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1 Brief Review of Modular Curves

Let N ≥ 1 be an integer. Recall that we have inclusions of subgroups

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

A congruence subgroup of SL2(Z) is a subgroup containing Γ(N) for some N ≥ 1. Let H denote the complex
upper half plane, and note that SL2(Z) acts on H via mobius transformations.

• If Γ is a congruence subgroup, then we set Y (Γ) = H/Γ. Y (Γ) is a complex manifold of dimension 1.

• Let H∗ := H∪Q∪∞, and note that the Mobius action naturally extends to H∗. We set X(Γ) = H∗/Γ,
a compact Riemann surface containing Y (Γ).

• The complex manifolds Y0(N) := Y (Γ0(N)), Y1(N) := Y (Γ1(N)) admit moduli descriptions, as param-
eter spaces of complex elliptic curves with extra structure. For example, points of Y1(N) correspond
to isomorphism classes of pairs (E,P ) where E/C is a complex elliptic curve and P ∈ E is a point of
order N . By studying these moduli problems over Q, one can show that these curves all have canonical
models as smooth algebraic curves over Q. The same holds for the compactifications X0(N) and X1(N)
(where one has to use generalized elliptic curves), and thus we get smooth projective algebraic curves
over Q in that case.

As a remark, the case of Y (Γ(N)) is a bit more curious: we get Y (Γ(N)) can be defined over Q(ζN ),
so the field of definition grows with N . We will return to this phenomenon in the context of Shimura
varieties later.

• Let Γ ⊂ SL2(Z) be a congruence subgroup, and let f be a meromorphic modular form for Γ of even

weight k. For γ =

(
a b
c d

)
∈ Γ, the relation f(γz) = (cz + d)kf(z) shows that f(z)dzk/2 is a

meromorphic differentials of degree k/2 on X(Γ). The most important consequence of this is that we
have an isomorphism of C-vector spaces

S2(Γ) ∼= H0(X(Γ),Ω1
X(Γ)).

where f is essentially mapped to f(z)dz.

• Recall that for each p - N , we get a correspondence Tp on X0(N), defined moduli theoretically as

X0(Np)

X0(N) X0(N)

f

g

where g(E,C) = (E/Cp, C/Cp) and f(E,C) = (E,CN ). Consequently, we get an action of the algebra
T = Z[Tp : p - N ] on e.g. the singular, étale, and Hodge cohomology of modular curves by using
Poincaré duality. Because these correspondences can be defined over Q, any functorial isomorphism of
cohomology groups of X is automatically T-equivariant. Under the identification above, it is not hard
to see that the induced action of Tp on H0(X0(N),Ω1) coincides with the usual Hecke operator for
modular forms. Moreover it is not hard to see that we could define the same correspondences for e.g.
X1(N).
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2 Cohomology of Modular Curves and Galois Representations

Let X/Q be one of the models for our modular curves as above, and let us use X(C) to denote the corre-
sponding Riemann surface. We consider the singular cohomology group V := H1

sing(X(C),Q). Note that
the Hecke correspondences on the modular curve X induces actions of T on V .

Now let f ∈ S2 be a newform of weight 2, with system of Hecke eigenvalues γ = {γp}p. We base change
in two different directions. First, we consider

H1
sing(X(C),C) = V ⊗Q C.

By Hodge theory, we have

H1
sing(X(C),C) ∼= H0(X,Ω1

X)⊕H1(X,OX) with H1(X,OX) = H0(X,Ω1
X).

Thus by what we have seen, we obtain a canonical decomposition

H1
sing(X(C),C) ∼= S2(Γ)⊕ S2(Γ).

From this, we see two things:

1. Since we know that each Tp is diagonalizable on S2(Γ) (for instance by working with the Petersson inner

product and using the spectral theorem), it follows that the Tp act diagonalizably on VC ∼= S2(Γ)⊕S2(Γ).
Furthermore, the eigenvalues of Tp are all algebraic, and thus the T-action on V itself is diagonalizable.
Thus V admits a decomposition into simultaneous eigenspaces for the Tp. We write

V =
⊕
λ

Vλ

where λ = {λp}p is a system of Hecke eigenvalues.

