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1. Introduction

1.1. This paper is a collaboration between a mathematician and a physicist. It is based on the observation
that renormalization of Feynman amplitudes in physics is closely related to the theory of limiting mixed
Hodge structures in mathematics. Whereas classical physical renormalization methods involve manipulations
with the integrand of a divergent integral, limiting Hodge theory involves moving the chain of integration so
the integral becomes convergent and studying the monodromy as the chain varies.

Even methods like minimal subtraction in the context of dimensional or analytic regularization implicitly
modify the integrand through the definition of a measure

∫
dDk via analytic continuation. Still, as a regulator

dimensional regularization is close to our approach in so far as it leaves the rational integrand assigned to a
graph unchanged. Minimal subtraction as a renormalization scheme differs though from the renormalization
schemes which we consider -momentum subtractions essentially- by a finite renormalization. Many of the
nice algebro-geometric structures developed below are not transparent in that scheme.

The advantages of the limiting Hodge method are firstly that it is linked to a very central and powerful
program in mathematics: the study of Hodge structures and their variations. As a consequence, one gains
a number of tools, like weight, Hodge, and monodromy filtrations to study and classify the Feynman ampli-
tudes. Secondly, the method depends on the integration chain, and hence on the graph, but it is in some
sense independent of the integrand. For this reason it should adapt naturally e.g. to gauge theories where
the numerator of the integrand is complicated.

An important point is to analyse the nature of the poles. Limiting mixed Hodge structures demand that
the divergent subintegrals have at worst log poles. This does not imply that we can not apply our approach to
perturbative amplitudes which have worse than logarithmic degree of divergence. It only means that we have
to correctly isolate the polynomials in masses and external momenta which accompany those divergences such
that the corresponding integrands have singularities provided by log-poles. This is essentially automatic from
the notion of a residue available by our very methods. As a very pleasant byproduct, we learn that physical
renormalization schemes -on-shell subtractions, momentum subtractions, Weinberg’s scheme,- belong to a
class of schemes for which this is indeed automatic.

Moreover, for technical reasons, it is convenient to work with projective rather than affine integrals. One
of the central physics results in this paper is that the renormalization problem can be reduced to the study
of logarithmically divergent, projective integrals. This is again familiar from analytic regulators. The fact
that it can be achieved here by leaving the integrand completely intact will hopefully some fine day allow to
understand the nature of the periods assigned to renormalized values in quantum field theory.

A remark for Mathematicians: our focus in this paper has been renormalization, which is a problem
arising in physics. We suspect, however, that similar methods will apply more generally for example to
period integrals whenever the domain of integration is contained in R+n and the integrand is a rational
function with polar locus defined by a polynomial with non-negative real coefficients. The toric methods
and the monodromy computations should go through in that generality.

Acknowledgments. Both authors thank Francis Brown, Hélène Esnault and Karen Yeats for helpful dis-
cussions. This work was partially supported by NSF grants DMS-0603781 and DMS-0653004. S.B. thanks
the IHES for hospitality January-March 2006 and January-March 2008. D.K. thanks Chicago University for
hospitality in February 2007.

1.2. Physics Introduction. This paper studies the renormalization problem in the context of parametric
representations, with an emphasis on algebro-geometric properties. We will not study the nature of the
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periods one obtains from renormalizable quantum field theories in an even dimension of space-time. Instead,
we provide the combinatorics of renormalization such that a future motivic analysis of renormalized ampli-
tudes is feasible along the lines of [2]. Our result will in particular put renormalization in the framework
of a limiting mixed Hodge structure, which hopefully provides a good starting point for an analysis of the
periods in renormalized amplitudes. That these amplitudes are provided by numbers which are periods (in
the sense of [11]) is an immediate consequence of the properties of parametric representations, and will also
emerge naturally below (see Thm.(7.3)).

The main result of this paper is a careful study of the singularities of the first Kirchhoff–Symanzik
polynomial, which carries all the short-distance singularities of the theory. The study of this polynomial can
proceed via an analysis with the help of projective integrals. Along the way, we will also give useful formulas
for parametric representations involving affine integrals, and clarify the role of the second Kirchhoff–Symanzik
polynomial for affine and projective integrals.

Our methods are general, but in concrete examples we restrict ourselves to φ4
4 theory. Parametric rep-

resentations are used which result from free-field propagators for propagation in flat space-time. In such
circumstances, the advantages of analytic regularizations are also available in our study of parametric rep-
resentations as we will see. In particular, our use of projective integrals below combines such advantages
with the possibility to discuss renormalization on the level of the pairing between integration chains and de
Rham classes.

In examples, special emphasis is given to the study of particular renormalization schemes, the momentum
scheme (MOM-scheme, Weinberg’s scheme, on-shell subtractions).

Also, we often consider Green functions as functions of a single kinematical scale q2 > 0. Green functions
are defined throughout as the scalar coefficient functions (structure functions) for the radiative corrections
to tree-level amplitudes r. They are to be regarded as scalar quantities of the form 1 +O(~). Renormalized
amplitudes are then, in finite order in perturbation theory, polynomial corrections in L = ln q2/µ2 (µ2 >
0) without constant term, providing the quantum corrections to the tree-level amplitudes appearing as
monomials in a renormalizable Lagrangian [15]:

(1.1) φR(Γ) =

aug(Γ)∑

j=1

pj(Γ)Lj .

Correspondingly, Green functions become triangular series in two variables

(1.2) Gr(α,L) = 1 +

∞∑

j=1

γrj (α)Lj = 1 +

∞∑

j=1

crj(L)αj .

The series γrj (α) are related by the renormalization group which leaves only the γr1(α) undetermined, while

the polynomials crj(L) are bounded in degree by j. The series γr1 fulfill ordinary differential equations driven
by the primitive graphs of the theory [16].

The limiting Hodge structure A(Γ) which we consider for each Feynman graph Γ provides contribution of
a graph Γ to the coefficients of γr1 in the limit. This limit is a period matrix (a column vector here) which
has, from top to bottom, the periods provided by a renormalized graph Γ as entries. The first entry is the
contribution to γr1 of a graph with res(Γ) = r and the k-th is a rational multiple of the contribution to γrk. In
section 9.1 we determine the rational weights which connect these periods to the coefficients pj(Γ) attributed
to the renormalization of a graph Γ.

We include a discussion of the structure of renormalization which comes from an analysis of the second
Kirchhoff–Symanzik polynomial. While this polynomial does not provide short-distance singularities in its
own right, it leads to integrals of the form

(1.3)

∫
ω ln(f)

for a renormalized Feynman amplitude, with ω a de Rham class determined by the first Kirchhoff–Symanzik
polynomial, and f -congruent to one along any remaining exceptional divisor- determined by the second.
We do not actually do the monodromy calculation for integrals (1.3) involving a logarithm, but it will be
similar to the calculation for (1.5) which we do. A full discussion of the Hodge structure of a Green function
seems feasible but will be postponed to future work.
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Figure 1. Picture of X and L

1.3. Math Introduction. Let Pn−1 be the projective space of lines in Cn which we view as an algebraic
variety with homogeneous coordinates A1, . . . , An. Let ψ(A1, . . . , An) be a homogeneous polynomial of some
degree d, and let X ⊂ Pn−1 be the hypersurface defined by ψ = 0. We assume the coefficients of ψ are all
real and ≥ 0. Let σ = {[a1, . . . , an] | ai ≥ 0, ∀i} be the topological (n − 1)-chain (simplex) in Pn−1, where
[. . .] refers to homogeneous coordinates. We will also use the notation σ = Pn−1(R≥0). Our assumption
about coefficients implies

(1.4) σ ∩X =
⋃

L⊂X

L(R≥0),

where L runs through all coordinate coordinate linear spaces L : Ai1 = · · · = Aip = 0 contained in X (see
(see Fig.1)). The genesis of the renormalization problem in physics is the need to assign values to integrals

(1.5)

∫

σ

ω

where ω is an algebraic (n−1)-form on Pn−1 with poles alongX . The problem is an important one for physical
applications, and there is an extensive literature (see, for example, [10, 22, 21]) focusing on practical formulae
to reinterpret (1.5) in some consistent way as a polynomial in log t. (Here t parametrizes a deformation of
the integration chain. As a first approximation, one can think of

∫∞

t
ω when ω has a logarithmic pole at

t = 0.)
A similar problem arises in pure mathematics in the study of degenerating varieties, e.g. a family of elliptic

curves degenerating to a rational curve with a node. In the classical setup, one is given a family f : X → D,
where D is a disk with parameter t. The map f is proper (so the fibres Xt are compact). X is assumed to
be non-singular, as are the fibres Xt, t 6= 0. X0 may be singular, though one commonly invokes resolution of
singularities to assume X0 ⊂ X is a normal crossing divisor. Choose a basis σ1,t, . . . , σr,t for the homology
of the fibre Hp(Xt,Q) in some fixed degree p. By standard results in differential topology, the fibre space is
locally topologically trivial over D∗ = D − {0}, and we may choose the classes σi,t to be locally constant.
If we fix a smooth fibre t0 6= 0, the monodromy transformation m : Hp(Xt0) → Hp(Xt0) is obtained by
winding around t = 0. An important theorem ([7], III,2) says this transformation is quasi-unipotent, i.e.
after possibly introducing a root t′ = t1/n (which has the effect of replacing m by mn), m− id is nilpotent.
The matrix

(1.6) N := logm = −
[
(id−m) + (id−m)2/2 + . . .

]
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is thus also nilpotent. This is the mathematical equivalent of locality in physics. It insures that our
renormalization of (1.5) will be a polynomial in log t rather than an infinite series. We take a cohomology class
[ωt] ∈ Hp(Xt,C) which varies algebraically. For example, in a family of elliptic curves y2 = x(x− 1)(x− t),
the holomorphic 1-form ωt = dx/y is such a class. Note ωt is single-valued over all of D∗. It is not locally
constant. The expression

(1.7) exp
(
− (N log t)/2πi

)



∫
σ1,t

ωt
...∫

σr,t
ωt


 .

is then single-valued and analytic on D∗. Suppose ωt chosen such that the entries of the column vector in
(1.7) grow at worst like powers of | log |t|| as |t| → 0. A standard result in complex analysis then implies
that (1.7) is analytic at t = 0. We can write this

(1.8)




∫
σ1,t

ωt
...∫

σr,t
ωt


 ∼ exp

(
(N log t)/2πi

)


a1

...
ar


 .

Here the aj are constants which are periods of a limiting Hodge structure. The exponential on the right
expands as a matrix whose entries are polynomials in log t, and the equivalence relation ∼ means that the
difference between the two sides is a column vector of (multi-valued) analytic functions vanishing at t = 0.

We would like to apply this program to the integral (1.5). Let ∆ :
∏n

1 Aj = 0 be the coordinate divisor
in Pn−1. Note that the chain σ has boundary in ∆, so as a first attempt to interpret (1.5) as a period, we
might consider the pairing

(1.9) Hn−1(Pn−1 −X,∆−X ∩∆)×Hn−1(P
n−1 −X,∆−X ∩∆)→ C

The form ω is an algebraic (n − 1)-form and it vanishes on ∆ for degree reasons, so it does give a class in
the relative cohomology group appearing in (1.9) (see the discussion (9.8)-(9.10)). On the other hand, the
chain σ meets X (1.4), so we do not get a class in homology. Instead we consider a family of coordinate
divisors ∆t :

∏n
1 Aj,t = 0 with ∆0 = ∆. (For details, see section 6.) For t = ε > 0 there is a natural chain

σε which is what the physicists would call a cutoff. We have ∂σε ⊂ ∆ε and σε ∩X = ∅, so
∫
σε
ω is defined.

One knows on abstract grounds that the monodromy of

Hn−1(P
n−1 −X,∆t −X ∩∆t)

is quasi-unipotent as above ([7], III,§2). The main mathematical work in this paper will be to compute the
monodromy of σε in the specific case of Feynman amplitudes in physics. More precisely, X will be a graph
hypersurface XΓ associated to a graph Γ (section 5). We will write down chains τεγ , one for each flag of core
(one particle irreducible in physics) subgraphs γ = {Γ1 ( · · ·Γp(γ) ( Γ}, representing linearly independent

homology classes in Hn−1(Pn−1 −X,∆ε −X ∩∆ε). (The combinatorics here is similar to that found in [1],
[18].) We will show the monodromy in our case is given by

(1.10) m(σε) = σε +
∑

γ

(−1)p(γ)τεγ .

We will then exhibit a nilpotent matrix N such that

(1.11)




m(σε)
...

m(τεγ )
...




= exp(N)




σε
...
τεγ
...



.

With this in hand, renormalization is automatic for any physical theory for which Γ and its subgraphs are
at worst logarithmically divergent after taking out suitable polynomials in masses and momenta. Namely,
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such a physical theory gives a differential form ωΓ as in (1.5) and we may repeat the above argument:

(1.12) exp(−(N log t)/2πi)




∫
σt
ω

...∫
τ tγ
ω

...




is single-valued on the punctured disk. The hypothesis of log divergence at worst for subgraphs of Γ will
imply that the integrals will grow at worst like a power of log as |t| → 0,(lemma 9.2). Precisely as in (1.8),
one gets the renormalization

(1.13)

∫

σt

ωΓ =
r∑

k=0

bk(log t)k +O(t),

where O(t) denotes a (multi-valued) analytic function vanishing at t = 0. The renormalization schemes
considered here can be characterized by the condition b0 = 0.

Of course, the requirement that a physical theory have at worst log divergences is a very strong constraint.
The difficult computations in section 7 show how general divergences encountered in physics can be reduced
to log divergences.

Remarks 1.1. The renormalization scheme outlined above, and worked out in detail in the following sec-
tions, has a number of properties, some of which may seem strange to the physicist.
(i) It does not work in renormalization schemes which demand counter-terms which are not defined by sub-
tractions at fixed values of masses and momenta of the theory. So conditions on the regulator for example, as
in minimal subtraction where one defines the counterterm by projection onto a pole part, are not considered.
In such schemes, and for graphs which are worse than log divergent, a topological procedure of the sort given
here can not work. It is necessary instead to modify the integrand ωΓ in a non-canonical way.
(ii) On the other hand, our approach is very canonical. It depends on the choice of a parameter t, as any
renormalization scheme must. Somewhat more subtle is the dependence on the monodromy associated to the
choice of a family ∆t of coordinate divisors deforming the given ∆ = ∆0. We have taken the most evident
such monodromy, moving all the vertices of the simplex. Note that this choice is stable in the sense that a
small deformation leaves the monodromy unchanged.
(iii) It would seem that our answer is much more complicated than need be, because Γ will in general
contain far more core subgraphs than divergent subgraphs. For example, in ϕ4-theory, the “dunce’s cap”
(see Fig.2) has only one divergent subgraph, given in the picture by edges 1, 2. It has 3 core subgraphs
(3, 4, 1), (3, 4, 2), (1, 2). From the point of view of renormalization, this problem disappears. The τεγ are

tubes, and the integral
∫
τεγ
ωΓ is basically a residue which will vanish unless γ ⊂ Γ is a divergent subgraph.

In (1.12), the column vector of integrals will consist mostly of 0’s and the final regularization (1.13) will
involve only divergent subgraphs.
(iv) An important property of the theory is the presence of a limiting mixed Hodge structure. The constants
on the right hand side of (1.8) are periods of a mixed Hodge structure called the limiting MHS for the
degeneration. One may hope that the tendency for Feynman amplitudes to be multi-zeta numbers [4] will
some day be understood in terms of this Hodge structure. From the point of view of this paper, the vector
space W ⊂ Hn−1(Pn−1 −XΓ,∆t −XΓ ∩∆t) spanned by σt and the τ tγ is invariant under the monodromy.
One may ask whether the image of W in the limiting MHS spans a sub-Hodge structure. If so, we would
expect that this HS would be linked to the multi-zeta numbers. Note that W is highly non-trivial even when
Γ has no subdivergences. This W is an essentially new invariant which comes out of the monodromy. See
section (9.2) for a final discussion of our viewpoint.
(v) There are a number of renormalization schemes in physics, some of which are not compatible with our
approach. One general test is that our scheme depends only on the graph polynomials of Γ. For example,
suppose Γ = Γ1 ∪ Γ2 where the Γi meet at a single vertex. Then the renormalization polynomial in log t our
theory yields for Γ will be the product of the renormalizations for the Γi.

Most of the mathematical work involved concerns the calculation of monodromy for a particular topological
chain. It is perhaps worth taking a minute to discuss a toy model. Suppose one wants to calculate

∫∞

0
ω,
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Figure 2. Dunce’s cap. Here and in following figures, external half-edges are often not
drawn and are determined by the requirement that all vertices are four-valent.

where ω = dz
(z−i)z . The integral diverges, so instead we consider

∫∞

t
ω as a function of t = εeiθ for 0 ≤ θ ≤ 2π.

If we take the path [t,∞] to be a great circle, then as t winds around 0, the path will get tangled in the
singularity of ω at z = i. Assuming we do not understand the singularities of our integral far from 0, this
could be a problem. Instead we chose our path to follow the small circle from εeiθ to ε and then the positive
real axis from ε to ∞. The variation of monodromy is the difference in the paths for θ = 0 and θ = 2π.
In this case, it is the circle {|t| = ε}. If we assume something (at worst superficial log divergence for the
given graph and all subgraphs in the given physical theory) about the behavior of ω near the pole at 0, then
the behavior of our integral for |t| << 1 is determined by this monodromy, which is a topological invariant.
This is quite different from the usual approach in physics involving complicated algebraic manipulations
with ω. A glance at fig.(10) suggests that our toy model is too simple. We have to work with two scales,
ε << η << 1. This is because in the more complicated situation, we have to deal with cylinders of small
radius η, but then we have further to slightly deform the boundaries of the cylinder (cf. fig.(12)).

