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Abstract. We show that totally geodesic subvarieties of the moduli space Mg,n of genus g

curves with n marked points, endowed with the Weil–Petersson metric, are locally rigid. This
implies that covering constructions—examples of totally geodesic subvarieties of Mg,n endowed

with the Teichmüller metric—are locally rigid. We deduce the local rigidity statement from a

more general rigidity result for a class of orbifold maps to Mg,n.

1. Introduction

Let π : Tg,n → Mg,n be the projection from the Teichmüller space of a genus g surface with
n marked points to the associated moduli space. The Weil–Petersson metric gWP on Tg,n is a
Kähler metric that descends to a metric on Mg,n. The metric gWP gives Mg,n the structure of a
quasi-projective variety [Wol85].

A complex submanifold M ⊂ Tg,n is called Weil–Petersson if it is totally geodesic with respect
to the Weil–Petersson metric gWP. This means that the gWP-geodesic between any two points in
M is completely contained in M . Similarly, a subvariety N ⊂ Mg,n is called Weil–Petersson if
an irreducible component M of π−1(N) is a Weil–Petersson complex submanifold of Tg,n. The
complex submanifold M is called a lift of N . More generally, we call a subvariety N ⊂ Mg,n

almost Weil–Petersson if it has a lift M ⊂ Tg,n that maps biholomorphically via a forgetful map
Tg,n → Tg,m onto a Weil–Petersson complex submanifold of some Tg,m.

We say that a subvariety N ⊂Mg,n is locally rigid if any holomorphic deformation

ft : Nt →Mg,n , t ∈ ∆

with (N0, f0) ∼= (N, ι : N ↪→Mg,n) through proper immersions ft and quasi-projective varieties Nt
is trivial: there is a holomorphic family of biholomorphisms gt : Nt → N inducing (Nt, ft) ∼= (N, ι).
Our maps should be understood in the orbifold sense, i.e. on a level L ≥ 3 cover of Mg,n (see
Definition 5.2 for details). Our main theorem is the following.

Theorem 1.1 (Local Rigidity). Suppose 3g − 3 + n > 0. Let N ⊂ Mg,n be an almost Weil–
Petersson subvariety of positive dimension. Then N is locally rigid.

Examples. A source of examples of almost Weil–Petersson subvarieties are given by covering
constructions [BS24,MMW17], defined as follows. Let

h : Σg′,n′ → Σg,n

be a finite degree, orientation-preserving, topological branched cover. Assume further that the
preimage of the marked points in Σg,n equals the union of the marked points in Σg′,n′ and the
ramification points of h. Pulling back complex structures under h gives a holomorphic map

fh : Tg,n → Tg′,`
for some ` ≥ n′. We call fh a totally marked covering construction (see Section 6 for more details).
A covering construction is a holomorphic map

f : Tg,n → Tg′,n′
given by the composition of a totally marked covering construction fh : Tg,n → Tg′,` with a
forgetful map Tg′,` → Tg′,n′ which forgets only ramification points of h. If the map h is a regular
branched cover, we call f a regular covering construction. The link between covering constructions
and almost totally geodesic submanifolds of Tg,n is the following.
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Proposition 1.2. Assume 3g − 3 + n > 0. Let f : Tg,n → Tg′,n′ be a covering construction. The
following holds:

(1) Assume f is totally marked. Then, the image f(Tg,n) is a Weil–Petersson complex sub-
manifold of Tg′,n′ .

(2) Assume f is regular and not totally marked. If (g, g′) = (0, 1) assume further that the
marked points satisfy n ≥ 5. Then, the image f(Tg,n) is an almost Weil–Petersson complex
submanifold of Tg′,n′ .

In particular, in either case the projection π(f(Tg,n)) ⊂ Mg′,n′ is an almost Weil–Petersson
subvariety.

We now give two applications of Theorem 1.1.

Application 1. Totally geodesic subvarieties for the Teichmüller metric. Replacing
the Weil–Petersson metric by the Teichmüller metric dTeich in our definition of Weil–Petersson
subvarieties gives Teichmüller subvarieties N ⊂ Mg,n and Teichmüller complex submanifolds
M ⊂ Tg,n [Wri20,AHW24,BDR24].

1-dimensional Teichmüller subvarieties are called Teichmüller curves. McMullen showed [McM09]
that Teichmüller curves are rigid.1 Arana-Herrera–Wright [AHW24, Question 10.6] ask if the same
holds for Teichmüller varieties of higher dimensions. The projection of images of covering con-
structions are Teichmüller subvarieties of Mg,n and so Theorem 1.1 implies:

Corollary 1.3 (Local rigidity of Covering constructions). Assume 3g − 3 + n > 0. Let f :
Tg,n → Tg′,n′ be a totally marked or regular covering construction, satisfying the same assumptions
of Proposition 1.2. The projection π(f(Tg,n)) ⊂Mg′,n′ is locally rigid.

Remark 1.4. Any covering construction arises by applying forgetful maps to a totally marked
covering construction. Thus, up to forgetful maps, all covering constructions are locally rigid.

Remark 1.5. The images of covering constructions encompass all of the known examples of Te-
ichmüller complex submanifolds of Tg,n of dimension bigger than 1, except for the family (Yn) of
2-dimensional examples found by [EMMW20, MMW17]. In this regard, the following questions
are quite pertinent.

Question 1.6. Are the Teichmüller surfaces Yn totally geodesic with respect to the Weil–Petersson
metric, i.e. are Yn also Weil–Petersson surfaces?

Question 1.7. Given a subvariety N ⊂Mg,n. Suppose that N is totally geodesic with respect to
both the Teichmüller and the Weil–Petersson metric. Is N the image of a covering construction?

Application 2. Characterization of almost Weil–Petersson submanifolds. The pure
mapping class group PMod(Σg,n) := π0(Diff+(Σg,n, {x1, . . . , xn})) acts on Tg,n by biholomor-
phisms. For an arbitrary analytic subset W ⊂ Tg,n, let ΓW be the stabilizer of W in PMod(Σg,n).
Let M be an almost Weil–Petersson complex submanifold of Tg,n of positive dimension. As a
corollary of the proof of Theorem 1.1 (see Theorem 3.5), we obtain the following characterization
of M .

