a kind of mathematical object. A condition is a way of
talking about mathematical objects. These two concepts, like the words eat and
food, are closely related but cannot be used interchangeably.

3. Functions: writing f instead of
√

[Note: the following history is partly fictional. But it could have happened this
way, and in my opinion, it’s a lot more interesting to think about it like this than
just to go through a dry “definition of a function.”]

For many centuries, algebra was, essentially, the study of formulas. Periodically,
when dealing with formulas, people would pose a problem that could not be solved
using existing formulas. For instance, to the ancient Greeks, such a problem was,
“What is the side length of a square with area 2?” They knew that the answer would
be a solution to the equation x2 = 2. Unfortunately, this presented a dilemma, since
they had no formulas to solve such an equation.

There were, roughly speaking, two approaches to this dilemma. One approach,
which was taken by Diophantus of Alexandria in the third century A.D., was to
accept that certain equations have no solutions, and then try to determine which
equations had solutions and which did not. Diophantus produced some marvelous
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mathematics this way, and the sorts of questions he asked have become important
in many areas—for instance, in modern cryptography.

Unfortunately, Diophantus’ marvelous mathematics was little comfort to the
farmer who wanted to know how long his fence should be to get a square corral
with a given area. The other approach, which might have been more useful to
said farmer, was to say, “well, since we don’t have a formula for this, let’s invent
one—and then figure out how to calculate it.” Thus, the square root was born.

As the centuries progressed, mathematicians continued to add new notation to
their formulas—exponential, logarithm, sine and cosine, and others. But eventually,
this approach stopped working. In studying differential equations, the variety of
solutions became so great that it was wholly impractical to invent a new notation
for every type of solution. Thus, they started using the same notation, f(x), for
many different “formulas.” They might say something like, “Let f be defined as
the solution to the differential equation under consideration,” and then proceed to
use f as though it were

√
. Later on, they might use the same letter f for the

solution to a different equation.
In mathematics, notation is usually just notation. But sometimes, a new notation

can lead to new insights. For instance, the symbol 0 was originally introduced as a
placeholder, so that one could write down numbers like 101. But once the symbol
was introduced, people began to realize that it made sense to think of zero as a
number—a conceptual breakthrough.

In the case at hand, mathematicians began to realize that they could study the
“set of all things that can be written as f .” In trying to understand what these
“things that can be written as f” really were, they came up with the following
definition.

Definition. A function f is a rule that, given a number x, outputs a number f(x).

Let’s consider the case of the square root function f , defined by f(x) =
√
x (or,

if you prefer, defined by f =
√

). We would like to define f as follows:

For each number x, the function f assigns to x that number y such
that y2 = x.

Unfortunately, this definition has a couple problems:

• This definition is ambiguous. For instance, if x = 1, then f(x) could
be either 1 or −1. To resolve this ambiguity, we require that f(x) be
nonnegative.
• If x is negative, there is no number y such that y2 = x; in this case, f(x)

is undefined.

To resolve these difficulties, we make the following, better definition:

For each nonnegative number x, the function f assigns to x the
unique nonnegative number y such that y2 = x.

The second difficulty, in particular, illustrates an important fact: a function may
be defined on only some real numbers.

Definition. The domain of a function is the set of all numbers x such that f(x)
is defined.

Definition. Let f and g be functions. We say that f = g if f and g have the same
domain, and for every value of x in that domain, f(x) = g(x).
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Warning. If f is a function, it may be tempting to write something like

f = x2 + 1.

This “equation” makes no sense. f is a function, whereas x2 + 1 is a number (even
if we’re not sure which number it is). It does not make any sense to ask whether a
function is equal to a number; they are simply different kinds of objects. If you use
this sort of sloppy notation on homework or tests, you will lose points for it.

4. Graphing functions

One of the keystones of modern mathematics is the interaction between algebra
and geometry via the graphing of equations. In some cases, one can use algebra to
prove a geometric result; you may have seen this sort of analysis used in analyzing
the conic sections. However, in this course, we will be going mostly in the opposite
direction: we will be using the geometry to gain additional insight about the algebra.
Hopefully, my pictures last lecture explaining certain inequality rules give examples
of how this can work.

The basic approach to graphing functions is quite simple:

(1) Choose some values of x.
(2) Calculate and plot the points (x, f(x)).
(3) “Connect the dots.”

Example. Graph the function f defined by f(x) = x2.

Solution. We first calculate f at a few points:

x f(x)
-2 4
-1 1
0 0
1 1
2 4

Now, we plot these points and “connect the dots”:

And, in this case, it works like a charm! �
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5. Digression: Completing the square (avoiding the quadratic
formula)

The quadratic formula is, in my opinion, drastically overemphasized in most
algebra courses. It is rather ridiculous that people who have not studied math
in thirty years might walk around remembering some (probably wrong) variant of
“minus b plus or minus the square root of b squared minus four ac all over two a”
without any recollection of why this is significant. Thus, I am going to forbid you to
use the quadratic formula on anything you turn in (including tests and homework).
Instead, I will expect you to use the technique of completing the square, which is a
much more powerful idea that is in fact used to derive the quadratic formula. It’s
also easier to remember, in that the only formula involved is (b/2)2.

Example. (Example 13 in the book.) “Solve” the inequality x2 − 2x− 4 < 0. Do
not use the quadratic formula.

Solution. Recall the important process of completing the square: to complete the
square of x2 ± bx, add ( 1

2b)
2. In our case, b = −2, so ( 1

2b)
2 = (−1)2 = 1. So, we

need to turn the left side into x2 − 2x + 1. We do this by adding 5 to both sides.

x2 − 2x− 4 < 0

x2 − 2x + 1 < 5

(x− 1)2 < 5

|x− 1| <
√
|5| =

√
5

Thus,

−
√

5 < x− 1 <
√

5

1−
√

5 < x < 1 +
√

5. �
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Assignment 1 (due Monday, 9 October)

Read “A Bit of Logic” and “Quantifiers” on pp. 4–6.
Problem Set 0.1, numbers 27, 28, 45, 46, 63, and 64. Problems 27, 45, and 46 will
be graded carefully.

Read pp. 8–9.
Problem Set 0.2, numbers 3, 4, and 12. Problems 4 and 12 will be graded carefully.
DO NOT use the quadratic formula on problem 12.

Bonus Exercise. Show that the following three conditions on a positive real num-
ber x are equivalent:

(i) x <
√

2.
(ii) x2 < 2.

(iii) There exists y such that (x < y and y2 < 2). (Hint: use the Theorem on
the first page of Lecture 2.)

Assignment 2 (due Wednesday, 11 October)

Section 0.2, problems 45 and 46. DO NOT use the quadratic formula, contrary to
the book’s instructions. Problem 46 will be graded carefully.

Skim Section 0.3 (pp. 16–22). Do the Concepts Review on p. 22 (answers on p. 24)
to see if you need to read the section more closely; don’t hand this in.

You may want to look at Example 3, p. 18. This process of completing the square
is important. Make sure you understand it.

Do Section 0.3, problems 17, 18, 23, and 24. Problems 18 and 24 will be graded
carefully.

Section 0.5, problem 2. This problem will be graded carefully.
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1. Clarification on implication

Some people last lecture found the implication

x > 3 =⇒ x ≥ 3

confusing. I suspect that their confusion may have stemmed from thinking that “if
x ≥ 3, then x might be 3.” Stringing these two implications together would give

x > 3 =⇒ x ≥ 3 =⇒ x might be 3.

Thus, we seem to have shown that if x > 3, then x might be 3, which is absurd.
The error here is the usage of “might be.” A mathematical statement like x = 3

is either true or false, even when we don’t know which. We might say that a
statement “might be true” if we are, e.g., describing the narrative structure of a
proof. But using the sentence “x might be 3” as an actual mathematical statement
in a string of implications makes no sense: either x is equal to 3, or it’s not.

For an example in real life, consider:

• If it is January, then it is not February.
• If it is not February, then it might be March.

Each of these seems plausible. But if we string them together, we get

• If it is January, then it might be March,

which is an absurd statement. The error is in including the verb “might be” in a
logical statement: such statements are either true or false.

It may be helpful to remember the slogan

“Is or is not ; there is no ‘might be.’ ”

2. Digression: Completing the square (avoiding the quadratic
formula)

The quadratic formula is, in my opinion, drastically overemphasized in most
algebra courses. It is rather ridiculous that people who have not studied math
in thirty years might walk around remembering some (probably wrong) variant of
“minus b plus or minus the square root of b squared minus four ac all over two a”
without any recollection of why this is significant. Thus, I am going to forbid you to
use the quadratic formula on anything you turn in (including tests and homework).
Instead, I will expect you to use the technique of completing the square, which is a
much more powerful idea that is in fact used to derive the quadratic formula. It’s
also easier to remember, in that the only formula involved is (b/2)2.

Example 1. (Example 13 in the book.) Describe the solution set for the inequality
x2 − 2x− 4 < 0. Do not use the quadratic formula.
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Solution. Recall the important process of completing the square: to complete the
square of x2 ± bx, add ( 1

2b)
2. In our case, b = −2, so ( 1

2b)
2 = (−1)2 = 1. So, we

need to turn the left side into x2 − 2x + 1. We do this by adding 5 to both sides.

x2 − 2x− 4 < 0

x2 − 2x + 1 < 5

(x− 1)2 < 5

|x− 1| <
√
|5| =

√
5

Thus,

−
√

5 < x− 1 <
√

5

1−
√

5 < x < 1 +
√

5.

Hence, the solution set is (1−
√

5, 1 +
√

5). �

3. Functions: writing f instead of
√

[Note: the following history is partly fictional. But it could have happened this
way, and in my opinion, it’s a lot more interesting to think about it like this than
just to go through a dry “definition of a function.”]

For many centuries, algebra was, essentially, the study of formulas. Periodically,
when dealing with formulas, people would pose a problem that could not be solved
using existing formulas. For instance, to the ancient Greeks, such a problem was,
“What is the side length of a square with area 2?” They knew that the answer would
be a solution to the equation x2 = 2. Unfortunately, this presented a dilemma, since
they had no formulas to solve such an equation.

There were, roughly speaking, two approaches to this dilemma. One approach,
which was taken by Diophantus of Alexandria in the third century A.D., was to
accept that certain equations have no solutions, and then try to determine which
equations had solutions and which did not. Diophantus produced some marvelous
mathematics this way, and the sorts of questions he asked have become important
in many areas—for instance, in modern cryptography.

Unfortunately, Diophantus’ marvelous mathematics was little comfort to the
farmer who wanted to know how long his fence should be to get a square corral
with a given area. The other approach, which might have been more useful to
said farmer, was to say, “well, since we don’t have a formula for this, let’s invent
one—and then figure out how to calculate it.” Thus, the square root was born.

As the centuries progressed, mathematicians continued to add new notation to
their formulas—exponential, logarithm, sine and cosine, and others. But eventually,
this approach stopped working. In studying differential equations, the variety of
solutions became so great that it was wholly impractical to invent a new notation
for every type of solution. Thus, they started using the same notation, f(x), for
many different “formulas.” They might say something like, “Let f be defined as
the solution to the differential equation under consideration,” and then proceed to
use f as though it were

√
. Later on, they might use the same letter f for the

solution to a different equation.
In mathematics, notation is usually just notation. But sometimes, a new notation

can lead to new insights. For instance, the symbol 0 was originally introduced as a
placeholder, so that one could write down numbers like 101. But once the symbol
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was introduced, people began to realize that it made sense to think of zero as a
number—a conceptual breakthrough.

In the case at hand, mathematicians began to realize that they could study the
“set of all things that can be written as f .” In trying to understand what these
“things that can be written as f” really were, they came up with the following
definition.

Definition. A function f is a rule that, given a number x, outputs a number f(x).

Let’s consider the case of the square root function f , defined by f(x) =
√
x (or,

if you prefer, defined by f =
√

). We would like to define f as follows:

For each number x, the function f assigns to x that number y such
that y2 = x.

Unfortunately, this definition has a couple problems:

• This definition is ambiguous. For instance, if x = 1, then f(x) could
be either 1 or −1. To resolve this ambiguity, we require that f(x) be
nonnegative.
• If x is negative, there is no number y such that y2 = x; in this case, f(x)

is undefined.

To resolve these difficulties, we make the following, better definition:

For each nonnegative number x, the function f assigns to x the
unique nonnegative number y such that y2 = x.

The second difficulty, in particular, illustrates an important fact: a function may
be defined on only some real numbers.

Definition. The domain of a function is the set of all numbers x such that f(x)
is defined.

Definition. Let f and g be functions. We say that f = g if f and g have the same
domain, and for every value of x in that domain, f(x) = g(x).

Warning. If f is a function, it may be tempting to write something like

f = x2 + 1.

This “equation” makes no sense. f is a function, whereas x2 + 1 is a number (even
if we’re not sure which number it is). It does not make any sense to ask whether a
function is equal to a number; they are simply different kinds of objects. If you use
this sort of sloppy notation on homework or tests, you will lose points for it.
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Assignment 2 (due Wednesday, 10 October)

Section 0.2, problems 45 and 46. DO NOT use the quadratic formula, contrary to
the book’s instructions. Problem 46 will be graded carefully.

Skim Section 0.3 (pp. 16–22). Do the Concepts Review on p. 22 (answers on p. 24)
to see if you need to read the section more closely; don’t hand this in.

You may want to look at Example 3, p. 18. This process of completing the square
is important. Make sure you understand it.

Do Section 0.3, problems 17, 18, 23, and 24. Problems 18 and 24 will be graded
carefully.

Section 0.5, problem 2. This problem will be graded carefully.

Assignment 3 (due Friday, 12 October)

Section 0.2, problems 49 and 51. Both of these will be graded carefully.

Section 0.5, problem 13. This will be graded carefully.

Section 0.6, problems 13–16. Problems 14 and 16 will be graded carefully.
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CHARLES STAATS

1. Composing functions

In the functions above, I always used x for a variable. There is nothing special
about x; the square root function can be defined by f(t) =

√
t just as easily as

f(x) =
√
x. More importantly, we can plug in other things for a variable—numbers,

other variables, expressions, even other functions. For instance, if f is defined by
f(x) = x2, then we may write things like

f(−2) = (−2)2 = 4

f(x+ t) = (x+ t)2 = x2 + 2tx+ t2

f(x2) = (x2)2 = x4.

Note that none of these is a definition for f ; they are all consequences of the
definition that f(x) = x2.

If f and g are both functions, then we may define a new function, denoted f ◦ g,
by

(f ◦ g)(x) = f(g(x)).

This is called the composition of f and g; it is read “f composed with g.”

Example. Let f be the function x 7→ x2, and let g be the function x 7→ x2 + 1.
Compute f ◦ f , f ◦ g, and g ◦ f .

Solution. f ◦ f is defined by

(f ◦ f)(x) = f(x2) = (x2)2 = x4.

f ◦ g is defined by

(f ◦ g)(x) = f(x2 + 1) = (x2 + 1)2 = x4 + 2x2 + 1.

g ◦ f is defined by

(g ◦ f)(x) = g(x2) = (x2)2 + 1 = x4 + 1.

We could just as well have computed g ◦ f by

(g ◦ f)(x) = (f(x))2 + 1 = (x2)2 + 1 = x4 + 1. �

Note that functional composition is not commutative: in the example above,
f ◦ g is not equal to g ◦ f .

Date: 10 October 2012.
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2. Graphing functions

One of the keystones of modern mathematics is the interaction between algebra
and geometry via the graphing of equations. In some cases, one can use algebra to
prove a geometric result; you may have seen this sort of analysis used in analyzing
the conic sections. However, in this course, we will be going mostly in the opposite
direction: we will be using the geometry to gain additional insight about the algebra.
See, for instance, the discussion of the triangle inequality above.

The basic approach to graphing functions is, of course, quite simple:

(1) Choose some values of x.
(2) Calculate and plot the points (x, f(x)).
(3) “Connect the dots.”

Example. Graph the function f defined by f(x) = x2.

Solution. We first calculate f at a few points:

x f(x)
-2 4
-1 1
0 0
1 1
2 4

Now, we plot these points and “connect the dots”:

And, in this case, it works like a charm! �

Question: How do I know when I’ve plotted enough points?

You don’t—not really. Later on, we’ll discuss how to show definitively that
you’ve plotted enough points, but no one ever does this in real life. But here are
some general guidelines. They’re not guaranteed to work, but they usually do if
you’re smart about it.

(1) Make sure it is “clear” how to connect the dots. If your points are too far
apart, either vertically or horizontally, you may need to plot some more.
Generally speaking, you want the graph to be going “up” or “down” for
several points at a time.
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(2) Use your knowledge of the function. If the graph you’ve drawn is a line, then
the function had better be equal to a function of the form f(x) = mx+ b;
if it’s not, then you probably need to plot some more points.

If your function has an (x−a) in the denominator, then you are dividing
by zero at x = a. So, you probably want to plot extra points near x = a.

(3) Test some extra points in between the one you’ve already plotted. When
you think you know what the graph looks like, plot a few more points in
between the ones you’ve already plotted. If they are about where your
drawing says they should be, that’s a good sign.

Question: How do I know I’ve got all the interesting features of the
graph?

The best answer to this is to use calculus. Since we can’t do that yet, it may be
helpful to try to figure out what the function looks like in the “boring” part. Most
of the functions we will give explicit formulas for this quarter will look like axn for
very positive and very negative values of x. When the function starts looking like
this, there’s a good chance you’re in the “boring” part.

You do probably want to make sure you get all the x-intercepts, i.e., all the
points where f(x) = 0.

Issue: Discontinuities; undefined points
You probably want to figure out what the function’s “natural domain” is, i.e.,

where it is defined. Make sure to figure out what is going on at the “edges” of this
natural domain. If the domain can be written in interval notation, see what’s going
on near the (non-infinite) endpoints of all the intervals

If the function is piecewise-defined, you usually don’t want to try to “connect
the dots” between different pieces.

Things that can go right
For the most part, the discussions above focus on things that can go wrong.

Sometimes there are also things that can be helpful. For instance, lines are very
easy (more on this in a bit).

Other important techniques include translations. If you can write f(x) as g(x)+c,
where c is a constant, then the graph of f(x) can be obtained from the graph of g(x)
by translating up by c. This can be useful, because g might be nicer algebraically
than f . If you can write f(x) = g(x− c), then the graph of f is obtained from the
graph of g by translating g to the right by c.

Example. Graph the function f defined by f(x) = (x− 1)2 − 2.

Solution. If g(x) = x2, then f(x) = g(x − 1) − 2. Thus, take the graph of g, and
translate it one to the right and down two.
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�
Example. Recall the inequality from the end of the last lecture:

f(2x) ≤ x+ 1,

where

f(x) =

{
x+ 1 if x ≤ 1

x− 1 if x > 1.

Graph the functions g(x) = f(2x) and h(x) = x + 1. Use the resulting graph to
study the set of values of x satisfying the inequality g(x) ≤ h(x).

3. Working with absolute values

Recall the absolute value function,

|x| =
{
x if x ≥ 0,

−x if x < 0.

The graph of this function is

x

f(x)

−3 −2 −1 1 2 3

−1

1

2

3

When asked to “solve” an inequality or an equation involving absolute values, it
is always possible to get rid of the absolute values by splitting into cases. However,
this can be ridiculously involved. The first pair of absolute value signs gives us two
cases. If there is a second pair of absolute value signs, then each of these two cases
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splits into two subcases, for a total of four subcases. If there is a third occurrence
of an absolute value, we end up with eight subsubcases. And so on.

For this reason, we often try to take “shortcuts,” using rules for manipulating
absolute values.

The rules for multiplication and division are easy:

|ab| = |a||b|
∣∣∣a
b

∣∣∣ =
|a|
|b|

If we want to do addition or subtraction, the rules are not nearly so nice. We end
up with inequalities rather than equations:

|a+ b| ≤ |a|+ |b|
|a− b| ≥ |a| − |b|.

The textbook calls the addition rule the “Triangle Inequality.” This term is
properly reserved for another inequality. Consider three points P,Q, and R. Let
d(P,Q) denote the distance from P to Q.

The standard fact that “the shortest distance between any two points is a line”
tells us that

d(P,R) ≤ d(P,Q) + d(Q,R).

