THE HODGE NUMBERS OF PROJECTIVE HYPERSURFACES

CASIMIR KOTHARI

In this note, we describe how to use properties of coherent sheaf cohomology to obtain the Hodge numbers of nonsingular hypersurfaces in projective space over a field k. Given a variety X over k of dimension n, recall that the Hodge numbers $h^{p,q}(X), 0 \le p, q \le n$ are defined by

$$h^{p,q}(X) := \dim_k H^q(X, \Omega^p_X),$$

where Ω_X is the sheaf of Kähler differentials of X over k and $\Omega_X^p := \wedge^p \Omega_X$.

0.1. Hodge Numbers of Projective Space. Let $X = \mathbb{P}_k^n$ be projective *n*-space over *k*. To begin, we will prove that $h^{p,q} = \delta_{p=q}$ for any $0 \le p, q, \le n$.

We proceed by induction on p; our strategy is to reduce this computation to twisting sheaves on X. Our starting point is the following exact sequence relating the 1-forms on X to a direct sum of twisted sheaves:

Lemma 0.1 (Euler Exact Sequence). We have an exact sequence of sheaves on X

$$0 \to \Omega^1_X \to \mathcal{O}_X(-1)^{\oplus n+1} \to \mathcal{O}_X \to 0.$$

We explain the intuition for this sequence over \mathbb{C} as follows. Dualizing, it is equivalent to the sequence

$$0 \to \mathcal{O}_X \to \mathcal{O}_X(1)^{\oplus n+1} \to \mathcal{T}_X \to 0.$$

Now on $\mathbb{C}^{n+1} - 0$, one has the standard coordinate vector fields $\partial_i = d/dx_i$, and a tangent vector field $\sum_i f_i \partial_i$ descends to a vector field on \mathbb{P}^n when each f_i is a linear form in the x_i ; this yields a surjection $\mathcal{O}_X(1)^{\oplus n+1} \to \mathcal{T}_X$, sending $[f_0 : \cdots : f_n] \to \sum_i f_i \partial_i$. The kernel of this map is those forms $\sum_i a_i \partial_i$ which point normal to the unit sphere in \mathbb{C}^{n+1} , and hence is a free \mathcal{O}_X -module of rank 1, generated by $\sum_i x_i \partial_i$.

To get from Ω^1_X to Ω^p_X , we also need to understand wedge powers of exact sequences of sheaves, which is handled by the following lemma:

Lemma 0.2. Suppose $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is an exact sequence of locally free sheaves of \mathcal{O}_X -modules on a ringed space (X, \mathcal{O}_X) . For any $p \ge 0$, there is a filtration

$$\wedge^p \mathcal{F} = \mathcal{G}^0 \supset \mathcal{G}^1 \supset \cdots \supset \mathcal{G}^{p+1} = 0$$

such that

$$\mathcal{G}^i/\mathcal{G}^{i+1}\cong (\wedge^i\mathcal{F}')\otimes (\wedge^{p-i}\mathcal{F}'')$$

for each i.

Proof. First, let us assume that $\mathcal{F}', \mathcal{F}$, and \mathcal{F}'' are all free on X. This allows us to choose a splitting $\mathcal{F} \cong \mathcal{F}' \oplus \mathcal{F}''$, yielding an isomorphism

$$\wedge^p \mathcal{F} \cong \bigoplus_{i=0}^p \left(\wedge^i \mathcal{F}' \otimes \wedge^{p-i} \mathcal{F}'' \right)$$

For each $0 \leq j \leq p+1$, define \mathcal{G}^j to be the image of $\bigoplus_{i\geq j} (\wedge^i \mathcal{F}' \otimes \wedge^{p-i} \mathcal{F}'')$ in $\wedge^p \mathcal{F}$. Then clearly the \mathcal{G}^j yield the desired filtration in the free case.

Now observe that the construction of \mathcal{G}^j above is in fact independent of our choice of splitting. Indeed, let ψ denote the map $\mathcal{F}' \to \mathcal{F}$, and suppose we had two sections $\phi, \phi' : \mathcal{F}'' \to \mathcal{F}$. Fix a basis x_1, \ldots, x_n of \mathcal{F}' and y_1, \ldots, y_m of \mathcal{F}'' . Via ϕ , the image of $\wedge^j \mathcal{F}' \otimes \wedge^{p-j} \mathcal{F}''$ in $\wedge^p \mathcal{F}$ is spanned by elements of the form

$$\psi(x_{i_1}) \wedge \cdots \wedge \psi(x_{i_j}) \wedge \phi(y_{k_1}) \wedge \cdots \wedge \phi(y_{k_{p-j}}).$$

Date: Winter 2022.

But for each $1 \leq k \leq m$, we can write $\phi(y_j) = \sum_i a_i \psi(x_i) + \sum_j b_j \phi'(y_j)$, and substituting into the above expression shows that the image of $\bigoplus_{i\geq j} (\wedge^i \mathcal{F}' \otimes \wedge^{p-i} \mathcal{F}'')$ in $\wedge^p \mathcal{F}$ is independent of the choice of section $\mathcal{F}'' \to \mathcal{F}$, as desired.

