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DUALITY OF DIFFERENTIAL OPERATORS AND ALGEBRAIC DE

RHAM COHOMOLOGY
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AND SRIDHAR VENKATESH

Abstract. Given a smooth proper morphism f : X → S, we introduce a certain derived

category where morphisms are permitted to be OS-linear differential operators. We then

prove a generalisation of Serre duality that applies to two-term complexes of this type. We

apply this to give a new proof of Poincaré duality for relative algebraic de Rham cohomology.
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1. Introduction

Let X be a smooth proper variety of dimension n over a field of characteristic 0. Poincaré

duality for algebraic de Rham cohomology for X, proven by Hartshorne in [Har75, Corollary

II.5.3], gives an isomorphism

Hk(X,Ω•
X) ∼= H2n−k(X,Ω•

X)∨.

Recalling the fact that for such schemes, the dualising complex is isomorphic to Ωn
X , one

can notice that this statement is reminiscent of Serre duality. However, its direct application

is prevented by the fact that the differentials occurring in the algebraic de Rham complex

are not OX -linear. To resolve this issue, Hartshorne shows in his proof that Serre duality is

compatible with the differentials in a suitable sense.

We now know that Poincaré duality for algebraic de Rham cohomology holds in much

greater generality. In fact, a relative version holds for any quasi-compact quasi-separated

base.

Theorem 1.1. [Sta23, Tag 0G8K] Let S be a quasi-compact and quasi-separated scheme. Let

f : X → S be a proper smooth morphism of schemes all of whose fibres are nonempty and

equidimensional of dimension n. Then there exists an OS-module map

t : R2nf∗Ω
•
X/S −→ OS ,
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unique up to precomposing by multiplication by a unit of H0(X,OX ), such that the pairing

Rf∗Ω
•
X/S ⊗L

OS
Rf∗Ω

•
X/S [2n] −→ OS , (ξ, ξ′) 7−→ t(ξ ∪ ξ′)

is a perfect pairing of perfect complexes on S.

The proof in the Stacks project uses the Hodge-de Rham spectral sequence, reducing the

statement to the vanishing of certain differentials. The key point is the following lemma.

Lemma 1.2. [Sta23, Tag 0G8J] Let S be a quasi-compact and quasi-separated scheme and

f : X → S be a proper smooth morphism of schemes all of whose fibres are nonempty and

equidimensional of dimension n. Then the map dn−1 : Rnf∗Ω
n−1
X/S

→ Rnf∗Ω
n
X/S is zero.

The currently existing proof of this lemma in the Stacks Project uses intricate compu-

tations with explicit Gysin mapsand hides the fact that dn−1 turns out to be the dual of

another differential, which happens to be 0 for trivial reasons. Indeed, we recall that the

map d0 : f∗OX → f∗Ω
1
X/S is 0 [Sta23, Tag 0G8H]. Clausen proposed another proof in [Cla21]

which, though sharing some of the characteristics of the proof we will give, also does go

through this duality statement. De Jong proposed to prove an extension of Serre duality to

the case of differential operators, which would show that the differentials dn−1 and d0 are

dual, thus simplifying the existing proof of the lemma.

Denote ωX/S := Ωn
X/S . If E is a locally free OX -module of finite rank, define its dual E∗ :=

E∨ ⊗OS
ωX/S , where E∨ := Hom(E ,OX). Given a differential operator D : E → F between

two locally free OX -modules, we will first define a dual differential operator D∗ : F∗ → E∗

that satisfies (d0)∗ = −(dn−1)∗. This definition naturally extends to the filtered derived

category of S-differential complexes with uniformly bounded filtrations, a category which we

define and study in detail in Section 3. The main new result of this paper is Theorem 6.9, a

duality statement that extends Serre duality to take differential operators into account. More

concretely, it implies the following statement.

Proposition 1.3. Let f : X → S be smooth and proper of relative dimension n, where S =

SpecA is affine. Let M be a two-term complex of locally free sheaves of finite rank in the

filtered derived category of S-differential complexes with uniformly bounded filtrations Then

there is a perfect pairing of complexes

Rf∗M ⊗L
OS

Rf∗(M
∗)[n] → OS .

We will use Theorem 6.9 to prove Lemma 1.2 by taking M to be the complex OX
d
−→ Ω1

X/S ,

thus giving a new proof of Poincaré duality for algebraic de Rham cohomology in the relative

setting.

1.1. Outline of paper. We will now outline the contents of this paper in more detail. In

Section 2, we construct the dual differential operator D∗ : F∗ → E∗ to a differential operator

D : E → F between locally free sheaves of finite rank. Over the next few sections, given a

two-term complex of the form M = E
D
−→ F , our goal is to construct a perfect copairing

η : A → RΓ(X,M)[n] ⊗L
A RΓ(X,M∗). In Section 3, we will prove a version of the filtered

Künneth isomorphism so that such a copairing is equivalent to giving an element η(1) ∈

Hn(X ×S X,M ⊠M∗). In Section 4 we will construct a sequence of maps

H0(∆,Hn
∆(E))

∼= Hn
∆(X ×S X, E ⊠ E∗) → Hn(X ×S X, E ⊠ E∗),

and we will produce an element η(1) by explicitly writing down a global section of Hn
∆(E)

on ∆. In Section 5 we will confirm that this element produces a copairing compatible with

Serre duality. In Section 6, we will extend our constructions and results of the previous two

https://stacks.math.columbia.edu/tag/0G8J
https://stacks.math.columbia.edu/tag/0G8F
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sections to two-term complexes, proving Theorem 6.9. Finally in Section 7, we will give the

full argument that Theorem 6.9 implies Lemma 1.2.

1.2. Acknowledgements. We would like to thank Johan de Jong, who proposed this project

to us and spent many hours explaining it to us and answering our questions about it. We

would also like to thank all the 2023 Stacks Project Workshop organisers for bringing us

together to this workshop where this work began. We were supported by the grants NSF

DMS-2309115 and DMS-1840234 at the workshop. Additionally, CJ was supported by NSF

grant DGE-203619. CK was supported by the NSF Graduate Research Fellowship under Grant

No. 2140001. OL would like to thank Jack Hall and Fei Peng for many helpful discussions

about perfect complexes and tor-dimension, and is furthermore extremely grateful to Fei Peng

for the opportunity to participate in the 2023 Stacks Project Workshop. SM would like to

thank Alexander Efimov, Tony Pantev and Peter Scholze for helpful discussions and patience,

and also Andres Fernandez Herrero for useful suggestions. SS was partially supported by NSF

grant DMS-2053473 through Kiran Kedlaya, and thanks Maxwell Johnson, Brendan Murphy

and Nathan Wenger for discussions about various aspects of this paper.

2. Defining the dual differential

2.1. Setup and motivation. Let θ : X → S be a smooth morphism of schemes of relative

dimension n. Let D : E → F be a differential operator of finite order between two finite rank

locally free OX -modules. We define E∗ := E∨⊗ωX/S, where ωX/S := Ωn
X/S . We wish to define

a dual differential operator D∗ : F∗ → E∗ such that (D1 ◦D2)
∗ = D∗

2 ◦D
∗
1 and (D∗

1)
∗ = D1.

Furthermore, for D = d0 : OX → Ω1
X/S , we should have D∗ = −dn−1 : Ωn−1

X/S → ωX/S .

The existence of such a dual differential operator is motivated by the formal adjoint in the

context of D-modules, which we now briefly recall (see e.g. [HTT08, Section 1.2]). Given a

smooth complex variety X of dimension n, the sheaf Ωn
X has a natural structure of a right

D-module. This structure comes from the action of a vector field θ ∈ ΘX on ω ∈ Ωn
X given

by (ω)θ = −(Lie θ)ω. Then a differential operator between locally free sheaves θ : E → F

naturally gives a dual differential operator F∨⊗Ωn
X → E∨⊗Ωn

X . Locally, given an appropriate

trivialisation and in rank one, if the differential operator is of the form P (x, ∂) =
∑

α aα(x)∂
α,

then its formal adjoint is given by
∑

α

(−∂)αaα(x).

To generalise this definition to a differential operator relative to a morphism of schemes, de

Jong indicated two methods in the blogpost [deJ21]. We will work out the second approach

in detail here, which amounts to defining it locally and checking that it extends to a global

definition. This imitates the situation of D-modules which corresponds to the case S = SpecC;

the main difference to be aware of is simply that in characteristic p, the differential operators

can take a slightly different form.

2.2. Local description. We begin in the local scenario where the base S = SpecA is affine.

Let R be a smooth A-algebra with the structure morphism θ : SpecR → SpecA, and let

D : Rn → Rm be an A-linear differential operator. By [Sta23, Tag 039P], locally θ can

be factored as SpecR
π
−→ SpecA[x1, . . . , xn] → SpecA where π is étale. Explicitly, this

factorisation is given by taking an open covering on which Ω1
X/S is trivial and using n linearly

independent sections to give a map into An
S .

https://stacks.math.columbia.edu/tag/039P


DUALITY OF DIFFERENTIAL OPERATORS AND ALGEBRAIC DE RHAM COHOMOLOGY 4

By [Gro67, Theorem 16.11.2], a differential operator D is locally given by an m×n matrix

with entries of the form

∑

α

fα

( 1

α!
·

∂

∂xαi

)

α
,

where fα ∈ R. Here α is a tuple of nonnegative integers, xα := xα1

1 · · · xαn
n , and α! de-

notes the product α1! · · ·αn!. For convenience we will first define the dual in the case that

rank E = rankF = 1; locally this is equivalent to considering the case of differential operators

R → R.

Define f∗ = f and ( ∂
∂xi

)∗ = − ∂
∂xi

, after making the appropriate trivialisation ωX/S
∼= OX

defined by gdx1 ∧ dx2 ∧ · · · dxn 7→ g for g ∈ R. Using this trivialisation, we extend this

definition by the formula

(1)

(

∑

α

fα

( 1

α!
·

∂

∂xα

)

α

)∗

=
∑

α

(−1)|α|
1

α!