If a, b, and c are real numbers, they also represent points on the number line.
Moreover, the distance between a and b is precisely |b − a|, and so the triangle
inequality for absolute values is

|c− a| ≤ |b− a|+ |c− b|.
We can deduce the addition rule from this: Let a = 0, b = α, and c = α+β. These
substitutions were chosen precisely so that

c− a = α+ β

b− a = α

c− b = β.

Thus, the triangle inequality gives us

|α+ β| ≤ |α|+ |β|,
which is the addition rule.
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Thinking about absolute values as “distance” can also be helpful in figuring out
how to simplify absolute value inequalities.

4. Quantifiers

Recall the two inequalities

|a+ b| ≤ |a|+ |b| “Addition Rule”

|a− b| ≥ |a| − |b|. “Subtraction Rule”

I’m about to show how the Addition Rule implies the Subtraction Rule. I’ll also
use this as an excuse to discuss quantifiers.

Example. Take the following statement as given: For every pair of real numbers
a and b,

|a+ b| ≤ |a|+ |b|.
Use it to prove the Subtraction Rule: For every pair of real numbers a and b,

|a− b| ≥ |a| − |b|.
Solution. The Addition Rule applies to every pair of real numbers. We’ve chosen
to write this pair as a and b. But if a and b are a pair of real numbers, so are b and
a− b. Applying the Addition Rule to the pair b, a− b, we obtain

|b+ (a− b)| ≤ |b|+ |a− b|
|a| ≤ |b|+ |a− b|

|a| − |b| ≤ |a− b|
|a− b| ≥ |a| − |b|. �

Let’s review the logic here. The Subtraction Rule has the appearance of a
condition on a and b: that |a+ b| ≥ |a| − |b|. Let’s call this condition P (a, b). Like
all conditions, P (a, b) is either true or false, but in principle, we don’t know which
until someone tells us what a and b are.

However, we want to show that this condition P (a, b) holds for every possible
choice of a and b. Statements of the form

for all x, the condition P (x) holds

will be increasingly common as we progress into the study of limits, continuity, and
ultimately derivatives. The part of the statement “for all x” is called a quantifier.
It may seem more reasonable to talk about “the quantifier” when we write the
statement in symbols:

∀x, P (x),

where ∀ stands for “for all.” In this case, ∀ is the quantifier. The other important
quantifier is ∃, which stands for “there exists.” For instance,

Let x be a positive real number. Show that there exists another
positive real number y such that y < x.

When you are asked to prove a statement involving quantifiers, there’s a typical
narrative structure that is involved. It’s easier to describe for the ∀ quantifier. If
you are asked to prove that

for every positive real number x, P (x),

the proof typically starts out something like this:
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Let x be a positive real number. We’ll show that P (x) is true.

An important note here is that when you say, “Let x be a . . . ,” you don’t get to
choose x. If it helps, imagine that someone else—an “opponent” or “enemy”—is
going to try to find an x to spite you. What you are doing for the rest of the proof
is showing that, no matter what x they choose, P (x) holds.

The narrative structure for a ∃ proof is a bit more confusing, because the way
you tell the proof is usually in the opposite order from the way you figure out the
proof. If you’re going to prove that

∃y > 0 such that y < x,

the proof you tell is probably going to have two steps:

(1) Here’s a specific number y > 0 that I’ve dreamed up. For instance, y = 1
2x.

(2) Here’s why this specific y satisfies y < x.

The trouble is, when you are figuring out the proof, it is often not clear what y you
should pick. You have to wrestle with the condition on y until you have some y
that you know (or at least suspect) works. And all of this initial work gets left out
of the story you tell.
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Assignment 3 (due Friday, 12 October)

Section 0.2, problems 49 and 51. Both of these will be graded carefully.

Section 0.5, problem 13. This will be graded carefully.

Section 0.6, problems 13–16. Problems 14 and 16 will be graded carefully.

Assignment 4 (due Monday, 15 October)

Section 0.2, problems 35, 36, 37, 38, 39, and 40. Problems 38 and 40 will be graded
carefully.

Solve each of the following inequalities two different ways:

(a) By factoring.
(b) By completing the square.

Make sure you get the same answer both ways.

1. x2 − 1 ≤ 0

2. x2 − 4x+ 3 < 0

3. x2 + 2x− 3 ≥ 0

4. x2 + 2x− 3 > 0

Problems 2 and 3 will be graded carefully.



Lecture 6 is omitted, primarily because the lecture notes ended up including
no material that actually needs to be studied in this course.

28
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INSTRUCTOR: CHARLES STAATS

1. Test next week (week 4)

This is a head’s up that there will be a test during Week 4, although I do not yet
have many details about what will be covered and on which day it will take place.

2. Limits as x→ c: an intuitive picture

It should come as a surprise to no one that a few minutes of the lecture today
will be spent on the definition of the limit. Let’s take a moment for a terribly
imprecise, but intuitively useful, version:

Definition. (Terribly Imprecise Version) We say that

lim
x→c

f(x) = `

if the following holds:

When x is close to c, then f(x) is close to `.

First, let’s see how the “bow tie” picture captures this:

x

y

f(x)`

c

If there exists a bow tie about the point (c, `) containing the graph of f , then f(x)
is forced to become closer to ` as x becomes closer to c.

The “real” definition, you may recall, is the following:

Definition. We say that
lim
x→c

f(x) = `

if the following holds:

∀ε > 0 ∃δ > 0 s.t. (|x− c| < δ and x 6= c) =⇒ |f(x)− `| < ε.

Date: 15 October 2012.

1
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We can imagine this as a “game” as follows:

∀ε > 0,
︸ ︷︷ ︸

opponent’s
move

∃δ > 0
︸ ︷︷ ︸

our
move

such that if |x− c| < δ and x 6= c, then |f(x)− `| < ε.
︸ ︷︷ ︸

judge’s decision

This relates to the intuitive notion, “If x is close to c then f(x) is close to `,”
because both of the “moves” amount to choosing a definition for close to.

(1) First, the opponent decides what it means to say “f(x) is close to `.” He
does this by choosing ε > 0, and then saying “f(x) is close to `” means
precisely “f(x) is within ε of `.”

(2) Second, we, knowing what ε the opponent has chosen, get to decide what
it means to say “x is close to c.” We do this by choosing δ > 0, and then
saying “x is close to c” means precisely “x is within δ of c (but not equal
to c).”

(3) Finally, the judge takes our definitions and decides whether or not the basic
statement is true: “When x is close to c, then f(x) is close to `.” If it is
true, we win; if not, the opponent wins.

The technical definition thus amounts to the following:

No matter how we define “f(x) is close to `,” there is a definition
of “x is close to c” such that when x is close to c, then f(x) is close
to `.

For a specific δ and ε, the picture looks like this:

x

y

f(x)`

c

`+ ε

c+ δ

`− ε

c− δ

The statement

(|x− c| < δ and x 6= c) =⇒ |f(x)− `| < ε

holds true as long as the function remains within the shaded area. We want to
ensure that this works, i.e., that the “judge rules in our favor.”
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Here’s the relation between this and the bow tie thing: the bow tie determines
acceptable “railroad tracks” for the corners of the ε-δ box:

x

y

f(x)`

c

`+ ε

c+ δ

`− ε

c− δ

3. Assignment 5 (due Wednesday, 17 October)

Complete the attached worksheet on graphing piecewise-defined functions. I sup-
pose these will all be graded carefully, if only because it is easy to look at a graph
and see whether it is correct.

Additionally:

• On Problem 2 of the worksheet, draw a Lipschitz bow tie about the point
(2, 3) that contains the function’s graph where it should. Conclude that
the Lipschitz limit of f(x) as x→ 2 is 3.
• On Problem 1 of the worksheet, make a good effort to draw a Lipschitz bow

tie about the point (0,−1). Indicate (by circling or highlighting) the part of
the graph of f that should be contained in this bow tie, but is not. (Since
it is not true that limx→0 f(x) = −1, no bow tie you draw will actually
work; but you should at least be able to make it work on the right-hand
side.)

Again, these will all be graded carefully.



Worksheet: Graphing piecewise-defined functions

Math 131, Section 42

Due Wednesday, 17 October, 2011

Please graph the following functions. The first two are done for you.

1. f(x) =

{
x + 1, if x < 0,

x− 1, if x ≥ 0.

x

f(x)

2. f(x) =





1 if x ≤ 0,

x + 1 if 0 < x < 2,

−(x− 2)2 + 3 if 2 ≤ x.

x

f(x)

1



3. f(x) =





3 if x ≤ −1.5,

2 if − 1.5 < x < −1.25,

1 if − 1.25 ≤ x < 1.25,

2 if 1.25 ≤ x < 1.5,

3 if 1.5 ≤ x.

x

f(x)

4. f(x) =





5x + 7, if x ≤ −2,

2x + 1, if − 2 < x ≤ 0,

1 − 2x, if 0 < x ≤ 2,

2, if 2 < x.

x

f(x)

2



5. f(x) =

{
−x2 − 4 if x ≤ 1,

x + 2 if x > 1.

x

f(x)

6. f(x) =





(x + 1)2 if x < 0,

x2 if 0 ≤ x ≤ 1,

2 − 2x if 1 < x.

x

f(x)

3



7. Now, you supply an interesting piecewise-defined
function and graph it.

f(x) =





if
if
if

x

f(x)

4
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INSTRUCTOR: CHARLES STAATS

1. Announcements

• Test Friday, 26 October, that is, a week from Friday.
• No office hours this Friday afternoon, since I will be headed to a conference

at the University of Utah this weekend.

2. Notes from the quiz

First, some of you may be surprised, when you get back your quiz, to see how
many points I may deduct even when you get the “correct answer.” The way I see
it is this: When I ask you a question, I’m not just asking you, “Where is London?”
I’m asking you, “How do I get to London?” Someone who tells me to get to London
by walking across the Atlantic Ocean, even though they have the right “answer”
(London), will receive fewer points than someone who tells me to take a boat to
Madrid. At least the second person will get me to the right continent without
drowning.

Moreover, I’m also expecting you to show me that you know how to do everything
involved. You might think in terms of a “rough draft” versus a “final draft.” In
the “rough draft,” your goal is to figure out the answer using all the techniques
at your disposal. In the “final draft,” you are trying to write a mathematically
precise explanation for how to get to the right answer, in such a way that you are
absolutely confident it is the right answer. I don’t expect “final drafts” written
on a quiz or a test to be polished, but I do expect to see proof that the student
understands why what they are doing works.

One mistake I made, in giving instructions, has been that I have told you it
was okay to use “geometric shorthand,” without explaining precisely what this is
shorthand for. Here’s an example:

Example. Describe the solution set for the inequality

(x− 3)(x− 2) > 0.

Solution. geometric shorthand:

2 3

(−·−)=+ (−·+)=− (+·+)=+

What this is “shorthand” for:
Divide the number line into three regions: (−∞, 2) ∪ [2, 3] ∪ (3,∞). Every

real number x lies in exactly one of these regions.

Date: 17 October 2012.
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1. If x ∈ (−∞, 2), then

x− 3 < 0 (−)

x− 2 < 0 (−)
(a)

Consequently, the product is greater than zero (− · − = +), and so x is a
solution.

2. If x ∈ [2, 3], then

x− 3 ≤ 0 (−)

x− 2 ≥ 0 (+)
(b)

Consequently, the product is ≤ 0 (− ·+ = −) and so x is not a solution.

3. If x ∈ (3,∞), then

x− 3 > 0 (+)

x− 2 > 0 (+)
(c)

Consequently, the product is greater than zero (+ · + = +), and so x is a
solution.

Therefore, x satisfies the inequality if and only if x ∈ (−∞, 2) ∪ (3,∞).

What the “shorthand” omits: Proofs for the inequalities (a), (b), and
(c). If I ask for a complete, rigorous proof, you should supply these proofs as
well. �

If I let you to use the geometric shorthand, then I am, in essence, telling you
that you do not have to prove statements like (a), (b), and (c).

Inadequate shorthand: If you write, as many people did,

2 3

+ − +

then you are giving shorthand for the following:

Divide the number line into three regions: (−∞, 2) ∪ [2, 3] ∪ (3,∞). Every
real number x lies in exactly one of these regions.

1. If x ∈ (−∞, 2), then

(d) (x− 3)(x− 2) > 0,

and so x is a solution.

2. If x ∈ [2, 3], then

(e) (x− 3)(x− 2) ≤ 0,

and so x is not a solution.

3. If x ∈ (3,∞), then

(f) (x− 3)(x− 2) > 0,

and so x is a solution.
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Therefore, x satisfies the inequality if and only if x ∈ (−∞, 2) ∪ (3,∞).

Note that you are not giving any indication of how to prove inequalities (d), (e),
and (f). At this stage, I do not trust that you know how to prove these unless you
give some kind of explanation, if only something like + · − = −.

Another point that people found confusing was the following:

x2 ≤ 5⇐⇒ |x| ≤
√

5⇐⇒ x ∈ [−
√

5,
√

5]

x2 ≥ 5⇐⇒ |x| ≥
√

5⇐⇒ x ∈ (−∞,−
√

5] ∪ [
√

5,∞).

Some people wrote something like x ≤ ±
√

5, which makes no sense when dealing
with inequalities. (This is a device used for equations only.) Others wrote simply

x ≤
√

5, which may be in part my fault: in the inequality sheet I handed out, I
included a rule that

x2 ≤ y2 ⇐⇒ x ≤ y, assuming x and y are nonnegative.

I made this assumption because I did not want to have to deal with absolute values
on the first day of class. However, I can understand why you might now find this
confusing. I’ll supply a revised version of the inequality worksheet before too much
longer.

3. Using Lipschitz bow ties to obtain rules for δ in terms of ε

Suppose we have drawn a Lipschitz bow tie of width 2D and height 2E, both
positive. Then the following rule should work for choosing δ once ε is given:

• If ε > E, set δ = D.

• If ε ≤ E, set δ =

(
D

E

)
ε.
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4. Examples: Using the ε-δ definition

At this point, we’ll begin trying to understand the definition better by doing some
examples of ε-δ proofs. We are doing this to help us understand the definition, and
the concept, of limit, which is much more useful in more complicated situations.

Example. Consider the function f defined by

f(x) =

{
2x− 1 if x 6= 2,

4 if x = 2.

Its graph looks like this:

x

f(x)

Let’s use the ε-δ definition of the limit to show that

lim
x→2

f(x) = 3.

Note: When looking at this sort of example, we are not using the formal definition
of the limit to better understand the function f . We are using the function f to
better understand the definition. The formal definition becomes really useful when
we are dealing with functions f for which we don’t have formulas.

A bow tie with D = 1, E = 3 will work, which suggests we should use the
following rule:

δ =

{
1 if ε > 3,
1
3ε if ε ≤ 3.

Solution. Let ε > 0 be given.
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Case 1: ε > 3. Set δ = 1. If |x− 2| < δ and x 6= 2, then

|f(x)− 3| = |2x− 1− 3|
= |2x− 4|
= 2|x− 2|
< 2δ

= 2

< 3

< ε,

as desired.
Case 2: 0 < ε ≤ 3. Set δ = 1

3ε. Assume |x− 2| < δ and x 6= 2.
Since x 6= 2, we know f(x) = 2x− 1. Hence,

|f(x)− 3| = |2x− 1− 3|
= |2x− 4|
= 2|x− 2|
< 2δ

= 2( 1
3ε)

= 2
3ε

< ε,

as desired.

Therefore, limx→ 2f(x) = 3. �
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Assignment 6 (due Friday, 19 October)

Skim Section 1.1 of the textbook.

Section 1.1, Problem 30. This is, unusually, of the “answers only” variety. Parts
(c),(d), and (f) will be graded carefully.

Section 1.2, Problems 11 and 12. Hint: δ = 1
3ε will work for both of these problems,

if you want to skip the “preliminary analysis.” Problem 11 will be graded carefully.

In the graph below,

(a) determine, by “eyeing” the graph, the values for

lim
x→−3

f(x), lim
x→−1

f(x), and lim
x→1

f(x).

(b) At each of these three limits, draw a Lipschitz bow tie and use it to give a
valid “rule” for ε depending on δ. Note: You will need to draw the bow tie
carefully to accomplish this, and you may want to put its corners on grid
points so that you know exactly how long and how wide it is.

x

f(x)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4
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1. Announcements

• Test Friday, 26 October, that is, a week from today. The test will
cover the material from Lectures 1–9 (i.e., through today’s lecture) and
Assignments 1–8 (i.e., all mathematical assignments up to and including
the one due Wednesday).

• No office hours this Friday afternoon, since I will be headed to a conference
at the University of Utah this weekend.

2. Computing limits when they exist

One of the interesting things about limits (as well as other major characters we
will meet in the study of Calculus) is that the usual methods of computing them
look practically nothing like the definition. The following “theorem” (it’s really a
bunch of theorems stated at the same time) is essentially copied from page 68 of
the textbook, and is quite useful for evaluating limits. It gives situations in which
limits behave exactly as you might hope.

Theorem. (“Main Limit Theorem”) In the following equations, if the right
side makes sense, then the left side also makes sense and is equal to the right
side.

1. lim
x→c

k = k

2. lim
x→c

x = c

3. lim
x→c

kf(x) = k lim
x→c

f(x)

4. lim
x→c

[f(x) + g(x)] =
[

lim
x→c

f(x)
]

+
[

lim
x→c

g(x)
]

5. lim
x→c

[f(x) − g(x)] =
[

lim
x→c

f(x)
]
−
[

lim
x→c

g(x)
]

6. lim
x→c

[f(x) · g(x)] =
[

lim
x→c

f(x)
]
·
[

lim
x→c

g(x)
]

7. lim
x→c

f(x)

g(x)
=

lim
x→c

f(x)

lim
x→c

g(x)

Date: 19 October 2012.
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8. lim
x→c

[f(x)]n =
[

lim
x→c

f(x)
]n

“The right side makes sense” means, for now, that the limits in question exist
(as real numbers) and there is no division by 0.

This theorem can be proved from the definition of the limit. The proofs are not
even that difficult. But the only way they can ever be interesting is when you do
them yourself. Watching someone else do them is terribly boring, so I’ll skip the
proofs—at least for now—and move straight to discussing how to use the theorem
to actually compute limits.

Warning. If you use this theorem (typically, repeated applications of this theorem)
to compute a limit, then you will have shown, in the process, that the limit exists.
However, if you try to apply this theorem, and end up with something that makes
no sense, you will not have shown that the original limit does not exist.
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Assignment 7 (due Monday, 22 October)

• Give ε-δ proofs of the following facts:

lim
x→0

7x = 0(1)

lim
x→1

2x = 2(2)

They will both be graded carefully.

• Section 1.3, Problems 1, 2, 14, and 15. Follow the instructions. The even-numbered
problems will be graded carefully.

• In the attached handout, each of the three graphs has one good Lipschitz bow tie
and one bad one. Identify which is which. For the good bow ties, identify the limit,
and state the resulting rule for δ in terms of ε that could be used in an ε-δ proof.
All of these will be graded carefully.

Assignment 8 (due Wednesday, 24 October)

• Give ε-δ proofs of the following facts:

lim
x→− 1

2

4x+ 1 = −1(3)

lim
x→5

1
2x− 2 = 1

2(4)

They will both be graded carefully.

• Section 1.3, Problems 5, 6, 19, and 21. Follow the instructions. The even-numbered
problems will be graded carefully.

• Section 1.6, Problem 13.
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INSTRUCTOR: CHARLES STAATS

1. Announcements

Test Friday, 26 October, that is, a week from today. The test will cover
the material from Lectures 1–9 (i.e., through today’s lecture) and Assignments 1–8
(i.e., all mathematical assignments up to and including the one due Wednesday).

Promise: I will have a careful writeup of exactly what a “Lipschitz bow tie” is,
in mathematical terms, written and posted on Chalk by 10pm tonight, October 22,
2012. Studying from it may not be the best way to study, but I think it should at
least be there.

2. Continuity

Given what we’ve already seen, the simplest definition of continuity is the fol-
lowing:

Definition. A function f is said to be continuous at a point x0 if

(i) f is defined at x0, and
(ii) lim

x→x0

f(x) exists, and

(iii) lim
x→x0

f(x) = f(x0).

If f is continuous at every point of an interval, we say that f is continuous on that
interval.

If f is continuous at every point in its domain, we may say simply that f is
continuous.