2. Since f ∈ S2(Γ) is a newform, it is the only element of S2(Γ) with its given system of Hecke eigenvalues
by multipicity one. It follows that the γ-eigenspace inside H1

sing(X(C),C) is two dimensional, spanned

by
〈
f, f
〉
, and thus Vγ ⊂ V is 2-dimensional over Q and satisfies Vγ ⊗Q C =

〈
f, f
〉
.

Base changing in another direction, we can consider H1
sing(X(C),Q`). By Artin’s comparison theorem,

we have an isomorphism
H1

sing(X(C),Q`) ∼= H1
ét(XQ,Q`).

Importantly, the left hand side now carries commuting actions of both T and GQ := Gal(Q/Q). Consequently,
the eigenspace Vγ ⊗Q Q` carries an action of GQ, and we obtain the Galois representation associated to a
weight 2 newform

ρf : GQ → GL(Vγ ⊗Q`) ∼= GL2(Q`).

Example 2.1. We provide one example to illustrate the principle that studying the geometry of modular
curves can lead to nontrivial facts about Galois representations associated to modular forms.

Let X/R be a real curve. Then since complex conjugation σ : C → C is a continuous automorphism of
C over R, it gives a continuous map σ : X(C)→ X(C), and thus we get an automorphism

σ : H1
sing(X(C),Q)→ H1

sing(X(C),Q).

On the other hand, H1
ét(XC,Q`) has a natural action of Gal(C/R) = 〈σ〉, and the action of complex con-

jugation here is the same as the one induced via base changing singular cohomology and applying Artin’s
comparison theorem. But on the complex side, it is clear that σ acts by swapping f and f ; it follows that
det(ρf (σ)) = −1. We deduce that the Galois representation associated to a weight 2 newform form is odd.
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3 Shimura Varieties

3.1 Modular Curves as Shimura Varieties

We now want to explain how modular curves can be seen as one instance of the much more general story of
Shimura varieties. Let Af denote the finite adeles of Q with the usual restricted product topology.

The first starting point is to observe that we may think of congruence subgroups of SL2(Z) in the following
alternative way: a subgroup Γ ⊂ SL2(Q)+ is congruence if and only if Γ = K ∩SL2(Q), where K ⊂ SL2(Af )

is a compact open subgroup. This is because the K(N) := ker(SL2(Ẑ) → SL2(Z/NZ)) form a basic set of
compact opens, and K(N) ∩ SL2(Q) = Γ(N). This is good for two reasons:

1. It provides an intrinsic definition of the notion of congruence subgroup which we can then apply to
other reductive groups

2. It suggests that modular curves can be described adelically, which would both illuminate the various
actions of GL2(Zp) and give an idea of how to generalize to other groups.

Regarding the second point, we have the following:

Lemma 3.1. We have the following isomorphism of manifolds:

SL2(Q)\H× SL2(Af )/K(N) ∼= Y (Γ(N)).

Proof. First, let’s study the set SL2(Q)\SL2(Af )/K(N). Consider the natural inclusion

SL2(Ẑ)/K(N) ⊂ SL2(Af )/K(N).

Since SL2(Z) = SL2(Q) ∩ SL2(Ẑ), this induces an inclusion

SL2(Z)\ SL2(Ẑ)/K(N) ⊂ SL2(Q)\ SL2(Af )/K(N).

Moreover since SL2(Af ) = SL2(Q) SL2(Ẑ),1 this inclusion is surjective hence a bijection. But by definition

SL2(Ẑ)/K(N) ∼= SL2(Z/NZ),

so we conclude
SL2(Z)\ SL2(Ẑ)/K(N) ∼= SL2(Z)\ SL2(Z/NZ) ∼= {1}.

It follows that
SL2(Af ) = SL2(Q)K(N).

Consequently
SL2(Q)\H× SL2(Af )/K(N) ∼= (SL2(Q) ∩K(N))\H ∼= Y (Γ(N)),

where the first equality follows because every representative (h, g) is equivalent to a representative of the
form (h′, k), and (h, k) ∼ (h′, k′) if and only if there exists γ ∈ SL2(Q) ∩K(N) such that γh′ = h.