∂

∂xα
(fα · ).

Lemma 2.1. The dual of d0 : OX → Ω1
X/S is equal to −dn−1 : Ωn−1

X/S → Ωn
X/S.

Proof. We do this locally, so assume X → S is of the form SpecR
π
−→ SpecA[x1, . . . , xn] →

SpecA where π is étale, as before. Indeed, locally we have df =
∑n

i=1
∂f
∂xi

dxi, so identifying

Ω1
X/S with Rdx1 ⊕ · · · ⊕Rdxn, we have d0 =

[

∂
∂x1

, . . . , ∂
∂xn

]T
.

Then (d0)∗ : (Ω1
X/S)

∨ ⊗ Ωn
X/S → O∨

X ⊗ Ωn
X/S is a map Ωn−1

X/S → Ωn
X/S . After making the

natural identification

(Ω1
X/S)

∨ ⊗ Ωn
X/S

∼= R(dx2 ∧ · · · ∧ dxn)⊕ · · · ⊕R((−1)n−1dx1 ∧ · · · ∧ dxn−1)

with alternating signs, we get that (d0)∗ is defined by
[

− ∂
∂x1

, . . . ,− ∂
∂xn

]

, while dn−1 is given

by
∑n

i=1
∂
∂xi

in this basis. We thus have (d0)∗ = −dn−1 as desired. �

Proposition 2.2. Let D1,D2 : R → R be two finite order differential operators. Then

(a) (D1 ◦D2)
∗ = D∗

2 ◦D
∗
1.

(b) (D∗
1)

∗ = D1.

Proof. (a) It suffices to show that

(

f ∂
∂xα

i
g ∂

∂xβ
i

)∗

= (g ∂

∂xβ
i

)∗(f ∂
∂xα

i
)∗. We prove it by induction

on |α|, with the base case |α| = 0. We note that when D1 = f and D2 = g ∂
∂xβ , then

(

f ◦ g
∂

∂xβ

)∗

=

(

fg ◦
∂

∂xβ

)∗

= (−1)|β|
∂

∂xβ
(fg · ) =

(

g
∂

∂xβ

)∗

◦ f∗.
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For the step of induction, given α and β with αi > 0 for some i, we denote by α′ the tuple

(α1, . . . , αi − 1, . . . , αn), and by β′ the tuple (β1, . . . , βi + 1, . . . , βn).

LHS =

(

f
∂

∂xα′

∂

∂xi
g

∂

∂xβ

)∗

=

(

f
∂

∂xα′

(

∂g

∂xi
+ g

∂

∂xi

)

∂

∂xβ

)∗

=

(

f
∂

∂xα′ ◦
∂g

∂xi

∂

∂xβ

)∗

+

(

f
∂

∂xα′ ◦ g
∂

∂xβ′

)∗

=

(

∂g

∂xi

∂

∂xβ

)∗

◦

(

f
∂

∂xα′

)∗

+

(

g
∂

∂xβ′

)∗

◦

(

f
∂

∂xα′

)∗

, by induction hypothesis

=

(

∂g

∂xi

∂

∂xβ
+ g

∂

∂xi

∂

∂xβ

)∗

◦

(

f
∂

∂xα′

)∗

= (−1)|β|
∂

∂xβ
◦

(

∂g

∂xi
−

∂

∂xi
◦ g

)

◦ (−1)|α
′| ∂

∂xα′ ◦ f

= (−1)|β|
∂

∂xβ
◦ g ◦

(

−
∂

∂xi

)

◦ (−1)|α
′| ∂

∂xα
′ ◦ f

= (−1)|β|
∂

∂xβ
◦ g ◦ (−1)|α|

∂

∂xα
◦ f

= RHS, by definition.

(b) Applying part (a) to the term corresponding to each fixed α, we get
(

f
∂

∂xα

)∗∗

= (−1)|α|
(

∂

∂xα
◦ f

)∗

= (−1)|α|f∗ ◦

(

∂

∂xα

)∗

, by part (a)

= f
∂

∂xα
,

and the result follows. �

The same method allows us to define the dual differential locally for locally free sheaves of

finite rank by doing so coordinate-wise. The next goal is to show that these local definitions

do indeed globalise.

2.3. Global definition. To give a global definition of the dual differential in which S is

an arbitrary scheme, we must ensure that the local definitions described in the previous

subsection patch together to uniquely define a dual differential. Given a smooth morphism

f : X → S (where S is no longer assumed to be affine), let γ : E → F a differential operator

between locally free sheaves of finite rank on X. Let us first consider how the dual differential

is locally defined in the case E = F = OX . First, we restrict to an affine open covering {Uα}

of X with Ω1
X/S locally free over {Uα} and the image of each Uα contained in an open affine

subscheme of S. Then we choose a trivialisation that gives a factorisation Uα
πα−→ An

S → S

with πα étale, and finally we apply the formula given by Equation 1 on each Uα. If we show

that these are compatible, then in fact this leads to a definition of the dual differential γ∗ for

any E and F locally free of finite rank. Indeed, we can further refine the open cover to one

where E and F are locally free. Then the compatibilities on each matrix component of the

dual differential on the refined cover yield a well-defined definition of γ∗.

Proposition 2.3. Applying the rule described in Equation 1 to a differential operator D : OX →

OX gives a compatible system of dual differentials between different charts, and thus this

method extends to give a well-defined dual differential for locally free sheaves of finite rank.
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Proof. As described above, the second statement follows from the first. To show compatibility,

it suffices to check that for any two Uα, Uβ , the restrictions of D∗|Uα and D∗|Uβ
to Uα ∩ Uβ

coincide. For this, it suffices to check this on any open cover of Uα ∩ Uβ itself. We may

choose one consisting of affine U = SpecR ⊂ Uα ∩ Uβ where U maps into some open affine

S′ = SpecA. Then the two factorisations U −→ An
S → S are determined by two distinct

trivialisations of Ω1
U/S , which differ by an element of GL(n,A).

Let dx1 ∧ · · · dxn and dy1 ∧ · · · dyn be the two trivialisations, with J = det[∂xi

∂yj
] being the

Jacobian. Let us first check the result for D = ∂
∂x1

. We have

D∗
x(fdx1 ∧ · · · ∧ dxn) = −

∂f

∂x1
dx1 ∧ · · · ∧ dxn

Since Dy =
∑n

k=1
∂yk
∂x1

∂
∂yk

, we have D∗
y =

∑

k −
∂

∂yk

∂yk
∂x1

. Thus

D∗
y(fdx1 ∧ · · · ∧ dxn) = D∗

y(fJdy1 ∧ · · · ∧ dyn)

= −
∑

k

∂

∂yk

(

∂yk
∂x1

fJ

)

dy1 ∧ · · · ∧ dyn

= −

(

∑

k

∂f

∂yk

(

∂yk
∂x1

J

)

+ f
∂

∂yk

(

∂yk
∂x1

J

)

)

dy1 ∧ · · · ∧ dyn

= −
∂f

∂x1
dx1 ∧ · · · ∧ dxn − f

∑

k

∂

∂yk

(

∂yk
∂x1

J

)

dy1 ∧ · · · ∧ dyn

= −
∂f

∂x1
dx1 ∧ · · · ∧ dxn

as desired, where the last equality holds because ∂yk
∂x1

J is an element of A

Furthermore, it is clear that the result holds when D is an element of R. Finally, since

(·)∗x and (·)∗y are both anti-involutions, if the result holds for two differential operators, then

it holds for their composition. Since elements of R and differential operators of the form ∂
∂xi

generate all differential operators, we are done. �

2.4. Coordinate-free definition of the dual differential. We now briefly explain how our

definition of dual in coordinates arises from the theory of duality outlined in [deJ21]. We first

recall the EGA definition of a differential operator, for which we fix the following notation:

θ : X → S is morphism of schemes, X(n) denotes the nth infinitesimal neighborhood of the

diagonal of X ×S X, and we have the following commutative diagram.

X(n)

X ×S X

X X

hn
pn qn

p q

The underlying topological space of X(n) is the same as that of X, so denoting the structure

sheaf of X(n) by Pn, we can write X(n) = (X,Pn). Then the projections pn and qn induce the

morphisms p#n and q#n : OX → Pn, which endow Pn with two structures of an OX-module.

Definition 2.4 ([Gro67, Def. 16.8.1]). Given twoOX -modules E and F , a differential operator

is an OS-linear map D : E → F that can be factored as D = u ◦ (q#n ⊗ 1E ) for some OX-linear

map u : Pn ⊗qn,OX
E → F . Here the OX -linearity is considered with respect to the module
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structure on Pn given by p#n , while the tensor product is taken with respect to one given by

q#n .

Construction 2.5. Given a smooth morphism θ : X → S and a differential operator D : E →

F corresponding to u : Pn ⊗qn,OX
E → F , we have a canonical identification F ∼= F∗∗, hence

by tensor-Hom adjunction, u corresponds to the morphism F∗ ⊗OX ,pn Pn ⊗qn,OX
E → ωX/S.

By another tensor-Hom adjunction, the latter corresponds to the morphism denoted

u∗ : F∗ ⊗OX ,pn Pn → E∗,

which is OX-linear with respect to the module structure on Pn given by q#n .

Remark 2.6. One can check that in the setting of Construction 2.5, the right adjoint to Rpn∗ is

given by p!n = RHompn,OX
(Pn, ), and similarly for qn. It then follows that Construction 2.5

gives rise to the same notion of dual differential operators as described in [deJ21].

Lemma 2.7. Let S = SpecA and X = SpecR for R = A[x1, . . . , xn], and fix a differen-

tial operator D : R → R corresponding to some u : Pn ⊗qn,R R → R. Then D∗ as defined

in Section 2.2 is the differential operator corresponding to the morphism u∗ as defined in

Construction 2.5, i.e. D∗ = u∗ ◦ (1F ⊗ p#n ).

