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ABSTRACT. For any i ≥ 1, we construct smooth projective families of algebraic vari-
eties in characteristic p of relative dimension i + 1 such that the dimension of the i-th
de Rham cohomology groups of the fibers can be made to jump by an arbitrarily large
amount. To do this, we first construct an example using the classifying stack of an
appropriately constructed finite flat group scheme which deforms Z/p2Z to αp ⊕ αp.

1. INTRODUCTION

If f : X → Y is a smooth projective family of complex algebraic varieties with Y
connected, it is a classical fact that the function on y ∈ Y ,

y 7→ dimC H
i
dR(Xy;C),

is constant for any i ≥ 0. However, it is well known that this fails for smooth projec-
tive families in mixed and positive characteristic. In [Suh], Suh constructs families of
surfaces over a mixed characteristic DVR with an arbitrarily large jump in geometric
genus from the generic to the special fiber, while in [CZ], Cotner and Zavyalov construct
a family of surfaces in equal characteristic p > 0 such that dimH1

dR(Xs/k(s)) = 2 and
dimH1

dR(Xη/k(η)) = 1. In both cases, the authors use the method of Godeaux-Serre,
in which one obtains such families as quotients by the action of certain group schemes
on complete intersections in projective space.

In this article, we use the Godeaux-Serre method to construct families of algebraic
varieties in equal characteristic p > 0 with an arbitrarily large jump in algebraic de
Rham cohomology (of any degree). Let S = SpecR be the spectrum of a characteristic
p DVR with closed point s and generic point η.

Theorem 1.1. Let e, i ≥ 1 be positive integers. Then there exists a smooth projective
family X → S of relative dimension i+ 1 such that

dimk(s)H
i
dR(Xs/k(s)) ≥ dimk(η) H

i
dR(Xη/k(η)) + e.

Remark 1.2. Base changing along the map Fp[t](t) → R which sends t to the uni-
formizer of R and noting that algebraic de Rham cohomology is compatible with field
extensions, we find that it is enough to prove Theorem 1.1 over Fp[t](t). Thus for the
remainder of this article we work over the base S = SpecFp[t](t).

Remark 1.3. One can already obtain arbitrarily large de Rham jumps by taking self-
products of the surface constructed in [CZ], however this requires the dimension of the
family to increase with the prescribed gap e (though see Remark 4.1 for an approach
to arbitrary jumps using the [CZ] surface). Thus the content of the theorem is that we
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can obtain arbitrarily large jumps in a given cohomological degree in families of fixed
dimension.

The strategy of proof is not new, and can be summarized in the following steps. First,
construct a finite flat group scheme H/S such that dimH i

dR(BHs) ≥ dimH i
dR(BHη)+ e.

Second, construct actions of H on projective space such that the complement of the free
locus can be made to have arbitrarily large codimension. Finally, choose a complete in-
tersection Y ⊂ PN

S of relative dimension i + 1 on which H acts freely, and use the
Lefschetz hyperplane theorem to deduce that Y/H and [PN/H] have the same de Rham
cohomology in a range of degrees.

The structure of this paper is as follows. In section 2 we construct a desirable finite
flat G/S and compute the de Rham cohomology of the classifying stacks of its fibers.
In fact, the group H above will be a power of G depending on the gap e. In section 3
we construct actions of powers of G on projective spaces for which the complement of
the free locus can be made to have arbitrarily large codimension, and in section 4 we
combine these to prove Theorem 1.1.
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2. A GROUP SCHEME IN CHARACTERISTIC p

In this section, we construct a group scheme G/S which will have desirable cohomo-
logical properties by modifying a construction of Reid [Reid, Section 2.1] of a group
scheme which deforms Gm to Ga. Recall that S = SpecFp[t](t).

Lemma 2.1. There exists a finite flat commutative group scheme G/S of order p2 with
Gη

∼= Z/p2Z and Gs
∼= αp ⊕ αp.

Proof. We begin by constructing the Cartier dual G∨ of G. First, let R = Fp[t](t) and
consider the R-algebra

A :=
R[x, y]

(xp, yp − tx)
.