Example 1. Consider the function f whose graph looks like this:

Date: 22 October 2012.
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x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

(1) At which points on the closed interval [−5, 5] is f not continuous?
f fails to be continuous at the x-values −3, 0, 1, and 3

(2) At which points in its domain is f not continuous?
The x-values −3 and 1. The other x-values listed above do not
lie in the domain of f .

Example 2. The function g defined by g(x) = 1/x

x

g(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

would be called continuous, since it is continuous on its domain; in other words, it
is continuous on the intervals (−∞, 0) and (0,∞). [It is not continuous at x = 0,
but this “does not count” because 0 is not a point of its domain; f is not defined
at 0.]
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Theorem. Every polynomial or rational function is continuous on its natural do-
main. The same holds if you throw in nth roots.

The proof of this theorem is by repeated applications of the Main Limit Theorem.
I won’t try to give the complete proof, but I will give you an example.

Example 3. Show, using the Main Limit Theorem, that the function f defined by

f(x) =
1 +
√

2x

x3 − 13

is continuous.

Solution. For every real number c such that f(c) is defined, we have

lim
x→c

f(x) = lim
x→c

1 +
√

2x

x3 − 13

=
limx→c 1 +

√
2x

limx→c x3 − 13

=
1 +
√

limx→c 2x

c3 − 13

=
1 +
√

2c

c3 − 13
= f(c).

By hypothesis, f(c) is defined, i.e., the last line makes sense. By the Main Limit
Theorem, the previous line makes sense and is equal to it, and so on all the way
up. Thus, for every c in the domain of f ,

lim
x→c

f(x) = f(c).

In other words, f is continuous. �

3. The intermediate value theorem

One intuitive notion of continuity is that a function is continuous on an interval
[a, b] if you can draw f from the point (a, f(a)) to the point (b, f(b)) without picking
up your pencil. This intuitive idea is, unfortunately, something of a dead end for
defining what “continuous” ought to mean. However, the following theorem does
seem to capture the notion that if you draw continuously from one point to another,
you have to pass through all the points in between:

Theorem. (Intermediate Value Theorem) Suppose f is continuous on the closed
interval [a, b]. Suppose we have a value y0 such that f(a) < y0 < f(b). Then f hits
the value y0 somewhere on the open interval (a, b). In other words, there exists x0
such that a < x0 < b and f(x0) = y0.
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Here’s the picture:

(a,f(a))

(x0,y0)

(b,f(b))

f(a)

y0

f(b)

a x0 b

Intuitively, for the (continuous) f to go from the line y = f(a) to the line y = f(b),
it has to pass through the line y = y0 somewhere. That “somewhere” is our x0.

We won’t try to prove this right now.

Example 4. Show that 3
√

31 exists. In other words, show that there is a positive
real number x0 such that x30 = 31.

Solution. a

0

0

31

64
(4, 64)

4x0

Let f be the function defined by f(x) = x3. Since f is a polynomial function, f is
continuous on its domain (−∞,∞), and in particular on the interval [0, 4]. Observe
that

f(0) = 0 < 31 < 64 = f(4).

Hence, there exists some x0 such that 0 < x0 < 4 and f(x0) = 31. �
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Assignment 8 (due Wednesday, 24 October)

• Give ε-δ proofs of the following facts:

lim
x→− 1

2

4x+ 1 = −1(1)

lim
x→5

1
2x− 2 = 1

2(2)

They will both be graded carefully.

• Section 1.3, Problems 5, 6, 19, and 21. Follow the instructions. The even-numbered
problems will be graded carefully.

• Section 1.6, Problem 13.

Test Friday, 26 October
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INSTRUCTOR: CHARLES STAATS III

A bow tie shaped region about the point (x0, y0) is specified by its half-width D
and half-height E as

{
(x, y) : |x− x0| < D and |y − y0| < E

D |x− x0|
}
.

One may also specify D together with the slope m; then E is given by E = mD.

x

y

x0

y0

D

E=mD

slope m=
E
D

Definition. For a given function f and a point (a, `), the bow tie shaped region
specified by D and m is a Lipschitz bow tie for f if

|x− a| < D and x 6= a =⇒ |f(x)− `| < m|x− a|.
In other words, the bow tie is Lipschitz if the graph of f(x) lies within the bow tie
whenever x is within D of a (excluding x = a).

Example 1. In the graph below, the bow tie shaped region on the right (D = 1
2 ,

E = 3
2 , m = 3) is a Lipschitz bow tie for f ; the one on the left (D = 1, E = 1,

m = 1) is not.

x

y f(x) = x2

−2 −1 1 2

1

2

3

Date: November 5, 2012.
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Definition. Let f be a function whose domain includes (a− d, a)∪ (a, a+ d). The
statement “` is the Lipschitz limit of f(x) as x→ a,” written in symbols as

Lip lim
x→a

f(x) = `,

is defined to mean the following:

∃D > 0, E > 0 s.t. if x ∈ (a−D, a) ∪ (a, a+D), then |f(x)− `| <
(
E

D

)
|x− a|.

Let’s rewrite this with some explanation:

∃ D > 0︸ ︷︷ ︸
half-width
of bow tie

, E > 0︸ ︷︷ ︸
half-height
of bow tie

s.t. if x ∈ (a−D, a) ∪ (a, a+D)︸ ︷︷ ︸
x is within D of a

, then |f(x)− `| <
(
E
D

)
|x− a|︸ ︷︷ ︸

f(x) lies within the bow tie

In other words, Lip limx→a f(x) = ` if and only if there exists a Lipschitz bow tie
for f about (a, `). Thus, for instance, in Example 1, the Lipschitz bow tie on the
right shows that

Lip lim
x→1

x2 = 1.

The bow tie on the left does not show that

Lip lim
x→−1

x2 = 1,

because it is not Lipschitz for f(x) = x2. It is nevertheless true that Lip limx→−1 x
2 =

1; even though the bow tie chosen does not work, in this case some other bow tie
would be Lipschitz.

Exercise 2. Draw a “better” bow tie about (−1, 1) on the graph for Example 1.
Use it to specify a choice of D, m, and E that will in fact give a Lipschitz bow tie,
showing that Lip limx→−1 x

2 is in fact 1.

Theorem. If Lip lim
x→a

f(x) = `, then lim
x→a

f(x) = `.

Proof. Let ε > 0. By definition of the Lipschitz limit, there exist D > 0, E > 0
such that

(1) |x− a| < D and x 6= a =⇒ |f(x)− `| <
(
E
D

)
|x− a|.

Case 1: ε ≤ E. In this case, pick

δ =
(
D
E

)
ε.

If |x− a| < δ and x 6= a, then

|x− a| < D

E
· ε

≤ D

E
· E

= D.



LIPSCHITZ BOW TIES 3

Since |x− a| < D and x 6= a, implication (1) implies that

|f(x)− `| <
(
E
D

)
· |x− a|

<
(
E
D

)
· δ

=
(
E
D

)
·
(
D
E

)
ε

= ε.

Case 2: ε > E. In this case, pick

δ = D.

If |x− a| < δ and x 6= a, then |x− a| < D. Implication (1) then implies

|f(x)− `| <
(
E
D

)
· |x− a|

<
(
E
D

)
·D

= E

< ε. �

Warning. It is not true that

lim
x→a

f(x) = ` =⇒ Lip lim
x→a

f(x) = `

Example 3. For instance, as x→ 0, 3
√
x approaches the limit 0, but the cube root

function has no Lipschitz limit as x→ 0.

x

y

f(x) = 3
√
x

No matter how steep and narrow we make the bow tie, it will never contain the
function near 0. [Note: this is not a proof.]
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1. Ways limits can fail to exist

1.1. Jumps; one-sided limits. We consider the function f defined by

f(x) =

{
1− x if x < −1,

2 + x if x > −1.

We have not defined this function at x = −1, but for the purpose of considering

lim
x→−1

f(x),

f does not have to be defined at −1; and even if it is, we don’t care what its value
is.

x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

In this situation, the limit does not exist. To handle “jumps” like this, we have the
notion of one-sided limits.

Definition. We say that “f(x) approaches ` as x approaches c from the left,”
written

lim
x→c−

f(x) = `,

if
∀ε > 0, ∃δ > 0 s.t. if c− δ < x < c, then |f(x)− `| < ε.

The boxed part says that “x is to the left of c and within δ of it”:

Date: 29 October 2012.
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c− δ c c+ δ
( )

δ

x

δ

We say that “f(x)→ ` as x→ c from the right,” written

lim
x→c+

f(x) = `,

if

∀ε > 0, ∃δ > 0 s.t. if c < x < c+ δ , then |f(x)− `| < ε.

c c+ δc− δ
( )

δ

x

Exercise 1. Using this ε-δ definition, show, for the function f defined above, that

lim
x→−1−

f(x) = 2

lim
x→−1+

f(x) = 1.

Theorem. The two-sided limit limx→c f(x) exists if and only if both the one-sided
limits exist and are equal. In this case, we have

lim
x→c−

f(x) = lim
x→c

f(x) = lim
x→c+

f(x).

This theorem is not that difficult to prove, but we will refrain because of time
constraints. The basic idea is as follows: when the opponent gives us an ε, we

• Find a δ1 that works for the left-hand limit.
• Find a δ2 that works for the right-hand.
• Set δ = min{δ1, δ2}.

1.2. Infinite limits. We say lim
x→c

f(x) =∞ if

Informal:: For arbitrarily large K, when x is sufficiently close to c, then f(x) > K.

Formal:: ∀K, ∃δ > 0 s.t. if 0 < |x− c| < δ, then f(x) > K.

We say lim
x→c

f(x) = −∞ if

Informal:: For arbitarily negative K, when x is sufficiently close to c, then

f(x) < K.

Formal:: ∀K, ∃δ > 0 s.t. if 0 < |x− c| < δ, then f(x) < K.

Example 1. If

f(x) =
1

(x+ 1)2
+

1

x− 1
,

then

lim
x→−1

f(x) =∞,
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while limx→1 f(x) does not exist in any sense. However,

lim
x→1−

f(x) = −∞

lim
x→1+

f(x) =∞.

x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

1.3. Limits that just plain don’t exist. Consider the function g defined by

g(x) =

{
0, if x is rational,

1, if x is irrational.

Consider

lim
x→0

f(x).

No matter how small x is, there are always smaller values at which f is 0 (say,
x = 1

n , for some really big integer n) and smaller values at which f is 1 (say,

x = 1
n

√
2, for an even bigger integer n). So, no version of the limit as x → 0 can

exist—not the left-hand limit, not the right-hand limit, not even if we allow limits
that are ±∞.
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x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

2. Limits as x→∞
Example 2. Consider the function f defined by

f(x) =
x2 − 1

x2 + 1
.

x

f(x)

1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

As x gets larger and larger, f(x) gets closer and closer to 1. However, it makes
no sense to say f(∞) = 1, since ∞ is not a number (and even if it were, f is not
defined there). Thus, we instead use the notion of the “limit as x → ∞”: we say
that

lim
x→∞

1− x2
1 + x2

= 1.



MATH 131, LECTURE 12 5

We say that lim
x→∞

f(x) = ` if

Very informal: As x gets large, f(x) gets close to `.
Informal: For every version of “close to”, we can choose some meaning

for “large” such that if x is “large,” then f(x) is “close to” `.
Formal: For all real ε > 0, there exists N such that for all x > N ,

|f(x)− `| < ε.

The following table shows the correspondence between the informal version and
the formal version.

Informal Formal Explanation
For every version of
“close to”

For every ε > 0 Each ε gives us a meaning for
“close to”—namely, “within ε.”

we can choose some
meaning for “large”

there exists N When we’ve chosen N , we say
that “large” means “bigger than
N .”

such that if x is
“large,”

such that if x > N As we’ve said, x is “large” if x >
N .

then f(x) is “close
to” `.

then |f(x)− `| < ε. We’ve said “f(x) is close to `”
should mean that “f(x) is within
ε of `.” Now, |f(x) − `| is pre-
cisely the distance from f(x) to
`, so saying “f(x) is within ε
of `” is the same as saying that
“|f(x)− `| < ε.”
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Assignment 10 (due Wednesday, 31 October, a.k.a. Halloween)

Use the Intermediate Value Theorem to prove that, no matter what Diophantus
of Alexandria1 might have thought,

√
2 does, in fact, exist. (In other words, there

exists a positive real number x0 such that x20 = 2; See Example 4 in Lecture 10.)
This problem will be graded carefully.

Section 1.5, problems 29 and 30. Problem 30 will be graded carefully.

Section 1.6, problems 1, 3, and 5. Graph the function before answering the question.
Problems 3 will be graded carefully.

Assignment 11 (due Friday, 2 November)

I have not yet chosen all the problems for this assignment. However, it will
include the following problem, which requires some thought and thus should be
started early:

A “sequence” (an) is a list of numbers, for instance,

0,
1

2
,

3

4
,

7

8
,

15

16
, . . . .

Typically, the nth term will be denoted an. Thus, in the sequence above, we have

a1 = 0

a2 =
1

2

a3 =
3

4

a4 =
7

8

a5 =
15

16
...

an =
2n−1 − 1

2n−1

...

Explain why a “sequence” is the same thing as a “function with domain the positive
integers.” [Once you’ve thought about this for long enough, it may become so
obvious that you have very little to say. Unfortunately, the grader cannot give you
credit just for writing “It’s obvious.”]

1See Lecture 3, pp. 2 and 3.
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1. Computing limits as x→∞
One of the interesting things about limits (as well as other major characters we

will meet in the study of Calculus) is that the usual methods of computing them
look practically nothing like the definition. The following “theorem” (it’s really a
bunch of theorems stated at the same time) is essentially copied from page 68 of
the textbook, and is quite useful for evaluating limits. It gives situations in which
limits behave exactly as you might hope.

Theorem. (“Main Limit Theorem”) In the following equations, if the right
side makes sense, then the left side also makes sense and is equal to the right
side.

lim
x→∞

k = k(a)

lim
x→∞

1

x
= 0(b)

lim
x→∞

[f(x) + g(x)] =
[

lim
x→∞

f(x)
]

+
[

lim
x→∞

g(x)
]

(c)

lim
x→∞

[f(x)− g(x)] =
[

lim
x→∞

f(x)
]
−
[

lim
x→∞

g(x)
]

(d)

lim
x→∞

[f(x) · g(x)] =
[

lim
x→∞

f(x)
]
·
[

lim
x→∞

g(x)
]

(e)

lim
x→∞

f(x)

g(x)
=

lim
x→∞

f(x)

lim
x→∞

g(x)
(f)

lim
x→∞

[f(x)]n =
[

lim
x→∞

f(x)
]n

(g)

“The right side makes sense” means, for now, that the limits in question exist
(as real numbers) and there is no division by 0.

This theorem can be proved from the definition of the limit. The proofs are not
even that difficult. But the only way they can ever be interesting is when you do
them yourself. Watching someone else do them is terribly boring, so I’ll skip the
proofs—at least for now—and move straight to discussing how to use the theorem
to actually compute limits.

Warning. If you use this theorem (typically, repeated applications of this theorem)
to compute a limit, then you will have shown, in the process, that the limit exists.

Date: 31 October 2012.
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However, if you try to apply this theorem, and end up with something that makes
no sense, you will not have shown that the original limit does not exist.

Example 1. (Example 2, p. 78 in the textbook) Compute

lim
x→∞

x

1 + x2
.

In particular, show that it exists.

Solution. The most obvious thing to try here is to apply Rule f, which would tell
us that

lim
x→∞

x

1 + x2
=

limx→∞ x

limx→∞ 1 + x2
,

assuming that the righthand side makes sense. Unfortunately, the right hand side
does not make sense: the limits on the righthand side do not exist.1

A more successful way to solve this problem is to first divide both the top and
the bottom by the highest power of x that appears in the denominator.

lim
x→∞

x

1 + x2
= lim

x→∞
x

1 + x2
· 1/x2

1/x2
(algebra)(1)

= lim
x→∞

1
x

1
x2 + 1

(algebra)(2)

=
lim
x→∞

1

x

lim
x→∞

[(
1

x
)2 + 1]

(Rule f)(3)

=
lim
x→∞

1

x(
lim
x→∞

1

x

)2

+ lim
x→∞

1

(Rules c, g)(4)

=
0

02 + 1
(Rules b, a)(5)

= 0.(6)

To the right of each line is written the justification: why do we know it is equal to
the previous line (assuming it is defined)?

A few words should be said on how we actually know the limits exist. If we
actually want to be careful here, our knowledge of the limits goes from the bottom
of the stack of formulas to the top. Because line (5) makes sense, the theorem tells
us that line (4) makes sense and is equal to it. Because line (4) makes sense, the
theorem tells us that line (3) makes sense and is equal to it. And so on, all the way
up to the top (which is what we cared about to begin with). �

General procedure for computing limits of rational functions:
A rational function, as you may recall, is a function of the form

f(x) =
anx

n + an−1x
n−1 + · · ·+ a1x + a0

bkxk + bk−1xk−1 + · · ·+ b1x + b0
.

1In a more sophisticated point of view that we will adopt later, the numerator and the denom-

inator are both ∞. But ∞/∞ still does not make sense, as we will discuss.
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When faced with a function like this and asked to compute limx→∞ f(x), here is a
procedure that often works:

(1) Multiply the numerator and denominator both by 1/xk.
(2) Use the rules of the “Main Limit Theorem” to “distribute” the limit signs.

Bring them further and further “inside” the formula, until all the limits are
of the form limx→∞ 1/x = 0 or limx→∞ k = k.

2. Zeno’s arrow paradox

Wikipedia has a nice summary of Zeno’s arrow paradox:

In the arrow paradox (also known as the fletcher’s paradox), Zeno
states that for motion to occur, an object must change the position
which it occupies. He gives an example of an arrow in flight. He
states that in any one (durationless) instant of time, the arrow is
neither moving to where it is, nor to where it is not. It cannot
move to where it is not, because no time elapses for it to move
there; it cannot move to where it is, because it is already there. In
other words, at every instant of time there is no motion occurring.
If everything is motionless at every instant, and time is entirely
composed of instants, then motion is impossible.

This more or less captures the central conceptual idea in differential calculus. When
we have an object in motion, we’d like to be able to talk about how fast it is going
at any given instant. But the essence of motion is moving from one position to
another, whereas in a single, durationless instant, an object only occupies a single
position. So how can we even think about the speed at a particular instant—or, to
use slightly fancier terminology, the “instantaneous velocity”?

There are basically two ways to think about this. The more mathematically
rigorous way is to use limits. The idea here is to say “since we can’t make the
change in time zero, let’s make it arbitrarily small.” Since we can’t touch the (here)
Zero beast, let’s handle it through the saddle of the Arbitrary.

The other way—the “walking on clouds” approach that was used for the first
two centuries or so after calculus was invented—is to say, in essence, “Let’s pretend
that the instant at time t0 actually does have an ‘infinitesimal’ duration, which we
call dt, and see what happens.” This “infinitesimal” duration, dt, is bigger than
zero, but smaller than any positive real number. The philosopher Berkeley called
such infinitesimals “ghosts of recently departed quantities.”

The textbook is of the opinion that the first, rigorous, approach is the only
way to go. Personally, I find the second approach extremely useful, even if it is
just “walking on clouds.” I also think you need to see it, since if you should need
calculus in applied science (physics, chemistry, atmospheric chemistry,. . . ) this is
most likely the language you will see. But I’m honestly not sure which approach
is less confusing to see first, so I’m going to accept the following wisdom: When in
doubt, follow the textbook. More or less.

3. Defining instantaneous velocity

As said above, the essence of motion is changing from one position to another.
So, let’s suppose that an object changes its position over time. As Zeno pointed
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out, at any given time, it has only one position. Thus, if we denote the object’s
position by x, then x is a function of the time t: there exists a function f such that

x = f(t).

Consider what happens near a fixed time t0. As a small amount of time elapses, the
object’s position changes by a small amount; the velocity is the change in position
divided by the change in time. For some reason, it is customary to use the Greek
letter ∆ (capital delta) to represent “change in.” Thus, with this notation, the
above sentence states that

velocity =
∆x

∆t
.

There’s a bit of a problem here, though. If we specifically want the velocity at the
instant t0, then we don’t have any change in time to work with: ∆t = 0. Likewise,
within the single instant, there is no change in position: ∆x = 0. So, the expression
above would tell us that velocity = 0/0. Since 0/0 is undefined, this is not terribly
helpful.