Proof. It’s enough to verify the claim for D = ∂
∂x1

. Then n = 1, and if I = (1⊗ xi − xi ⊗ 1)i
denotes the ideal of the diagonal, then

P1 = (R⊗A R)/I2 ∼= R · 1⊕
n
⊕

i=1

R · (1⊗ xi − xi ⊗ 1).

Then one can check that the corresponding u : P1 ⊗qn,R R ∼= P1 → R is defined as projection

on the component R · (1⊗ x1 − x1 ⊗ 1), e.g.

u ◦ (q#n ⊗ 1E )(x1) = u(1 ⊗ x1) = u(x1 · 1 + 1 · (1⊗ x1 − x1 ⊗ 1)) = 1.

Under identification P1 ⊗qn,R R ∼= P1 ∼= R ⊗pn,R P1, the morphism u∗ is identified with u.

Finally, a direct calculation shows that
(

∂
∂x1

)∗
= − ∂

∂x1
, e.g.

u∗ ◦ (1F ⊗ p#n )(x1) = u∗(x1 ⊗ 1) = u∗(x1 · 1 + (−1) · (1⊗ x1 − x1 ⊗ 1)) = −1. �

3. Filtered Künneth formula

3.1. Setup. Given a morphism of schemes θ : X → S, we want to study objects that generalise

the de Rham complex, namely complexes of quasi-coherent sheaves on X whose differentials

are S-differential operators. Moreover, we would like to consider filtrations on such objects.

The theory of filtered derived categories we present now is based on the treatment in Illusie’s

thesis [Ill71, Chapter V] and [Sta23, 05RX]. These sources mainly treat the case of the filtered

derived category of an abelian category, while the category of coherent OX-modules with

differential operators as morphisms is not abelian. In order to sidestep this issue, we first

define, for a pair of abelian categories A and S with an additive functor A → S, the homotopy

category of what we call S-complexes, namely Z-indexed tuples of objects in A whose images

in S form a complex. Since we would like to require S to be abelian, we apply this construction

to A = QCohX and S = Mod(θ−1OS), then take the full subcategory of those S-complexes

whose differentials are S-differential operators. The homological algebra that ensues will be

done in this category and its localisation with respect to filtered quasi-isomorphisms.
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To set the stage, we consider the following cartesian square

(2)

X ×S Y

X Y

S

p q

θ η

f

and assume that X and Y are quasi-compact with affine diagonal and S = SpecA is affine.

We further assume that L (resp. M) is a bounded S-differential complex in the filtered derived

category, consisting of S-flat OX - (resp. OY -) modules (we will define these terms precisely).

The goal of this section is, first, to make sense of the formula

Rθ∗(L)⊗
L
OS

Rη∗(M) → Rf∗(Tot(L⊠M)),

and second, to prove that it is an isomorphism under certain assumptions.

In the sequel, we will apply this to the case X = Y and L = M = (E
D
−→ F).

3.2. Filtered derived categories.

Definition 3.1. For an abelian category A, we will define the filtered derived category DFb(A)

with uniformly bounded filtrations following the same process as in [Sta23, 05RX].

• Let C(A) be the category of complexes of objects in A.

• Filf (A) is the category of finite filtered objects in A, i.e. objects with finite filtrations

(see [Sta23, 05RY]).

• Let CFb(A) be the full subcategory of C(Filf (A)) consisting of complexes L for which

the filtration is uniformly bounded, i.e. there exists N > 0 such that F−NL = L and

FN (L) = 0.

• We denote by KFb(A) the homotopy category of CFb(A).

• Subcategory FAcb(A) and multiplicative system FQisb(A) are defined analogously to

[Sta23, 05RZ, 05S1]. In particular, a morphism ϕ is a filtered quasi-isomorphism if

gr(ϕ) is a quasi-isomorphism, and we write ϕ ∈ FQisb(A).

• We then define DFb(A) = KFb(A)/FAcb(A) = (FQisb(A))−1 KFb(A).

Remark 3.2. An adaptation of the standard argument (e.g., [Sta23, 05RW]) shows that

DFb(A) is naturally identified with a full subcategory of DF(A) (as defined in [Sta23, 05S2]).

3.3. Filtered S-complexes. We will now formalise the setting described in Section 3.1. Let

A and S be two abelian categories, and let σ : A → S be an additive functor. We want to

make sense of what it means to be a complex of objects in A whose differentials are in S.

We recall that Filf (A) is the category of finite filtered objects in A, i.e. objects with finite

filtrations (see [Sta23, 05RY]).

Definition 3.3. We define CFb(A,S) to be the category whose objects are tuples

(Li, di : σ(Li) → σ(Li+1))i∈Z, where

• Li ∈ Filf (A),

• (σ(L), d) is a complex of objects in Filf (S), and

• the filtration of L is uniformly bounded.

A morphism ϕ : (L, dL) → (M,dM ) is given by a tuple ϕ : Li → M i of morphisms in Filf (A)

such that σ(ϕ) defines a morphism of complexes over Filf (S). We call CFb(A,S) the category

of filtered S-complexes over A with uniformly bounded filtrations.

https://stacks.math.columbia.edu/tag/05RX
https://stacks.math.columbia.edu/tag/05RY
https://stacks.math.columbia.edu/tag/05RZ
https://stacks.math.columbia.edu/tag/05S1
https://stacks.math.columbia.edu/tag/05RW
https://stacks.math.columbia.edu/tag/05S2
https://stacks.math.columbia.edu/tag/05RY
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Remark 3.4. One can similarly define the category of S-complexes over A without filtrations,

and the subsequent lemmas will still hold for formal reasons. Since we won’t use it in the

sequel, we omit the obvious definition and statements for the sake of brevity.

Definition 3.5. Given two S-complexes L,M ∈ CFb(A,S) and a morphism ϕ : L → M , we

say that ϕ is null-homotopic if there exists a collection of morphisms h =
(

hi : Li → M i−1
)

in A such that dM ◦ σ(h) + σ(h) ◦ dL = σ(ϕ) in S. We denote KFb(A,S) the quotient of

CFb(A,S) by null-homotopic maps, and call it the homotopy category of filtered S-complexes

over A with uniformly bounded filtrations.

Definition 3.6 (cf. [Sta23, 05RZ]). An S-complex L ∈ KFb(A,S) is called filtered acyclic

if the complex gr(σ(L)) is acyclic. The full subcategory of such will be denoted FAcb(A,S).

A morphism of S-complexes ϕ : L → M is called a filtered quasi-isomorphism if gr(σ(ϕ)) is a

quasi-isomorphism. The collection of all such morphisms will be denoted FQisb(A,S).

Similarly to [Sta23, 014E], we define the cone C(ϕ) of a morphism ϕ : L → M as a pair

(M ⊕ L[1], dC(ϕ)), where dC(ϕ) =
[

dM σ(ϕ)
0 −dL

]

.

Lemma 3.7. Let A and S be two abelian categories, and let σ : A → S be an additive functor.

Then KFb(A,S) with the collection of distinguished triangles
{

L
ϕ
−→ M

[ 10 ]−−→ C(ϕ)
[ 0 1 ]
−−−→ L[1]

}

,

where ϕ ranges over all morphisms of A, forms a triangulated category.

Proof. One observes that the standard construction of necessary homotopies (e.g. [Sta23,

014S] and references therein) when checking the axioms (TR1–TR4) still works, i.e. they do

not use components of differentials and hence exist on the level of A. �

Remark 3.8. Analogously to the proof of [Sta23, 05S1], one observes that H0 ◦ gr ◦ σ is

a homological functor KFb(A,S) → S, hence by [Sta23, 05RM], FAcb(A,S) is a saturated

triangulated subcategory of KFb(A,S), and the corresponding saturated multiplicative system

is FQisb(A,S). One can then define the filtered derived category of S-complexes; we abstain

from doing it, for we need a further refinement to suit our purposes.

3.4. S-differential complexes. Given an S-scheme X
θ
−→ S, we can consider the category

CFb(QCoh(X),Mod(θ−1OS)) of filtered Mod(θ−1OS)-complexes with respect to the natural

forgetful functor σ : QCoh(X) → Mod(θ−1OS).

Definition 3.9. For an S-scheme X
θ
−→ S, we define a filtered S-differential complex L as an

object of CFb(QCoh(X),Mod(θ−1OS)) such that in addition the differentials

di : σ(Li) → σ(Li+1)

come from finite order S-differential operators between the OX -modules Di : Li → Li+1, i.e

di = σ(Di). We denote the full subcategory of S-differential complexes by CFDb(X,S). Us-

ing the notion of null-homotopy from CFb(QCoh(X),Mod(θ−1OS)), we define the homotopy

category of filtered S-differential complexes KFDb(X,S) as the quotient of CFDb(X,S) by

null-homotopic maps.

Since the forgetful functor σ doesn’t change the underlying sheaf of sections, we will sup-

press it from the notation from now on.

https://stacks.math.columbia.edu/tag/05RZ
https://stacks.math.columbia.edu/tag/014E
https://stacks.math.columbia.edu/tag/014S
https://stacks.math.columbia.edu/tag/05S1
https://stacks.math.columbia.edu/tag/05RM
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The results of Lemma 3.7 and Remark 3.8 hold for KFDb(X,S) as well, and we denote

FDAcb(X,S) := FAcb(QCoh(X),Mod(θ−1OS)) ∩KFDb(X,S),

FDQisb(X,S) := FDQisb(QCoh(X),Mod(θ−1OS)) ∩KFDb(X,S).

With this, we are in a position to make the following definition.

Definition 3.10. The filtered derived category of S-differential complexes with uniformly

bounded filtrations is

DFDb(X,S) := KFDb(X,S)/FDAcb(X,S) = (FDQisb(X,S))−1 KFDb(X,S).

Since pulling along p : Z → X is an X-linear operation, it is not automatic that pulling

back an S-linear differential operator will be well-defined. However, the pullback along a

projection map p : X ×S Y → X will take an S-differential complex on X to one on X ×S Y .

