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1 Group Schemes

1.1 Motivation: p-torsion in characteristic p

Suppose that E is an elliptic curve over k = Fp. Recall that for each prime `, multiplication by ` is a degree
`2 isogeny from E to E. If ` 6= p, the `-torsion points of E over k form a group of order `2 isomorphic to
Z/`Z× Z/`Z. However, we know that for ` = p, things are very different. We have that the p-torsion of E
over k is either Z/p or 0, depending on if E is ordinary or supersingular. Why doesn’t this contradict the
fact that the degree of ×p is p2?

The answer lies in the way that we define the kernel of the multiplication by p map. When we allow
ourselves to work with schemes instead of varieties, we find that there is extra nonreduced structure which
explains this discrepancy. In other words, E[p] considered as a group scheme is finite of order p2, but its
underlying reduced variety has only order 1 or p. So, group schemes provide the right conceptual framework
to understand torsion phenomena in characteristic p from a uniform/conceptual group-theoretic perspective.
Even if one is only interested in characteristic 0, this still proves useful as one can try to understand things
by reducing modulo p.

1.2 Definitions and First Properties

1.2.1 Group Objects in a Category

Let C be a category admitting finite products, and let S denote the final object of C(e.g. C = the category
of varieties or schemes over a field k, and S = Spec k). A group object in C is an object G ∈ C together with
a multiplication m : G ×G → G, inverse i : G → G, and identity e : S → G such that G satisfies all of the
formal axioms of a group. For instance, associativity of the group law means that the diagram

G×G×G G×G

G×G G

m×id

id×m m

m

commutes. i.e. G is a “group” for which all group operations are actually morphisms in the category C.
Group objects in C themselves form a category, where the morphisms are “group homomorphisms”: maps
in C which respect the multiplication laws.

There is an alternate useful perspective on group objects via the Yoneda lemma. Recall that we have a
fully faithful embedding C → Fun(Cop,Sets), by sending X ∈ C to the representable functor Y 7→ X(Y ) :=
Hom(Y,X). In this optic, a group object in C is equivalently an object G ∈ C together with a group structure
on G(T ) for every T ∈ C such that the for each map T ′ → T , the induced map G(T ) → G(T ′) is a group
homomorphism. Under this perspective, a group homomorphism G → G′ is just a group homomorphism
G(T )→ G′(T ) for every T ∈ C which is compatible with induced maps from T ′ → T .

1.2.2 Group schemes

We now specialize the above general discussion to the category Sch /k of schemes over a field k.
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Definition 1.1. A group scheme over k is a contravariant functorG : (Sch /k)→ Gp such that the underlying
functor Sch /k → Sets is representable by a scheme.

Equivalently by what we have said, a group scheme G/k consists of a k-scheme G together with multi-
plication, inverse, and identity morphisms.

A group scheme G/k is commutative if the corresponding functor factors through abelian groups, or
equivalently if the multiplication m : G×G→ G be commutative. In this talk, we will only be considering
commutative group schemes.

If P is a property of schemes, we say that a group scheme has property P if its underlying scheme does.
So for instance we can speak of finite/affine/smooth/etc. group schemes over k. If G is a finite group scheme
over k, then G = SpecA for a finite k-algebra A, and we define the order |G| of G to be dimk A.

Before giving examples, we mention one more useful fact that lets us work with commutative group
schemes in much the same way as we work with usual commutative groups.

Proposition 1.2 (Grothendieck). The category of commutative group schemes over a field is abelian.

Thus we can take kernels and cokernels of morphisms of group schemes, take direct sums and quotients
of group schemes, and consider Hom and Ext groups between group schemes. For instance, if f : G→ G′ is
a morphism of commutative group schemes, we define ker(f) to be the group scheme whose T -valued points
are ker(G(T ) → G′(T )) for any k-scheme T . However the construction of cokernels is more subtle, and in
particular coker(f) is not just constructed by T 7→ coker(G(T )→ G′(T )).

1.3 Examples

1. Perhaps the most basic group scheme is the additive group Ga, which is defined by Ga(R) = R, where
we view the k-algebra R as an additive group. The underlying scheme of Ga is just A1 = Spec k[t].

2. Another basic example is the multiplicative group Gm, which is defined by Gm(R) = R× viewed as a
multiplicative group. The underlying scheme of Gm is just A1 − {0} = Spec k[t, t−1].

3. Any abelian variety A/k is a group scheme. In fact, abelian varieties can be characterized as proper
connected smooth group schemes over a field.

