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1 Introduction: Differential Forms and The Story Over C
Let X/C be a complex manifold. One can consider the holomorphic de Rham complex, which is the complex
of sheaves (Ω∗X,hol, d). The sections of Ωi

X,hol over an open subset U ⊂ X are the holomorphic i-forms on U ,
namely those which in a holomorphic chart look like sums of f(z)dzj1 ∧ · · · ∧ dzji with f(z) a holomorphic
function. We are interested in the question of computing cohomology, i.e. understanding the closed mod
exact forms on X. To this end, we can form the cohomology sheaves associated to this complex

Hi(Ω∗X,hol) :=
ker(∂ : Ωi

hol → Ωi+1
hol )

im(∂ : Ωi−1
hol → Ωi

hol)
,

which locally measure the failure of closed i-forms to be exact. But recall the holomorphic Poincare lemma
tells us that every holomorphic differential form on a complex manifold is locally exact, so we conclude

Hi(Ω∗X,hol) =

{
C i = 0

0 i > 0.

If X/C is a smooth variety with its Zariski topology, we can instead consider the algebraic de Rham
complex of X/C, which is the complex of sheaves (Ω∗X/C, d). Here Ωi

X/C is the sheaf of i-th Kahler differentials

of X (or i-th regular differentials of X), which locally look like f(x)dxj1 ∧ · · · ∧ dxjn with f a polynomial in
the coordinates xi. We can then form the cohomology sheaves Hi(Ω∗X), whose sections over an open affine
U ⊂ X are {closed i-forms on U}/{exact i-forms on U}, but note that there is no analogue of the Poincare
lemma in the algebraic world: the open sets in the Zariski topology are too large! In this case, we still have
H0(Ω∗X) = C, but the sheaves Hi(Ω∗X) for i > 0 don’t have a simple description.

Note that the definition of the algebraic de Rham complex works nicely for a smooth variety over any
field, including those of positive characteristic. The Cartier isomorphism gives us an explicit description of
the sheaves Hi(Ω∗X) when X is a smooth scheme over a field of characteristic p > 0. The key points are that
in characteristic p, dxp = pxp−1dx = 0, and that we have a Frobenius morphism which we can leverage to
say something nontrivial.

2 Frobenii

From now on, let k = Fp. If X/k is a smooth variety, then there are two kinds of Frobenius morphisms that
will be relevant to us. First, we have the absolute Frobenius Fa : X → X, which is the identity on underlying
topological spaces and which is the p-th power morphism on structure sheaves. On U = SpecA ⊂ X, we see
that Fa comes from the ring map a 7→ ap on A. Note that as a consequence, Fa is Fp-linear but not k-linear,
since if a ∈ k \ Fp then ap 6= a.
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To form a k-linear Frobenius morphism (the relative Frobenius morphism), we consider the variety X(p)/k
and morphism FX : X → X(p) of varieties over k defined by the fiber product diagram

X

X(p) X

Spec k Spec k

FX Fa

Fa

Concretely, if X locally looks like k[xi]/(fj), then X(p) looks like k[xi]/(f
(p)
j ), where f

(p)
j denotes the poly-

nomial fj with coefficients raised to the p-th power, and the map FX : X → X(p) comes from the ring map
taking xi 7→ xp

i . Some observations:

1. Since X/k is smooth, so is X(p), being the base change along the absolute Frobenius map of k.

2. The schemes X and X(p) are isomorphic (over Fp) via the natural isomorphism k[xi]/(fj)→ k[xi]/(f
(p)
j ), g 7→

g(p).

3. The map FX is a homeomorphism of underlying topological spaces, since X(p) → X and Fa : X → X
are homeomorphisms. Notation: if U ⊂ X, let U (p) := FX(U) ⊂ X(p). If U has coordinate functions

x1, . . . , xn, then let x
(p)
1 , . . . , x

(p)
n denote the corresponding coordinate functions on U (p).