Corollary 1.8 (Maximality). Let 3g − 3 + n > 0. Assume that π(M) ⊂ Mg,n is a subvariety.
Then, the submanifold M is maximal among the analytic subsets W of Tg,n such that the following
holds:

(1) ΓW ⊆ ΓM .
(2) W/ΓW is a quasi-projective variety.

Remark 1.9. Corollary 1.8 showcases the following rigidity result for the pair (M,ΓM ). Inclusion
at the level of the stabilizers ΓW < ΓM implies the inclusion of spaces W ⊂ M . A similar
statement holds for families of curves over quasi-projective varieties: if the monodromy factors

1McMullen considers a more general class of local deformations, not assuming that ft is a proper immersion. For the

one-dimensional case, our proof of Theorem 1.1 only requires ft to be an immersion, and so it gives an alternative
proof of McMullen’s result for the case of covering constructions.
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through ΓM , then the classifying map to Tg,n factors through M (see Theorem 3.5 for a precise
statement).

Paper overview. Let M ⊂ Tg,n be an almost Weil–Petersson lift of a subvariety ofMg,n, and let
ΓM be the stabilizer of M in PMod(Σg,n). In Section 2 we quickly review all the necessary material
from Teichmüller theory needed for the rest of the paper, focusing on the Weil–Petersson metric. In
Section 3 we introduce the concept of a ΓM -deformation: a class of orbifold maps φ : X →Mg,n

which includes the classifying maps of families of curves over quasi-projective varieties whose
monodromy factors through ΓM . Theorem 1.1 is a consequence of the stronger rigidity result
for ΓM -deformations given in Theorem 3.5: any nonconstant ΓM -deformation factors through M .
Section 3 also shows that ΓM is the orbifold fundamental group of the normalization of π(M).
In Section 4 we provide the details of the proof of Theorem 3.5 for the case of X a finite type
curve, starting with an elementary Riemannian geometry lemma and then following the argument
appearing in the proof of the Imayoshi–Shiga theorem given in [AAS18, Section 4]. The key
observation is that, due to the arguments of [AAS18], holomorphic maps minimize energy in their
homotopy class.2 In Section 5 we finish the proof of Theorem 3.5 and show how it implies the
rigidity stated in Theorem 1.1 Finally, in Section 6 we prove Proposition 1.2 (see also a remark in
page 2 of [KM08] for the totally marked case) thereby concluding the proof of Corollary 1.3.

1.1. Acknowledgments. I am very grateful to my advisor Benson Farb for his guidance and
constant support throughout this project, and for his numerous comments on earlier drafts of
the paper that greatly improved the exposition. I would like to thank Curtis McMullen for
comments on an earlier draft and suggesting Questions 1.6 and 1.7; and Alex Wright for many
insightful conversations, including sharing with me [AHW24, Question 10.6] which inspired this
work. Finally, I am grateful to Sidhanth Raman for our numerous conversations on this subject,
for sharing with me his knowledge of deformation theory and complex analytic geometry and for
extensive comments on a previous draft of the paper.

2. Teichmüller geometry and the Weil–Petersson metric

2.1. Basic definitions. Assume 3g − 3 + n > 0 and let Σg,n be a topological surface of genus g
with n-marked points (or n-punctures). A marking is a homeomorphism ϕ : Σg,n → X from Σg,n
to a Riemann surface X. Teichmüller space Tg,n is the space of equivalence classes of markings
[ϕ : Σg,n → X], where two markings are equivalent if they differ up to isotopy by a biholomorphism
of X. Unless we need to stress the marking we will denote [ϕ : Σg,n → X] simply by X. In case
we need to stress the subset of points being marked we introduce the following notation: Let Σ
be a topological surface and u ⊂ Σ be a finite subset of points. T (Σ, u) denotes the Teichmüller
space of Σ with the marked points given by the subset u.

The mapping class group Mod(Σg,n)—the group of orientation-preserving diffeomorphisms of
Σg,n up to isotopy—acts on Tg,n by biholomorphisms. In fact, Royden and Earl–Kra [Roy71,EK74]
showed that for 2g + n > 4, Mod(Σg,n) agrees with the group of biholomorphisms of Tg,n. The
pure mapping class group PMod(Σg,n) is the subgroup of Mod(Σg,n) fixing pointwise the marked
points. The quotient of Tg,n by PMod(Σg,n) induces the projection

π : Tg,n →Mg,n = Tg,n/PMod(Σg,n).

Let B(X) denote the space of Beltrami forms on X, i.e. (−1, 1)-forms µ on X with ‖µ‖∞ <∞.
Denote by M(X) the open unit ball in B(X). There exists a holomorphic submersion

Φ : M(X)→ Tg,n , µ→ [fµ ◦ ϕ : Σg,n → Xµ]

where fµ is given by solving (locally) the Beltrami equation:

∂z̄f = µ∂zf.

In particular, TXTg,n is naturally identified with a quotient of B(X).

2For compact C the proof follows from the theory of harmonic maps (cf. [ES64]), but an extra step is needed when
C is finite volume.



4 CARLOS A. SERVÁN

Let [ϕ : (Σ, u)→ (X,ϕ(u))] ∈ T (Σ, u). Let Q(X,u) denote the space of integrable holomorphic
quadratic differentials on X, i.e. meromorphic quadratic differentials q on X with poles of order
at most one, and all poles contained in u. Equivalently, Q(X,u) is the space of holomorphic
quadratic differentials q on X − ϕ(u) so that∫

X−ϕ(u)

|q| <∞.