However, we have been studying a way to “fill in” such undefined values: use
limits. Thus, we define the instantaneous velocity at t0, denoted dx/dt|t=t0 , to be

dx

dt

∣∣∣∣
t=t0

= lim
∆t→0

∆x

∆t
,

provided that this limit exists. The notation follows the convention that “when you
take a limit, you should replace Greek letters by Roman letters.” In this case, we
replace the Greek letter ∆ by the Roman letter d.

Recall that the object starts at time t0. If the time changes by ∆t = h, then
the corresponding change in position is ∆x = f(t0 + h) − f(t0). Thus, the above
equation can also be written

dx

dt

∣∣∣∣
t=t0

= lim
h→0

f(t0 + h)− f(t0)

h
.

Finally, if we bring to bear all of the different notations we’re likely to use for this,
we’ll get

f ′(t0) =
df

dt
(t0) =

dx

dt

∣∣∣∣
t=t0

= lim
h→0

f(t0 + h)− f(t0)

h
.

This quantity (when it exists) is called the derivative of f at t0.
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Assignment 11 (due Friday, 2 November)

Section 1.5 problems 1–4, 27, and 28. Use the Main Limit Theorem, together with
some algebra, to compute the limits. Problems 2, 4, and 28 will be graded carefully.

Section 1.6, Problems 7 and 8. Problem 8 will be graded carefully.

A “sequence” (an) is a list of numbers, for instance,

0,
1

2
,

3

4
,

7

8
,

15

16
, . . . .

Typically, the nth term will be denoted an. Thus, in the sequence above, we have

a1 = 0

a2 =
1

2

a3 =
3

4

a4 =
7

8

a5 =
15

16
...

an =
2n−1 − 1

2n−1

...

Explain why a “sequence” is the same thing as a “function with domain the positive
integers.” [Once you’ve thought about this for long enough, it may become so
obvious that you have very little to say. Unfortunately, the grader cannot give you
credit just for writing “It’s obvious.”]
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1. Defining instantaneous velocity

As said above, the essence of motion is changing from one position to another.
So, let’s suppose that an object changes its position over time. As Zeno pointed
out, at any given time, it has only one position. Thus, if we denote the object’s
position by x, then x is a function of the time t: there exists a function f such that

x = f(t).

Consider what happens near a fixed time t0. As a small amount of time elapses, the
object’s position changes by a small amount; the velocity is the change in position
divided by the change in time. For some reason, it is customary to use the Greek
letter ∆ (capital delta) to represent “change in.” Thus, with this notation, the
above sentence states that

velocity =
∆x

∆t
.

There’s a bit of a problem here, though. If we specifically want the velocity at the
instant t0, then we don’t have any change in time to work with: ∆t = 0. Likewise,
within the single instant, there is no change in position: ∆x = 0. So, the expression
above would tell us that velocity = 0/0. Since 0/0 is undefined, this is not terribly
helpful.

However, we have been studying a way to “fill in” such undefined values: use
limits. Thus, we define the instantaneous velocity at t0, denoted dx/dt|t=t0 , to be

dx

dt

∣∣∣∣
t=t0

= lim
∆t→0

∆x

∆t
,

provided that this limit exists. The notation follows the convention that “when you
take a limit, you should replace Greek letters by Roman letters.” In this case, we
replace the Greek letter ∆ by the Roman letter d.

Recall that the object starts at time t0. If the time changes by ∆t = h, then
the corresponding change in position is ∆x = f(t0 + h) − f(t0). Thus, the above
equation can also be written

dx

dt

∣∣∣∣
t=t0

= lim
h→0

f(t0 + h)− f(t0)

h
.

Finally, if we bring to bear all of the different notations we’re likely to use for this,
we’ll get

f ′(t0) =
df

dt
(t0) =

dx

dt

∣∣∣∣
t=t0

= lim
h→0

f(t0 + h)− f(t0)

h
.

This quantity (when it exists) is called the derivative of f at t0.

Date: 2 November 2012.
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2. Thoughts

Consider how a speedometer works. One can imagine that it shows “instanta-
neous velocity,” i.e., the speed of your car at each instance. However, in practice,
the way it actually works is (I assume) that devices in the car measure the dis-
tance ∆x that the car moves in a small amount of time ∆t, and then reports the
“instantaneous velocity” as

∆x

∆t
.

When calculus was first invented, the inventors (Newton and Leibniz) did not really
think about the derivative as a limit lim∆t→0 ∆x/∆t. Instead, they envisioned
making ∆t and ∆x really, really small. The difficulty with this is that how small is
“small enough” varies a lot. For a car traveling on the highway on cruise control,
taking ∆t to be one second will probably give you a pretty accurate value for the
instantaneous velocity. But if you want to study the velocity of a car while it
crashes into a concrete wall, I’m guessing the car stops so quickly that ∆t = 0.1
seconds is not nearly small enough to get a good value.

Newton and Leibniz tried to deal with this by saying that ∆t and ∆x should be
“infinitesimal,” that is, “infinitely small.” Leibniz called these infinitesimal quan-
tities dt and dx, and defined the derivative as their quotient dx/dt. The notion of
numbers that are “infinitesimal but nonzero” does not really work logically. Nev-
ertheless, it is a useful enough notion that physicists and chemists often still think
about calculus this way.

3. The derivative as the slope of the tangent line

In classical geometry, the tangent to a curve was the line that somehow “touched
the curve without crossing it.” Euclid attempted to make this precise by describing
the tangent as the line that intersected the curve in only one point. His definition
works quite well for circles (and also ellipses, parabolas, and hyperbolas):

However, it can fail rather drastically for more complicated curves. In the curve
below, the almost-vertical line is the one that intersects the curve in only one point,
while the almost-horizontal line clearly “ought” to be the tangent line. (Intuitively,
the almost-vertical line crosses the curve, while the almost-horizontal line does
not—at least, not at the point in question.)
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For another example, in the following picture, neither the vertical nor the horizontal
line really “touches the curve without crossing it.” Each of them intersects the curve
exactly once. But if one of them is the tangent line, it is the horizontal line rather
than the vertical line.

Thus, we take another approach to defining what exactly the tangent line should
be. An easier definition is to define a secant line—that is, a line that passes through
two specified points on a curve. This is easy to specify, since two points determine
a line. We want to think of a tangent line as a “secant line that passes through the
same point twice.” Unfortunately, this does not actually make any sense.

To remedy the situation, we consider another way of specifying a line: a point
(x0, y0) together with a slope ∆y/∆x. Thus, the secant line through (x0, y0) and
(x, y) is the line passing through (x0, y0) with slope equal to

∆y

∆x
=

y − y0

x− x0
.

If we want to take the tangent line at (x0, y0), we already have a point through
which the line should pass. We just need to know what its slope ought to be.
This is essentially the same problem we were faced with last lecture—we need a
definition for “slope at a point,” in spite of the fact that slope is, inherently, a
property relating two different points. And we solve it the same way: we take a
limit. We say that the slope of the tangent line is

lim
∆x→0

∆y

∆x
.

The picture below shows the tangent line as a limit of secant lines:
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(x0,y0)

Now, if you recall the previous definition of the derivative, you will see that, if y is
given as y = f(x) for some function f , then in fact, we will have the slope of the
tangent line equal to the derivative:

lim
∆x→0

∆y

∆x
=

dy

dx

∣∣∣∣
x=x0

= f ′(x0).

This gives us the following

Definition. Let f be a function defined at x0. The tangent line to f at x0 is
the line passing through the point (x0, f(x0)) and having slope equal to f ′(x0),
provided that this derivative exists.

Let’s do an example.

Example 1. Let the function f be defined by

f(x) = x2.

Compute the derivative of f at x0 = 1. Plot the function and the line tangent to f
at x0.

Solution. First, let’s solve for ∆y in terms of ∆x:

∆y = f(x0 + ∆x)− f(x0)

= (1 + ∆x)2 − 12

= 1 + 2∆x + (∆x)2 − 1

= 2∆x + (∆x)2.

Thus, we have

f ′(x0) = lim
∆x→0

∆y

∆x

= lim
∆x→0

2∆x + (∆x)2

∆x
= lim

∆x→0
2 + ∆x

= 2.

Now, we plot the function y = f(x), together with line passing through (x0, f(x0)) =
(1, 1) and having slope f ′(x0) = 2:
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x

y

(x0,f(x0))

�

4. Infinitesimals

The idea of infinitesimals, as it relates to slopes of tangent lines, is to define the
tangent line to f at x0 as the line through (x0, y0) and another point (x0+dx, y0+dy)
that is “infinitely close” to the first point—or, perhaps, “so close it might as well
be equal.” What this means, in this example, is that dx is “so small” that dx2 can
be treated as being equal to zero, even though dx is not zero. This sort of makes
sense, in that the square of a small number is a much smaller number; for instance,

0.0012 = 0.000001

It does not really make sense—no nonzero number can square to zero—but that’s
why I called this “walking on clouds.”

To start with, we treat the “infinitesimal changes” dx and dy exactly as though
they were more conventional changes ∆x and ∆y. Our earlier computation of ∆y
in terms of ∆x still holds:

dy = 2dx + dx2

dy = 2dx since dx2 = 0

dy

dx
= 2

when evaluated at the point x0 = 1.
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Assignment 12 (due 5 November, 2012

Section 2.2, Problems 45-48 and 51, 52. Be sure to follow the instructions carefully
on 51 and 52; these problems are as much about how you find the derivative, as
what answer you get. Problems 46, 48, and 52 will be graded carefully.
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1. Computing the derivative: an example

First, recall the basic relations among the different quantities we are throwing
around:

∆x = x− x0 x = x0 + ∆x

∆y = y − y0 y = y0 + ∆y

y = f(x)

= f(x0 + ∆x)

∆y = y − y0

= f(x) − f(x0)

= f(x0 + ∆x) − f(x0)

Missing

figure

Example 1. Let the function f be defined by

f(x) = 1
2x

3.

Compute the derivative of f at x0 = 1. Plot the function and the line tangent to f
at x0.

Date: 5 November 2012.
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Solution. First, let’s solve for ∆y in terms of ∆x:

∆y = f(x0 + ∆x) − f(x0)

= 1
2 (1 + ∆x)3 − 1

2 (1)3

= 1
2

(
(1 + ∆x)3 − 13

)

= 1
2

((
1 + 3∆x + 3(∆x)2 + (∆x)3

)
− 1
)

= 1
2

(
3∆x + 3(∆x)2 + (∆x)3

)

= 3
2∆x + 3

2 (∆x)2 + 1
2 (∆x)3.

Thus, we have

f ′(x0) = lim
∆x→0

∆y

∆x

= lim
∆x→0

3
2∆x + 3

2 (∆x)2 + 1
2 (∆x)3

∆x

= lim
∆x→0

3
2 + 3

2∆x + 1
2 (∆x)2

= 3
2 .

Now, we plot the function y = f(x), together with line passing through (x0, f(x0)) =
(1, 1

2 ) and having slope f ′(x0) = 3
2 :

x

y

(x0,f(x0))

−4

−4

−3

−3

−2

−2

−1

−1

1

1

2

2

3

3

4

4

�
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2. Infinitesimals

Consider how a speedometer works. One can imagine that it shows “instantaneous
velocity,” i.e., the speed of your car at each instance. However, in practice, the way
it actually works is (I assume) that devices in the car measure the distance ∆x that
the car moves in a small amount of time ∆t, and then reports the “instantaneous
velocity” as

∆x

∆t
.

When calculus was first invented, the inventors (Newton and Leibniz) did not really
think about the derivative as a limit lim∆t→0 ∆x/∆t. Instead, they envisioned
making ∆t and ∆x really, really small. The difficulty with this is that how small is
“small enough” varies a lot. For a car traveling on the highway on cruise control,
taking ∆t to be one second will probably give you a pretty accurate value for the
instantaneous velocity. But if you want to study the velocity of a car while it crashes
into a concrete wall, I’m guessing the car stops so quickly that ∆t = 0.1 seconds is
not nearly small enough to get a good value.

Newton and Leibniz tried to deal with this by saying that ∆t and ∆x should be
“infinitesimal,” that is, “infinitely small.” Leibniz called these infinitesimal quantities
dt and dx, and defined the derivative as their quotient dx/dt. The notion of numbers
that are “infinitesimal but nonzero” does not really work logically. Nevertheless,
it is a useful enough notion that physicists and chemists often still think about
calculus this way.

The idea of infinitesimals, as it relates to slopes of tangent lines, is to define the
tangent line to f at x0 as the line through (x0, y0) and another point (x0+dx, y0+dy)
that is “infinitely close” to the first point—or, perhaps, “so close it might as well be
equal.” What this means, more or less, is that you can do the entire computation
treating dx and dy as ordinary numbers, including dividing by dx at the end; once
you have something of the form

dy

dx
=

you can treat dx as being equal to zero in the expression on the right. This does not
really make rigorous sense—dx is either equal to zero, or it isn’t; it can’t somehow
become zero after you’ve finished your computation—but it usually gives the right
answer once you get used to it, and it can make computations quicker and more
intuitive (assuming you know when you can, and cannot, set dx equal to zero. . . ).

Example 2. Let the function f be defined by

f(x) = 1
2x

3.

Use infinitesimals to compute the derivative of f at x = 1.
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Solution. To start with, we treat the “infinitesimal changes” dx and dy exactly as
though they were more conventional changes ∆x and ∆y.

dy = f(x + dx) − f(x)

= 1
2 (1 + dx)3 − 1

2 (1)3

= 1
2

[
(1 + dx)3 − 13

]

= 1
2

[
(1 + 3dx + 3dx2 + dx3) − 1

]

= 3
2dx + 3

2dx
2 + 1

2dx
3

dy

dx
= 3

2 +�
��>

0
3
2dx +��

�* 0
1
2dx

2

when evaluated at the point x0 = 1. �
What often happens is that when you get to the end of the computation, if you

see an expression like 4 + dx or dx+ 3dx2, you can “ignore” dx (in the first case) or
3dx2 (in the second case), because it is “negligibly small” compared to the other
summand.

Exercise 3. Use infinitesimals to find the derivative of the function f defined by

f(x) =
1

x
at the point x0 = 1.
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Assignment 13 (due Wednesday, 7 November, 2012)

For each of Problems 1–4 in Section 2.2, do the following steps:

(a) Find the indicated derivative using infinitesimals.
(b) Find the indicated derivative using the limit definition.
(c) Graph the function together with the tangent line at the indicated point.

Problems 2 and 3 will be graded carefully.

Section 2.2, Problems 5 and 7. Neither of these will be graded carefully.

Draw a picture that explains why the difference quotient

f(x + h) − f(x)

h

gives the slope of a secant line to the curve y = f(x). This problem will be graded
carefully.
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1. Some alternate ways to state the limit definition of the derivative

For this section, we’re going to use the notation f ′(x0) rather than dy/dx|x=x0
.

Our basic definition of the derivative has been

(1) f ′(x0) = lim
∆x→0

∆y

∆x
.

One key to mastering mathematics is being able to move facilely among different
ways of saying the same thing; which way you want to say it may depend on what
you want to use it for. We’re going to review some other ways to write the definition
of the derivative, using the various relations among x, x0,∆x, y,∆y, f(x0), . . ..

First, observe that

∆y = y − y0 = f(x)− f(x0) and

∆x = x− x0.

Thus,
∆y

∆x
=
f(x)− f(x0)

x− x0
,

and

lim
∆x→0

∆y

∆x
= `

⇐⇒ ∀ε > 0, ∃δ > 0 s.t. if 0 < |∆x− 0| < δ, then

∣∣∣∣
∆y

∆x
− `
∣∣∣∣ < ε

⇐⇒ ∀ε > 0, ∃δ > 0 s.t. if 0 < |x− x0| < δ, then

∣∣∣∣∣
f(x)− f(x0)

x− x0
− `
∣∣∣∣∣ < ε

⇐⇒ lim
x→x0

f(x)− f(x0)

x− x0
= `.

In other words, an alternate definition for the derivative is given by

(2) f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
.

This definition highlights the feature that the derivative only depends on what
is happening to f near x0. If we look at a different function g that cannot be
distinguished from f near x0, then f and g will have the same derivative at x0; i.e.,
f ′(x0) = g′(x0).

Date: 7 November 2012.
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Another way to state the definition of the derivative is to express ∆y in terms of
x0 and ∆x, rather than x0 and x.

∆y = f(x)− f(x0)

= f(x0 + ∆x)− f(x0),

since x = x0 + ∆x. Thus, we have

f ′(x0) = lim
∆x→0

∆y

∆x
= lim

∆x→0

f(x0 + ∆x)− f(x0)

∆x
.

Making the traditional change of notation ∆x = h, we find that

(3) f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

The expression inside the limit is the infamous “difference quotient.”

2. Derivative as a function

In the definition of (3), one feature is that there are no appearances of the letter
x except in the variable x0. Thus, we can rename x0 as x, obtaining

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

The interesting feature here is that when we rewrite the definition this way, it
becomes obvious that we have defined more than a number f ′(x0); we have defined
a function f ′.

There’s a subtlety here that confused me when I first saw this sort of thing. It
involves the interplay of intuition and rigorous mathematics. Intuitively, when we
write x, we think of it as a variable—something that is allowed to range over many
different numbers. On the other hand, when we write x0, we think of this as a
particular value of x, a particular number; we just don’t happen to know what
number it is. These intuitions are valuable. However, it is equally valuable to realize
that these intuitions have absolutely no reflection in the rigorous mathematics. As
far as the pure logic is concerned, x and x0 are both variables, and that’s all there
is to it. So whenever we have a statement that involves only one, we can substitute
the other, and get an equally true expression that feels very different, intuitively.
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This is typical of a certain kind of reasoning that appears sometimes in mathe-
matics. First, you let your intuition guide you, as we did (more or less) in defining
the derivative. Then you do something with rigorous mathematics to change the
statement into something equivalent, but that feels intuitively very different. At
this point, you may feel like your head wants to explode: your intuition is screaming
that what you’ve done can’t possibly be right, but you can’t see any flaws in your
logic. It may be tempting to give up and think about something else. But instead,
you may force yourself to stay on task, to turn the thing over and over in your head
until you either find a flaw in the logic, or find a way of thinking about it that your
intuition will accept. Depending on the difficulty of the thing in question, resolving
the conflict may take moments, hours, days, weeks, months, or years. But the longer
you spend puzzling over it, the greater will be your feeling of enlightenment when it
finally “clicks.”

On the other hand, some of you may be thinking that it was obvious that the
derivative is a function. You may even feel a bit smug about the fact that this
“revelation” was clear to you from the beginning. Perhaps you should. But I think
it is more likely that you were not following my lectures closely, but were instead
thinking about the derivative in terms you have learned in the past. Or perhaps
you never really understood the intuition of x0 as a “fixed value we don’t know,”
versus x as a “variable.” Either way, I suggest you review the previous buildup to
the definition of the derivative. Try to understand with your whole mind—both
logic and intuition. If you succeed, you may get a part of the revelatory moment
that you will otherwise have been cheated of.

Now, enough philosophizing. Since we’ve established that the derivative f ′ is a
function, there are two obvious sorts of questions:

(1) How do we find a formula for the function, if one exists?
(2) How do we characterize the function, even if it does not have a formula we

can write down?

We’ll spend a lot of time on both of these, but in light of the homework I’ve assigned
you for Friday, I’m going to spend the rest of this lecture on a version of the second
problem. Specifically: If someone gives you a graph of the function, how do you
graph its derivative? We’ll approach this mainly through examples. My plan (which
I may or may not have time for) is to give you a few minutes to try the following
examples on your own, and then we will go over them together.
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Example 1. The graph of a function f is given on the left. On the right, sketch
the graph of the function f ′. Remember: above each point x on the x-axis, the
value of f ′ should be the slope of the tangent line to f at x. If f does not have a
unique tangent line at x, then f ′(x) will not exist.

f(x)

x
1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

f ′(x)

x
1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

f(x)

x
1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

f ′(x)

x
1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

f(x)

x
1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4

f ′(x)

x
1−1

1

−1
2−2

2

−2

3−3

3

−3

4−4

4

−4
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3. Local nature of the limit (and derivative)

I’m probably not going to have time to really go over this section in the lecture,
but I would feel like I would not be fulfilling my responsibilities as a Math 131
teacher if I did not at least mention it in the lecture notes.