In fact, we have the following lemma.

Lemma 3.11. With notation as in Eq. (2), given filtered S-differential complexes L and M

on X and Y , respectively, we can define the filtered S-differential double complex L⊠M with

(L⊠M)i,j = p∗(Li)⊗OX×SY
q∗(M j)

and differentials

dL ⊠ 1M and 1L ⊠ dM .

Proof. Apply [Sta23, 0G45]. �

We note that the construction in this lemma is carried out for complexes in CFDb(X,S)

and KFDb(X,S), and we do not attempt to pass it to the level of derived categories.

3.5. Derived functors for filtered derived categories. To prove existence of the derived

tensor product for a filtered derived category, and to compute it, we show that for each object,

we can find a filtered quasi-isomorphism from a complex which is filtered K-flat (i.e. adapted

to computing derived tensor product).

Lemma 3.12. Let A be a cocomplete abelian category with exact direct sums, and let A → S

be an additive functor that commutes with arbitrary direct sums. Fix a subclass of objects P

in A closed under arbitrary direct sums. Assume that every object of A functorially admits

a surjection from an object of P. Then any filtered complex L ∈ CFb(A) or L ∈ CFb(A,S)

admits a filtered quasi-isomorphism P (L) → L such that:

• P (L) → L is term-wise surjective, and

• for every i,m ∈ Z, both F i(P (L)m) and gri(P (L)m) are in P;

• moreover, if the objects in P were adapted to computing a certain derived functor

commuting with arbitrary direct sums, then P (L), F i(P (L)) and gri(P (L)) are also

adapted to computing this derived functor.

Proof. By a standard argument (e.g., the dual to [Sta23, 013K and 079P]), existence of func-

torial surjections from P implies that any complex L ∈ C(A) admits a functorial term-wise

surjection from a complex of objects from P, which we denote by π : P ′(L) → L, such that

P ′(L) is adapted to computing the left derived functor. Further, for each step of filtration,

we get its own resolution, and thus, by functoriality of P ′, we have a commutative diagram

https://stacks.math.columbia.edu/tag/0G45
https://stacks.math.columbia.edu/tag/013K
https://stacks.math.columbia.edu/tag/079P
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of complexes

P ′(F i(L)) F i(L)

P ′(L) L

πi

π

P (ιi) ιi

where the horizontal arrows are term-wise surjections. Note that P ′(ιi) : P ′(F i(L)) → P ′(L)

is not necessarily an injection, so we will modify P ′(L) into P (L) in such a way that the

P ′(F i(L)) induce a desired filtration on P (L). We will adapt the use of the Rees construction

as was done in [SS16, Section 3].

To this end, define

Rees(i) :=
⊕

j≥i

P (F j(L)).

Note that there is a natural identification Rees(i) ∼= P ′(F i(L)) ⊕ Rees(i+ 1). We use it to

define the morphism α : Rees(i+ 1) → Rees(i) as

α :=

[

P ′(ι)

1

]

⊕ 1Rees(i+2),

where
[

P ′(ι)

1

]

: P ′(F i+1(L)) → P ′(F i(L))⊕ P ′(F i+1(L)),

and ι denotes the inclusion ι = ιi+1,1 : F i+1(L) → F i(L). Denote by Q(i) the cone of this

morphism:

Rees(i+ 1)
α
−→ Rees(i) → Q(i).

We note that Q(i) is quasi-isomorphic to P ′(F i(L)), because the above triangle is quasi-

isomorphic to the direct sum of two distinguished triangles: P ′(F i+1) → P ′(F i)⊕P ′(F i+1) →

P ′(F i) and Rees(i+ 2) → Rees(i+ 2) → 0.

Now we can define the desired complex P (L). Since we are interested in the case of

uniformly bounded filtrations, we can choose N such that F−N (L) = L and FN (L) = 0. We

then set

F i(P (L)) =















Q(−N) for i < −N,

Q(i) for −N ≤ i ≤ N,

0 for N < i.

This constructions yields a filtered complex P (L) := Q(−N), where the inclusions Q(i+1) →

Q(i) are given by inclusions of direct summands. Each F i(P (L)) is quasi-isomorphic to

P ′(F i(L)) and hence to F i(L).

�

Lemma 3.13. Let (S,OS) be a ringed space. Then there is a derived functor ⊗L
OS

defined on

the filtered derived category DFb(OS) := DFb(Mod(OS)) with uniformly bounded filtrations,
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and this functor commutes with gr:

DFb(OS)×DFb(OS) DFb(OS)

(

⊕

Z

D(OS)

)

×

(

⊕

Z

D(OS)

) (

⊕

Z

D(OS)

)

⊗L

OS

gr

⊗L

OS

gr

Proof. We prove both claims by construction. By Lemma 3.12, every complex L with uni-

formly bounded filtrations admits a filtered surjective quasi-isomorphism f : P (L) → L from

a K-flat filtered complex P such that gr(P ) is K-flat as well. This shows that ⊗L
OS

exists and

can be computed by

L⊗L
OS

L′ = P (L)⊗OS
L′,

and since gr(P (L)) is K-flat, we also have

gr(L)⊗L
OS

gr(L′) = gr(P (L)) ⊗OS
gr(L′) = gr(P (L)⊗OS

L′) = gr(L⊗L
OS

L′). �

Corollary 3.14. Let θ : X → S be a morphism of ringed spaces. Then there exists a derived

functor

Lθ∗ : DFb(OS) → DFb(OX),

and it commutes with gr.

Proof. The functor θ−1 : Mod(OS) → Mod(OX) is exact and takes OS -flat objects to θ−1OS-

flat objects. Now we apply Lemma 3.13 to θ−1( ) ⊗θ−1OS
OX , which is the definition of

θ∗( ). �

Lemma 3.15. Let f : Z → S be a morphism of ringed spaces. Then there exists a derived

functor

Rf∗ : DFb(OZ) → DFb(OS),

and it commutes with gr.

Proof. The dual to Lemma 3.12 holds by a dual argument, or alternatively, by a combination

of [Sta23, 05TW, 079P, 070L] in the case when the chosen subclass of objects consists of

injectives; in the latter argument, some care is needed to control that the resulting filtered

K-injective complex has uniformly bounded filtrations. Therefore, the argument dual to one

in the proof of Lemma 3.13 applies. �

3.6. The cup product morphism.

Proposition 3.16. Consider S-schemes X and Y as in Eq. (2). We assume that X and Y

are quasicompact with affine diagonal, and L (resp. M) is a filtered S-differential complex on

X (resp. Y ). Then there exists a cup product morphism

Rθ∗(L)⊗
L
OS

Rη∗(M) → Rf∗ (Tot(L⊠M)) .

If in addition L and M consist of flat objects, have uniformly bounded filtration, L is bounded

and M is bounded below, then this morphism induces a quasi-isomorphism on the associated

graded objects:

gr
(

Rθ∗(L)⊗
L
OS

Rη∗(M)
)

→ gr (Rf∗ (Tot(L⊠M))) .

https://stacks.math.columbia.edu/tag/05TW
https://stacks.math.columbia.edu/tag/079P
https://stacks.math.columbia.edu/tag/070L
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Proof. We have verified that all the operations in the construction of [Sta23, 0G4B] are well-

defined on filtered derived categories. Note that apply the construction of Lemma 3.15 to

morphisms (X, θ−1OS) → S, (Y, η−1OS) → S, (X ×S Y, f−1OS) → S.

The second claim follows from [Sta23, 0FLT] in case S is affine, since we checked that

taking derived functors commutes with gr. If S is not affine, we check the quasi-isomorphism

locally over open affine subschemes S′ ⊂ S. �

4. Construction of the copairing map for locally free sheaves

Let X over S = SpecA be smooth proper of relative dimension n. Let ωX/S = Ωn
X/S , let

E be a locally free sheaf on X, and let E∗ := H omOX
(E , ωX/S). We have the Serre duality

pairing

ǫ : RΓ(X, E∗)[n]⊗L
A RΓ(X, E) → A,

which is a perfect pairing of perfect complexes in D(A). The goal of this section is to explicitly

construct a map

η : A → RΓ(X, E∗)[n]⊗L
A RΓ(X, E),

which we will show to be a copairing map in the following section. First, we note that we

have the Künneth isomorphism

RΓ(X, E∗)[n]⊗L
A RΓ(X, E) ∼= RΓ(X ×S X, E ⊠ E∗[n]),

and therefore to give η is equivalent to giving

η̃ : A → Hn(X ×S X, E ⊠ E∗),

i.e. equivalent to giving an element η̃(1) ∈ Hn(X ×S X, E ⊠ E∗). We construct this element

as follows. Let ∆: X → X ×S X be the diagonal map, and note that we have a natural map

Hn
∆(X ×S X, E ⊠ E∗) → Hn(X ×S X, E ⊠ E∗)

where Hn
∆ = RnH0

∆ is the cohomology with supports along ∆. Next, observe that for a sheaf

F on X ×S X, we have H0
∆(F) := H0(∆,H0

∆(F)), so local cohomology is the composition

of global sections with taking the local cohomology sheaf. The corresponding Grothendieck

spectral sequence reads

Epq
2 : Hp(∆,Hq

∆(F)) =⇒ Hp+q
∆ (X ×S X,F).

To describe these cohomology sheaves Hq
∆(F), we will use the following lemma.

Lemma 4.1. Let i : Z → P be a Koszul-regular immersion of codimension c, and let G be

a locally free sheaf on P . Then Ha
Z(G) is 0 unless a = c. Furthermore, the local sections of

Hc
Z(G) can be described as the global sections of the cokernel of the final map in the extended

alternating Čech complex associated to i and G, suitably localised (which will be explicitly

described in the proof).

Proof. The first half of this lemma is proven in [Sta23, 0G7P]. We explain the proof here,

which also explains the second half of this lemma, namely how one can explicitly describe

local sections of Hc
Z(G).

