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Abstract. The Arakelov–Parshin rigidity theorem implies that a holomorphic Lefschetz fibration
π : M → S2 of genus g ≥ 2 admits only finitely many holomorphic sections σ : S2 → M . We

show that an analogous finiteness theorem does not hold for smooth or for symplectic Lefschetz

fibrations. We prove a general criterion for a symplectic Lefschetz fibration to admit infinitely many
homologically distinct sections and give many examples satisfying such assumptions. Furthermore,

we provide examples that show that finiteness is not necessarily recovered by considering a coarser

count of sections up to the action of the (smooth) automorphism group of a Lefschetz fibration.

1. Introduction

Lefschetz pencils play a prominent role in the study of varieties, arising naturally in the projective
setting by intersecting varieties with generic 1-parameter families of hyperplanes [Voi07, Chapter
2]. Ever since Donaldson [Don99] showed that Lefschetz pencils generalize to symplectic manifolds
and Gompf [Gom05] showed that any manifold admitting such a structure is symplectic, Lefschetz
pencils and fibrations have served as a bridge between symplectic and Kähler 4-manifolds. There
exist symplectic Lefschetz fibrations that admit no complex structures; see [OS00, Kor01, Bay12].
The study of differences between holomorphic and symplectic Lefschetz fibrations has been a fruitful
area of research (e.g. [Sti00, EN05, BKS24, ST05, Sti01]). In this paper we continue this study and
examine the number of sections of symplectic and smooth 4-dimensional Lefschetz fibrations. Our
results contrast with the holomorphic setting.

1.1. Counting sections of Lefschetz fibrations. An important rigidity theorem in the holomor-
phic case is the Arakelov–Parshin rigidity theorem [Ara71, Par68], also called the Geometric Shafare-
vich conjecture, which states that there are only finitely many nontrivial families of Riemann surfaces
of genus g ≥ 2 over a fixed Riemann surface of finite type. The extra data of a section of a Lefschetz
fibration specifies a nontrivial family via the so called Parshin trick (see Section 1.2). Thus Geometric
Shafarevich implies the following finiteness theorem for holomorphic Lefschetz fibrations, which was
originally proven independently by Manin and Grauert before the work of Arakelov and Parshin. See
McMullen’s survey [McM00] for more details.

Theorem 1.1 ((Special case of) Geometric Mordell Conjecture [Man63, Gra65]). A nontrivial, holo-
morphic Lefschetz fibration M → CP1 of genus g ≥ 2 admits finitely many holomorphic sections.

Imayoshi–Shiga [IS88] proved an extension of Geometric Shafarevich to families of finite type. A
key fact used in their proof is that the monodromy representation of a nontrivial family is irreducible
[McM00, Section 3]. Smith [Smi01, Proposition 4.2] later proved that in fact the same holds for the
monodromy representation of a smooth or symplectic Lefschetz fibration over S2. Despite Smith’s
generalization, we show that Geometric Mordell does not hold for symplectic Lefschetz fibrations, i.e.
smooth Lefschetz fibrations π : M4 → S2 paired with symplectic structures (M,ω) for which (the
smooth loci of) the fibers of π are symplectic.

Theorem 1.2. For any g ≥ 2, there exists a genus-g Lefschetz fibration π : M4 → S2 that admits
infinitely many homologically distinct smooth sections. In other words, there exist sections σk : S2 →
M for k ∈ Z such that if i 6= j then

[σi(S
2)] 6= [σj(S

2)] ∈ H2(M ;Z).

Furthermore, M admits a symplectic structure for which the fibers of π and any section σk(S2) are
all symplectic.

1



2 SERAPHINA EUN BI LEE AND CARLOS A. SERVÁN

We will deduce the existence of infinitely many symplectic sections from a more general criterion
(Theorem 2.1) stated in Section 2. In Section 3 we describe a general procedure to smoothly construct
these sections. In Section 5, we adapt the Gompf–Thurston construction to endow any Lefschetz
fibration π : M → S2 with infinitely many sections σk : S2 → M as constructed in Section 3 with a
symplectic form ω such that σk(S2) is a symplectic submanifold of (M,ω) for all k ∈ Z.

Remark 1.3. It was claimed ([Smi01, Corollary 1.4, Theorem 5.1]) that Geometric Mordell also holds
in the smooth category up to homotopy, i.e. that a Lefschetz fibration of genus g ≥ 2 admits finitely
many homotopy classes of smooth sections. There is a gap in the argument, as it claims ([Smi01,
Line 12 of the proof of Theorem 5.1]) that the number of homotopy classes of sections is bounded
above by the number of components of the complement of a fixed set of curves in minimal position
in Σg,1 representing the vanishing cycles in a generic fiber. However, this presumes that any lift of
the monodromy representation from Mod(Σg) to Mod(Σg,1) (where the marked point corresponds to
the section in a regular fiber) is defined by Dehn twists about this fixed set of curves, which is not
necessarily true (cf. Theorem 2.1(b)).

On the other hand, Hayano [Hay12, Theorem 1.2] showed that Geometric Mordell does not hold
in the more general setting of broken Lefschetz fibrations.

In Sections 6 and 7 we apply Theorem 2.1 to obtain many examples of Lefschetz fibrations admitting
infinitely many homologically distinct sections. For example, the following corollary supplies many
decomposable examples of such fibrations.

Corollary 1.4 (Decomposable examples). Let π : M → S2 be a nontrivial Lefschetz fibration of
genus g ≥ 2 that admits a section. The untwisted fiber sum π#Fπ : M#FM → S2 admits infinitely
many homologically distinct smooth sections. Furthermore, M#FM admits a symplectic structure
for which the fibers of π and infinitely many sections are all symplectic.

Corollary 6.3 shows that the same holds for fiber sums M1#F,ψM2 if each factor has trivial first
homology. On the other hand, the following corollary shows that our results are not restricted to
decomposable fibrations.

Corollary 1.5 (Indecomposable examples). For every g ≥ 2, there exists a genus-g, fiber sum inde-
composable, symplectic Lefschetz fibration that admits infinitely many homologically distinct sym-
plectic sections.

There also exist many holomorphic Lefschetz fibrations to which Theorem 2.1 applies. For example,
if π : M → S2 is a holomorphic Lefschetz fibration of genus g ≥ 2 then the untwisted fiber sum
π#Fπ : M#FM → S2 also admits a holomorphic structure. Thus, coupling Corollary 1.4 with
Geometric Mordell gives the following corollary.

Corollary 1.6. Let π : M → CP1 be any nontrivial, holomorphic Lefschetz fibration of genus g ≥ 2
that admits a section. For any holomorphic structure of the untwisted fiber sum π#Fπ : M#FM →
CP1, there exist infinitely many homologically distinct smooth sections that are not homologous to
any holomorphic section.

The construction of the sections given by Theorem 2.1 requires the existence of at least one section.
It is unknown whether every Lefschetz fibration admits a section. Our work thus prompts the following
question.

Question 1.7. Are there Lefschetz fibrations π : M → S2 with a finite, positive number of homo-
topically distinct smooth sections? If so, is there an effective bound on the number of sections?

Finally, we note that the existence of infinitely many homologically distinct symplectic sections
generalizes to certain Lefschetz fibrations π : M → B over arbitrary surfaces B, including some
surface bundles over surfaces, because the construction of the sections in Section 3 is local. See
Remark 6.4 for more details.
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1.2. Isomorphism classes of sections and the Parshin trick. The Parshin trick is another
input to the proof of Geometric Mordell in the holomorphic category. It relates a holomorphic section
s : B → C of a family C → B with fibers of genus g to a family D → B with fibers of higher
genus. Parshin’s (and Kodaira’s [Kod67]) idea is to use the section to create a branched cover D → C
branched over s(B) and form a family D → C → B. For more details, see [McM00, Section 4].

Theorem 1.8 (Parshin trick [Par68]). Given a genus g ≥ 1 and a base B of finite type, there exists
a genus h ≥ 2 and a finite-to-one map{

Families C → B with fibers of genus g,
equipped with sections s : B → C

}/
∼ →

{
Families D → B with

fibers of genus h

}/
∼ .

Here, two families π1 : C1 → B and π2 : C2 → B are equivalent if there is an isomorphism f : C1 → C2

lying over the identity of B, i.e. π1 = π2 ◦ f . Two families with sections (C1, s1) and (C2, s2) are
equivalent if there is an isomorphism C1

∼= C2 of families over B sending s1 to s2.

The Parshin trick, in conjunction with Geometric Shafarevich, implies Geometric Mordell in the
case of fiber genus g ≥ 2 because the automorphism group of a family with fiber genus g ≥ 2 is
finite. In light of the Parshin trick, we incorporate the action of the smooth automorphism group of
a Lefschetz fibration π : M → S2 in our count of its sections. For two sections s1, s2 of π, the pairs
(π, s1) and (π, s2) are isomorphic if there exist orientation-preserving diffeomorphisms Ψ : M → M
and ψ : S2 → S2 such that the following diagram commutes:

M M

S2 S2

Ψ

π π

ψ

s1 s2

The pair (Ψ, ψ) is an automorphism of the Lefschetz fibration π : M → S2.
In contrast to the holomorphic setting, we show through explicit examples that there is no finiteness

result even for the number of sections up to isomorphism (not necessarily lying over the identity) in
the smooth setting.