Recall that, in the most vague terms, the statement

lim
x→x0

f(x) = `

means something like “when x is near x0, then f(x) is near `.” Thus, it seems like
this limit should only depend on “what f is doing near x0.” In particular, it should
only depend on how f behaves on an interval (x0 −∆x, x0 + ∆x).

y

x

x0 −∆x x0 x0 + ∆x

f = g on this interval, so
lim

x→x0

f(x) = lim
x→x0

g(x)

g

g

f

f

`

The way we say that the limit “only depends on what f is doing near x0” is that if
we replace f by a different function g that “looks the same near x0,” then we are
guaranteed to get the same answer. More precisely, we have the following theorem:

Theorem. Suppose that f and g are two functions. Let ∆x be positive. If f and g
are defined and agree on the interval (x0 −∆x, x0 + ∆x), then

lim
x→x0

f(x) exists if and only if lim
x→x0

g(x) exists.

Moreover, if the two limits exist, then they are equal.

Proof. Assume that
lim

x→x0

f(x) = `.

We will then show that limx→x0
g(x) = `.

Let ε > 0 be given.
Since limx→x0

f(x) = `, there exists δ1 > 0 such that if 0 < |x− x0| < δ1, then
|f(x)− `| < ε. Set δ = min{δ1,∆x}.

Assume 0 < |x − x0| < δ. Since |x − x0| < δ ≤ ∆x, we know f(x) = g(x).
Consequently,

|g(x)− `| = |f(x)− `|
< ε,
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since 0 < |x− x0| < δ ≤ δ1.
Therefore,

lim
x→x0

g(x) = `,

as claimed.

Similar reasoning shows that, if

lim
x→x0

g(x) = `,

then limx→x0
f(x) = `. �

Since one definition for the derivative is

dy

dx

∣∣∣∣
x=x0

= lim
x→x0

f(x)− f(x0)

x− x0
,

the theorem tells us that the derivative of f at x0 depends only on how f behaves
near x0.
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Assignment 14 (due Friday, 9 November, 2012)

Section 2.2, Problems 6, 8, and 37–44. Problems 6, 38, 40, 42, and 44 will be graded
carefully.

The following problem is not due until Monday. However, it is a difficult problem
and the only tutorial between now and Monday is tomorrow; so I strongly suggest
you start on it now.

Translate the statement

lim
∆x→0

∆y

∆x
= f ′(x0)

into ε-δ language. (Hint: when you see f ′(x0), treat it like `. Also, treat ∆y/∆x as
a function of ∆x.) Then, use the resulting statement to prove the following:

∀ε > 0,∃δ > 0 s.t. if |∆x| < δ, then ∆y is within ε|∆x| of f ′(x0)∆x.

You will need to handle ∆x = 0 as a separate case. This statement is a rigorous
version of the statement that “When ∆x is small, then ∆y is approximately dy

dx∆x.”

x

y

x0 + δx0 − δ

∆y = f ′(x0)∆x

y = f(x)

x0

y0

ε∆x

|∆x| < δ

Figure 1. When ∆x is small, then ∆y is approximated by
f ′(x0)∆x. In other words, for ∆x small, the function is approx-
imated by its tangent line (which is defined by ∆y = f ′(x0)∆x).
More precisely, the function is contained in a narrow cone about
the tangent line. The width of the cone is controlled by ε. We
can make the cone as narrow as we want (“arbitrarily narrow”), by
making δ (and hence ∆x) sufficiently small.
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1. Some example computations

We’re going to do compute some derivatives as functions using the definition

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Example 1. Suppose that f(x) = x. Compute a formula for the function f ′.

Solution.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)− x
h

= lim
h→0

h

h
= lim

h→0
1

= 1. �

Example 2. Suppose that f(x) = mx + b. Since y = f(x) is a line, the tangent
line will be the line itself; its slope, of course, is m. Thus, we may suppose that
f ′(x) = m for all x. Prove this using the limit definition.

Solution.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

m(x+ h) + b− (mx+ b)

h

= lim
h→0

mx+mh+ b−mx− b
h

= lim
h→0

mh

h
= lim

h→0
m

= m. �

Example 3. Let f be the function defined by f(x) = x2 + x − 3. Compute a
formula for the function f ′.

Date: 9 November 2012.

1
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Solution.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)2 + (x+ h)− 3− x2 − x+ 3

h

= lim
h→0

x2 + 2xh+ h2 + x+ h− 3− x2 − x+ 3

h

= lim
h→0

2xh+ h2 + h

h

= lim
h→0

(2x+ h+ 1)h

h
= lim

h→0
2x+ h+ 1

= 2x+ 1. �

Example 4. Let f be the function defined by f(x) = 1/x. Compute a formula for
the derivative of f (except at x = 0, of course).

Solution.

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1
x+h − 1

x

h
· x(x+ h)

x(x+ h)

= lim
h→0

x− (x+ h)

hx(x+ h)

= lim
h→0

−h
hx(x+ h)

= lim
h→0

−1

x(x+ h)

=
−1

x2
. �

Notation. It can be rather tiresome to write, for instance, “the derivative of the
function f defined by f(x) = x2 +x−3.” In the future, we will sometimes abbreviate
this by

d

dx
(x2 + x− 3).

2. Product rule

Suppose that we have u and v, two functions of x. Suppose we know how
to calculate the derivatives du/dx and dv/dx. We can use this to calculate the
derivative of the product u · v, by means of the product rule.

Warning. It may be tempting to write that

d

dx
(u · v) =

du

dx
· dv
dx
.
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v du

u
d
vuvu

du

v dv

Figure 1. A visual illustration of the product rule. The area
of the white rectangle is uv; the area of the total rectangle is
(u+ du)(v + dv); and the change in area, d(uv), is their difference.
The black rectangle, with area du dv, is so small that its contribution
“can be neglected.”

This is not true. For instance, suppose u(x) = 2 and v(x) = x. Then

d

dx
(u · v) =

d

dx
(2 · x) = 2,

since y = 2x is a line of slope 2. However, the “naive product rule” would give us

d

dx
(2 · x) =

d

dx
(2) · d

dx
(x) = 0 · 1 = 0.

The naive product rule gives the wrong answer.

Leibniz gave a cute derivation of the product rule using infinitesimals. The first
equation in this proof may seem a bit confusing at first; I’ll explain it afterwards,
but if I give it now, the proof will not seem so “cute.” Remember, the key “fact”
about infinitesimals is that if you multiply two of them together, you get something
“doubly infinitesimal,” which we typically consider equal to zero. In particular,
du dv = 0.

d(uv) = (u+ du)(v + dv)− uv
= uv + u dv + v du+ du dv − uv
= u dv + v du.

Dividing through by dx, we see that

d

dx
(uv) = u

dv

dx
+ v

du

dx
.

Now, the promised explanation of the first line: we have two functions u and v
of x. But we really have three functions: the one we care about is the function f
defined by f = uv, i.e.,

f(x) = u(x) · v(x).
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Thus,

df = f(x+ dx)− f(x)

= u(x+ dx)v(x+ dx)− u(x)v(x).

Recall that

du = u(x+ dx)− u(x), hence

u+ du = u(x+ dx).

Similarly, v + dv = v(x+ dx), and so we have

df = u(x+ dx)v(x+ dx)− u(x)v(x)

= (u+ du)(v + dv)− uv.

(By an abuse of notation, we’re writing things like u for u(x) when it suits us to do
so.)

Example 5. Use the product rule to find (in this order) the derivatives of x2, x3,
and x4 with respect to x.

Solution.

d

dx
x2 =

d

dx
(x · x)

= x
dx

dx
+ x

dx

dx
= x+ x

= 2x.

d

dx
x3 =

d

dx
(x · x2)

= x
d

dx
(x2) + x2 d

dx
(x)

We just calculated d
dx (x2) = 2x, so this is equal to

= x · 2x+ x2 · 1
= 2x2 + x2

= 3x2.

d

dx
x4 =

d

dx
(x · x3)

= x · d
dx

(x3) + x3 d

dx
(x)

= x · 3x2 + x3 · 1
= 3x3 + x3

= 4x3. �
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You may start to notice a pattern here. This pattern will continue: if we calculate
on out to d

dxx
n−1, we’ll find that it is equal to (n− 1)xn−2. Using this fact, we find

that
d

dx
xn =

d

dx
(x · xn−1)

= x · d
dx

(xn−1) + xn−1 d

dx
(x)

= x · (n− 1)xn−2 + xn−1 · 1
= (n− 1)xn−1 + xn−1

= nxn−1,

so the pattern always keeps going. (This is a version of “proof by induction.”)
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Assignment 15 (due Monday, 12 November, 2012)

Section 2.2, Problems 11, 12, 23, 24, 53, and 54. Follow the instructions. The
even-numbered problems will be graded carefully.

The following problem will be graded carefully:
Translate the statement

lim
∆x→0

∆y

∆x
= f ′(x0)

into ε-δ language. (Hint: when you see f ′(x0), treat it like `. Also, treat ∆y/∆x as
a function of ∆x.) Then, use the resulting statement to prove the following:

∀ε > 0,∃δ > 0 s.t. if |∆x| < δ, then ∆y is within ε|∆x| of f ′(x0)∆x.

You will need to handle ∆x = 0 as a separate case. This statement is a rigorous
version of the statement that “When ∆x is small, then ∆y is approximately dy

dx∆x.”

x

y

x0 + δx0 − δ

∆y = f ′(x0)∆x

y = f(x)

x0

y0

ε∆x

|∆x| < δ

Figure 2. When ∆x is small, then ∆y is approximated by
f ′(x0)∆x. In other words, for ∆x small, the function is approx-
imated by its tangent line (which is defined by ∆y = f ′(x0)∆x).
More precisely, the function is contained in a narrow cone about
the tangent line. The width of the cone is controlled by ε. We
can make the cone as narrow as we want (“arbitrarily narrow”), by
making δ (and hence ∆x) sufficiently small.
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1. Test Monday, 19 November

The test will cover Lectures 1–19, with emphasis on Lectures 10–19; and As-
signments 1–17, with emphasis on Assignments 9–17. (Reference note: Lecture
19 will be given on Wednesday; Assignment 17 is due Friday.) The test will focus
on derivatives, but will likely include a bit about continuity and/or infinite limits
and/or limits as x→ ±∞.

You should not assume that if you did well on the last test, you can easily do well
on this test. As a general rule, students do worse on the second test in Math 131
than they did on the first test. Thus, I suggest you start studying yesterday, if not
before. You may also want to think in terms of “practicing” rather than “studying”:
redoing old quiz and homework problems (without looking at the solutions, if you
have them, until afterwards) may be more helpful than simply reading over them.

2. Introduction

The process of finding the derivative of a function, often called differentiating
the function, is extremely important. Moreover, unlike many important things in
mathematics, differentiation is actually possible to do. Any time you have a function
given by a formula, the rules in this lecture will allow you to find its derivative.

These rules need to be memorized. Ideally, they should become so ingrained that
you can use them without having to think about them.

3. The product rule

Recall the product rule, which I introduced last lecture:

d

dx
(uv) = u

dv

dx
+ v

du

dx
.

Personally, I find it easier to remember the infinitesimal version:

d(uv) = u dv + v du.

Finally, some of you may find an alternative version easier to apply:

d

dx

(
f(x) · g(x)

)
= f(x)g′(x) + g(x)f ′(x)

= f(x)g′(x) + f ′(x)g(x).

Example 1. Use the product rule to find (in this order) the derivatives of x2, x3,
and x4 with respect to x.

Date: 12 November 2012.
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Solution.

d

dx
x2 =

d

dx
(x · x)

= x
dx

dx
+ x

dx

dx
= x + x

= 2x.

d

dx
x3 =

d

dx
(x · x2)

= x
d

dx
(x2) + x2 d

dx
(x)

We just calculated d
dx (x2) = 2x, so this is equal to

= x · 2x + x2 · 1
= 2x2 + x2

= 3x2.

d

dx
x4 =

d

dx
(x · x3)

= x · d

dx
(x3) + x3 d

dx
(x)

= x · 3x2 + x3 · 1
= 3x3 + x3

= 4x3. �

4. The “easy rules”

There are a few “easy” rules for differentiation.

Theorem. (Constant rule) If f is the function defined by f(x) = c, where c is a
(constant) real number, then f ′(x) = 0 for all x.

Proof. This is a special case of the mx + b rule we proved last time, but let’s do it
again anyway.

f ′(x) = lim
h→0

f(x + h)− f(x)

h

= lim
h→0

c− c

h

= lim
h→0

0

h
= 0. �

Theorem. (Sum rule) If f and g are differentiable functions, then

(f + g)′ = f ′ + g′.

In words, “the derivative of a sum is the sum of the derivatives.”
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Proof. We apply one of the limit definitions of the derivative:

(f + g)′(x) = lim
h→0

(f + g)(x + h)− (f + g)(x)

h

= lim
h→0

f(x + h) + g(x + h)− f(x)− g(x)

h

= lim
h→0

f(x + h)− f(x)

h
+

g(x + h)− g(x)

h

= f ′(x) + g′(x)

= (f ′ + g′)(x).

Since this holds for all x at which f and g are defined, we have the equality of
functions

(f + g)′ = f ′ + g′. �

Theorem. (Multiplication by a constant) If f is a differentiable function of x and
c is a (constant) real number, then

d

dx
(cf(x)) = c

df

dx
.

Proof. This time, we’re going to derive it from the product rule.

d

dx
(cf(x)) = c

df

dx
+ f(x)

d

dx
(c)

= c
df

dx
+ f(x) · 0 (constant rule)

= c
df

dx
. �

Theorem. (Difference rule) If f and g are differentiable functions, then (f − g)′ =
f ′ − g′.

Proof.

(f − g)′ =
(
f + (−1) · g

)′

= f ′ +
(
(−1)g

)′
(sum rule)

= f ′ + (−1)g′ (multiplication by a constant)

= f ′ − g′. �

5. The power rule; polynomials

The power rule is fairly easy, but a bit less intuitive than the “easy rules.” It was
mentioned briefly at the end of the last lecture.

Theorem. When n is a positive integer,

d

dx
xn = nxn−1.

(Actually, this theorem applies whenever n is a real number, but we won’t be
able to prove that for some time.)
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To understand the proof of the Power Rule, we need a technique called
mathematical induction. Suppose we have a condition P (n) on n. The “induction
principle” says that to show P (n) is true whenever n is a positive integer, we
can do show the following:

(1) P (1) is true.
(2) Whenever P (n) is true, then P (n + 1) is also true.

Thus, P (1) is true; since P (1) is true, P (2) is also true; since P (2) is true, P (3)
is also true; and so on.

One standard metaphor here is that in step 2, we set up a chain of dominoes;
in step 1, we knock over the first one, which then knocks over the second one,
which then knocks over the third one, etc.

Proof. Let P (n) be the statement that Dx(xn) = nxn−1; this is a condition on n.

(1) We first show that P (1) is true, i.e., that Dx(x) = 1:

d

dx
(x) = lim

h→0

(x + h)− h

h

= lim
h→0

h

h
= 1,

as desired.
(2) We now show, using the product rule, that whenever P (n) is true, then

P (n + 1) is also true.

d

dx
xn+1 =

d

dx
(x · xn)

= x
d

dx
(xn) + xn d

dx
(x) (product rule)

= x · nxn−1 + xn · 1 (since P (n) is true)

= nxn + xn

= (n + 1)xn.

Thus, by induction, P (n) is true for every positive integer n. In other words, for
every positive integer n,

d

dx
xn = nxn−1. �

Using the power rule, together with the “easy rules,” we can, in principle, compute
the derivative of any polynomial.
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Example 2. Differentiate x2 − 4x + 1.

Solution.
d

dx
(x2 − 4x + 1) =

d

dx
(x2)− d

dx
(4x) +

d

dx
(1) (sum rule)

=
d

dx
(x2)− 4

d

dx
(x) + 0 (constant multiple; constant)

= 2x− 4 · 1 + 0 (power rule)

= 2x− 4. �

Example 3. Differentiate 2x3 − 1
2x

2 − x + 17246
937 .

Solution.
d

dx

(
2x3 − 1

2x
2 − x + 17246

937

)
= 2 · 3x2 − 1

2 · 2x− 1 + 0

= 6x2 − x− 1. �

6. Proof of the product rule

Recall the product rule,

d

dx
(uv) = u

dv

dx
+ v

du

dx
,

and the (non-rigorous) infinitesimal derivation:

d(uv) = (u + du)(v + dv)− uv

= uv + u dv + v du + du dv − uv

= u dv + v du

d

dx
(uv) = u

dv

dx
+ v

du

dx
.

We are now going to show how to prove the product rule rigorously. Pay attention
to how what we are doing rigorously corresponds to the non-rigorous infinitesimal
method.

Theorem. Suppose that u is a function of x such that du/dx|x=x0
exists. Likewise,

suppose that v is a function of x such that dv/dx|x=x0
exists. Then the derivative

of the product uv at x0 exists, and

d

dx
(uv)

∣∣∣∣
x=x0

= u0
dv

dx

∣∣∣∣
x=x0

+ v0
du

dx

∣∣∣∣
x=x0

.

Proof. First, we write ∆(uv) in terms of ∆u and ∆v:

∆(uv) = uv − u0v0

= (u0 + ∆u)(v0 + ∆v)− u0v0

= u0vu + u0∆v + v0∆u + ∆u∆v − u0v0

= u0∆v + v0∆u + ∆u∆v.
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[Notice how closely this resembles the infinitesimal version.] Now, we apply the
definition1 of the derivative as a limit:

d

dx
(uv)

∣∣∣∣
x=x0

= lim
∆x→0

∆(uv)

∆x

= lim
∆x→0

u0∆v + v0∆u + ∆u∆v

∆x

= lim
∆x→0

u0
∆v

∆x
+ v0

∆u

∆x
+

∆u

∆x
· ∆v

∆x
·∆x

= u0
dv

dx

∣∣∣∣
x=x0

+ v0
du

dx

∣∣∣∣
x=x0

+

(
du

dx

∣∣∣∣x=x0

)(
dv

dx

∣∣∣∣x=x0

)
· 0

= u0
dv

dx

∣∣∣∣
x=x0

+ v0
du

dx

∣∣∣∣
x=x0

. �

Note the trick on the third line that was used to show that ∆u∆v/∆x→ 0:

∆u∆v

∆x
=

∆u∆v∆x

(∆x)2
=

∆u

∆x
· ∆v

∆x
·∆x→ du

dx
· dv
dx
· 0 = 0

as ∆x → 0. This (sort of) gives a justification for the infinitesimal idea that
du dv = 0.

7. The Chain Rule

Arguably the most important of all of these rules is the chain rule, which tells us
how to take derivatives of compositions of functions. It states that if f and g are
differentiable functions, then

(f ◦ g)′(x) = f ′(g(x)) · g′(x).

We can give a non-rigorous, infinitesimal derivation as follows: One (non-rigorous)
definition of the derivative is that, if y = f(x), then f ′(x) is the number such that

dy = f ′(x)dx.

Now, suppose that y = f(u) and u = g(x), so that y = f(u) = f(g(x)). Then we
have dy = f ′(u)du and du = g′(x)dx, so

dy = f ′(u)du

= f ′(u)g′(x)dx

= f ′(g(x))g′(x)dx.

Hence,
dy

dx
= f ′(g(x))g′(x).

Example 4. Differentiate (x + 1)500.

Solution.
d

dx
(x + 1)500 = 500(x + 1)499 · d

dx
(x + 1)

= 500(x + 1)499 · 1
= 500(x + 1)499. �

1Or rather, one of the equivalent definitions.
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It would have been possible, but very hard, to differentiate this by expanding out all
501 terms of the polynomial and then applying the techniques of the first section.
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Assignment 16 (due Wednesday, 14 November)

Section 2.2, Problems 13. Follow the instructions. This problem will be graded
carefully.

Section 2.3, Problems 1–4, 11–12, and 23–26. (Hint: 23–26 are easier if you use the
product rule.) The even-numbered problems will be graded carefully.

Sketch the graph of f ′(x) for the function f graphed below. Hint: First, make a
table of the values of f ′(x) for some specific values of x.

x

f(x)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

Assignment 17 (due Friday, 16 November)

From Section 2.3:

• Problems 5–8. Do each problem two ways—using the limit definition of
your choice, and using the rules of differentiation (including the Chain Rule,
if you find it helpful).
• Problems 17–20.
• Problems 31–32. Do not FOIL out the products; instead, use the product

rule for differentiation.