A is freely generated as an R-module by monomials xayb with 0 ≤ a, b ≤ p − 1. We
endow A with a Hopf algebra structure ∆ : A → A⊗ A, e : A → R, i : A → A given
by

∆(y) = 1⊗ y + y ⊗ 1 + ty ⊗ y

e(y) = 0

i(y) =
−y

1 + ty
,
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which by the relation tx = yp forces ∆(x) = 1⊗ x+ x⊗ 1+ tp+1x⊗ x, e(x) = 0, and
i(x) = −x

1+tp+1x
. One checks by hand that axioms for a commutative Hopf algebra hold

(note that one only has to check these relations on the generators).
When t = 0, we get k[x, y]/(xp, yp), with Hopf algebra structure

∆(x) = 1⊗ x+ x⊗ 1,∆(y) = 1⊗ y + y ⊗ 1

e(x) = e(y) = 0

i(x) = −x, i(y) = −y,

which we recognize as αp⊕αp, while when t is invertible we get k(t)[y]/((1+ ty)p
2− 1)

with Hopf algebra structure

∆(1 + ty) = (1 + ty)⊗ (1 + ty)

e(1 + ty) = 1

i(1 + ty) =
1

1 + ty
,

which we recognize as µp2 . Taking the Cartier dual gives the desired G/S. □

In the above proof, note that A/(x) ∼= R[y]/(yp) with its given Hopf algebra structure
recovers the deformation of µp to αp constructed in [Reid, Proposition 3.1]. It is also in-
teresting to note that the G/S constructed above is a group scheme which is a truncated
Barsotti-Tate group generically but which is far from being truncated Barsotti-Tate on
the special fiber, making it an equal characteristic p example of Raynaud’s "affaisse-
ment" or "drooping" of truncated Barsotti-Tate groups [Ray2, Section 3].

Remark 2.2. An alternate geometric construction of a deformation of Z/p2Z to αp⊕αp

due to Sean Cotner is as follows: begin with a degeneration E of an ordinary elliptic
curve into a supersingular one such that E has rational p2-torsion generically. Then the
pullback of the short exact sequence

0 → kerV → kerV 2 → kerV → 0

by the Frobenius map F : kerV → kerV yields such a deformation.

Now we calculate the de Rham cohomology of the classifying stacks BGs and BGη.
For definitions and basic properties of de Rham cohomology of stacks, we refer the
reader to [ABM, Section 2] and [CZ, Section 2.4], though we remark that for our calcu-
lations one only needs to know Totaro’s theorem ([Tot, Theorem 3.1]) and the fact that
de Rham cohomology still satisfies versions of the Lefschetz hyperplane theorem and
projective bundle formula in this setting, as in [ABM, Section 5].

Proposition 2.3. For the group scheme G/S of Lemma 2.1, we have

dimH i
dR(B(Gn

η ))) =

(
n+ i− 1

i

)
,

dimH i
dR(B(Gn

s )) =

(
2n+ i− 1

i

)
.

Proof. First, since Gη
∼= Z/p2Z is a discrete group, one has by [Tot, Lemma 10.2] that

H i
dR(BGη) ∼= H i(Z/p2Z, k(η)) ∼= k(η)
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for all i ≥ 0. Next, by [ABM, Proposition 4.12], we have

dimH i
dR(Bαp) = 1

for all i ≥ 0. The result then follows by the Künneth formula. □

3. GROUP ACTIONS

3.1. Generalities. In this subsection, we give an exposition of the definitions and facts
we will need concerning actions of finite flat group schemes on varieties. Let S be a
locally noetherian scheme, G a finite flat S-group scheme, and X an S-scheme. An
action of G on X is an S-map G ×S X → X inducing a group action on T -valued
points for all S-schemes T .

Definition 3.1. If T is an S-scheme and x ∈ X(T ), the stabilizer of x in G is the functor
which sends a T -scheme U to {g ∈ G(U) : gxU = xU}. The free locus is the functor
sending an S-scheme T to those points in X(T ) with trivial stabilizer.