When the marked points are not being stressed we denote Q(X,u) simply by Q(X). There is a
natural pairing

B(X)×Q(X)→ C , (µ, q) 7→
∫
X

µq

which factors through TXTg,n ×Q(X). In particular, Q(X) is naturally identified with T ∗XTg,n.
At the level of the universal cover and working always with punctures.3, we have the following

notation. Let u ⊂ Σ be a finite set of points and ϕ : (Σ, u) → (X,ϕ(u)) be a marked Riemann
surface. Let X ′ = X −ϕ(u) and let π : H2 → X ′ be the universal cover of X ′, with deck group Γ.
Then B(X ′) is given by the Γ-invariant (−1, 1)-forms on H2, denoted by B(Γ). Similarly, Q(X ′)
is given by Q(Γ), the Γ-invariant quadratic differentials on H2 inducing an integrable quadratic
differential on X ′.

2.2. Weil–Petersson metric. The Weil–Petersson metric, denoted by gWP, is induced from the
hermitian product on Q(X) given by

〈q1, q2〉WP =

∫
X

q1q2(ds2)−1,

where ds2 is the hyperbolic volume form. The hermitian product on TT (X) is given by

〈µ1, µ2〉WP = 〈µ∗1, µ∗2〉WP

where µ∗i ∈ Q(X) is the dual of µi. This means that µ∗i is characterized by

〈q, µ∗i 〉WP =

∫
X

µiq, ∀q ∈ Q(X).

The metric gWP is incomplete, Kähler, negatively curved and geodesically convex [Wol87].

Harmonic forms. The map

q 7→ q(ds2)−1

sends a quadratic differential to an element of B(X) which is called a harmonic form. Let H(X)
denote the space of harmonic forms on X. The Weil–Petersson metric has a simple expression on
harmonic forms: Let µi = qi(ds

2)−1 ∈ H(X) for i = 1, 2. Evidently µ∗i = qi, and so

〈µ1, µ2〉WP =

∫
X

q1q2(ds2)−1 =

∫
X

µ1µ2ds
2 =

∫
X

µ1q2.

Definition 2.1 (Almost Weil–Petersson). Given a complex submanifold M ⊂ Tg,n, we say
that M is Weil-Petersson if it is totally geodesic with respect to gWP.4 More generally, we say
that M is almost Weil–Petersson if there exists a forgetful map F : Tg,n → Tg,m with n ≥ m and
3g − 3 +m > 0. Such that

(1) F|M : M → F(M) is a biholomorphism
(2) F(M) is a Weil-Petersson complex submanifold of Tg,m.

Let N ⊂ Mg,n be a subvariety, a lift of N is an irreducible component of the preimage of N in
Tg,n. N is called (almost) Weil–Petersson if it has an (almost) Weil–Petersson lift.

3A similar description is possible for marked points by using groups with elliptic elements [EK76].
4It is not hard to see that any totally geodesic analytic subset of Tg,n with respect to gWP must in fact be a
submanifold.
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3. ΓM -deformations and the associated orbifold fundamental group

Let π : Tg,n → Mg,n be the projection to moduli space. Let N ⊂ Mg,n be a subvariety and
let M ⊂ Tg,n be a lift of N . Let ΓM be the stabilizer of M in PMod(Σg,n). In this section we
introduce the concept of a ΓM -deformation which generalizes an important property of classical
deformations to the orbifold category. ΓM -deformations are central to our reformulation of The-
orem 1.1, stated at the end of this section (Theorem 3.5). We start by proving some facts about
the group ΓM < PMod(Σg,n).

The associated orbifold fundamental group. The projection π induces a holomorphic map

πM : M/ΓM → N.

The group ΓM is called the associated orbifold fundamental group of N(cf. [AHW24]). The fol-
lowing explains the terminology.

Lemma 3.1 (cf. [GDH92, Theorem 1]). Suppose 3g − 3 + n > 0. Given a subvariety N ⊂Mg,n

with lift M ⊂ Tg,n, let ΓM be the stabilizer of M in PMod(Σg,n). The induced holomorphic map

πM : M/ΓM → N

is proper with finite fibers and injective outside a proper analytic subvariety. In particular, it
is surjective. Furthermore, if M is smooth πM gives the normalization of N and M/ΓM is a
quasi-projective variety.

Proof. We need to show that the projection πM satisfies the following:

(1) has finite fibers,
(2) is closed,
(3) is injective outside a proper analytic subvariety.

The family of closed subsets {gM : g ∈ PMod(Σg,n)} in Tg,n is a subfamily of the decomposition
of π−1(N) into its irreducible components. Thus, it is a locally finite family of closed subsets of
Tg,n. This means that for every x ∈ Tg,n, there exists a neighborhood Ux of x intersecting only
finitely many giM . This automatically gives that πM has finite fibers, and an elementary argument
shows that πM is closed.

By the Semi-Proper Mapping Theorem [Fis76, Theorem 1.19], the map M → M/ΓM sends
ΓM -invariant analytic subsets of M to analytic subsets of M/ΓM . The map πM is injective on the
complement of the projection of the subset

W :=
⋃

g∈ΓM

{gM ∩M : g(M) ∩M proper subvariety of M} ⊂M.

W is analytic and ΓM -invariant. Thus, the projection of W to M/ΓM is analytic and the third
item follows. Since πM : M/ΓM → N is proper, the proper mapping theorem implies that πM is
surjective.

If M is smooth then M/ΓM is a normal analytic space by a theorem of Cartan [Car57] and the
theorem follows. �

Remark 3.2. As the examples in [GDH92,HPRCR24] show, πM is not in general a biholomorphism.

Level L-structures. Let L ≥ 3 and 3g − 3 + n > 0. Let PMod(Σg,n)[L] be the level L pure
mapping class group [FM12, Chapter 6.4.2]. Let

ΓM [L] := ΓM ∩ PMod(Σg,n)[L].

Since L ≥ 3, PMod(Σg,n)[L] is torsion free. Thus, the induced map

M →M/ΓM [L]

is an unramified covering map. Let

πL : Tg,n →Mg,n[L]
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be the level-L projection to the moduli space of curves with level L structures. The same argument
as in lemma 3.1 shows that the induced map

πM [L] : M/ΓM [L]→ πL(M) ⊂Mg,n[L]

is a biholomorphism: indeed, πM [L] is a local homeomorphism by covering space theory. Since it
is also proper it is a covering map, but the argument in Lemma 3.1 shows that it has degree one.
The image N [L] := πL(M) is an irreducible component of the preimage of N to Mg,n[L].

