
THE HODGE NUMBERS OF PROJECTIVE HYPERSURFACES

CASIMIR KOTHARI

In this note, we describe how to use properties of coherent sheaf cohomology to obtain the Hodge numbers
of nonsingular hypersurfaces in projective space over a field k. Given a variety X over k of dimension n,
recall that the Hodge numbers hp,q(X), 0 ≤ p, q ≤ n are defined by

hp,q(X) := dimkH
q(X,Ωp

X),

where ΩX is the sheaf of Kähler differentials of X over k and Ωp
X := ∧pΩX .

0.1. Hodge Numbers of Projective Space. Let X = Pn
k be projective n-space over k. To begin, we will

prove that hp,q = δp=q for any 0 ≤ p, q,≤ n.
We proceed by induction on p; our strategy is to reduce this computation to twisting sheaves on X. Our

starting point is the following exact sequence relating the 1-forms on X to a direct sum of twisted sheaves:

Lemma 0.1 (Euler Exact Sequence). We have an exact sequence of sheaves on X

0→ Ω1
X → OX(−1)⊕n+1 → OX → 0.

We explain the intuition for this sequence over C as follows. Dualizing, it is equivalent to the sequence

0→ OX → OX(1)⊕n+1 → TX → 0.

Now on Cn+1 − 0, one has the standard coordinate vector fields ∂i = d/dxi, and a tangent vector field∑
i fi∂i descends to a vector field on Pn when each fi is a linear form in the xi; this yields a surjection

OX(1)⊕n+1 → TX , sending [f0 : · · · : fn] →
∑

i fi∂i. The kernel of this map is those forms
∑

i ai∂i which
point normal to the unit sphere in Cn+1, and hence is a free OX -module of rank 1, generated by

∑
i xi∂i.

To get from Ω1
X to Ωp

X , we also need to understand wedge powers of exact sequences of sheaves, which is
handled by the following lemma:

Lemma 0.2. Suppose 0 → F ′ → F → F ′′ → 0 is an exact sequence of locally free sheaves of OX-modules
on a ringed space (X,OX). For any p ≥ 0, there is a filtration

∧pF = G0 ⊃ G1 ⊃ · · · ⊃ Gp+1 = 0

such that

Gi/Gi+1 ∼= (∧iF ′)⊗ (∧p−iF ′′)
for each i.

Proof. First, let us assume that F ′,F , and F ′′ are all free on X. This allows us to choose a splitting
F ∼= F ′ ⊕F ′′, yielding an isomorphism

∧pF ∼=
p⊕

i=0

(
∧iF ′ ⊗ ∧p−iF ′′

)
.

For each 0 ≤ j ≤ p + 1, define Gj to be the image of
⊕

i≥j(∧iF ′ ⊗ ∧p−iF ′′) in ∧pF . Then clearly the Gj
yield the desired filtration in the free case.

Now observe that the construction of Gj above is in fact independent of our choice of splitting. Indeed,
let ψ denote the map F ′ → F , and suppose we had two sections φ, φ′ : F ′′ → F . Fix a basis x1, . . . , xn of
F ′ and y1, . . . , ym of F ′′. Via φ, the image of ∧jF ′ ⊗ ∧p−jF ′′ in ∧pF is spanned by elements of the form

ψ(xi1) ∧ · · · ∧ ψ(xij ) ∧ φ(yk1
) ∧ · · · ∧ φ(ykp−j

).
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But for each 1 ≤ k ≤ m, we can write φ(yj) =
∑

i aiψ(xi) +
∑

j bjφ
′(yj), and substituting into the above

expression shows that the image of
⊕

i≥j(∧iF ′ ⊗ ∧p−iF ′′) in ∧pF is independent of the choice of section

F ′′ → F , as desired.
In the general case, we fix an open cover {Ui} of X on which each of F ,F ′, and F ′′ are free. The

splitting-independence implies that the local constructions Gi|Ui
glue to a well-defined sheaf Gi on X and

the local isomorphisms Gi/Gi+1|Uj
∼= (∧iF ′|Uj

) ⊗ (∧p−iF ′′|Uj
) glue to a global isomorphism, yielding the

desired filtration. �

In our applications, we will always have one of F ′ or F ′′ locally free of rank 1, and hence it is useful to
introduce the following corollary.

Corollary 0.3. If 0 → F ′ → F → F ′′ → 0 is an exact sequence of locally free sheaves and F ′ has rank 1,
then for any p ≥ 0 we have an exact sequence

0→ F ′ ⊗ ∧p−1F ′′ → ∧pF → ∧pF ′′ → 0.

If instead F ′′ has rank 1, then for any p ≥ 0 we have an exact sequence

0→ ∧pF ′ → ∧pF → ∧p−1F ′ ⊗F ′′ → 0.

Proof. Let ∧pF = G0 ⊃ · · · ⊃ Gp+1 = 0 be the filtration guaranteed by the previous lemma. Then since F ′
is invertible, Gi/Gi+1 = 0 for all i ≥ 2, and hence G2 = G3 = · · · = Gp+1 = 0. Thus we have a filtration
∧pF ⊃ G1 ⊃ 0 with ∧pF/G1 = ∧pF ′′ and G1 = F ′⊗∧p−1F ′′, giving the desired exact sequence. The second
sequence follows by an analogous argument. �

Returning to the Euler exact sequence, we may apply Corollary 0.3 to obtain

Proposition 0.4 (Key Exact Sequence). Let X = Pn
k . Then for p ≥ 0 we have an exact sequence

0→ Ωp
X → ∧

p
(
OX(−1)⊕n+1

)
→ Ωp−1

X → 0. (0.1)

We can now compute the Hodge numbers of projective space by induction on p ≤ n. For p = 1, we take
the long exact sequence in cohomology associated to the Euler sequence, obtaining segments

Hi−1(X,OX)→ Hi(X,Ω1
X)→ Hi(X,OX(−1))n+1.