Of course, one can imagine how to modify this to obtain the quotients Y1(N), Y0(N) in this way as well.
For reasons that we will explain later, it ends up being more fruitful in some ways to work with the group

G = GL2 instead of SL2. Then G(R) acts on H± = C \ R, and G(R)+ act on H. Let’s reuse notation and

set K(N) = ker(GL2(Ẑ)→ GL2(Z/NZ)). In this setting, the modular curves Y (Γ) are just the quotients of
H by a congruence subgroup of GL2(Q)+, but they also admit adelic descriptions as before. For instance,
arguing as above one can compute that

GL2(Q)+\GL2(Af )/K(N) ∼= (Z/NZ)×

and consequently

G(Q)+\H×G(Af )/K(N) =
⊔

(Z/NZ)×

Y (Γ(N)).

1To see this, observe the easier fact that GL2(Af ) = GL2(Q)GL2(Ẑ) to write any element of SL2(Af ) as a product of
matrices of determinant ±1. Then use

(
−1 0 0 1

)
to ensure that the determinants are 1.
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3.2 Shimura Varieties in General

Now let G/Q be a reductive group, e.g. G = GLn,SLn,Sp2n, On. Let M be a real manifold with a smooth
transitive action of G(R). Let M+ be a connected component of M , and let G(R)+ be the stabilizer of M+

in G(R).

Definition 3.2 (Informal). Shimura varieties are certain double coset spaces of the form

XK := G(Q)+\(M+ ×G(Af ))/K.

for K ⊂ G(Af ) a compact open subgroup.

The above reasoning for modular curves can be generalized to show that XK is a finite disjoint union of
quotients of Γi\M+, where Γi ⊂ G(Q)+ are congruence.

In reality, not just any M will suffice: at the very least we want the XK ’s to be the analytification of a
complex algebraic variety! So to qualify as a Shimura variety, M must be special, namely it (roughly) has to
be a conjugacy class of homomorphisms C× → G(R).2 For those familiar with Hodge theory, this suggests
some relation between M and a “family of Hodge structures.”

Example 3.3. In the modular curve setting, H± is the conjugacy class of the homomorphism h : C× →

GL2(R), x + iy 7→
(
x y
−y x

)
. Indeed, an easy calculation shows that

(
a b
c d

)
∈ GL2(R) centralizes an

element in the image of h if and only if a = d, b = −c. It follows that the conjugacy class of h is just GL2(R)
modulo this centralizer. But this centralizer is just the stabilizer of i in the transitive action of GL2(R) on
H±, and thus H± is the isomorphic to the desired conjugacy class. More explicitly, ghg−1 will correspond
to g · i ∈ H±.

As one might expect, the Hodge structure corresponding to τ ∈ H is the natural Hodge structure which
occurs on the first homology of the elliptic curve Eτ = C/ 〈1, τ〉.

Interestingly, H is not realizable as a conjugacy class of homomorphisms h : C× → SL2(R), and conse-
quently our double cosets

SL2(Q)\H× SL2(Af )/K

from before are not Shimura varieties by this definition. Instead, H is the conjugacy class of the obvious
morphism h : U1 → SL2, making these quotients a slightly different object known as a connected Shimura
variety, which make up the connected components of Shimura varieties.

Example 3.4. Note that SL2 = Sp2. Replacing the above discussion with Sp2n = {A ∈M2n : AtΩA = Ω},
one gets an action on the Siegel half spaces Hn = {Z ∈ Symn(C) : im(Z) > 0}, and the resulting connected
Shimura varieties can be interpreted as moduli spaces of abelian varieties of dimension n with level structure.

Theorem 3.5. Let (G,M) be as in the definition of Shimura variety. Then the entire collection of complex
manifolds XK , K ⊂ G(Af ) compact open, is the complex analytification of a canonical collection of smooth
quasi-projective varieties over C.

There exists a number field F , depending only on (G,M), such that each XK admits a canonical model
as a smooth quasi-projective variety over F .

The theorem then “explains” the discrepancy between Shimura varieties and connected Shimura varieties
we observed earlier: the Y (Γ(N))’s do not form a collection of Shimura varieties, since their minimal field of
definition Q(ζN ) grows with N . However, the disjoint unions t(Z/NZ)×Y (Γ(N)) are Shimura varieties, and
are in fact all defined over Q.

The theorem also explains the usefulness of Shimura varieties in the Langlands program: the cohomology
groups lim−→K

H∗ét(XK ,Q`) will carry actions of both Gal(Q/F ) and G(Af ), making it a bit more apparent
why they might be useful in realizing Langlands correspondences.