We check these statements locally. Suppose that P = SpecR, Z = V (f1, . . . , fc) with

f1, . . . , fc a Koszul-regular sequence of R. Let G = M̃ , where M is a locally free R-module.

Let Ui = P−V (fi), and Ui0,...,ik := Ui0∩· · ·∩Uik , which are all affine. Let ji0,...,ik : Ui0,...,ik → P

be the inclusion and Gi0,...,ik be the restriction of G to Ui0,...,ik .

https://stacks.math.columbia.edu/tag/0G4B
https://stacks.math.columbia.edu/tag/0FLT
https://stacks.math.columbia.edu/tag/0G7P
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Consider the sequence

(3) 0 → M →
⊕

i

Mfi →
⊕

i<j

Mfifj → · · · → Mf1...fc

and its associated sheafification

(4) 0 → G →
⊕

i

(ji)∗Gi → · · · → (j1,...,c)∗G1,...,c,

where G is placed in degree 0. By [Sta23, 0G7M], the complex (4) represents i∗RHZ(G) in

DZ(OP ). Therefore the local cohomology sheaves vanish in degrees higher than c. Further-

more, by Koszul-regularity the cohomology is zero in degrees less than c as well, proving the

first part of the lemma.

For the second part of the lemma, let Q be the cokernel of the final map in the complex

(3), so that Q̃ is the cokernel of the final map in the complex (4). Then again because the

complex (4) represents i∗RHZ(G), we see that the local sections of H
c
Z(G) are given by H0

Z(Q̃),

as desired. �

Corollary 4.2. Let i : Z → P be a Koszul-regular immersion of codimension c, and let G be

a locally free sheaf on P . Then

Ha
Z(P,G) = Ha−c(Z,Hc

Z(P,G)).

Proof. By Lemma 4.1, we have RΓZ(P,G) = RΓ(Z,RH0
Z(P,G)) = RΓ(Z,Hc

Z(P,G)[−c]).

Then taking a-th cohomology group implies the result. �

SinceX → S is smooth, the diagonal map ofX is a Koszul-regular immersion [Sta23, 069G].

Thus by Corollary 4.2, to produce η̃(1) ∈ Hn(X ×S X, E ⊠ E∗) it suffices to produce a global

section of the sheaf Hn
∆(X ×S X, E ⊠ E∗), a task we can do locally in a neighborhood of ∆ in

X ×S X using the proof of Lemma 4.1. Indeed, the lemma implies that to give a local section

of Hn
∆(X ×S X, E ⊠ E∗), it suffices to give a section of Q̃, which we recall to be the cokernel

of the final map in the complex (4). Work in a local chart U ⊂ X with coordinates x1, . . . , xn
giving an étale map to An

S . Let x1, . . . , xn, y1, . . . , yn denote the corresponding coordinates on

U ×S U ⊂ X ×S X.

Lemma 4.3. The locus V (x1 − y1, . . . , xn − yn) ⊂ U ×S U is the disjoint union of ∆U and a

closed subset of U ×S U . In particular, there exists an open subset of U ×S U containing ∆U

on which V (x1 − y1, . . . , xn − yn) cuts out precisely ∆U .

Proof. First, note that V (x1− y1, . . . , xn− yn) is just the image of U ×An
S
U under the natural

closed embedding U ×An
S
U → U ×S U , and moreover the diagonal morphism U → U ×S U

factors through the diagonal U → U ×An
S
U . Since U → An

S is étale, the diagonal map

U → U ×An
S
U is an open immersion [Sta23, 02GE]. It follows that the complement of ∆U in

U ×An U is a closed subset V ⊂ V (x1 − y1, . . . , xn − yn), which was to be proven.

Letting g ∈ Γ(U ×S U,O) be a function which is 1 along ∆U and 0 along V , we have that

V (x1 − y1, . . . , xn − yn) ∩D(g) is ∆U , as desired. �

Using this lemma, we may cover the diagonal of X by open subsets U ′ ⊂ ∆X which are

cut out by x1 − y1, . . . , xn − yn, where x1, . . . , xn, y1, . . . , yn are local coordinates yielding an

étale map to An ×S An. Letting e1, . . . , er be a local basis of E , with e∨1 , . . . , e
∨
r denoting the

dual basis in E∨, and letting ω := dy1 ∧ · · · ∧ dyn be a trivialisation of ωX/S , we can choose

the section

τE |U ′ :=

∑r
i=1 ei ⊠ (e∨i ⊗ ω)

(x1 − y1) · · · (xn − yn)
.

https://stacks.math.columbia.edu/tag/0G7M
https://stacks.math.columbia.edu/tag/069G
https://stacks.math.columbia.edu/tag/02GE
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It remains to show that the τE |U ′ glue to a global section onX×SX. Let I be the quasicoherent

sheaf of ideals of the diagonal ∆: X → X ×S X. We recall that there is a natural map

[Sta23, 0G7T]

c : ∧n (I/I2)∨ ⊗OX
∆∗(E ⊠ E∗) → Hn

∆(E ⊠ E∗).

Note that changing a basis for I/I2 alters the local map ∆∗(E⊠E) → Hn
∆(E⊠E) by a factor of

a determinant, so the maps will glue if we include the factor of ∧n(I/I2)∨. We have canonical

isomorphisms

∧n(I/I2)∨ ⊗OX
∆∗(E ⊠ E∗) ∼= ω∨

X/S ⊗ E ⊗ E∨ ⊗ ωX/S
∼= End(E),

and thus can consider the global section

c(idE) ∈ H0(X ×S X,Hn
∆(E ⊠ E∗)).

Over the open subset U ′ constructed above, we can trace through the above identifications

and find that

c(idE)|U ′ = c((dy1∧· · ·∧dyn)
∨⊗(

∑

i

ei⊗e∨i )⊗dy1∧· · ·∧dyn) =

∑r
i=1 ei ⊠ (e∨i ⊗ ω)

(x1 − y1) . . . (xn − yn)
= τU ′ ,

so indeed c(idE) yields the desired global section, and hence the desired element η̃(1) ∈

Hn(X ×S X, E ⊠ E∗).

5. Compatibility with Serre duality

5.1. Setup. Using the notation from the previous section, recall that Serre duality gives a

perfect pairing

ǫ : RΓ(X, E∗)[n]⊗L
A RΓ(X, E) → A,

of perfect complexes in D(A). Now that we have constructed a map

η : A → RΓ(X2, E ⊠ E∗[n]) ≃ RΓ(X, E) ⊗L
A RΓ(X, E∗)[n]

by constructing a distinguished element η(1) = τE , we will show that it gives a coevaluation

to the evaluation ǫ. That is, we will check that the following composition is the identity:

(5) RΓ(X, E)
η⊗id
−−−→ RΓ(X, E)⊗L

A RΓ(X, E∗)[n]⊗L
A RΓ(X, E)

id⊗ǫ
−−−→ RΓ(X, E).

5.2. Factoring the composition. Computing the composition directly can be tricky; there-

fore we will factor it in a way that allows us to use the local description of η.

First we note that there’s a map RΓ(X, E)
p∗
1−→ RΓ(X3, E ⊠ OX ⊠ OX) which is pullback

by the projection on the first factor. Now recall that τE ∈ Hn
∆(X

2, E ⊠ E∗) which we pullback

along the p23 : X
3 → X2 to get a class p∗23τE ∈ HnRΓ∆×X(X3,OX ⊠ E∗

⊠ E). By taking the

cup product with this class, we have a sequence of maps

RΓ(X, E)
p∗
3−→ RΓ(X3,OX⊠OX⊠E)

(−)∪p∗
12
τ

−−−−−−→ RΓ∆×X(X3, E⊠E∗[n]⊠E) → RΓ(X3, E⊠E∗[n]⊠E).

Pulling back along id×∆: X × X → X3, we get a map RΓ(X3, E ⊠ E∗[n] ⊠ E)
(id×∆∗)
−−−−−→

RΓ(X2, E ⊠ (E∗ ⊗ E)[n]) and via the trace map we get a map

(6)

RΓ(X2, E⊠(E∗⊗E)[n])
Tr
−→ RΓ(X2, E⊠(ωX/S)[n]) → RΓ(X, E)⊗L

ARΓ(X,ωX/S [n])
1⊗

∫
X−−−→ RΓ(X, E).

https://stacks.math.columbia.edu/tag/0G7T
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We claim that the composition of these maps just described is equal to the composition in

(5). Indeed, this is equivalent to the commutativity of the following diagram.

RΓ(X3,OX ⊠OX ⊠ E) RΓ∆×X(X3, E ⊠ E∗[n]⊠ E) RΓ(X3, E ⊠ E∗[n]⊠ E) RΓ(X2, E ⊠ (E∗[n]⊗ E))

RΓ(X, E) RΓ(X, E) ⊗L
A RΓ(X, E∗)[n]⊗L

A RΓ(X, E) RΓ(X, E)

(−)∪p∗
12
τE (id×∆)∗

η⊗id

p∗
3 Künneth

id×ǫ

Tr,Künneth,ǫ

Here the rightmost map denoted ‘Tr,Künneth, ǫ’ is the composition described in (6). This

diagram commutes because each of the two squares commutes by construction. Thus we need

to show that the composition along the top side of the rectangle is the identity.

Note that the composition from the bottom left corner to the top right corner can be

simplified to

RΓ(X, E)
p∗
2−→ RΓ(X2,OX ⊠ E)

∪τE−−→ RΓ(X2, E ⊠ (E∗[n]⊗ E)).

Furthermore, since τE ∈ H0(X ×S X,Hn
∆(E ⊠ E∗)) is supported on the diagonal, these maps

also factor through the corresponding local cohomology groups. Thus checking that the

composition (6) is the identity is equivalent to the following result.

Proposition 5.1. The composition

RΓ(X, E)
p∗
2−→ RΓ(X2,OX ⊠ E)

∪τE−−→ RΓ∆(X
2, E ⊠ (E ⊗ E∗))

Tr
−→ RΓ∆(X

2, E ⊠ ωX/S [n])

→ RΓ(X2, E ⊠ ωX/S [n])
Künneth,ǫ
−−−−−−→ RΓ(X, E)

is the identity.

5.3. Čech check. We will now prove Proposition 5.1 using Čech cohomology. Let U be an

open affine covering of X. Because X is separated, we can identify RΓ(X, E) = C∗(U , E) and

RΓ(X ×X,OX ⊠ E) = C∗(U ×U ,OX ×E). After intersecting each Ui×Uj with the diagonal,

we obtain an open affine covering U ′ of X ×X.

We will compute the composition in Proposition 5.1 up until the final morphism, given by

the top row in the commutative diagram below, using the identifications made in the bottom

row.

RΓ(X, E) RΓ(X ×X,OX ⊠ E) RΓ∆(X
2, E ⊠ (E ⊗ E∗)) RΓ∆(X

2, E ⊠ ωX/S)

C∗(U , E) C∗(U × U ,OX ⊠ E) C∗(U × U ,Hn
∆(E ⊠ (E ⊗ E∗))) C∗(U ′,Hn

∆(E ⊠ ωX/S))

C∗(Uα × Uα,H
n
∆(E ⊠ (E ⊗ E∗))) C∗(U ′,Hn

∆(E ⊠ (E ⊗ E∗)))

p∗
2 ∪τE Tr

p∗
2

∪τE

∼=

∼=

Tr

Indeed, recall that in the Grothendieck spectral sequence associated to the composition

RΓ(∆, RH∆(E ⊠ (E∗ ⊗ E)) = RΓ∆(X ×X, E ⊠ (E∗ ⊗ E)) the only nonzero degree of Hi
∆(E ⊠

(E∗ ⊗ E) occurs when i = n. Thus RΓ∆(X ×X, E ⊠ (E∗ ⊗ E)) = C∗(U ′,Hn
∆(E ⊠ (E ⊗ E∗))).

Now recall that τE ∈ H0(X×SX,Hn
∆(E⊠E∗)). Thus taking the cup product with it lands in

C∗(U × U ,Hn
∆(E ⊠ (E ⊗ E∗))). Since the sheaf is supported on the diagonal, we may compute

its cohomology by restricting to the elements of the open cover U × U of the form Uα × Uα.

Thus the natural inclusion morphism of Čech complexes C∗(Uα × Uα,H
n
∆(E ⊠ (E ⊗ E∗))) →

C∗(U × U ,Hn
∆(E ⊠ (E ⊗ E∗))) is an isomorphism in the derived category. Restricting these

covers to U ′ gives the identification with C∗(U ′,Hn
∆(E ⊠ (E ⊗ E∗))).
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Thus, we wish to explicitly compute the value of the composition of the horisontal maps

on an element s ∈ C∗(U , E) by evaluating along the bottom row. We have p∗2s is the element

1⊠ s ∈ C∗(U × U ,OX × E), (1⊠ s)(Uα × Uβ) = s(Uβ),

where α and β are p-tuples of s is in degree p. Now we must compute its value when taking

the cup product with τE , which on the open subsets U ′ is given by

τE |U ′ =

∑r
i=1 ei ⊠ (e∨i ⊗ ω)

(x1 − y1) . . . (xn − yn)

By the earlier discussion, we can compute the cup product with this element by restricting to

the values on U ′. In doing so, the value the cocycle s takes on U ′
α = (Uβ × Uγ) ∩∆ is given

by s(Uβ × Uγ)|U ′
α
, which we will simply write as s(U ′

α). We have that p∗2s ∪ τE evaluated on

U ′
α is

(p∗2s ∪ τE)(U
′
α) =

(
∑r

i=1 ei ⊠ (e∨i ⊗ ω))⊗ (1⊠ s)

(x1 − y1) · · · (xn − yn)
(U ′

α)

=
(
∑r

i=1 ei ⊠ (e∨i ⊗ ω ⊗ s))

(x1 − y1) · · · (xn − yn)
(U ′

α)

Applying the trace map, we get

(Tr(p∗2s ∪ τE))(U
′
α) =

∑r
i=1(ei ⊠ e∨i (s)ω)

(x1 − y1) · · · (xn − yn)
(U ′

α)

=

∑r
i=1(e

∨
i (s)ei ⊠ ω)

(x1 − y1) · · · (xn − yn)
(U ′

α)

=
s⊠ ω

(x1 − y1) · · · (xn − yn)
(U ′

α).

This shows that if we write factor the desired composition in Proposition 5.1 as

RΓ(X, E)
g
−→ RΓ(X2, E ⊠ ωX/S [n])

Künneth,ǫ
−−−−−−→ RΓ(X, E),

we have that the section g(s) is locally represented by
s⊠ ω

(x1 − y1) · · · (xn − yn)
on U ′

α. We recall

that the term 1⊠ω
(x1−y1)···(xn−yn)

represents a section of RΓ(X2,OX ⊠ ωX/S) by giving a Čech

cocycle representing a global section of the local cohomology sheaf, under the isomorphism

H0(X ×S X,Hn
∆(OX ⊠ ωX/S)) ∼= Hn(X ×S X,OX ⊠ ωX/S).

By [Sta23, Tag 0G7Q], the section of Hn
∆(OX ⊠ ωX/S) that 1⊠ω

(x1−y1)···(xn−yn)
represents cor-

responds to 1 ⊠ ω as a section of H0(U ′
α ×S U ′

α,OX |U ′
α
⊠ ωX/S |U ′

α
[n]). Moreover, by the

construction of ω in Section 4, ω is the restriction to each U ′ of the element sent to 1 by the

trace map ǫ : Hn(X,ωX/S) → A. Thus applying Künneth and ǫ to g(s) yields s, as desired.

This completes the proof of Proposition 5.1.

6. Extension to two-term complexes

6.1. Definition of the copairing. Continuing with the same notation as in the previous

sections, let E and F be locally free sheaves on X. Set L = E
D
→ F with E in degree 0, and

M = L∗ = F∗ D∗

→ E∗ with E∗ in degree 0. By the filtered Künneth formula, to construct

the copairing map η : A → RΓ(X,L) ⊗L
A RΓ(X,M)[n], it is enough to give a distinguished

element

η̃(1) ∈ Hn(X ×S X,L⊠M).

https://stacks.math.columbia.edu/tag/0G7Q
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The following proposition lets us produce this distinguished element in the same way as we

did for 1 term complexes before.

Proposition 6.1. Consider the sequence

· · · → 0 → Hn
∆(E ⊠ F∗) → Hn

∆(E ⊠ E∗)⊕Hn
∆(F ⊠F∗) → Hn

∆(F ⊠ E∗) → 0 → · · ·

where the middle term is placed in degree n and the last map is induced by D ⊠ 1 − 1 ⊠D∗,

arising from the first spectral sequence of hypercohomology abutting to RΓ∆(X ×S X,L⊠M).

Then an element of Hn
∆(E ⊠ E∗) ⊕ Hn

∆(F ⊠ F∗) in the kernel of D ⊠ 1 − 1 ⊠ D∗ naturally

defines an element of Hn(RΓ∆(X ×S X,L⊠M)).

Proof. Let G denote one of the locally free sheaves E ⊠ E∗, E ⊠F∗,F ⊠ E∗,F ⊠F∗. Note that

the E2-spectral sequence Ea,b
2 = Ha(X × X,Hb

∆(G)) ⇒ Ha+b
∆ (X × X,G) degenerates with

only nonzero term when b = n, by Lemma 4.1. In particular, Ha+b
∆ (X ×X,G) is only nonzero

for a+ b ≥ n.

Next, observe that

L⊠M ∼= E ⊠ F∗ → (E ⊠ E∗)⊕ (F ⊠ F∗)
D⊠1−1⊠D∗

→ F ⊠ E∗

where the middle term is in degree 0. Then the first spectral sequence of hypercohomology

for RΓ∆(X×SX,L⊠M) gives an E1-spectral sequence consisting of terms of the form Ea,b
1 =

Hb
∆(X×X,G), which are only nonzero for b ≥ n. Thus any element ofHn

∆(E⊠E∗)⊕Hn
∆(F⊠F∗)

in the kernel of D ⊠ 1− 1⊠D∗ is also in the kernel of all differentials from that position on

subsequent pages of the spectral sequence, as such differentials go downwards. This proves

the desired result. �

An element of Hn(RΓ∆(X ×S X,L⊠M)) gives an element of Hn(X ×S X,L⊠M) by the

natural map between them. Thus to define a distinguished element η̃(1) ∈ Hn(X×SX,L⊠M),

it suffices to give elements of Hn
∆(E⊠E∗) and Hn

∆(F⊠F∗) which are killed by D⊠1−1⊠D∗.

For these, we will take the elements τE and τF constructed in Section 4 and let η̃(1) correspond

to τE + τF .

Construction 6.2 (Construction for two-term complexes). Define the copairing map

η : A → RΓ(X,L)⊗L
A RΓ(X,M).

by setting η̃(1) ∈ Hn(X ×S X,L⊠M) to be the image of τE + τF ∈ Hn
∆(X ×S X,L ⊠M) in

Hn(X ×S X,L⊠M).

To show that this construction is well-defined, we must check that τE + τF is indeed a

cocycle in the representation of RΓ∆(X ×S X,L ⊠ M) given by Proposition 6.1. We recall

that τE and τF are defined in the discussion following Lemma 4.3, which we briefly review

now. In this definition, we first look at an open covering of ∆X by ∆U over which E and F

are locally free, giving coordinates x1, . . . , xn, y − 1, . . . , yn. Then restrict to a smaller open

covering by ∆U ′ over which V (x1 − y1, . . . xn − yn) = ∆U .

6.2. Proof of well-definedness. Because étale morphisms are locally standard étale, we

may assume that U is standard étale over S = SpecA, which will help in our explicit calcu-

lation.

Proposition 6.3. Work in a local chart U ⊂ X over which E and F are free with coor-

dinates x1, . . . , xn giving a standard étale map to An
S. Let x1, . . . , xn, y1, . . . , yn denote the

corresponding coordinates on U ×S U ⊂ X ×S X. Letting e1, . . . , er be a local basis of E

and f1, . . . ft be a local basis of F and ω := dy1 ∧ · · · ∧ dyn be a trivialisation of ωX/S. As
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in Lemma 4.3, let g ∈ Γ(U ×S U,O) be a function such that U ′ = D(g) contains ∆U and

V (x1 − y1, . . . , xn − yn) = ∆U . We have the elements τE , τF of Hn
∆(E ⊠ E∗) and Hn

∆(F ⊠F∗)

respectively defined locally by

τE |U ′ =

∑r
i=1 ei ⊠ (e∨i ⊗ ω)

(x1 − y1) . . . (xn − yn)
∈ Γ(U ′,Hn

∆(E ⊠ E∗))

τF |U ′ =

∑t
i=1 fi ⊠ (f∨

i ⊗ ω)

(x1 − y1) . . . (xn − yn)
∈ Γ(U ′,Hn

∆(F ⊠ F∗)).

Then (D ⊠ 1)(τE ) = (1⊠D∗)(τF ) in Hn
∆(X ×S X,F∗

⊠ E).

Before we proceed with the proof, we will make explicit what we need to prove in terms of

algebra. Since U = SpecR is standard étale over An
S, where S = SpecA, by definition we can

write R = (A[x1, . . . , xn][α]/fx)hx
where fx, hx ∈ A[x1, . . . , xn][α], fx(α) is monic, and f ′

x(α)

is invertible in R. Then U ′ = Spec(A[x1, . . . , xn][α]/fx)ghx

It suffices to prove the case where E and F are both rank 1. Given an A-linear differential

operator D on R, let Dx and Dy be the A-linear differential operators on R⊗A R defined by

Dx(r ⊗ r′) = D(r)⊗ r′ and Dy(r ⊗ r′) = r ⊗D(r′). We wish to check that (D ⊠ 1)(τE |U ′)−

(1 ⊠D∗)(τF |U ′) = 0. The explicit representative we are given for this element is in terms of

the extended alternating Čech complex. Therefore, if we let ξ = ((x1 − y1)...(xn − yn))
−1 ∈

(R ⊗A R)g(x1−y1)···(xn−yn), then it suffices to show that

Dx(ξ)−D∗
y(ξ) ∈ Im

(

n
⊕

i=1

(R ⊗A R)
g(x1−y1)··· ̂(xi−yi)···(xn−yn)

→ (R⊗A R)g(x1−y1)···(xn−yn)

)

.

Proof of Proposition 6.3. The proof proceeds in two steps. First we show the result holds for

a class of finite order differential operators which generate all finite order differential operators

as an algebra. Then we show that if the result holds for two differential operators D1 and D2,

then it holds for the composition D = D1D2.

Recall that a finite order differential operator can be written as a sum of terms of the form

r
(

1
β! ·

∂

∂xβ
i

)

, with r ∈ R. Thus for the first step it suffices to prove the case of Dx = ∂
∂xi

,

the case Dx = 1
(pk)!

∂

∂xpk

1

(this case is only relevant in characteristic p), and finally, the case of

0th order differential operators given by some element px(α) ∈ R where p is a one-variable

polynomial with coefficients in A[x1, . . . , xn]ghx
.

For the first step, if Dx = ∂
∂xi

then D∗
y = − ∂

∂yi
, and

∂

∂xi

(

1

(x1 − y1) · · · (xn − yn)

)

−

(

−
∂

∂yi

(

1

(x1 − y1) · · · (xn − yn)

))

= 0.

Second, for Dx = 1
(pk)!

∂

∂xpk

i

, we have Dy = − 1
(pk)!

∂

∂yp
k

i

if p is odd and Dy = 1
(pk)!

∂

∂yp
k

i

if p is

2. In either case, since the action of Dx and D∗
y on ξ is the same as one would get by formally

taking derivatives as usual, a simple computation shows that Dx(ξ)−D∗
y(ξ) = 0.

In the 0th order case, we have Dx(ξ)−Dy(ξ) = (px(α)−py(β))ξ, where px is a single-variable

polynomials with coefficients in A[x1, . . . , xn]hx
and py is the same except with xi replaced

with yi and hx replaced with hy. The fact that V (x1 − y1, . . . , xn − yn) = ∆U implies that

α− β ∈ (x1 − y1, . . . , xn − yn). Then setting xi = yi and α = β, we obtain px(α)− py(β) = 0;

this means that px(α) − py(β) ∈ (x1 − y1, . . . , xn − yn) ⊂ (R ⊗A R)g, and the desired result

follows.

Now for the second part, we will show that if the result holds for a pair of differential

operators D1,D2, then it holds for their composition D = D1D2. We use the following two

facts.
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(1) Given any differential operator T : R ⊗A R → R ⊗A R, any element h ∈ R ⊗A R

induces a differential operator T : (R⊗AR)h → (R⊗AR)h. (This follows from [Sta23,

Tag 0G44].)

(2) For any pair of A-linear differential operators D′,D′′ on R we have that D′
x and D′′

y

commute.

We know that

D1,x(ξ) = D∗
1,y(ξ) +

∑

E1,i, D2,x(ξ) = D∗
2,y(ξ) +

∑

E2,i

where E1,i, E2,i ∈ (R⊗A R)
g(x1−y1)··· ̂(xi−yi)···(xn−yn)

.

Now we use the second fact to compute the following.

Dx(ξ) = D1,x(D2,x(ξ)) = D1,x(D
∗
2,y(ξ) +

∑

E2,i)

= D1,x(D
∗
2,y(ξ)) +

∑

D1,x(E2,i)

= D∗
2,y(D1,x(ξ)) +

∑

D1,x(E2,i)

= D∗
2,y(D

∗
1,y(ξ) +

∑

E1,i) +
∑

D1,x(E2,i)

= D∗
2,y(D

∗
1,y(ξ)) +D∗

2,y(
∑

E1,i) +
∑

D1,x(E2,i)

= D∗
y(ξ) +

∑

D∗
2,y(E1,i) +

∑

D1,x(E2,i).

Thus by the first fact, Dx(ξ)−Dy(ξ) is indeed an element of
⊕n

i=1(R⊗AR)
g(x1−y1)··· ̂(xi−yi)···(xn−yn)

,

as desired. This completes the proof of the proposition. �

6.3. Recollections on duality in the filtered derived category. In order to properly

describe how the constructed copairing is dual to the one given by Serre duality, we will use

the language of filtered derived categories. We thus recall the basic notions of duality in the

filtered derived category.

Given a ring A, the filtered derived category DF (A) arises as the localisation of the category

of filtered chain complexes at graded quasi-isomorphisms, i.e., morphisms which induce an

isomorphisms at the graded level. The filtered derived category has an internal Hom functor

(7) RHom(−,−) : DF (A)×DF (A) → DF (A)

and a symmetric monoidal filtered tensor product

(8) −⊗L− : DF (A) → DF (A).

These functors are adjoints and the following formulas hold:

(9) HomDF (A)(M⊗LN,P ) = HomDF (A)(M,RHom(M,P )),

(10) RHom(M⊗LN,P ) = RHom(M,RHom(M,P )).

The functor 8 makes (DF (A),⊗L) into a symmetric monoidal category and therefore we

can talk about the notion of dualisable objects in (DF (A),⊗L).

We recall here that in a symmetric monoidal category (C,⊗) an object A is dualisable with

dual A∨ if there is an evaluation morphism ǫ : A ⊗ A∨ → 1C and a coevaluation morphism

η : 1C → A⊗A∨ which together satisfy certain compatibility conditions.

https://stacks.math.columbia.edu/tag/0G44
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Example 6.4. Let D(A) be the usual derived category then an object P ∈ D(A) is dualisable

precisely when it is perfect i.e. quasi-isomorphic to a complex of finite projective modules

over A. In fact when P is perfect, then it’s dual is given by RHom(−, A), the coevaluation

map η : A → RHom(P,A) ⊗L P is the trace, while the evaluation RHom(P,A) ⊗L P → A is

the usual evaluation map, arising from the counit of the adjunction

HomD(A)(RHom(P,A)⊗L P,A) = HomD(A)(RHom(P,A), RHom(P,A)).

In DF (A) we thus want to isolate a notion of perfect complexes which interacts well

with the notion of perfectness in D(A). Note that dualisability is a diagramatic notion

and symmetric monoidal functors send dualisable objects to dualisable objects. The functor

Forget : DF (A) → D(A) is symmetric monoidal and so dualisable objects in DF (A) should

remain dualisable after forgetting the filtration. Similar considerations with the symmet-

ric monoidal functors gri : DF (A) → D(A) and gr : DF (A) → DG(A)
Forget
−−−−→ D(A) (where

DG(A) is the graded derived category) show that if P ∈ DF (A) is perfect, then griP ∈ D(A)

should be perfect for each i and that griP can only be non-zero in finitely many degrees.

From this we obtain the following characterisation of dualisable objects.

Proposition 6.5. The following are equivalent

(1) P ∈ DF (A) is dualisable in (DF (A),⊗L),

(2) P has a finite filtration (i.e. griP is non-zero for finitely many i) and all the griP are

perfect in D(A),

(3) P ∈ DF (A) is dualisable in (DF (A),⊗L) with dual RHom(P,A{0}).

Definition 6.6. A complex P ∈ DF (A) is called perfect if it satisfies the equivalent properties

in Proposition 6.5.

6.4. Compatibility with filtered Serre duality. Returning to the specific situation of

this paper, using the Hodge filtration, the copairing map

η : A{0} → RΓ(X,L)⊗L
A RΓ(X,M)[n]

is naturally a map in the filtered derived category with A placed in filtered degree 0. In the

case M = L∗, we will establish that in fact this map is a coevaluation in the filtered derived

category DF (A), in the sense that there is an evaluation morphism

ε : RΓ(X,L)⊗L
A RΓ(X,M) → A{0}

which along with η satisfies the axioms of dualisable objects. In other words, it is a coevalu-

ation in the sense of symmetric monoidal categories.

To do so, we will introduce an intermediate notion of a coevaluation which is in fact

equivalent to the desired definition.

Definition 6.7. Suppose P,Q ∈ DF (A). Then a map η : A{0} → P⊗LQ is called a graded

coevaluation if upon taking gr0, for each i ∈ Z the composite map

gr0(η)i : A →
⊕

i∈Z

griP ⊗L gr−iQ → griP ⊗L gr−iQ

are the coevaluation maps coming from a duality between griP and gr−iQ in D(A) .

Proposition 6.8. Suppose P and Q are perfect complexes in DF (A) and suppose that

η : A{0} → P⊗L
AQ is a graded coevaluation, then it is a coevaluation in (DF (A),⊗L) in

the sense of symmetric monoidal categories.
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Proof. Given the map

η : A{0} → P⊗L
AQ

note that both P and Q are dualisable, so in fact admit duals given by P∨ := RHom(P,A{0})

and Q∨ := RHom(Q,A{0}). Now tensoring the map η with Q∨ we get a map

Q∨ → P⊗LQ⊗LQ∨ → P.

Taking the gri we see that this map is an isomorphism (in fact the identity) on the graded

(by the hypothesis that η is a graded copairing) and so must be an isomorphism in DF (A).

So we conclude that

P ≃ RHom(Q,A{0}) = Q∨.

Now we observe that there is a canonical evaluation map

ε : Q⊗LRHom(Q,A{0}) → A{0}

and so identifying Q∨ with P we get a pairing map

ǫ : P⊗LQ → A{0}

which, by construction, satisfies the duality axioms.

�

Theorem 6.9. The map η is a graded coevaluation with respect to the Serre duality pairing,

and thus a coevaluation in (DF (A),⊗L) in the sense of symmetric monoidal categories.

Proof. Note that the functor gr is a symmetric monoidal functor, in particular it commutes

with ⊗L. Moreover gr0RΓ(X,L) = RΓ(X, E), gr0RΓ(X,L) = RΓ(X, E∗) and gr1RΓ(X,L) =

RΓ(X,F)[−1], gr−1RΓ(X,L) = RΓ(X,F∗)[1]. Thus taking gr0 of the map η we get the

following morphism:

A
gr0η−−→ RΓ(X, E)⊗L

A RΓ(X, E∗)⊕RΓ(X,F)⊗L
A RΓ(X,F∗).

Projecting to the individual summands we obtain the maps

gr0(η)E : A → RΓ(X, E)⊗L
A RΓ(X, E∗)

and

gr0(η)F : A → RΓ(X,F) ⊗L
A RΓ(X,F∗).

Since we can identify gr0(η)E with τE and similarly for F , we see that this map is a

filtered copairing compatible with Serre duality. Finally, by Lemma 6.8, η is a coevaluation

in (DF (A),⊗L) in the sense of symmetric monoidal categories. �

7. Duality of differential operators

Our goal in this section is to use Theorem 6.9 to prove duality between differentials arising

from the long exact sequences arising naturally from the objects in the context of that theorem.

In particular, when L = E → F is taken to be the two-term complex OX
d
−→ Ω1

X/S , we obtain

the desired duality between the two differentials in the Hodge-de Rham spectral sequence.
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7.1. Dual distinguished triangles. We begin with a lemma about dual distinguished tri-

angles.

Lemma 7.1. Let P be a filtered perfect complex. Let P∨ := RHom(P,A) be the dual. Then

the triangles

gri+1P → Fili/Fili+2P → griP

and

gr−iP
∨ → Fil−i−1/Fil−i+1P

∨ → gr−i−1P
∨

are dual in the category D(A).

Proof. We need to check that apply RHom(−, A) to the triangle

gri+1P → Fili/Fili+2P → griP

gives us the triangle

gr−iP
∨ → Fil−i−1/Fil−i+1P

∨ → gr−i−1P
∨.

This follows from the observation that RHom(−, A) preserves triangles and the formulas

griP
∨ = griRHom(P,A{0}) = RHom(gr−iP,A)

and

Fili/Fili+2P
∨ = Fili/Fili+2RHom(P,A{0}) = RHom(Fil−i−1/Fil−i+1P,A).

�

In the situation of the Lemma 7.1, assume that P has a two step filtration increasing

filtration in filtered degrees 0 and 1. Then setting i = 0 we get exact triangles

gr1P → P → gr0P
dP−−→ gr1P [1]

and the dual triangle

gr−1P
∨[−1]

dP∨

−−→ gr0P
∨ → P∨ → gr−1P

∨.

We will apply this to the case where P is set to be RΓ(X, E
D
→ F) with E in degree 0; in

particular with E = OX and F = Ω1
X/S . In light of Theorem 6.9, in this scenario we may

identify P∨ with RΓ(X,F∗ D∗

→ E∗)[n] with E∗ where E∗ is in degree 0. Thus we obtain the

dual distinguished triangles (after a shift)

RΓ(X, E) → RΓ(X,F) → RΓ(X,L)
+1
−−→

and

RΓ(X,F∗)[n] → RΓ(X, E∗)[n] → RΓ(X,L∗)[n]
+1
−−→ .

7.2. Proof of Lemma 1.2. The long exact sequence associated to the dual triangles above

give differentials

H0(d0) : H0(X, E) → H0(X,F), Hn(dn) : Hn(X,F∗) → Hn(X, E∗).

Since the triangles are dual, we would like to conclude that H0(d0) is the dual of Hn(dn).

Lemma 7.2. Assume f : X → S is a smooth and proper morphism of schemes with relative

dimension n. Then for any vector bundle E on X, the pushforward RΓ(X, E) has tor amplitude

in [0, n].
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Proof. By [GW23, Proposition 23.146], it suffices to show that for any s ∈ S with residue field

k(s), we have H i(RΓ(X, E) ⊗L k(s)) = 0 for all i /∈ [0, n]. By tor-independent base-change

[Sta23, Tag 08IB], it follows that

RΓ(X, E) ⊗L k(s) = RΓ(Xs, E ⊗L k(s)),

where Xs is the (n-dimensional) fibre over s. But E is locally free, hence E ⊗L k(s) = E|s. So

in conclusion

H i(RΓ(X, E)⊗L k(s)) = H i(Xs, Es) = 0

by Grothendieck’s vanishing theorem.

�

Proposition 7.3. Assume X → S is smooth and proper with relative dimension n and that

S = SpecA is an affine scheme. Then for any two-term complex of differential operators

between vector bundles L = E
d
−→ F , the differentials H0(d0) : H0(X, E) → H0(X,F) is the

dual of Hn(dn) : Hn(X,F∗) → Hn(X, E∗).

Proof. We have the following commutative diagram:

RΓ(X, E) RHom(RΓ(X, E∗), A)[−n]

RΓ(X,F) RHom(RΓ(X,F∗), A)[−n]

RΓ(X,L) RHom(RΓ(X,L∗), A)[−n],

∼

RΓ(d) RΓ(d)′

∼

∼

where the top two rightward quasi-isomorphisms are given by Serre duality, and the columns

are both triangles. Taking H0, we find:

H0(X, E) Ext−n(RΓ(X, E∗), A)

H0(X,F) Ext−n(RΓ(X,F∗), A)

H0(RΓ(X,L)) Ext−n(RΓ(X,L∗), A),

∼

H0(d0) d′

∼

∼

We wish to identify d′ with

Hom(Hn(X, E∗), A)
Hn(dn)∗

−−−−−→ Hom(Hn(X,F∗), A).

Since X → S is smooth and proper of dimension n, by Lemma 7.2, RΓ(X, E) has tor

amplitude in [0, n]. Then by [Sta23, Tag 0654] we have a projective resolution of RΓ(E)

RΓ(E)
∼
−→ [0 → P 0 → ... → Pn−1 → Pn → 0].

Note that we have the exact sequence:

(11) Pn−1 → Pn → Hn(X, E) → 0.

https://stacks.math.columbia.edu/tag/08IB
https://stacks.math.columbia.edu/tag/0654
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Now we compute RHom(RΓ(E), A)[−n]:

RHom(RΓ(E), A)[−n] = Hom(P •, A)[−n] = [0 → Hom(Pn, A) → Hom(Pn−1, A) → ...].

Thus Ext−n(RΓ(E), A) = ker(Hom(Pn, A) → Hom(Pn−1, A)). But by (11) and left-exactness

of Hom, it follows

ker(Hom(Pn, A) → Hom(Pn−1, A)) = Hom(Hn(X, E), A).

Applying this to the cases E = Ωn−1
X/S and E = Ωn

X/S , we find that

Ext−n(RΓ(X, E∗), A) = Hom(Hn(X, E∗), A)

and

Ext−n(RΓ(X,F∗), A) = Hom(Hn(X,F∗), A).

A simple diagram chase shows that the maps d′ and Hn(dn)∗ are the same.

�

Corollary 7.4. (Alternative proof of [Sta23, Tag 0G8J]) Let S be a quasi-compact and quasi-

separated scheme and let f : X → S be a proper smooth morphism of schemes all of whose

fibres are nonempty and equidimensional of dimension n. Then the map dn : Rnf∗Ω
n−1
X/S →

Rnf∗Ω
n
X/S is zero.

Proof. The statement is local on S; therefore it suffices to take S = SpecA affine. Apply-

ing Proposition 7.3 to L = OX → Ω1
X/S , we may identify (dn)∗ : Hom(Hn(X,Ωn

X/S), A) →

Hom(Hn(X,Ωn−1
X/S), A) with d0 : f∗OX → f∗Ω

1
X/S , which by [Sta23, Tag 0G8H] is 0. Since

Hn(X,Ωn
X/S) is free over A, this implies that dn itself is 0, as desired. �
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