As a consequence of the final point above, we can view F−1X OX(p) as a subsheaf of OX , since over an open
set we can compose a section s : U (p) → A1

k with the homeomorphism FX : U → U (p). Can we identify what
subsheaf of OX the sheaf F−1X OX(p) is? If we take sections over an open affine U = Spec k[xi]/(fj) of X,
then we find

Γ(U,F−1X OX(p)) = k[xi]

(f
(p)
j )

k[xi]
(fj)

= Γ(U,OX),
xi 7→xp

i

i.e. the image is the p-th power subsheaf of OX . So we can conclude F−1X OX(p) = Op
X . Recall that in

characteristic p, dxp = pxp−1dx = 0, i.e. p-th power things are closed. This leads us to the following guess:

Conjecture 2.1. We have an equality of subsheaves of OX , F−1X OX(p) = ker(d : OX → Ω1
X) (which we

called H0(Ω∗X)).

We give the proof for X = An, and note that the general case follows from covering X by open affines
admitting étale maps to An.

Proof. Let X = An
k = Spec k[x1, . . . , xn]. We want to show that the kernel of d : k[x1, . . . , xn] →

k[x1, . . . , xn] 〈dx1, . . . , dxn〉 is precisely the p-th powers of k[x1, . . . , xn]. Given f ∈ k[x1, . . . , xn], we can
write

df =

n∑
i=1

∂f

∂xi
dxi,

so df = 0 if and only if ∂f/∂xi = 0 for each i. Viewing f as a polynomial in xi, we see that this happens
precisely if all the exponents of xi occurring in f are divisible by p. Since every element of k is a p-th power,
we conclude the result in this case.

One consequence of this result is that while the differentials in the complex Ω∗X are not OX -linear
(Leibniz), they are F−1X OX(p)-linear, so that (Ω∗X , d) is really a complex of F−1X OX(p) -modules. Consequently,
the sheaves Hi(Ω∗X) are also F−1X OX(p)-modules.
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3 The Cartier Isomorphism

Let X/k be as above. We’ve shown that F−1X OX(p)
∼= H0(Ω∗X). But as observed above, both of these sheaves

fit into complexes of F−1X OX(p)-modules, which are moreover graded algebras because we can take the wedge
product of differential forms or cohomology classes. The Cartier isomorphism generalizes what we have
shown to this setting in a canonical way:

Theorem 3.1 (Cartier Isomorphism). There is a unique isomorphism of graded F−1X OX(p) -algebras

C−1 :
⊕
i

F−1X Ωi
X(p) →

⊕
i

Hi(Ω∗X)

such that if x(p) is a local coordinate on X(p) corresponding to local coordinate x on X, then C−1(dx(p)) =
[xp−1dx].

Let us unpack what this statement and the local description mean. First, to give an isomorphism
F−1X Ωi

X(p)
∼= Hi(Ω∗X) is to specify, for each affine open U ⊂ X, an isomorphism

{i-forms on U (p)} ∼=
{closed i-forms on U}
{exact i-forms on U}

in a compatible way. To say that this isomorphism is F−1X OX(p)-linear is to say that, for f ∈ Γ(U (p),OX(p))
and ω ∈ Ω1

X(p)(U
(p)), we have

C−1(fω) = (F ∗Xf)C−1(ω),

since F ∗X is how we view sections of F−1X OX(p) inside OX . Finally, one thinks of the relation C−1(dx(p)) =

[xp−1dx] as sending dx(p) to “dxp

p ”, and in this sense we recover the archetypal closed but not exact form

xp−1dx on our variety X.
The proof proceeds by reducing to An via étale maps, then reducing to A1 via Kunneth, and is similar

in spirit to our earlier proof of the degree 0 case. Rather than give it, we verify the Cartier isomorphism for
X = A1

k.

