
Revisiting Failure of Hodge Symmetry in Characteristic p

Casimir Kothari
Farb and Friends Seminar, 5/3/23

1 Introduction

Let X/C be a smooth projective complex algebraic variety. For any n ≥ 0 Hodge theory tells us that there
is a decomposition

Hn
dR(X/C) ∼=

⊕
i+j=n

Hi,j(X;C)

where Hi,j(X;C) are the Dolbeault cohomology groups

Hi,j(X;C) :=
ker(∂ : Ai,j(X)→ Ai,j+1(X))

im(∂ : Ai,j−1(X)→ Ai,j(X))
.

Hodge theory moreover tells us that complex conjugation swaps that (i, j) and (j, i) pieces of the decompo-
sition, so that in particular we have Hodge Symmetry :

dimCH
i,j(X;C) = dimCH

j,i(X;C).

Question 1.1. Does Hodge symmetry hold for smooth projective algebraic varieties over fields other than
C?

First, we need a way to generalize the objects involved in Hodge theory to a purely algebraic setting. The
first key observation is that due to the ∂-Poincaré lemma (which asserts that any ∂-closed form is locally an
exact form) and an algebraic comparison theorem, we have isomorphisms

Hi,j(X;C) ∼= Hj(X,Ωi
X,hol)

∼= Hj(X,Ωi
X,alg), (1)

where:

1. The latter two groups are sheaf cohomology;

2. Ωi
X,hol is the sheaf of holomorphic i-forms on X that associates to any open subset U ⊂ X the

holomorphic i-forms on U ;

3. Ωi
X,alg is the sheaf of Kähler (or algebraic) differentials of X, which roughly speaking record those

differential forms which locally look like f(x)dx1∧ · · ·∧dxi with f a polynomial. Note that Ω0
X = OX ,

the sheaf of regular functions on X. It is important to note here that Ωi
X,alg is a sheaf on X in the

Zariski topology, whereas the others were sheaves in the usual complex topology.

The benefit of making these comparisons is that now we have a purely algebraic way to speak about Hodge
theoretic considerations, since the sheaf Ωi

X,alg can be defined for any algebraic variety. We will denote this

sheaf by Ωi
X going forward and will forget the other objects involved above. With this, we can formulate

our main question of interest purely algebraically:

Question 1.2. If X is a smooth projective variety over a field k, is it always true that

dimkH
i(X,Ωj

X) = dimkH
j(X,Ωi

X)

for all i, j?
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As we’ve seen above, Hodge theory and the comparison isomorphisms (1) imply that the answer is yes
for k = C, and in fact for any k of characteristic 0. So from now on we will let k be an algebraically closed
field of characteristic p > 0, and for simplicity assume p ≥ 5. The main result is that Hodge symmetry need
not hold:

Theorem 1.3 (Serre, 1958). There exists a smooth projective algebraic surfaceX over k such thatH0(X,Ω1
X) =

0 and H1(X,OX) 6= 0. In particular, Hodge symmetry need not hold in characteristic p > 0.

In this talk, we will begin by briefly explaining Serre’s original argument. Then we will explain how to
interpret it using a more modern perspective using the classifying space of a finite group. 1

2 Serre’s Example

The starting point for Serre’s example is the following:

Proposition 2.1. There exists a nontrivial action of the group G = Z/pZ on P3
k and a smooth G-stable

hypersurface Y ⊂ P3 on which the action is free.

Proof. To construct an action of G on P3
k, we can specify an action of G on k4 and then projectivize,

or equivalently give a map G → GL4(k) → PGL4(k). Thus consider the 4-dimensional representation of
G = Z/pZ which sends the generator to

A =


1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

 = 1 +N

Since N4 = 0, we have that since k has characteristic p that Ap = (1 + N)p = 1, and so this is indeed a
representation of G. Since the only eigenvector of A is (0, 0, 0, 1), we find that the only fixed point in the
action of G on P3

k is [0 : 0 : 0 : 1]. Now the quotient Q := P3
k/G turns out to be a projective variety, and

by Bertini’s theorem we can find a smooth hyperplane section X of Q which does not contain the image of
the point [0 : 0 : 0 : 1]; it follows that the preimage Y of Z in P3 is a smooth, G-stable hypersurface which
doesn’t contain the unique fixed point [0 : 0 : 0 : 1], as desired.

Since the action of G on Y is free, the quotient variety X := Y/G is a smooth, projective algebraic surface
over k.

Theorem 2.2. Hodge symmetry fails for X.