Definition 3.3 (Algebraic Orbifold). Let X̃ be a reduced complex space, and ΓX a group

acting properly discontinuously on X̃ by biholomorphisms, we denote the quotient by X = X̃/Γ.

Assume that there exists a finite index subgroup Γ′X < ΓX acting freely on X̃ and that the induced

map X ′ := X̃/Γ′X → X is a finite ramified covering.

We say that the orbifold X = X̃/ΓX with orbifold structure (X̃,ΓX) is algebraic if either one
of the following is satisfied:

(1) X has a finite (proper with finite fibers) ramified covering map to a quasiprojective variety
X.

(2) X ′ is quasiprojective.

Examples of algebraic orbifolds are given by quasi-projective varieties and by M/ΓM for M a
lift of a subvariety of Mg,n.

Classical deformations. Let Z,W be two complex manifolds. A local deformation of a holo-
morphic map f : Z → W is given by a family of holomorphic maps ft : Zt → W for t ∈ ∆, with
a biholomorphism ϕ : Z0

∼= Z inducing (Z0, f0) ∼= (Z, f). If the family (Zt) is smoothly trivial,5

it follows that the groups (ft)∗(π1(Zt)) < π1(W ) are pairwise conjugate. The following is our
generalization to the orbifold setting of a deformation of the map πM : M/ΓM → N ⊂Mg,n.

Definition 3.4 (Γ-deformation). LetX = X̃/ΓX be an algebraic orbifold. Let φ : X →Mg,n be
a holomorphic map of complex orbifolds with associated homomorphism φ∗ : ΓX → PMod(Σg,n).

This means that there is a holomorphic map φ̃ : X̃ → Tg,n equivariant with respect to the
homomorphism φ∗ and fitting into the diagram

X̃ Tg,n

X Mg,n

φ̃

φ

Let Γ < PMod(Σg,n) be an arbitrary subgroup. We say that φ is a Γ-deformation if, up to con-
jugation in PMod(Σg,n), the homomorphism φ∗ factors through the inclusion Γ ↪→ PMod(Σg,n).

Our main rigidity result is the following variant of the Imayoshi-Shiga theorem (see also Theo-
rem 4.10).

Theorem 3.5. Let 3g − 3 + n > 0. Let M be an almost Weil–Petersson complex submanifold of

Tg,n. Let ΓM < PMod(Σg,n) be the stabilizer of M . Let X = X̃/ΓX be an algebraic orbifold and

φ : X → Mg,n be a nonconstant ΓM -deformation. Then, there is a lift φ̃ : X̃ → Tg,n of φ that
factors through the inclusion M ↪→ Tg,n.

4. The case of a finite type curve C

On this section we prove Theorem 3.5 for the case of X a smooth finite type curve. We start
with the following special case.

Proposition 4.1. Suppose 3g−3+n > 0. Given a Weil–Petersson complex submanifold M ⊂ Tg,n
with stabilizer ΓM < PMod(Σg,n). Let C be a smooth finite type curve and φ : C → Mg,n be
a nonconstant ΓM -deformation. Then, there exists a lift of φ to Tg,n that factors through the
inclusion M ↪→ Tg,n.

5note that we are not assuming that f is proper.
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The first step in the proof of Proposition 4.1 is the following elementary observation, whose
proof we include for completeness.

Lemma 4.2 (Orthogonal Projection). Suppose 3g − 3 + n > 0. Let Z be a totally geodesic
submanifold of Tg,n with respect to the Weil–Petersson metric and let ΓZ be the stabilizer of Z in
Mod(Σg,n). There exists a ΓZ-equivariant smooth deformation retraction onto Z

πtZ : Tg,n → Tg,n , t ∈ [0, 1]

with the following property: for any w ∈ TTg,n the map

t→ ‖dπtZ(w)‖WP

is non-increasing. If w /∈ TZ and w is not parallel to a geodesic normal to Z then ‖dπtZ(w)‖WP

is strictly decreasing.

Proof. Endow Tg,n with the Weil–Petersson metric gWP. Let E ⊂ TTg,n be the domain of the
exponential map. Since gWP is incomplete E 6= TTg,n. Let EZ := NZ ∩ E for NZ the normal
bundle of Z. The metric gWP) is negatively curved, thus

exp : EZ → Tg,n
is injective and a diffeomorphism onto its image. Since gWP is not complete, a priori there
is no reason for exp to be surjective. Yet, Wolpert showed that for any p ∈ Tg,n, the map
expp : Ep → Tg,n is a homeomorphism [Wol87, Corollary 5.4] , and this implies surjectivity of exp.

Let φt : EZ → EZ be given by (p, v)→ (p, tv). Define

πtZ : Tg,n → Tg,n , πtZ := exp ◦φ1−t ◦ exp−1 .

Since exp and φt are ΓZ-equivariant, it follows that πtZ is ΓZ-equivariant. The map π1
Z is precisely

the orthogonal projection map to Z.
Let p ∈ Tg,n and w ∈ TpTg,n. Observe that J(t) = dπ1−t

Z (w) is a Jacobi field. A standard
computation, using the fact that Z is totally geodesic, shows that ‖J(t)‖WP is non-decreasing.
Furthermore, if p /∈ Z and w is not parallel to a geodesic normal to Z it follows that J(t) has a
non-trivial normal component and so ‖J(t)‖WP is strictly increasing. �

Having Lemma 4.2 at hand, we can prove Proposition 4.1.

Proof of Proposition 4.1. Let M ⊂ Tg,n be a Weil–Petersson complex submanifold. By Lemma 4.2
there is a smooth homotopy

πtM : Tg,n → Tg,n , t ∈ [0, 1]

between the identity and the orthogonal projection π1
M : Tg,n → M . Let ΓM < PMod(Σg,n) be

the stabilizer of M . Let C be a smooth finite type curve and φ : C → Mg,n be a nonconstant

ΓM -deformation. In particular, the lift φ̃ : H2 → Tg,n, which equivariant with respect to the
homomorphism φ∗ : π1(C)→ PMod(Σg,n), is not constant. Up to post-composing with a mapping
class, we can assume that φ∗ : π1(C)→ ΓM . Define the map

ψ̃ : H2 → Tg,n , ψ̃ = π1
M ◦ φ̃.