In the general case, we fix an open cover $\{U_i\}$ of X on which each of $\mathcal{F}, \mathcal{F}'$, and \mathcal{F}'' are free. The splitting-independence implies that the local constructions $\mathcal{G}^i|_{U_i}$ glue to a well-defined sheaf \mathcal{G}^i on X and the local isomorphisms $\mathcal{G}^i/\mathcal{G}^{i+1}|_{U_j} \cong (\wedge^i \mathcal{F}'|_{U_j}) \otimes (\wedge^{p-i} \mathcal{F}''|_{U_j})$ glue to a global isomorphism, yielding the desired filtration.

In our applications, we will always have one of \mathcal{F}' or \mathcal{F}'' locally free of rank 1, and hence it is useful to introduce the following corollary.

Corollary 0.3. If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ is an exact sequence of locally free sheaves and \mathcal{F}' has rank 1, then for any $p \ge 0$ we have an exact sequence

$$0 \to \mathcal{F}' \otimes \wedge^{p-1} \mathcal{F}'' \to \wedge^p \mathcal{F} \to \wedge^p \mathcal{F}'' \to 0.$$

If instead \mathcal{F}'' has rank 1, then for any $p \geq 0$ we have an exact sequence

$$0 \to \wedge^p \mathcal{F}' \to \wedge^p \mathcal{F} \to \wedge^{p-1} \mathcal{F}' \otimes \mathcal{F}'' \to 0.$$

Proof. Let $\wedge^p \mathcal{F} = \mathcal{G}^0 \supset \cdots \supset \mathcal{G}^{p+1} = 0$ be the filtration guaranteed by the previous lemma. Then since \mathcal{F}' is invertible, $\mathcal{G}^i/\mathcal{G}^{i+1} = 0$ for all $i \geq 2$, and hence $\mathcal{G}^2 = \mathcal{G}^3 = \cdots = \mathcal{G}^{p+1} = 0$. Thus we have a filtration $\wedge^p \mathcal{F} \supset \mathcal{G}^1 \supset 0$ with $\wedge^p \mathcal{F}/\mathcal{G}^1 = \wedge^p \mathcal{F}''$ and $\mathcal{G}^1 = \mathcal{F}' \otimes \wedge^{p-1} \mathcal{F}''$, giving the desired exact sequence. The second sequence follows by an analogous argument.

Returning to the Euler exact sequence, we may apply Corollary 0.3 to obtain

Proposition 0.4 (Key Exact Sequence). Let $X = \mathbb{P}_k^n$. Then for $p \ge 0$ we have an exact sequence

$$0 \to \Omega_X^p \to \wedge^p \left(\mathcal{O}_X(-1)^{\oplus n+1} \right) \to \Omega_X^{p-1} \to 0.$$
 (0.1)

We can now compute the Hodge numbers of projective space by induction on $p \leq n$. For p = 1, we take the long exact sequence in cohomology associated to the Euler sequence, obtaining segments

$$H^{i-1}(X, \mathcal{O}_X) \to H^i(X, \Omega^1_X) \to H^i(X, \mathcal{O}_X(-1))^{n+1}.$$

If $2 \le i \le n-1$, we know that the left and right terms vanish, and hence we conclude $H^i(X, \Omega^1_X) = 0$ for such *i*. We also know $H^n(X, \mathcal{O}_X(-1)) = 0$, so that the end of this long exact sequence shows $H^n(X, \Omega^1_X) = 0$ if n > 1. Finally, the beginning of the long exact sequence reads

$$0 \to H^0(X, \Omega^1_X) \to H^0(X, \mathcal{O}(-1))^{n+1} \to H^0(X, \mathcal{O}_X) \to H^1(X, \Omega^1_X) \to 0,$$

from which we deduce $H^0(X, \Omega^1_X) = 0$ and $H^1(X, \Omega^1_X) = k$. This proves the base case.

Let us now assume we know that $H^i(X, \Omega_X^{p-1})$ is k in dimension p-1 and 0 otherwise. Taking the long exact sequence in cohomology associated to the Key Exact Sequence (0.1), we obtain pieces

$$H^{i-1}(X, \wedge^p \mathcal{O}_X(-1)^{n+1}) \to H^{i-1}(X, \Omega_X^{p-1}) \to H^i(X, \Omega_X^p) \to H^i(X, \wedge^p \mathcal{O}_X(-1)^{n+1}).$$

Now a direct calculation by induction and the isomorphism

$$\wedge^{p}\mathcal{O}_{X}(-1)^{n+1} \cong \wedge^{p}\mathcal{O}(-1)^{n} \oplus \left(\mathcal{O}(-1) \otimes \wedge^{p-1}\mathcal{O}(-1)^{n}\right)$$

shows that $\wedge^p \mathcal{O}_X(-1)^{n+1}$ is a direct sum of $\mathcal{O}_X(-p)$'s, and hence has vanishing cohomology in all dimensions since $p \leq n$. We therefore obtain

$$H^i(X, \Omega^p_X) = H^{i-1}(X, \Omega^{p-1}_X)$$

for all i, completing our computation. Page 2 of 3 0.2. Hodge Numbers of a Nonsingular Projective Hypersurface. Let $i: Y \hookrightarrow X = \mathbb{P}_k^n$ be a nonsingular hypersurface of degree d; we wish to compute $H^q(Y, \Omega_Y^p)$.