Proof. 1. H0(X,Ω1
X) = 0, since global holomorphic 1-forms on X are the same as G-invariant global

holomorphic 1-forms on its finite cover Y . But Y is a hypersurface in P3 and thus has no global
holomorphic 1-forms.

2. One way to see that H1(X,OX) 6= 0 is to use the Hochschild-Serre spectral sequence for the étale
G-cover Y → X.

Epq
2 = Hp(G,Hq(Y,OY )) =⇒ Hp+q(X,OX)

which yields an isomorphism
H1(X,OX) ∼= H1(G, k) ∼= k.

In the remainder of the talk, I want to explain an alternate approach to computing the cohomology of
our quotient X = Y/G, which to me provides a more satisfying explanation as to why Hodge symmetry fails
for X. So as not to keep you in suspense, let me sketch the idea behind this.

1Serre’s original argument can be found in [S]. The relation of Serre’s method to the cohomology of classifying spaces is
discussed in [ABM].
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1. There is a classifying space (stack) BG over k, which comes equipped with sheaves O and Ω1 of regular
functions and algebraic differentials, respectively. It turns out that

H0(BG,Ω1) = 0 and H1(BG,O) = k,

so Hodge symmetry fails for BG. We would like to produce from this example an example of a smooth
projective algebraic variety for which Hodge symmetry fails.

2. Since X = Y/G is a hyperplane section of the projective variety P3/G, the Lefschetz hyperplane
theorem implies that

H0(X,Ω1
X) ∼= H0(P3/G,Ω1) and H1(X,OX) = H1(P3/G,O).

3. The action of G on P3 makes the quotient P3/G a P3-bundle over the classifying space BG. Since the
cohomology of a projective space bundle depends only on the base space and the fiber, we can now
compute the cohomology of X completely in terms of the cohomology of BG. It will turn out that

H0(X,Ω1
X) = H0(BG,Ω1) = 0 and H1(X,OX) = H1(BG,O) ∼= k.

The point: allow ourselves to work with “complicated” objects like stacks which are easier to compute
with, and then approximate by classical objects (varieties). Now I would like to explain how the above works
in more detail. We will begin by reviewing some material about classifying spaces and cohomology.

Remark 2.3. The correct language to work with on the algebraic side is that of stacks. In order to convey
the essential ideas of the argument, we choose not to use the language of stacks, and as a result there are
some creative liberties taken with the discussion of classifying stacks and their cohomology in subsection 3.2.

3 Classifying Spaces and Cohomology

3.1 The topological story

Let G be a finite group with the discrete topology (much of what we say here goes through for any topological
group but only finite groups matter for our situation). We have the classifying space BG, which is the quotient
of a weakly contractible space EG (i.e. πi(EG) = 0 for all i ≥ 0) by a free G-action. It has the important
classification property that any normal (i.e. transitive action on a fiber) covering map f : M → N of “nice”
spaces with deck group G (or more generally any principal G-bundle) is obtained via pullback

M EG

N BG.

Proposition 3.1. Suppose that G is a discrete group (e.g. G is a finite group with the discrete topology).
Then BG is a K(G, 1) space.

Proof. We have a fibration
G ↪→ EG→ BG.

Taking the long exact sequence in homotopy, we get segments

πn(EG)→ πn(BG)→ πn−1(G).

Since G is discrete and EG is weakly contractible, we have πi(BG) = 0 for i = 0 and i ≥ 2. When i = 1, we
find

π1(BG) ∼= π0(G) ∼= G.
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Example 3.2. BZ = S1, EZ = R. BZ/2Z = RP∞, EZ/2Z = S∞, the unit sphere in R∞.

It follows that we can describe BG via the usual cellular decomposition for a K(G, 1) space, which we
now recall.

We want to build a connected topological space X with π1(X) = G and πi(X) = 0 for all i ≥ 2. So we
start with a point, then add a loop labeled by every element of G. But now we’ve added extraneous elements
of π1, since traversing the loop g then h is distinct from traversing gh. To remedy this, we need to attach
2-cells with sides g, gh, h for every pair of elements (g, h) ∈ G × G. But now we’ve added nontrivial π2, in
the form of tetrahedra with sides g2, g3, g2g3, g1, g1g2g3, g1g2. So we need to kill this homotopy by gluing in
some 3-cells with these sides. But now we’ve introduced π3, so we need to add some 4-cells, etc.....