1.4. Leitfaden. Section 2 is devoted to Hopf algebras of graphs and of trees. These have played a central
role in the combinatorics of renormalization. In particular, the insight afforded by passing from graphs
to trees is important. Since the combinatorics of core subgraphs is even more complicated than that of
divergent subgraphs, it seemed worth going carefully through the construction. Section 3 studies the toric
variety we obtain from a graph Γ by blowing up certain coordinate linear spaces in the projective space with
homogeneous coordinates labeled by the edges of Γ. The orbits of the torus action are related to flags of core
subgraphs of the given graph. In section 4, we use the R-structure on our toric variety to construct certain
topological chains which will be used to explicit the monodromy. Section 5 recalls the basic properties of
the graph polynomial ψΓ ≡ ψ(Γ) and the graph hypersurface XΓ : ψΓ = 0. The crucial point is corollary 5.3
which says that the strict transform of XΓ on our toric blowup avoids points with coordinates ≥ 0. Any chain
we construct which stays close to the locus of such points necessarily is away from XΓ and hence also away
from the polar locus of our integrand. Section 6 computes the monodromy of our chain. Section 7 considers
how to reduce Feynman amplitude calculations as they arise in physics, including masses and momenta as
well as divergences which are worse than logarithmic, to the basic situation where limiting methods can
apply. In section 8 we calculate the nilpotent matrix N which is the log of the monodromy transformation,
and in section 9 we prove the main renormalization theorem in the log divergent case, to which we have
reduced the theory.
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2. Hopf algebras of trees and graphs

2.1. Graphs. In this section we bring together material on graphs and the graph Hopf algebra which will
be used in the sequel. We also discuss Hopf algebras related to rooted trees and prove a result (proposition
2.5) relating the Hopf algebra of core graphs to a suitable Hopf algebra of labeled trees. Strictly speaking
this is not used in the paper, but it provides the best way we know to understand flags of core subgraphs,
and these play a central role in the monodromy computations. Trees labeled by divergent subgraphs have a
long history in renormalization theory [12], [13].

A graph Γ is determined by giving a finite set HE(Γ) of half-edges, together with two further sets E(Γ)
(edges) and V (Γ) (vertices) and surjective maps

(2.1) pV : HE(Γ)→ V ; pE : HE(Γ)→ E.

(Note we do not allow isolated vertices.) In combinatorics, one typically assumes all fibres p−1
E (e) consist of

exactly two half-edges (e an internal edge), while in physics the calculus of path integrals and correlation
functions dictates that one admit external edges e ∈ E with #p−1

E (e) = 1. If all internal edges of Γ are
shrunk to 0, the resulting graph (with no internal edges) is called the residue res(Γ). In certain theories, the
vertices are decomposed into different types V = ∐Vi, and the valence of the vertices in Vi, #p−1

V (v), is fixed
independent of v ∈ Vi.

We will typically work with labeled graphs which are triples (Γ, A, φ : A ∼= E(Γ)). We refer to A as the
set of edges.

A graph is a topological space with Betti numbers |Γ| = h1(Γ) = dimH1(Γ,Q) and h0(Γ). We say Γ is
connected if h0 = 1. Sometimes h1 is referred to as the loop number.

A subgraph γ ⊂ Γ is determined (for us) by a subset E(γ) ⊂ E(Γ). We write Γ//γ for the quotient
graph obtained by contracting all edges of γ to points. If γ is not connected, Γ//γ is different from the naive
quotient Γ/γ. If γ = Γ, we take Γ//Γ = ∅ to be the empty set. It will be convenient when we discuss Hopf
algebras below to have the empty set as a graph.

Also, for γ = e a single edge, we have the contraction Γ//e = Γ/e. In this case we also consider the cut
graph Γ− e obtained by removing e and also any remaining isolated vertex.

A graph Γ is said to be core (1PI in physics terminology) if for any edge e we have |Γ− e| < |Γ|.
A cycle γ ⊂ Γ is a core subgraph such that |γ| = 1. If Γ is core, it can be written as a union of cycles (see

e.g. the proof of lemma 7.4 in [2]).

2.1.1. Self-energy graphs. Special care has to be taken when the residue res(γ) of a connected component
γ of some subgraph consists of two half-edges connected to a vertex, |res(γ)| = 2. Such graphs are called
self-energy graphs in physics. In such a situation, if the internal edges of γ contract to a point, we are left
with two edges in Γ//γ, which are connected at this point u . It might happen that the theory provides more
than one two-point vertex. In fact, for a massive theory, there are two two-point vertices provided by the
theory corresponding to the two monomials in the Lagrangian quadratic in the fields, we call them of mass
and kinetic type. Γ//γ represents then a sum over two graphs by summing over the two types of vertices for
that point u. (see Fig.(3) for an example).

The edges and vertices of various types have weights. We set the weight of an edge to be two, the weight
of a vertex with valence greater than two is zero, the weight of a vertex of mass type is zero, the weight of
the kinetic type is +2.

Then, the superficial degree of divergence sdd(Γ) for a connected core graph Γ is

(2.2) sdd(Γ) = 4|Γ| − 2|Γ[1]|+ 2|Γ[0],kin|,

where Γ[0],kin is the set of vertices of kinetic type, and Γ[1] the set of internal edges. Γ[0], the set of interaction
vertices (for which we assume we have only one type) does not show up as they have weight zero, nor does
Γ[0],mass. By | · · · | we denote the cardinality of these sets.

Note that a graph Γ//γ which has one two-point vertex labeled m2 (of mass type) which appears after
contracting a self-energy subgraph γ has an improved power-counting as its edge number is 2h1(Γ//γ)+1. If
the two-point vertex is labeled by � (kinetic type), it has not changed though: sdd(Γ//γ) = sdd(Γ), as the
weight of the two-point vertex compensates for the weight of the extra propagator. Quite often, in massless
theories, one then omits the use of these two-point vertices altogether.
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Figure 3. This vertex graph has a propagator correction given by edges 4, 5, 6. The non-
trivial part of the coproduct then delivers on the left the subgraph with internal edges 4, 5, 6
amongst other terms. The coproduct on the right has a co-graph on edges 1, 2, 3. There is
a two-point vertex u between edges 2, 3. Choosing two labels u = m2 or u = � allows to
distinguish between mass and wave-function renormalization. We remind the reader that
the corresponding monomials in the Lagrangian are m2φ2/2 and φ�φ/2.

2.2. Hopf algebras of graphs. Let P be a class of graphs. We assume ∅ ∈ P and that Γ ∈ P and Γ′ ∼= Γ
implies Γ′ ∈ P . We say P is closed under extension if given γ ⊂ Γ we have

(2.3) γ,Γ ∈ P ⇔ γ,Γ//γ ∈ P .

Easy examples of such classes of graphs are P = core graphs, and P = log divergent graphs, where Γ is
log divergent (in φ4

4 theory) if it is core and if further #E(Γi) = 2|Γi| for every connected component Γi ⊂ Γ.
(Both examples are closed under extension by virtue of the identity |γ|+ |Γ//γ| = |Γ|.) Examples which arise
in physical theories are more subtle. Verification of (2.3) requires an analysis of which graphs can arise from
a given Lagrangian. To verify P = {Γ | sdd(Γ) ≥ 0} satisfies (2.3) one must consider self-energy graphs and
the role of vertices of kinetic type as discussed above.

In particular, in massless φ4
4 theory divergent graphs are closed under extension, and so is the class of

graphs for which 4|Γ|−2|Γ[1]|+2|Γ[0],kin|+2|Γ[0],mass| ≥ 0. Note that this may contain superficially convergent
graphs if there are sufficiently many two-point vertices of mass type. It pays to include them in the class of
graphs to be considered, which enables one to discuss the effect of mass in the renormalization group flow.

Associated to a class P which is closed under extension as above, we define a (commutative, but not
cocommutative) Hopf algebra H = HP as follows. As a vector space, H is freely spanned by isomorphism
classes of graphs in P . (A number of variants are possible. One may work with oriented graphs, for
example. In this case, the theory of graph homology yields a (graded commutative) differential graded Hopf
algebra. One may also rigidify by working with disjoint unions of subgraphs of a given labeled graph.) H
becomes a commutative algebra with 1 = [∅] and product given by disjoint union. Define a comultiplication
∆ : H → H ⊗H :

(2.4) ∆(Γ) =
∑

γ⊂Γ
γ∈P

γ ⊗ Γ//γ.

One checks that (2.3) implies that (2.4) is coassociative. Since H is graded by loop numbers and each Hn

is finite dimensional, the theory of Hopf algebras guarantees the existence of an antipode, so H is a Hopf
algebra.
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Figure 4. In Eq.(2.6), we give the coproduct for this wheel with three spokes in the core
Hopf algebra.

If P ′ ⊂ P with Hopf algebrasH ′, H ( e.g. take P to be core graphs, and P ′ ⊂ P divergent core graphs) then
the mapH ։ H ′ obtained by sending Γ 7→ 0 if Γ 6∈ P ′ is a homomorphism of Hopf algebras. For example, the
divergent Hopf algebra carries the information needed for renormalization [13], while the core Hopf algebra
HC determines the monodromy. In terms of groupschemes, one has Spec (Hlog. div.) →֒ Spec (HC) is a closed
subgroupscheme, and renormalization can be viewed as a morphism from the affine line with coordinate L
to Spec (Hlog. div.). Already here we use that for divergent graphs with sdd(Γ) > 0, we can evaluate them
as polynomials in masses and external momenta with coefficients determined from log divergent graphs, see
below.

Let Γi, i = 1, 2 be core graphs (a similar discussion will be valid for other classes of graphs) and let vi ∈ Γi
be vertices. Let Γ = Γ1 ∪ Γ2 where the two graphs are joined by identifying v1 ∼ v2. Then Γ is core (cf.
proposition 3.2). Further, core subgraphs Γ′ ⊂ Γ all arise as the image of Γ′

1 ∐ Γ′
2 → Γ for Γ′

i ⊂ Γi core.
Thus

(2.5) ∆(Γ) =
∑

Γ′ ⊗ Γ//Γ′ =
(∑

Γ′
1 ⊗ Γ1//Γ

′
1

)(∑
Γ′

2 ⊗ Γ2//Γ
′
2

)
+

∑
(Γ′ − Γ′

1 · Γ
′
2)⊗ (Γ1//Γ

′
1 · Γ2//Γ

′
2) +

∑
Γ′ ⊗

(
Γ//Γ′ − Γ1//Γ

′
1 · Γ2//Γ

′
2

)
.

It follows that the vector space I ⊂ HC spanned by elements Γ− Γ1 · Γ2 as above satisfies ∆(I) ⊂ I ⊗HC +
HC ⊗ I. Since I is an ideal, we see that HC := HC/I is a commutative Hopf algebra. Roughly speaking, HC

is obtained from HC by identifying one vertex reducible graphs with products of the component pieces.
Generalization to theories with more vertex and edge types are straightforward.
Fig.(4) gives the wheel with three spokes. This graph, which in φ4 theory (external edges to be added such

that each vertex is four-valent) has a residue 6ζ(3) for conceptual reasons [2], has a coproduct (we omit edge
labels and identify terms which are identical under this omission, which gives the indicated multiplicities)

∆





 = ⊗ I(2.6)

+I ⊗

+4 ⊗

+3 ⊗

6 ⊗ .
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For example, the three possible labelings for the four-edge cycle in the third line are 4523, 5631 and 6412.
While the graph has a non-trivial coproduct in the core Hopf algebra, it is a primitive element in the
renormalization Hopf algebra. It is tempting to hope that the core coproduct relates to the Hodge structure
underlying the period which appears in the residue of this graph.

2.3. Rooted tree Hopf algebras [12], [3]. We introduce the Hopf algebra of decorated non-planar rooted
treesHT using non-empty finite sets as decorations (decorations will be sets of edge labels of Feynman graphs
below) to label the vertices of the rooted tree Hopf algebra HT (∅). Products in HT are disjoint unions of
trees (forests). We write the coproduct as

(2.7) ∆(T ) = T ⊗ I + I⊗ T +
∑

admissible cuts C

PC(T )⊗RC(T ).

Edges are oriented away from the root and a vertex which has no outgoing edge we call a foot. An admissible
cut is a subset of edges of a tree such that no path from the root to any vertex of T traverses more than one
element of that subset. Such a cut C separates T into at least 2 components. The component containing
the root is denoted RC(T ), and the product of the other components is PC(T ).

A ladder is a tree without side branching. Decorated ladders generate a sub-Hopf algebra LT ⊂ HT . A
general element in LT is a sum of bamboo forests, that is disjoint unions of ladders. Decorated ladders have
an associative shuffle product

(2.8) L1 ⋆ L2 :=
∑

k∈shuffle(ℓ1,ℓ2)

L(k)

where ℓi denotes the ordered set of decorations for Li and shuffle(ℓ1, ℓ2) is the set of all ordered sets obtained
by shuffling together ℓ1 and ℓ2.

Lemma 2.1. Let K ⊂ LT be the ideal generated by elements of the form L1 · L2 − L1 ⋆ L2. Then ∆(K) ⊂
K ⊗ LT + LT ⊗K.

Proof. Write ∆(Li) =
∑di

j=0 Lij ⊗L
di−j
i where di is the length of Li and Lij (resp. Lji ) is the bottom (resp.

top) subladder of length j. Then

∆(L1)∆(L2) =
∑

j,µ

L1jL2µ ⊗ L
d1−j
1 Ld2−µ2(2.9)

∆(L1 ⋆ L2) =
∑

k

∆(L(k)) =
∑

k,ν

L(k)ν ⊗ L(k)d1+d2−ν .

Consider pairs (j, µ) of indices in (2.9) and write j + µ = ν. Among the pairs k, ν we consider the subset
K(j, µ) for which the first ν = j+µ elements of the ordered set consist of a shuffle of the decorations on the
ladders L1j, L2µ. It is clear that the remaining d1 + d2 − ν elements of k will then run through shuffles of

the decorations of Ld1−j1 , Ld2−µ2 , so

(2.10) ∆(L1)∆(L2)−∆(L1 ⋆ L2) =
∑

j,µ

(
(L1jL2µ −

∑

k∈K(j,µ)

L(k)j+µ)⊗ L
d1−j
1 Ld2−µ2

)
+

∑

j,µ

( ∑

k∈K(j,µ)

L(k)j+µ ⊗ (Ld1−j1 Ld2−µ2 − L(k)d1+d2−j−µ)
)
∈ K ⊗ LT + LT ⊗K.

�

Remark 2.2. Any bamboo forest is equivalent mod K to a sum of stalks. Indeed, one has e.g.

(2.11) L1 · L2 · L3 ≡ (L1 ⋆ L2) · L3 ≡ (L1 ⋆ L2) ⋆ L3 ≡ L1 ⋆ L2 ⋆ L3.

For any decoration ℓ, one has an operator [3]

(2.12) Bℓ+ : HT → HT

which carries any forest to the tree obtained by connecting a single root vertex with decoration ℓ to all the
roots of the forest. This operator is a Hochschild 1-cocycle, i.e.

(2.13) ∆Bℓ+ = Bℓ+ ⊗ I + (id⊗Bℓ+)∆.
10



Let J ⊂ HT be the smallest ideal containing the ideal K as in lemma 2.1 and stable under all the operators
Bℓ+. Generators of J as an abelian group are obtained by starting with elements of K and successively

applying Bℓ+ for various ℓ and multiplying by elements of HT . It follows from (2.13) that ∆J ⊂ J ⊗HT +
HT ⊗ J . Define

(2.14) HT := HT /J .

A flag in a core graph Γ is a chain

(2.15) f := ∅ ( Γ1 ( · · · ( Γn = Γ

of core subgraphs. Write F (Γ) for the collection of all maximal flags of Γ. One checks easily that for a
maximal flag, n = |Γ|. Let us consider an example.

( ( ,(2.16)

( ( ,(2.17)

( ( ,(2.18)

( ( ,(2.19)

( ( ,(2.20)

( ( ,(2.21)

( ( ,(2.22)

( ( ,(2.23)

( ( ,(2.24)

( ( ,(2.25)

( ( ,(2.26)

( ( ,(2.27)

are the twelve flags for the graph given in Fig.(5). We omitted the edge labels in the above flags. Note that
only the first two , (2.16,2.17) are relevant for the renormalization Hopf algebra to be introduced below.
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4

5 6

Figure 5. A graph with overlapping subdivergences. The renormalization Hopf algebra
gives ∆′123456 = 56⊗ 1234 + 1256⊗ 34 + 3456⊗ 12. Note that each edge belongs to some
subgraph with sdd ≥ 0.

To the flag f we associate the ladder L(f) with n vertices decorated by Γi − Γi−1. (More precisely, the
foot is decorated by Γ1 and the root by Γ− Γn−1.). Define

(2.28) ρL : HC → LT ; ρL(Γ) :=
∑

f∈F (Γ)

L(f)

Here the set of labels D will be the set of subsets of graph labels.

Lemma 2.3. The map ρL is a homomorphism of Hopf algebras.

Proof. For a flag f let f (p) be the bottom p vertices with the given labeling, and let f(p) be the top n − p
vertices with the quotient labeling gotten by contracting the core graph associated to the bottom p vertices.
For γ ⊂ Γ a core subgraph, define F (Γ, γ) := {f ∈ F (Γ) | γ ∈ f}. There is a natural identification

(2.29) F (Γ, γ) = F (γ)× F (Γ//γ).