Since π1
M is ΓM -equivariant, it follows that ψ̃ is φ∗-equivariant. Proposition 4.1 will be proven if

we show that φ̃ = ψ̃.

Claim 4.3. φ̃ = ψ̃

Proof of Claim 4.3. The proof follows the argument appearing in the proof of the Imayoshi–Shiga
theorem given in Section 4 of [AAS18]. We include the details for completeness, clarifying the
equivariance nature of all the maps being used— hence the difference in our notation.

For a smooth map f̃ : H2 → Tg,n define the energy density Ex(f̃) of f̃ at a point x ∈ H2 to be

Ex(f̃) := ‖df̃ |x(v1)‖2WP + ‖df̃ |x(v2)‖2WP,
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for an arbitrary orthonormal basis {v1, v2} of TxH2. Assume further that f̃ is φ∗-equivariant, then

Ex(f̃) is π1(C)-invariant and we can define the equivariant energy of f̃ as:

E(f) :=

∫
C

Ex̄(f)ωC

where ωC is the volume form on C and Ex̄(f) is given by Ex(f̃) for any lift x of x̄.

Since φ̃ is holomorphic and dTeich agrees with the Kobayashi metric [Roy71], it follows that

‖dφ̃(v)‖Teich ≤ ‖v‖H2 . Recall that the Teichmüller metric dominates the Weil–Petersson metric

‖v‖WP ≤ L‖v‖Teich,

where L = |2π(2g−2+n)|1/2 [McM00, Proposition 2.4]. Thus, ‖dφ̃(v)‖WP ≤ L‖v‖H2 and we have
the following

Lemma 4.4 ([AAS18, Lemma 4.1]). The homotopy

F̃ : H2 × [0, 1]→ Tg,n, f̃t(x) = πtM (φ̃(x))

between φ̃ and ψ̃ satisfies:

(1) f̃t is L-Lipschitz for all t. Thus, the equivariant energy E(ft) is finite for all t.

(2) The map t→ E(ft) is non-increasing along t. If φ̃ 6= ψ̃, then E(ft) is not constant.
(3) For any two points x̄, ȳ ∈ C let dC(x̄, ȳ) be their distance in C. Let x0 ∈ H2 and let x̄0 ∈ C

be its image in C. There are constants A,B > 0 such that for all (x, t) ∈ H2 × [0, 1] the

operator norm ‖dF̃(x,t)‖ satisfies

‖dF̃(x,t)‖2 ≤ AdC(x̄0, x̄)2 +B.

Remark 4.5. Note that since the homotopy πtM is norm non-increasing we get stronger results
than [AAS18, Lemma 4.1].

The proof of Claim 4.3 is completed by the two following key results. Let ωWP be the Kähler
form associated to the Weil–Petersson metric.

Proposition 4.6 (cf. [ES64, Proposition 4.2]). Let f : H2 → (Tg,n, gWP) be a smooth map. Then,
for any x ∈ H2

Ex(f)ωH2 ≥ f∗(ωWP)|x
with equality if f is holomorphic at x.

Remark 4.7. Note that [ES64, Proposition 4.2] is stated for the energy and not the energy density,
but their results are given by pointwise estimates for the energy density that imply proposition 4.6.
Furthermore, their results give an if and only if condition for equality; this is not necessary for
our proof.

For each t, let f∗t ωWP be the 2-form on C induced by the π1(C)-invariant form f̃∗t ωWP on H2.
We have the following,

Proposition 4.8 ([AAS18, Proof of Imayoshi–Shiga]). For all t ∈ [0, 1] we find∫
C

f∗t (ωWP) =

∫
C

f∗0 (ωWP).

Proof. Since F̃ satisfies properties (1)-(3) of Lemma 4.4, the same computation as in the proof
of the Imayoshi–Shiga theorem in [AAS18] gives the result. This is a generalization of Stoke’s
theorem by using a nice enough exhaustion of C by compact sets. We remark that the notation
of [AAS18] differ from ours as all of their maps should be understood in the orbifold sense, e.g.

‖dF(x,t)‖ is given in our notation by ‖dF̃(x̃,t)‖ for any lift x̃ of x. �

Finishing the proof of φ̃ = ψ̃. On one hand via proposition 4.6

E(ft) ≥
∫
C

f∗t (ωWP).
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On the other hand via proposition 4.8 and the fact that f0 is holomorphic.∫
C

f∗t (ωWP) =

∫
C

f∗0 (ωWP) = E(f0)

Thus E(ft) ≥ E(f0) and via property (2) in Lemma 4.4 we find E(ft) = E(f0) for all t. In

particular φ̃ = ψ̃. �

Having proven Claim 4.3, Proposition 4.1 follows. �

Remark 4.9. Note that the same argument works more generally for M a real totally geodesic
submanifold of Tg,n with respect to the Weil–Petersson metric, e.g. an axis of a pseudo-Anosov
element of Mod(Σg,n) [DW03]. Furthermore, the same argument yields the following strengthening
of the Imayoshi–Shiga theorem.

Theorem 4.10 (Imayoshi–Shiga). Suppose 3g−3+n > 0. Let C = H2/π1(C) be a smooth finite
type curve. Given i = 1, 2 and smooth maps φi : H2 → Tg,n, equivariant with respect to the same
homomorphism φ∗ : π1(C)→ PMod(Σg,n). Assume that φ1 is holomorphic and nonconstant. Let
E(φi) denote the equivariant energy of φi. If either φ2 is holomorphic or

E(φ2) ≤ E(φ1)

then φ1 = φ2.

Proposition 4.1 implies the following special case of Theorem 3.5 when the algebraic orbifold is
a smooth finite type curve.

