
The Hyperbolic Plane

Definition: We define H = {(x, y) ∈ R2| y > 0} to be the upper half
plane. We define on H a 2-tensor

ds2 =
1
y2

(dx⊗ dx + dy ⊗ dy).

This gives an inner product, and thus a norm || · ||, on the tangent plane at
each point in H.

Curves and lengths

If γ : [a, b] −→ H is a C1 curve, then for each t0 ∈ [a, b], (γ(t0),
dγ

dt
(t0))

is a vector in tangent plane at γ(t0), where
dγ

dt
(t0) =

(
dγ1

dt
(t0),

dγ2

dt
(t0)

)
,

where γi are the components of γ. We define the length of γ to be l(γ) =∫
a
b‖dγ

dt
‖dt. It is not hard to show that the length of curve does not depend

on the parametrization.

We define the distance between two points to be the infimum of the
length of all the paths connecting them. This turns out to be a minimum
as we will show below. The distance function can be shown to be a metric
on H. The upper half plane with the tensor ds2 is called the hyperbolic plane.

Exercise 1: Let p = (0, y1) ∈ H and q = (0, y2) ∈ H. Prove that the
shortest C1 curve connecting p and q is the straight, vertical line connecting
p and q.

Definition: We can identify R2 with the complex plane C, that is, we
identify (x, y) ∈ R2 with x + iy ∈ C. For a, b, c, d ∈ C with ad− bc 6= 0, the
map f : C −→ C defined as

f(z) =
az + b

cz + d
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is called a fractional linear transformation (or FLT). If a, b, c, d ∈ R and
ad − bc > 0, then f preserves the upper half plane (explained later) and
thus induces a map from H to H. It is not hard to show that an FLT with
real coefficients, that is a, b, c, d ∈ R, can be obtained by composing the
following maps:

• Translation: T : H −→ H is defined as T (x, y) = (x + b, y), where b is
a constant. This corresponds to the case a = 1, c = 0, d = 1.

• Dilation: D : H −→ H is defined as D(x, y) = (ax, ay), where a > 0 is
a constant. This corresponds to the case b = 0, c = 0, d = 1.

• Inversion: I : H −→ H is defined as I(x, y) = (
−x

x2 + y2
,

y

x2 + y2
). This

corresponds to the case a = 0, b = −1, c = 1, d = 0.

Exercise 2: Show that ds2 is preserved under the above three maps. That
is, show that it is equal to the pull-back of itself, i.e. if f is one of the above
maps, then f∗(ds2)(p) = ds2(f(p)).

Exercise 3: Prove that if f and g : Rn −→ Rn are differentiable functions,
then for ω ∈ T k(Rn), we have (f ◦ g)∗(ω) = g∗(f∗(ω)). Since a FLT f is
a composition of translations, dilations and inversions, and ds2 is preserved
under these maps, it follows that ds2 is preserved under f .

Exercise 4: Let f be an FLT with real coefficients so that f induces a
map f : H −→ H. Let γ be a C1 curve in H. Then λ := f ◦ γ is also a C1

curve in H. Show that l(λ) = l(γ).

Facts (which are not extremely hard to prove): FLT’s take generalised
circles to generalised circles (a generalised circle is a line or a circle) and
preserve angles between curves. The angle between two curves at an inter-
section point is the angle between the two tangent vectors. Also, for any 2
triples of points, say, (u1, u2, u3) and (v1, v2, v3), there exists an FLT f that
sends one to the other, i.e, f(ui) = f(vi) for i = 1, 2, 3.

Since a generalised circle is determined by 3 points on it, it follows that
given 2 generalised circles, there exists an FLT that brings one to another.
An FLT with real coefficients preserves the real axis in C. In order for it to
preserve the upper half plane, we need to require that ad− bc > 0.

Given any two points p, q ∈ H, there exists an FLT f with real coeffi-
cients such that f(p), f(q) are on the y–axis. This map can be constructed
as follow. First, there is a circle going through p and q that is perpendicular
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to the x-axis, i.e. the center of this circle lies on the x-axis. Let r be one of
the intersection points of the circle and the x-axis. Next, by the facts above,
there is an FLT f that takes r to the origin and p, q to two other points on
the y-axis (imaginary axis).

Note that the circle going through p and q must be perpendicular to the
x-axis because its image under f is perpendicular to the image of the x-axis
and f is angle-preserving.

Now, with this observation and Exercise 4 and Exercise 1, we see that
the shortest path between two point p and q ∈ H is the generalised circle
going through them that is perpendicular to the x-axis. These curves are
called geodesics.

Areas
Let M be the region in H bounded by x = 1, x = −1 and y =

√
1− x2.

If U ⊂ H, we define the area of U to be
∫
U

1
y2

dA =
∫
U

1
y2

dxdy if this

integral exists. (The form
1
y2

dx∧dy is the volume/area form corresponding

to the “metric” ds2.)
A triangle with vertices A,B, C ∈ H is the closed set bounded by

geodesics connecting each pair of points in {A,B, C}. Up to an FLT, any
triangle is contained in M. Also, it can be shown that this volume form
is preserved under FLT’s as in the above exercises. Hence, the area of any
triangle is bounded by the area of M.

Exercise 5: Show that the area of any triangle in H is less than π by
showing that

lim
h→∞

∫
Mh

1
y2

dA = π,

where Mh = {(x, y) ∈ M | y ≤ h}, for h > 1.

In fact, this is a corollary of a much stronger theorem. The theorem of
Gauss-Bonnet implies that for any triangle 4 in H with angles α, β, γ, we
have

Area(4) = π − (α + β + γ).
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