We have

(2.30) (ρL ⊗ ρL) ◦∆C(Γ) =
∑

γ

ρL(γ)⊗ ρL(Γ//γ) =
∑

γ

∑

f∈F (Γ,γ)

L(f |γ|)⊗ L(f|γ|).

On the other hand

(2.31) ∆L ◦ ρL(Γ) =
∑

f∈F (Γ)

n∑

i=1

L(f (i))⊗ L(f(i)).

The assertion of the lemma is that there is a 1− 1 correspondence

(2.32) {γ,max. flag of Γ containing γ} ↔ {max. flag of Γ , i ≤ n}.

This is clear. �

In fact, the tree structure associated to a maximal flag f of Γ is rather more intricate than just a ladder.
Though we do not use this tree structure in the sequel, we present the construction in some detail to help
in understanding the difference between the core and renormalization Hopf algebra.

We want to associate a forest T (f) to the flag f , and we proceed by induction on n = |Γ|. We can write
Γ =

⋃
Γ(j) in such a way that all the Γ(j) are core and one vertex irreducible, and such that |Γ| =

∑
|Γ(j)|.

This decomposition is unique. If it is nontrivial, we define T (f) =
∏
T (f (j)) where f (j) is the induced flag

from f on Γ(j). We now may assume Γ is one vertex irreducible. If the Γi in our flag are all one vertex
irreducible, we take T (f) = L(f) to be a ladder as above. Otherwise, let m < n be maximal such that
Γm ( Γ is one vertex reducible. By induction, we have a forest T (f |Γm). To define T (f), we glue the foot
of the ladder with decorations Γm+1 − Γm, . . . ,Γ− Γn−1 to all the roots of T (f |Γm). (For an example, see
figs.(6) and (7).)

Lemma 2.4. Let Γ =
⋃

Γ(j) where Γ and the Γ(j) are core. Assume |Γ| =
∑

j |Γ
(j)|. Then, viewing flags

f ∈ F (Γ) as sets of core subgraphs, ordered by inclusion, there is a 1 − 1 correspondence between F (Γ) and
shuffles of the F (Γ(j)).

Proof. One checks easily that the Γ(j) can have no edges in common. Further, there is a 1−1 correspondence
between core subgraphs Γ′ ⊂ Γ and collections of core subgraphs Γ(j)′ ⊂ Γ(j). Here, the dictionary is given
by Γ′ 7→ {Γ′ ∩ Γ(j)} and {Γ(j)′} 7→

⋃
Γ(j)′. The assertion of the lemma follows. �
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12

1235
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+...+

1
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5 6

Figure 6. The core Hopf algebra on rooted trees. We indicate subgraphs by edge labels
on the vertices of rooted trees. The dots indicate seven more such trees, corresponding to
flags Γi ( Γj ( Γk with Γi a cycle on four edges. The last tree represents a sum of two
flags, 34 ( 3456 ( 123456 + 56 ( 3456 ( 123456, again indicating graphs by edge labels.
Hence that tree corresponds to a sum of two ladders, as it should.

1

2

3 4 5 6

1

2 3 4

5 6

1a2b 34

56

12 12

34

56

12

34

56

12

56

34

c or d

d or c

c or d

d or c

+ +
+ +

12ab

Figure 7. The two graphs differ in how the subdivergences are inserted. a, c ∈ 3, 4, and
b, d ∈ 5, 6, c 6= a, b 6= d. So there are eight such legal trees, plus the two which are
identical between the two graphs. Note the permutation of labels at the feet of the trees
in ρ(Γ): 1a2b ↔ 12ab. Keeping that order, we can uniquely reconstruct each graph from
the knowledge of the labels at the feet: 1a2b, 34, 56 and 12ab, 34, 56, which are the cycles in
each graph. Note that in the difference of the two graphs, only the difference of those eight
trees remains, corresponding to a primitive element in the renormalization Hopf algebra.
The core Hopf algebra hence stores much more information than the renormalization Hopf
algebra, which we hope to use in the future to understand the periods assigned to Feynman
graphs by the Feynman rules.

As a consequence of lemma 2.4 we may partition the flags F (Γ) associated to a core Γ as follows. Given
f ∈ F (Γ), Let Γm ⊂ Γ be maximal in the flag f such that Γm is 1-vertex reducible. The flag f induces a

flag fm on Γm, and we know that it is a shuffle of flags f
(j)
m on Γ

(j)
m where Γm =

⋃
Γ

(j)
m as in the lemma. We

say two flags are equivalent, f ∼ f ′, if f and f ′ agree at Γm and above, and if they simply correspond to

two different shuffles of the flags f
(j)
m . We now have

(2.33) T (f) ≡
∑

f ′∼f

L(f ′) mod J .

Indeed, T (f) is obtained by successive Bℓ+ operations applied to the forest T (f |Γm). The latter, by remark
2.2, coincides with the righthand side of (2.33). We conclude

Proposition 2.5. With notation as above, there exist homomorphisms of Hopf algebras

(2.34)

HC
ρL

−−−−→ LTy
y

HC
ρT

−−−−→ HT

13



Here ρT (Γ) is the sum T (f) over equivalence classes of flags f as above. We will barely use HT in the
following, and introduced it for completeness and the benefit of the reader used to it.

2.4. Renormalization Hopf algebras. In a similar manner, one may define homomorphisms

(2.35) ρR : HR → HT

for any one of the renormalization Hopf algebras obtained by imposing restrictions on external leg structure.
For a graph Γ, let, as before, the residue of Γ, res(Γ), be the graph with no loops obtained by shrinking all
its internal edges to a point. What remains are the external half edges connected to that point (cf. section
2.1). Note that ”doubling” an edge by putting a two-point vertex in it does not change the residue.

In φ4
4 theory for example, graphs have 2m external legs, with m ≥ 0. For a renormalizable theory, there

is a finite set of external leg structures R such that we obtain a renormalization Hopf algebra for that set.
For example, for massive φ4

4 theory, there are three such structures: the four-point vertex, and two
two-point vertices, of kinetic type and mass type.

Let us now consider flags associated to core graphs. Such chains · · ·Γi ( Γi+1 ( · · · ( Γ correspond to
decorated ladders, and the coproduct on the level of such ladders is a sum over all possibilities to cut an
edge in such a ladder, splitting the chain

(2.36) [· · · ( Γi]⊗ [Γi+1//Γi ( · · · ( Γ//Γi].

So let us call such an admissible cut renormalization-admissible, if all core graphs Γi, Γ//Γi obtained by
the cut have residues in R.

The set of renormalization-admissible cuts is a subset of the admissible cuts of a core graph, and the
coproduct respects this. Hence the renormalization Hopf algebra HR is a quotient Hopf algebra of the core
Hopf algebra.

If we enlarge the set R to include other local field operators appearing for example in an operator product
expansion we get quotient Hopf algebras between the core and the renormalization Hopf algebra.

2.5. External leg structures. External edges are usually labeled by data which characterize the amplitude
under consideration. Let σ be such data. For graphs Γ with a given residue res(Γ), there is a finite set
τ ∈ {σ}res(Γ) of possible data τ . A choice of such data determines a labeling of the corresponding vertex to
which a subgraph shrinks. Let Γ//γτ be that co-graph with the corresponding vertex labeling.

One gets a Hopf algebra structure on pairs (Γ, σ) by using the renormalization coproduct ∆(Γ) = Γ′⊗Γ′′

by setting ∆(Γ, σ) =
∑
τ∈{σ}res(Γ′)

(Γ′, τ)⊗ (Γ′′
τ , σ). We regard the decomposition into external leg structures

as a partition of unity and write

(2.37)
∑

τ∈{σ}res(Γ)

(Γ, τ) = (Γ, I).

In our applications we only need this for (sub)graphs γ with |res(γ)| = 2, and the use of these notions will
become clear in the applications below.

3. Combinatorics of blow-ups

We consider Pn−1 with fixed homogeneous coordinates A := {A1, . . . , An}. Suppose given a subset
S ⊂ 2A. Assume A 6∈ S and that S has the property that whenever µ1, µ2 ∈ S with µ1 ∪ µ2 6= A, then
µ1 ∪ µ2 ∈ S. For µ ∈ S we write Lµ ⊂ Pn−1 for the coordinate linear space defined by Ai = 0, i ∈ µ. Write
L(S) := {Lµ | µ ∈ S}. We see that

(3.1) Lµi ∈ L(S); Lµ1 ∩ Lµ2 6= ∅ ⇒ Lµ1 ∩ Lµ2 ∈ L(S).

We can stratify the set L(S) taking L(S)1 to be the set of all minimal elements (under inclusion) of L(S).

More generally, L(S)i will be the set of minimal elements in L(S)−
∐i−1
j=1 L(S)j.

Proposition 3.1. (i) Elements in L(S)1 are all disjoint, so we may define P (S)1 to be the variety defined by
blowing up elements in L(S)1 on Pn−1. We do not need to specify an order in which to perform the blowups.
(ii) More generally, the strict transforms of elements in L(S)i+1 to the space P (S)i obtained by successively
blowing the strict transform of L(S)j , j = 1, . . . , i are disjoint, so we may inductively define P (S) to be the
successive blowup of the L(S)i.
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(iii) Let Ei ⊂ P (S) correspond to the blowup of Lµi , i = 1, . . . , r. (Ei is the unique exceptional divisor
with image Lµi in P (S).)Then E1 ∩ · · · ∩ Er 6= ∅ if and only if after possibly reordering, we have inclusions
Lµ1 ⊂ · · · ⊂ Lµr .
(iv) The total exceptional divisor E ⊂ P (S) is a normal crossings divisor.
(v) Let M ⊂ Pn−1 be a coordinate linear space. Assume M 6⊂ L for any L ∈ L(S). Then M ∩ L(S) :=
{M ∩ L | L ∈ L(S)} satisfies (3.1). The strict transform of M in P (S) is obtained by blowing up elements
of M ∩ L(S) on M as in (i) and (ii) above.

Proof. If L1 6= L2 ∈ L(S)i and L1 ∩L2 6= ∅, then L1 ∩L2 ∈ L(S)j for some j < i. This means that when we
get to the i-th step, L1∩L2 has already been blown up, so the strict transforms of the Li are disjoint, proving
(ii). For (iii),

⋂
Ei 6= ∅ ⇐ Lµ1 ⊂ · · · ⊂ Lµr follows from the above argument. Conversely, if we have strict

inclusions among the Lµi , we may write (abusively) Lµi/Lµi−1 for the projective space with homogeneous
coordinates the homogeneous coordinates on Lµi vanishing on Lµi−1 . The exceptional divisor on the blowup
of Lµi−1 ⊂ Lµi is identified with Lµi−1 × (Lµi/Lµi−1). A straightforward calculation identifies nonempty
open sets (open toric orbits in the sense to be discussed below) in

⋂
Ei and

(3.2) Lµ1 × (Lµ2/Lµ1)× · · · × (Lµr/Lµr−1)

The remaining parts of the proposition follow from the algorithm in [8]. �

For us, sets S as above will arise in the context of graphs. Recall in 2.1 we defined the notion of core
graph.

Proposition 3.2. Let Γ be a graph, and let Γ1,Γ2 ⊂ Γ be core subgraphs. Then the union Γ1 ∪ Γ2 is a core
subgraph.

Proof. Removing an edge increases the Euler-Poincaré characteristic by 1. If h1 doesn’t drop, then either
h0 increases (the graph disconnects when e is removed) or e has a unary vertex so removing e drops the
number of vertices. Suppose e is an edge of Γ1 (assumed core). Then e cannot have a unary vertex. If, on
the other hand, removing e disconnects Γ1 ∪ Γ2, then since the Γi are core what must happen is that each
Γi has precisely one vertex of e. But this would imply that Γ1 is not core, a contradiction. �

To a graph Γ we may associate the projective space P(Γ) with homogeneous coordinates Ae, e ∈ E(Γ)
labeled by the edges of Γ. Let Γ be a core graph. A coordinate linear space L ⊂ P(Γ) is a non-empty linear
space defined by some subset of the homogeneous coordinate functions, L : Ae1 = · · · = Aep = 0. Define
L(Γ) to be the set of coordinate linear spaces in P(Γ) such that the corresponding set of edges ei1 , . . . , eip is
the edge set of a core subgraph Γ′ ⊂ Γ. It follows from proposition 3.2 that L(Γ) satisfies condition (3.1), so
the iterated blowup

(3.3) π : P (Γ)→ P(Γ)

as in proposition 3.1 is defined. Define

(3.4) L =
⋃

L∈L(Γ)

L ⊂ P(Γ); E =
⋃
EL = π−1L.

Lemma 3.3. Suppose P(Γ) = Pn−1 with coordinates A1, . . . , An. Let L ⊂ P(Γ) be defined by A1 = · · · =
Ap = 0. Let πL : PL → P(Γ) be the blowup of L. Then the exceptional divisor E ⊂ PL is identified
with Pp−1 × L. Further A1, . . . , Ap induce coordinates on the vertical fibres Pp−1 and Ap+1, . . . , An give
homogeneous coordinates on L.

Proof. This is standard. One way to see it is to use the map Pn−1 − L→ Pp−1, [a1, . . . , an] 7→ [a1, . . . , ap].
(Here, and in the sequel, [· · · ] denotes a point in homogeneous coordinates.) This extends to a map f on
PL:

(3.5)

E
→֒

−−−−→ PL
f

−−−−→ Pp−1

yπL|E
yπL

L
→֒

−−−−→ Pn−1.

The resulting map πL|E × f : E ∼= L× Pp−1. �
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It will be helpful to better understand the geometry of P (Γ). Let Gm = Spec Q[t, t−1] be the standard one
dimensional algebraic torus. Define T = Gn

m/Gm where the quotient is taken with respect to the diagonal
embedding. For all practical purposes, it suffices to consider complex points

(3.6) T (C) = C×n/C× ∼= C×n−1.

A toric variety P is an equivariant (partial) compactification of T . In other words, T ⊂ P is an open set,
and we have an extension of the natural group map m

(3.7)

T × T
⊂

−−−−→ T × P

m

y m̄

y

T
⊂

−−−−→ P.

For example, P(Γ) is a toric variety for a torus T (Γ). Canonically, we may write T (Γ) = (
∏
e∈Edge(Γ) Gm)

/
Gm.

More important for us:

Proposition 3.4. (i) P (Γ) is a toric variety for T = T (Γ).
(ii) The orbits of T on P (Γ) are in 1− 1 correspondence with pairs (F, Γp ( · · · ( Γ1 ( Γ). Here F ⊂ Γ is
a (possibly empty) subforest (subgraph with h1(F ) = 0) and the Γi are core subgraphs of Γ. We require that
the image of Fi := F ∩ Γi in Γi//Γi+1 be a subforest for each i. (cf. (3.2)). The orbit associated to such
a pair is canonically identified with the open orbit in the toric variety P(Γp//Fp) × P((Γp−1//Γp)//Fp−1) ×
· · · × P((Γ//Γ1)//F ).

Proof. A general reference for toric varieties is [9]. The fact (i) that P (Γ) is a toric variety follows inductively
from the fact that the blowup of an invariant ideal I in a toric variety is toric. Indeed, the torus acts on I
and hence on the blowup Proj(I).

We recall some toric constructions. Let N = ZEdge(Γ)/Z, and let M = hom(N,Z). We have canonically
T = Spec Q[M ] where Q[M ] is the group ring of the lattice M . A fan (op. cit., 1.4, p. 20) F is a finite set
of convex cones in NR = N ⊗R satisfying certain simple axioms. To a cone C ⊂ NR one associates the dual
cone (op. cit. p. 4)

(3.8) C∨ = {m ∈MR | 〈m, c〉 ≥ 0, ∀c ∈ C}

(resp. the semigroup C∨
Z = C∨ ∩M). The toric variety V (F) associated to the fan F is then a union of

the affine sets U(C) := Spec Q[C∨
Z ]. For example, our N has rank n − 1. There are n evident elements e

determined by the n edges of Γ. Let Ce = {
∑
e′ 6=e re′e

′ | re′ ≥ 0} be the cone spanned by all edges except

e. The spanning edges for Ce form a basis for N which implies that U(Ce) ∼= An−1. Since all the coordinate
rings lie in Q[M ] (i.e. T (Γ) ⊂ U(Ce)), one is able to glue together the U(Ce). The resulting toric variety
associated to the fan {Ce | e ∈ Edge(E)} is canonically identified with P(Γ).

Remark 3.5. Our toric varieties will all be smooth (closures of orbits in smooth toric varieties are smooth),
which is equivalent ([9], §2) to the condition that cones in the fan are all generated by subsets of bases for
the lattice N . Faces of these cones are in 1− 1 correspondence with subsets of the generating set.

In general, the orbits of the torus action are in 1− 1 correspondence with the cones C in the fan (op. cit.
3.1, p.51). The subgroup of N generated by C ∩ N corresponds to the subgroup of T which acts trivially
on the orbit. For example, in the case of projective space Pn−1, there are n cones Ce of dimension n − 1
corresponding to the n fixed points (0, . . . , 1, . . . , 0) ∈ Pn−1. For any S ( Edge(Γ), the cone C(S) spanned by
the edges of S corresponds to the orbit {(. . . , xe, . . .) | xe = 0⇔ e ∈ S} ⊂ Pn−1. Let L : Ae = 0, e ∈ Γ′ ⊂ Γ
be a coordinate linear space in P(Γ) associated to a subgraph Γ′ ⊂ Γ. It follows from lemma 3.3 that the
exceptional divisor EL ⊂ PL in the blowup of L can be identified with

(3.9) EL = P(Γ′)× P(Γ//Γ′).