Our starting point is the dual to the conormal exact sequence of Y in X, which reads

$$0 \to i^{-1} \left(I_Y / I_Y^2 \right) \to i^* \Omega^1_X \to \Omega^1_Y \to 0.$$

Since $I_Y = \mathcal{O}_X(-d)$, we compute

$$i^{-1}(I_Y/I_Y^2) = i^{-1}(I_Y \otimes_{\mathcal{O}_X} \mathcal{O}_X/I_Y) = i^*(\mathcal{I}_Y) = \mathcal{O}_Y(-d).$$

Thus we have an exact sequence

$$0 \to \mathcal{O}_Y(-d) \to i^*\Omega^1_X \to \Omega^1_Y \to 0.$$

Since $\mathcal{O}_Y(-d)$ is locally free of rank 1 on Y, we can apply Corollary 0.3 to obtain

Proposition 0.5 (Key Exact Sequence 2). Let $i: Y \to X = \mathbb{P}_k^n$ be a nonsingular hypersurface of degree d. Then for $p \ge 0$ we have an exact sequence

$$0 \to \Omega_Y^{p-1}(-d) \to i^* \Omega_X^p \to \Omega_Y^p \to 0$$

Taking the associated long exact sequence in cohomology yields segments

$$H^q(Y, \Omega_Y^{p-1}(-d)) \to H^q(Y, i^*\Omega_X^p) \to H^q(Y, \Omega_Y^p) \to H^{q+1}(Y, \Omega_Y^{p-1}(-d)).$$

Arguing by induction on p, we obtain for p + q < n - 1 an isomorphism

$$H^q(Y, \Omega^p_Y) \cong H^q(Y, i^*\Omega^p_X) \cong H^q(X, \Omega^p_X \otimes i_*\mathcal{O}_Y) = \delta_{p=q}.$$

By Serre duality, we also obtain the same result for p + q > n - 1, so it remains to consider p + q = n - 1. In this case, the definition of Euler characteristic gives

$$h^{p,q} = (-1)^n + (-1)^q \chi(\Omega_Y^p) + \delta_{p=q}.$$
(0.2)

Taking Euler Characteristics in Key Exact Sequence 2 gives (after an arbitrary twist)

$$\chi(\Omega_Y^p(i)) = \chi(i^*\Omega_X^p(i)) - \chi(\Omega_Y^{p-1}(i-d)).$$

Therefore we obtain

$$\chi(\Omega_Y^p(i)) = \chi(\Omega_X^p(i)) - \chi(\Omega_X^p(i-d)) - \chi(\Omega_Y^{p-1}(i-d)), \tag{0.3}$$

which allows us to inductively compute this Euler characteristic and hence the middle Hodge numbers.

Example 0.6. To illustrate the general method, we compute the Hodge number $h^{2,0}$ of a degree 4 hypersurface Y in $X = \mathbb{P}^3$. First, by (0.2) we have

$$h^{2,0}(Y) = \chi(\Omega_Y^2) - 1$$

Using (0.3), we can write

$$\chi(\Omega_Y^2) = \chi(\Omega_X^2) - \chi(\Omega_X^2(-4)) - \chi(\Omega_Y^1(-4))$$

$$\chi(\Omega_Y^1(-4)) = \chi(\Omega_X^1(-4)) - \chi(\Omega_X^1(-8)) - \chi(\mathcal{O}_Y(-8))$$

We then use the Key Exact Sequence (0.1) for \mathbb{P}^3 to compute

$$\chi(\Omega_X^1(-4)) = 4\chi(\mathcal{O}_X(-5)) - \chi(\mathcal{O}_X(-4)) = -15$$

$$\chi(\Omega_X^1(-8)) = 4\chi(\mathcal{O}_X(-9)) - \chi(\mathcal{O}_X(-8)) = -189$$

$$\chi(\Omega_X^2(-4)) = 6\chi(\mathcal{O}_X(-6)) - \chi(\Omega_X^1(-4)) = -45.$$

Finally, the exact sequence

$$0 \to \mathcal{O}_X(-12) \to \mathcal{O}_X(-8) \to \mathcal{O}_Y(-8) \to 0$$

shows that $\chi(\mathcal{O}_Y(-8)) = 130$. Putting these computations together yields

$$\chi(\Omega_Y^2) = 1 + 45 - 44 = 2,$$

so $h^{2,0}(Y) = 2 - 1 = 1$.

References

[Ar12] Donu Arapura. Algebraic Geometry over the Complex Numbers. Springer Universitext, 2012.

[Ha77] Robin Hartshorne. Algebraic Geometry. Springer Volume 52, 1977.