If 2 ≤ i ≤ n − 1, we know that the left and right terms vanish, and hence we conclude Hi(X,Ω1
X) = 0 for

such i. We also know Hn(X,OX(−1)) = 0, so that the end of this long exact sequence shows Hn(X,Ω1
X) = 0

if n > 1. Finally, the beginning of the long exact sequence reads

0→ H0(X,Ω1
X)→ H0(X,O(−1))n+1 → H0(X,OX)→ H1(X,Ω1

X)→ 0,

from which we deduce H0(X,Ω1
X) = 0 and H1(X,Ω1

X) = k. This proves the base case.

Let us now assume we know that Hi(X,Ωp−1
X ) is k in dimension p− 1 and 0 otherwise. Taking the long

exact sequence in cohomology associated to the Key Exact Sequence (0.1), we obtain pieces

Hi−1(X,∧pOX(−1)n+1)→ Hi−1(X,Ωp−1
X )→ Hi(X,Ωp

X)→ Hi(X,∧pOX(−1)n+1).

Now a direct calculation by induction and the isomorphism

∧pOX(−1)n+1 ∼= ∧pO(−1)n ⊕
(
O(−1)⊗ ∧p−1O(−1)n

)
shows that ∧pOX(−1)n+1 is a direct sum of OX(−p)’s, and hence has vanishing cohomology in all dimensions
since p ≤ n. We therefore obtain

Hi(X,Ωp
X) = Hi−1(X,Ωp−1

X )

for all i, completing our computation.
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0.2. Hodge Numbers of a Nonsingular Projective Hypersurface. Let i : Y ↪→ X = Pn
k be a nonsin-

gular hypersurface of degree d; we wish to compute Hq(Y,Ωp
Y ).

Our starting point is the dual to the conormal exact sequence of Y in X, which reads

0→ i−1
(
IY /I

2
Y

)
→ i∗Ω1

X → Ω1
Y → 0.

Since IY = OX(−d), we compute

i−1(IY /I
2
Y ) = i−1(IY ⊗OX

OX/IY ) = i∗(IY ) = OY (−d).

Thus we have an exact sequence

0→ OY (−d)→ i∗Ω1
X → Ω1

Y → 0.

Since OY (−d) is locally free of rank 1 on Y , we can apply Corollary 0.3 to obtain

Proposition 0.5 (Key Exact Sequence 2). Let i : Y → X = Pn
k be a nonsingular hypersurface of degree d.

Then for p ≥ 0 we have an exact sequence

0→ Ωp−1
Y (−d)→ i∗Ωp

X → Ωp
Y → 0.

Taking the associated long exact sequence in cohomology yields segments

Hq(Y,Ωp−1
Y (−d))→ Hq(Y, i∗Ωp

X)→ Hq(Y,Ωp
Y )→ Hq+1(Y,Ωp−1

Y (−d)).

Arguing by induction on p, we obtain for p+ q < n− 1 an isomorphism

Hq(Y,Ωp
Y ) ∼= Hq(Y, i∗Ωp

X) ∼= Hq(X,Ωp
X ⊗ i∗OY ) = δp=q.

By Serre duality, we also obtain the same result for p + q > n− 1, so it remains to consider p + q = n− 1.
In this case, the definition of Euler characteristic gives

hp,q = (−1)n + (−1)qχ(Ωp
Y ) + δp=q. (0.2)

Taking Euler Characteristics in Key Exact Sequence 2 gives (after an arbitrary twist)

χ(Ωp
Y (i)) = χ(i∗Ωp

X(i))− χ(Ωp−1
Y (i− d)).

Therefore we obtain
χ(Ωp

Y (i)) = χ(Ωp
X(i))− χ(Ωp

X(i− d))− χ(Ωp−1
Y (i− d)), (0.3)

which allows us to inductively compute this Euler characteristic and hence the middle Hodge numbers.

Example 0.6. To illustrate the general method, we compute the Hodge number h2,0 of a degree 4 hyper-
surface Y in X = P3. First, by (0.2) we have

h2,0(Y ) = χ(Ω2
Y )− 1.

Using (0.3), we can write

χ(Ω2
Y ) = χ(Ω2

X)− χ(Ω2
X(−4))− χ(Ω1

Y (−4))

χ(Ω1
Y (−4)) = χ(Ω1

X(−4))− χ(Ω1
X(−8))− χ(OY (−8)).

We then use the Key Exact Sequence (0.1) for P3 to compute

χ(Ω1
X(−4)) = 4χ(OX(−5))− χ(OX(−4)) = −15

χ(Ω1
X(−8)) = 4χ(OX(−9))− χ(OX(−8)) = −189

χ(Ω2
X(−4)) = 6χ(OX(−6))− χ(Ω1

X(−4)) = −45.

Finally, the exact sequence
0→ OX(−12)→ OX(−8)→ OY (−8)→ 0

shows that χ(OY (−8)) = 130. Putting these computations together yields

χ(Ω2
Y ) = 1 + 45− 44 = 2,

so h2,0(Y ) = 2− 1 = 1.
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