Theorem 1.9. For any g ≥ 2, there exists a genus-g Lefschetz fibration π : M → S2 with infinitely
many homologically distinct smooth sections that are pairwise non-isomorphic.

We also show for an abundant family of examples that there is no finiteness result for the number
of sections up to isomorphisms covering the identity in the smooth category, in direct contrast with
the Parshin trick. (See Proposition 7.7.) The following questions arise naturally.

Question 1.10. Are there Lefschetz fibrations with finitely many isomorphism classes of smooth sec-
tions despite admitting infinitely many homotopically distinct sections? Are there any such Lefschetz
fibrations with a unique isomorphism class of smooth sections?

We give examples in which the sections arising from our construction lie in a single isomorphism
class of sections (Example 7.2). Yet this does not address the last question, as we cannot rule out the
presence of sections unrelated to our construction.

1.3. Organization of the paper. In Section 2 we recall basic facts about Lefschetz fibrations, set up
notation, and state our most general theorem (Theorem 2.1). In Section 3 we describe our construction
of sections σk : S2 → M , to be used in the proof of Theorem 2.1. In Section 4 we show that the
sections σk are homologically distinct. In Section 5, we extend our results to the symplectic category
by a slight modification of the Gompf–Thurston construction and conclude the proof of Theorem 2.1.
Section 6 contains many examples of Lefschetz fibrations (both decomposable and indecomposable)
satisfying the assumptions of Theorem 2.1 and proves Theorem 1.2 and Corollaries 1.4 and 1.5. Finally,
in Section 7 we study the action of the automorphism group of π : M → S2 on our construction and
prove Theorem 1.9.
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2. Lefschetz fibrations and sections

The goal of this section is to state our main tool (Theorem 2.1) to detect the existence of infinitely
many sections of certain genus-g Lefschetz fibrations π : M → S2. Before doing so, we fix notation
and state our standing assumptions.

2.1. Lefschetz fibrations and monodromy. Let M4 be a closed, connected, oriented, smooth 4-
manifold. A surjective smooth map π : M → S2 is a Lefschetz fibration if π has finitely many critical
points q1, . . . , qr ∈ M and for each critical point qi, there are smooth, orientation-compatible charts
Ui ∼= C2 around qi ∈M and Vi ∼= C around π(qi) ∈ S2 such that relative to these charts, π takes the
form

π(z1, z2) = z2
1 + z2

2 .

A Lefschetz fibration is nontrivial if it has a positive number of critical points. We assume that
Lefschetz fibrations are injective on the set of their critical points and that Lefschetz fibrations are
relatively minimal, meaning that no fiber of π contains an embedded (−1)-sphere. The genus of a
Lefschetz fibration π : M → S2 is the genus of the surface π−1(b) for any regular value b ∈ S2. Note
that the orientations of M and S2 determine an orientation on any regular fiber π−1(b). In particular,
if s : S2 →M is a section of π then

QM ([π−1(b)], [s(S2)]) = 1

where QM : H2(M ;Z)×H2(M ;Z)→ Z denotes the algebraic intersection form of M .
Let π1 : M1 → S2 and π2 : M2 → S2 be genus-g Lefschetz fibrations admitting sections s1 :

S2 → M1 and s2 : S2 → M2 respectively. For each i = 1, 2, let νi ⊆ Mi be a fiberwise tubular
neighborhood of a regular fiber of πi. For any fiberwise orientation-reversing diffeomorphism of pairs
ψ : (∂ν1, s1(∂ν1))→ (∂ν2, s2(∂ν2)), consider the fiber sum

π1#F,ψπ2 : M1#F,ψM2 → S2

which is a genus-g Lefschetz fibration obtained by gluing M1− ν1 and M2− ν2 along their boundaries
via ψ. The fiber sum π1#F,ψπ2 naturally also admits a section s1#F,ψs2 : S2 → M1#F,ψM2 defined
piecewise as si on the image of Mi − νi in S2 for each i = 1, 2. If (M1, ν1) = (M2, ν2) and ψ
restricts to the identity map on some fiber π−1

1 (q) = π−1
2 (q) then we omit ψ from the notation and

π1#Fπ2 : M1#FM2 → S2 is called an untwisted fiber sum.
The data (π : M → S2, s : S2 → M) of a Lefschetz fibration and section can be encoded in an

antihomomorphism called the monodromy representation [GS99, p. 291]. The choices of a regular

value b ∈ S2 and a diffeomorphism of pairs Φb : (π−1(b), s(b))
∼−→ (Σg, p) for a marked point p ∈ Σg

determine a monodromy representation of (π, s)

ρ(π,s) : π1(S2 − {q1, . . . , qr}, b)→ Mod(Σg,1),

where q1, . . . , qr ∈ S2 denote the singular values of π and Σg,1 is a genus-g surface with one marked
point p. If γi ∈ π1(S2 −{q1, . . . , qr}, b) is a loop obtained from a small, counterclockwise loop around
qi connected to b by a path in S2−{q1, . . . , qr}, the monodromy ρ(π,s)(γi) is a right-handed Dehn twist
T`i ∈ Mod(Σg,1) about a vanishing cycle `i, which is an isotopy class `i of some essential simple closed
curve in Σg,1. Fixing a choice of generators γ1, . . . , γr ∈ π1(S2 − {q1, . . . , qr}, b) whose composition
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gives a contractible loop encircling all singular values determines a monodromy factorization of the
pair (π, s), which is a relation in Mod(Σg,1) of the form

T`r . . . T`1 = 1 ∈ Mod(Σg,1).

The group Mod(Σg,1) fits into the Birman exact sequence [FM12, Section 4.2]

(1) 1→ π1(Σg, p)
Push−−−→ Mod(Σg,1)

Forget−−−−→ Mod(Σg)→ 1.

For any γ ∈ π1(Σg, p), denote

Pγ := Push(γ−1) ∈ Mod(Σg,1)

so that Pγ is represented by a diffeomorphism of Σg,1 obtained by “pushing p along γ.” We note that
the map γ 7→ Pγ is an antihomomorphism of groups.

2.2. Statement of the main theorem. We are now ready to state a sufficient condition for a
symplectic Lefschetz fibration to admit infinitely many homologically distinct symplectic sections,
which can be checked directly from a monodromy factorization of a section.

Theorem 2.1. Let π : M → S2 be a genus-g Lefschetz fibration with g ≥ 2 and let s : S2 →M be a
section of π. Fix a subword (T`r1 . . . T`1) of a monodromy factorization

T`r1+r2
. . . T`r1+1

T`r1 . . . T`1 = 1 ∈ Mod(Σg,1)

of the pair (π, s). Suppose that the following conditions hold:

• There exists a nonseparating simple closed curve δ ⊆ Σg,1 such that [δ] ∈ H1(Σg;Z) is an
element of

Z{[`1], . . . , [`r1 ]} ∩ Z{[`r1+1], . . . , [`r1+r2 ]} ⊆ H1(Σg;Z).

• There exists a simple loop γ : R/Z → Σg with γ(0) = p ∈ Σg that intersects δ transversely
exactly once in Σg and

(T`r1 . . . T`1)([γ]) = [γ] ∈ π1(Σg, p).

Then the Lefschetz fibration π : M → S2 admits infinitely many sections

{σk : S2 →M : k ∈ Z}
such that

(a) the sections σk are pairwise homologically distinct, i.e. if k1 6= k2 ∈ Z then

[σk1(S2)] 6= [σk2(S2)] ∈ H2(M ;Z);

(b) a monodromy factorization of (π, σk) is(
T`r1+r2

. . . T`r1+1

) (
TPkγ (`r1 ) . . . TPkγ (`1)

)
= 1 ∈ Mod(Σg,1);

(c) there exists a symplectic form ω of M such that (the smooth loci of) the fibers of π and any
section σk(S2) are all symplectic submanifolds of (M,ω).

Remark 2.2. The loop γ will be used to construct the sections σk, and because of smoothness we will
assume that γ(t) = p for t near 0 ∈ R/Z. The curve δ ⊆ Σg,1 will be used to detect that the sections
σk are pairwise homologically distinct. Also see Remark 3.1 for a topological interpretation of the
assumption on [δ].

The proofs of Theorem 2.1(a), (b), and (c) can be found in Sections 4.2, 3.3, and 5 respectively.
Each part is proven independently from the rest.

3. Construction of sections σk for each k ∈ Z

In this section we construct a section σk : S2 → M of π : M → S2 for each integer k ∈ Z, to be
used in the proof of Theorem 2.1, emphasizing a special case in which π is a fiber sum π1#F,ψπ2 :
M1#F,ψM2 → S2 which will be used extensively in later sections.
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C

b

q1

q2

qr1

...
...

D1 A D2

S2

qr1+1

qr1+r2

Figure 1. This figure summarizes the notation for various parts of S2.

3.1. A decomposition of S2. Fix the notation and assumptions of Theorem 2.1. Let q1, . . . , qr1+r2 ∈
S2 denote the singular values of π corresponding to the vanishing cycles `1, . . . , `r1+r2 respectively.

The base S2 can be written as a union of three sets

S2 = D1 ∪A ∪D2,

such that (cf. Figure 1)

(a) D1, D2
∼= D2 are closed 2-disks and A = S1×(0, 1) is an open annulus so that ∂D1 = S1×{0}

and ∂D2 = S1 × {1} in the closure A = S1 × [0, 1],
(b) the base point b is contained in ∂D2,
(c) q1, . . . , qr1 are contained in D1 and the singular values qr1+1, . . . , qr1+r2 is contained in D2,

and
(d) the based loop (C, b) := (∂D2, b) ⊆ (S2, b) can be oriented so that when considered as an

element of π1(S2 − {q1, . . . , qr1+r2}, b),
ρ(π,s)(C) = T`r1 . . . T`1 ∈ Mod(Σg,1)

where ρ(π,s) : π1(S2 − {q1, . . . , qr1+r2}, b) → Mod(Σg,1) is the monodromy representation of

(π, s) with respect to a diffeomorphism of pairs Φb : (π−1(b), s(b))→ (Σg, p).

Let
X1 := π−1(D1 ∪A), X2 := π−1(D2).

Remark 3.1. In the statement of Theorem 2.1, [δ] ∈ H1(Σg;Z) is assumed to be contained in the
intersection Z{[`1], . . . , [`r1 ]} ∩ Z{[`r1+1], . . . , [`r1+r2 ]}. This is is equivalent to the condition that
[δ] = 0 ∈ H1(Xi;Z) for both i = 1, 2, which can be seen by viewing Xi as Σg ×D2 with a 2-handle
attached along each vanishing cycle `k of Xi ([GS99, Section 8.2]) and applying Mayer–Vietoris.

Example 3.2. Let π1 : M1 → S2 and π2 : M2 → S2 be genus-g Lefschetz fibrations with sections
s1 : S2 → M1 and s2 : S2 → M2. Consider any fiber sum π1#F,ψπ2 : M1#F,ψM2 → S2 and the
corresponding section s1#F,ψs2; denote this pair by (π, s) and its monodromy representation by ρ(π,s).
Let (

T`r1+r2
. . . T`r1+1

) (
T`r1 . . . T`1

)
= 1 ∈ Mod(Σg,1)

denote a monodromy factorization of (π, s) such that

T`r1 . . . T`1 = T`r1+r2
. . . T`r1+1

= 1 ∈ Mod(Σg,1)

are factorizations of (π1, s1) and (π2, s2) respectively.
For the subword T`r1 . . . T`1 , arrange so that

X1 = M1 − ν1, X2 = M2 − ν2

where νi ⊆Mi is a fiberwise neighborhood of a regular fiber of πi for both i = 1, 2 so thatM1#F,ψM2 =
X1 ∪ψ X2. In particular, {`1, . . . , `r1} is a set of vanishing cycles of M1 and {`r1+1, . . . , `r1+r2} is a
set of vanishing cycles of M2.
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...
...

...
...

...

i−1
k

i
k

. . . . . .

0 1
×S1 = A

Σg × S1 × [0, 1]

π

γ

p p

Figure 2. Let k > 0. The blue point traces out the section σk over the fibers of π
over (θ, t) ∈ A as t ∈ [0, 1] varies. This picture is independent of the S1-coordinate θ.

It follows that for C as above, ρ(π,s)(C) = 1 ∈ Mod(Σg,1). Thus, any γ ∈ π1(Σg, p) is fixed by
ρ(π,s)(C) = T`r1 . . . T`1 .

3.2. Construction of the sections σk. In this section we construct the sections σk : S2 → M
of π : M → S2. The following example first illustrates a special case in which π = π1#F,ψπ2 :
M1#F,ψM2 → S2 is a fiber sum, extending the setup described in Example 3.2.

Example 3.3. Consider the fiber sum π = π1#F,ψπ2 : M1#F,ψM2 → S2 as in Example 3.2. Because

ρ(π,s)(C) = 1, there is a diffeomorphism Φ : π−1(A) → (Σg × S1) × [0, 1] such that the following
diagram commutes:

π−1(A) Σg × S1 × [0, 1]

A S1 × [0, 1]

π

Φ

(x,θ,t) 7→(θ,t)s (θ,t)7→(p,θ,t)

Moreover, we may arrange so that Φ extends Φb, i.e. Φ|π−1(b) = Φb × {b} where b ∈ A = S1 × [0, 1] is
the fixed regular value of π.

For all k ∈ Z, let σk : S2 →M1#F,ψM2 be defined by

σk(x) =

{
s(x) if x ∈ D1 ∪D2,

Φ−1(γ(tk), θ, t) if x = (θ, t) ∈ A.

See Figure 2. Because (γ(tk), θ, t) = (p, θ, t) for any (θ, t) ∈ ∂A, the map σk is well-defined.

More generally, consider a Lefschetz fibration π : M → S2 of genus g ≥ 2. Let1 ϕ ∈ Diff+(Σg, p)
be a representative of ρ(π,s)(C) ∈ Mod(Σg,1) that fixes pointwise an annular neighborhood α ⊆ Σg of
the loop γ : R/Z→ Σg. Let Mϕ denote the mapping torus

Mϕ = (Σg × [0, 1])/(x, 0) ∼ (ϕ(x), 1).

There is a diffeomorphism Φ : π−1(A) → Mϕ × [0, 1] such that Φ|π−1(b) = Φb × {b} (for the fixed

regular value b ∈ A of π) and such that the following diagram commutes:

1To find ϕ, recall that we can always find a representative ϕ0 of ρ(π,s)(C) fixing a neighborhood of p. Now the proof

of [FM12, Prop 1.10] shows that ϕ0(γ) is isotopic to γ rel p. Hence, we can isotope (rel p) ϕ0 to fix γ pointwise [FM12,

Prop 1.11]. Finally, ϕ0 can be isotoped to fix a tubular neighborhood α of γ by the uniqueness of tubular neighborhoods
up to isotopy.
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π−1(A) Mϕ × [0, 1]

A S1 × [0, 1]

π

Φ

(x,θ,t) 7→(θ,t)s (θ,t)7→(p,θ,t)

For all k ∈ Z, let σk : M → S2 be defined by

σk(x) =

{
s(x) if x ∈ D1 ∪D2,

Φ−1(γ(tk), θ, t) if x = (θ, t) ∈ A.

The map σk is a section of π by construction. To see that σk is well-defined, it is enough to check
this over A. We have for any t ∈ [0, 1] and x = (0, t) = (1, t),

σk(0, t) = Φ−1(γ(tk), 0, t) = Φ−1(ϕ(γ(tk)), 1, t) = Φ−1(γ(tk), 1, t) = σk(1, t).

Moreover, tk is an integer for any (θ, t) ∈ ∂A, so

Φ−1(γ(tk), θ, t) = Φ−1(p, θ, t) = s(θ, t).

3.3. Monodromy factorizations. The next proof describes monodromy factorizations of the sec-
tions σk : S2 →M using a different description of these sections.

Proof of Theorem 2.1(b). Take a diffeomorphism hγ ∈ Diff+(Σg,1) representing the mapping class
Pγ ∈ Mod(Σg,1) and an isotopy htγ : Σg → Σg with h0

γ = IdΣg and h1
γ = hγ so that

(a) htγ is supported in the fixed neighborhood α ⊆ Σg of γ for all t, and

(b) htγ(p) = γ(t) ∈ Σg for all t ∈ [0, 1].

For any k ∈ Z, let htγ,k : Σg → Σg denote the isotopy with h0
γ,k = IdΣg and h1

γ,k = hkγ obtained

by concatenating |k|-many copies of the isotopy htγ or (htγ)−1. Define a diffeomorphism of pairs

pγ : (∂X1, s(∂(D1 ∪A)))→ (∂X2, s(∂D2)) by

pγ := Φ−1 ◦ (hγ × Id) ◦ Φ.

Let Nk := X1 ∪pkγ X2. The naturally defined map πk : Nk → S2 is a genus-g Lefschetz fibration with

a section Sk : S2 → Nk obtained by gluing together the restrictions s|X1 and s|X2 accordingly.
The monodromy factorization (πk, Sk) with respect to the identification Φb : (π−1

k (b), Sk(b)) →
Σg,1 via the identification π−1

k (b) = π−1(b) ⊆ ∂X1 and a fixed choice of generators γi of π1(S2 −
{q1, . . . , qr1+r2}, b) is(

TP−kγ (`r1+r2 ) . . . TP−kγ (`r1+1)

) (
T`r1 . . . T`1

)
= 1 ∈ Mod(Σg,1),

where we note that the equality of mapping classes holds because the product T`r1 . . . T`1 commutes

with Pγ and because TPγ(`i) = PγT`iP
−1
γ for any curve `i.

On the other hand, one can check that the diffeomorphism Ψk : Nk →M defined by

Ψk(x) :=

{
x if x ∈ π−1(D1 ∪D2),

Φ−1(htγ,k(y), θ, t) if x = Φ−1(y, θ, t) ∈ π−1(A)

induces an isomorphism of pairs (πk, Sk) ∼= (π, σk) lying over the identity IdS2 : S2 → S2. The
restriction Ψk : π−1

k (b) = π−1(b) → π−1(b) is the map Φ−1
b ◦ hkγ ◦ Φb, and hence the monodromy

factorization with respect to the identification Φb : (π−1(b), σk(b))→ Σg,1 of (π, σk) is the hkγ-conjugate
of the factorization of (πk, Sk), i.e.(

T`r1+r2
. . . T`r1+1

) (
TPkγ (`r1 ) . . . TPkγ (`1)

)
= 1 ∈ Mod(Σg,1). �
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Remark 3.4 (Self-intersection number of σk). Consider the monodromy factorization of (π, σk) in
Mod(Σg,1) as a factorization instead in Mod(Σ1

g) of the form(
T`r1+r2

. . . T`r1+1

) (
TPkγ (`r1 ) . . . TPkγ (`1)

)
= T akδ ∈ Mod(Σ1

g)

for some ak ∈ Z, where δ denotes the boundary component of Σ1
g. Then the self-intersection

QM ([σk(S2)], [σk(S2)]) = −ak ([Smi01, Lemma 2.3]). Because any lift of Pγ to Mod(Σ1
g) commutes

with Tδ and with (T`r1+r2
. . . T`r1+1) in Mod(Σ1

g), there is an equality of mapping classes

T akδ =
(
T`r1+r2

. . . T`r1+1

) (
TPkγ (`r1 ) . . . TPkγ (`1)

)
= (T`r1+r2

. . . T`r1+1)(T`r1 . . . T`1) = T a0δ ∈ Mod(Σ1
g)

for all k ∈ Z. So for all k ∈ Z, the section σk has self-intersection number −a0.

4. Homology classes of σk(S2)

The goal of this section is to prove Theorem 2.1(a). In Section 4.1 we record a key computation of
signed intersection numbers in Σg × (0, 1)2, and use it to prove Theorem 2.1(a) in Section 4.2.

4.1. Signed intersections in Σg × (0, 1)2. Fix the natural inclusion

Σg × (0, 1)× (0, 1) ⊆Mϕ × (0, 1) = (Σg × [0, 1])/ ∼)× (0, 1).

Below, we record the signed intersection number in Σg × (0, 1)× (0, 1) of the submanifolds

Sk = Φ ◦ σk((0, 1)× (0, 1)) and T = δ × {θ0} × (0, 1).

Here, θ0 ∈ (0, 1) is the S1-coordinate of the point b = (θ0, 1) ∈ S1 × {1} ⊆ ∂A.
Orient the submanifold Sk ⊆ Σg × (0, 1)2 via the orientation of (0, 1) × (0, 1). To orient T , recall

that γ ⊆ Σg is an oriented loop based at p ∈ Σg intersecting δ transversely and exactly once; denote

this intersection point by x ∈ Σg. Fix an orientation on δ ⊆ Σg so that î([γ], [δ]) > 0, where î denotes
the algebraic intersection form of Σg. This in turn defines the product orientation on T .

Lemma 4.1. The submanifolds T and Sk intersect transversely |k|-times in Σg × (0, 1)× (0, 1) at

T ∩ Sk = {(x, θ0, ti) : γ(kti) = x, 1 ≤ i ≤ |k|}.
The signed intersection number of the oriented submanifolds T and Sk in Σg × (0, 1)× (0, 1) is k.

Proof. By definitions of Sk, the section σk, and the diffeomorphism Φ,

Sk = Φ ◦ σk((0, 1)× (0, 1)) = {(γ(kt), θ, t) : θ ∈ (0, 1), t ∈ (0, 1)}.
Because δ and γ intersect only at the point x ∈ Σg, the intersection T ∩Sk is contained in {(x, θ0)}×
(0, 1). There exist exactly |k|-many values t1, . . . , t|k| ∈ (0, 1) so that γ(kti) = x. This determines the
|k|-many points in T ∩ Sk as claimed. It now suffices to show that the sign of each intersection point
is sign(k). We may assume that k 6= 0 because T ∩ S0 = ∅.

The curve γ̂ : (0, 1)→ Σg × (0, 1)× (0, 1) defined as

γ̂ : t 7→ (γ(kt), θ0, t)

passes through each point (x, θ0, ti) and is contained in Sk. See Figure 3. The tangent space T(x,θ0,ti)Sk
contains

γ̂′(ti) = (kγ′(kti), 0, ∂t) ∈ TxΣg × Tθ0(0, 1)× Tti(0, 1),

the tangent vector to γ̂ at (x, θ0, ti). Let ∂θ ∈ Tθ0(0, 1) be a tangent vector so that the vectors (0, ∂θ, 0)
and (kγ′(kti), 0, ∂t) forms a positive basis of T(x,θ0,ti)Sk.

The sign of the intersection point (x, θ0, ti) is the sign of the ordered basis

(∂δ, 0, 0), (0, 0, ∂t), (0, ∂θ, 0), (kγ′(kti), 0, ∂t) ∈ TxΣg × Tθ0(0, 1)× Tti(0, 1),

where ∂δ denotes a positive tangent vector of Txδ. It suffices to compute the sign of the equivalent
ordered basis

(kγ′(kti), 0, 0), (∂δ, 0, 0), (0, ∂θ, 0), (kγ′(kti), 0, ∂t).
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p

. . . . . .

0 1

π

ti
i−1
k

i
k

δ

γ

...

γ ⊆ α

δ
p

×{θ0} ⊆ A

α× {θ0} × [0, 1]

δ

p v

T
x

Figure 3. Left: The grey annulus in Σg depicts the neighborhood α of γ which is
pointwise fixed by the monodromy ϕ over C. Middle: The cylinder depicts α×{θ0}×
[0, 1] ⊆ Mϕ × [0, 1] lying over {θ0} × [0, 1] ⊆ A. The dotted blue curve depicts the
curve γ̂ and the vector v denotes its tangent vector γ̂′(ti) at the point (x, θ0, ti). The
grey rectangle depicts the intersection T ∩ (α× {θ0} × [0, 1]).

...
...

...
...

...

π

[0, 1]× {θ0} ⊆ A

δ

T1 T2

(0, θ0) (1, θ0)

⊆ D1 ⊆ D2

Figure 4. The red surface depicts T1. The blue surface depicts T2. The surface T is
defined to be the union T1 ∪ T2. If δ is a vanishing cycle corresponding to a singular
value in Di (for some i = 1, 2) then Ti may be chosen to be its thimble contained in
Xi.

Because î([γ], [δ]) > 0 in Σg, the ordered basis formed by kγ′(kti) and ∂δ of TxΣg has sign equal
to sign(k). Because (0, ∂θ, 0), (kγ′(kti), 0, ∂t) forms a positive basis of T(x,θ0,ti)Sk, and the oriented
submanifolds Σg and Sk intersect positively in Σg × (0, 1) × (0, 1), the sign of (x, θ0, ti) is also equal
to sign(k). �

4.2. Proof of Theorem 2.1(a). Recall that [δ] = 0 ∈ H1(Xi;Z) for both i = 1, 2 by assumption
in Theorem 2.1 (cf. Remark 3.1). There exist oriented, 2-dimensional submanifolds Ti ⊆ Xi with
boundary such that

Φ(∂T1) = Φ(∂T2) = δ and Φ(T1 ∩ π−1(A)) = T ⊆ Σg × (0, 1)× (0, 1) ⊆Mϕ × [0, 1].

Here, ∂T2 denotes ∂T2 with the opposite orientation. Let T := T1 ∪T2 ⊆M , so that T defines a class
in H2(M ;Z). See Figure 4.
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1

π

0

T
p

γ

1

π

0

T

γ

Figure 5. The case of k = 2. Both cylinders depict α × {θ0} × [0, 1] lying over
{θ0} × [0, 1] ⊆ A as in Figure 3. Left: The red and blue dotted curves depict S0

and Sk respectively. Right: The curves S0 and Sk are perturbed in the cylinder
α×{θ0}×[0, 1] so that their union β forms a smooth circle. The product Φ−1(β×S1) ⊆
Φ−1(α× S1 × [0, 1]) is the torus Σ representing the class [σ1(S2)]− [σ0(S2)].

Lemma 4.2. For all k ∈ Z,
QM ([T ], [σk(S2)]− [σ0(S2)]) = k.

Proof. The homology class [σk(S2)] − [σ0(S2)] ∈ H2(M ;Z) is represented by the (oriented) torus
formed by gluing two annuli

Σ := σk(A) ∪ σ0(A),

where we recall that by construction, σk|∂A = σ0|∂A and σ0(A) denotes σ0(A) with the opposite
orientation. By perturbing σ0(A) and σk(A) in an open neighborhood of π−1(A), we may arrange so
that Σ is a smoothly embedded torus and so that σ0(A) is disjoint from T . See Figure 5.

Because Σ is contained in π−1(A), the intersection number QM ([T ], [Σ]) is equal to the signed
intersection number between T1 and σk(A). It suffices to compute the signed intersection number of
Φ(T1 ∩ π−1(A)) and Φ(σk(A)) in Mϕ × [0, 1] because Σ ⊆ π−1

1 (A) and Φ is orientation-preserving.
Lemma 4.1 implies that QM ([T ], [Σ]) = k. �

Proof of Theorem 2.1(a). Suppose that [σk1(S2)] = [σk2(S2)] in H2(M ;Z) for some k1, k2 ∈ Z. By
Lemma 4.2,

k1 − k2 = QM ([T ], [σk1(S2)]− [σk2(S2)]) = 0. �

5. Compatibility with the Gompf–Thurston symplectic form

The goal of this section is to prove Theorem 2.1(c) by appropriately modifying the Gompf–Thurston
construction to produce a symplectic form ω for which each σk(S2) is symplectic. To do so, we closely
follow Gompf’s argument [GS99, Theorem 10.2.18]. Although it may be immediate to the experts,
we record how to extract the desired conclusions from Gompf’s proofs for the sake of completeness.
The main observation is that the sections σk differ only over the annulus A. Moreover, the images of
all σk|A lie on γ × A. So, we only need to control the behavior of a chosen symplectic form over a
neighborhood of γ ×A.

Proof of Theorem 2.1(c). Throughout this proof, H∗ denotes de Rham cohomology. Let K ⊆ M
denote the set of critical points of π. Let e ∈ H2(M −K;R) ∼= H2(M ;R) denote the Euler class of
the oriented 2-plane bundle TF → (M − K) of tangent vectors to the fibers of π. For any regular
fiber Fy ⊆M , the class (2− 2g)−1e ∈ H2(M ;R) satisfies

〈(2− 2g)−1e, [Fy]〉 = 1,

because the restriction of e to Fy is the Euler class of TFy → Fy. For any closed, smooth surface
S ⊆M of genus h contained in a singular fiber of π, one can prove using the Poincaré–Hopf theorem
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that 〈e, [S]〉 = 2 − 2h − 1 and hence 〈(2 − 2g)−1e, [S]〉 > 0. (Recall that by assumption, no singular
fiber of π : M → S2 contains an embedded sphere.) Let ζ0 be a closed 2-form of M so that

[ζ0] = (2− 2g)−1e ∈ H2(M ;R).

Step 1: Constructing the 2-forms ηi and the 1-forms βi. By the proof of [GS99, Theorem 10.2.18],
there exists a closed 2-form η0 on M with [η0] = [ζ0] such that

(1) η0|S is symplectic for any closed surface S contained in a fiber of π, and
(2) for any p ∈ K and for some charts Up ⊆ C2 and Vπ(p) ⊆ C on which π takes the form

(z1, z2) 7→ z2
1 + z2

2 , the restriction η0|Up is the standard symplectic form dx1 ∧ dy1 + dx2 ∧ dy2.

Also see the proof of [Gom05, Theorem 2.7] for a description of η0 around the points of K.
We will modify η0 by cohomologous 2-forms on an open cover of π−1(A). Let A′ ⊆ A′′ ⊆ S2 be

small open neighborhoods of A containing no critical values of π so that A ⊆ A′ and A′ ⊆ A′′ =
S1 × (−ε, 1 + ε) for some ε > 0. Extend the identification Φ to π−1(A′′) → Mϕ × (−ε, 1 + ε). Let
A′′ = V1 ∪ V2 where Vi is an open ball for each i = 1, 2.

Fix a unit-area symplectic form ωΣg of Σg. Recall that ϕ is chosen so that ρ(π,s)(C) = [ϕ] and so
that ϕ fixes α pointwise. By Moser’s trick, there is a smooth isotopy ϕt : Σg → Σg for t ∈ [0, 1] with
ϕ∗0ωΣg = ωΣg and ϕ1 = ϕ. By a relative form of Moser’s trick [MS17, Exercise 3.2.6], we may arrange
that ϕt fixes α pointwise for all t ∈ [0, 1], after possibly shrinking α. Let θ′0 be the pullback of ωΣg on
Σg × R via the projection Σg × R → Σg. Then θ′0 induces a 2-form θ0 on Mϕ0

via the covering map
Σg × R→Mϕ0

because θ′0 is invariant under deck transformations.
Because there is an isotopy ϕt from ϕ0 to ϕ that fixes α pointwise for every t, there is an isomorphism

F : Mϕ →Mϕ0 of Σg-bundles over S1 so that F maps γ × S1 ⊆Mϕ diffeomorphically onto γ × S1 ⊆
Mϕ0

. The restriction of the 2-form θ := F ∗θ0 of Mϕ to γ × S1 ⊆Mϕ satisfies

θ|γ×S1⊆Mϕ
= 0.

Consider the composition

Φ0 : π−1(A′′)
Φ−→Mϕ × (−ε, 1 + ε)

pr1−−→Mϕ

so that Φ∗0θ is a closed 2-form on π−1(A′′) that is symplectic along the fibers of π. On π−1(Vi) for
each i = 1, 2, define the 2-form

ηi := Φ∗0θ|π−1(Vi).

Now we construct a 1-form βi on π−1(Vi). Recall that α ⊆ Σg is an annular neighborhood of γ fixed
pointwise by ϕ. By possibly shrinking α, let α ⊆ α′ ⊆ α′′ ⊆ Σg denote open, annular neighborhoods

of γ that are pointwise fixed by ϕ so that α ⊆ α′ and α′ ⊆ α′′. There are submanifolds T and N ′′ of
Mϕ × (−ε, 1 + ε), where

N ′′ := α′′ ×A′′ ' γ × S1 × {0} =: T.

Note that Φ∗0θ|Φ−1(T ) = 0, and so Φ∗0θ|Φ−1(N ′′) is an exact 2-form. As TF |Φ−1(N ′′) is a trivial bundle,
ζ0|Φ−1(N ′′) is also exact.

By modifying ζ0 only over Φ−1(N ′′), we may find a closed 2-form ζ of M so that [ζ] = [ζ0] ∈
H2(M ;R) and ζ|Φ−1(N ′) = Φ∗0θ|Φ−1(N ′) where N ′ := α′ × A′ is an open submanifold of N ′′. Because

π−1(Vi) ' Σg and 〈[ζ|π−1(Vi)], [Fy]〉 = 〈[Φ∗0θ|π−1(Vi)], [Fy]〉 = 1 for any regular fiber Fy,

Φ∗0θ|π−1(Vi) − ζ|π−1(Vi) = dβ′i

for some 1-form β′i of π−1(Vi). Note that β′i|N ′i is a closed 1-form restricted to N ′i := π−1(Vi)∩Φ−1(N ′).

As N ′i ' γ, there is some closed 1-form τi on π−1(Vi) so that [β′i|N ′i − τi|N ′i ] = 0. Thus, by modifying

the 1-form β′i−τi only over N ′i , we may obtain a 1-form βi of π−1(Vi) so that dβi = dβ′i and βi|Ni = 0,
where Ni := (α×A) ∩ π−1(Vi) is an open submanifold of N ′i .

Step 2: Constructing the symplectic form ωt. Let B ⊆ S2 be an open set such that S2 = A′′ ∪B and
B ∩A = ∅. There exists a 1-form β0 on π−1(B) so that

η0|π−1(B) = ζ|π−1(B) + dβ0.
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Let {ρ0, ρ1, ρ2} be a partition of unity subordinate to the open cover S2 = B ∪ V1 ∪ V2 and consider
the 2-form

η := ζ +

2∑
i=0

d((ρi ◦ π)βi) =

2∑
i=0

(ρi ◦ π)ηi +

2∑
i=0

d(ρi ◦ π) ∧ βi.

The form η is symplectic along the smooth loci of the fibers of π. For any symplectic form ωS2 of S2

and for any t > 0 small enough, the closed 2-form

ωt := tη + π∗ωS2

is symplectic on M and σ0(S2) is a symplectic submanifold of (M,ωt) by compactness [GS99, Proposi-
tion 10.2.20]. The smooth locus of any fiber of π is a symplectic submanifold of (M,ωt) by construction
of η.

Step 3: Restricting to σk(S2). Let k 6= 0 ∈ Z. The sections σ0 and σk agree on a neighborhood B0 of
S2−A, so the restriction ωt|σk(B0) is symplectic. Recall that σk(A) ⊆ N1 ∪N2 and compute that the
restriction η|N1∪N2 is

η|N1∪N2 =

2∑
i=1

(ρi ◦ π)ηi|Ni +

2∑
i=1

d(ρi ◦ π)|Ni ∧ βi|Ni =

2∑
i=1

(ρi ◦ π)ηi|Ni = Φ∗0θ|N1∪N2

by construction of the forms βi and ηi. The form π∗(ωS2) restricts to a symplectic form on σk(A) ⊆
π−1(A). On the other hand, Φ0(σk(A)) = γ × S1 ⊆Mϕ. Because θ|γ×S1 = 0, the restriction ωt|σk(A)

is symplectic. �

6. Proof of Theorem 1.2 and other applications of Theorem 2.1

The goal of this section is to prove some corollaries of Theorem 2.1. In Section 6.1 we prove
that certain fiber sums of Lefschetz fibrations admit infinitely many homologically distinct sections
and deduce Theorem 1.2. In Section 6.2 we provide an explicit example of a genus-g, fiber sum
indecomposable Lefschetz fibration satisfying the assumptions of Theorem 2.1 to prove Corollary 1.5.

6.1. Proof of Theorem 1.2 and other corollaries. Before proving Theorem 1.2, we record some
corollaries of Theorem 2.1.

Corollary 6.1. Let π : M → S2 be a nontrivial Lefschetz fibration of genus g ≥ 2 admitting a
section s : S2 →M . Suppose that T`r . . . T`1 = 1 ∈ Mod(Σg,1) is a monodromy factorization of (π, s).
Fix a loop γ ∈ π1(Σg, p) such that γ intersects some vanishing cycle `i transversely once in Σg. The
untwisted fiber sum π#Fπ : M#FM → S2 admits infinitely many homologically distinct smooth
sections {σk : S2 →M#FM : k ∈ Z}. A monodromy factorization for (π#Fπ, σk) is

(T`r . . . T`1)
(
TPkγ (`r) . . . TPkγ (`1)

)
= 1 ∈ Mod(Σg,1).

Furthermore, M#FM admits a symplectic structure for which the fibers of π#Fπ and any section
σk(S2) are all symplectic.

Proof. The section s#F s : S2 →M#FM of π#Fπ : M#FM → S2 has a monodromy factorization

(T`r . . . T`1) (T`r . . . T`1) = 1 ∈ Mod(Σg,1).

Let δ = `i ⊆ Σg,1. Then δ ⊆ Σg is nonseparating because î([δ], [γ]) = ±1, and hence [δ] 6= 0 ∈
H1(Σg;Z). Theorem 2.1 applies to π#Fπ : M#FM → S2 with the subword T`r . . . T`1 and the loop
γ ∈ π1(Σg, p) intersecting δ = `i transversely once in Σg. �

Remark 6.2. Any nontrivial Lefschetz fibration π : M → S2 admits a nonseparating vanishing cycle
` by a theorem of Stipsicz [Sti99, Theorem 1.3]. There exists a loop γ ∈ π1(Σg, p) intersecting `
transversely once by the change-of-coordinates principle [FM12, Section 1.3], so Corollary 6.1 implies
Corollary 1.4.
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Corollary 6.3. For i = 1, 2, let πi : Mi → S2 be a Lefschetz fibration of genus g ≥ 2 that admits a sec-
tion si. Suppose that H1(Mi;Z) = 0 for each i = 1, 2. Then any fiber sum π1#F,ψπ2 : M1#F,ψM2 →
S2 admits infinitely many homologically distinct sections {σk : M1#F,ψM2 → S2 : k ∈ Z} and a
symplectic structure for which the fibers of π1#F,ψπ2 and any section σk(S2) are all symplectic.

Proof. Recall the construction in Example 3.2. The monodromy factorization of (π1#F,ψπ2, s1#F,ψs2)
is given by

(T`r1+r2
. . . T`r1+1

)(T`r1 . . . T`1) = 1 ∈ Mod(Σg,1),

so that {`1, . . . , `r1} is a set of vanishing cycles of M1 and {`r1+1, . . . , `r1+r2} is a set of vanishing
cycles of M2. The vanishing cycles of any Lefschetz fibration with at least one section span the kernel
of the map H1(Σg;Z) → H1(M ;Z) induced by inclusion of the regular fiber π−1(b) ∼= Σg (e.g. by
Mayer–Vietoris and Remark 3.1). As H1(Mi;Z) = 0 for i = 1, 2,

Z{[`1], . . . , [`r1 ]} = Z{[`r1+1], . . . , [`r1+r2 ]} = H1(Σg;Z).

Apply Theorem 2.1 with δ = `i, for any nonseparating vanishing cycle `i, and γ any loop intersecting
`i once, which exists by the change-of-coordinates principle [FM12, Section 1.3]. �

Theorem 1.2 now follows from Corollary 6.1.

Proof of Theorem 1.2. For any g ≥ 2, consider a chain of simple closed curves c1, . . . , c2g in Σg, so
that ci and ci+1 intersect transversely once and ci ∩ cj = ∅ if |i − j| > 2. By the (2g)-chain relation
[FM12, Proposition 4.12]

(Tc1 . . . Tc2g )4g+2 = 1 ∈ Mod(Σg,1).

Let π : M → S2 and s : S2 → M be a genus-g Lefschetz fibration and section corresponding to this
positive factorization. Applying Corollary 6.1 to the pair (π, s) shows that the untwisted fiber sum
π#Fπ : M#FM → S2 admits infinitely many homologically distinct sections σk and M#FM admits
a symplectic structure for which the fibers of π#Fπ and any section σk(S2) are symplectic. �

Remark 6.4 (Applications to surface bundles and general Lefschetz fibrations). Similar constructions
and arguments can be used to show that certain genus-g Lefschetz fibrations π : M4 → Σh (admitting
at least one section s : Σh →M and possibly with no critical points) have infinitely many homologically
distinct sections. For example, let h = h1 + h2 with h1, h2 > 0 and suppose that for some separating
curve C ⊆ Σh1+h2

∼= Σh1#Σh2 along which the connected sum is formed, there exists some γ ∈
π1(Σg, p) that is fixed by the monodromy ρ(π,s)(C) ∈ Mod(Σg,1) along C. Let A ⊆ Σh1+h2

be an
annular neighborhood of C. One can modify the section s of π over the annulus A as in Section 3.2 by
twisting along γ ∈ π1(Σg, p) to create new sections σk : Σh1+h2

→ M for each k ∈ Z. If there exists
some δ ⊆ Σg,1 that intersects γ once transversely in Σg and vanishes in H1(X1;Z) and H1(X2;Z)
where X1 and X2 are the two connected components of M−π−1(C) then the arguments of Section 4.2
apply directly to show that the sections σk are pairwise homologically distinct. The Gompf–Thurston
construction of Section 5 also works for Lefschetz fibrations over arbitrary bases Σh, h ≥ 0, possibly
with no critical points, to show that the sections σk can be made to be symplectic as well.

6.2. Indecomposable examples. A Lefschetz fibration is called indecomposable if it cannot be
written as a fiber sum of two nontrivial Lefschetz fibrations. In this section we provide an example
of a genus-g, indecomposable Lefschetz fibration admitting infinitely many, homologically distinct
symplectic sections for every g ≥ 2.

Consider the curves of Σ1
g depicted in Figure 6. The (2g)-chain relation [FM12, Proposition 4.12]

gives a factorization of T 2
d ∈ Mod(Σ1

g) by positive Dehn twists

T 2
d = (Tc1 . . . Tc2g )4g+2Td ∈ Mod(Σ1

g).

In what follows, we repeatedly apply the identity (for any T` and f ∈ Mod(Σ1
g))

(2) T`f = fTf−1(`) ∈ Mod(Σ1
g)
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. . .c1

c2

c3

d1

c2g

c2g+1

d2
c′2g+1

d3

c2g

c2g+1

γ

p

c′2g+1

d3

d

Figure 6. The curves that are used in the construction of (π : Mg → S2, s : S2 →
Mg). Left: The red curve d is the boundary component of Σ1

g. Right: The purple loop
γ ∈ π1(Σg, p) is based at the marked point p of Σg,1 which is the result of capping
Σ1
g by a punctured disk.

to obtain new factorizations of T 2
d into positive Dehn twists. By noting that Td commutes with

each twist Tci , 1 ≤ i ≤ 2g, and by applying (2) with ` = c2g−1, c2g and f = (Tc1 . . . Tc2g−2)i for
1 ≤ i ≤ 4g − 2, obtain the factorizations

T 2
d = (Tc1 . . . Tc2g )4(Tc1 . . . Tc2g )4g−3(Tc1 . . . Tc2g−2

)Td(Tc2g−1
Tc2g )

= (Tc1 . . . Tc2g )4(Tc1 . . . Tc2g−2
)4g−2Td(WTc2g−1

Tc2g ).

Above, W is a product 2(4g−3)-many positive Dehn twists about nonseparating curves, each of which
is contained in the subgroup 〈Tci : 1 ≤ i ≤ 2g〉 ≤ Mod(Σ1

g).

By (2g − 2)- and 3-chain relations in Mod(Σ1
g), there is an equality of mapping classes

(Tc1 . . . Tc2g−2)4g−2Td = Td3Td = (Tc′2g+1
Tc2gTc2g+1)4.

Applying this substitution to the factorization of T 2
d obtained above yields a new factorization

T 2
d = (Tc1 . . . Tc2g )4(Tc′2g+1

Tc2gTc2g+1
)4(WTc2g−1

Tc2g ) ∈ Mod(Σ1
g).

By applying (2) repeatedly with ` = c1, c2, c3 and f = (Tc4 . . . Tc2g )i for 1 ≤ i ≤ 3, obtain the
factorization

T 2
d = (Tc1Tc2Tc3)4V (Tc′2g+1

Tc2gTc2g+1
)4(WTc2g−1

Tc2g ) ∈ Mod(Σ1
g)

where V is a product of (8g − 12)-many positive Dehn twists about nonseparating curves, each of
which is contained in the subgroup 〈Tci : 1 ≤ i ≤ 2g〉 ≤ Mod(Σ1

g). Because WTc2g−1
Tc2g commutes

with Td, we may rearrange so that

(3) T 2
d = (WTc2g−1Tc2g )(Tc1Tc2Tc3)4V (Tc′2g+1

Tc2gTc2g+1)4 ∈ Mod(Σ1
g)

By a 3-chain relation,
(Tc1Tc2Tc3)4 = Td1Td2 ∈ Mod(Σ1

g),

which applied to (3) gives the factorization

(4) T 2
d = (WTc2g−1Tc2g )(Td1Td2)V (Tc′2g+1

Tc2gTc2g+1)4 ∈ Mod(Σ1
g).

Let (π : Mg → S2, s : S2 → Mg) denote the Lefschetz fibration and (−2)-section ([Smi01, Lemma
2.3]) corresponding to (4).

Lemma 6.5. The 4-manifold Mg has Euler characteristic and signature

χ(Mg) = 12g + 2, σ(Mg) = −8g − 2.

Proof. The factorization (4) is a product of (16g − 2)-many positive Dehn twists. The Euler charac-
teristic of a genus-g Lefschetz fibration with n-many vanishing cycles is 4−4g+n; letting n = 16g−2
shows that χ(Mg) = 12g + 2.

Next, we compute the signature σ(M ′g) of an auxiliary Lefschetz fibration π′ : M ′g → S2 defined
by (3) viewed as a positive factorization of the identity in Mod(Σg). This factorization is a product
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of (16g + 8)-many Dehn twists about nonseparating curves, each of which lies in the subgroup 〈Tci :
1 ≤ i ≤ 2g〉 ≤ Mod(Σg). In particular, π : M ′g → S2 is a hyperelliptic Lefschetz fibation, and Endo’s
signature formula for hyperelliptic Lefschetz fibrations ([End00, Theorems 4.4(2), 4.8]) shows that

σ(M ′g) = (16g + 8)

(
− g + 1

2g + 1

)
= −8g − 8.

Using the terminology of Endo–Nagami ([EN05]), the factorization (4) is obtained from (3) via a
ρ-substitution in Mod(Σg) with

ρ = (Tc1Tc2Tc3)−4(Td1Td2) ∈ Mod(Σg)

which has signature Ig(ρ) = 6 by [EN05, Lemma 3.5(1), Proposition 3.10]. By [EN05, Theorem 4.3],

σ(Mg) = σ(M ′g) + Ig(ρ) = −8g − 2. �

The next proposition deduces that Mg must be minimal from Lemma 6.5 to conclude that π :
Mg → S2 is indecomposable.

Proposition 6.6. The Lefschetz fibration π : Mg → S2 is indecomposable.

Proof. Lemma 6.5 shows that c21(Mg) = 2χ(Mg) + 3σ(Mg) = −2. It also shows that b+(Mg) ≥ 2
because

b+(Mg) =
(b+(Mg) + b−(Mg)) + σ(Mg)

2
≥ (χ(Mg)− 2) + σ(Mg)

2
= 2g − 1.

A theorem of Taubes ([Tau00, Theorem 0.2(3)]) implies that Mg equipped with any symplectic form
contains an embedded, symplectic (−1)-sphere. Usher ([Ush06, Corollary 1.2]) showed that any such
Lefschetz fibration π : Mg → S2 is indecomposable. �

Finally, we apply Theorem 2.1 to the pair (π : Mg → S2, s : S2 →Mg).

Proof of Corollary 1.5. Take the monodromy factorization (4) of the pair (π, s) consider the subword

(Tc′2g+1
Tc2gTc2g+1)4.

Let γ ∈ π1(Σg, p) be as shown in Figure 6. Then

(Tc′2g+1
Tc2gTc2g+1

)4(γ) = Td3(γ) = γ ∈ π1(Σg, p)

by the 3-chain relation. Let δ = c2g so that the Dehn twist Tc2g appears in both subwords (Tc′2g+1
Tc2gTc2g+1

)4

and (WTc2g−1
Tc2g )(Td1Td2)V of (4). Theorem 2.1 now applies to the pair (π : Mg → S2, s : S2 →Mg)

with these choices of monodromy subword and curves γ and δ. Finally, π : Mg → S2 is indecomposable
by Proposition 6.6. �

7. Isomorphism classes of sections

In this section we exhibit examples showing that the number of isomorphism classes of the sections
{σk : S2 → M : k ∈ Z} of π : M → S2 found in Theorem 2.1 varies depending on the choices
made in the construction. Recall from the introduction that for two sections s1, s2 : S2 → M
of π : M → S2, the pairs (π, s1) and (π, s2) are isomorphic if there exist orientation-preserving
diffeomorphisms Ψ : M →M and ψ : S2 → S2 such that the following diagram commutes:

M M

S2 S2

Ψ

π π

ψ

s1 s2

A positive factorization is a factorization of some mapping class consisting only of right-handed Dehn
twists T`. According to Baykur–Hayano [BH16, Theorem 1.1], there is a bijection between isomor-
phism classes of genus-g Lefschetz fibrations with sections and positive factorizations of the identity
in Mod(Σg,1) up to Hurwitz equivalence. Two positive factorizations are said to be Hurwitz equivalent
if one can be obtained from the other by a sequence of two types of moves:
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(a) (Elementary transformation) For any 1 ≤ i ≤ r,

T`r . . . T`i+1T`i . . . T`1 ←→ T`r . . . (T`i+1T`iT
−1
`i+1

)T`i+1 . . . T`1 .

(b) (Global conjugation) For any f ∈ Mod(Σg,1),

T`r . . . T`1 ←→ (fT`rf
−1) . . . (fT`1f

−1).

Above, note the equality of mapping classes fT`if
−1 = Tf(`i). Let ∼ denote Hurwitz equivalence of

positive factorizations.
All examples of this section are untwisted fiber sums with infinitely many sections as constructed

in Corollary 6.1.

7.1. On the number of isomorphism classes in {σk : k ∈ Z}. In this section we record examples
of Lefschetz fibrations and infinitely many homologically distinct sections which are (1) pairwise
isomorphic (Example 7.2), and (2) pairwise non-isomorphic (Example 7.5).

A lemma of Auroux shows that in fact, the monodromy factorizations of the sections constructed
in Corollary 6.1 are often Hurwitz equivalent.

Lemma 7.1 (Auroux, [Aur05, Lemma 6(b)]). Let g ≥ 2 and consider a positive factorization

T`r . . . T`1 = 1 ∈ Mod(Σg,1).

Suppose that 〈T`1 , . . . , T`r 〉 = Mod(Σg,1). For any γ ∈ π1(Σg, p) and any k ∈ Z, there is a Hurwitz
equivalence

(T`r . . . T`1)(T`r . . . T`1) ∼ (T`r . . . T`1)(TPγ(`r) . . . TPkγ (`1)).

Proof. By assumption, Pγ ∈ Mod(Σg,1) is contained in 〈T`1 , . . . , T`r 〉. By [Aur05, Lemma 6(b)], the
factorization (T`r . . . T`1) is Hurwitz equivalent to (TPkγ (`r) . . . TPkγ (`1)) through a sequence of elemen-

tary transformations. �

Example 7.2. For a simple example of a positive factorization of the identity in Mod(Σg,1) whose
factors generate Mod(Σg,1), consider the generators Tci of Mod(Σg,1), where c0, . . . , c2g+1 ⊆ Σg,1
are depicted in Figure 7 (cf. [FM12, Section 4.4.4]). Applying the (2g + 1)-chain relation [FM12,
Proposition 4.12] twice shows that

(Tc1 . . . Tc2g+1
)2g+2(Tf(c1) . . . Tf(c2g+1))

2g+2 = 1 ∈ Mod(Σg,1),

where f ∈ Mod(Σg,1) is such that f(c1) = c0. Other examples of such factorizations can also be found
in [Aur05, Section 3].

More generally, consider any genus-g Lefschetz fibration π : M → S2 and section s : S2 →M whose
monodromy representation ρ(π,s) is surjective onto Mod(Σg,1). Consider a monodromy factorization

T`r . . . T`1 = 1 ∈ Mod(Σg,1)

of (π, s) and consider the sections {σk : S2 → M#FM : k ∈ Z} of the untwisted fiber sum π#Fπ :
M#FM → S2 obtained in Corollary 6.1 with monodromy factorizations

(T`r . . . T`1)
(
TPkγ (`r) . . . TPkγ (`1)

)
= 1 ∈ Mod(Σg,1)

for some γ ∈ π1(Σg, p). Lemma 7.1 shows that the monodromy factorizations of (π, σ0) and (π, σk)
are Hurwitz equivalent for all k ∈ Z, and so (π, σ0) and (π, σk) are isomorphic for all k ∈ Z by
Baykur–Hayano [BH16, Theorem 1.1].

Remark 7.3. Lemma 7.1 suggests that the size of the monodromy group of a Lefschetz fibration relative
to the point pushing subgroup π1(Σg, p) ≤ Mod(Σg,1) controls the number of isomorphism classes of
sections constructed in this paper. In light of this, we study hyperelliptic Lefschetz fibrations (cf.
Brendle–Margalit [BM13, Theorem 3.1]) below to find examples of Lefschetz fibrations with infinitely
many isomorphism classes of sections.
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. . .c1

c2

c3

c4

c0

c2g−2

c2g−1

c2g

c2g+1

γ2g

γ

p
ι

Figure 7. The blue curves define the isotopy classes c0, . . . , c2g+1 of the curves in
Σg,1 where p is the marked point. The loops γ2g and γ define elements of π1(Σg, p).
The hyperelliptic involution ι fixes the marked point p and preserves the isotopy
classes c1, . . . , c2g.

Before proceeding with the next example, we state an algebraic lemma whose proof is postponed
to the end of this subsection.

Lemma 7.4. For any k ∈ Z, let Gk ≤ Mod(Σg,1) denote the subgroup

Gk := 〈Tc1 , . . . , Tc2g , Pγ−k(γ2gγ)k〉 ≤ Mod(Σg,1)

where c1, . . . , c2g, γ, and γ2g are as shown in Figure 7. If |k1| 6= |k2| then Gk1 and Gk2 are not conjugate
in Mod(Σg,1).

Using Lemma 7.4 the following example exhibits a Lefschetz fibration with infinitely many pairwise
non-isomorphic sections.

Example 7.5. For any g ≥ 2, consider the genus-g Lefschetz fibration π : M → S2 and section
s : S2 →M determined by the (2g)-chain relation [FM12, Proposition 4.12]

(Tc1 . . . Tc2g )4g+2 = 1 ∈ Mod(Σg,1).

Consider the sections {σk : S2 →M#FM : k ∈ Z} of the untwisted fiber sum π#Fπ : M#FM → S2

obtained in Corollary 6.1 with monodromy factorization

(Tc1 . . . Tc2g )(TPkγ (c1) . . . TPkγ (c2g)) = 1 ∈ Mod(Σg,1).

The image of the monodromy representation of (π#Fπ, σk) is

Gk := 〈Tc1 , . . . , Tc2g , TPkγ (c2g)〉 = 〈Tc1 , . . . , Tc2g , Pγ−k(γ2gγ)k〉 ≤ Mod(Σg,1),

where the last equality follows because Tc2gT
−1
Pkγ (c2g)

= Pγ−k(γ2gγ)k . By Lemma 7.4, the subgroups Gk1

and Gk2 are not conjugate in Mod(Σg,1) if |k1| 6= |k2|. Therefore the monodromy factorizations of
(π#Fπ, σk1) and (π#Fπ, σk2) are not Hurwitz equivalent, so the sections (π#Fπ, σk1) and (π#Fπ, σk2)
are not isomorphic if |k1| 6= |k2| by Baykur–Hayano [BH16, Theorem 1.1].

It remains to prove Lemma 7.4. To do so, we determine the kernel of the forgetful map Mod(Σg,1)→
Mod(Σg) in the Birman exact sequence (1) restricted to Gk for each k ∈ Z.

Lemma 7.6. Let Hk E Gk be the subgroup normally generated by Pγ−k(γ2gγ)k in Gk, i.e.

Hk := 〈fPγ−k(γ2gγ)kf
−1 : f ∈ G0〉.

The kernel of the map Forget : Mod(Σg,1) → Mod(Σg) of the Birman exact sequence (1) restricted
to Gk ≤ Mod(Σg,1) is Hk. In other words, the Birman exact sequence restricts to give a split short
exact sequence

1→ Hk → Gk → G0 → 1.

Proof. Denote Pγ−k(γ2gγ)k by P . Take any f ∈ Gk and write

f = g1P
m1g2 . . . grP

mrgr+1 ∈ Gk = 〈G0, P 〉
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for some m1, . . . ,mr ∈ Z and g1, . . . , gr+1 ∈ G0. By repeatedly applying the identity

gPmg′ = (gPmg−1)(gg′)

for any g, g′ ∈ G0, we may move all factors Pmi to the left after possibly first conjugating them by
elements of G0. In other words, Gk = HkG0.

Let ι ∈ Diff+(Σg,1) be the hyperelliptic involution shown in Figure 7. Then G0 is contained in
the hyperelliptic mapping class group SMod(Σg,1) ≤ Mod(Σg,1) determined by ι, so the restriction of
the forgetful map Mod(Σg,1)→ Mod(Σg) to the subgroup G0 ≤ Mod(Σg,1) is injective by a result of
Brendle–Margalit [BM13, Theorem 3.1]. Identifying G0 with its image in Mod(Σg), the restriction of
the Birman exact sequence (1) to Gk ≤ Mod(Σg,1) is

1→ π1(Σg, p) ∩Gk → Gk → G0 → 1.

There is an inclusion Hk ⊆ π1(Σg, p) by construction. Conversely, take any f ∈ π1(Σg, p) ∩ Gk and
write f = hg0 for some h ∈ Hk, g0 ∈ G0. Then f is an element of Hk because g0 = h−1f is contained
in π1(Σg, p) ∩G0 = 1 �

Proof of Lemma 7.4. Identify π1(Σg, p) with its image under the homomorphism Push : π1(Σg, p)→
Mod(Σg,1) in the Birman exact sequence (1) so that Pγ−k(γ2gγ)k is identified with (γ2gγ)−kγk ∈
π1(Σg, p). Consider the abelianization map h : π1(Σg, p) → H1(Σg;Z). The image h(Hk) lies in
kH1(Σg;Z) because h(f∗((γ2gγ)−kγk) = −k (h(f∗(γ2g))) for any f ∈ Mod(Σg,1). Moreover, h(f∗(γ2g))
is a primitive element of H1(Σg;Z) for any f ∈ Mod(Σg,1) because h(γ2g) = `2g is primitive. Therefore
if |k1| 6= |k2|,

h(fHk1f
−1) = f∗(h(Hk1)) 6= h(Hk2) ≤ H1(Σg;Z).

Finally, conclude by noting that fHk1f
−1 = π1(Σg, p) ∩ (fGk1f

−1) by Lemma 7.6. �

7.2. Non-isomorphisms via fiberwise diffeomorphisms covering the identity. In this subsec-
tion we consider isomorphisms of pairs (π, s1) and (π, s2) via fiberwise diffeomorphisms covering the
identity Id : S2 → S2, i.e. diffeomorphisms Ψ ∈ Diff+(M) making the following diagram commute:

M M

S2

π

Ψ

π

s2s1

The following proposition shows that sections that are not isomorphic via such diffeomorphisms
are common.

Proposition 7.7. For any g ≥ 2, let π : M → S2 be a genus-g Lefschetz fibration with a section
s : S2 → M . The untwisted fiber sum π#Fπ : M#FM → S2 yields infinitely many, homologically
distinct sections

{σk : S2 →M#FM : k ∈ Z≥0}
so that if k1 6= k2 ∈ Z≥0 then (π#Fπ, σk1) and (π#Fπ, σk2) are not isomorphic via a fiberwise

diffeomorphism Ψ ∈ Diff+(M#FM) covering the identity of S2.

Proof. Let T`r . . . T`1 = 1 ∈ Mod(Σg,1) be a monodromy factorzation of the pair (π, s). By work of
Stipsicz [Sti99, Theorem 1.3], π : M → S2 has a nonseparating vanishing cycle. By the change-of-
coordinates principle [FM12, Section 1.3] and after possibly applying some Hurwitz moves, we may
assume that `1 ⊆ Σg,1 is the curve shown in Figure 8. Pick γ ∈ π1(Σg, p) to intersect `1 exactly once
as shown in Figure 8.

For any k ≥ 0, consider the curves α and β representing the isotopy classes P kγ (`1) and `1 respec-
tively and the intersection points a1, . . . , ak, b1, . . . , bk ∈ Σg,1 as shown in Figure 8. Consider pairs
of intersection points that are adjacent in both α and β, and let α′ ⊆ α and β′ ⊆ β be the subarcs
connecting them.
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`1

γ

p

a1

a2

a3

a4

b1
b2
b3
b4

Figure 8. Left: The curve `1 ⊆ Σg,1 and loop γ ∈ π1(Σg, p) intersect once trans-
versely as shown. Middle: The case of k = 4. The curves P 4

γ (`1) (in black) and `1 (in
grey) intersect in the points a1, . . . , ak, b1, . . . , bk. Right: The shown curve is isotopic
to the curve α′ ∪ β′ formed in case (c) of the proof of Proposition 7.7.

(a) If ∂α′ = ∂β′ = {ak, b1} then α′ ∪ β′ bounds a punctured disk S. The complement Σg,1 − S is
homeomorphic to the punctured surface Σg,1.

(b) If ∂α′ = ∂β′ = {ai, ai+1} or {bi, bi+1} then α′ ∪ β′ is a nonseparating curve in Σg,1.
(c) If ∂α′ = ∂β′ = {a1, bk} then α′ ∪ β′ is a separating curve in Σg,1 shown in Figure 8. The

subsurface S ⊆ Σg,1 bounded by α′ ∪ β′ containing the marked point p deformation retracts
onto γ∪`1, and so S is homeomorphic to Σ1

1,1. The complement Σg,1−S is then homeomorphic
to Σg−1,1.

The casework above shows that α and β do not form any bigons in Σg,1. By the bigon criterion
[FM12, Proposition 1.7], the curves α and β are in minimal position and the geometric intersection
number i(P kγ (`1), `1) is

i(P kγ (`1), `1) = #(α ∩ β) = 2k.

On the other hand, let σk : S2 →M#FM be the section of π#Fπ : M#FM → S2 constructed in
Corollary 6.1 with monodromy factorization

(T`r . . . T`1)
(
TPkγ (`r) . . . TPkγ (`1)

)
= 1 ∈ Mod(Σg,1).

If Ψ ◦ σk1 = σk2 for some fiberwise diffeomorphism Ψ ∈ Diff+(M#FM) and k1, k2 ∈ Z≥0 then
the monodromy factorizations of (π#Fπ, σk1) and (π#Fπ, σk2) are conjugate in Mod(Σg,1), i.e. there
exists f ∈ Mod(Σg,1) so that the following equality of positive factorizations holds:

(T`r . . . T`1)
(
T
P
k1
γ (`r)

. . . T
P
k1
γ (`1)

)
=
(
(fT`rf

−1) . . . (fT`1f
−1)
) (

(fT
P
k2
γ (`r)

f−1) . . . (fT
P
k2
γ (`1)

f−1)
)
.

In particular, there are equalities of isotopy classes of curves in Σg,1

P k1γ (`1) = f(P k2γ (`1)), `1 = f(`1).

Then k1 = k2 because

2k1 = i(P k1γ (`1), `1) = i(P k2γ (`1), `1) = 2k2. �
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