Example 3.2. Let X = A1
k be the affine line. Then X(p) ∼= A1

k, and FX : X → X is determined by
k[t(p)] → k[t], t(p) 7→ tp. Since everything is affine here, we can just work with modules instead of coherent
sheaves. We first have that F−1X OX = k[tp] ⊂ k[t], and the de Rham complex of X is the complex of
k[tp]-modules

0→ k[t]→ k[t] 〈dt〉 → 0.

Note that the image of d is generated (as a k[tp]-module) by {dt, tdt, . . . , tp−2dt} and thus H 1(Ω∗X) is a free
k[tp]-module generated by tp−1dt. Now F−1X Ω1

X(p) is the free k[tp]-module generated by dt(p), and according

to the Cartier isomorphism we have C−1(dt(p)) = tp−1dt, so indeed C−1 maps the generator to the generator,
confirming the Cartier isomorphism in this case.

4 Curves

For the remainder, let us concentrate on the case when X is a smooth projective curve over k. Then the de
Rham complex has length 2, and

H1(Ω∗X) = coker(d : OX → Ω1
X).

The global sections of H1(Ω∗X) are somewhat mysterious as sheafification is required. However, being a
quotient of Ω1

X it does admit a map Ω1
X → H1(Ω∗X), and taking global sections of the composition of this

map and the Cartier isomorphism yields a map

C : H0(X,Ω1
X)→ H0(X(p),Ω1

X(p))

which is called the Cartier operator (note: this map need not be an isomorphism).
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Remark 4.1. Since X and X(p) are isomorphic as schemes over Fp, one has an Fp-linear isomorphism
H0(X(p),Ω1

X(p)) → H0(X,Ω1
X). Composing with the above map, we get an Fp-linear (but not Fp-linear)

map also known as the Cartier operator C : H0(X,Ω1
X) → H0(X,Ω1

X). In what follows, we sometimes use
C to refer to this map instead.

Remark 4.2. The definition of C might seem rather ad hoc, however it arises naturally in a couple of
ways. For one, it turns out that C : H0(X,Ω1

X) → H0(X,Ω1
X) is adjoint to Frobenius F ∗ : H1(X,OX) →

H1(X,OX) under Serre duality. Additionally, we will see below that when X is a modular curve with good
reduction at p, then the Cartier operator acts as the usual Hecke operator Tp on modular forms.

4.1 The Case of Elliptic Curves

Let E/k be an elliptic curve given by a Weierstrass equation Y 2Z = F (X,Z) with F a cubic. We will write
y2 = f(x) for E in the chart {Z 6= 0}. Note then that E(p) is also an elliptic curve, as f (p) has discriminant
equal to ∆(f)p.

To avoid confusion, let x(p) and y(p) denote the coordinates on E(p). Then we know that both H0(E,Ω1
E)

and H0(E(p),Ω1
E(p)) are both 1-dimensional, spanned by the invariant differentials ω, ω′ which look like dx/y

and dx(p)/y(p) respectively on the chart U = {Z 6= 0} ∩ {Y 6= 0}. Note that to study whether or not
C (ω) = 0, it suffices to work on the open subset U , since a regular 1-form which is 0 over a dense open
subset is 0. In this chart, we furthermore have the Ω1

U is coherent, with global sections equal to

H0(U,Ω1
U ) =

k[x, y, y−1]

(y2 = f(x))
〈dx, dy|2ydy = f ′(x)dx〉 .

Note that xndx is an exact form if n 6≡ −1 (mod p), and thus in the groupH1(Ω∗X)(U) we have that xndx = 0
if n 6≡ −1 (mod p). Now we can compute

C

(
dx

y

)
= C

(
yp−1

yp
dx

)
=

1

y(p)
C
(
f(x)

p−1
2 dx

)
Write f(x)

p−1
2 =

∑
i≥0 cix

i, and note that since deg(f) = 3 the only term with exponent i congruent to −1
mod p is cp−1. Thus we find

1

y(p)
C
(
f(x)

p−1
2 dx

)
=

1

y(p)

∑
i

C (cix
idx) =

1

y(p)
c
1/p
p−1C (xp−1dx) = c

1/p
p−1

dx(p)

y(p)
.