2This homomorphism also has to satisfy some additional conditions, but we don’t explain them here. It is interesting to
note that these conditions prevent the existence of Shimura varieties for GLn, n > 2.
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4 Extras

4.1 Hecke Operators, Adelically

Given g ∈ G(Af ), we get a morphism g : XgKg−1 → XK , via the left translation action of G on G(Af ).
This leads naturally to an action of G(Af ) on the inverse system {XK}K , and on cohomology groups
lim−→K

H∗(XK), which is known as the Hecke action.
The relation to classical Hecke operators in the modular curve case is the following. Given such a g, one

gets a correspondence

XK∩gKg−1

XK XK

f

g

where f is the natural projection, and g projects to XgKg−1 and composes with the Hecke action of g. I
think the usual Hecke correspondence Tp occurs in the modular curve case by taking g to be the identity at

` 6= p and

(
p 0
0 1

)
at p.

This G(Af ) action is crucial in the Langlands program, as one ultimately wants to relate the GL2(Qp)
and Gal(Q/F ) representations coming from lim−→K

H∗ét(XK ,Q`) (leading to the statements of local-global

compatibility).

4.2 A Double Coset Calculation

We prove in detail a calculation which was just stated earlier.

Proposition 4.1. We have the following isomorphism of manifolds

G(Q)+\H×G(Af )/K(N) =
⊔

(Z/NZ)×

Y (Γ(N))

Proof. For simplicity let us assume N = p is a prime. First we study the double coset G(Q)+\G(Af )/K(p).
Consider the natural inclusion

GL2(Ẑ)/K(p) ⊂ GL2(Af )/K(p).

Since GL2(Z)+ = GL2(Q)+ ∩GL2(Ẑ), this induces an inclusion

GL2(Z)+\GL2(Ẑ)/K(p) ⊂ GL2(Q)+\GL2(Af )/K(p).

Moreover, since GL2(Af ) = GL2(Q)+ GL2(Ẑ), this inclusion is surjective, hence a bijection. But by defini-
tion,

GL2(Ẑ)/K(p) ∼= GL2(Z/pZ),

so we conclude
GL2(Z)+\GL2(Ẑ)/K(p) ∼= GL2(Z)+\GL2(Z/pZ) ∼= (Z/pZ)×,

where the last map is given by the determinant. It follows that

G(Af ) =
⊔

i∈(Z/pZ)×

G(Q)+giK(p),

where gi ∈ G(Af ) is any element which is integral at p and has determinant i modulo p. For instance, we

can take gi to be the identity at all ` 6= p and

(
1 0
0 i

)
at p. Then we have

G(Q)+\H×G(Af )/K(p) ∼=
⊔

i∈(Z/pZ)×

G(Q)+\H×G(Q)+giK(p)/K(p) ∼=
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Note that (h, γgik) ∼ (γ−1h, gik), and (h, gik) ∼ (h′, gik
′) if and only if h′ = giug

−1
i g for u ∈ K(p). It

follows that if we set Γi = G(Q)+ ∩ giK(p)g−1
i , then we have⊔
i∈(Z/pZ)×

Γi\H,

But it is easy to check from our explicit choice of gi that Γi is just Γ(p) ⊂ GL2(Z)+ for all i; it follows that
Γi\H ∼= Y (Γ(p)), as desired.

5 References

For basics on modular curves, modular forms, and Hecke operators:

• Diamond, Shurman. A First Course in Modular Forms.

• Diamond, Im. Modular Forms and Modular Curves.

• Andrew Snowden. Online course on Mazur’s theorem. link.

• Gal Porat. Attaching Galois Representations to Modular Forms. link.

For basics on Shimura Varieties:

• Kai Wen Lan. An example based introduction to Shimura varieties.

• J.S. Milne. Introduction to Shimura Varieties.

Page 6 of 6

http://www-personal.umich.edu/~asnowden/teaching/2013/679/
http://math.uchicago.edu/~galporat/Attaching%20Galois%20representations%20to%20modular%20forms.pdf

	Brief Review of Modular Curves
	Cohomology of Modular Curves and Galois Representations
	Shimura Varieties
	Modular Curves as Shimura Varieties
	Shimura Varieties in General

	Extras
	Hecke Operators, Adelically
	A Double Coset Calculation

	References