The even-numbered problems will be graded carefully.

Section 2.5, Problems 1–4. Make sure it is clear, from your answer, how you are using
the Chain Rule (see, for instance, Example 4 at the end of Lecture 18). Problems 2
and 4 will be graded carefully.
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1. Test Monday, 19 November

The test will cover Lectures 1–19, with emphasis on Lectures 10–19; and Assign-
ments 1–17, with emphasis on Assignments 9–17. (Reference note: Lecture 19 is
today’s lecture; Assignment 17 is due Friday.) The test will focus on derivatives,
but will likely include a bit about continuity and/or infinite limits and/or limits as
x→ ±∞.

You should not assume that if you did well on the last test, you can easily do well
on this test. As a general rule, students do worse on the second test in Math 131
than they did on the first test. Thus, I suggest you start studying yesterday, if not
before. You may also want to think in terms of “practicing” rather than “studying”:
redoing old quiz and homework problems (without looking at the solutions, if you
have them, until afterwards) may be more helpful than simply reading over them.

2. The Chain Rule

Arguably the most important of all of these rules is the chain rule, which tells us
how to take derivatives of compositions of functions. It states that if f and g are
differentiable functions, then

(f ◦ g)′(x) = f ′(g(x)) · g′(x).

We can give a non-rigorous, infinitesimal derivation as follows: One (non-rigorous)
definition of the derivative is that, if y = f(x), then f ′(x) is the number such that

dy = f ′(x)dx.

Now, suppose that y = f(u) and u = g(x), so that y = f(u) = f(g(x)). Then we
have dy = f ′(u)du and du = g′(x)dx, so

dy = f ′(u)du

= f ′(u)g′(x)dx

= f ′(g(x))g′(x)dx.

Hence,

dy

dx
= f ′(g(x))g′(x).

Date: 14 November 2012.

1
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Example 1. Differentiate (x + 1)500.

Solution.
d

dx
(x + 1)500 = 500(x + 1)499 · d

dx
(x + 1)

= 500(x + 1)499 · 1
= 500(x + 1)499. �

It would have been possible, but very hard, to differentiate this by expanding out all
501 terms of the polynomial and then applying the techniques of the first section.

3. Differentiating quotients

Although we’ve done this example in Lecture 17, I’m going to repeat it here,
since I will need it later in the lecture.

Example 2. Use the definition of the derivative to prove that if f is the function
defined by f(x) = 1

x , then f ′(x) = −1
x2 .

Solution.

f ′(x) = lim
h→0

f(x + h)− f(x)

h

= lim
h→0

1
x+h − 1

x

h
· x(x + h)

x(x + h)

= lim
h→0

x− (x + h)

hx(x + h)

= lim
h→0

−h
hx(x + h)

= lim
h→0

−1

x(x + h)

=
−1

x2
. �

If you want more examples of this sort of computation, you should review Lecture
17.

We can use the Chain Rule together with the Product Rule and Example 2
(page 2) to differentiate much more general quotients.

Example 3. Find
d

dx

(
1

x− 1

)
.

Recall, from Example 2, that Dx(1/x) = −1/x2.

Solution.

d

dx

(
1

x− 1

)
=

−1

(x− 1)2
· d

dx
(x− 1)

=
−1

(x− 1)2
. �
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Example 4. Let

f(x) =
x + 1

x− 1
.

Compute f ′(x).

Solution.

d

dx

(
x + 1

x− 1

)
=

d

dx

(
(x + 1) · 1

x− 1

)

= (x + 1)
d

dx

(
1

x− 1

)

+
1

x− 1

d

dx
(x + 1) (Product Rule)

= (x + 1) · −1

(x− 1)2
· d

dx
(x− 1)

+
1

x− 1
· 1 (Chain Rule)

= − x + 1

(x− 1)2
+

1

x− 1

=
−(x + 1) + (x− 1)

(x− 1)2

=
−2

(x− 1)2
. �

4. Proof of the product rule

Recall the product rule,

d

dx
(uv) = u

dv

dx
+ v

du

dx
,

and the (non-rigorous) infinitesimal derivation:

d(uv) = (u + du)(v + dv)− uv

= uv + u dv + v du + du dv − uv

= u dv + v du + du dv

d

dx
(uv) = u

dv

dx
+ v

du

dx
+

du

dx
��>

0

dv

= u
dv

dx
+ v

du

dx
.

We are now going to show how to prove the product rule rigorously. Pay attention
to how what we are doing rigorously corresponds to the non-rigorous infinitesimal
method.

Theorem. Suppose that u is a function of x such that du/dx|x=x0
exists. Likewise,

suppose that v is a function of x such that dv/dx|x=x0
exists. Then the derivative

of the product uv at x0 exists, and

d

dx
(uv)

∣∣∣∣
x=x0

= u0
dv

dx

∣∣∣∣
x=x0

+ v0
du

dx

∣∣∣∣
x=x0

.
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Proof. First, we write ∆(uv) in terms of ∆u and ∆v:

∆(uv) = uv − u0v0

= (u0 + ∆u)(v0 + ∆v)− u0v0

= u0vu + u0∆v + v0∆u + ∆u∆v − u0v0

= u0∆v + v0∆u + ∆u∆v.

[Notice how closely this resembles the infinitesimal version.] Now, we apply the
definition1 of the derivative as a limit:

d

dx
(uv)

∣∣∣∣
x=x0

= lim
∆x→0

∆(uv)

∆x

= lim
∆x→0

u0∆v + v0∆u + ∆u∆v

∆x

= lim
∆x→0

u0
∆v

∆x
+ v0

∆u

∆x
+

∆u

∆x
· ∆v

∆x
·∆x

= u0
dv

dx

∣∣∣∣
x=x0

+ v0
du

dx

∣∣∣∣
x=x0

+

(
du

dx

∣∣∣∣x=x0

)(
dv

dx

∣∣∣∣x=x0

)
· 0

= u0
dv

dx

∣∣∣∣
x=x0

+ v0
du

dx

∣∣∣∣
x=x0

. �

Note the trick on the third line that was used to show that ∆u∆v/∆x→ 0:

∆u∆v

∆x
=

∆u∆v∆x

(∆x)2
=

∆u

∆x
· ∆v

∆x
·∆x→ du

dx
· dv
dx
· 0 = 0

as ∆x → 0. This (sort of) gives a justification for the infinitesimal idea that
du dv

dx
= 0.

1Or rather, one of the equivalent definitions.
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Assignment 17 (due Friday, 16 November)

From Section 2.3:

• Problems 5–8. Do each problem two ways—using the limit definition of
your choice, and using the rules of differentiation (including the Chain Rule,
if you find it helpful).
• Problems 17–20.
• Problems 31–32. Do not FOIL out the products; instead, use the product

rule for differentiation.

The even-numbered problems will be graded carefully.

Section 2.5, Problems 1–4. Make sure it is clear, from your answer, how you are using
the Chain Rule (see, for instance, Example 1 at the end of Lecture 18). Problems 2
and 4 will be graded carefully.
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1. Test Monday, 19 November

The test will cover Lectures 1–19, with emphasis on Lectures 10–19; and As-
signments 1–17, with emphasis on Assignments 9–17. (Reference note: Lecture
19 was Wednesday’s lecture; Assignment 17 was due today.) The test will focus
on derivatives, but will likely include a bit about continuity and/or infinite limits
and/or limits as x→ ±∞.

You should not assume that if you did well on the last test, you can easily do well
on this test. As a general rule, students do worse on the second test in Math 131
than they did on the first test. Thus, I suggest you start studying yesterday, if not
before. You may also want to think in terms of “practicing” rather than “studying”:
redoing old quiz and homework problems (without looking at the solutions, if you
have them, until afterwards) may be more helpful than simply reading over them.

2. Proving the Chain Rule—the idea

As you may recall from last lecture, the infinitesimal derivation of the Chain
Rule goes something like this:

Let y = f(u) and u = g(x). Then we have

dy = f ′(u) du︸︷︷︸

= f ′( u︸︷︷︸)
︷ ︸︸ ︷
g′(x) dx, since du = g′(x)dx

= f ′
( ︷︸︸︷
g(x)

)
g′(x) dx since u = g(x).

Hence,

dy

dx
= f ′(g(x))g′(x), i.e.,

(f ◦ g)′(x) = f ′(g(x))g′(x).

The “infinitesimal statement” that dy = f ′(u) du corresponds to the “approximate
statement” that ∆y ≈ f ′(u)∆u. The basic idea behind the proof of the Chain Rule
is to come up with a precise, ε-δ version of this “approximate statement,” and then
use that to turn the notion that

∆y ≈ f ′(u)∆u ≈ f ′(u)g′(x)∆x

into a precise proof. I will not repeat this ε-δ statement here, but I have included
an illustration of it for your viewing pleasure in Figure 1.

Date: 16 November 2012.
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x

y

x0 + δx0 − δ

∆y = f ′(x0)∆x

y = f(x)

x0

y0

ε∆x

|∆x| < δ

Figure 1. When ∆x is small, then ∆y is approximated by
f ′(x0)∆x. In other words, for ∆x small, the function is approx-
imated by its tangent line (which is defined by ∆y = f ′(x0)∆x).
More precisely, the function is contained in a narrow cone about
the tangent line. The width of the cone is controlled by ε. We
can make the cone as narrow as we want (“arbitrarily narrow”), by
making δ (and hence ∆x) sufficiently small.

3. Remembering the Chain Rule

Recall the Chain Rule, as stated in the last lecture:

Theorem. If f and g are differentiable functions, then

(f ◦ g)′(x) = f ′(g(x)) · g′(x).

This is probably the form in which the Chain Rule is easiest to use, but it’s kind
of hard to remember. It becomes a lot easier to remember if we restate it in Leibniz
notation. To do this, assume that u = g(x) and y = f(u) = f(g(x)) = (f ◦ g)(x).
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Thus, we have

(f ◦ g)′(x0) =
dy

dx

∣∣∣∣
x=x0

f ′(g(x0) = f ′(u0) =
dy

du

∣∣∣∣
u=u0

=
dy

du

∣∣∣∣
u=g(x0)

g′(x0) =
du

dx

∣∣∣∣
x=x0

and the Chain Rule becomes

dy

dx

∣∣∣∣
x=x0

=

(
dy

du

∣∣∣∣
u=g(x0)

)(
du

dx

∣∣∣∣
x=x0

)
,

or more simply,
dy

dx
=
dy

du
· du
dx
.

When written this way, the Chain rule seems completely obvious—just cancel the
du’s. This is not a great way to think about why the Chain Rule is actually true,
because unlike most infinitesimal arguments, it cannot be turned into a rigorous
proof. If I ask you for the infinitesimal or Leibniz derivation of the Chain
Rule on the test, the explanation here will not receive full credit. However,
it does make a good mnemonic device.

4. Using the Chain Rule

The textbook’s section on the Chain Rule (Section 2.5) is actually not bad, and
you might want to take a look at it (especially if you find my notes confusing). To
quote the textbook, the key idea in applying the Chain Rule is that

The last step in calculation corresponds to the first step in differen-
tiation.

Example 1. Use the Chain Rule to differentiate (2x+ 1)3.

Again quoting the textbook (more or less), the last step in the calculation is to cube
something, so you start off by differentiating the cube function.

Solution (long version). Let

u = 2x+ 1

y = u3 = (2x+ 1)3.

Then
du

dx
= 2

dy

du
= 3u2

and so
dy

dx
=
dy

du

du

dx

= 3u2 · 2
= 6(2x+ 1)2,
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where the last step is obtained by substituting in u = 2x+ 1. �

Solution (short version).

d

dx
(2x+ 1)3 = 3(2x+ 1)2 · d

dx
(2x+ 1)

= 3(2x+ 1)2 · 2
= 6(2x+ 1)2. �

5. Differentiating Quotients

Recall that last lecture, we computed that

d

dx

1

x
=
−1

x2
.

We can use this, together with the Chain Rule, to compute a lot of derivatives. To
start with, we will take a look at xn when n is a negative integer.

Example 2. Let f(x) = x−m, where m is a positive integer. We may use the Chain
Rule to compute f ′(x), as follows:

df

dx
=

d

dx

(
1

xm

)

=
−1

(xm)2
· d
dx

(xm)

=
−1

x2m
·mxm−1

= −m · x−2m+(m−1)

= −m · x−m−1.

If n = −m is a negative integer, then we get

d

dx
xn = nxn−1.

Thus, we have that the power rule holds for negative integers as well as positive
integers. Since Dx(x0) = Dx(1) = 0 = 0 · x−1 for x 6= 0, it might also be said that
the power rule holds for 0.

Theorem. (Power Rule—all integers) If n is an integer, then

d

dx
(xn) = nxn−1.

This should probably be memorized, but if you already have the one for positive
integers memorized, that will probably not be difficult. (We will later show using
implicit differentiation that the Power Rule holds whenever n is a rational number. It
is in fact true even when n is irrational, although proving that requires logarithms.)

We can also use the Chain Rule, together with the Product Rule, to differentiate
quotients.
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Theorem. (Quotient Rule) Let f and g be differentiable functions. Then

Dx

(
f(x)

g(x)

)
=
g(x)Dx(f(x))− f(x)Dx(g(x))

g(x)2

=
g(x)f ′(x)− f(x)g′(x)

g(x)2
.

You can either memorize the Quotient Rule, or remember how to differentiate
quotients by combining the Product Rule with the Chain Rule. As long as you can
differentiate quotients, I don’t much care which method you use. If you do want to
memorize this, the standard mnemonic is

“Dee quotient equals bottom Dee top minus top Dee bottom, all
over bottom squared.”

However, if you use this mnemonic, remember not to equate infinitesimals with
finite quantities. Either all the Dees should be Dx (derivative with respect to x, a
finite quantity) or they should all be d (gives infinitesimals on both sides).

Proof.

Dx

(
f(x)

g(x)

)
= Dx

(
f(x) · 1

g(x)

)

= f(x)Dx

(
1

g(x)

)
+

1

g(x)
Dx(f(x)) (product rule)

= f(x) · −1

(g(x))2
·Dx(g(x)) +

f ′(x)

g(x)
(chain rule)

=
−f(x)g′(x)

g(x)2
+
f ′(x)

g(x)

=
−f(x)g′(x) + f ′(x)g(x)

g(x)2

=
g(x)f ′(x)− f(x)g′(x)

g(x)2
. �

Example 3. Let

f(x) =
x+ 1

x− 1
.

Compute f ′(x).
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Without the quotient rule.

d

dx

(
x+ 1

x− 1

)
=

d

dx

(
(x+ 1) · 1

x− 1

)

= (x+ 1)
d

dx

(
1

x− 1

)

+
1

x− 1

d

dx
(x+ 1) (Product Rule)

= (x+ 1) · −1

(x− 1)2
· d
dx

(x− 1)

+
1

x− 1
· 1 (Chain Rule)

= − x+ 1

(x− 1)2
+

1

x− 1

=
−(x+ 1) + (x− 1)

(x− 1)2

=
−2

(x− 1)2
. �

With the quotient rule.

Dx

(
x+ 1

x− 1

)
=

(x− 1) · 1− (x+ 1) · 1
(x− 1)2

=
x− 1− x− 1

(x− 1)2

=
−2

(x− 1)2
�

Assignment 18 (due Wednesday, 21 November)

There will be one, but I have not yet selected it.
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1. Proof Sketch of the Chain Rule

Let y be a function of x. What does it mean to say that the derivative of y at x0

is equal to a number m?

lim
∆x→0

∆y

∆x
= m

⇐⇒ ∀ε > 0, ∃δ > 0 s.t. if 0 < |∆x| < δ, then

∣∣∣∣
∆y

∆x
−m

∣∣∣∣ < ε

⇐⇒ ∀ε > 0, ∃δ > 0 s.t. if 0 < |∆x| < δ, then
|∆y −m∆x|
|∆x| < ε

⇐⇒ ∀ε > 0, ∃δ > 0 s.t. if 0 < |∆x| < δ, then |∆y −m∆x| < ε|∆x|

Informally, this means that the statement m = f ′(x) is equivalent to the statement
that

If the change in x is small, then ∆y ≈ m∆x.

In other words, near x0, y is approximated by the tangent line. See Figure 1.
This suggests a (non-rigorous) definition of the derivative using infinitesimals: if

y = f(x), then f ′(x) is the number such that

dy = f ′(x) dx.

This “definition” is based on the general notion that “if something is approximately
true for small ∆x, then it should be exactly true for dx because dx is so small.”
Thus, since ∆y ≈ f ′(x)∆x, we get dy = f ′(x) dx. This principle can get you in big
trouble if applied indiscriminately, which is why using infinitesimals is “walking on
clouds.” But in many circumstances, it can give good intuition and correct results.

Now, suppose that y = f(u) and u = g(x), so that y = f(u) = f(g(x)). Then we
have dy = f ′(u) du and du = g′(x) dx, so

dy = f ′(u) du

= f ′(u)g′(x) dx

= f ′(g(x))g′(x) dx.

Hence, by the “infinitesimal definition of the derivative,”

dy

dx
= f ′(g(x))g′(x).

Date: 21 November 2012.
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x

y

x0 + δx0 − δ

∆y = f ′(x0)∆x

y = f(x)

x0

y0

ε∆x

|∆x| < δ

Figure 1. When ∆x is small, then ∆y is approximated by
f ′(x0)∆x. In other words, for ∆x small, the function is approx-
imated by its tangent line (which is defined by ∆y = f ′(x0)∆x).
More precisely, the function is contained in a narrow cone about
the tangent line. The width of the cone is controlled by ε. We
can make the cone as narrow as we want (“arbitrarily narrow”), by
making δ (and hence ∆x) sufficiently small.
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Note: If I ask you on a test for the “Leibniz derivation of the Chain Rule”
or the “Infinitesimal derivation of the Chain Rule,” I am asking you, more or
less, to give me the paragraph above.

Theorem. (Chain Rule) If f and g are differentiable functions, then f ◦ g is also
differentiable, and

(f ◦ g)′(x) = f ′(g(x))g′(x).

The proof of the Chain Rule is to use εs and δs to say exactly what is meant by
“approximately equal” in the argument

∆y ≈ f ′(u)∆u

≈ f ′(u)g′(x)∆x

= f ′(g(x))g′(x)∆x.

Unfortunately, there are two complications that have to be dealt with. The first is
that, for technical reasons, we need an ε-δ definition for the derivative that allows
|∆x| = 0. The following statement turns out to work:

∀ε > 0, ∃δ > 0 s.t. if |∆x| < δ, then |∆y − f ′(x0)∆x| ≤ ε|∆x|.

Comparing this to the earlier version, we got rid if the requirement 0 < |∆x| by
changing the final < ε|∆x| to ≤ ε|∆x|. I don’t want to explain why exactly we can
do this, but anyone who has taken (and understood) an analysis course ought to be
able to do it without much trouble.

The second complication is that the expression for δ in terms of ε turns out to
be a bit ugly. For this reason, I will spare you the details. However, I hope I have
convinced you that the basic idea of the proof of the Chain Rule is comprehensible,
even if the technical details are a bit involved.

2. Differentiability and Continuity

There’s a theoretical point that I’ve sort of hand-waved over up to now, but that
probably needs to be addressed. If you recall, the definition of the derivative (or at
least, one of the definitions) is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

However, an important point about limits is that they don’t always exist. Similarly,
derivatives do not always exist.

Example 1. Let f be the absolute value function; i.e., f is defined by

f(x) = |x| =
{
−x if x < 0,

x if x ≥ 0.

Then f ′(0) does not exist. Geometrically, we can see this because it is not possible
to draw a narrow cone centered on (0, 0) that contains the graph of f :
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x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

More formally, we see that

lim
h→0−

|0 + h| − |0|
h

= lim
h→0

−h
h

= −1

lim
h→0+

|0 + h| − |0|
h

= lim
h→0

h

h
= 1.

Since the one-sided limits are not equal, the two-sided limit

lim
h→0

|0 + h| − |0|
h

= f ′(0)

does not exist.

Definition. We say that a function f is differentiable at x0 if f is defined at x0

and the derivative f ′(x0) exists (and is finite). We say that f is differentiable if it is
differentiable at every point of its domain.