4. (Constant Group Schemes) Given any abstract group G, we can form a group scheme G/k, defined as
the constant sheaf Sch /k → Gp determined by G. We can see G as a scheme via G = tg∈G Spec k and
with addition law determined by that of G. We will just denote such a group scheme by G. If G is
finite, we get a finite group scheme of order equal to the order of the abstract group G. Such constant
group schemes are always smooth over k.

5. (Roots of Unity Group Schemes) For any positive integer n, we have the group scheme µn of n-th roots

of unity, defined by µn(R) = {r ∈ R : rn = 1}. It is represented by the scheme Spec k[x]
(xn−1) , and hence

evidently a finite group scheme of order n. We have µn = ker(Gm
x 7→xn

→ Gm).

If n is coprime to the characteristic of k, then µn is a smooth group scheme over k. However, note

that if k has characteristic p, then µp = Spec k[x]
(x−1)p is a non-reduced scheme with only one physical

point. In particular, µp has order p despite the fact that µp(k′) = {1} for any field k′/k.

6. If k has characteristic p, a curious group scheme is αp, defined by αp(R) = {r ∈ R : rp = 0}. Note that
this only forms a group because of the relation (x+y)p = xp+yp in characteristic p! It is represented by

the scheme Spec k[x]
(xp) . Hence αp has order p and is a nonreduced group scheme with only one physical

point.

What does the general commutative group scheme look like? The following proposition tells us that in
fact these examples are the atomic building blocks of any (finite type) commutative group scheme:
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Proposition 1.3 ([O], Lemma II.6.1). Let k be an algebraically closed field, and G/k a commutative group
scheme of finite type. Then there exists a chain of subgroup schemes

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G

such that the quotients Gi/Gi−1 are each isomorphic to one of the following groups:

1. Ga;

2. Gm;

3. An abelian variety;

4. The finite group schemes Z/`Z for ` prime and (if k has characteristic p) the group schemes µp, αp.

Of course, this doesn’t on its own give us a complete classification of commutative group schemes over
an algebraically closed field; one also needs to understand extensions of such group schemes, which can get
somewhat complicated.

Example 1.4. Let E/Fp be an elliptic curve. Then E[p] := ker(E
×p→ E) is a group scheme of order p2. If

E is ordinary, we have
0 ⊂ Z/p ⊂ E[p]

with E[p]/(Z/p) ∼= µp, while if E is supersingular we have

0 ⊂ αp ⊂ E[p]

with E[p]/αp = αp. Thus group schemes offer an approach to studying the difference between ordinarity
and supersingularity in characteristic p.

2 Dieudonné Theory

Suppose now that G/k is a finite commutative group scheme over a field k. It turns out that

1. If |G| is coprime to the characteristic of k, then G is an étale (i.e. smooth) group scheme over k.

2. The association G 7→ G(k) defines an equivalence of categories between the categories of finite étale
group schemes over k and finite Gal(k/k)-modules.

In other words: étale group schemes are the same as finite Galois representations, and char(k) - |G| implies
étale!

However, as the examples of αp and µp show, taking k-points cannot be the whole story for finite group
schemes of p-power order in characteristic p. So we might wonder if there is some linear data, analogous
to Galois representations in the p - |G| case, which can be used to fully understand finite group schemes of
p-power order. This is what Dieudonné theory does.

Let k be a perfect field of characteristic p. Let W = W (k) be the ring of Witt vectors of k. It is a
complete discrete valuation ring with maximal ideal (p) and residue field k; for example W (Fp) = Zp, and
when k = Fpn , then W (k) = Zp[ζpn−1], the ring of integers in the unramified degree n extension of Qp.

The ring W has a Frobenius map σ : W → W , reducing to the Frobenius on k = W/p, which is an
isomorphism since k is perfect.

Definition 2.1. A Dieudonné module over k is a W -module D together with additive morphisms F, V :
D → D such that F (ad) = σ(a)F (d), V (ad) = σ−1(a)V (d), and FV = V F = p.

We say F is σ-linear and V is σ−1-linear. Note that a Dieudonné module can also be understood as a
module over a certain noncommutative ring W{F, V }/(FV = V F = p, Fa = σ(a)F, V a = σ−1(a)V ).

The main theorem of Dieudonné theory tells us that we can understand commutative p-power order
group schemes in terms of Dieudonné modules:
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Theorem 2.2. There is an contravariant equivalence of categories M : finite commutative group schemes
of p-power order over k → Dieudonné modules of finite length over W . Moreover this equivalence satisfies
the following properties:

1. M is an exact functor (this is true of any equivalence between abelian categories).

2. |G| = plengthW (M(G)).