Thus we find

ω is exact ⇐⇒ C

(
dx

y

)
= 0 ⇐⇒ cp−1 = 0 ⇐⇒ E/k is supersingular,

where the final implication follows from counting #E(Fq) via character sums. Explicitly, if E : y2 = f(x)

is supersingular, then we can integrate f(x)
p−1
2 dx to a polynomial F (x) (since the only obstruction to

integration is a nonzero coefficient of xp−1), and then we have

d

(
F (x)

yp

)
=

dx

y
.

Remark 4.3. Using the duality between C and Frobenius, we have that C = 0 if and only if F ∗ = 0 on
H1(X,OX). This can also be related to supersingularity using the fact that E is supersingular if and only
if E[p] is a connected subgroup scheme, in addition to some Dieudonné theory.

4.2 The Case of Modular Curves and the Relation to Hecke Operators

Let X = X1(N) with p - N , so that X is a fine moduli space over Z[1/N ], coming equipped with a
universal elliptic curve E . Recall that if R is a Z[1/N ]-algebra, the Kodaira-Spencer isomorphism lets us
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think of modular forms of weight 2 and level N over R as sections of Ω1
X(logC)R, i.e. those meromorphic

differentials with at worst logarithmic singularities at the cusps C of X. Moreover, we obtain the q-expansion
of such a form by evaluating on the Tate curve over R.

Let us now work over k = Fp. Let A = k((q)), and let g : U := SpecA → X/k be the punctured
infinitesimal neighborhood of the cusp at infinity. Then the Tate curve T is obtained via the pullback square

T E /k

U X/k,
g

and a modular form ω ∈ H0(X/k,Ω1
X(logC)) with q-expansion f(q) pulls back under g to f(q)dq

q . Now the
definition of the Cartier operator extends to U , where we have

C

(
qn

dq

q

)
=

{
qn/p dq

q n ≡ 0 (mod p)

0 otherwise.

Moreover, functoriality of C gives us a square

H0(X/k,Ω1
X(logC)) H0(X/k,Ω1

X(logC))

H0(U,Ω1
X(logC)|U ) H0(U,Ω1

X(logC)|U ).

C

g∗ g∗

C

Therefore, if ω ∈ H0(X/k,Ω1
X(logC)) is associated to the modular form f with q-expansion f(q) =

∑
anq

n ∈
k[[q]], we can compute

C (f∗ω) = C (f(q)dq/q)

=

∞∑
n=0

C (anq
n dq

q
)

=

∞∑
n=0

a1/pnp qn
dq

q
,

and thus the q-expansion of C (ω) is
∑

n a
1/p
np qn, which we recognize as Tp(f).

A particularly interesting case of the above computation arises when the differential ω is associated to
a modular form f which is the reduction modulo p of a (normalized) cuspidal eigenform f with rational
coefficients. Recall then that there is an elliptic curve Ef/Q with good reduction at p such that L(Ef , s) =
L(f, s), and in particular such that ap(f) = p + 1−#E(Fp). Then we find

C (ω) = 0 ⇐⇒ Tp(f) = 0 ⇐⇒ apf = 0 ⇐⇒ ap ≡ 0 (mod p) ⇐⇒ Ef is supersingular at p!

The apparent similarity with our earlier conclusion that an elliptic curve is supersingular if and only if its
invariant differential is killed by Cartier is not coincidental, and can be explained by modular parametriza-
tions. Recall that we have a non-constant morphism X1(N) → Ef , under which the invariant differential

ωEf
of Ef pulls back to a nonzero scalar multiple of f(q)dq

q . Functoriality of the Cartier map then shows

that C
(
f(q)dq

q

)
= 0 ⇐⇒ C (ωEf

) = 0, relating this example with the previous one.
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