Example 2. Consider the function f defined by f(x) = 3
√
x:
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x

f
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−4
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4

You should not find it hard to believe that the tangent line to f at the origin is
vertical—i.e., a line with slope infinity. Correspondingly, if one evaluates

f ′(0) = lim
h→0

(0 + h)1/3 − 01/3

h
,

one will find that the limit is ∞. Since this derivative is not finite, we still say that
f is not differentiable at 0.

One reason for this convention is that the Chain Rule does not work here: if it
did, it would tell us that the derivative of 3

√
g(x) at x = 0 is ∞ · g′(0). Say that

g(x) = x3; then we know that 3
√
g(x) = x, so the derivative at 0 should be 1; but

the chain rule would tell us that this derivative is ∞ · 0, which does not make sense.
However, because the Chain Rule only applies when both functions are differentiable,
and 3

√
is not differentiable, we don’t run into a contradiction.

As I have said before, the “main point” of functions is, more or less, that they
give us a way to talk about things that we don’t have formulas for. Thus, if we have
a problem, we might be able to show that there is a function that gives its solution,
even if there is no formula for the solution. Once we’ve shown that the solution is
given by a function, we can ask how “nice” the function is: Is it continuous? Is it
differentiable? In this situation, we would probably find the following theorem very
interesting:

Theorem. Let f be a function. If f is differentiable at x0, then f is continuous at
x0.
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“Proof without words:”

x

y

y = f(x)

x0

y0

In case you are lost, here are a few words that may help explain this “picture
proof”: If f is differentiable at x0, then we can draw a narrow cone centered at
(x0, y0) containing f ; we can then draw a Lipschitz bow tie containing this cone,
and hence containing f . �
Proof. Assume f is differentiable at x0. Then f is defined at x0, by definition of
differentiability.

Let y = f(x), y0 = f(x0), and note that

y = y0 + ∆y

= y0 +
∆y

∆x
·∆x.

Hence,

lim
x→x0

f(x) = lim
∆x→0

y

= lim
∆x→0

y0 +
∆y

∆x
·∆x

= y0 +

(
lim

∆x→0

∆y

∆x

)
·
(

lim
∆x→0

∆x
)

= y0 +

(
dy

dx

∣∣∣∣
x=x0

)
· 0

= y0 = f(x0). �

Note: In the proof above, if the dy/dx|x=x0
did not exist (as a finite number),

then the limit

lim
∆x→0

∆y

∆x
would not have made sense, and so the Main Limit Theorem would not have been
applicable.

For our purposes in this class, the most important use of this theorem may be a
way to tell when a function is not differentiable. For this, we use the contrapositive:
If f is discontinuous at x0, then f is not differentiable at x0.
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Warning. It is quite possible for a function to be continuous but not differentiable.
For instance, our earlier examples f(x) = |x| and g(x) = 3

√
x are both continuous,

but neither is differentiable at 0.

3. Higher derivatives

Given a differentiable function f , its derivative f ′ is also a function. This function
f ′ may itself be differentiable, and have a derivative of its own, which we call f ′′—the
second derivative. The derivative of f ′′, if it exists, is denoted f ′′′, and called the
third derivative of f .

Example 3. Let f be the function defined by f(x) = x5. Find the first, second,
and third derivatives of f .

Solution.

f ′(x) = 5x4

f ′′(x) = 5 · 4x3 = 20x3

f ′′′(x) = 20 · 3x2 = 60x2. �
We can, of course, proceed to take higher derivatives than just the third derivative.
But since something like f ′′′′′′′(x) would be rather hard to read, we denote, e.g., the
seventh derivative of f by f (7). There are several other notations:

read aloud prime notation D notation Leibniz notation

the nth derivative of
f with respect to x

f (n)(x) Dn
x (f(x))

dnf

dxn

The Leibniz notation is based on the idea that
d

dx

(
dy

dx

)
should be written as

d2y

dx2
.

Unlike most other versions of the Leibniz notation, this is purely a mnemonic device;
trying to think about this as the “quotient” of “infinitesimal” quantities d2y and
dx2 ends up just giving a mess.
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Assignment 19 (due Monday, 26 November)

Differentiate the following expressions with respect to x. (Hint: Apply the Chain
Rule more than once.) You do not need to show every single step, but it should
be clear to the grader how you got to the answer. You do not need to simplify the
answer.

(1)
(
5(2x+ 1)361 − 17

)42

(2)
(
1− (1− 2x)33

)1776

Both of these will be graded carefully.

Assume that f is a differentiable function. Consider the two functions g and h
defined by

g(t) = 2f(t),

h(t) = f(2t).

You may want to check your answers below by considering the specific cases of
f(t) = t and f(t) = t2.

(1) Explain how to obtain the graphs of g and h from the graph of f by
shrinking/stretching.

(2) Compute g′ and h′ in terms of f ′. (Hint: they are NOT the same.)
(3) Explain how to obtain the graphs of g′ and h′ from the graph of f ′ by

shrinking/stretching.

All three of these will all be graded carefully.
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1. Higher derivatives

Given a differentiable function f , its derivative f ′ is also a function. This function
f ′ may itself be differentiable, and have a derivative of its own, which we call f ′′—the
second derivative. The derivative of f ′′, if it exists, is denoted f ′′′, and called the
third derivative of f .

Example 1. Let f be the function defined by f(x) = x5. Find the first, second,
and third derivatives of f .

Solution.

f ′(x) = 5x4

f ′′(x) = 5 · 4x3 = 20x3

f ′′′(x) = 20 · 3x2 = 60x2. �

We can, of course, proceed to take higher derivatives than just the third derivative.
But since something like f ′′′′′′′(x) would be rather hard to read, we denote, e.g., the
seventh derivative of f by f (7). There are several other notations:

read aloud prime notation D notation Leibniz notation

the nth derivative of
f with respect to x

f (n)(x) Dn
x (f(x))

dnf

dxn

The Leibniz notation is based on the idea that
d

dx

(
dy

dx

)
should be written as

d2y

dx2
.

Unlike most other versions of the Leibniz notation, this is purely a mnemonic device;
trying to think about this as the “quotient” of “infinitesimal” quantities d2y and
dx2 ends up just giving a mess.

2. Acceleration

If you recall from when we first introduced the derivative, the first motivation I
gave was that “the derivative is the rate of change of position with respect to time.”
If x represents position, then

dx

dt

Date: Monday, 26 November 2011.
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represents velocity. One of the most important instances of a higher derivative is
acceleration, or the rate of change of velocity with respect to time:

d2x

dt2
.

If the velocity of an object is increasing, then its acceleration is positive; if the
velocity is decreasing, then the acceleration is negative.

Intuitively, we are inclined to think that something is “accelerating” if it is
“getting faster,” and “decelerating” if it is ”slowing down.” This intuition can be
useful, but it is also dangerous. If an object has positive velocity (i.e., moving to
the right), but negative acceleration, then its velocity will decrease to zero, and
continue to decrease to be negative; i.e., the object will start moving to the left. We
could say that the object decelerates to a stop, and then accelerates in the opposite
direction; however, this is deceptive, because the (negative) acceleration is exactly
the same before, during, and after the instant at which the object is “stopped.”

For another example, consider what happens when an object is tossed upwards.
We might be inclined to say that under the force of gravity, it decelerates until
it reaches the apex of its path, and then starts falling downward. But really, the
acceleration is the same (negative) from the moment the object leaves the hand.
Thus, it actually makes more sense to say that the object is falling from the instant
it leaves the hand—even while it is still moving upward (i.e., has positive velocity).

One time (in middle school, I think), I was in an auditorium with a bunch of
other students listening to an astronaut speak. At one point, he asked us why, when
an astronaut in a spaceship “drops” something, it floats rather than falling. The
auditorium shook as everyone in the audience shouted, “No gravity!” The astronaut
replied, “Everyone who just said ‘no gravity’ is 100% wrong.” If there were no
gravity, then the spaceship would not be orbiting the earth; instead, it would be
traveling away from the earth in a straight line, never to return. The reason, he
said, that an object dropped inside the spaceship appears to float is that the object,
the astronaut, and the entire spaceship are already falling. The only reason the

without gravity

ground level

Figure 1. The spaceship is falling, but it’s moving sidewise so
quickly that by the time it reaches “ground level,” it has not actually
gotten any closer to the surface of the earth.
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spaceship does not reach the ground is that by the time it reaches “ground level,”
it’s moved so far horizontally that the ground has dropped out from beneath it.

For trajectories short enough that we can pretend the earth is flat, the general
rule is the following:

Law of Falling Bodies. If an object is under no influences1 but that of gravity,
then its vertical acceleration is a constant g ≈ −10m

s2 .

If the acceleration g is measured in feet per second squared rather than meters
per second squared, its value is approximately −32. In either case, this acceleration
is negative, because the object’s velocity is decreasing. (If the object is moving
downward, then its velocity is already negative, and is becoming more negative.)

I’ve called this the Law of Falling Bodies rather than the Law of Gravity because
gravity generally refers to a deeper phenomenon discovered by Isaac Newton, whereas
a version of the Law of Falling Bodies was known earlier to Galileo. (Who was forced
to deal with average acceleration, because he did not know about derivatives.)

If we translate the Law of Falling Bodies into mathematical notation, we obtain
the equation

d2y

dt2
= −10,

where y is the vertical position of the object. This is a very simple example of what
is called a differential equation; to “solve” the differential equation, we figure out
what functions y(t) would make it true. It is not hard to verify that for any choice
of a and b, the function

y(t) = −5t2 + at + b

is a solution to the differential equation:

y′(t) = −10t + a

y′′(t) = −10.

As it turns out, these are the only functions that satisfy this differential equation,
although we will not see why until next quarter. Thus, any time you toss or drop
an object, its vertical position is described by

y = −5t2 + at + b

for some choice of a and b. Note that there are many different paths possible, since
there are many different values of a and b. This is good, since there are many
different paths falling bodies can follow in real life. (If you throw a piece of chalk
up, it will follow a different path from the piece of chalk you throw down, but both
paths can be described by the equation y = −5t2 +at+ b, for some (different) values
of a and b.)

However, no matter what a and b are, y = −5t2 + at + b is always some sort
of upside-down parabola. Correspondingly, a falling object always moves in some
form of upside-down parabola; see Figure 2a. If you imagine that your object is a
droplet of water, and you string a bunch of these “objects” together in a continuous
stream, you can see the whole path at once, as in Figure 2b. Notice how much
more interesting nature’s parabola is than the stark, abstract curve given in 2a.
The water’s arc seems to scintillate with reflected light; cords of water seem to twist
together, like the muscles in a Michelangelo drawing of an arm.

1If this were a physics course, we’d use the word “forces.”
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y

t

(a) An object with constant

negative acceleration moves in

an upside-down parabola.

(b) Parabolic trajectory of

water. By GuidoB. Modi-

fied (primarily to make it
grayscale). This image is

licensed under a Creative

Commons Attribution-Share
Alike 3.0 Unported license; see

http://creativecommons.org/

licenses/by-sa/3.0/deed.en.

Figure 2. Parabolas in theory and in practice

In the textbook, it essentially just gives you the equation for the position, say
y = −5t2 + t + 1, and asks you to calculate the acceleration. And as it turns out,
the acceleration is constantly −10 (or perhaps −32, since the textbook seems to like
feet more than meters). While finding the acceleration from the position function
is a perfectly good exercise, it somehow feels backwards. In some sense, the basic
statement is that the vertical acceleration of a falling object is constantly −10; this
basic fact is the cause of the effect that the object travels in a parabola given by
y = −5t2 + at + b. By starting off with the path and deducing the acceleration, it
feels as though you are mixing up the cause and the effect.

One final note: If you look more closely at Figure 2a, you will see that the
horizontal axis is indicating time. On the other hand, in Figure 2b, the “horizontal
axis,” such as it is, clearly is given by horizontal position, or distance (more or less).
Since the graph does not actually tell you where the object is horizontally at a given
time, it is not entirely clear why the “parabola” description should be accurate; the
graph could just as easily describe an object that goes straight up and straight back
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down with no “sideways” movement. For the moment, I’m just going to ignore this
discrepancy. We may, or may not, discuss it when discussing related rates.

3. Implicit Differentiation

Suppose we know, or suspect, that y is a differentiable function of x. We don’t
have a formula for y, but we may know that y and x satisfy some relation, for
instance,

y2 + x2 = 1.

Often, we can use this, together with the chain rule, to figure out what the derivative
of y must be (assuming it has one). In the example at hand, we differentiate both
sides with respect to x, and then solve for the derivative Dxy:

Dx(y2 + x2) = Dx(1)

2y ·Dx(y) + 2x = 0

2yDxy = −2x

Dxy =
−2x

2y
=

−x

y
.

This expression for the derivative Dxy has a y in it as well as an x, which, as the
book says, can be “a nuisance.” However, it can nevertheless be quite useful. If we
should happen to know that the value of y at a point x0 is y0, then we can use this
to calculate Dxy = dy/dx at the point (x0, y0), assuming this derivative exists.
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Assignment 20 (due Wednesday, 28 November)

Section 2.3, Problems 39–40. Problem 40 will be graded carefully.

Section 2.6, Problems 1–4 and 9–10. Problems 2, 4, and 10 will be graded carefully.

Assignment 21 (due Friday, 30 November)

Section 2.6, Problems 7–8 and 11–12. Problems 8 and 12 will be graded carefully.

Section 2.7, Problems 1–2. Problem 2 will be graded carefully.

The following argument purports to show that every function is continuous:

Let f be a function, and x0 any point in its domain. We show that
f is continuous at x0.

lim
x→x0

f(x) = lim
x→x0

f(x0) + [f(x) − f(x0)]

= lim
x→x0

f(x0) +
f(x) − f(x0)

x− x0
· (x− x0)

= f(x0) +

(
lim

x→x0

f(x) − f(x0)

x− x0

)
·
(

lim
x→x0

x− x0

)

= f(x0) +

(
lim

x→x0

f(x) − f(x0)

x− x0

)
· 0

= f(x0) + 0,

since anything times zero is zero. Thus, f is continuous at x0.
Moreover, since the same argument applies to every point x0 in the
domain of f , we know that f is continuous at every point in its
domain. In other words, f is continuous.

On the other hand, we know that not every function is continuous. Thus, there
must be a flaw in the argument. What is it? (Hint: this argument can be used to
show that every differentiable function is continuous.)
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1. Implicit Differentiation: How to differentiate a function we don’t
know

All of the “exercises” for differentiation so far have been based on differentiating
formulas. However, many of the rules for differentiation (most especially, the chain
rule) are much more general than this: they deal with differentiating functions.
And, as you may recall, kind of the whole point of functions is that they are not
necessarily given by formulas. We have not really explored this very far, because
most of the functions we could talk about were, in fact, given by formulas. But
there is another way: we can define a function as a solution to something. For
instance, the

√
function is really defined by
√
x = the nonnegative number y such that y2 = x.

In other words,
√
x is just a fancy way of writing “the (nonnegative) solution to the

equation y2 = x.” And we can go back to this basic definition to differentiate the
square root function:

Example 1. Suppose y =
√
x. Find an expression for dy/dx.

Solution. We assume, first of all, that
√
x is in fact differentiable; without this

assumption, there is not much we can do. We then go back to the basic equation
that y2 = x and apply the Chain Rule:

y2 = x

d

dx
y2 =

d

dx
x

2y · dy
dx

= 1

dy

dx
=

1

2y
=

1

2
√
x
.

Thus, assuming that the function f taking x 7→ √x is differentiable, its derivative
f ′ is necessarily given by

f ′(x) =
1

2
√
x
. �

Date: Wednesday, 28 November 2011.
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Exercise 2. Use implicit differentiation to show that if y = −√x, then

dy

dx
= − 1

2
√
x
.

Solution. This time, y also satisfies the equation y2 = x, since (−√x)
2

=

(−1)2 (
√
x)

2
= 1 · x = x. Thus, we can differentiate implicitly:

y2 = x

2y · dy
dx

= 1

dy

dx
=

1

2y
=

1

2 (−√x)
= − 1

2
√
x
. �

Note that there is a problem we never dealt with here: we never actually showed
that f(x) =

√
x is differentiable. We only figured out what its derivative must be,

if the derivative exists. There are a couple ways to solve this problem.

• It is possible to compute the derivative of
√
x directly from the definition of

the derivative (i.e., as the limit of the difference quotient). This is done earlier
in the textbook. However, this is a way to avoid using implicit differentiation;
what we really want is a way to show that implicit differentiation works.
• There is a theorem called the “Implicit Function Theorem” that states,

roughly, that if implicit differentiation gives a reasonable answer, then the
equation in question does in fact have a solution y = f(x) where f is a
differentiable function. This is kind of like the Main Limit Theorem: If the
process gives a reasonable answer, then we know that must be the right
answer; but if the process does not give a reasonable answer, we don’t know
anything.

The Implicit Function Theorem may seem to be the answer to our problems, but
there are subtleties even here. First, the actual statement of the theorem is something
that I find confusing, so I very much doubt that you want to see it. Second, while
the Implicit Function Theorem can guarantee that some solutions are differentiable
(in this case, f(x) =

√
x and f(x) = −√x are both solutions to f(x)2 = x that are

differentiable for x > 0), there will also be other solutions that are not differentiable.
For instance, if f is the function defined by

f(x) =

{√
x if 0 < x ≤ 1,

−√x if x > 1,
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x

f(x)

1 2 3 4−1

1

−1

−2

−3

then y = f(x) is also a solution to the equation y2 = x for all x > 0, but f is
not even continuous, much less differentiable. We will not try to explain why the
Implicit Function Theorem applies for some “solutions,” but not to others. Instead,
we will adopt a “third way”:

• Ignore the difficulties and just assume implicit differentiation works. Any
function we encounter “naturally” in this course1 is going to work out just
fine.

In essence, we’ve reached a point where the skyscraper just gets too convoluted to
deal with, so we’re going to continue walking on clouds.

There’s one more very important result we want to obtain using implicit differen-
tiation. Recall that we proved the Power Rule, Dx(xn) = nxn−1, whenever n is an
integer. We’re now going to that this holds, not just for integers, but for rational
numbers.

Theorem. (Power Rule for rational exponents) Let r be any rational number. Then

Dx(xr) = rxr−1.

Incomplete Proof. Since r is a rational number (i.e., a “ratio” of two integers), we
may write

r =
p

q
,

for some integers p, q, where q 6= 0. By definition, y = xp/q is a solution to the
equation

yq = xp.

1That is, any function that has not been explicitly designed to cause problems.
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Applying implicit differentiation, together with the power rule for integer exponents,
we see that

qyq−1
dy

dx
= pxp−1

dy

dx
=

pxp−1

qyq−1

=
p

q
· xp−1

(xr)
q−1 since y = xr

= r · x(p−1)−r(q−1)

= r · xp−1−(p/q)(q−1)

= r · xp−1−p+p/q

= r · x−1+p/q

= r · xr−1. �

The key point of this proof is that we could apply the power rule to xp and yq,
because we already knew the power rule for integer exponents, and p, q are integers.
This proof is incomplete in that we have not really turned implicit differentiation
into a rigorous technique, so we can’t use it in “real” proofs.

I commented at one point that calculus is “supposed” to work exactly the same
for rational and irrational numbers. Thus, it seems peculiar that we have a rule
that only seems to work for rational numbers. In fact, as it turns out, the Power
Rule does hold for all real exponents—rational or irrational. There’s even a nice,
elegant proof that does not care whether r is rational or irrational. Unfortunately,
this proof uses logarithms, so we won’t see it for some time (if at all). Thus, for
now, all our powers will be rational.

2. Some potential pitfalls: numbers, functions, and expressions

When I first introduced functions, I made a big deal of the fact that f is a
function, but f(x) is just a number (albeit one that we do not yet know). In terms
of this distinction, differentiation is something we do to functions, not numbers.
Thus, Df , the “derivative of f ,” is a function, but Df(x) would be the “derivative
of a number,” which does not make any sense. Unfortunately, this distinction has
become somewhat blurred when we write things like

d

dx
(x2 + 1).

What we really mean here is “the derivative of the function that maps x 7→ x2 + 1.”
The x in d/dx tells us that x is just a “dummy variable,” and so the input is really
just a function. When we write the answer as 2x, it is even harder to tell that we
mean “the function mapping x 7→ 2x” rather than simply “the number 2x.”