Lemma 3.2. If X/S is separated, the free locus is represented by an open subscheme
of X , and is compatible with arbitrary base change. In particular, the free locus is
determined by its values on affine S-schemes.

Proof. See [CZ2, Lemma 2.1]. □

If X/S is separated, we will refer to the complement of the free locus as the fixed
locus, which by Lemma 3.2 is closed in X . In this situation, we say that the action of G
on X is free if the free locus is all of X . The relevance of free actions for us is contained
in the following theorem.

Theorem 3.3 (Existence and Properties of Quotients). Let X be a quasiprojective S-
scheme with an action of a finite flat S-group scheme G. Then

(a) The ringed space quotient X/G is a quasiprojective S-scheme and the natural
quotient map π : X → X/G is finite and surjective;

(b) If S is quasi-compact and quasi-separated and X is projective over S, then X/G
is projective over S;

(c) If the action of G on X is free and X is smooth over S, then so is X/G;
(d) If G acts freely on X and Y/S is any separated S-scheme, then the diagonal

action of G on X ×S Y is free.

Proof. For (a) and (c), see [CZ2, Theorem 2.2] and the discussion which follows. Part
(d) follows readily from the definitions.

For (b), we argue as follows. First, X/G is proper over S by part (a) and [Sta, Tag
03GN]. Then since X/G is quasiprojective and proper over S, it is projective by [Sta,
Tag 0BCL]. □

For the purposes of finding projective varieties with free actions, we will be interested
in group actions on projective spaces. First, we study the situation over a field k. The
following arguments are classical and may be found in e.g. [Suh, Lemma 2.1.1], but we
include them for completeness.
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Lemma 3.4. Let G/k be a finite group scheme over a field which acts on PN
k , and let

r be the codimension of the fixed locus. Then for any 1 ≤ r′ ≤ r − 1, there is an
r′-dimensional complete intersection Y in PN on which G acts freely, such that the
quotient X = Y/G is a smooth projective variety.

Proof. Let Z be the fixed locus of the action of G. Since PN is projective, the quotient
PN/G exists as a projective variety P by Theorem 3.3 (b). Let π : PN → P be the
quotient map and i : P → PM be a closed embedding. By applying Gabber’s Bertini
theorem [Gab, Corollary 1.7] in combination with Theorem 3.3 (c), we find that there
exists a complete intersection L ⊂ PM , cut out by N − r′ equations, such that L does
not intersect i(π(Z)) and X := L ∩ i(P ) is smooth projective of dimension r′. Pulling
back equations defining L to PN , we obtain a complete intersection Y of dimension r′

on which G acts freely with quotient isomorphic to X . □

Now, we relativize by lifting the construction on the special fiber. Let S be a DVR
with residue field k.

Proposition 3.5. Let G/S be a finite flat group scheme which acts on PN
S , and let r be

the relative codimension of the fixed locus. Then for any 1 ≤ r′ ≤ r − 1, there is a
complete intersection Y ⊂ PN

S of relative dimension r′ on which G acts freely, such
that the quotient X = Y/G is a smooth projective variety over S.

Proof. Let Z ⊂ PN
S be the fixed locus, and let π : PN

S → P = PN/G and i : P → PM

be the quotient map and a closed immersion, respectively. As in the proof of the
previous lemma applied to the special fiber, we have a complete intersection L =
V (f 1, . . . , fN−r′) ⊂ PM

k . Choose lifts fi of the equations defining L to S, and let
L ⊂ PM

S be the corresponding complete intersection. Then X := L ∩ i(P ) doesn’t
intersect i(π(Z)) since there is no intersection on the special fiber and this intersection
is proper. Moreover X is smooth of relative dimension r′ over S because the smooth
locus is open on S by [EGAIV, Theorem 12.2.4], and the special fiber is smooth of the
correct dimension. Pulling back the sections fi to PN then gives the desired Y with a
free action of G and quotient X . □

Remark 3.6. As the above proof shows, it suffices to work on the special fiber, so we
need only require Zs to have codimension r in PN

s .