Let e(Γ′) =
∑

e∈Γ′ e ⊂ NR, and write τ(Γ′) = R≥0 · e(Γ′). The subgroup Z · e(Γ′) ⊂ N determines a
1-parameter subgroup G(Γ′) ⊂ T = Spec Q[M ]. It follows from (3.9) that G(Γ′) acts trivially on EL. One
has τ(Γ′) ⊂ C′ ⊂ Ce for all e 6∈ Γ′, where C′ is the cone generated by the edges of Γ′. For all e′ ∈ Γ′ we
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define a subcone Ce,e′ ⊂ Ce to be spanned by τ(Γ′) together with all edges of Γ except e, e′. The fan for PL
is then

(3.10) {Ce, e ∈ Γ′} ∪ { Ce,e′ , e 6∈ Γ′, e′ ∈ Γ′}.

Note that Ce, e 6∈ Γ′ is not a cone in the fan for PL. More generally, let F be the fan for P (Γ). Certainly,
F will contain as cones the half-lines τ(Γ′) for all core subgraphs Γ′ ⊂ Γ as well as the R≥0e, e ∈ Γ. but
we must make precise which subsets of this set of half-lines span higher dimensional cones in F . By general
theory, the cones correspond to the nonempty orbits. In other words,

(3.11) R≥0e1, . . . ,R
≥0ep,R

≥0e(Γ1), . . . ,R
≥0e(Γq)

span a cone in F if and only if the intersection

(3.12) E1 ∩ · · · ∩ Eq ∩D1 ∩ · · · ∩Dp 6= ∅,

where Ei ⊂ P (Γ) is the exceptional divisor corresponding to L(Γi) and Dj ⊂ P (Γ) is the strict transform of
the coordinate divisor Aei = 0 in P(Γ). To understand (3.12), consider the simple case E1 ∩D1. We have a
core subgraph Γ1 ⊂ Γ, and an edge e1 of Γ. We know by lemma 3.3 that E1

∼= P(Γ1)× P(Γ//Γ1). If e1 is an
edge of Γ1, then D1 ∩ E1 = P(Γ1//e1)× P(Γ//Γ1). Otherwise

D1 ∩E1 = P(Γ1)× P((Γ//Γ1)//e1).

One (degenerate) possibility is that e1 is an edge of Γ1 which forms a loop (tadpole). In this case, e1 is itself
a core subgraph of Γ, and the divisor D1 should be treated as one of the exceptional divisors Ei. Thus, we
omit this possibility. Another possibility is that e1 6∈ Γ1, but that the image of e1 in Γ//Γ1 forms a loop.
In this case, Γ2 := Γ1 ∪ e1 is a core subgraph, so the linear space L2 : Ae = 0, e ∈ Γ2 gets blown up in
the process of constructing P (Γ). But blowing L2 separates E1 and D1, so the intersection of the strict
transforms of D1 and E1 in P (Γ) is empty. The general argument to show that (3.12) is empty if and only
if the conditions of (ii) in the proposition are fulfilled is similar and is left for the reader. Note that the case
where there are no divisors Di follows from proposition 3.1(iii). �

We are particularly interested in orbits corresponding to filtrations by core subgraphs Γp ( · · · ( Γ1 ( Γ.
Let V ⊂ P (Γ) be the closure of this orbit. We want to exhibit a toric neighborhood of V which retracts onto
V as a vector bundle of rank p. As in the proof of proposition 3.4 we have e(Γi) :=

∑
e∈Γi

e. The cone C

spanned by the e(Γi) lies in the fan F . For cones C′ ∈ F we write C′ > C if C is a subcone of C′. By the
general theory, this will happen if and only if C ⊂ C′ is a subcone which appears on the boundary of C′.
The orbit corresponding to C′ will then appear in the closure of the orbit for C.

Proposition 3.6. With notation as above, Let FC ⊂ F be the subset of cones C′ such that we have
C′ ≤ C′′ ≥ C for some C′′ ∈ F . Write P 0 ⊂ P (Γ) for the open toric subvariety corresponding to the subfan
FC ⊂ F . We have V →֒ P 0 ⊂ P (Γ). Further there is a retraction π : P 0 → V realizing P 0 as a rank p
vector bundle over V which is equivariant for the action of the torus T .

Proof. One has the following functoriality for toric varieties [9], §1.4. Suppose φ : N ′ → N ′′ is a homomor-
phism of lattices (finitely generated free abelian groups). Let F ′,F ′′ be fans in N ′

R, N
′′
R . Suppose for each

cone σ′ ∈ F ′ there exists a cone σ′′ ∈ F ′′ such that φ(σ′) ⊂ σ′′. Then there is an induced map on toric
varieties V (F ′)→ V (F ′′). Let N ′ = N = Zn/Z as above, and N ′′ = N ′/(Ze(Γ1) + · · ·+ Ze(Γp)). One has
the evident surjection φ : N ′

։ N ′′. We take as fan F ′ = FC ⊂ F . The closure V of the orbit corresponds
to the fan F ′′ in N ′′

R given by the images of all cones C′′ ≥ C (op. cit. §3.1). Such a C′′ is generated by
e(Γ1), . . . , e(Γp), f1, . . . , fq, and there are no linear relations among these elements (remark 3.5). A subcone
C′ ≤ C′′ is generated by a subset e(Γi1), . . . , e(Γia), f1, . . . , fb. The image is simply the cone in N ′′

R generated
by the images of the f ’s. If we have another cone C′

1 ≤ C′′
1 ≥ C in F ′ with the same image in F ′′, it will

have generators say g1, . . . , gb together with some of the e(Γi)’s. Reordering the g’s, we find that there are
relations

(3.13) fi +
∑

aije(Γj) = gi +
∑

bije(Γj)

with aij , bij ≥ 0. It follows that the cones in F spanned by fi, e(Γ1), . . . , e(Γp) and gi, e(Γ1), . . . , e(Γp) meet
in a subset strictly larger that the cone spanned by the e(Γj). By the fan axioms, the intersection of two
cones in a fan is a common face of both, so these two cones coincide, which implies fi = gi. In particular,
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for each cone in F ′′, there is a unique minimal cone in F ′ lying over it. This is the hypothesis for [19], p. 58,
proposition 1.33. One concludes that the map π : P 0 → V induced by the map F ′ → F ′′ is an equivariant
fibration, with fibre the toric bundle associated to the fan generated by the e(Γi), 1 ≤ i ≤ p. This toric
variety is just affine p-space, so we get an equivariant Ap-fibration over V . Any such fibration is necessarily
a vector bundle with structure group Gp

m. Indeed, this amounts to saying that any automorphism of the
polynomial ring k[x1, . . . , xp] which intertwines the diagonal action of Gp

m is necessarily of the form xi 7→ cixi
with ci ∈ k×. �

Remark 3.7. We will need to understand how these constructions are compatible. Let V be a closed orbit
corresponding to a cone C as above, and let V1 ⊂ V be a smaller closed orbit corresponding to a larger cone
C1 > C. (The correspondence between cones and orbits is inclusion-reversing.) As above we have a toric
variety V1 ⊂ P 0

1 ⊂ P (Γ) and a retraction π1 : P 0
1 → V1. The fan F ′

1 for P 0
1 is given by the set of cones C′

1 in
F such that

(3.14) C′
1 ≤ C

′′ ≥ C1 (> C).

It follows that F ′
1 ⊂ F

′ = FC , so P 0
1 ⊂ P

0 is an open subvariety. Let V 0 ⊂ V be the image of the composition

P 0
1 ⊂ P

0 π
−→ V . Then V 0 is the open toric subvariety of V corresponding as above to the closed orbit V1 ⊂ V ,

and we have a retraction V 0 πV−−→ V1. One gets commutative diagrams

(3.15)

P 0
1 P 0

1
⊂

−−−−→ P 0

π1

y π

y π

y

V1
πV←−−−− V 0 ⊂

−−−−→ V

and

(3.16)

P 0|V1
⊂

−−−−→ P 0
1

π

y π1

y

V1 V1.

Remark 3.8. Using the toric structure, one can realize these vector bundles as direct sums of line bundles
corresponding to characters of the tori acting on the fibres.The inclusion on the top line of (3.16) corresponds
to characters which act trivially on all of V .

Remark 3.9. (compare proposition 3.4). Given a flag of core subgraphs

(3.17) Γp ( Γp−1 ( · · · ( Γ1 ( Γ,

let Li ⊂ P(Γ) be defined by the edge variables for edges in Γi, so we have L1 ( · · · ( Lp ( P(Γ). For
L ⊂ P(Γ) a coordinate linear space, let T (L) ⊂ L be the subtorus where none of the coordinates vanish.
Then the orbit associated to (3.17) is

(3.18) T (L1)× T (L2/L1)× · · · × T (Lp/Lp−1)× T (Pn−1/Lp)

(Here the notation Li+1/Li is as in (3.2).)

4. Topological Chains on Toric Varieties

One can define the notion of non-negative real points V (R≥0) and positive real points V (R>0). For a
torus T = Spec Q[N∨] for some N ∼= Zg we take

T (R>0) = {φ : Q[N∨]→ R | φ(n) > 0, ∀n ∈ N∨}.

A toric variety V can be stratified as a disjoint union of tori V =
∐
Tα. Define

V (R≥0) =
∐

Tα(R>0);(4.1)

V (R>0) = T (R>0),

where T ⊂ V is the open orbit. Let V ⊂ P (Γ) be the closure of the orbit associated to a flag (3.17), and let
T (V ) ⊂ T = Spec Q[N∨] be the subtorus acting trivially on V . Let πV : PV → V be the vector bundle as in
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Figure 8. P (Γ) and the real chain ση,εP (Γ).

proposition 3.6. We write PV = L1 ⊕ · · · ⊕ Lp as a direct sum of line bundles, where each Li is equivariant
for T (V ). Let K(V ) ∼= (S1)p ⊂ T (V )(C) be the maximal compact subgroup. Note that one has a canonical
identification T (V ) = Gp

m associated to the 1-parameter subgroups of T (V ) generated by e(Γi) ∈ N . In
particular, the identification K(V ) = (S1)p is canonical as well. For all closed orbits V we may fix metrics
on the Li which are compatible under inclusions (3.16) and are (necessarily) invariant under the action of
K(V ). We fix also a constant η > 0. We can then define SηV ⊂ PV to be the product of the circle bundles
of radius η embedded in the Li. S

η
V becomes a principal bundle over V with structure group K(V ). Note

that SηV ∩ PV (R≥0) contains a unique point in every fibre of SηV over a point of V (R). Let 0 < ε << η be
another constant. We need to define a chain ση,εV ⊂ V (R>0). We consider closures V1 ⊂ V of codimension
1 orbits in V . For each such V1 we have an open P (V )1 ⊂ V and a retraction P (V )1 → V1 which is a line
bundle with a metric. The fibres of P (V )1(R>0) have a canonical coordinate r > 0. If V1 corresponds to an
intersection of V = E1 ∩ · · · ∩ Ep with another exceptional divisor Ep+1, then we remove from each fibre of
P (V )1(R>0) over V1(R>0) the locus where r < η. If, on the other hand V1 corresponds to an intersection
of V with one of the Di (i.e. with a strict transform of one of the coordinate divisors), then we remove the
locus r < ε. Repeating this process for each V1 (i.e. for each irreducible toric divisor in V ), we obtain a
compact ση,εV ⊂ V (R>0) which stays away from the boundary components. (Here ”boundary components”
are exceptional divisors together with strict transforms of coordinate divisors.)

Example 4.1. Consider the case V = P (Γ). Let π : P (Γ)→ P(Γ), and let

σ = {(A1, . . . , An) | Ai ≥ 0} ⊂ P(Γ)(R)

be the original integration chain. We have ση,εP (Γ) ⊂ π
−1(σ) defined by excising away points within a distance

of η from an Ei or ε from the strict transform Dj of a coordinate divisor Aj = 0. (cf. fig.(8)). It is a manifold
with corners.

Define τη,εV to be the inverse image of ση,εV in SηV . The fibres of τη,εV over ση,εV are products (S1)p with a
canonical origin at the point where this fibre meets PV (R≥0). For an angle 0 ≤ θ ≤ 2π, we can thus define

τη,ε,θV ⊂ τη,εV to be swept out by the origin in each fibre under the action of [0, θ]p ⊂ K(V ). The chains τη,ε,θV

have R-dimension n− 1 which is equal to the complex dimension of P(Γ) and P (Γ).
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Figure 9. Fan for Example 4.2.

Example 4.2. Here is an example which is too simple to correspond to any graph, but is sufficient to clarify
the toric picture. Take

(4.2) L1 : A1 = A2 = 0; L2 : A2 = 0

in P2 with coordinates A1, A2, A3. Take P
π
−→ P2 to be the blowup of L1 = (0, 0, 1). Let E1 ⊂ P be the

exceptional divisor, and let E2 ⊂ P be the strict transform of L2. Note that E2 is already a divisor so it is
not necessary to blow up again. Take V = E1

∼= P1. The fan F for P is fig.(9). The cone C = R≥0 · (e1 +e2),
so the fan F ′ = FC ⊂ F is the subset of cones lying in the first quadrant. The toric variety PV is A2

with (0, 0) blown up. It projects down onto V as a line bundle. SηV ⊂ PV (C) is then a circle bundle over
V (C). V has two suborbits V2 = E1 ∩E2 and V1 = E1 ∩D1, where D1 is the strict transform of the divisor
A1 = 0 in P2. We may interpret z := A1/A2 as a coordinate on V , so V1 : z = 0 and V2 : z = ∞. We have
P (V )1 = V − {z = ∞} and P (V )2 = V − {z = 0}. The real chain ση,εV = {η ≤ z ≤ 1/ε}, and τη,εV is the
S1-bundle of radius η over ση,εV . On the other hand, V2 corresponds to the cone labeled C2 in fig.(9), and
the fan FC2 is just C2 itself. The toric variety PV2

∼= A2 is a rank 2 vector bundle over the point V2. We
have PV2 ⊂ PV . In this case ση,εV2

is simply the point V2, and τη,εV2

∼= S1 × S1 ⊂ PV1(C). In local coordinates
around V1 given by eigenfunctions for the torus action we have

τη,ε,θV = {(ηeiµ, z) | η ≤ z ≤ 1/ε, 0 ≤ µ ≤ θ}(4.3)

τη,ε,θV1
= {(ηeiµ, ηeiν) | 0 ≤ µ, ν ≤ θ}

τη,ε,θV ∩ τη,ε,θV1
= {(ηeiµ, η) | 0 ≤ µ ≤ θ}.

We want now to establish a basic formula for the boundary of the chains τη,ε,θV . Here V runs through the
closures of orbits in P (Γ) associated to flags of core subgraphs (3.17). We include the big orbit V = P (Γ).

We write |V | := codim(V/P (Γ)). We may express the boundary chains ∂τη,ε,θV locally (in fact Zariski-locally)
in coordinates which are eigenfunctions for the torus action. It is clear (cf. (4.3)) that boundary terms are
obtained by setting a suitable one of these coordinates to be constant: either ηeiθ or η or ε. (The presence
of 1/ε in the first line of (4.3) simply means that the appropriate coordinate near that point is 1/z.)

Proposition 4.3. For a suitable orientation, the boundary

(4.4) ∂
∑

V

(−1)|V |τη,ε,θV
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will contain no chains with one coordinate constant = η.

Proof. (Cf. fig.(10) ). For a given boundary term, we can choose local eigenfunction coordinates x1, . . . , xn−1

such that be boundary term is given by x1 = η. We take the chains to be oriented in some consistant way
by this ordering of coordinates. (Note that these coordinates are defined on a Zariski open set. The
obstruction to choosing consistent orientations for various open sets is a class in the first Zariski cohomology
of P (Γ) with constant Z/2Z-coefficients. Since this cohomology group vanishes, we can choose such consistent

orientations.) If ∂τη,ε,θV contains a term with x1 = η, there are two possibilities. Either x1 is a real coordinate

on τη,ε,θV or it is a circular coordinate. If x1 is a real coordinate, then the fact that x1 = η appears in the

boundary means that locally x1 = 0 defines a codimension 1 orbit closure V1 →֒ V . In ∂τη,ε,θV1
, x1 will

appear as a circular coordinate. Since |V | = |V1| + 1, the same chain x1 = η will appear in ∂τη,ε,θV and in

∂τη,ε,θV1
and will cancel in (4.4). If, on the other hand, x1 = ηeiθ is a circular coordinate, then for suitable

ordering of coordinates, the chain will be an (S1)p-bundle over a chain σ contained in the locus where certain
coordinates ≥ 0. But then (4.4) will contain another chain which is an (S1)p−1-bundle over {x1 ≥ η} × σ,
and the boundary components involving x1 = η will occur with opposite signs and will cancel. �

The boundary chain (4.4) is an (n − 2)-chain involving two scales 0 < ε < η. We want to construct an
(n− 1)-chain ξη,ε,θ which amounts to a scaling η → ε. To do this, we construct a vector field v on P (Γ). Let
E =

∑
Ei be the exceptional divisor. v will be 0 outside a neighborhood N of E. Locally, at a point on N

which is close to divisors E1, . . . , Ep we have coordinates x1, . . . , xp which are eigenfunctions for the torus
action such that locally Ei : xi = 0. Locally we will take v to be radial and inward-pointing in each xi. We
glue these local v’s using a partition of unity. ”Flowing” the (n− 2)-chain (4.4) along this vector field yields
an (n− 1)-chain ξη,ε,θ. If this is done with care, we can arrange

(4.5) ∂ξη,ε,θ ≡ ∂
∑

V

(−1)|V |τη,ε,θV − ∂
∑

V

(−1)|V |τε,ε,θV .

Here ≡ means that the two sides differ by a chain lying in an ε-neighborhood of the strict transform D of
the coordinate divisor ∆ in P (Γ). Another important property of the chain ξη,ε,θ is

Lemma 4.4. ξη,ε,2π ≡ ξη,ε,0.