Proposition 4.11. Let 3g−3+n > 0. Let M be an almost Weil–Petersson complex submanifold of
Tg,n with stabilizer ΓM < PMod(Σg,n). Let C be a smooth finite type curve and let φ : C →Mg,n

be a nonconstant ΓM -deformation. Then, φ has a lift φ̃ : H2 → Tg,n factoring through M ↪→ Tg,n.

Proof. Let φ : C → Mg,n be a ΓM -deformation. Then, there is a lift φ̃ : H2 → Tg,n of φ,
equivariant with respect to a homomorphism

φ∗ : π1(C)→ ΓM ↪→ PMod(Σg,n).

Since M is almost Weil–Petersson, there exists a forgetful map

F : Tg,n → Tg,m,
with n ≥ m and 3g− 3 +m > 0, so that M ′ = F(M) is a Weil–Petersson complex submanifold of
Tg,m. Let

F∗ : Mod(Σg,n)→ Mod(Σg,m)

be the associated forgetful map. The map F is F∗-equivariant. It is evident that F∗(ΓM ) ⊂ ΓM ′ .
We claim that

F∗|ΓM
: ΓM → ΓM ′

is injective. Indeed, F|M : M → M ′ is a biholomorphism and so the only way for an ele-
ment γ ∈ kerF∗ to be in ΓM is to fix M pointwise. The kernel kerF∗ is a surface braid group
Bn−m(Σg,m) [FM12, Theorem 9.1]. Surface braid groups for surfaces with negative Euler charac-
teristic are torsion free [FN62, Corollary 2.2]. As χ(Σg,m) < 0 the claim follows.

The map φ̃ is nonconstant, thus φ∗ has infinite image. In particular, the groupG := F∗(φ∗(π1(C))

is infinite. It follows that the map φ̄ := F ◦ φ̃ is not constant: indeed, if not then G fixes a point
y, but this is impossible as G is infinite.

Observe that the map φ̄ : H2 → Tg,n is F∗ ◦φ∗-equivariant so via (the proof of) Proposition 4.1
we find that φ̄ factors through M ′ ↪→ Tg,m. To conclude the proof of Proposition 4.11 we show
that the holomorphic map

φ̂ := F|−1
M ◦ φ̄ : H2 →M ⊂ Tg,n

equals φ̃. By Theorem 4.10, it is enough to show that φ̂ is φ∗-equivariant. Let x ∈M ′ and γ ∈ ΓM ,
then

F|−1
M (F∗(γ) · x) = F|−1

M (FM (γ · F|−1
M (x)) = γ · F|−1

M (x).

Thus φ̂ is φ∗-equivariant and the claim follows. �
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5. Rigidity

In this section we complete the proofs of Theorem 3.5 and Theorem 1.1.

Proof of Theorem 3.5. Let (X̃,ΓX) be the orbifold structure of an algebraic orbifold X, with finite

index subgroup Γ′X < ΓX and finite branched cover X ′ = X̃/Γ′X → X. Given a nonconstant ΓM -
deformation φ : X → Mg,n, let φ′ : X ′ → Mg,n be the induced orbifold map. By assumption

there is a lift φ̃ : X̃ → Tg,n of φ that is equivariant with respect to the homomorphism

φ∗ : ΓX → ΓM ↪→ PMod(Σg,n).

Let C ⊂ X ′ be a smooth curve so that φ′|C is not constant. Via the proof of Proposition 4.11, the

induced map φ̃|C̃ on the universal cover C̃ factors through M . Thus, Theorem 3.5 will be proven
if we show that we can cover X ′ by curves C such that φ′|C is not constant. Note that C is not
required to be smooth. This is because φ′|C will induce a map from its normalization.

Lemma 5.1. Let y ∈ X ′. There exists a curve C ⊂ X ′ passing through y so that φ′|C is not
constant.

Proof. This is elementary, but we include the details. By assumption there is a finite (proper with
finite fibers) ramified covering π : X ′ → X to a quasi-projective variety X. Let B ⊂ X be the
branch locus of π. Given y ∈ X ′, let Y = (φ′)−1(φ′(y)). Then, Y is a proper non-empty analytic
subset of X ′. We will show that there is a curve C passing through y and not contained in Y . By
the proper mapping theorem, Y ′ = π(Y ) is a proper analytic subset of X. Pick a point x /∈ Y ′∪B.
Since X is quasi-projective, there exists a curve C ′ ⊂ X passing through π(y) and x. Let Cy be
an irreducible component of π−1(C ′) containing y, then x ∈ π(Cy) = C and the claim follows. �

Having shown Lemma 5.1, Theorem 3.5 follows. �

Now we show that Theorem 3.5 implies the classical rigidity stated in Theorem 1.1. We consider
the following more general class of local deformations,

Definition 5.2. Given an almost Weil–Petersson subvariety N ⊂Mg,n, let ι : N →Mg,n be the
inclusion and fix L ≥ 3. A proper local orbifold deformation of ι is a local holomorphic deformation

Ft : Nt[L]→Mg,n[L] , t ∈ ∆

of a lift ι[L] : N [L]→Mg,n[L] of ι such that the following hold:6

(1) Let π : N [L]→ ∆ be the associated deformation of N [L], with F0 : N0[L] ∼= N [L]. Then
π is a closed, smooth submersion.

(2) Ft : Nt[L]→Mg,n[L] is proper.
(3) N [L] is smoothly isomorphic to N [L]×∆.

Theorem 5.3. Assume 3g − 3 + n > 0 and L ≥ 3. Let N ⊂Mg,n be an almost Weil–Petersson
subvariety of positive dimension. Let

Ft : Nt[L]→Mg,n[L] , t ∈ ∆

be a proper local orbifold deformation of ι : N → Mg,n, such that each element of the family
π : N [L] → ∆ is quasi-projective. Then, up to shrinking ∆, the deformation F : N [L] →
Mg,n[L] is trivial, i.e. there exists a holomorphic family gt : Nt[L]→ N [L] inducing (Nt[L], Ft) ∼=
(N [L], ι[L]).