3. G is connected if and only if F is nilpotent on M(G).

4. G is étale (i.e. smooth) if and only if F is an isomorphism on M(G)

Dieudonné theory should be thought of as saying that finite commutative p-power order group schemes
in characteristic p are essentially linear-algebraic in nature: they behave just like modules over some ring.

2.1 Example: Group schemes of order p

Let’s use the Dieudonné equivalence to classify all group schemes of order p over an arbitrary perfect field k
of characteristic p.

Let G/k be a group scheme of order p. Then M(G) is a Dieudonné module of length 1 over W (k), and
hence M(G) ∼= k as a W (k)-module. Write M(G) = k 〈e〉. The semilinear operators F and V are determined
by a, b ∈ k such that F (e) = ae, V (e) = be. By the relation FV = V F = 0, we conclude that either a = 0
or b = 0. Letting Ma,b be the associated Dieudonné module, we are reduced to classifying the Ma,b up to
isomorphism. There are three cases:

1. a = b = 0: In this case, we get the unique Dieudonné module M(G) = k with F = V = 0.

2. a 6= 0, b = 0: We need to determine when Ma,0
∼= Ma′,0. Suppose that φ : Ma,0 → Ma′,0 is an

isomorphism, so that φ(e) = ce for some c ∈ k×. The condition that φ be compatible with F means
that φ(ae) = F (ce). Expanding, this gives ace = cpa′e, or in other words a = cp−1a′. Consequently
we conclude that the isomorphism classes in this case are in bijection with the set k×/(k×)p−1.

3. a = 0, b 6= 0: By a completely analogous procedure, we find that M0,b
∼= M0,b′ if there is c ∈ k× with

b = c1−pb′, and thus we get isomorphism classes in this case in bijection with k×/(k×)p−1.

Which group schemes do these Dieudonné modules correspond to? Using the properties of the Dieudonné
equivalence, we can figure it out:

1. The module M0,0 is the Dieudonné module of αp.

2. This is the étale case. The module M1,0 is the Dieudonné module of Z/p, and Ma,0 is the Dieudonné
module of a twisted form of Z/p, i.e. a group scheme G/k such that G×k k is isomorphic to Z/p over
k.

3. The module M0,1 corresponds to µp, and M0,a corresponds to a twisted form of µp.

Corollary 2.3. Over Fq, there are 2p − 1 isomorphism classes of group schemes of order p. Over k = Fp,
there are three group schemes of order p: Z/p, µp, and αp.

We also ended up proving the following fun corollary in the process:

Corollary 2.4. Representations Gal(k/k)→ F×p are in bijection with k×/(k×)p−1.

Proof. Such representations are in bijection with finite étale order p group schemes over k, which are in
bijection with the modules Ma,0 with a 6= 0, which we have shown to be k×/(k×)p−1.

An alternate proof of this fact can be given with Kummer theory.
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2.2 Beyond perfect fields

Let S = SpecR be an arbitrary affine scheme. We can make sense of the notion of a group scheme over S in
the same way as before: a group object in the category of Sch /S. However, in order to study the properties
of such group schemes, we want to enforce some uniformity that says that a group scheme G/S is a nicely
varying family of group schemes parametrized by S. To do this, we define a finite locally free group scheme
over S to be a group scheme G/S, such that G = SpecA with A a finitely generated projective R-module.
In this case, the order of G is defined to be |G| = rkR(A).

Looking at our previous computations, we saw that to give an order p group scheme over a perfect field
k is the same as giving (a, b) ∈ k × k with ab = 0, up to the equivalence relation (a, b) ∼ (λp−1a, λ1−pb) for
λ ∈ k×. A natural question to ask is if we can say anything similar for group schemes of order p over an
arbitrary base S. In 1970, Oort and Tate answered this question in the affirmative:

Theorem 2.5 ([OT]). Let R be any local ring of characteristic p. Then there is a bijection between the set
of isomorphism classes of order p group schemes over R and the set up tuples (a, b) ∈ R2 with ab = 0 up to
the equivalence relation (a, b) ∼ (λp−1a, λ1−pb) for λ ∈ R×.

In fact, Oort and Tate classify order p group schemes over an arbitrary ring R of characteristic p; in this
case one needs to allow a and b to be sections of line bundles over R instead of R itself. In more geometric
terms, the result is that the moduli stack of group schemes of order p in characteristic p is isomorphic to the
stack [

Fp[x, y]

(xy)
/Gm

]
, λ · x = λp−1x, λ · y = λ1−py,

where here x is like the F and y is like the V on a Dieudonné module.
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