Proof. The point is that ∂τη,ε,2πV ≡ 0 except for the case V = P (Γ), and τη,ε,θP (Γ) is independent of θ. (See

fig.(10)). �

Define the chain cη,ε,θ =
∑

V (−1)|V |τη,ε,θV − ξη,ε,θ. We have

(4.6) ∂cη,ε,θ = ∂
∑

V

(−1)|V |τε,ε,θV .

Note that cη,ε,0 = ση,εP (Γ), i.e. all chains involving at least one circular variable die at θ = 0. We define the

variation,

(4.7) var(cη,ε,θ) = cη,ε,2π − cη,ε,0 ≡
∑

V(P (Γ)

(−1)|V |τε,εV .
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It is a sum of “(S1)p-tubes” over all E1 ∩ · · · ∩ Ep ( P (Γ).

5. The Graph Hypersurface

Associated to a graph Γ with n edges, one has the graph polynomial

(5.1) ψΓ(A1, . . . , An) =
∑

T

∏

e6∈T

Ae

where T runs through spanning trees of Γ. This polynomial has degree h1(Γ). For more detail, see [2] and
the references cited there. Let X = XΓ : ψΓ = 0 be the graph hypersurface in Pn−1. For µ ⊂ Edge(Γ), let
Lµ ⊂ P(Γ) be defined by Ae = 0, e ∈ µ. Let Γµ =

⋃
e∈µ e ⊂ Γ be the subgraph with edges in µ. Note the

dictionary Γµ ↔ Lµ is inclusion reversing.

Lemma 5.1. (i) Lµ ⊂ XΓ ⊂ P(Γ) if and only if h1(Γµ) > 0.
(ii) If h1(Γµ) > 0, there exists a unique ν ⊆ µ such that h1(Γν) = h1(Γµ) and such that moreover Γν is a
core graph.
(iii) We have in (ii) that ν =

⋃
ξ where ξ runs through all minimal subsets of µ such that Lξ ⊂ X.

(iv) Lµ = Lν ∩M , where M is a coordinate linear space not contained in XΓ.

Proof. These assertions are straightforward from the results in [2], section 3. Note that (iv) justifies our
strategy of only blowing up core subgraphs. �

We have seen (remark 3.4) that our blowup P (Γ) is stratified as a union of tori indexed by pairs

(5.2) (F, {Γp ( · · · ( Γ1 ( Γ//γ})

where F ⊂ Γ is a suitable subforest and the Γi are core.

Proposition 5.2. (i) As in proposition 3.4, the torus corresponding to (5.2) is

(5.3) T (Γp//Fp)× T ((Γp−1//Γp)//Fp−1)× · · · × T ((Γ//Γ1)//F ).

Here T (Γ) := P(Γ)−∆, where ∆ :
∏
e∈Edge(Γ)Ae = 0.

(ii) The strict transform Y of XΓ in P (Γ) meets the stratum (5.3) in a union of pullbacks

(5.4) pr−1
1 (X0

Γp) ∪ pr
−1
2 (X0

Γp−1//Γp
) ∪ · · · ∪ pr−1

p (X0
(Γ//γ)//Γ1

).

Here the pri are the projections to the various subtori in (5.3), and X0 denotes the restriction of the corre-
sponding graph hypersurface to the open torus in the projective space.

Proof. Let Γ′ ⊂ Γ be a subgraph and let L : Ae = 0, e ∈ Edge(Γ′). Assume h1(Γ
′) > 0, so L ⊂ XΓ. Let

PL → P(Γ) be the blowup of L. Let EL ⊂ PL be the exceptional divisor, and let YL ⊂ PL be the strict
transform of XΓ. The basic geometric result (op. cit. prop. 3.5) is that EL = P(Γ′)× P(Γ//Γ′) and

(5.5) YL ∩ EL =
(
XΓ′ × P(Γ//Γ′)

)
∪
(

P(Γ′)×XΓ//Γ′

)
.

The assertions of the proposition follow by an induction argument. �

Corollary 5.3. The strict transform Y of XΓ in P (Γ) does not meet the non-negative points P (Γ)(R≥0)
(4.1).

Proof. It suffices by (4.1) to show that Y doesn’t meet the positive points in any stratum. By proposition
5.2, it suffices to show that for any graph Γ, the graph hypersurface XΓ has no R-points with coordinates
all > 0. This is immediate because ψΓ is a sum of monomials with non-negative coefficients. �

Remark 5.4. The Feynman amplitude is obtained by calculating an integral over σ = P(Γ)(R≥0) with
an integrand which has a pole along XΓ. Again using that ψΓ is a sum of monomials with non-negative
coefficients, one sees from lemma 5.1 that

(5.6) σ ∩XΓ =
⋃

µ

Lµ(R
≥0)

where Lµ ↔ Γµ with Γµ ⊂ Γ a core subgraph. The iterated blowup P (Γ)→ P(Γ) is exactly what is necessary
to separate the non-negative real points from the strict transform of XΓ.
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Figure 11. Moving ∆t.

Remark 5.5. The points where ψΓ 6= 0 have some remarkable properties. It is shown in [20] that for any
angular sector S with angle < π, ψΓ(a1, . . . , an) 6= 0 at any complex projective point a such that the ai 6= 0
and all the arg(ai) lie in S.

6. Monodromy

Let pi = (0, . . . , 1, 0, . . . , 0) ∈ Cn be the i-th coordinate vector. Define

σaff = {
n∑

i=1

τipi | τi ≥ 0,
∑

τi = 1} ⊂ Cn − {(0, . . . , 0)} → Pn−1.

Fix a positive constant ε << 1 and choose qk = (qk1, . . . , qkn) ∈ Rn, 1 ≤ k ≤ n with 1 − ε < qkj ≤ 1 and
|qjk − qℓ,m| ≤ ε2. We assume the qk are algebraically generic. Write rk(t) = pk + tqk ∈ Cn. Define (cf.
fig.(11))

(6.1) σafft = {
n∑

i=1

τkrk(t) | τk ≥ 0,
∑

τk = 1}

We write σ and σ̃t for the images of these chains in Pn−1. Of course, σ = σPn−1 as above, and we know
that σ ∩XΓ =

⋃
L⊂L σL. Here L is as in (3.4).

Lemma 6.1. Let L ⊂ NL be a neighborhood of L in Pn−1 and let σ ⊂ Nσ be a neighborhood of σ. Then
there exists ε0 > 0 such that ε ≤ ε0 implies that for all 0 ≤ θ ≤ 2π, we have σ̃εeiθ ⊂ Nσ and σ̃εeiθ ∩XΓ ⊂ NL.

Proof. We have σ∩XΓ ⊂ L. By compacity, σ̃εeiθ ⊂ Nσ for ε << 1. Again by compacity, if we shrink Nσ we
will have Nσ ∩XΓ ⊂ NL. �

Remark 6.2. Write Hk,t for the projective span of the points

r1(t), . . . , r̂k(t), . . . , rn(t),

and let ∆t =
⋃n
k=1Hk,t. Thus, ∆ = ∆0 and we may consider the monodromy for ∆εeiθ , 0 ≤ θ ≤ 2π. More

precisely, renormalization in physics involves an integral over the chain σ. The integrand has poles along
XΓ. Since σ ∩XΓ 6= ∅, the integral is possibly divergent. On the other hand, by corollary 5.3, the chain σε
does not meet XΓ and so represents a singular homology class

(6.2) [σε] ∈ Hn−1(P
n−1 −XΓ,∆ε −∆ε ∩XΓ,Z).
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Figure 12. The chain τη,εE .

(Since all qkj > 0, it follows that σε ⊂ σ, and points in σε have all coordinates > 0.) We consider the
topological pairs (Pn−1−XΓ,∆εeiθ −∆εeiθ ∩XΓ) as a family over the circle and we continuously deform our
chain σε to a family of chains σεeiθ on Pn−1−XΓ with boundary on ∆εeiθ −∆εeiθ ∩XΓ. (We will not be able
to take σεeiθ = σ̃εeiθ because this chain can meet XΓ.) The monodromy map m is an automorphism of (6.2)
obtained by winding around the circle: m(σε) = σεe2πi . We will calculate m(σε) and see that it determines
in a natural way the renormalization expansion we want.

Recall we have π : P (Γ)→ P(Γ), and π−1(XΓ) = YΓ ∪E, where Y = YΓ is the strict transform of XΓ and
E =

⋃
Ei is the exceptional divisor. (The Ei are closures of orbits associated to core subgraphs of Γ.) We

may transfer our monodromy problem to P (Γ). ∆εeiθ is in general position with respect to the blowups, so
we obtain a family of divisors ∆′

εeiθ = π∗∆εeiθ on P (Γ). Since π : P (Γ)− E − YΓ
∼= P(Γ)−XΓ, we have an

isomorphism of topological pairs

(6.3)
(
P (Γ)− E − YΓ,∆

′
εeiθ −∆′

εeiθ ∩ (E ∪ YΓ)
)
∼=
(

P(Γ)−XΓ,∆εeiθ −∆εeiθ ∩XΓ

)
.

In section 4 we have defined chains τη,ε,θV , ξη,ε,θ, cη,ε,θ on P (Γ). These chains sit on (or, in the case of ξ,
within) various (S1)p-bundles over P (Γ)(R≥0) where the S1 have radius η with respect to a chosen metric.
From corollary 5.3 it follows that for 0 < η << 1, none of these chains meets YΓ. By construction, these
chains do not meet E, so they may be identified with chains on P(Γ)−XΓ. We claim that a small modification
of the chains cη,ε,θ will represent the monodromy chains σεeiθ . The monodromy chains σεeiθ should have
boundary on ∆εeiθ . On the other hand, the chains cη,ε,θ were cut off so they had boundaries on tubes a
distance ε from the toric divisors Dj given by the strict transforms of the Aj = 0 (see fig.(12)). We must
“massage” these brutal cutoffs to get them into ∆εeiθ . Our chains τ sit on tubes or products of tubes or
products of tubes of radius η which we can think of as lying on Pn−1 − L. Since ε << η, when we deform
∆ → ∆εeiθ the homotopy type of the circles, or product of circles where these divisors intersect the tubes
doesn’t change. This may seem strange because L ⊂ ∆ while ∆εeiθ is in general position with respect to
L, but the intersections with a hollow tubular neighborhood of L are canonically homotopic. Indeed, we
may take ∆εeiθ to correspond to a point in a small contractible disk in the moduli space for coordinate
simplices around the point corresponding to ∆. The canonical path up to homotopy between the two points
in moduli will induce the desired homotopy on the intersections. (See fig.(13). The two sets of four dots on
the circles are canonically homotopic.). In more detail, by corollary 5.3, the chains τη,ε,θ are bounded away
from XΓ by a bound which is independent of ε as ε → 0. Outside of some tubular neighborhood N of XΓ

we may find a space M disjoint from XΓ such that M contains open neighborhoods of both ∆−N ∩∆ and
∆εeiθ−N∩∆εeiθ and such that we have deformation retractionsM → ∆−N∩∆ and M → ∆εeiθ−N∩∆εeiθ .
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Shrinking ε, we may assume our ε-cutoffs lie in M . We may then use the deformation retract to extend

the chain slightly to a chain τ̃η,ε,θV which bounds on ∆εeiθ . It remains to consider the chains ξη,ε,θ. Recall

these were obtained by flowing the chain ∂
∑

V (−1)|V |τη,ε,θV inward toward the exceptional divisor E, so
η → ε (cf. fig.(10)). We are in a small neighborhood of E(R≥0) hence by corollary 5.3 we are away from

XΓ. The point to be checked is that the term ∂
∑
V (−1)|V |τε,ε,θV is very close to ∆εeiθ so by the same

deformation retraction argument as above we can extend the chain to bound on ∆εeiθ . The subtlety is that
we are ε-close to E as well, so we need the distance from ∆εeiθ to be o(ε). Recall (6.1) we have the vertices
rk(εe

iθ) = [qk1εe
iθ, . . . , 1+ qkkεe

iθ, . . . , qknεe
iθ] ∈ Pn−1. The coordinate divisor ∆εeiθ is determined by these

projective points. The projective point does not change if we scale the coordinates by eiθ, so the image in
Pn−1 of the affine simplex below, parametrized by τ1, . . . , τn ≥ 0,

∑
τj = 1, will have boundary in ∆εeiθ :

(6.4) eiθτ1(1 + εeiθq11, . . . , εe
iθq1n) + · · ·

+ eiθτp(εe
iθqp1, . . . , 1 + εeiθqpp, . . . , εe

iθqpn)

+ τp+1(εe
iθqp+1,1, . . . , 1 + εeiθqp+1,p+1, . . . , εe

iθqp+1,n) + · · ·

+ τn(εe
iθqn1, . . . , εe

iθqnn + 1).

Consider for example ∂τε,ε,θV where V is the orbit closure corresponding to the blowup of A1 = · · · = Ap = 0.
Take in (6.4) τ1, . . . , τp ≤ ε so terms in τjε may be neglected for j ≤ p. Take uj := τj/τk where k > p is
chosen so that (say) τk ≥ 1/n. As a consequence, u1, . . . , up ≤ nε. The corresponding projective point can
then be written

(6.5)
[
eiθ(u1 + ε) +O(ε2), . . . , eiθ(up + ε) +O(ε2),

up+1 + eiθε+O(ε2), . . . , un + eiθε+O(ε2)
]
.

The boundary is given by setting one or more of the uj = 0. Points in ∂τε,ε,θV can be approximated by points
(6.5) which then deform into ∆εeiθ . To see this, note that since V is a codimension 1 orbit closure, there

will locally be one coordinate on P (Γ) near V which takes the constant value εeiθ on ∂τε,ε,θV (cf. fig.(10)).
On the other hand, (6.5) is in homogeneous coordinates on P(Γ). To transform to P (Γ) near a general point
of V , one fixes ℓ ≤ p and looks at ratios

(6.6)
eiθ(uj + ε) +O(ε2)

eiθ(uℓ + ε) +O(ε2)

for 1 ≤ j 6= ℓ ≤ p. Clearly, at the boundary uℓ = 0 we will get p− 1 coordinates uj/ε+O(ε) which are close
to R≥0, and one coordinate (corresponding to the local defining equation for V ) of the form εeiθ + O(ε2).
The remaining coordinates on V are ratios of the uj + εeiθ + O(ε2), j ≥ p + 1. Since uk = 1, these ratios
are again close to R≥0. The calculation for orbit closures V of codimension ≥ 2 in P (Γ) is similar and is left
for the reader. We have proven
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Proposition 6.3. With notation as above, the monodromy of the chain σε ∈ Hn−1(Pn−1−XΓ,∆ε−XΓ∩∆ε)
is represented by the chains c̃η,ε,θ given by modifying the chains cη,ε,θ to have boundary in ∆εeiθ . In particular,
the monodromy m(σε) = c̃η,ε,2π is given by

(6.7) m(σε) =
∑

V

(−1)|V |τ̃ε,εV

where τ̃ε,εV is the chain τε,εV defined in section 4 with boundary extended to ∆ε as above.

It will be convenient to simplify the notation and write

(6.8) τεV := τ̃ε,εV .

7. Parametric representations

In this section we list well-known representations of the Feynman rules and then prepare for a subsequent
analysis of short-distance singularities in terms of mixed Hodge structures.

7.1. Kirchhoff–Symanzik polynomials. Let

ψ(Γ) =
∑

T

∏

e6∈T

Ae,(7.1)

φ(Γ) =
∑

T1∪T2=T

Q(T1) ·Q(T2)
∏

e6∈T1∪T2

Ae,(7.2)

be the two homogenous Kirchhoff–Symanzik polynomials [10, 22]. Here, T is a spanning tree of the 1PI
graph Γ and T1, T2 are disjoint trees which together cover all vertices of Γ. Also, Q(Ti) is the sum of all
external momenta attached to vertices covered by Ti. Note that φ(Γ) can be written as

(7.3)
∑

kinetic invariants (qi · qj)

Rqi·qj .

Here, qi are external momenta attached to T1 and qj to T2, and Rqi·qj are rational functions of the edge
variables only, and the sum is over independent such kinematical invariants where momentum conservation
has been taken into account. We extend the definition to the empty graph I by ψ(I) = 1, φ(I) = 0.

Let | · |γ denote the degree of a polynomial with regard to variables of the graph γ.

Lemma 7.1. i) degφ = degψ + 1.
ii)

(7.4) ψ(Γ) = ψ(Γ//γ)ψ(γ) + ψΓ,γ

with |ψΓ,γ |γ > |ψ(γ)|γ for all core graphs Γ and subgraphs γ.
iii)

(7.5) φ(Γ) = φ(Γ//γ)ψ(γ) + φΓ,γ

with |φΓ,γ |γ > |ψ(γ)|γ for all core graphs Γ and subgraphs γ.

Proof: i) by definition, ii) has been proved in [2], iii) follows similarly by noting that the two-trees of φ are
obtained from the spanning trees of ψ by removing an edge. If that edge belongs to Γ//γ, we get φ(Γ//γ)ψ(γ).
If it belongs to γ, we get a monomial m with |m|γ > |ψ(γ)|γ . �

Note that it might happen that φ(Γ//γ) = 0, if the external momenta flows through subgraphs γ only. In
such a case (which can lead to infrared divergences) one easily shows φΓ,γ = ψ(Γ//γ)φ(γ).

26



7.2. Feynman rules. ¿From these polynomials one constructs the Feynman rules of a given theory. For
example we have in φ4 theory for a vertex graph Γ, sdd(Γ) = 0,

(7.6) Φ(Γ) =

∫

Rk>ǫ

e−
∑

edges e Aem
2
e−

φ(Γ)
ψ(Γ)

ψ2(Γ)
dA1 · · ·dA|Γ[1]|.

We will write
∫
>ǫ
dAΓ to abbreviate the affine chain of integration.

The integral is over the k-dimensional hypercube of positive real coordinates in R>ǫ with a small strip of
width 1≫ ǫ > 0 removed at each axis. We regard the integrand

(7.7) C ∋ ι(Γ) :=
e−

∑
e Aem

2
e−

φ(Γ)
ψ(Γ)

ψ2(Γ)
,

ι(Γ) = ι
(
Γ)({m2}, {qi · qj}, {A}

)
as a function of the set of internal masses {m2}, the set of external momenta

{qi · qj} (which can be considered as labels on external half-edges) and the set of graph coordinates {A},
and ι takes values in C. We often omit the A dependence and abbreviate P = {m}, {qi · qj} for all these
external parameters of the integrand: ι = ι(P ). The renormalization schemes we consider are determined
by the condition that the Green function shall vanish at a particular renormalization point R, so that
renormalization becomes an iterated sequence of subtractions

(7.8) ι−(P,R) := ι(P ) − ι(R).

We let sdd(Γ) be the superficial degree of divergence of a graph Γ given as (see also Eq.(2.2) for a refined
version)

(7.9) sdd(Γ) := D|Γ| −
∑

edges e

we −
∑

vertices v

wv,

where |Γ| is the rank of the first Betti homology, D the dimension of spacetime which we keep as an integer,
we the weights of the propagator for edge e as prescribed by free field theory and wv the weight of the vertex
as prescribed by the interaction Lagrangian. Note that we can set the width ǫ to zero,

∫
>ǫ
dAΓ →

∫
>0
dAΓ

if the integrand ι−(Γ) is evaluated on a graph Γ which has no divergent subgraphs.
Throughout, we assume that all all masses and external momenta are in general position so that there are

no zeroes in the φ-polynomial off the origin for positive values of the A variables. In particular, we assume
that the point P is chosen appropriately away from all mass-shell and kinematical singularities. We remind
the reader of the notation (Γ, σ) (section (2.5)) where σ stores all the necessary detail on how to evaluate
the graph Γ.

A special role is played by the evaluations (Γ, σP=0). They set all internal masses and momenta to zero.
Note that this leads immediately to infrared divergences: the Feynman integrands ι(·)(P = 0) are missing
the exponential in the numerator, which provides a regulator at large values of the A variables, and hence an
infrared regulator. The ultraviolet singularities at small values of the A variables are taken into account by
the renormalization procedure itself, and hence by our limiting mixed Hodge structure. We will eliminate the
case P = 0 below using that ι− evaluates to zero if there is no dependence on masses or external momenta.

7.3. General remarks on renormalization and QFT. We now consider the renormalization Hopf al-
gebra HR of 1PI Feynman graphs in section (2.4). We use the notation

(7.10) ∆(Γ) =
∑

γ

γ ⊗ Γ//γ,

for its coproduct. Also, ∆(I) = I⊗ I. Projection P into the augmentation ideal on the rhs is written as

(7.11) (id⊗ P )∆(Γ) =
∑

∅6=Γ//γ

γ ⊗ Γ//γ,

so that for example the antipode S is

(7.12) S(Γ) = −
∑

∅6=Γ//γ

S(γ)Γ//γ =: −Γ̄.
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Furthermore, we introduce a forest notation for the antipode:

(7.13) S(Γ) =
∑

[for]

(−1)|[for]|Γ//[for]

|[for]|∏

j=1

γ[for],j,

where the sum is over all forests [for] and the product is over all subgraphs which make up the forest. Here,
a forest [for] is a possibly empty collection of proper superficially divergent 1PI subgraphs γ[for],j of Γ which
are mutually disjoint or nested. We call a forest [for] maximal if Γ//[for] is a primitive element of the Hopf
algebra. As edge sets

(7.14) Γ = (Γ//[for]) ∪ (∪jγj) .

This is in one-to-one correspondence with the representation of the antipode as a sum over all cuts on rooted
trees ρT (Γ) as detailed in section (2.3) above. The integer |[for]| is the number of edges removed in this
representation.

Let us first assume that the graph Γ and all its core subgraphs have a non-positive superficial degree of
divergence, so they are convergent or provide log-pole: sdd ≤ 0 for all elements in (the complement of) the
forests.

As the integrand ι(Γ)(P ) depends on P = {m}, {qi · qj} only through the argument of the exponential,
we redefine the second Kirchhoff–Symanzik polynomial as follows:

(7.15) φ(Γ)({qi · qj})→ ϕ(Γ)(P ) := φ(Γ)({qi · qj}) + ψ(Γ)
∑

e

Aem
2
e.

Then, the unrenormalized integrand is

(7.16) ι(Γ)(P ) =
exp−ϕ(Γ)(P )

ψ(Γ)

ψ2(Γ)
.

With this notation, the renormalized integrand is (in all sums and products over j here and in the following,
j runs from 1 to |[for]|)

ιR(Γ)(P,R) =
∑

[for]

(−1)[for]
exp−

(
ϕ(Γ//[for])(P )
ψ(Γ//[for]) +

∑
j
ϕ(γj)(R)
ψ(γj)

)

ψ2(γ//[for])
∏
j ψ

2(γj)

−
∑

[for]

(−1)[for]
exp−

(
ϕ(Γ//[for])(R)
ψ(Γ//[for]) +

∑
j
ϕ(γj)(R)
ψ(γj)

)

ψ2(γ//[for])
∏
j ψ

2(γj)
(7.17)

=: ῑ(Γ)(P,R) + Sι(Γ)(R),

where +Sι(Γ)(R) = −ῑ(Γ)(R,R) is the integrand for the counterterm, and ῑ(Γ)(P,R), the integrand in
the first line, delivers upon integrating Bogoliubov’s R̄ operation. Note that this formula (7.17) is just the
evaluation

(7.18) m(SιR ⊗ ι)∆(Γ),

which guarantees that the corresponding Feynman integral exists in the limit ǫ→ 0 [13],[15].
This Feynman integral is obtained by integrating from ǫ to ∞ each edge variable. For the renormalized

Feynman integral ΦR(Γ)(P ) we can take the limit ǫ→ 0, while for the R̄-operation

(7.19) Φ̄(Γ)(P,R; ǫ) =

∫

ǫ

ῑ(Γ)(P,R),

and the counterterm

(7.20) SΦ
R;ǫ(Γ) = −Φ̄(Γ)(R,R; ǫ),

the lower boundary remains as a dimension-full parameter in the integral. Note that the result (7.17) above
can also be written in the P −R form, typical for renormalization schemes which subtract by constraints on
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physical parameters:

(7.21) ιR(Γ)(P,R) =
∑

∅6=Γ//γ

[ι(Γ//γ)(P )− ι(Γ//γ)(R)]SιR;ǫ(γ),

and as

(7.22) ῑ(Γ)(P,R) =
∑

∅6=Γ//γ

SιR;ǫ(γ)ι(Γ//γ)(P )⇒ ιR(Γ)(P,R) =
∑

γ

SιR;ǫ(γ)ι(Γ//γ)(P ),

using the notation (7.11,7.10). Similarly, for Feynman integrals,

(7.23) Φ̄(Γ)(P,R; ǫ) =
∑

∅6=Γ//γ

SΦ
R;ǫ(γ)Φ(Γ//γ)(P ), ΦR(Γ)(P ) = lim

ǫ→0

∑

γ

SΦ
R;ǫ(γ)Φ(Γ//γ)(P ).

When it comes to actually calculating the integral (7.6) (or, in its renormalized form (7.17)), something
rather remarkable happens. By lemma 7.1(i), the term in the exponential in these integrals is homogeneous
of degree 1 in the edge variables Ai. The assumption sdd(Γ) = 0 means dA/ψ2 is homogeneous of degree 0.
Making the change of variable Ai = tai, we find

(7.24) dA/ψ(A)2 = dt/t ∧ (
∑

(−1)j−1ajda1 ∧ · · · ∧ d̂aj ∧ · · · )/ψ(a)2 = dt/t ∧ Ω/ψ2.

Note that Ω/ψ2 is naturally a meromorphic form on the projective space P(Γ) with homogeneous coordinates
the ai. Writing σ = {ai ≥ 0} ⊂ P(Γ)(R), we see that the renormalized integral can be rewritten up to a
term which is O(ε) as a sum of terms of the form

(7.25)

∫

σ

Ω/ψ2
j

∫ ∞

ε

(
e(−tfj(a)) − e(−tgj(a))

)
dt/t =

∫

σ

Ω/ψ2
j

(
E1(εfj(a)) − E1(εgj(a))

)
,

where

(7.26) E1(z) :=

∫ ∞

1

e−tz
dt

t
= −γE − ln z +O(z); z → 0

is the exponential integral. (Here fj(a), gj(a) are defined by taking the locus ai ≥ 0,
∑
ai = 1.) As long as

fj(a), gj(a) > 0, we may allow ε→ 0 for fixed a. The Euler constant and log ε terms cancel. When the dust
settles, we are left with the projective representation for the renormalized Feynman integral

(7.27) ΦR(Γ)(P ) =

∫

σ

ΩΓ

∑

[for]

(−1)[for]
ln
(
ϕ(Γ//[for])(P )

∏
j ψ(γj)+

∑
j ϕ(γj)(R)ψ(Γ//[for])

∏
h6=j ψ(γh)

ϕ(Γ//[for])(R)
∏
j ψ(γj)+

∑
j ϕ(γj)(R)ψ(Γ//[for])

∏
h6=j ψ(γh)

)

ψ2(Γ//[for])
∏
j ψ

2(γj)
.

Note that the use of σ is justified as long as the integrand has all subdivergences subtracted, so is in the ῑ
form, so that lower boundaries in the ai variables can be set to zero indeed.

By (7.21), this can be equivalently written as

(7.28) ΦR(Γ)(P ) = lim
ǫ→0

∑

γ

SΦ
R;ǫ(γ)

∫

>ǫ

dAΓ//γι−(Γ//γ)(P,R),

in any renormalization scheme which is described by kinematical subtractions P → R.

Remark 7.2. It will be our goal to replace the affine
∫
dA by the projective

∫
dΩ in the above. The presence

of lower boundaries, which can not be ignored as the integrand has divergent subgraphs, allows this only upon
introducing suitable chains τ ǫγ as discussed in previous sections.

Next, we relax the case of log-divergence.
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7.4. Reduction of graphs with ssd(Γ) > 0. We start with an example. To keep things simple but not too
simple, we consider the one-loop self-energy graph in φ3

6 theory, a scalar field theory with a cubic interaction
in six dimensions of space-time. We have

(7.29) Φ(Γ)(P ) =

∫

>ǫ

dAΓι(Γ)(P ) =

∫

>ǫ

dAΓ
e−

ϕ(Γ)
ψ(Γ)

ψ(Γ)3
≡

∫ ∞

ǫ

dA1dA2
e
−
m2(A1+A2)2+q2A1A2

(A1+A2)

(A1 +A2)3
.

We will renormalize by suitable subtractions at chosen values of masses and momenta in the ϕ-polynomial.
We hence (with subdivergences taken care of by suitable bar-operations ι → ῑ in the general case) replace
ι(Γ)(P ) by ι(Γ)(P ) − ι(Γ)(0), as this leaves ι−(Γ)(P,R) invariant.

Then the above can be written, with this subtraction, and by the familiar change of variables Ai = tai,
and by one partial integration in t,

Φ(Γ)(P ) =

∫

σ

dΩ

∫ ∞

ǫ

dt

t

[m2(a1 + a2)
2 + q2a1a2]e

−t
m2(a1+a2)2+q2a1a2

(a1+a2)

(a1 + a2)4

−

∫

σ

dΩ
[m2(a1 + a2)

2 + q2a1a2]

(a1 + a2)4
,(7.30)

where we expanded the boundary term up to terms constant in ǫ, which gave the term in the second line. We
discarded already the pure pole term ∼ 1/ǫ from Φ(Γ)(P = 0) =

∫
>ǫ

dA
(A1+A2)3

=
∫∞

ǫ dt/t2
∫∞

0 db21/(1+ b2)
3.

Note that graphs Γ with sdd > 0 have res(Γ) = 2. They hence depend on a single kinematical invariant
q2 say, φ(Γ) = φ(Γ)(q2), for which we write φ(Γ)q2 .

The result in (7.30) leads us to define two top-degree forms. (Here Ω = a1da2 − a2da1 and we still write
φ, ψ for the Kirchhoff–Symanzik polynomials regarded as dependent on either ai or Ai variables below).

(7.31) ω� = ω�(Γ) = Ω
φ1(Γ)

ψ(Γ)4
= Ω

a1a2

(a1 + a2)4
,

and

(7.32) ωm2 = ωm2(Γ) = Ω
(a1 + a2)

2

ψ(Γ)4
= Ω

1

(a1 + a2)2
,

so that

Φ(Γ)(P ) = −m2

∫

σ

[ω� + ωm2 ]− (q2 −m2)

∫

σ

ω�(7.33)

+m2

∫

σ

[ω� + ωm2 ]

∫ ∞

ǫ

dt

t
e−t

ϕ(Γ)(P )
ψ(Γ)

+(q2 −m2)

∫

σ

ω�

∫ ∞

ǫ

dt

t
e−t

ϕ(Γ)(P )
ψ(Γ) .

There are corresponding affine integrands

ι�(Γ) =
φ1(Γ)

ψ(Γ)4
e−

ϕ(Γ)(P )
ψ(Γ) ,(7.34)

ιm2(Γ) =
(a1 + a2)

2

ψ(Γ)4
e−

ϕ(Γ)(P )
ψ(Γ) .(7.35)

The graph Γ is renormalized by a choice of a renormalization condition R� for the coefficient of q2 −m2

(wave function renormalization), and by the choice of a condition Rm2 for the mass renormalization. R is
often still used to denote the pair of those.

(7.36) Φ(Γ)(P ) +m2δm2 + q2z� = ΦR�,Rm2 (Γ)(P ).

The mass counterterm is then

(7.37) m2δm2 = −m2

∫

σ

[ω� + ωm2 ]

(
1−

∫ ∞

ǫ

dt

t
e−t

ϕ(Γ)(R
m2 )

ψ(Γ)

)
,
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and the wave-function renormalization q2z� is

(7.38) q2z� = −q2
∫

σ

ω�

(
1−

∫ ∞

ǫ

dt

t
e−t

ϕ(Γ)(R
�

)

ψ(Γ)

)
.

Note the term 1 in the () brackets does not involve exponentials.
The corresponding renormalized contribution is

(7.39) ΦR(Γ)(P ) = (q2 −m2)

∫

σ

ω� ln
ϕ(P )

ϕ(R�)
+m2

∫

σ

[ω� + ωm2 ] ln
ϕ(Γ)(P )

ϕ(Γ)(Rm2 )
.

The transition from the unrenormalized contribution to the renormalized one is particularly simple upon
defining Feynman rules in accordance with external leg structures:

Φ((Γ, σ�)) = (q2 −m2)

∫

>ǫ

dA
φ1(Γ)e−

ϕ(Γ)(P )
ψ(Γ)

ψ(Γ)D/2+1
,(7.40)

Φ((Γ, σm2 )) = m2

∫

>ǫ

dA
[φ1(Γ) + ψ(Γ)

∑
eAe]e

−ϕ(Γ)(P )
ψ(Γ)

ψ(Γ)D/2+1
,(7.41)

(7.42)

so that renormalization proceeds as before on log-divergent integrands.
This example extends straightforwardly to the case of Γ having divergent subgraphs. Let us return to φ4

4

theory and define for a core graph Γ with sdd(Γ) = 2, (so that it is a self-energy graph and hence has only
two external legs, and thus a single kinematical invariant q2), and graph-polynomials ψ(Γ), φ(Γ) = φq2(Γ),
ϕ(Γ) = ϕ(Γ)(P ) = φq2 (Γ) + ψ(Γ)

∑
eAem

2
e, the forms

(7.43) ω�(Γ) = ΩΓ
φ1(Γ)

ψ3(Γ)
,

(7.44) ωm2(Γ) = ΩΓ
φ1(Γ) + ψ(Γ)

∑
eAe

ψ3(Γ)
.

The corresponding complete affine integrands ι�, ιm2 are immediate replacing ai by Ai variables, and mul-
tiplying by exponentials exp−ϕ(Γ)(P )/ψ(Γ), with P → R for counterterms.

One finds by a straightforward computation

ΦR�
((Γ, σ�))(P ) =

∑

γ

SΦ
R;ǫ(γ)

∫

ǫ

ω�(Γ//γ) ln
ϕ(Γ//γ)(P )

ϕ(Γ//γ)(R�)
(7.45)

=

∫
ΩΓ

∑

[for]

(−1)[for]ω�(Γ//[for]) ln
ϕ(Γ//[for])(P )

ϕ(Γ//[for])(R�)
,(7.46)

and

ΦRm2 ((Γ, σm2))(P ) =
∑

γ

SΦ
R;ǫ(γ)

∫

ǫ

ωm2(Γ//γ) ln
ϕ(Γ//γ)(P )

ϕ(Γ//γ)(Rm2)
(7.47)

=

∫
ΩΓ

∑

[for]

(−1)[for]ωm2(Γ//[for]) ln
ϕ(Γ//[for])(P )

ϕ(Γ//[for])(Rm2)
.(7.48)

We set

(7.49) ΦR(Γ)(P ) ≡ ΦR((Γ, I))(P ) = φR�
((Γ, σ�))(P ) + ΦRm2 ((Γ, σm2))(P ),

in the external leg structure notation of section (2.5). We can combine the results for graphs Γ for all degrees
of divergence sdd(Γ) ≥ 0 by defining ω(Γ) = Ω/ψ2(Γ) for a log divergent graph with the results above. And
that’s that. Well, we have to hasten and say a word about the Feynman rules when the subgraphs γ have
sdd(γ) > 0, and hence also about SΦ

R;ǫ(γ) in that case.
We use, with P the projection into the augmentation ideal, the notation

(7.50) Γ̄ = Γ +m(S ◦ P ⊗ P )∆ =: Γ + (Γ′)−1Γ′′.
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Let us consider the quotient Hopf algebra given by quadratically divergent graphs: ∆2(Γ) =
∑

γ,sdd(γ)=2 γ⊗

Γ//γ. We write

(7.51) ∆2(Γ) =: Γ⊗ I + I⊗ Γ + Γ′
2 ⊗ Γ′′.

We add 0 = +Γ′
2
−1

Γ′′ − Γ′
2
−1

Γ′′, so

Γ̄ = Γ + Γ′
2
−1

Γ′′ − Γ′
2
−1

Γ′′ + Γ′−1
Γ′′(7.52)

=
(
Γ + Γ′

2
−1

Γ′′
)

+
(
Γ′−1

− Γ′
2
−1
)

Γ′′.(7.53)

Here the sum is over all terms of the coproduct with the Γ′
2 terms being present whenever Γ′ is quadratically

divergent.
Evaluating the terms Γ′

2 by 1/ψ2(γ′2) = ι(γ′2)(P = 0) decomposes the bar-operation on the level of
integrands as follows.

(7.54) ῑ(Γ)(P ) =

I︷ ︸︸ ︷(
ι(Γ)(P ) + ι(Γ′

2
−1

)(P = 0)ι(Γ′′)(P )
)

+ι(Γ′−1
)(R)ι(Γ′′)(P ),

where ι(Γ′−1
)(R) ≡ SιR;ǫ(Γ

′) appears because a subtraction of a P = 0 term, from a quadratically divergent
term, precisely delivers those counterterms by our previous analysis. Note that they contain terms which do
not have an exponential, as in the example (7.38,7.37). Often, as a two-point vertex of mass type improves
the powercounting of the co-graph, we might keep self-energy subgraphs massless, in which case only terms
involving R� contribute.

We are left to decompose the terms denoted I. We find by direct computation

I =

II︷ ︸︸ ︷[
ω(Γ) + ω(Γ′

2
−1

)ω(Γ′′)
]
e−

ϕ(Γ)(P )
ψ(Γ)(7.55)

−ω(Γ′
2
−1

)ω(Γ′′)

[
e−

ϕ(Γ)(P )
ψ(Γ) − e

−
ϕ(Γ//Γ′

2)(P )

ψ(Γ//Γ′
2)

]

︸ ︷︷ ︸
III

.(7.56)

The terms denoted II gives us the final integrand ι(Γ)(P ) with a corresponding form ωII(Γ). ωII(Γ) = ω(Γ)
if there are no subgraphs with sdd = 2. Note that II has the full Γ as an argument in the common
exponential,

(7.57) II = ωII(Γ) exp(−ϕ(Γ)/ψ(Γ)),

which defines ωII . The rational coefficient ωII has log-poles only for all subgraphs including the ones with
sdd = 2.

The terms III is considered in t, ai variables. We can integrate t as before. As the rational part of the

integrand factorizes in Γ′
2 and Γ′′ variables, we similarly decompose the former into s, bi, i ∈ Γ′

2
[1]

, variables.
We note s only appears in the log (after the t integration) as a coefficient of φΓ,Γ′

2
, using Lemma (7.1).

Partial integration in s eliminates the log and delivers a top-degree form for the bi integration. These terms
precisely compensate against the constant terms mentioned above, as φΓ,Γ′

2
= φ1(Γ

′
2)φ1(Γ− Γ′

2), using that
res(Γ′

2) = 2.
We hence summarize

Theorem 7.3.

(7.58) ΦR(Γ)(P ) = lim
ǫ→0

∑

γ

SΦ
R;ǫ(γ)

∫

ǫ

ωII(Γ//γ) ln
ϕ(Γ//γ)(P )

ϕ(Γ//γ)(R)
.

It is understood that each counterterm is computed with a subtraction R as befits its argument γ, and forms
Γ are chosen in accordance with the previous derivations. Here, ωII is constructed to have log-poles only.
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As a projective integral this reads

ΦR(Γ)(P ) =

∫
ΩΓ

∑

[for]

(−1)[for] ×

× ln

(
ϕ(Γ//[for])(P)

∏
j ψ(γj) +

∑
j ϕ(γj)(R)ψ(Γ//[for])

∏
h 6=j ψ(γh)

ϕ(Γ//[for])(R)
∏

j ψ(γj) +
∑

j ϕ(γj)(R)ψ(Γ//[for])
∏

h 6=j ψ(γh)

)

×ω(Γ//[for])
∏

j

ω(γj).(7.59)

Remark 7.4. Similar formulas can be obtained for the bar-operations and counterterms, with the same
rational functions in the integrands, and exponentials exp(−ϕ(Γ//γ)(X)/ψ(Γ//γ)), with X = P or X = R
as needed.

Remark 7.5. We have worked with choices of renormalizations for mass and wave functions, R→ R�, Rm2 .
One can actually also define P → P�, Pm2 , and for example set masses to zero in all exponentials (ϕ(·)(P )→
φq2 (·)), that’s essentially the Weinberg scheme if one then subtracts at q2 = µ2.

Remark 7.6. This all is nicely reflected in properties of analytic regulators. For example in dimensional
regularization the identity

∫
dDk[k2]ρ = 0, ∀ρ, leads to Φ(Γ)(P = 0) = 0 immediately, where Φ now indicates

unrenormalized Feynman rules using that regulator.

Remark 7.7. We are working so far with constant lower boundaries. The chains introduced in previous
sections have moving lower boundaries which respect the hierarchy in each flag. We will study that difference
in section (9.1).

7.5. Specifics of the MOM-scheme. We define the MOM-scheme by setting all masses to zero in radiative
corrections and keeping a single kinematical invariant q2 in the φ-polynomial, P = {0}, {qi · qj ∼ q2},

(7.60) φ(Γ) = q2Rq2(Γ).

Such a situation arises if we set masses to zero (possibly after factorization of a polynomial part from the
amplitude as in the Weinberg scheme), and for vertices if we consider the case of zero momentum transfers,
or evaluate at a symmetric point q2i = q2, where i denotes the external half-edges of Γ. If we want to
emphasize the q2 dependence we write φq2 . Trivially, φq2 = q2φ1. In the MOM-scheme, subtractions are
done at q2 = µ2, which defines R for all graphs. Counter-terms in the MOM-scheme become very simple
when expressed in parametric integrals thanks to the homogeneity of the φ-polynomial. Note that we hence
have ϕ(Γ) = φ(Γ) as we have set all masses to zero.

In a MOM-scheme, renormalized diagrams are polynomials in ln q2/µ2:

Theorem 7.8. For all Γ,

(7.61) ΦMOM(Γ)(q2/µ2) =

aug(Γ)∑

j=1

cj(Γ) lnj q2/µ2.

Here, aug(Γ) = max[for] |[for]|.
Proof: Consider a sequence γ1 ( γ2 · · · γaug(Γ) ( Γ. This is in one-to-one correspondence with some decorated
rooted tree appearing in ρR(Γ) (2.35). Choose one edge ej ∈ γj/γj−1 in each decoration and de-homogenize
with respect to that edge. We get a sequence of lower boundaries ǫ, ǫ/A2, ǫ/A2/A3, · · · . Use the affine rep-
resentation and integrate to obtain the result. �

7.5.1. MOM scheme results from residues. In such a scheme, it is particularly useful to take a derivative
with respect to ln q2. We consider

(7.62) p1(Γ) := q2∂q2ΦMOM(Γ)(q2/µ2)|q2=µ2
,

where we evaluate at q2 = µ2 after taking the derivative. This number, which for a primitive element of
the renormalization Hopf algebra is the residue of that graph in the sense of [2], is our main concern for a
general graph. It will be obtained in the limit of the limiting mixed Hodge structure we construct.
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Remark 7.9. It is not that this limit would not exist for general schemes. But the limit would be a compli-
cated function of ratios of masses and kinematical invariants, which has a constant term given by the number
p1(Γ) and beyond that a dependence on these ratios which demands a much finer Hodge theoretic study than
we can offer here.

But first we need to remind ourselves how coefficients of higher powers of logarithms of complicated graphs
related to coefficients of lower powers of sub- and co-graphs thanks to the renormalization group.

7.5.2. The counterterm SΦ
MOM. For SΦ

MOM(Γ) =:
∑aug(Γ)

j=1 sj(Γ) lnj µ2, we simply use the renormalization
group or the scattering type formula. In particular, we have

(7.63) SΦ
MOM (Γ) =

aug(Γ)∑

j=1

1

j!
(−1)j [p1 ⊗ · · · ⊗ p1]︸ ︷︷ ︸

jfactors

∆j−1(Γ).

This is easily derived [6, 17] upon noting that p1(Γ) = Φ(S ⋆ Y (Γ)).
Note that this determines counter-terms by iteration: for a k-loop graph, knowledge of all the lower order

counterterms suffices to determine all contributions to the k-loop counterterm but the lowest order coefficient
of lnµ2. But then, that coefficient is given by the formula

(7.64) s1(Γ) = p1(Γ) lnµ2,

which itself only involves counter-terms of less than k loops, by the structure of the bar operation.

7.5.3. p1(Γ) from co-graphs. We can now summarize the consequences of the renormalization group and
our projective representations for parametric representations of Feynman integrals. The interesting question
is about the logs which we had in numerators. Thm.(7.3) becomes

Theorem 7.10.

(7.65) p1(Γ) = lim
ǫ→0

∑

γ

SΦ
MOM;ǫ(γ)q

2∂q2

∫

ǫ

ωII(Γ//γ) lnφq2/µ2(Γ//γ).

This limit is

p1(Γ) =

∫
ΩΓ

∑

[for]

(−1)[for] ×

×q2∂q2 ln


φq2/µ2(Γ//[for])

∏

j

ψ(γj) +
∑

j

φ1(γj)ψ(Γ//[for])
∏

h 6=j

ψ(γh)




×ω(Γ//[for])
∏

j

ω(γj).(7.66)

The derivative with respect to ln q2 can be taken inside the integral in (7.65) if and only if all edges carrying
external momentum are in the complement C(Γ) of all edges belonging to divergent subgraphs. In that case,
q2∂q2 lnφq2 (Γ//γ) = 1 and no logs in the numerator appear.

Remark 7.11. Note that overlapping divergent graphs can force all edges to belong to divergent subgraphs,
cf. Fig.(5).

Proof: If all edges carrying external momentum are in the complement to divergent subgraphs, we bring the
counter-terms under the integrand using the bar-operation. We can take the limit ǫ→ 0 in the integrand for
all edge variables belonging to subgraphs, and this limit commutes with the derivative with respect to ln q2

by assumption: each φ2
q(Γ//γ) is a linear combination of terms Aeψe(Γ//γ), where e is in that complement

C(Γ) of subgraph edges, and ψe(Γ//γ) = ψ(Γ//γ/e). Applying then the Chen-Wu theorem [21] with respect
to the elements of C(Γ) disentangles the q2 dependence from the limit in ǫ. �
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Figure 14. The Dunce’s cap, again. We label the edges 1, 2, 3, 4. Resolved in trees, we
find three trees in the core Hopf algebra. We label the vertices by edge labels of the
graph. The sets 123 and 124 correspond to a triangle graph as indicated, the sets 12 and
34 are one-loop vertex graphs, and tadpoles appear in the coproduct on the rhs for edges
3 or 4. The coproduct in the core Hopf algebra is, expressed in edge labels, ∆′(1234) =
123⊗4+124⊗3+34⊗12. Only the last term appears in the renormalization Hopf algebra.

Remark 7.12. Note that the discussion below with respect to the limiting Hodge structure assumes that we
have this situation of disentanglement of divergent subgraphs and edges carrying external momentum. We
hence have no logarithms in the numerator. But note that the general case does no harm to the ensuing
discussion: by Lemma (7.1), any logarithms in the numerator are congruent to one along any exceptional
divisor of XΓ//[for]. Furthermore, when external momentum interferes with subgraphs, all logs can be turned
to rational functions by a partial integration. The fact that the second Kirchhoff–Symanzik polynomial is
a linear combination of ψ-polynomials, applied to graphs with an extra shrunken edge, in the MOM-case
establishes these rational functions to have poles coming from our analysis of this ψ(Γ) polynomial. A full
mathematical discussion of this ”

∫
ω ln f” situation should be subject to future work.

7.5.4. Examples. ¿From now on we measure q2 in units of µ2 so that subtractions are done at 1. This
simplifies notation. Let us first consider the Dunce’s cap in detail, (14). We have the following data
(pathq(Γ) refers to the momentum path through the graph):

ψ(Γ) = (A1 +A2)(A3 +A4) +A3A4,(7.67)

ψ(γ) = A3 +A4, ψ(Γ//γ) = A1 +A2,(7.68)

pathq(Γ) = e1,(7.69)

φ1(Γ) = A1(A2A3 +A3A4 +A4A2) = A1ψ(Γ//e1) = A1ψ
1(Γ),(7.70)

φ1(γ) = A3A4, φ1(Γ//γ) = A1A2,(7.71)

{[for]} = {∅, (34)}.(7.72)

(7.73) Φ(Γ)ǫ(q
2) =

∫ ∞

ǫ

4∏

i=1

dAi
exp−q2 φ1(Γ)

ψ(Γ)

ψ2(Γ)
.
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Hence we choose a function τ(ǫ) which goes to zero rapidly enough so that limǫ→0 τ(ǫ)/ǫ = 0 and compute

Φ̄ǫ(Γ)(q2, µ2) =

∫ ∞

ǫ

dA1dA2

∫ ∞

τ(ǫ)

dA3dA4





exp−q2 φ1(Γ)
ψ(Γ)

ψ2(Γ)

−
exp

[
−q2 φ1(Γ//γ)

ψ(Γ//γ)

]

ψ2(Γ//γ)

exp
[
−φ1(γ)
ψ(γ)

]

ψ2(γ)



(7.74)

=

∫ ∞

q2ǫ

dA1dA2

∫ ∞

τ(ǫ)q2
dA3dA4





exp−φ1(Γ)
ψ(Γ)

ψ2(Γ)





−





∫ ∞

q2ǫ

dA1dA2

∫ ∞

τ(ǫ)

dA3dA4

exp
[
−φ1(Γ//γ)
ψ(Γ//γ)

]

ψ2(Γ//γ)

exp
[
−φ1(γ)
ψ(γ)

]

ψ2(γ)



 .(7.75)

Let us now re-scale to variables Ai → A1Bi for all variables i ∈ 2, 3, 4. We get

Φ̄ǫ(Γ)(q2, µ2) =

∫ ∞

q2ǫ

dA1

A1

∫ ∞

q2ǫ

dB2

∫ ∞

q2τ(ǫ)/A1

dB3dB4





exp−A1
(B2B3+B3B4+B4B2)

(1+B2)(B3+B4)+B3B4

[(1 +B2)(B3 +B4) +B3B4]2





−

{∫ ∞

q2ǫ

dA1

A1

∫ ∞

q2ǫ

dB2

∫ ∞

τ(ǫ)/A1

dB3dB4

exp−A1
B2

1+B2

(1 +B2)2
exp−A1

B3B4

B3+B4

(B3 +B4)2

}
.(7.76)

We re-scale once more B4 = B3C4. Also, we set the lower boundaries in the B2 and C4 integrations to zero.
This is justified as A1 and B3 remain positive.

Φ̄ǫ(Γ)(q2, µ2) =

∫ ∞

q2ǫ

dA1

A1

∫ ∞

0

dB2

∫ ∞

q2τ(ǫ)/A1

dB3

B3

∫ ∞

0

dC4





exp−A1
(B2+B3C4+C4B2)

(1+B2)(1+C4)+B3C4

[(1 +B2)(1 + C4) +B3C4]2





−

∫ ∞

q2ǫ

dA1

A1

∫ ∞

0

dB2

∫ ∞

τ(ǫ)/A1

dB3

B3

∫ ∞

0

dC4

{
exp−A1

B2

1+B2

(1 +B2)2
exp−A1B3

C4

1+C4

(1 + C4)2

}
.(7.77)

Taking a derivative wrt ln q2 and using that limǫ→0 τ(ǫ)/ǫ = 0, delivers three remaining terms

∂ln q2Φ̄ǫ(Γ)q2=1 =

∫ ∞

0

dB2

∫ ∞

τ(ǫ)/ǫ

dB3

B3

∫ ∞

0

dC4

{
1

[(1 +B2)(1 + C4) +B3C4]2

}

−

∫ ∞

0

dB2

∫ ∞

τ(ǫ)/(q2ǫ)

dB3

B3

∫ ∞

0

dC4

{
1

(1 +B2)2
e−ǫq

2 B3C4
1+C4

(1 + C4)2

}

+

∫ ∞

q2ǫ

dA1

A1

∫ ∞

0

dB2

∫ ∞

0

dC4

{
e
−A1

B2
(1+B2)

[(1 +B2)(1 + C4)]2

}
.(7.78)

Integrating B3 in the second line and A1 in the third, we find

∂ln q2Φ̄ǫ(Γ)q2=1 =

∫ ∞

0

dB2

∫ ∞

τ(ǫ)/ǫ

dB3

B3

∫ ∞

0

dC4
1

[(1 +B2)(1 + C4) +B3C4]2

+ ln τ(ǫ)/ǫ

∫
Ωγ
ψ2(γ)

∫
ΩΓ//γ

ψ2(Γ//γ)
.(7.79)

Using the exponential integral, those B3 and A1 integrations also deliver finite contributions

(7.80) −

∫ ∞

0

dB2

∫ ∞

0

dC4

{
1

(1 +B2)2
ln C4

1+C4

(1 + C4)2

}
+

∫ ∞

0

dB2

∫ ∞

0

dC4

{
ln B2

1+B2

[(1 +B2)(1 + C4)]2

}
= 0.
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This cancellation of logs is no accident: while in this simple example it looks as if it originates from the fact
that the co-graph and subgraph are identical, actually the cross-ratio

(7.81) ln
φ(Γ//γ)ψ(γ)

ψ(Γ//γ)φ(γ)

vanishes identically when integrated against the de-homogenized product measure

(7.82)

∫

0

dAΓ//γdAγ
1

ψ2(Γ//γ)ψ2(γ)
.