Proof. Let N be an almost Weil–Petersson variety of Mg,n of positive dimension, and let ΓM be
the associated orbifold fundamental group of N . Let

Ft : Nt[L]→Mg,n[L] , t ∈ ∆

be a proper local orbifold deformation of ι : N ↪→ Mg,n. Let π : N [L] → ∆ be the associated
deformation of N [L]. By assumption Nt[L] is quasi-projective for all t. Thus,

6Observe that these are automatic for local deformations of compact manifolds.
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Nt[L] Mg,n[L] Mg,n
Ft

is a non-constant ΓM -deformation. By Theorem 3.5, it follows that Ft(Nt[L]) ⊂ N [L] = F0(N0[L])
for all t. The set of points (x, t) ∈ N where dFt|x is not full rank is closed and does not include
the central fiber. Since π : N [L] → ∆ is closed, by shrinking ∆ we can assume that Ft is an
immersion for all t. By dimension reasons it follows that Ft is a proper local biholomorphism,
i.e. a covering map. Let ψt : Nt[L] → N [L] for t ∈ ∆ be a smooth trivialization. It follows that
Ft ◦ ψ−1

t : N [L] → N [L] is a covering map homotopic to a homeomorphism. In particular, it has
degree 1. So Ft is a biholomorphism and (Nt[L], Ft) ∼= (N [L], ι[L]) via the family Ft and the claim
follows. �

The proof of Theorem 1.1 follows from the proof of Theorem 5.3, skipping the step that shrinks
∆.

6. Covering constructions are Weil–Petersson geodesic

The main goal of this section is the proof of Proposition 1.2 relating covering constructions with
almost Weil-Petersson complex submanifolds. Note that by a result of Filip (cf. [Fil16, Remark
1.6]) covering constructions project to subvarieties of Mg,n, so we only need to show that the
images of covering constructions are almost Weil–Petersson complex submanifolds of Tg,n.

We start by recalling the definition of covering constructions. Let

h : Σ′ → Σ

be a finite degree, orientation-preserving, topological branched cover between topological surfaces
Σ′ and Σ. Consider finite subsets u ⊂ Σ and v ⊂ Σ′. In the following we will assume that

(1) h−1(u) = v ∪R(h)

for R(h) the set of ramification points of h. In particular, u contains all the branch points of h.

Definition 6.1 (Covering constructions). Pulling back complex structures under the un-
branched covering map

h|Σ′−h−1(u) : Σ′ − h−1(u)→ Σ− u

induces a holomorphic isometric embedding

fh : T (Σ, u)→ T (Σ′, h−1(u))

with respect to the Teichmüller metric. We call fh a totally marked covering construction.
A covering construction is a holomorphic map

f : T (Σ, u)→ T (Σ′, v)

induced by a totally marked covering construction fh by postcomposition with the forgetful map
F : T (Σ′, h−1(u)) → T (Σ′, v). Since F only forgets ramification points of h, the map f is an
isometric embedding [BS24, Proposition A.2]. If the branched cover h is regular we call f a
regular covering construction.

Remark 6.2. In [BS24, Appendix] it is shown that for g(Σ) ≥ 1 and T (Σ, u) 6= T1,1 the condition
given by Equation (1) is necessary and sufficient for h to induce an isometric embedding with
respect to the Teichmüller metric.

In the following, we describe in more detail properties of each type of covering construction.
Unless otherwise specified h : (Σ′, v) → (Σ, u) will denote a finite degree, orientation-preserving,
topological branched cover. Let g(Σ) denote the genus of Σ. Throughout this section we assume
that

3g(Σ)− 3 + |u| > 0.
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6.1. Totally marked covering constructions. Let v = h−1(u) ⊂ Σ′ and let

f : T (Σ, u)→ T (Σ′, v)

be the associated totally marked covering construction. The map f is holomorphic and the deriva-
tive is given by pulling back Beltrami forms to the cover. We sketch the details. Let X = H2/Γ ∈
T (Σ, u), for X a finite type Riemann surface diffeomorphic to Σ−u and Γ < PSL(2,R) a discrete
subgroup without elliptic elements. Since h is unbranched over Σ− u, the image f(X) is given by
f(X) = H2/Γ′ for Γ′ < Γ a finite index subgroup. It follows that there exists a pushforward lift
of Beltrami forms:

f∗ : M(Γ)→M(Γ′)

given by the inclusion. Furthermore, f∗ induces a holomorphic map

T (Σ, u)→ T (Σ′, v)

which agrees with f .7 In particular the derivative of f is induced by f∗. Similarly, the pullback of
integrable quadratic differentials is given by the inclusion Q(Γ)→ Q(Γ′).

Recall that Harmonic forms H(X) are given by (z − z̄)2q̄ for q ∈ Q(Γ). Then, the following
corollary is immediate.

Corollary 6.3. Let f : T (Σ, u) → T (Σ′, v) be a totally marked covering construction. Let X ∈
T (Σ, u). Then, the derivative df gives an inclusion

dfX : H(X) ↪→ H(f(X)).

Furthermore, dfX is induced by the pullback of quadratic differentials and volume forms under h.

Remark 6.4. For Corollary 6.3 it is crucial that the pullback of the complete hyperbolic metric
on X is the complete hyperbolic metric on f(X). In particular, it does not apply when we
postcompose with forgetful maps.

The Weil–Petersson metric gWP is easily computed for harmonic forms. Thus, we get the
following.

Corollary 6.5. Let f : T (Σ, u) → T (Σ, v) be a totally marked covering construction induced by
a branched cover h. Then,

f∗gWP = deg(h)gWP.

Proof. Let X ∈ T (Σ, u). By Corollary 6.3, dfX : H(X) ↪→ H(f(X)) is given by the pullback of
quadratic differentials and volume forms under h. Let µi = qi(ds

2
X)−1 ∈ H(X), then:

(2)

〈dfX(µ1), dfX(µ2)〉 =

∫
f(X)

dfX(µ1)dfX(µ2)ds2
f(X)

=

∫
f(X)

dfX(µ1)h∗(q2)

= deg(h)

∫
X

µ1q2 = deg(h)〈µ1, µ2〉.

In the third equality we used the fact that the coderivative of f is given by the trace under h. �

6.2. Regular H-Covers. Let Y be a closed Riemann surface, with underlying topological surface
Σ′. Let H be a finite group of conformal automorphisms of Y . Let X = Y/H so that H defines a
regular branched covering

hX : Y → X.

Let Σ be the underlying topological surface of X. Let h : Σ′ → Σ be the topological branched
cover induced by hX . As in Equation (1), consider finite subsets u ⊂ Σ and v ⊂ Σ′ such that

h−1(u) = v ∪R(h).

Then, h induces a regular covering construction

f : T (Σ, u)→ T (Σ′, v).

7Here it is important that h is orientation preserving, so that it agrees with f(X) → X.
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Suppose that v is H-invariant. Then H is a group of conformal automorphisms of Y ′ := Y − v.
Recall that H acts on T (Σ′, v) by biholomorphisms. We claim the following,

Lemma 6.6.

f(T (Σ, u)) = Fix(H)

for Fix(H) the fixed set of H in T (Σ′, v).

This is already known (e.g. [Kra59]), but we provide a proof using the terminology introduced
in [BS24].

Proof. Let M := f(T (Σ, u)). Note that H is a finite group of biholomorphic isometries of the Te-
ichmüller metric. Thus, Fix(H) ⊂ T (Σ′, v) is a totally geodesic complex submanifold with respect
to the Teichmüller metric. The inclusion M ⊆ Fix(H) is evident, as H can be represented by
biholomorphisms of any f(Z) for Z ∈ T (Σ, u). To prove the converse, we will consider the totally
geodesic bundles QM and QFix(H) [BS24, Section 3]. Let f(X) ∈ M ⊆ Fix(H) and identify
H with a subgroup of biholomorphisms of f(X). Recall that Qf(X)M ⊂ Q(f(X)) equals the
H-invariant differentials on Q(f(X)). We claim that Qf(X) Fix(H) admits the same description.
In particular, Qf(X) Fix(H) = Qf(X)M and we are done.

To prove the claim, let t ∈ H and denote by t : T (Σ′, v) → T (Σ′, v) to the biholomorphism
induced by t. Since t(f(X)) = f(X), the umkehr map t! [BS24, Section 4] associated to t acts on
Q(f(X)) by:

t! : Q(f(X))→ Q(f(X)) , q → t∗(q) ∈ Q(f(X)).

Any geodesic in Fix(H) is fixed by t. Thus, q = t∗(q) for any q ∈ Qf(X) Fix(H). The claim
follows. �

H acts on T (Σ′, v) by Weil–Petersson isometries, thus the following is immediate.

Corollary 6.7. Let f : T (Σ, u)→ T (Σ′, v) be a regular covering construction induced by a regular
covering with deck group H. Assume that v is H-invariant. Then f(T (Σ, u)) is totally geodesic
with respect to the Weil–Petersson metric, i.e. it is Weil–Petersson.

In general, we have a weaker statement.

Corollary 6.8. Let f : T (Σ, u) → T (Σ′, v) be a regular covering construction, induced by a
regular cover h : Σ′ → Σ. If (g(Σ), g(Σ′)) = (0, 1) assume further that |u| ≥ 5. Then f(T (Σ, u))
is almost Weil–Petersson.

Proof. Let v′ = v \R(h) = h−1(u \B(h)), for B(h) the branch locus of h. Then, v′ is H-invariant.
We claim that g(Σ′)− 3 + |v′| > 0. This is immediate if g(Σ′) > 1 so assume otherwise.

We proceed by cases. If g(Σ) = 1 the map h is actually unramified and |v′| = |u| ≥ 1. For the
remaining cases we use the following facts from [Mir95, Lemma 3.8 and discussion thereafter]:

(1) The map h can have at most 4 branch points and less than 4 if g(Σ′) = 0.
(2) If g(Σ′) = 0 and h has 3 branch points, then deg(h) ≥ 4.

The claim follows. The forgetful map

F : T (Σ′, v)→ T (Σ′, v′)

satisfies that M ′ = F(f(T (Σ, u)) is Weil–Petersson (Corollary 6.7). Moreover, as F only forgets
ramification points, F restricts to a biholomorphism between f(T (Σ, u)) and M ′. The result
follows. �

Combining Corollaries 6.5 and 6.7, we complete the proof of Proposition 1.2 by showing the
following.

Proposition 6.9. Let f : T (Σ, u) → T (Σ, v) be a totally marked covering construction induced
by a branched cover h. Then, f(T (Σ, u)) is a Weil–Petersson complex submanifold.
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Proof. The case of totally marked regular coverings follows from Corollary 6.7. So assume that h
is not regular. Let

h2 : (Σ′′, w)→ (Σ′, v)

be the normal closure of h, i.e. the regular cover induced by taking a finite index subgroup
Γ < h∗(π1(Σ′ − v)) < π1(Σ− u)) such that Γ E π1(Σ− u). This means that have a commutative
diagram:

(Σ′′, w)

(Σ′, v)

(Σ, u)

h1

h2

h

where hi for i = 1, 2 are regular covers and the marked points satisfy

h−1
1 (u) = h−1

2 (v) = w.

By Corollary 6.7, the induced maps

T (Σ′′, w)

T (Σ′, v)

T (Σ, u)

f2

f1

f

satisfy that f1(T (Σ, u)) and f2(T (Σ′, v)) are Weil–Petersson submanifolds of T (Σ′′, w). Since
f1 = f2 ◦ f , it follows that f1(T (Σ, u)) ⊂ f2(T (Σ′, v)) and

f(T (Σ, u)) = f−1
2 (f1(T (Σ, u))).

In particular, f1(T (Σ, u)) is a totally geodesic submanifold of f2(T (Σ′, v)) with respect to gWP.
The map f2 : T (Σ′, v) → T (Σ′′, w) is a totally marked covering construction. Thus, by Corol-
lary 6.5 it is (up to a constant) a Riemannian isometric embedding for gWP. The claim follows. �
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