Reeb Stability

If \(\mathcal{F} \) is a codimension one foliation of a compact manifold \(M^n \). Suppose that \(L \) is a compact leaf of \(\mathcal{F} \) at \(\overline{\mathcal{F}}(L) \) is finite. Then all leaves are diffeomorphic with \(L \). We assume here that if \(M^n \) has boundary, \(M^n \) is a union of leaves.

and the leaves of \(\mathcal{F} \) are the fibers of a fibration of \(M^n \) over \(S^1 \) or \(I \).

Rmk: \(H(L; \mathbb{R}) = 0 \) is necessary. On \(L \times S^1 \), the one form \(\alpha = \omega + A \) is

Definition of foliation: \(\phi_i \) : \(U_i \rightarrow \mathbb{R}^n \) manifold structure. \(\phi_{ij} : \mathbb{R}^n \rightarrow \mathbb{R}^n \)

Coadim \(p \) folation

\[\begin{align*}
\phi_{ij} : \mathbb{R}^n &\rightarrow \mathbb{R}^{n-p} \\
\phi_{ji} : \mathbb{R}^{n-p} &\rightarrow \mathbb{R}^n
\end{align*} \]

Holonomy: \(H \rightarrow \text{germs} \ Diff(\mathbb{R}^{n-p}) \)

\(dH \rightarrow GL(p, \mathbb{R}) \)

Thm: If codim \(k \) foliation, \(L \) compact leaf of \(\mathcal{F} \). Then either:

1. \(dH \) is nontrivial
2. \(H(L; \mathbb{R}) \) is nontrivial
3. \(H \) is trivial and \(\overline{\mathcal{F}}(L) \) has a product structure.
$K \subset G$ a subset of G. $\varepsilon > 0$ (K,ε)-coycle with values in \mathbb{R}^K is an \mathbb{R}^K-valued function on K sat $\|s^r(a,b)\| \leq \varepsilon$

$s^r(a,b) = r(ab) - r(a) - r(b)$

$\text{Normal } (K,\varepsilon)\text{-coycle is sat } \max_{\beta \in B} \|r(\beta)\| = 1$

Suppose B generates G

$B \subset K$

Let $B^t = \text{set of products of at most } t \text{ elements of } B$.

Lemma: Nontrivial cocycles exist iff normal (B^t,ε)-cocycles exist for every $\varepsilon > 0$ and t.

Pf: The set of normal (B^t,ε)-cocycles is compact space.

(B^t,ε)-cocycles $\supset (B^{t'},\varepsilon')$ cocycles if $t' \geq t$ and $0 < \varepsilon' \leq \varepsilon$

$(\bigcap_{\varepsilon} B^t) = B^t \Rightarrow B$ has nontrivial element.

Ways to construct cocycles.

Therefore we need to construct (B^t,ε)-cocycles.

$y_x(a) = \frac{1}{m} (H^t(a) - x)$

where $m = \max_{a \in B} \|H^t(a) - x\|$

if H is nontrivial and ∂H is trivial

Lemma: $\forall t, \varepsilon > 0 \exists \delta$ so if $\|x\| < \delta$ y_x is a (B^t,ε)-cocycle.

Induction on t.

\Box
Cor: \(G \) top gp acting on a manifold \(V \) with a fixed pt \(p \).

Either

1. \(\mathbb{R}^G \to \mathbb{R}^{GL(K)} \) is nontrivial

or

2. \(H^c(G, \mathbb{R}) \neq 0 \)

or

3. trivial action globally.

The same proof.

Application:

\[
\text{Diff}(\mathbb{R}^n) \quad \Downarrow \quad \text{no section}
\]

\[
[B_n, B_n] \subset B_n
\]

\[
H^c([B_n, B_n], \mathbb{R}) = 0
\]

\[
[B_n, B_n] \quad \rightarrow \quad GL(2, \mathbb{R})
\]

representation problem