We can now illustrate the power of a simplicial decomposition in computing cohomology:

Proposition 3.3. For a group G, we have an isomorphism

H∗sing(BG;Z) ∼= H∗(G;Z),

where the left hand side is singular cohomology and the right hand side is group cohomology.

Proof. By the universal coefficients theorem, it suffices to show that the homology of BG is the same as the
group homology of G. Recall that group homology of a group G is defined as the left derived functor of the
coinvariants functor, and we can compute it by resolving Z by projective Z[G] modules, tensoring with Z
over Z[G], and taking homology.

On the other hand, we can compute singular homology of BG as cellular homology using the above
decomposition. We find that the homology of BG is computed as the homology of the complex

· · · → Z[G×G×G]→ Z[G×G]→ Z[G]
0→ Z.

where the differential is the alternating sum of the face maps in the simplicial decomposition of BG. But
we can recognize this complex as a standard complex ([B, Section II.3]) which computes group homology
(namely it is what happens when one applies the coinvariants functor to the “standard” resolution of Z as
a Z[G]-module), and this gives the desired result.

We will again make use of this simplicial decomposition when we go to compute sheaf cohomology of BG
algebraically.

3.2 The algebraic story

Now let G be a finite abelian group with the discrete topology, and let k be a field. Note that we can view G
as a group variety over k, consisting of a finite set of points which correspond to the elements of the group.

It turns out that in this setting, one can make sense of the classifying space BG over the field k purely
algebraically, and BG in this setting still has many of the same desirable properties:

1. BG can still be described via the same simplicial decomposition, which we can use to understand its
cohomology.2

2. Finite G-coverings of varieties over k are still classified by maps to BG, and in particular a variety Y
with a G-action leads to a quotient space Y/G which maps to BG. Key point: because of stackiness,
this still holds true even when the action is not free, and in particular Pn/G always carries the structure
of a Pn bundle over BG when considered as an algebraic stack. This last fact is essentially due to the
diagram

Pn EG

Pn/G BG.

which exhibits Pn as the fiber of the map Pn/G→ BG.

2More precisely, we can compute sheaf cohomology of BG via the Cech nerve of the smooth cover Spec k → BG, as in [Sta,
Tag 06XJ].
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Being algebraic, BG comes equipped with regular functions and Kähler differentials, and so it makes
sense to talk about the cohomology groups Hi(BG,Ωj). We can compute these cohomology groups using
the simplicial decomposition in much the same way as before.

Proposition 3.4. Let G be a finite abelian group (with the discrete topology). Then

Hi(BG,Ωj) = 0 for all j > 0

and
Hi(BG,O) = Hi(G; k),

where the latter is group cohomology with coefficients in k.

Proof. Since G is discrete and therefore 0-dimensional, we have

Ωj
G = 0

for all j > 0, which implies that Hi(BG,Ωj) = Hi(BG, 0) = 0 for all j > 0.
Next, we would like to use the simplicial decomposition of BG to compute Hi(BG,O). Morally, we

consider the simplicial decomposition, apply O to everything, and totalize. Note that O(Gp) is by definition
just regular functions on Gp with values in k, and so is isomorphic to k[Gp] (since G is finite). Thus we find
that H∗(BG,O) is the cohomology of the complex

k → k[G]→ k[G2]→ . . .

which is just a standard complex for computing H∗(G; k).

Corollary 3.5. For the group G = Z/pZ and k a field of characteristic p, we have

H0(BG,Ω1) = 0 and H1(BG,O) ∼= k.

In particular, Hodge symmetry fails for the classifying space BZ/pZ over k.

Proof. The fact that H0(BG,Ω1) = 0 follows directly from the above proposition, while the second part
follows from the above proposition and an explicit calculation of the group cohomology of a group of order
p with coefficients in a characteristic p field.

4 Serre’s Example Revisited

We are now ready to revisit Serre’s example with our new perspective. Recall that G = Z/pZ acts on P3
k,

and Y ⊂ P3
k is a smooth hypersurface on which the action is free, such that the quotient X := Y/G is a

smooth projective variety (obtained as a hyperplane section of P3/G). By the Lefschetz hyperplane theorem,
we have isomorphisms

H0(X,Ω1) = H0(P3/G,Ω1) and H1(X,OX) = H1(P3/G,OX).

But now P3/G is a projective bundle over BG, so we can apply the Projective Bundle Formula, which says
that the cohomology of P3/G is the same as that of P3 ×BG. So

H0(P3/G,Ω1) = H0(BG,Ω1) = 0

and
H1(P3/G,O) = H1(BG,O) ∼= k,

and the result follows.
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