So far, this section has been entirely theoretical, but there is a practical, compu-
tational issue as well. Suppose someone asks you to calculate the derivative of x2 + 1
at x = 2. You may be tempted to substitute in x = 2 before differentiating, which
would be a disaster. You’d be differentiating a number rather than a function; you’d
probably try to treat it as the constant function 22 + 1 = 5, and end up getting
derivative 0 since the derivative of any constant function is zero.
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To be honest, I hope that none of you would make this particular error, because
this example is fairly straightforward. But when you deal with more complicated
relations—say, u and v are both functions of t, y is a function of u, and you have
some equation that involves all four letters t, u, v, y—it can be easy to lose track of
whether you are dealing with functions or numbers “underneath.” A good rule of
thumb here is the following:

Rule of Thumb. First, do all your differentiating. Then, and only then, start
treating variables as numbers.

For instance, if you are asked to find the derivative of x2 + 1 at x = 2, you should
first differentiate (obtaining 2x) and then substitute in x = 2 (obtaining 4, the
correct answer). Like any rule of thumb, this one has occasional exceptions. The
only truly reliable way to stay out of trouble is to know what you are doing: to
know, at each step of your argument, whether x2 + 1 really means “the number
x2 + 1” or “the function that maps x 7→ x2 + 1.” However, trying to keep track of
this can be quite confusing, and I think the Rule of Thumb above will probably
serve you well.
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Assignment 21 (due Friday, 30 November)

Section 2.6, Problems 7–8 and 11–12. Problems 8 and 12 will be graded carefully.

Section 2.7, Problems 1–2. Problem 2 will be graded carefully.

The following argument purports to show that every function is continuous:

Let f be a function, and x0 any point in its domain. We show that
f is continuous at x0.

lim
x→x0

f(x) = lim
x→x0

f(x0) + [f(x)− f(x0)]

= lim
x→x0

f(x0) +
f(x)− f(x0)

x− x0
· (x− x0)

= f(x0) +

(
lim

x→x0

f(x)− f(x0)

x− x0

)
·
(

lim
x→x0

x− x0

)

= f(x0) +

(
lim

x→x0

f(x)− f(x0)

x− x0

)
· 0

= f(x0) + 0,

since anything times zero is zero. Thus, f is continuous at x0.
Moreover, since the same argument applies to every point x0 in the
domain of f , we know that f is continuous at every point in its
domain. In other words, f is continuous.

On the other hand, we know that not every function is continuous. Thus, there
must be a flaw in the argument. What is it? (Hint: this argument can be used to
show that every differentiable function is continuous.)
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1. Implicit Differentiation Note

One thing that was perhaps not clear from my previous discussion of implicit
differentiation is the following:

In implicit differentiation, you should often differentiate before doing
anything else. Don’t start solving for anything (or doing any algebra)
until you have differentiated.

Example 1. Compute dy/dx in terms of x and y if xy2 + y3 − y = 17π.

Solution.
xy2 + y3 − y = 17π

d

dx

(
xy2 + y3 − y

)
=

d

dx
(17π)

differentiate
both sides[

1y2 + x
d

dx

(
y2
)]

+
d

dx

(
y3
)
− d

dx
(y) = 0 product rule

y2 + x · 2y dy
dx

+ 3y2
dy

dx
− dy

dx
= 0 chain rule

y2 +
(
2xy + 3y2 − 1

) dy
dx

= 0

(
2xy + 3y2 − 1

) dy
dx

= −y2

dy

dx
=

−y2
2xy + 3y2 − 1

�

2. Related Rates

As far as I can tell, “related rates” are the textbook’s first excuse to really start
in on so-called “word problems.” Up to now, the course has been mostly theoretical;
the only real “applications” have been to studying the graphs of functions. However,
calculus was invented for real-world problems. If you can’t understand how calculus
relates to the real world, then you don’t really understand calculus at all.

I think the real meat of the notion of “related rates” is in the examples, so let us
proceed to these examples without further ado.

Date: Friday, 30 November 2012.

1
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Example 2. Suppose that a straight railroad consists of two completely rigid
segments, each 50 kilometers long. Suppose, further, that two immensely strong
men move the ends of the railroad toward each other at a constant rate of one
centimeter per hour, forcing the railroad to rise up in the center. (By this, I mean
that each end of the railroad is moving at a rate of one centimeter per hour.) After
one hour, how fast is the center point of the railroad moving up?

Solution. In any word problem like this, the first step is almost always to draw
a picture. At the same time, we probably want to assign names to all the
variable quantities.

1 cm/hr 1 cm/hr
` `

h

dh/dt

50 km 50 km

What we are interested in calculating is the rate of change of the height h with
respect to time t. We need to fix units, so let’s say we take time in hours and
distance in kilometers. We are given that the horizontal length ` is shrinking at
a rate of

1
cm

hr
= .00001

km

hr
.

In other words,
d`

dt
= −.00001.

The Pythagorean Theorem tells us that

h2 + `2 = 502;

differentiating both sides with respect to t, we see that

2h
dh

dt
+ 2`

d`

dt
= 0

2h
dh

dt
+ 2`(−.00001) = 0

dh

dt
=
.00001`

h

=
1

100000h
.

Up to now, we have only been making substitutions when we knew that
something held for all time (or at least, all t > 0). This is because we needed
to be able to differentiate; and as discussed last time, this means we are really
working with functions rather than numbers. Our variables that could change
over the course of time, would need to remain “dummy variables” so that we
could differentiate them (or with respect to them).

However, we are done differentiating now, so we can substitute in the partic-
ular case we care about: specifically, when t = 1 (i.e., after one hour). In this
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case, we have that
` = 50− .00001 = 49.99999.

Since there is an h in the formula for dh/dt, we also need to find out what h is
at t = 1, which we do using the Pythagorean Theorem (again):

h2 + `2 = 502

h2 = 502 − `2

= 502 − (50− .00001)2

= 502 − 502 + 2 · 50(.00001)− .0000000001

= .0001− .0000000001

h =
√
.0001− .0000000001

=
√

10−4 − 10−10

=
√

10−4(1− 10−6)

= 10−2
√

1− 10−6.

Thus, plugging in this h, we find that

dh

dt

∣∣∣∣
t=1

=
1

105h

=
1

105 · 10−2
√

1− 10−6

=
10−5+2

√
1− 10−6

=
.001√

1− 10−6
.

Since
√

1− 10−6 is very nearly 1, this tells us that the rate of the vertex going
up, dh/dt, is very close to .001 kilometers per hour, or 1 meter per hour, at
time t = 1 hr. Thus, the midpoint is going up much faster the sides are going
in (1 cm/hr). �

If you really think about it, the problem above does not so much calculate the
rate of change, as explain why the problem is so incredibly unrealistic. The way to
make work easier is to use leverage, or “mechanical advantage,” so that your quick
motion produces a slow motion in the thing you are trying to move. The fictional
“very strong men” in this example are doing exactly the opposite: they are working
at an enormous mechanical disadvantage.
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Assignment 22 (due Monday, 3 December 2012)

Section 2.6, Problems 17 and 18. Problem 18 will be graded carefully.

Section 2.7, Problems 5–6 and 22. Problems 6 and 22 will be graded carefully.

Section 2.8, Problem 1.

Assignment 23 (due Wednesday, 5 December 2012)1

Section 2.7, Problem 9. This will be graded carefully.

Section 2.8, Problems 2, 3, and 6. Problems 2 and 6 will be graded carefully.

Section 3.1, Problems 1 and 5–6. On 5 and 6, include graphs of the functions on
the interval. Do NOT graph the function outside the interval.

You will probably want to read Section 3.1 before (or while) attempting these
three problems.

Differentiate the function f defined by

f(x) =
3

√
2

x
+
√
x2 + 1

This will be graded carefully.

1This is the final homework assignment for this quarter.
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1. Related Rates examples

First, let’s go over the related rates homework problem due today.

Example 1. (Section 2.8, Problem 1) Each edge of a variable cube is increasing at
a rate of 3 inches per second. How fast is the volume of the cube increasing when
an edge is 12 inches long?

Solution. Let e denote the edge length of the cube, and let V denote its volume.

e

e

e

Let’s start with what is true “abstractly,” i.e., for all time. The two quantities
V (volume) and e (edge length) are related by the equation

V = e3.

Differentiating implicitly, we see that

dV

dt
= 3e2

de

dt
.

We also are given that, for all time, de/dt = 3. Substituting this in the equation
above gives

= 3e2 · 3

= 9e2.

(We substituted in de/dt = 3 since this is true for all time.) At the particular
instant we care about, we are given that e = 12, and so

dV

dt
= 9e2 = 9(12)2 = 9 · 144 = 1296.

The volume is increasing at a rate of 1296 cubic inches per second. �

Date: Monday, 3 December 2012.

1



2 CHARLES STAATS

Now, another example:

Example 2. (Example 1, p. 135 in the textbook) A small balloon is released at a
point 150 feet away from an observer, who is on level ground. If the balloon goes
straight up at a rate of 8 feet per second, how fast is the distance from the observer
to the balloon increasing when the balloon is 50 feet high?

Solution. I’m not going to type out the solution since it is explained in the text,
but I will leave some space here for you to take notes on what is said in class
(if you choose to do so).
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�

2. Maxima and Minima

Consider a child selling lemonade on the sidewalk.1 If she sets the price at $0 per
cup (i.e., she gives it away for free), then plenty of people will take a cup, but she
won’t make any money. On the other hand, if she sets the price too high—say, $7
per cup—then no one will buy from her, and she also won’t make any money. If
she puts the price somewhere in the middle, then she may well sell some lemonade
and make some money. But how can she figure out what price to set so that she
will make the most money? Realistically, she probably can’t—but only because she
does not know calculus.2

Let m denote the amount of money she makes, let p denote the price she charges,
and let n denote the number of cups she sells. It is fairly clear that

m = n · p;

in words, the amount of money she makes is the number of cups she sells times
the price per cup.3 Moreover, we are assuming that the number of cups she sells is
determined by the price she sets. In other words, n is a function of p. Consequently,
m is also a function of p.

Ideally, we should do a fair amount of market research to figure out what function
gives n; in other words, how many cups sells when she sets a given price. But since
we’re mathematicians rather than economists here, let’s just make a sort of silly
guess. Let’s say that if she sets the price at $0, then she will “sell” (give away) 50
cups (maybe 50 people pass by during the hour she sits at the stand). If she sets
the price to $7 or more, she will sell zero cups. So, let’s just draw a straight line
between the points (0, 50) and (7, 0), and call it n.

1Let’s pretend it’s summer; otherwise, she has chosen a singularly inappropriate time of year

for her enterprise.
2Okay, I’m exaggerating here. She would also need to have done a fair amount of market

research, and even then the answer would only be approximate. But since this is a course in

calculus rather than economics, we’re going to ignore that bit.
3You might object that we should also consider how much she has to pay for the lemonade, but

I’m assuming her mom covers that for her.
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n

50

p

$7

The corresponding function is

n =

{
50 − 50

7 p if 0 ≤ p ≤ 7,

0 if p > 7

m = np =

{(
50 − 50

7 p
)
p if 0 ≤ p ≤ 7,

0 · p if p > 7

=

{
50p− 50

7 p2 if 0 ≤ p ≤ 7,

0 if p > 7.

Note that these functions are not defined for p < 0, since “negative price” really
does not make sense in this context.

If we graph m, the amount of money made, as a function of the price p, we obtain

m

p$0

$10

$20

$30

$40

$50

$60

$70

$80

$90

$0 $1 $2 $3 $4 $5 $6 $7 $8
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The maximum value is the point where the tangent line to the graph is horizontal—in
other words, where m′(p) = 0. And we can find this using calculus:

m(p) =

{
50p− 50

7 p2 if 0 ≤ p ≤ 7,

0 if p > 7.

m′(p) =

{
50 − 100

7 p if 0 < p < 7,

0 if p > 7.

Warning. One error that a lot of people made on the test would amount, in this
case, to writing m′(p) = 50 − 100

7 p for 0 ≤ p ≤ 7. (Note the ≤ sign rather than the
< sign.) When you differentiate a piecewise-defined function, a ≤ sign will usually
(although not always) become a < sign. If you look at the graph, you can see that
the function is not differentiable at p = 7.

If we solve for the places where m′(p) = 0, we find that this holds when p = 3/2
or p > 7. Looking at the graph, it is clear that m is maximized (i.e., the girl makes
the most possible money) when p = 7/2 = 3.5; in other words, according to this
model, she ought to set her price at $3.50 per cup. The maximum value of the
function is

m
(
7
2

)
= 50

(
7
2

)
− 50

7

(
7
2

)2
= 87.5.

In other words, the most money the girl can possibly make is $87.5.
The following, more precise mathematics allows us to handle these sorts of things

more generally:

Definition. Let f be a function defined on an interval [a, b] and x0 a point in its
domain. We say that x0 is a critical point of f if any of the following holds:

• x0 is an endpoint of the interval (i.e., x0 = a or x0 = b); or
• f ′(x0) does not exist; or
• f ′(x0) = 0.

The last type of critical point, where f ′(x0) = 0, is in some sense the most
interesting sort of critical point to find (find the derivative f ′, then solve for
f ′(x) = 0). But the other two kinds should not be forgotten, since they are
absolutely necessary to make the following theorem true.

Theorem. Let f be a continuous function with domain a closed interval [a, b].
Then f has a maximum value and a minimum value. Moreover, every point at
which the maximum (minimum) is attained is a critical point.

In other words, if we know f is a continuous function on [a, b], then the following
procedure will allow us to find the minima and maxima of f on [a, b]:

(1) Find the critical points of f (all three kinds).
(2) Evaluate f at each of the critical points.
(3) The largest of the resulting values is the maximum value of f on [a, b]. The

least of the resulting values is the minimum value of f on [a, b].
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Assignment 23 (due Wednesday, 5 December 2012)4

Section 2.7, Problem 9. This will be graded carefully.

Section 2.8, Problems 2, 3, and 6. Problems 2 and 6 will be graded carefully.

Section 3.1, Problems 1 and 5–6. On 5 and 6, include graphs of the functions on
the interval. Do NOT graph the function outside the interval.

You will probably want to read Section 3.1 before (or while) attempting these
three problems.

Differentiate the function f defined by

f(x) =
3

√
2

x
+
√
x2 + 1

This will be graded carefully.

4This is the final homework assignment for this quarter.
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1. Logistics: Review session on Friday

Since reading period starts tomorrow, class on Friday will not introduce any new
material. Instead, I will devote the class to answering students’ questions. I expect
most of the time to be spent on going over how to solve different kinds of problems,
but I will also take questions about what sorts of things are and are not fair game
for the exam.

Attendance is not required, but I think the class will be more helpful for everyone
if a lot of people show up. I want people to do well on the final, and it is very
frustrating for me when people miss something that they could have gotten right if
they had only asked me to explain it.

Annie and Ryan will not be holding tutorials tomorrow. Alex, however, will—in
Ryan’s usual tutorial room (HGS 361); everyone is welcome to attend, no matter
whose tutorial you are normally assigned to.

2. Maxima and minima—motivation applications

We will be studying how to use calculus (specifically, derivatives) to find points at
which a function is maximized or minimized. This sort of thing has many practical
applications. For instance, we can ask

• What price should we sell lemonade at in order to make the most profit?
(Profit is a function of price; we want to select price to maximize it.)
• What shape should a rectangle be to fence in the largest possible area with

a fixed amount of fence? (The area of the rectangle is a function of its
length; we want to maximize it.)
• What path should a pipeline follow under a river to minimize the cost of

building it? (The cost is a function of the path; we want to minimize this
function.)

We won’t get to solve these sorts of problems in this lecture (and thus not until next
quarter), but I will show you the mathematical tools that are used to solve them.

3. Maxima and minima—the theory

We’re going to spend a few minutes talking about the basic theory (theorems
and such) before seeing an example problem.

Date: Wednesday, 5 December 2012.

1
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x

f(x)

f(x) =
1

x
if 0 < x ≤ 1

(a) This function has no maximum
because it attains arbitrarily large
values.

x

g(x)

g(x) =

{
x if 0 ≤ x < 1,
1
2 if 1 ≤ x ≤ 2.

(b) The maximum of this function “should” be 1,
but in fact the function has no maximum because
it never quite reaches 1. There is no point x0

such that g(x0) = 1.

Figure 1. Functions without maxima

Definition. Let f be a function. The maximum value of f is a value M such that

(i) f attains the value M ; i.e., there is some x0 such that M = f(x0); and
(ii) M ≥ f(x) for all x in the domain of f .

The minimum value of f is a value m such that

(i) f attains the value m; i.e., there is some x0 such that m = f(x0); and
(ii) m ≤ f(x) for all x in the domain of f .

An extreme value of f is a value y that is either the maximum or the minimum
value of f .

Warning. Maximum and minimum values need not exist; consider the cases in
Figure 1.

In both of the cases above, the “issue” was that there were points at which the
function had no finite limit. Specifically,

lim
x→0

f(x) =∞, while lim
x→1

g(x) does not exist.

This yields plausibility to the following theorem:
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Theorem. Let f be a continuous function on a closed interval [a, b]. Then f has a
minimum and a maximum.

We won’t even try to prove this. For the function f above, the function was
defined on (0, 1], but 0 was missing from the domain—the interval was not closed.
For g, the function was not continuous.

The points where minimum and maximum values might take place are called
critical points. More precisely,

Definition. Let f be a function defined on an interval [a, b] and x0 a point in its
domain. We say that x0 is a critical point of f if any of the following holds:

• x0 is an endpoint of the interval (i.e., x0 = a or x0 = b); or
• f ′(x0) does not exist; or
• f ′(x0) = 0.

The last type of critical point, where f ′(x0) = 0, is in some sense the most
interesting sort of critical point to find (find the derivative f ′, then solve for
f ′(x) = 0). But the other two kinds should not be forgotten, since they are
absolutely necessary to make the following theorem true.

Theorem. Let f be a continuous function with domain a closed interval [a, b].
Then the only points where f could possibly equal its extreme values are the critical
points.

Idea of proof. We prove the contrapositive. Suppose x0 is not a critical point. We
will show that f(x0) is not an extremal value of f .

f(x)

x

f(x0)

x0

Since x0 is not a critical point, x0 is differentiable and f ′(x0) 6= 0. In other words,
f has a tangent line at x0 that is not horizontal. Thus, for x sufficiently close to x0,
f(x) is contained in a narrow cone about the tangent line.

Since the tangent line is not horizontal, if we make the cone sufficiently narrow,
we can ensure that the values of f immediately to the right of x0 (if the slope is
positive) or immediately to the left of x0 (if the slope is negative) are above f(x0).
Since x0 is not a critical point, it is not an endpoint of the domain, so f does have
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x

f(x)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

Figure 2. The function from Exercise 1

values immediately to the left and right of x0. Hence, f(x0) is not an maximum of
f .

Similar reasoning shows that f(x0) is not a minimum value of f . �

4. Maxima and minima: example

In other words, if we know f is a continuous function on [a, b], then the following
procedure will allow us to find the minima and maxima of f on [a, b]:

(1) Find the critical points of f (all three kinds).
(2) Evaluate f at each of the critical points.
(3) The largest of the resulting values is the maximum value of f on [a, b]. The

least of the resulting values is the minimum value of f on [a, b].

Exercise 1. Find the critical points, minimum, and maximum for the function f
given by

f(x) = 1
3x

3 − x

on the closed interval [−2.5, 1.5].

Solution. The graph of f is shown in Figure 2.
The endpoints −2.5 and 1.5 are critical points. The derivative

f ′(x) = x2 − 1



MATH 131, LECTURE 26 (FINAL LECTURE) 5

exists on the entire interval (−2.5, 1.5), so there are no points at which f is not
differentiable. To find the remaining critical points, we solve for zeros of f ′.

f ′(x) = 0

⇐⇒ x2 − 1 = 0

⇐⇒ (x− 1)(x + 1) = 0

⇐⇒ x ∈ {−1, 1}.
Therefore, the critical points of f are precisely −2.5, −1, 1, and 1.5. By the
theorems above, we know that f has a maximum and minimum (since it is
continuous on the closed interval [−2.5, 1.5]) and that the only possible values
for these are

f(−2.5) = − 65
24 = −

(
2 + 17

24

)
,

f(−1) = 2
3 ,

f(1) = − 2
3 ,

f(1.5) = − 3
8 .

Thus, the maximum is 2
3 and the minimum is − 65

24 . �


