On the uniqueness of the Prym map

Carlos A. Serván

Abstract

The classical Prym construction associates to a smooth, genus g complex curve X equipped with a nonzero cohomology class $\theta \in H^1(X, \mathbb{Z}/2\mathbb{Z})$, a principally polarized abelian variety (PPAV) Prym (X, θ) . Denote the moduli space of pairs (X, θ) by \mathcal{R}_g , and let \mathcal{A}_h be the moduli space of PPAVs of dimension h. The Prym construction globalizes to a holomorphic map of complex orbifolds Prym : $\mathcal{R}_g \to \mathcal{A}_{g-1}$. For $g \ge 4$ and $h \le g-1$, we show that Prym is the unique nonconstant holomorphic map of complex orbifolds $F : \mathcal{R}_g \to \mathcal{A}_h$. This solves a conjecture of Farb [6]. A main component in our proof is a classification of homomorphisms $\pi_1^{\text{orb}}(\mathcal{R}_g) \to \text{Sp}(2h, \mathbb{Z})$ for $h \le g-1$. This is achieved using arguments from geometric group theory and low-dimensional topology.

Let X be a smooth, genus g complex curve, and let $\Omega^1(X)$ be the space of holomorphic 1-forms on X. The Jacobian of X,

$$\operatorname{Jac}(X) := \frac{\Omega^1(X)^{\vee}}{H_1(X,\mathbb{Z})}$$

is a g-dimensional principally polarized abelian variety (PPAV) canonically associated to X.

Let \mathcal{M}_g be the moduli space of complex smooth genus g curves, and let \mathcal{A}_g be the moduli space of PPAVs of dimension g. The Jacobian induces a holomorphic map, the *period map*

$$J: \mathcal{M}_g \to \mathcal{A}_g \quad , \quad X \to \operatorname{Jac}(X).$$

In a recent paper [6], Farb showed that if $g \geq 3$ and $h \leq g$ then J is the unique non-constant holomorphic map of complex orbifolds $\mathcal{M}_g \to \mathcal{A}_h$. In particular, extra data needs to be attached to smooth curves of genus g in order to associate, in a way that respects orbifold structures, a PPAV of dimension less than g to each such curve. An example of such a construction has been known to exist since over 100 years [7], as we now explain.

The Prym construction. Prym varieties [7], named as such by Mumford in honor of Friedrich Prym (1841-1915), provide a classical example of a way to obtain PPAVs of dimension g - 1 from smooth curves of genus g. Any nonzero $\theta \in H^1(X, \mathbb{Z}/2\mathbb{Z})$ defines an unbranched double cover

$$p: Y \to X,$$

with deck transform σ , and where Y is a curve of genus 2g - 1.

The Prym variety associated to (X, θ) is defined as (for more details see Section 3.2.1)

$$\operatorname{Prym}(X,\theta) := \frac{\operatorname{Jac}(Y)}{p^*(\operatorname{Jac}(X))} \in \mathcal{A}_{g-1}.$$

Moduli space of Prym varieties. The Prym construction globalizes as follows. Let

 $\mathcal{R}_g := \{(X, \theta_X) : X \text{ smooth complex curve of genus } g, \text{ and } \theta_X \in H^1(X, \mathbb{Z}/2\mathbb{Z})^*\} / \sim$

be the space of equivalence classes of pairs (X, θ_X) , where $(X_1, \theta_1) \sim (X_2, \theta_2)$ if there exists a biholomorphism $f : X_1 \to X_2$, with $f^*(\theta_2) = \theta_1$. As we explain in more detail below in this introduction, \mathcal{R}_g is a complex orbifold (warning: there are two closely related orbifold structures on \mathcal{R}_g , for the details see Section 1), and the Prym construction globalizes to a map of orbifolds

$$\operatorname{Prym} : \mathcal{R}_q \to \mathcal{A}_{q-1} \quad , \quad (X, \theta_X) \mapsto \operatorname{Prym}(X, \theta_X).$$

Our main result shows that, as conjectured by Farb in [6], Prym is rigid.

Theorem 1 (Rigidity of Prym). Let $g \ge 4$ and let $h \le g-1$. Let $F : \mathcal{R}_g \to \mathcal{A}_h$ be a nonconstant holomorphic map of complex orbifolds¹. Then h = g - 1 and F = Prym.

The proof of Theorem 1 uses in a fundamental way that $g \ge 4$. I do not known if the statement holds true also for g = 2, 3.

Two orbifold structures on \mathcal{R}_g . There exist two natural orbifold structures on \mathcal{R}_g , which give very different results with respect to maps to \mathcal{A}_h (see Theorem 2). Here we provide a brief description of the two orbifold structures and refer to Section 1 for the details.

Let S_g be a closed surface of genus g, let $[\beta] \in H_1(S_g, \mathbb{Z}/2\mathbb{Z})^*$, and let $p: S_{2g-1} \to S_g$ be the associated double cover with deck transform σ . Let $Mod(S_g)$ be the mapping class group of S_g , and define

$$\operatorname{Mod}(S_g, [\beta]) := \operatorname{Stab}_{\operatorname{Mod}(S_g)}([\beta])$$

as the stabilizer of $[\beta]$, with respect to the action of $Mod(S_q)$ on $H_1(S_q, \mathbb{Z}/2\mathbb{Z})$. Similarly, define

$$\operatorname{Mod}(S_{2g-1}, \sigma) := C_{\operatorname{Mod}(S_{2g-1})}([\sigma])$$

as the centralizer of $[\sigma]$.

Both $\operatorname{Mod}(S_g, [\beta])$ and $\operatorname{Mod}(S_{2g-1}, \sigma)$ act on Teichmüller space $\operatorname{Teich}(S_g)$, and the two orbifold structures on \mathcal{R}_g come from considering $\operatorname{Mod}(S_g, [\beta])$ or $\operatorname{Mod}(S_{2g-1}, \sigma)$ as the orbifold fundamental group of \mathcal{R}_g . If we consider $\pi_1^{\operatorname{orb}}(\mathcal{R}_g) = \operatorname{Mod}(S_{2g-1}, \sigma)$, then every point of \mathcal{R}_g is an orbifold point of order at least 2. This phenomenon is akin to both $\operatorname{Sp}(2g, \mathbb{Z})$ and $\operatorname{PSp}(2g, \mathbb{Z})$ acting on Siegel upper half-space \mathfrak{h}_g and giving the same quotient \mathcal{A}_g , but different orbifold structures on \mathcal{A}_g .

The difference between these two orbifold structures on \mathcal{R}_g seems to be elided in the literature, yet as the following Theorem shows, the inclusion of the involution σ is fundamental to our results. Let $\hat{\mathcal{R}}_g$ denote the orbifold structure on \mathcal{R}_g with $\pi_1^{\text{orb}}(\hat{\mathcal{R}}_g) = \text{Mod}(S_g, [\beta])$.

Theorem 2. Fix $g \ge 4$ and $h \le g - 1$. Then, any holomorphic map $F : \hat{\mathcal{R}}_g \to \mathcal{A}_h$ of complex orbifolds is constant.

Remark 0.1. If one considers only effective group actions in Definition 1.1 then Theorem 2 is not correct. The action of $Mod(S_{2g-1}, \sigma)$ on $Teich(S_g)$ factors through $Mod(S_g, [\beta])$, and similarly the action of $Sp(2h, \mathbb{Z})$ on \mathfrak{h}_h factors through $PSp(2h, \mathbb{Z})$. Hence, for effective actions there is no obstruction at the level of homomorphisms $Mod(S_g, [\beta]) \to PSp(2h, \mathbb{Z})$, and the Prym construction globalizes to a holomorphic map of complex orbifolds. I do not know if the analogous statement to Theorem 1 holds in this setting but it will entail answering the following.

Question 1. Fix g and $h \leq g-1$. Classify homomorphisms $\phi : Mod(S_q, [\beta]) \to PSp(2h, \mathbb{Z})$.

¹See Definition 1.1

Prym representation. In the same way as the standard symplectic representation of $Mod(S_g)$ is associated to the period map, the Prym map has an associated representation

 $\operatorname{Prym}_* : \operatorname{Mod}(S_{2q-1}, \sigma) \to \operatorname{Sp}(2(g-1), \mathbb{Z}).$

The first step in the proof of Theorem 1 is the following purely group theoretic result. It shows that Prym_* exhibits a similar level of rigidity as that of the standard symplectic representation for $\operatorname{Mod}(S_q)$.

Theorem 3 (Rigidity of Prym_*). Let $g \ge 4$ and $m \le 2(g-1)$. Let $\phi : \operatorname{Mod}(S_{2g-1}, \sigma) \to \operatorname{GL}(m, \mathbb{C})$. The following holds,

- 1. If m < 2(g-1) then $\text{Im}(\phi)$ is cyclic of order at most 4.
- 2. Let $\chi : \operatorname{Mod}(S_{2g-1}, \sigma) \to \mathbb{C}^*$ be a group homomorphism. If m = 2(g-1) then $\operatorname{Im}(\phi)$ is either cyclic of order at most 4 or ϕ is conjugate to the map:

$$f \to \chi(f) \operatorname{Prym}_*(f),$$

where $\chi(f)^4 = 1$.

Note that, unlike the case of $Mod(S_g)$ (as shown in [8, 10]), the group $Mod(S_{2g-1}, \sigma)$ has a *nontrivial* (infinite-image) linear representation of dimension less than g, and the same is true for $Mod(S_g, [\beta])$ when g is even (see Theorem 5).

Since \mathcal{A}_h for $h \ge 1$ is a $K(\pi, 1)$ in the category of orbifolds, Theorem 3 implies the following (see also Corollary 12).

Corollary 4. Fix $g \ge 4$ and $h \le g - 1$. Let $F : \mathcal{R}_g \to \mathcal{A}_h$ be a continuous map of orbifolds. If h = g - 1, then F is homotopic to Prym. Otherwise, there exists a cyclic cover $\tilde{\mathcal{R}}_g$ of \mathcal{R}_g of order at most 4, so that the induced map $\tilde{F} : \tilde{\mathcal{R}}_g \to \mathcal{A}_h$ is homotopic to a constant map.

Strategy of proof of Theorems 1 and 2. Our proof follows the general strategy laid out in [6]. The two main aspects of the proof are the topological and holomorphic sides of the story.

- 1. In Section 2, we classify low-dimensional linear and symplectic representations of $Mod(S_g, [\beta])$ and $Mod(S_{2g-1}, \sigma)$. Our approach is based on (and extends) the results of Franks-Handel, and Korkmaz [8, 10], which classify linear representations for the full mapping class group $Mod(S_g)$. A key ingredient in our proof is to prove connectedness of the complex of curves $\mathcal{N}_1(S_g)$ (see Section 2.2).
- 2. In Section 3, we add the assumption of holomorphicity for the map $F : \mathcal{R}_g \to \mathcal{A}_h$ to deduce Theorem 2 and reduce the proof of Theorem 1 to the case of h = g - 1 and F homotopic to Prym. In order to avoid orbifold issues when dealing with the h = g - 1 case, we will pass to a suitable (smooth) cover $\mathcal{R}_g[\psi]$ of \mathcal{R}_g . Steps 2-4 in Farb's proof [6] for the rigidity of the period map $J : \mathcal{M}_g \to \mathcal{A}_g$, extend to our case without modifications. Step 5, the existence of \mathcal{A}_{g-1} -rigid curves, requires some minor modifications. They arise due to our use of finite non-Galois covers of $\overline{\mathcal{M}_g}$.

Acknowledgments. I am very grateful to my advisor Benson Farb for suggesting the problem, his guidance and constant encouragement throughout the whole project, and for numerous comments on earlier drafts of the paper. I would like to thank Curtis McMullen and Dan Margalit for comments on an earlier draft; Eduard Looijenga for explaining to me properties of $\partial \mathcal{M}_g$; and Frederick Benirschke for many insightful conversations.

1 Orbifold structures on \mathcal{R}_q

In this section we show how to give \mathcal{R}_g the structure of a complex orbifold. First, let us briefly recall the definition of orbifold and maps between orbifolds [6, Remark 2.1].

Definition 1.1 (Orbifolds and maps between orbifolds). Let X be a simply connected manifold (resp. complex manifold) and let Γ be a group acting properly discontinuously on X by homeomorphisms (resp. biholomorphisms), but not necessarily freely nor effectively. Then the quotient X/Γ is a topological (resp. complex) orbifold. Define $\pi_1^{\text{orb}}(X/\Gamma) := \Gamma$ as the orbifold fundamental group of X/Γ . Let Y/Λ be another orbifold, and $\rho : \Gamma \to \Lambda$ a group homomorphism. A continuous (resp. holomorphic) map in the category of orbifolds $F : X/\Gamma \to Y/\Lambda$ is a map so that there exists a continuous (resp. holomorphic) lift $\tilde{F} : X \to Y$ that intertwines ρ :

$$\tilde{F}(\gamma.x) = \rho(\gamma).\tilde{F}(x)$$
 for all $x \in X, \gamma \in \Gamma$.

If this is the case we denote ρ by $F_* : \Gamma \to \Lambda$. Note that postcomposition of F_* with an inner automorphism c_{ℓ} of Λ changes $\tilde{F} \to \ell \circ \tilde{F}$, so that F_* is defined up to postcomposition with inner automorphisms of Λ .

Remark 1.1. If Γ acts effectively, our definition agrees with Thurston's definition of *good* orbifold [15, Ch.13].

Let S_q be a closed surface of genus g. The mapping class group $Mod(S_q)$ is defined as

$$\operatorname{Mod}(S_q) := \pi_0(\operatorname{Diff}^+(S_q)).$$

Let $\operatorname{Teich}(S_g)$ denote the *Teichmüller* space of S_g , the space of holomorphic structures on S_g up to isotopy. $\operatorname{Mod}(S_g)$ acts on $\operatorname{Teich}(S_g)$ properly discontinously, but not freely, by biholomorphisms. Let $[\beta] \in H_1(S, \mathbb{Z}/2\mathbb{Z})$ and define

$$\operatorname{Mod}(S_g, [\beta]) := \operatorname{Stab}_{\operatorname{Mod}(S_g)}([\beta]),$$

as the stabilizer of $[\beta]$ in $Mod(S_q)$. Then define

$$\hat{\mathcal{R}}_g := \operatorname{Teich}(S_g) / \operatorname{Mod}(S_g, [\beta]).$$

In particular, $\hat{\mathcal{R}}_g$ has the structure of a complex orbifold with $\pi_1^{\text{orb}}(\hat{\mathcal{R}}_g) = \text{Mod}(S_g, [\beta])$. Furthermore, $\hat{\mathcal{R}}_g$ is in bijective correspondence with \mathcal{R}_g and thus endows \mathcal{R}_g with an orbifold structure.

One of the goals of this paper is to classify all holomorphic maps of complex orbifolds $\hat{\mathcal{R}}_g \to \mathcal{A}_h$ for $h \leq g-1$. Define the map,

$$\widehat{\operatorname{Prym}} : \hat{\mathcal{R}}_g \to \mathcal{A}_{g-1} \ , \ (X,\theta) \to \operatorname{Prym}(X,\theta).$$

Theorem 2 shows that Prym *cannot* be a map in the category of complex orbifolds.

Obstruction. The obstruction to realize Prym as map of orbifolds is the *non-existence* of non-finite representations $\phi : \operatorname{Mod}(S_g, [\beta]) \to \operatorname{Sp}(2(g-1), \mathbb{Z})$. As we explain in more detail in Section 2, the Prym construction defines a representation:

$$\widetilde{\operatorname{Prym}}_* : \operatorname{Mod}(S_g, [\beta]) \to \operatorname{PSp}(2(g-1), \mathbb{Z}),$$

which does not lift to a symplectic representation. Thus, there is an associated non-split central $\mathbb{Z}/2\mathbb{Z}$ extension:

$$1 \to \mathbb{Z}/2\mathbb{Z} \to H \to \operatorname{Mod}(S_q, [\beta]) \to 1$$

By definition, there is a representation $H \to \operatorname{Sp}(2(g-1),\mathbb{Z})$ and H acts on $\operatorname{Teich}(S_g)$ via $\operatorname{Mod}(S_g, [\beta])$ so that every point is an orbifold point of order at least 2. Thus, \mathcal{R}_g can be endowed with an orbifold structure for which the Prym construction does define a holomorphic map Prym in the category of complex orbifolds. In fact, there is a concrete description of H and this alternative orbifold structure, as we now explain.

Moduli space of double covers. Let Y be a complex smooth genus 2g-1 curve, and $\sigma_Y : Y \to Y$ a fixed-point free biholomorphic involution. Say that two such pairs (Y_1, σ_{Y_1}) and (Y_2, σ_2) are equivalent if there is a biholomorphism $f : Y_1 \to Y_2$ such that $f^{-1}\sigma_2 f = \sigma_1$. Then, there is a bijection

$$\phi: \{ [(Y, \sigma_Y)] \} \to \mathcal{R}_g \quad , \quad [(Y, \sigma_Y)] \to [(Y/\sigma_Y, \theta_Y)]$$

where θ_Y is given by the monodromy of the covering $p: Y \to Y/\sigma_Y$.

Let σ be a fixed-point free involution on the closed surface S_{2g-1} , and let $[\sigma]$ be its class in $Mod(S_{2g-1})$. Let $Fix([\sigma]) := Teich(S_{2g-1})^{[\sigma]}$ and define

$$\operatorname{Mod}(S_{2g-1}, \sigma) := C_{\operatorname{Mod}(S_{2g-1})}([\sigma])$$

Then, there is an exact sequence

$$1 \to \langle \sigma \rangle \to \operatorname{Mod}(S_{2g-1}, \sigma) \to \operatorname{Mod}(S_g, [\beta]) \to 1,$$

and, via the bijection ϕ ,

$$\mathcal{R}_g = \operatorname{Fix}([\sigma]) / \operatorname{Mod}(S_{2g-1}, \sigma)$$

so that $\pi_1^{\operatorname{orb}}(\mathcal{R}_q) = \operatorname{Mod}(S_{2q-1}, \sigma).$

Furthermore, ϕ induces a 2 : 1 map of complex orbifolds (but a biholomorphism in the complex category)

Thus, viewing \mathcal{R}_g as equivalence classes of curves with an involution is precisely the alternative orbifold structure stated at the end of the previous section, and the prym construction induces a holomorphic map of complex orbifolds,

$$\operatorname{Prym}: \mathcal{R}_q \to \mathcal{A}_{q-1} \quad , \quad (Y, \sigma_Y) \to \operatorname{Prym}(Y/\sigma_Y, \theta_Y).$$

The difference between \mathcal{R}_g and \mathcal{R}_g is precisely the difference between having covers of \mathcal{M}_g given by *G*-structures or by *G*-covers (cf. [1, Ch 16, p 525-526]), in our case $G = \mathbb{Z}/2\mathbb{Z}$.

2 Topological results

Let S_g be a closed surface of genus $g \ge 1$, and $[\beta] \in H_1(S, \mathbb{Z}/2\mathbb{Z})^*$. Then, there is a (unique up to isomorphism) double cover

$$p: S_{2g-1} \to S_g$$

with deck transform σ , and monodromy given by intersection with $[\beta]$. Define

$$\operatorname{Mod}(S_g, [\beta]) := \operatorname{Stab}_{\operatorname{Mod}(S_g)}([\beta]), \text{ and } \operatorname{Mod}(S_{2g-1}, \sigma) := C_{\operatorname{Mod}(S_{2g-1})}(\sigma)$$

the stabilizer of $[\beta]$ in $Mod(S_g)$, and the centralizer of σ in $Mod(S_{2g-1})$ respectively. By the work of Birman-Hilden [2],

$$\operatorname{Mod}(S_{2q-1}, \sigma) = \pi_0(\operatorname{Diff}^+(S_{2q-1}, \sigma)),$$

which gives an exact sequence,

$$1 \to \langle \sigma \rangle \to \operatorname{Mod}(S_{2q-1}, \sigma) \to \operatorname{Mod}(S_q, [\beta]) \to 1.$$

Remark 2.1. Note that $Mod(S_g)$ acts transitively on $H_1(S_g, \mathbb{Z}/2\mathbb{Z})$, and so any choice of $[\beta] \in H_1(S_g, \mathbb{Z}/2\mathbb{Z})$ gives conjugate subgroups $Mod(S_g, [\beta])$ within $Mod(S_g)$. The same remark applies to $Mod(S_{2g-1}, \sigma)$ in $Mod(S_{2g-1})$, for different choices of σ .

Prym representation. For any $f \in Mod(S_{2g-1}, \sigma)$, denote by f_* its induced action on $H_1(S_g, \mathbb{Z})$. As $f\sigma = \sigma f$, f_* preserves the eigenspaces of σ_* . In particular, f_* preserves $H_1(S_{2g-1}, \mathbb{Z})^-$, which consists of σ -anti-invariant elements.

Let $\hat{i}_{-} := \frac{1}{2}\hat{i}$, for \hat{i} the restriction of the intersection pairing on $H_1(S_{2g-1}, \mathbb{Z})$ to $H_1(S_{2g-1}, \mathbb{Z})^-$. Then f_* will further preserve \hat{i}_- ; thus by choosing a symplectic basis we obtain a representation

$$\operatorname{Prym}_* : \operatorname{Mod}(S_{2g-1}, \sigma) \to \operatorname{Sp}(2(g-1), \mathbb{Z}),$$

called the Prym representation of $Mod(S_{2g-1}, \sigma)$.

Let $f \in \text{Mod}(S_g, [\beta])$, then there is a lift $\tilde{f} \in \text{Mod}(S_{2g-1}, \sigma)$, well-defined up to composition with σ . As σ_* acts as -1 on $H_1(S_g, \mathbb{Z})^-$, the Prym representation induces a projective Prym representation,

$$\operatorname{Prym}_* : \operatorname{Mod}(S_g, [\beta]) \to \operatorname{PSp}(2(g-1), \mathbb{Z}).$$

In this section we build on the results of Franks-Handel and Korkmaz[8, 10], to classify lowdimensional linear and symplectic representations of $Mod(S_g, [\beta])$ and $Mod(S_{2g-1}, \sigma)$.

Remark 2.2. The existence of $\chi : \operatorname{Mod}(S_{2g-1}, \sigma) \to \mathbb{C}^*$ in Theorem 3 is possible due to the fact that

$$\operatorname{Mod}(S_{2g-1},\sigma)^{\operatorname{Ab}} \cong \mathbb{Z}/4\mathbb{Z}$$

Similarly,

$$\operatorname{Mod}(S_q, [\beta])^{\operatorname{Ab}} \cong \mathbb{Z}/d\mathbb{Z}$$

where d = 2 for g even and 4 otherwise (see Sato [14], or the appendix for an alternate proof of the even case).

A similar rigidity result as of Theorem 3 holds for $Mod(S_q, [\beta])$,

Theorem 5. Let $g \ge 4$ and $m \le 2(g-1)$. Let $\phi : Mod(S_g, [\beta]) \to GL(m, \mathbb{C})$. Then the following holds,

- 1. If m < 2(g-1) or m = 2(g-1) and g odd, or m = 2(g-1), and g even and $\operatorname{Im}(\phi) \subset \operatorname{SL}(m, \mathbb{C})$. Then, $\operatorname{Im}(\phi)$ is abelian, so it is a quotient of $\mathbb{Z}/4\mathbb{Z}$.
- 2. Otherwise, ϕ is induced from a representation $\tilde{\phi}$: Mod $(S_{2g-1}, \sigma) \to \operatorname{GL}(m, \mathbb{C})$ such that $\tilde{\phi}(\sigma) = 1$. In particular, $\phi(T_a^2) = \pm i \operatorname{Id}$, for $\hat{i}_2([a], [\beta]) = 1$.

In particular, this shows that $Prym_*$ does not lift to a linear representation. In fact, let

$$1 \to \mathbb{Z}/2\mathbb{Z} \to H \to \operatorname{Mod}(S_g, [\beta]) \to 1$$

be the central extension determined by $\widetilde{\operatorname{Prym}}_* : \operatorname{Mod}(S_g, [\beta]) \to \operatorname{PSp}(2(g-1), \mathbb{Z})$. Then

$$\operatorname{Mod}(S_{2g-1}, \sigma) \cong H_{2g}$$

where the isomorphism is given by $\tilde{f} \to (f, \tilde{f}_*)$. Thus,

Corollary 6. The sequence,

$$1 \to \langle \sigma \rangle \to \operatorname{Mod}(S_{2g-1}, \sigma) \to \operatorname{Mod}(S_g, [\beta]) \to 1,$$

does not split.

Proof outline for Theorems 3 and 5. Here we briefly sketch the main ideas used in the proofs of Theorems 3 and 5, the details will be given in the subsequent sections. First observe that any $[\beta] \in H_1(S_g, \mathbb{Z}/2\mathbb{Z})^*$ can be represented by a simple closed curve b. Then, there exists a subsurface (with boundary) R of genus g - 1 so that

$$\operatorname{Mod}(R) \subset \operatorname{Mod}(S_g, [\beta]).$$

Results of Franks-Handel and Korkmaz applied to Mod(R), then give constraints on the restriction of ϕ to Mod(R).

Moreover, as any element in Mod(R) fixes a point of S_g , Mod(R) lifts to $\widetilde{Mod(R)} \subset Mod(S_{2g-1}, \sigma)$ and one can check that $Prym |_{\widetilde{Mod(R)}}$ is precisely the symplectic representation of Mod(R).

In order to extend our knowledge of ϕ to the whole of $Mod(S_g, [\beta])$, we find good generating sets for $Mod(S_g, [\beta])$. This is accomplished in two ways:

- 1. A key property of $Mod(S_g)$ is the fact that all Dehn twists T_a are conjugate to each other. This is no longer true in $Mod(S_g, [\beta])$ and the results in Section 2.1 give a classification of (powers of) Dehn twists in $Mod(S_g, [\beta])$ up to conjugation. As a corollary, there exists a normal generating set for $Mod(S_g, [\beta])$ composed of only three types of Dehn Twists.
- 2. Section 2.2 describes properties of the action of $Mod(S_g, [\beta])$ on a modified complex of curves $\mathcal{N}(S_g)$. $\mathcal{N}(S_g)$ is connected and $Mod(S_g, [\beta])$ acts transitively on the edges and vertices of $\mathcal{N}(S_g)$. Thus, via a geometric group theory argument, there exists an additional generating set for $Mod(S_g, [\beta])$.

By using these two distinct generating sets, we are then able to constrain all low-dimensional representations of $Mod(S_g, [\beta])$ (except for the last item of Theorem 5). In Section 2.4, we lift the results from Sections 2.1 and 2.2 to $Mod(S_{2g-1}, \sigma)$ and are able to conclude all but the second item of Theorem 3. The final ingredient in the proof is an explicit (finite) generating set for $Mod(S_g, [\beta])$, found by [4], on which one can check that ϕ has the desired form.

2.1 Conjugation in $Mod(S_q, [\beta])$

Let i_2 be the algebraic intersection pairing mod 2 on $H_1(S_g, \mathbb{Z}/2\mathbb{Z})$. In what follows all homology classes are mod 2. Let $\mathcal{S}(S_g)$ denote the set of isotopy classes of simple closed curves (SCC) in S_g . The action of $Mod(S_g, [\beta])$ splits $\mathcal{S}(S_g)$ into three components, **Lemma 2.1.** Let a_1, a_2 be a pair of isotopy classes of nonseparating simple closed curves in S_g . The following are necessary and sufficient conditions for there to be an $f \in Mod(S_g, [\beta])$ such that $f(a_1) = a_2$.

1. $\hat{i}_2([a_1], [\beta]) = \hat{i}_2([a_2], [\beta]) = 1.$

2. $\hat{i}_2([a_1], [\beta]) = \hat{i}_2([a_2], [\beta]) = 0$, and either both $[a_i] \neq [\beta]$ or both $[a_i] = [\beta]$.

Proof. Let α be a nonseparating simple closed curve in S_g . Observe that if $\hat{i}_2([\alpha], [\beta]) = c$, there exists² a simple closed curve b representing $[\beta]$ and intersecting α transversely c times. Let α_1 and α_2 be two simple closed curves in S_g with

$$\hat{i}_2([\alpha], [\beta]) = \hat{i}_2([\alpha_2], [\beta]) = 1.$$

By the previous observation, there exist two 2-chains (α_i, b_i) with $[b_i] = [\beta]$. Thus, by the change of coordinates principle [5, Ch 1, sec 3], there is a $\phi \in \text{Homeo}^+(S_g)$ so that $\phi(\alpha_1) = \alpha_2$ and $\phi(b_1) = b_2$. In particular, $\phi_*([\beta]) = [\beta]$ and so $[\phi] \in \text{Mod}(S_g, [\beta])$ and the first claim follows.

Now suppose that $\hat{i}_2([\alpha], [\beta]) = 0$. If $[\alpha] = [\beta]$, the statement follows since $\operatorname{Mod}(S_g)$ acts transitively on $\mathcal{S}(S_g)$ and any f with $f(\alpha) = \beta$ is in $\operatorname{Mod}(S_g, [\beta])$. Suppose that $[\alpha] \neq [\beta]$. Let b be a simple closed curve representing $[\beta]$ and not intersecting α . In particular, α is nonseparating in $S_g - b$. Let α_1, α_2 be two simple closed curves such that

$$\hat{i}_2([\alpha], [\beta]) = \hat{i}_2([\alpha_2], [\beta]) = 0.$$

Then, there are two b_i representing $[\beta]$ such that $\alpha_i \cap b_i = 0$. Let $\phi \in \text{Homeo}^+(S_g)$ with $\phi(b_1) = b_2$. Then $\phi(\alpha_1)$ is nonseparating in the cut-surface S_{b_2} obtained by cutting along b_2 . Applying the change of coordinates again, there is a $\psi \in \text{Homeo}^+(S_{b_2}, b_2)$ such that $\psi(\phi(\alpha_1)) = \alpha_2$. Composing ϕ with the map $\overline{\psi} \in \text{Homeo}^+(S_g)$, induced by ψ , the claim follows.

Corollary 7 (Conjugation in $Mod(S_g, [\beta])$). Let a_1, a_2 be a pair of isotopy classes of nonseparating simple closed curves in S_q .

- 1. If $\hat{i}_2([a_1], [\beta]) = \hat{i}_2([a_2], [\beta]) = 1$ then $T_{a_1}^2$ and $T_{a_2}^2$ are conjugate in $Mod(S_g, [\beta])$.
- 2. If $\hat{i}_2([a_1], [\beta]) = \hat{i}_2([a_2], [\beta]) = 0$ and either for each $i \ [a_i] \neq [\beta]$ or for each $i \ [a_i] = [\beta]$, then T_{a_1} and T_{a_2} are conjugate in $Mod(S_g, [\beta])$.

The importance of Corollary 7 lies on the following.

Lemma 2.2 (Generating set-Twists). Let $g \ge 2$, and $[\beta] \in H_1(S_g, \mathbb{Z}/2\mathbb{Z})^*$. Mod $(S_g, [\beta])$ is generated by

 $\{T_c^{\xi(c)}: c \text{ nonseparating SCC in } S_g \text{ and } \xi(c) \in \{0,1\}, \text{ with } \xi(c) = \hat{i}_2([c],[\beta]) + 1 \mod 2\}.$

Proof. Let $\Lambda_g[\beta]$ be the stabilizer of $[\beta]$ in Sp $(2g, \mathbb{Z}/2\mathbb{Z})$, and consider the following exact sequence, given by reducing the symplectic representation mod 2.

$$1 \longrightarrow \operatorname{Mod}(S_g)[2] \longrightarrow \operatorname{Mod}(S_g, [\beta]) \xrightarrow{\Psi_2} \Lambda_g[\beta] \longrightarrow 1_{\mathbb{R}}$$

 $\Lambda_g[\beta]$ is generated by transvections of the form $\psi_2(T_{c_i})$ for $\hat{i}_2([c_i], [\beta]) = 0$ (cf.[11, Lemma 3.4]). Similarly Mod $(S_q)[2]$ is generated by squares of Dehn twists [9, Thm 1], thus the claim follows. \Box

²Extend α to a geometric simplectic basis. Locally, there are only 3 choices for a representative of [β] and they can be glued together as needed.

2.2 Complex of curves

The generating set given by Lemma 2.2 is enough for providing bounds for the abelianization of $Mod(S_g, [\beta])$ (see appendix). Yet, in order to stablish Theorem 5, we need to make use of another generating set. For this purpose, we examine the action of $Mod(S_q, [\beta])$ on $\mathcal{S}(S_q)$.

As above, fix $[\beta] \in H_1(S_g, \mathbb{Z}/2\mathbb{Z})^*$. Let $S_1(S_g)$ be the set of isotopy classes a of simple closed curves on S_g such that $\hat{i}_2([a], [\beta]) = 1$. For two isotopy classes a, b of simple closed curves, let i(a, b) denote their geometric intersection number.

Definition 2.1 (Complex of curves). Let $\mathcal{N}_1(S_g)$ be the 1-complex with vertex set $\mathcal{S}_1(S_g)$. An edge (a, c) between $a, c \in S_1(S_g)$ exists iff i(a, c) = 1 and $[a] + [c] \neq [\beta]$.

The most important property of $\mathcal{N}_1(S_q)$ for our purposes is the following.

Lemma 2.3. For $g \geq 3$, $\mathcal{N}_1(S_q)$ is connected.

The proof of Lemma 2.3 follows the same idea as when dealing with the standard complex of curves [5, Chapter 4]. We first define two associated 1-complexes, the second of which contains $\mathcal{N}_1(S_q)$. We prove connectivity for each of them and then refine the paths to be in $\mathcal{N}_1(S_q)$.

Define $C_1(S_g)$ to be the 1-complex with the same vertex set as $\mathcal{N}_1(S_g)$ and edges between vertices a, c if and only if i(a, c) = 0.

Lemma 2.4. $C_1(S_q)$ is connected for $g \ge 2$.

Proof. Let $a, c \in S_1(S_g)$. We proceed by induction on i(a, c), the case i(a, c) = 0 being clear. For i(a, c) = 1. Let α and γ be representatives of a, c in minimal position. It follows that α and γ are part of a geometric symplectic basis ν for $H_1(S_g, \mathbb{Z})$. Thus, there exist a multi-curve representative of $[\beta]$ intersecting α and γ only once. If $[a] + [c] = [\beta]$, then there is a curve δ with isotopy class d, with the following properties:

- 1. $\alpha \cap \delta = \emptyset$
- 2. $[d] + [c] \neq [\beta]$.
- 3. i(c, d) = 1.

Indeed, δ can be found by applying the change of coordinates principle. Hence it is enough to assume that $[a] + [c] \neq [\beta]$. In this case there is a component of $[\beta]$ intersecting one of the other curves in the basis ν , say γ' , once. The isotopy class of γ' provides the path between a and c in $C_1(S_g)$.

Now assume $i(a, c) \ge 2$, and let α, γ be as above. As before, there is a representative β of $[\beta]$ intersecting γ only once and intersecting α transversely. Take two consecutive intersection points of γ and α . There are two cases, depending on the orientation at the intersections:

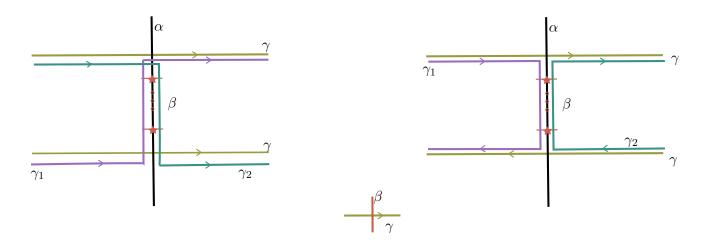


Figure 1: Path surgery.

In either case, let γ_1 and γ_2 be SCC constructed by the surgery described Figure 1. As these curves travel parallel to γ and the union gives all of γ outside the neighboorhood of α depicted above, only one of the curves crosses β along γ , say it is γ_1 . Furthermore, γ_1 and γ_2 have a segment parallel to α , and this segment will meet β in either an even or odd number of points. Depending on the parity, either γ_1 (even case) or γ_2 (odd case) will meet β an odd number of times, and intersect both α and γ in fewer than i(a, c) points. By induction, there is a path between a and c and the claim follows.

Next, define $\mathcal{NC}_1(S_g)$, to be the 1-complex with vertex set $\mathcal{S}_1(S_g)$ and where two classes a, c in $\mathcal{S}_1(S_g)$ are connected by an edge if and only if i(a, c) = 1.

Lemma 2.5. For $g \geq 2$, $\mathcal{NC}_1(S_q)$ is connected.

Proof. Let $a, c \in S_1(S_g)$ with i(a, c) = 0. By Lemma 2.4, it is enough to show that there is a class $d \in S_1(S_g)$ such that i(a, d) = i(d, c) = 1. There exist representatives α and γ of a and c, with $\alpha \cap \gamma = \emptyset$. To find such a curve d, there are two cases to consider. If $\alpha \cup \gamma$ is non-separating, by the change of coordinates, there is a curve δ intersecting both α and γ once, and intersecting a (multicurve) representative of $[\beta]$ an odd number of times. Indeed, just note that α and γ can be extended to a geometric symplectic basis ν for S_g . Let α' and γ' be the curves intersecting α and γ once respectively. The multicurve representative of $[\beta]$ is given by a union of g curves β_i around each torus neighborhood of a pair $\{\alpha_i, \alpha'_i\}$ of ν with $i(\alpha_i, \alpha'_i) = 1$. Call each such curve β_i a local representative for $[\beta]$. Thus local representatives of $[\beta]$ around $\{\alpha, \alpha'\}$ and $\{\gamma, \gamma'\}$ are given by $T^k_{\alpha}(\alpha')$ and $T^j_{\gamma}(\gamma')$, where $k, j \in \{0, 1\}$ depend on $[\beta]$ intersecting α' or γ' . Define δ by connecting $T^k_{\alpha'}(\alpha')$ and $T^j_{\gamma}(\gamma')$, where $k' \in \{0, 1\}$ satisfy $k' = k + 1 \mod 2$.

If $\alpha \cup \gamma$ is separating, then $\{a, c\}$ is a bounding pair. Applying the change of coordinates principle, there is a d with i(a, d) = 1 = i(a, c) and $d \in S_1(S_q)$.

Proof of Lemma 2.3. The goal is to modify the path given by Lemma 2.5 to conclude the proof. It is enough to show that if $a, c \in S_1(S_g)$, with i(a, c) = 1, then there are $b_1, b_2 \in S_1(S_g)$ so that $i(a, b_1) = i(b_1, b_2) = i(c, b_2) = 1$ and whose pair-wise sum in $H_1(S_g, \mathbb{Z}/2\mathbb{Z})$ is not $[\beta]$. Assume then that $[a] + [c] = [\beta]$. Figure 2 shows the curves b_1, b_2 .

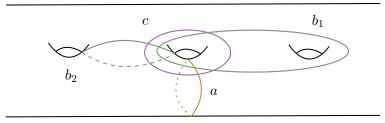


Figure 2: Refining the path in $\mathcal{NC}_1(S_q)$ to lie on $\mathcal{N}_1(S_q)$.

Our next result characterizes the action of $Mod(S_g, [\beta])$ on $\mathcal{N}_1(S_g)$, and thus gives us a new generating set for $Mod(S_g, [\beta])$.

Lemma 2.6 (Generating set-Stabilizer). Let $g \ge 3$ and $[\beta] \in H_1(S_g, \mathbb{Z}/2\mathbb{Z})^*$. Mod $(S_g, [\beta])$ acts transitively on $S_1(S_g)$ and on pairs of edges (a_i, c_i) of $\mathcal{N}_1(S_g)$. In particular, for any $a \in S_1(S_g)$, Mod $(S_g, [\beta])$ is generated by the stabilizer of a in Mod $(S_g, [\beta])$ and any $h \in Mod(S_g, [\beta])$, so that $(a, h^{-1}(a)) \in \mathcal{N}_1(S_g)$.

Proof. Let α_i, γ_i be representatives for a_i, c_i in minimal position, and let δ_i be the boundary curve of the closed torus neighborhood T_i of $\alpha_i \cup \gamma_i$. Let P_i be the complementary subsurface bounded by δ_i . By assumption, there exist multi-curve representatives $\{\beta_1^i, \beta_2^i\}$ of $[\beta]$, supported to both sides of δ_i , furthermore β_1^i intersects both α_i and γ_i only once. Let $f \in \text{Mod}(S_g)$ with $f(\delta_1) = \delta_2$, and inducing homeomorphisms $f_T: T_1 \to T_2$ and $f_P: P_1 \to P_2$. As the symplectic representation mod 2 is surjective, there exists $g_P \in \text{Mod}(P_2)$ so that $(g_P f_P)[\beta_2^1] = [\beta_2^2]$. On the other hand, note that f_T maps (α_1, γ_1) to a 2-chain in T_2 . Thus, as $\text{Mod}(T_2)$ acts transitively on 2-chains, there is $g_T \in \text{Mod}(T_2)$ such that $g_T f_T(\alpha_1) = \alpha_2$ and $g_T f_T(\gamma_1) = \gamma_2$. It follows that $g_T f_T$ maps β_1^i to a curve intersecting α_2 and γ_2 only once each, and so $g_T f_T[\beta_1^1] = [\beta_1^2]$. The first claim follows by composing f with the extensions of g_T and g_P .

Let $a \in S_1(S_g)$ and $h \in Mod(S_g, [\beta])$ so that a and $h^{-1}(a)$ are connected by an edge in $\mathcal{N}_1(S_g)$. Then, the hypothesis of Lemma 4.10 of [5] are satisfied and the second claim follows.

2.3 Low-dimensional representations of $Mod(S_q, [\beta])$

The interplay between the two generating sets of $Mod(S_g, [\beta])$ found in Sections 2.1 and 2.2 allows us to conclude all but the last item of Theorem 5.

Proof of (1)-Theorem 5. Represent $[\beta]$ by a simple closed curve b, and let a be a simple closed curve intersecting b transversely at one point. Let R be the complement of an open annular neighborhood of b, then $R \cong S^2_{g-1}$, $\operatorname{Mod}(R) \to \operatorname{Mod}(S_g, [\beta])$ and ϕ induces a representation ϕ_R : $\operatorname{Mod}(R) \to \operatorname{GL}(m, \mathbb{C})$.

We claim that ϕ_R is trivial. For m < 2(g-1) this follows from the results of Franks-Handel[8], as the genus of R is at least 3. Similarly for m = 2(g-1), by Korkmaz[10], ϕ_R is either trivial or conjugate to the standard symplectic representation $\psi : \operatorname{Mod}(R) \to \operatorname{Sp}(2(g-1), \mathbb{Z})$. Note that in either case, $\phi(T_b) = 1$ as b is separating in R. Let d be the boundary of a regular neighborhood of $a \cup b$. Via the 2-chain relation (see [5, Prop 4.12]),

$$\phi(T_a^2 T_b)^4 = \phi(T_d) = 1,$$

as $d \in R$ is separating. Thus, regardless of ϕ_R , $\phi(T_a^2)$ is of order at most 4 and by conjugation the same applies to any $\phi(T_{a'}^2)$ with $\hat{i}_2([a'], [\beta]) = 1$.

Now suppose that ϕ_R is not trivial, then after conjugating ϕ we can assume $\phi_R = \psi$. Consider two k_i -chains to each side of b with k_i odd, as in Figure 3.

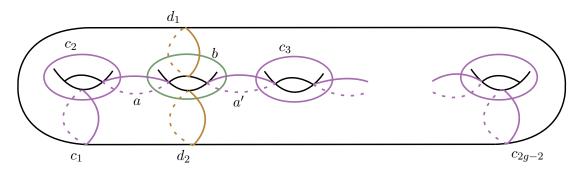


Figure 3: Complementary k-chains around b.

Then, the k-chain relations [5, Prop 4.12] imply that:

$$(T_a^2 T_{c_1} T_{c_2})^3 = (T_{a'}^2 T_{c_3} \dots T_{c_{2g-2}})^{2g-3}$$

Let $R \subset R$, be the complement of a torus neighborhood of $d_1 \cup b$, then

$$\phi(\operatorname{Mod}(\tilde{R})) = \operatorname{Sp}(2g - 2, \mathbb{Z}).$$

As $T_{d_1}^2$ commutes with any $f \in \text{Mod}(\tilde{R})$, we find that $\phi(T_{d_1}^2) = \lambda$ Id for some $\lambda \in \mathbb{C}^*$ and $\lambda^4 = 1$. By conjugation, $\phi(T_a^2) = \phi(T_{d_1}^2)$ for any a with $\hat{i}_2([a], [\beta]) = 1$. Furthermore, by assumption $\lambda^{2g-2} = 1$ for any g (this is were we need to add the extra condition in the g even case).

The k-chain relations, under ϕ , induce the relation,

$$(\psi(T_{c_1})\psi(T_{c_2}))^3 = \lambda^{2g-2}(\psi(T_{c_3})\dots\psi(T_{c_{2g-2}}))^{2g-3}$$

A direct computation shows that $(\psi(T_{c_1})\psi(T_{c_2}))^3$ acts as $-\text{Id on span}\{[c_1], [c_2]\}$, while any T_{c_i} for i > 2 acts trivially, hence we reach a contradiction.

Consequently, ϕ_R is trivial and so $\phi(T_c) = 1$ for any c with $\hat{i}_2([c], [\beta]) = 0$. Let c be a nonseparating SCC in R meeting a transversely at one point. Let $v = [T_c(a)]$, then $\hat{i}_2(v, [\beta]) = 1$ and $v + [a] \neq [\beta]$. By Lemma 2.6, $\operatorname{Mod}(S_g, [\beta])$ is generated by $T_c^{-1} \in \operatorname{Mod}(R)$ and the stabilizer of a. Hence, for any element $f \in \operatorname{Mod}(S_g, [\beta])$, $\phi(f)$ commutes with $\phi(T_a^2) = L_a$. For any other curve a' with $\hat{i}_2([a'], [\beta]) = 1$, $T_{a'}^2$ is conjugate to T_a^2 in $\operatorname{Mod}(S_g, [\beta])$. Thus, $\phi(T_{a'}^2) = L_a$ for all such a'. By Lemma 2.2, $\phi(\operatorname{Mod}(S_g, [\beta])) = \langle L_a \rangle$ and the theorem follows.

2.4 Lifting relations to $Mod(S_{2q-1}, \sigma)$

Let $\rho: S_{2g-1} \to S_g$ be the double cover with deck transform σ and induced by intersection with $[\beta] \in H_1(S_g, \mathbb{Z}/2\mathbb{Z})^*$. By choosing lifts of elements of $Mod(S_g, [\beta])$ to $Mod(S_{2g-1}, \sigma)$, we can translate the results of Sections 2.1 and 2.2 to $Mod(S_{2g-1}, \sigma)$.

Dehn twists have distinguished lifts: let a be an isotopy class of simple closed curves in S_g . If $\hat{i}_2([a], [\beta]) = 0$, then a has two disjoint and nonisotopic lifts \tilde{a} and $\sigma \tilde{a}$ to S_{2g-1} . A lift of T_a is given by the multi-twist $T_{\tilde{a}}T_{\sigma \tilde{a}}$. Similarly, if $\hat{i}_2([a], [\beta]) = 1$ let \tilde{a} be the union (in any order) of the two

simple paths lifting a to S_{2g-1} . Then, a lift of T_a^2 is given by $T_{\tilde{a}}$. The way we join both lifts of a does not affect the lift as both ways give isotopic loops. Furthermore, as σ permute the lifts of a,

$$\sigma(T_{\tilde{a}}) = T_{\tilde{a}}.$$

With this notation, we obtain the following.

Corollary 8 (Conjugation in Mod (S_{2g-1}, σ)). Let a_1, a_2 be a pair of isotopy classes of nonseparating simple closed curves in S_q .

- 1. If $\hat{i}_2([a_1], [\beta]) = \hat{i}_2([a_2], [\beta]) = 1$, then $T_{\tilde{a}_1}$ and $T_{\tilde{a}_2}$ are conjugate in $Mod(S_{2g-1}, \sigma)$.
- 2. If $\hat{i}_2([a_1], [\beta]) = \hat{i}_2([a_2], [\beta]) = 0$, and either for each $i \ [a_i] \neq [\beta]$ or for each $i \ [a_i] = [\beta]$, then $T_{\tilde{a}_1}T_{\sigma(\tilde{a}_1)}$ and $T_{\tilde{a}_2}T_{\sigma(\tilde{a}_2)}$ are conjugate in $Mod(S_{2q-1}, \sigma)$.

Proof. Lift the element $f \in Mod(S_q, [\beta])$ such that $f(a_1) = a_2$.

Similarly, Lemmas 2.2 and 2.6 imply the following results.

Corollary 9 (Generating set Mod (S_{2g-1}, σ) -twists). Let $g \ge 2$, and σ the deck transform of the double cover $p: S_{2g-1} \to S_g$ associated to $[\beta] \in H_1(S_g, \mathbb{Z}/2\mathbb{Z})^*$. Mod (S_{2g-1}, σ) is generated by

 $\{\sigma\} \cup \{T_{\tilde{c}}(T_{\sigma(\tilde{c})})^{\xi(c)} : c \text{ nonseparating SCC in } S_g \text{ and } \xi(c) \in \{0,1\}, \text{ with } \xi(c) = \hat{i}_2([c],[\beta]) + 1 \mod 2\}.$

Corollary 10 (Generating set $Mod(S_{2g-1}, \sigma)$ -stabilizer). Let $a \in S_1(S_g)$. $Mod(S_{2g-1}, \sigma)$ is generated by the following elements: σ , f such that $fT_{\tilde{a}}f^{-1} = \sigma^i T_{\tilde{a}}$, and h such that $(\bar{h}^{-1}(a), a) \in \mathcal{N}_1(S_g)$. Where $\bar{h} \in Mod(S_g, [\beta])$ is the projection of $h \in Mod(S_{2g-1}, \sigma)$.

Remark 2.3 (Relations in $Mod(S_{2g-1}, \sigma)$). Note that for any proper subsurface $S \subset S_g$, there is a lift $Mod(S) \cap Mod(S_g, [\beta]) \to Mod(S_{2g-1}, \sigma)$. Indeed, this is because all $f \in Mod(S)$ fix a point pin $S_g \setminus S$, which implies the existence of a well-defined choice of lift to $Mod(S_{2g-1}, \sigma)$ by requiring the map to fix a lift of p.

On the other hand, it is not possible to lift all of $Mod(S_g, [\beta])$. A way to see this is to note that $Prym_*$ surjects onto $Sp(2(g-1), \mathbb{Z})$ and thus a lift would give an infinite image representation of $Mod(S_g, [\beta])$ contrary to theorem 5.

In fact, there is an explicit relation that cannot hold in $\operatorname{Mod}(S_{2g-1}, \sigma)$. Let R be the subsurface defined in the proof of theorem 5. Prym_{*} acts as the symplectic representation on the lift of $\operatorname{Mod}(\tilde{R})$, while $\operatorname{Prym}_*(T_{\tilde{a}}) = 1$ for any a with $\hat{i}_2([a], [\beta]) = 1$. Hence, the k-chain relations used in the proof of Theorem 5 cannot hold in $\operatorname{Mod}(S_{2g-1}, \sigma)$ and so

$$(T_{\tilde{a}}T_{\tilde{c}_1}T_{\sigma(\tilde{c}_1)}T_{\tilde{c}_2}T_{\sigma(\tilde{c}_2)})^3 = \sigma(T_{\tilde{a}'}T_{\tilde{c}_3}T_{\sigma(\tilde{c}_3)}\dots T_{\tilde{c}_{2g-2}}T_{\sigma(\tilde{c}_{2g-2})})^{2g-3}$$

2.5 Low dimensional representations of $Mod(S_{2q-1}, \sigma)$

The relations in $Mod(S_{2q-1}, \sigma)$ described on Section 2.4 imply the first item in Theorem 3.xs

Proof of theorem 3-(1). Just apply the same argument as in the proof of theorem 5. Note that, by the lifted k-chain relation, $\phi(\sigma) \in \langle \phi(T_{\tilde{a}}) \rangle$.

To tackle the m = 2(g-1) case, we use the results of Dey et.al. [4, Theorem 1] to get an explicit finite generating set for $Mod(S_{2g-1}, \sigma)$.

Corollary 11 (Finite generating set). Let c_i, a_i, b_i be the curves in the top of Figure 4. Mod (S_{2g-1}, σ) is generated by σ and chosen lifts of

$$S \cup \{F_2, \dots, F_{g-1}\} \cup \{T_{a_2}, T_{b_2}, \dots, T_{a_g}, T_{b_g}, T_{c_1}, \dots, T_{c_{g-1}}\}$$

Where F_i are the bounding pairs given at the bottom of Figure 4, and S is a generating set for the subgroup of $Mod(N(a_1 \cup b_1))$ fixing $[\beta] = [b_1] \mod 2$.

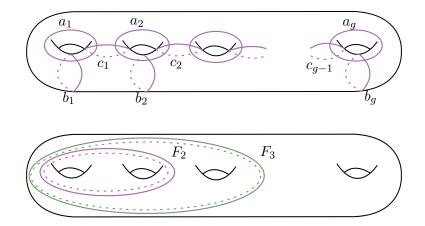


Figure 4: Top: Curve generators for $Mod(S_q, [\beta])$. Bottom: Torelli generators for $Mod(S_q, [\beta])$.

Proof of Theorem 3-(2). Let $\phi : \operatorname{Mod}(S_{2g-1}, \sigma) \to \operatorname{GL}(2(g-1), \mathbb{C})$ be any non-finite representation. Represent $[\beta]$ by $[b_1]$. Let R be the complement of an annular neighborhood of b_1 , and lift $\operatorname{Mod}(R)$ to $\operatorname{Mod}(S_{2g-1}, \sigma)$ fixing the lift \tilde{b}_1 of b_1 pointwise, in particular any Dehn twist of $\operatorname{Mod}(R)$ lifts to a multi-twist. It follows that ϕ induces a representation $\phi_R : \operatorname{Mod}(R) \to \operatorname{GL}(2(g-1), \mathbb{C})$. As ϕ is non-finite, we must have ϕ_R non-trivial thus after a conjugation we can assume that $\phi_R = \psi$. Prym_{*} acts as ψ on this lift of $\operatorname{Mod}(R)$, thus $\phi_R = \psi_R$.

It remains to check the action of ϕ on the other generators of $\operatorname{Mod}(S_{2g-1}, \sigma)$ coming from corollary 11. Let $T = N(a_1 \cup b_1)$ be a torus neighborhood of $a_1 \cup b_1$, and $\tilde{R} \subset R$ the the complementary subsurface. There is a lift $\operatorname{Mod}(T)$ of $\operatorname{Mod}(T)$ to $\operatorname{Mod}(S_{2g-1}, \sigma)$, so that the lift of each element fixes both lifts of \tilde{R} to S_{2g-1} pointwise. In particular, any lift \tilde{f} of $f \in \operatorname{Mod}(T)$ commutes with lifts of $\operatorname{Mod}(\tilde{R})$. As $\phi_R(\tilde{R}) = \operatorname{Sp}(2(g-1), \mathbb{Z})$, it follows that $\phi(\tilde{f})$ is a scalar, for any $f \in \operatorname{Mod}(T)$. In particular $T_{\tilde{a}_1} = \lambda \in \mathbb{C}^*$, and so the same holds for any $T_{\tilde{a}}$ with $\hat{i}_2([a], [\beta]) = 1$. Prym_{*} acts trivially on this lift of $\operatorname{Mod}(T)$, thus

$$\phi_T$$
. Prym_{*} $|_{\widetilde{Mod}(T)}^{-1} \in \mathbb{C}^*$.

Next, note that by the chain-relations each bounding pair F_i can be expressed as,

$$F_i = (T_{a_1}^2 T_{c_1} T_{a_2} \dots T_{c_{i-1}} T_{a_i})^{2i-1} T_{d_i}^{-2}$$

Where T_{d_i} is one of the curves of the bounding pair. So for each lift \tilde{F}_i ,

$$\phi(\tilde{F}_i)$$
. Prym_{*} $(\tilde{F}_i)^{-1} \in \mathbb{C}^*$.

Lastly, $\phi(\sigma)$ commutes with any element of $\phi(\operatorname{Mod}(S_{2q-1},\sigma))$, thus it must be a scalar.

It follows that for any $f \in Mod(S_{2g-1}, \sigma)$, $\phi(f) \operatorname{Prym}_*(f)^{-1} = \lambda(f) \in \mathbb{C}^*$. We claim that $f \to \lambda(f)$ is a homomorphism. Indeed,

$$\phi(fg)\operatorname{Prym}_*(fg)^{-1} = \phi(f)\phi(g)\operatorname{Prym}_*(g)^{-1}\operatorname{Prym}_*(f)^{-1} = \lambda(f).\lambda(g)$$

In particular $\lambda : \operatorname{Mod}(S_{2q-1}, \sigma) \to \mathbb{C}^*$ must be cyclic of order at most 4.

Proof of Theorem 5-(2). Let $g \ge 4$ be even, Theorem 3 gives us an example of an infinite representation $\phi : \operatorname{Mod}(S_q, [\beta]) \to \operatorname{GL}(2(g-1), \mathbb{C})$, induced by

$$\tilde{\phi} : \operatorname{Mod}(S_{2g-1}, \sigma) \to \operatorname{GL}(2(g-1), \mathbb{Z}) \ , \ f \to \chi(f) \operatorname{Prym}_*(f),$$

with $\chi : \operatorname{Mod}(S_{2g-1}, \sigma) \to \mathbb{C}^*$, satisfying $\chi(\sigma) = -1$.

The same argument as in the of the proof of Theorem 3-(2), replacing $Prym_*$ with $\overline{\phi}$, conclude the proof of Theorem 5.

2.6 Symplectic representations

Section 2.5 considered representations $\phi : \operatorname{Mod}(S_{2g-1}, \sigma) \to \operatorname{GL}(m, \mathbb{C})$. The results extend easily to cases where the image is contained in $\operatorname{Sp}(2h, \mathbb{Z})$.

Corollary 12. Let $g \ge 4$ and $h \le (g-1)$. Let $\phi : \operatorname{Mod}(S_{2g-1}, \sigma) \to \operatorname{Sp}(2h, \mathbb{Z})$ be a homomorphism, then

- 1. If h < g 1, then $\operatorname{Im}(\phi)$ is a quotient of $\mathbb{Z}/4\mathbb{Z}$.
- 2. If h = g 1, then either $\text{Im}(\phi)$ is a quotient of $\mathbb{Z}/4\mathbb{Z}$ or up to a conjugation in $\Delta(2(g-1),\mathbb{Z})$ is of the form:

 $f \to \chi(f) \operatorname{Prym}_*(f)$

where $\chi : \operatorname{Mod}(S_{2g-1}, \sigma) \to \{-\operatorname{Id}, +\operatorname{Id}\}, \text{ and } \Delta(2(g-1), \mathbb{Z}) \text{ is the subgroup of } \operatorname{GL}(2(g-1), \mathbb{Z}) \text{ fixing the symplectic form up to sign.}$

Proof. The first item follows directly from Theorem 3. For the second, assume that the image is not finite as the finite case follows directly. Then, by Theorem 3 there is a matrix $A \in \operatorname{GL}(2(g-1), \mathbb{C})$ such that $\Psi = A\phi A^{-1}$ is of the desired form. Indeed, Let R be the subsurface in the proof of Theorem 3, then note that A is chosen so that $\phi_R := \phi|_{\operatorname{Mod}(R)}$ is the standard symplectic representation. In particular $C_A : \operatorname{Sp}(2(g-1), \mathbb{Z}) \to \operatorname{Sp}(2(g-1), \mathbb{Z})$, conjugation by A, is an automorphism. Reiner [12] showed that all such automorphisms come from conjugation in $\Delta(2(g-1), \mathbb{Z})$. With this remark in place, the proof of theorem 3 goes through without modifications. Importantly, the image of χ lies on the centralizer of $\operatorname{Im}(\phi)$, hence the result.

Remark 2.4. Note that any element of $\Delta(2(g-1),\mathbb{Z})$ is of the form Z^iA for $A \in \operatorname{Sp}(2g-1),\mathbb{Z})$, and $Z = \begin{pmatrix} \operatorname{Id} & 0\\ 0 & -\operatorname{Id} \end{pmatrix}$.

3 Holomorphic results

Fix $g \ge 4$ and $h \le g - 1$, and consider a holomorphic map of complex orbifolds

$$F: \mathcal{R}_g \to \mathcal{A}_h$$

The aim of this section is to complete the proof of Theorem 1.

Theorem 1 (Rigidity of Prym). Let $g \ge 4$ and let $h \le g-1$. Let $F : \mathcal{R}_g \to \mathcal{A}_h$ be a nonconstant holomorphic map of complex orbifolds³. Then h = g - 1 and F = Prym.

The results of Section 2 quickly reduce the statement to the case of h = g - 1 and F homotopic to Prym. By steps 2 to 4 in Farb's proof [6], it is enough to find a curve $C \subset \mathcal{R}_g$ so that Prym(C)is \mathcal{A}_g -rigid. To avoid orbifold issues, all the arguments are done on a suitable finite cover of \mathcal{R}_g .

3.1 Case h < g - 1

By Theorem 3, there is a finite cover $\tilde{\mathcal{R}}_g \to \mathcal{R}_g$ such that $\tilde{F}_* = \text{Id.}$ Thus, $\tilde{F} : \tilde{\mathcal{R}}_g \to \mathcal{A}_h$ lifts to a holomorphic map $G : \tilde{\mathcal{R}}_g \to \mathfrak{h}_h$. As $\tilde{\mathcal{R}}_g$ is a finite (branched) cover of \mathcal{R}_g it is also a quasiprojective variety, and as \mathfrak{h}_h is a bounded domain it follows that G is constant. The same argument gives a proof of Theorem 2.

3.2 Case h = g - 1

3.2.1 The Prym map

Let X be a smooth genus g complex curve. Any nonzero $\theta \in H^1(X, \mathbb{Z}/2\mathbb{Z})$ defines an unbranched double cover

$$p: Y \to X,$$

with deck transform σ , and where Y is a curve of genus 2g - 1. The order 2 action of σ^* on $\Omega^1(Y)$ induces a splitting

$$\Omega^1(Y) = \Omega^1(Y)^+ \oplus \Omega^1(Y)^-$$

corresponding to the ± 1 eigenspaces of σ^* . Similarly, the action of σ_* on $H_1(Y,\mathbb{Z})$ has two distinct subspaces⁴, $H_1(Y,\mathbb{Z})^+$ and $H_1(Y,\mathbb{Z})^-$. The *Prym variety* associated to (X,θ) is defined as

$$\operatorname{Prym}(X,\theta) := \frac{(\Omega^1(Y)^-)^{\vee}}{H_1(Y,\mathbb{Z})^-}.$$

Prym (X, θ) is a subtorus of Jac(Y), and the restriction of the principal polarization from Jac(Y)(given by the intersection pairing on $H_1(Y, \mathbb{Z})$) to Prym (X, θ) induces twice a principal polarization. In particular, Prym (X, θ) is a PPAV of dimension g - 1.

The isomorphism,

$$\operatorname{Jac}(X) \cong \frac{(\Omega^1(Y)^+)^{\vee}}{H_1(Y,\mathbb{Z})^+}$$

implies that,

$$\operatorname{Prym}(X,\theta) \cong \frac{\operatorname{Jac}(Y)}{\operatorname{Jac}(X)} \in \mathcal{A}_{g-1}.$$

The Prym period matrix. Consider $[(Y, \phi)] \in \text{Fix}(\sigma) \subset \text{Teich}(S_{2g-1})$. Let $\{a_i, b_i\}_{i=0,\dots,2g-2}$ be a geometric symplectic basis for S_{2g-1} such that

$$\sigma(b_i) = b_{i+g-1}$$
, $\sigma(a_i) = a_{i+g-1}$, $i = 1, \dots, g-1$

³See Definition 1.1

⁴But this is *not* a splitting of $H_1(Y, \mathbb{Z})$.

Let ω_i be a basis for $\Omega^1(Y)$ dual to $\{\phi(a_i)\}$, and let $u_i := \frac{\omega_i - \omega_{i+g-1}}{2}$ for $i = 1, \ldots, g-1$. Then, $\{u_i\}$ is a basis for $\Omega^1(Y)^{-1}$. Moreover $\{u_i\}$ is in fact dual to $\{\phi(a_i) - \phi(a_{i+g-1})\}_{i \ge 1}$. Then

$$\tau = \left(\int_{\phi(b_j) - \phi(b_j + g - 1)} u_i\right) \in \mathfrak{h}_{g-1}$$

Let Prym : $\operatorname{Fix}(\sigma) \to \mathfrak{h}_{g-1}$ be $[(Y, \phi)] \to \tau$. Moreover, if the (normalized) period matrix of Y with respect to $\{a_i, b_i\}$ and $\{\omega_i\}$ is given by:

$$(\int_{b_j} \omega_i)_{0 \le i,j \le 2g-1} = \begin{pmatrix} * & * & * \\ * & B & C^T \\ * & C & D \end{pmatrix}$$

Then, $\tau = B - C$ and in particular $\widetilde{\text{Prym}}$ is holomorphic. Similarly, by a direct computation one can check that $\widetilde{\text{Prym}}$ is Prym_* -equivariant⁵ and lifts Prym

$$\begin{array}{c} \operatorname{Fix}(\sigma) \xrightarrow{\widetilde{\operatorname{Prym}}} \mathfrak{h}_{g-1} \\ \downarrow \qquad \qquad \downarrow \\ \mathcal{R}_g \xrightarrow{\operatorname{Prym}} \mathcal{A}_{g-1} \end{array}$$

3.2.2 F homotopic to Prym

Let $F : \mathcal{R}_g \to \mathcal{A}_{g-1}$ be a nonconstant holomorphic map. Then, by Corollary 12 there is an $A \in \Delta(2g, \mathbb{Z})$ and $\chi : \operatorname{Mod}(S_{2g-1}, \sigma) \to \{\pm \operatorname{Id}\}$ such that

$$AF_*A^{-1} = \chi \operatorname{Prym}_*$$
.

If $A \in \text{Sp}(2g, \mathbb{Z})$, it follows that there is a lift $\tilde{F} : \text{Fix}(\sigma) \to \mathfrak{h}_{g-1}$ which is equivariantly homotopic to Prym. Indeed, this is because χ acts trivially on \mathfrak{h}_{g-1} so both F_* and Prym_{*} factor trough the same representation $\widehat{\text{Prym}}_* : \text{Mod}(S_g, [\beta]) \to \text{PSp}(2(g-1), \mathbb{Z})$. In fact, the homotopy can be chosen to be a straight-line homotopy as \mathfrak{h}_{g-1} has a Kähler metric of nonpositive curvature under which the action of $\text{Sp}(2(g-1), \mathbb{Z})$ is by isometries.

The case in which A = ZB for $B \in \text{Sp}(2(g-1), \mathbb{Z})$, and $Z = \begin{pmatrix} \text{Id} & 0 \\ 0 & -\text{Id} \end{pmatrix}$ can be ruled out as follows: Consider the map $G : \mathfrak{h}_{g-1} \to \mathfrak{h}_{g-1}$, given by $\tau \to -\overline{\tau}$, then G is Z-equivariant and antiholomorphic. In particular there is a lift \tilde{F} of F such that $F_G := G \circ \tilde{F}$ is equivariantly homotopic to $\widetilde{\text{Prym}}$, hence we have a holomorphic map Prym homotopic to an antiholomorphic map F_G . As \mathcal{R}_g contains a smooth closed curve X this is imposible. Indeed let ω be the Kähler form on \mathcal{A}_{g-1} , then restricting the maps to X we find $F_G^*(\omega) = f_1 \omega_X$ where $f_1 \leq 0$ and $\operatorname{Prym}^*(\omega) = f_2 \omega_X$ for $f_2 \geq 0$. By Stokes' theorem we then find $f_1 = f_2 = 0$. Hence Prym is constant, which is a contradiction.

3.2.3 ψ -structures

The arguments in Sections 3.1 and 3.2.2 show that the results of Section 2 imply that if $F : \mathcal{R}_g \to \mathcal{A}_{g-1}$ is nonconstant, then it is homotopic to Prym. One could carry the next steps in Farb's

⁵with respect to the action of Mod (S_{2g-1}, σ) on Fix (σ) , $f \cdot [(Y, \phi)] \rightarrow [(Y, \phi \circ f^{-1})]$, we find equivariance, but with Sp $(2(g-1), \mathbb{Z})$ acting by $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \cdot \tau \rightarrow (\alpha \tau - \beta)(-\gamma \tau + \delta)^{-1}$

proof [6] under this setting, but the orbifold issues become cumbersome at the last step (existence of rigid curves).

To circumvent these issues we first pass to a finite cover of \mathcal{R}_g . Let $[\beta] \in H_1(S_g, \mathbb{Z}/2\mathbb{Z})^*$, and $\rho: S_{2g-1} \to S_g$ be the double cover induced by the map $\pi_1(S_g) \to \mathbb{Z}/2\mathbb{Z}$, given by $\gamma \to \hat{i}_2([\gamma], [\beta])$. Next, let $\hat{S}_L \to S_{2g-1}$ be the cover induced by $\pi_1(S_{2g-1}) \to H_1(S_{2g-1}, \mathbb{Z}/L\mathbb{Z})$ for $L \geq 3$. Then the composite cover is induced by the map

$$\psi: \pi_1(S_g) \to \frac{\pi_1(S_g)}{\langle \pi_1(S_{2g-1})', \pi_1(S_{2g-1})^L \rangle} =: G$$

Where $\pi_1(S_{2g-1})^L := \{\gamma^L : \gamma \in \pi_1(S_{2g-1})\}$. Let $\Gamma_g[\psi]$ be the stabilizer of ψ (as an exterior homomorphism) on $Mod(S_q)$ and consider the finite cover

$$\hat{\mathcal{R}}_q[\psi] := \operatorname{Teich}(S_q) / \Gamma_q[\psi]$$

of $\hat{\mathcal{R}}_q$, given by attaching to each curve a level ψ structure [1, p.511].

Definition 3.1 (Prym Level-L structures). For any integer $L \ge 0$, we define

$$\operatorname{Mod}(S_{2g-1}, \sigma)[L] = \operatorname{Prym}_*^{-1}(\operatorname{Ker}\{\operatorname{Sp}(2(g-1), \mathbb{Z}) \to \operatorname{Sp}(2(g-1), \mathbb{Z}/L\mathbb{Z})\})$$

Remark 3.1. Unlike $Mod(S_g)[L]$, the group $Mod(S_{2g-1}, \sigma)[L]$ contains torsion for $L \ge 3$. This is because the kernel of $Prym_*$ contains torsion: a lift of the hyperelliptic involution from S_g to the cover S_{2g-1} acts under $Prym_*$ in the same way as σ .

Importantly for us $\Gamma_q[\psi]$ satisfy the following properties:

Lemma 3.1.

- 1. $\Gamma_g[\psi] \subset \operatorname{Mod}(S_g)[L] \cap \pi(\operatorname{Mod}(S_{2g-1}, \sigma)[L]).$
- 2. Let b be a SCC representative of $[\beta]$, and let a be a SCC intersecting b transversely at one point. Let R be the complement of a torus neighborhood of $a \cup b$. Then $Mod(R)[L] \subset \Gamma_g[\psi]$.

Proof. Pick a basepoint $x \in S_g - R$ and \tilde{x} the corresponding basepoint for $\pi_1(S_{2g-1})$.

1. We will show that in fact, for any $f \in \Gamma_g[\psi]$, there is a lift $f: S_{2g-1} \to S_{2g-1}$ such that f acts trivially on $H_1(S_{2g-1}, \mathbb{Z}/L\mathbb{Z})$ and $f_* \in Mod(S_g)[L]$. The latter follows easily as we have a surjection

$$G \twoheadrightarrow H_1(S_g, \mathbb{Z}/L\mathbb{Z}) = \frac{\pi_1(S_g)}{\langle \pi_1(S_g)', \pi_1(S_g)^L \rangle}$$

Such that the projection $\pi_1(S_g) \to H_1(S_g, \mathbb{Z}/L\mathbb{Z})$ factors through ψ . A similar argument shows that $f \in Mod(S_g, [\beta])$.

Finally, let $\tilde{\gamma} \in \pi_1(S_{2g-1})$ and γ its image in $\pi_1(S_g)$. Let $f \in \Gamma_g[\psi]$ and pick a representative ϕ fixing x. Then, let $\tilde{\phi}$ be the lift fixing \tilde{x} . By assumption there is a loop $\beta \in \pi_1(S_g, x)$, independent of γ , such that $\tilde{\phi}(\gamma).\tilde{\beta\gamma^{-1}\beta^{-1}} \in \langle \pi_1(S_{2g-1})', \pi_1(S_{2g-1})^L \rangle$. The two possible lifts for $\beta\gamma^{-1}\beta^{-1}$ starting at \tilde{x} are given by $\tilde{\beta}\sigma^i\tilde{\gamma}\tilde{\beta}^{-1}$, for i = 0, 1 depending if β lifts to a loop or not. Hence, either $\sigma\tilde{\phi}$ or $\tilde{\phi}$ act trivially on $H_1(S_{2g-1}, \mathbb{Z}/L\mathbb{Z})$ and the result followss.

2. Let $f \in Mod(R)[L]$, then f has a representative ϕ fixing the complement of R pointwise. In particular $f_*(a) = a$ and $f_*(b) = b$. Furthermore, as R lifts to S_{2g-1} , ϕ has a lift $\tilde{\phi}$ acting trivially on $H_1(S_{2g-1}, \mathbb{Z}/L\mathbb{Z})$ so that $\phi(\gamma) \cdot \gamma^{-1} \in \langle \pi_1(S_{2g-1})', \pi_1(S_{2g-1})^L \rangle$. Thus, f_* will fix ψ over $\pi_1(S_{2g-1})$ and a, and so the result follows.

Remark 3.2. Note that as $\sigma \notin \operatorname{Mod}(S_{2g-1}, \sigma)[L]$ for $L \geq 3$, $\Gamma_g[\psi]$ has a lift $\Lambda_g[\psi] \subset \operatorname{Mod}(S_{2g-1}, \sigma)$ and moreover the restriction

$$\operatorname{Prym}_* : \Lambda_q[\psi] \twoheadrightarrow \operatorname{Sp}(2(g-1), \mathbb{Z})[L].$$

Hence, denoting by $\mathcal{R}_g[\psi] = \operatorname{Fix}(\sigma)/\Lambda_g[\psi]$, it follows that $\mathcal{R}_g[\psi] \cong \hat{\mathcal{R}}_g[\psi]$, so to avoid excessive notation we will denote $\hat{\mathcal{R}}_g[\psi]$ by $\mathcal{R}_g[\psi]$. Furthermore, $\Gamma_g[\psi]$ is torsion free and so $\mathcal{R}_g[\psi]$ is a $K(\pi, 1)$ -manifold, and a non-galois cover of \mathcal{M}_g with fundamental group $\Gamma_g[\psi]$.

It follows that any nonconstant holomorphic map $F : \mathcal{R}_g \to \mathcal{A}_{g-1}$ induces a holomorphic map $F[\psi] : \mathcal{R}_g[\psi] \to A_{g-1}[L]$, with $F[\psi]_* : \Gamma_g[\psi] \to \operatorname{Sp}(2(g-1), \mathbb{Z})[L]$ equal to $\operatorname{Prym}[\psi]_*^6$. Consequently, $F[\psi] \sim \operatorname{Prym}[\psi]$ and Steps 2-4 in Farb's proof [6] carry over without modification (In fact, one could have also lifted the period map to $\mathcal{M}_g[L]$ in order to prove its rigidity for $g \geq 3$.). It follows that for a curve $X \subset \mathcal{R}_g[\psi]$ there exists a homotopy F_t between $F[\psi]$ and $\operatorname{Prym}[\psi]$, which is algebraic at each t.

3.2.4 Rigid curves

To conclude the proof of Theorem 1 we just need to show that $\mathcal{A}_{g-1}[L]$ -rigid curves exist in our setting. More precisely, we will show that there exists a curve $i: C \hookrightarrow \mathcal{R}_g[\psi]$ so that:

$$\operatorname{Prym}[\psi] \circ i : C \to \mathcal{A}_{g-1}[L]$$

is rigid. As in Farb's case this is done by finding a family satisfying Saito's criterion[13, Thm 8.6].

Let \mathcal{M}_g denote the Deligne-Mumford compactification of \mathcal{M}_g . Let $\mathcal{R}_g[\psi]$ be the compactification of $\mathcal{R}_g[\psi]$, given by the normalization of $\overline{\mathcal{M}_g}$ on the function field of $\mathcal{R}_g[\psi]$, in particular $\overline{\mathcal{R}_g[\psi]} \to \overline{\mathcal{M}_g}$ is a finite branched cover and $\overline{\mathcal{R}_g[\psi]}$ is a projective variety. Thus, we can assume that $\mathcal{R}_g[\psi] \subset \overline{\mathcal{R}_g[\psi]} \subset \overline{\mathcal{R}_g[\psi]} \subset \mathbb{P}^N$ for some N. As dim $(\mathcal{R}_g[\psi]) = 3g - 3$, by Bertini's theorem, the intersection of $\mathcal{R}_g[\psi]$ with 3g - 4 generic hyperplanes is a smooth curve $C \subset \mathcal{R}_g[\psi]$.

By the Lefschetz hyperplane theorem for quasi-projective varieties, the inclusion $C \hookrightarrow \mathcal{R}_g[\psi]$ induces a surjection $\pi_1(C) \twoheadrightarrow \pi_1(\mathcal{R}_g[\psi]) = \Gamma_g[\psi]$.

Let Z be the unique codimension 1-stratum of $\partial \mathcal{M}_g$ containing curves with nodes coming from pinching a unique nonseparating loop, and let $Z[\psi]$ be its preimage on $\partial \mathcal{R}_g[\psi]$.

Let R be as in item 2 of Lemma 3.1, and let $\mathcal{X} \to \Delta$ be the universal family around the nodal curve \mathcal{X}_0 , where only a nonseparating SCC $\gamma \subset R$ is pinched. In particular, the singular curves are parametrized by $z_1 = 0$. Let

$$U = \{ (z,\xi) \in \Delta \times \mathbb{C} : z_1^L = \xi \}.$$

Then $\rho: U \to \Delta$ is an *L*-cyclic cover, branched along $z_1 = \xi = 0$. Let U^* be the complement of $z_1 = \xi = 0$. The local monodromy for $\rho: \pi_1(\Delta^*) \to \operatorname{Mod}(S_g)$ is generated by T_{γ} , and $\langle T_{\gamma}^L \rangle = \rho^{-1}(\Gamma_g[\psi])$. It follows that the pullback family $\rho^* \mathcal{X} \to U$ gives a neighborhood (in $\overline{\mathcal{R}_g[\psi]}$) of a point $y \in Z[\psi]$, and the local monodromy around y is generated by T_{γ}^L . Let Z_y be the top stratum of the irreducible component of $\partial \mathcal{R}_g[\psi]$ containing y. Then $U \cap \{z_1 = \xi = 0\} \subset Z_y$, so Z_y is of codimension 1 with local monodromy conjugate in $\Gamma_g[\psi]$ to T_{γ}^L for $\gamma \subset R$. It follows that \overline{C} will intersect Z_y , in particular C is not compact.

This is enough to conclude that $\operatorname{Prym}[\psi](C)$ is rigid: Let $\mathcal{X}[L] \to \mathcal{A}_{g-1}[L]$ be the universal family of PPAVs with level L structure. Then, let $E[L] \to C$ be the pullback of $\mathcal{X}[L]$ under

⁶Our original F_* would induce a map to $PSp(2(g-1),\mathbb{Z})[L]$ which we lift to $Sp(2(g-1),\mathbb{Z})[L]$.

Prym $\circ i : C \to \mathcal{A}_{g-1}[L]$. Forgetting the level L structure, exists a family $\rho : E \to C$ of PPAVs over C. As $\mathcal{A}_{g-1}[L] \to \mathcal{A}_{g-1}$ is a finite branched cover, it is enough to show that E is rigid.

Since $i_*: \pi_1(C) \to \pi_1(\mathcal{R}_g[\psi])$ is surjective and $\operatorname{Prym}_*(\Gamma_g[\psi]) = \operatorname{Sp}(2(g-1), \mathbb{Z})[L]$, it follows that the monodromy representation $\rho_*: \pi_1(C) \to \operatorname{Sp}(2(g-1), \mathbb{Z})$ is irreducible.

Finally, there is a point $y' \in \overline{C} \cap Z_y$ so that the local monodromy of E around y is conjugate to $\operatorname{Prym}_*(T_{\gamma}^L)$ for some $T_{\gamma} \in \operatorname{Mod}(R)[L]$ along a nonseparating SCC γ . As T_{γ} maps to a transvection under Prym_* the local monodromy has infinite order and the claim follows by applying [13, Thm 8.6].

3.2.5 Finishing the proof

By the previous steps the homotopy $F_t : C \to \mathcal{A}_{g-1}[L]$ satisfies $F_t = \operatorname{Prym}[\psi]$ at each t, hence $\operatorname{Prym}[\psi]$ and $F[\psi]$ agree over C. As $\mathcal{R}_g[\psi]$ is a quasiprojective variety and \mathfrak{h}_{g-1} is a bounded domain, by the criterion of Borel-Narasimhan[3, Thm 3.6], it follows that $F[\psi] = \operatorname{Prym}[\psi]$, hence also $\operatorname{Prym} = F$ and Theorem 1 is proven.

4 Appendix

Let S_g be a closed surface of genus $g \ge 1$, and $[\beta] \in H_1(S, \mathbb{Z}/2\mathbb{Z})^*$. Then, there is a (unique up to isomorphism) double cover

$$p: S_{2g-1} \to S_{g_2}$$

with deck transform σ , and monodromy given by intersection with $[\beta]$. Define

 $Mod(S_q, [\beta]) := Mod(S_q, [\beta]), \text{ and } Mod(S_{2q-1}, \sigma) := C_{Mod(S_{2q-1})}(\sigma)$

In this section we provide a short proof of the following

Theorem 13. Let $g \ge 4$, then $Mod(S_q, [\beta])^{Ab}$ is cyclic of order at most 4 and is $\mathbb{Z}/2\mathbb{Z}$ for g even

Proof. Let b be a nonseparating SCC representing $[\beta]$, and a be a SCC intersecting b once transversely. Let R be the complement of an open annulus neighborhood of b. Then $R \cong S_{g-1}^2$ and there is an inclusion $j : \operatorname{Mod}(R) \to \operatorname{Mod}(S_g, [\beta])$, with kernel generated by $T_{b'}T_{b''}^{-1}$ corresponding to twists along the boundary components of R. As $\operatorname{Mod}(R)^{\operatorname{Ab}} = 0$, it follows that $[T_c] = 0 \in \operatorname{Mod}(S_g, [\beta])^{\operatorname{Ab}}$ for any SCC c disjoint from b. In particular, by Lemma 2.2, $\operatorname{Mod}(S_g, [\beta])^{\operatorname{Ab}} = \langle [T_a^2] \rangle$.

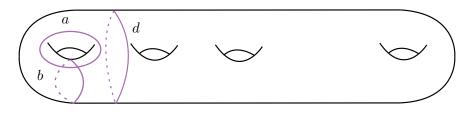


Figure 5: 2-chain relation.

By the 2-chain relation $(T_a^2 T_b)^4 = T_d$. As d is disjoint from b, $[T_a^2]^4 = 0$. Similarly, using the k-relation depicted in Figure 3

$$(T_a^2 T_{c_1} T_{c_2})^3 = (T_{a'}^2 T_{c_3} \dots T_{c_{2g-2}})^{2g-3}.$$

Thus, for g even $[T_a^2]^2 = 0$.

The nontriviality of $Mod(S_g, [\beta])^{Ab}$ follows from.

Lemma 4.1. Let $p \in \mathbb{N}$ and $\Lambda_g[p] = \{A \in \operatorname{Sp}(2g; \mathbb{Z}); Ae_1 = e_1 + pa_1\}$ and denote by \wedge the symplectic pairing. The map $\varphi : \Lambda_g[p] \to \mathbb{Z}_p$ defined by

$$A \mapsto \frac{1}{p}(Ae_1 \wedge e_1) \mod p$$

is a surjective homomorphism. In particular $H_1(\Lambda_g[p];\mathbb{Z})$ is of order at least p.

Proof. Let $A, B \in \Lambda_g[p]$, then:

$$(ABe_1) = A(pb_1 + e_1) = pAb_1 + pa_1 + e_1$$

Now as A preserves the symplectic pairing \wedge , we have:

$$Ab_1 \wedge Ae_1 = Ab_1 \wedge (pa_1 + e_1) = b_1 \wedge e_1$$

And so we get $Ab_1 \wedge e_1 = b_1 \wedge e_1 - pAb_1 \wedge a_1$. Hence:

$$(AB)e_1 \wedge e_1 = p(a_1 \wedge e_1 + b_1 \wedge e_1 - pAb_1 \wedge a_1)$$

and so φ is a group homomorphism. To see that it is surjective just take the *p*-th powers of the transvection given by $\begin{pmatrix} 1 & 0 \\ \pm 1 & 1 \end{pmatrix}$.

The results of Section 2.4 imply the following.

Corollary 14. Let $g \ge 4$, then $\operatorname{Mod}(S_{2g-1}, \sigma)$ is cyclic of order at most 4. Furthermore, it is generated by the class of $T_{\tilde{a}}$, where a is a nonseparating SCC with $\hat{i}_2([a], [\beta]) = 1$. For g even, $[\sigma] = [T_{\tilde{a}}]^2$ and $[\sigma] = 0$ for g odd.

Remark 4.1. Sato [14, Theorem 0.2] has shown that $Mod(S_g, [\beta])^{Ab} = \mathbb{Z}/4\mathbb{Z}$ for g odd, and $Mod(S_{2g-1}, \sigma)^{Ab} = \mathbb{Z}/4\mathbb{Z}$.

References

- [1] Enrico Arbarello, Maurizio Cornalba, and Phillip A Griffiths, *Geometry of algebraic curves:* volume II with a contribution by Joseph Daniel Harris, Springer, 2011.
- Joan S. Birman and Hugh M. Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. (2) 97 (1973), 424–439.
- [3] Armand Borel and Raghavan Narasimhan, Uniqueness conditions for certain holomorphic mappings, Invent. Math. 2 (1967), 247–255.
- [4] Soumya Dey et al., Generating the liftable mapping class groups of regular cyclic covers, 2021, arXiv: 2111.01626 [math.GT].
- [5] B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, Princeton University Press, 2012.
- [6] Benson Farb, *Global rigidity of the period mapping*, To appear in J. Algebraic Geom., 2021, arXiv: 2105.13178 [math.AG].

- [7] Gavril Farkas, Prym varieties and their moduli, in: Contributions to algebraic geometry, EMS Ser. Congr. Rep. Eur. Math. Soc., Zürich, 2012, pp. 215–255.
- [8] John Franks and Michael Handel, Triviality of some representations of $MCG(S_g)$ in $GL(n, \mathbb{C})$, Diff (S^2) and Homeo (\mathbb{T}^2) , Proc. Amer. Math. Soc. **141** (2013), no. 9, 2951–2962.
- [9] Stephen P. Humphries, Normal closures of powers of Dehn twists in mapping class groups, Glasgow Math. J. **34** (1992), no. 3, 313–317.
- [10] Mustafa Korkmaz, The symplectic representation of the mapping class group is unique, 2011, arXiv: 1108.3241 [math.GT].
- [11] Eduard Looijenga, Prym representations of mapping class groups, Geom. Dedicata 64 (1997), no. 1, 69–83.
- [12] Irving Reiner, Automorphisms of the symplectic modular group, Trans. Amer. Math. Soc. 80 (1955), 35–50.
- [13] Masa-Hiko Saito, Classification of nonrigid families of abelian varieties, Tohoku Math. J. (2)
 45 (1993), no. 2, 159–189.
- [14] Masatoshi Sato, The abelianization of a symmetric mapping class group, Math. Proc. Cambridge Philos. Soc. 147 (2009), no. 2, 369–388.
- [15] W.P. Thurston, The Geometry and Topology of Three-manifolds, Princeton University, 1979.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO *E-mail address:* cmarceloservan@uchicago.edu