In the context of finding arbitrary de Rham jumps, the proposition shows that, for
our group of interest G, we need to find actions of G on projective space such that the
codimension of the complement of the free locus can be made arbitrarily large.

3.2. An explicit representation. We now return to the notation of Section 2, in which
S = SpecFp[t](t) and G/S is the group scheme constructed in Lemma 2.1. In this
section we construct projective spaces with an action of Gn with large free locus by
taking powers of the regular representation of Gn, i.e. the action of Gn on its ring of
regular functions O(Gn). This study has been undertaken in full generality by Raynaud
in [Ray], however the group G is simple enough that we can explicitly carry out the
analysis in our case. By Remark 3.6, it suffices to study the regular representation of
the special fiber so we focus on the action of αn

p on O(αn
p )

∼= Apn . If A is a k-algebra
and B is an A-algebra, the action of b = (b1, . . . , bn) ∈ αn

p (B) on f(x1, . . . , xn) ∈
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O(αn
p )(A) = A[x1, . . . , xn]/(x

p
1, . . . , x

p
n) is given by b · f(x) = f(x + b). From this

description, a simple calculation shows that the free locus contains a hyperplane com-
plement, namely the locus of polynomials with nonzero leading coefficient (i.e. nonzero
coefficient of xp−1

1 . . . xp−1
n when we express elements of O(αn

p )(A) in the standard ba-
sis). It follows that the fixed locus has codimension at least 1, so taking direct sums of
the regular representation, applying Theorem 3.3 (d), and projectivizing, we find

Lemma 3.7. For any m > 0, there exists an action of Gn on a projective space PN
S such

that the fixed locus has codimension at least m.

Combining this with Proposition 3.5, we obtain

Corollary 3.8. For any n,m > 0, there is a an N > 0 and a complete intersection
Y ⊂ PN

S of relative dimension m on which Gn acts freely, such that the quotient Y/Gn

is a smooth projective variety over S.

4. PROOF OF THEOREM 1.1

Let e, i ≥ 1 be positive integers, and let G/S be the group scheme constructed in
Lemma 2.1, so Gs

∼= αp ⊕αp and Gη
∼= Z/p2Z. By proposition 2.3, we may choose an

n > 0 such that
dimH i

dR(B(Gn
s )) ≥ dimH i

dR(B(Gn
η )) + e. (4.1)

By Corollary 3.8, there is a projective space PN
S with an action of Gn and a complete

intersection Y ⊂ PN
S of relative dimension i + 1 on which the action is free, such

that X := Y/Gn is a smooth projective variety over S. By the Lefschetz hyperplane
theorem [ABM, Proposition 5.3], we have for each t ∈ S that

H i
dR(Yt/k(t)) ∼= H i

dR(PN
k(t)),

and by [ABM, Proposition 5.10] we obtain

H i
dR(Xt/k(t)) ∼= H i

dR([PN
k(t)/G

n
t ]), (4.2)

where [PN
k(t)/G

n
t ] denotes the quotient stack. But by construction, [PN

k(t)/G
n
t ] is the

projectivization of a vector bundle over BGn
t , and therefore by the projective bundle

formula1 we can compute

H i
dR([PN

k(t)/G
n
t ])

∼= H i
dR(PN

k(t) ×BGn
t )

∼= H i
dR(BGn

t )⊕H i−2
dR (BGn

t )⊕ . . . .

Combining this with (4.1) and (4.2), we find

dimH i
dR(Xs) ≥ dimH i

dR(Xη) + e,

as desired.

Remark 4.1. As pointed out to the author by Sean Cotner, one can also obtain ar-
bitrarily large jumps in de Rham cohomology by taking self products of the surface
constructed in [CZ] and slicing the result by hyperplanes. However, our approach was
motivated by the search for families of group schemes in equal characteristic p that have
visibly different cohomological behavior in all degrees on the generic and special fibers
(e.g. non-split generically and split on the special fiber).

1The projective bundle formula for the de Rham cohomology of smooth stacks follows from the clas-
sical version for schemes [Sta, Tag 0FMS] as in [ABM, Proposition 5.11].
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