This is precisely because C(Γ) = e1 has an empty intersection with γ[1] = e3, e4.
But then, this cancelation of logs will break down if φ(Γ) is not as nicely disentangled from φ(γ) for

all log-poles as it is here, and will be replaced by logs congruent to 1 along subdivergences in general, in
accordance with Thm.(7.10).

Let us study this in some detail. Consider the graph on the upper left in Fig.(7), and consider the finite
lnφ/ψ-type contributions of the exponential integral to in the vicinity of the exceptional divisor for the
subspace A3 = A4 = 0.

Routing an external momentum through edges 1,6, we have the following graph polynomials:

φ1(Γ) = A1[A3A4(A5 +A6) +A5A6(A3 +A4) +A2(A3 +A4)(A5 + A6)](7.83)

+A6A5[(A1 +A2)(A3 +A4) +A3A4]

φ1(Γ/34) = A1[A5A6 +A2(A5 +A6)] +A5A6[(A1 +A2)](7.84)

φ1(34) = A3A4(7.85)

ψ(Γ/34) = (A1 +A2)(A5 +A6) +A5A6(7.86)

ψ(34) = A3 +A4.(7.87)

We have C(Γ) = e1, e6, and ∪γ(Γ,res(γ)≥0γ
[1] = e3, e4, e5, e6. The intersection is e6. We hence find, with

suitable de-homogenization,

(7.88)
ln

X︷ ︸︸ ︷
B5B6(1 +B2)+

Y︷ ︸︸ ︷
B5B6 +B2(B5 +B6)

(1+B2)(B5+B6)+B5B6
− ln C4

1+C4

[(1 +B2)(B5 +B6) +B5B6]2[1 + C4]2
dB2dC4dB5dB6.

Here, the term X denotes a term which would be absent if the momenta would only go through edge 1 and
hence the above intersection would be empty, while Y indicates the terms from the momentum flow through
edge 1.

This is of the form ln(fΓ//γ/fγ)[ωΓ//γ ∧ ωγ ]. If the term X would be absent, a partial integration

(7.89)

∫ ∞

ǫ

ln xu+v
xu+w

(xu+ w)2
∼

∫ ∞

ǫ

1

(xu+ w)2

would show the vanishing of this expression as above. The presence of X leaves us with a contribution which
can be written, replacing lnC4/(1 + C4) by lnY/ψ(Γ/34),

(7.90)

ln

X︷ ︸︸ ︷
B5B6(1 +B2)+

Y︷ ︸︸ ︷
B5B6 + B2(B5 +B6)

B5B6 +B2(B5 +B6)︸ ︷︷ ︸
Y

[(1 +B2)(B5 +B6) +B5B6]2[1 + C4]2
.

As promised, it is congruent to one along the remaining log-pole at A5 = A6 = 0. It has to be: the forest
where the subgraph 56 shrinks to a point looses the momentum flow through edge 6 and could not contribute
any counterterm for a pole remaining in the terms discussed above.

Note that in general higher powers of logarithms can appear in the numerator as subgraphs can have
substructure. Lacking a handle to notate all the log-poles which do not cancel due to partial integration
identities known beyond mankind we consider it understood that all terms from the asymptotic expansion
of the exponential integral up to constant terms (higher order terms in ǫ are not needed as all poles are
logarithmic only) are kept without being shown explicitly in further notation. We emphasize though that
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all those logarithm terms in the numerator are congruent to one along log-poles -and deserve study in their
own right elsewhere-, and hence thanks to Lemma (7.1) which guarantees indeed all necessary cancelations,
we have in all cases:

(7.91) p1(Γ) = lim
ǫ→0

∂ln q2Φ̄ǫ(Γ)q2=1.

Remark 7.13. There is freedom in the choice of τ , a natural choice comes from the rooted tree representation
ρ(Γ) of the forest. Each forest is part of a legal tree t and any subgraph γ corresponds to a vertex v in that
tree. If dv is the distance of v to the root of t, τ(ǫ) = ǫdv+1 is a natural choice.

8. N

8.1. for physicists: The antipode as monodromy. Let us now come back to the core Hopf algebra
and prepare for an analysis in terms of limiting mixed Hodge structures. This will be achieved in two steps:
an analysis of the structure of the antipode of the renormalization Hopf algebra, which will then allow to
define a matrix N for the monodromy in question such that S(Γ) can be expressed in a particularly nice
way. In fact, because of orientations, the N which arises in the monodromy calculation is the negative of
the N computed in this section. We omit the minus sign to simplify the notation.

Let us consider the antipode first. Thanks to the above lemma we can write for the antipode S(Γ)

(8.1) S(Γ) = −

|Γ|∑

j=0

(−1)j
∑

|C|=j

∑

t

PC(t)RC(t).

Here, we abuse notation in an obvious manner identifying Γ and ρT (Γ), the latter being the indicated sum
over trees, in accordance with Eq.(2.34).

We also define R(Γ) = −S(Γ). Let us now label the edges of each t(Γ) once and for all by 1, 2, · · · , |Γ|−1.
Then, we have |Γ| − 1 cuts C with |C| = 1, and

(8.2)

(
|Γ| − 1

j

)

cuts of cardinality |C| = j. We hence can define a vector v(Γ) with 2|Γ|−1 entries in H , ordered according
to a never decreasing cardinality of cuts:

(8.3) v(Γ) = (Γ,
∑

t

PC(t)RC(t)

︸ ︷︷ ︸(
|Γ|−1

1

)
entries of cardinality 1

, · · · ,
∑

t

PC(t)RC(t)

︸ ︷︷ ︸(
|Γ|−1
j

)
entries of cardinality j

, · · · )T .

Example: Dunce’s cap with edges 1, 2, 3, 4 and divergent subgraph 3, 4, comare Fig.(14). The core coproduct
is

(8.4) ∆′
c = 123⊗ 4 + 124⊗ 3 + 34⊗ 12.

The vector v is then

(8.5) v =

(
1234

(123)(4) + (124)(3) + (12)(34)

)
.

Let N (2) be the to-by-two matrix

(8.6) N (2) =

(
0 1
0 0

)
.

Note that

(8.7)

[(
1 0
0 1

)
−N (2)

](
1234

(123)(4) + (124)(3) + (12)(34)

)
=

(
R(1234)

(123)(4) + (124)(3) + (12)(34)

)
,

with

(8.8) R(1234) = 1234− (123)(4)− (124)(3)− (34)(12).
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In fact, it is our first task to find a nilpotent matrix N , N |Γ| = 0, such that

(8.9)

|Γ|−1∑

j=0

(−1)jN j/j! = (R(Γ),
∑

t

R(PC(t))R(RC(t))

︸ ︷︷ ︸(
|Γ|−1

1

)
entries of cardinality 1

, · · · ,
∑

t

R(PC(t))R(RC(t))

︸ ︷︷ ︸(
|Γ|−1
j

)
entries of cardinality j

, · · · ), )T .

For PC(t) =
∏
i ti we here have abbreviated R(PC(t)) for

∏
iR(ti).

8.2. The matrix N . Let M(0, 1) be the space of matrices with entries in the two point set {0, 1}.
Let now m+ 1 be the number of loops m = |Γ| − 1 in the graph and let us construct a nilpotent 2m× 2m

square matrix N ≡ N (m), Nm+1 = 0, in M(0, 1) as follows.
Consider first the m + 1-th row of the Pascal triangle, for example for m = 3 it reads 1, 3, 3, 1. For this

example, we will then construct blocks of sizes 1 × 1, 1× 3, 3× 3, 3 × 1 and 1 × 1, all with entries either 0
or 1.

So this gives us in generalm+2 blocksM
(m)
j , 0 ≤ j ≤ m+1, of matrices of size M

(m)
0 : 1×1, M

(m)
1 : 1×m,

M
(m)
2 : m×m(m− 1)/2!, · · · , M

(m)
m : m× 1, M

(m)
m+1 : 1× 1.

In the block M
(m)
j , 0 ≤ j < (m+ 2)/2, fill the columns, from left to right, by never increasing sequences

of binary numbers (read from top to bottom) where each such number contains j entries 1 for the block

M
(m)
j . Put M

(m)
0 = (0) in the left upper corner and M

(m)
1 to the left of it. For j ≥ 2, put the block M

(m)
j

below and to the right of the block M
(m)
j−1 , in N . All entries in N outside these blocks are zero. Determine

the entries of the blocks M
(m)
j , m + 1 ≥ j ≥ (m + 2)/2, by the requirement that N⊥ = N , where N⊥ is

obtained from N by reflection along the diagonal which goes from the lower left to the upper right. We write

M
(m)
i

⊥
= M

(m)
m+1−i. For odd integer m, we have M

(m)
(m+1)/2

⊥
= M

(m)
(m+1)/2+1, by construction. Here are M

(3)
j

and N,N2, N3 for m = 3:

(8.10) M
(3)
0 = (0),M

(3)
1 = (1, 1, 1),M

(3)
2 =




1 1 0
1 0 1
0 1 1


 ,M

(3)
3 =




1
1
1


 ,M

(3)
4 = (0).
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N (3) =




0 |1 1 1| 0 0 0 0
0 0 0 0 |1 1 0| 0
0 0 0 0 |1 0 1| 0
0 0 0 0 |0 1 1| 0
0 0 0 0 0 0 0 |1
0 0 0 0 0 0 0 |1
0 0 0 0 0 0 0 |1
0 0 0 0 0 0 0 0




,(8.11)

N (3)2 =




0 0 0 0 2 2 2 0
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




,(8.12)

N (3)3 =




0 0 0 0 0 0 0 6
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




.(8.13)

We can now write, for 1 ≤ j ≤ m,

(8.14) N j = j!n
(m)
j ,

where the matrix n
(m)
j ∈M(0, 1), by construction. Hence

(8.15) exp
{
−LN (m)

}
=

m∑

j=0

(−L)j

j!
N (m)j =

m∑

j=0

(−L)jn
(m)
j .

This is obvious from the set-up above. Furthermore, directly from construction, n
(m)
j , j ≥ 1, has a block

structure into blocks of size

(8.16) (1×m), · · · , · · ·︸︷︷︸
j − 1 middle blocks missing

, · · · , (m× 1),

located in the uppermost right corner of size 2m−j+1 × 2m−j+1 as in the above example.

8.3. Math:The Matrix N . In this section we compute the matrixN which gives the log of the monodromy.
Because of orientations, the answer we get is the negative of the physicalN computed in the previous section.

Our basic result gives the monodromy

(8.17) m(σ1) =
∑

I

(−1)pτI = σ1 +
∑

I, p≥1

(−1)pτI .

Here we have changed notation. I = {i1, . . . , ip} refers to a flag Γi1 ( · · · ( Γip ( Γ of core subgraphs. More
generally

(8.18) m(τI) =
∑

J⊃I

(−1)q−pτJ .

Here J = {j1, . . . , jq} ⊃ I. to verify (8.18), consider e.g. the case corresponding to Γ1 ( Γ. We have
seen (lemma 3.3) that the blowup of P(Γ) along the linear space defined by the edge variables associated to
edges of Γ1 yields as exceptional divisor E1

∼= P(Γ1) × P(Γ//Γ1). In fact, the strict transform of E1 in the
full blowup P (Γ) can be identified with P (Γ1) × P (Γ//Γ1). To see this, note that by proposition 3.4, the
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intersection in P (Γ) of distinct exceptional divisors E1 ∩· · ·∩Ep is non-empty if and only if after reordering,
the corresponding core subgraphs of Γ form a flag. This means, for example, that E1 ∩EI 6= ∅ if and only if
the flag corresponding to I has a subflag of core subgraphs contained in Γ1, and the remaining core subgraphs
form a flag containing Γ1. In this way, we blow up appropriate linear spaces in P(Γ1) and in P(Γ/Γ1). the
result is P (Γ1)× P (Γ//Γ1) ⊂ P (Γ). The chain τ1 is an S1-bundle over the chain σP(Γ1) × σP(Γ//Γ1) (slightly
modified along the boundaries as above), and the monodromy map is the product of the monodromies on
each factor. (The monodromy takes place on P (Γ1) × P (Γ//Γ1). In the end, one takes the S1-bundle over
m(σP(Γ1)×σP(Γ//Γ1)).) But this yields exactly (8.18). The result for a generalm(τI) is precisely analogous. To
compute N , suppose Γ has exactly k core subgraphs Γ′ ( Γ. (This means that P (Γ) will have k exceptional
divisors Ei.) Consider the commutative ring

(8.19) R := Q[x1, . . . , xk]/(x
2
1, . . . , x

2
k,M1, . . . ,Mr),

where we think of the xi as corresponding to exceptional divisors Ei on P (Γ), and the Mj are monomials
corresponding to empty intersections of the Ei. The notation means that we factor the polynomial ring
in the xi by the ideal generated by the indicated elements. We may if we like drop the Mj from the
ideal. This will simply mean the column vector on which N acts will have many entries equal to 0. As
a vector space, we can identify R with the free vector space on σ1 and the τI by mapping σ1 7→ 1 and
τI 7→

∏
i∈I xi. With this identification, the monodromy map m is given (compare (8.18)) by multiplication

by (1−x1)(1−x2) · · · (1−xk). But the map R→ Endvec. sp.(R) given by multiplication is a homomorphism
of rings, so log(m) is given by (note x2

i = 0)

(8.20) log
(
(1− x1) · · · (1 − xk)

)
= −

∑
xi.

Thus N is the matrix for the map given by multiplication by −
∑
xi. If we ignore the relations Mj and

just write the matrix for the action on Q[x1, . . . , xk]/(x
2
1, . . . , x

2
k), it has size 2k × 2k and is strictly upper

triangular. For k = 3, the matrix is −N (3) (8.11).

9. Renormalization: the removal of log-poles

Recall we have defined sdd(Γ), the degree of superficial divergence of a graph with respect to a given
physical theory, (2.2). The choice of the theory determines a differential form ωΓ associated to Γ. We will
be interested in the logarithmic divergent case, when sdd(Γ) ≥ 0, but ωΓ has been chosen such that it only
has log-poles, see in particular section 7.4. The affine integral in this case will be overall logarithmically
divergent, but this overall divergence can be eliminated by passing to the associated projective integral. If,
for all core subgraphs Γ′ ⊂ Γ, we have sdd(Γ′) < 0, then the projective integral actually converges and we
are done. If Γ′ > 0 for some subgraph, then one is obliged to manipulate the differential form as described in
section 7 above. To simplify notation, from now on we assume that all graphs and subgraphs have sdd ≤ 0,
while all following lemmas hold similarly for higher degrees of divergence with the appropriate choice of ωII .
Below, we spell all results out for the case ωII = Ω2n−1/ψ

2
Γ, and we set ψΓ ≡ ψ(Γ).

Lemma 9.1. Let Γ′ ( Γ be core graphs and assume sdd(Γ) = 0. Let L ⊂ XΓ ⊂ P(Γ) be the coordinate
linear space defined by the edges occurring in Γ′. Let π : PL → P(Γ) be the blowup of L. Then π∗ωΓ has a
logarithmic pole on E if and only if sdd(Γ′) = 0. Similarly, the pullback of ωΓ to the full core blowup P (Γ)
(cf. formula (3.3)) has a log pole of order along the exceptional divisor EΓ′ associated to Γ′ if and only if
sdd(Γ′) = 0.

Proof. We give the proof for φ4-theory. Let the loop number |Γ| = m so the graph has 2m edges (2.2). Let

(9.1) Ω2m−1 =
∑

(−1)iAidA1 ∧ · · · ∧ d̂Ai ∧ · · · ∧ dA2m = A2m
2md(A1/A2m) ∧ · · · ∧ d(A2m−1/A2m).

Then

(9.2) ωΓ =
Ω2m−1

ψ2
Γ

.

Suppose L : A1 = · · · = Ap = 0. We can write the graph polynomial ([2], prop. 3.5)

(9.3) ψΓ = ψΓ′(A1, . . . , Ap)ψΓ//Γ′(Ap+1, . . . , A2m) +R
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where the degree of R in A1, . . . , Ap is strictly greater than degψΓ′ = |Γ′|. Let ai = Ai/A2m, and let
bi = ai/ap, i < p. Locally on P we can take b1, . . . , bp−1, ap, ap+1, . . . , A2m as local coordinates and write

(9.4) ωΓ = ±ap−2|Γ′|
p

dap
ap
∧
db1 ∧ · · · ∧ da2m−1

F 2
.

Here F is some polynomial in the ai’s and the bj’s which is not divisible by ap. The assertion for the blowup
of L follows immediately. The assertion for P (Γ) is also clear because we can find a non-empty open set on
P(Γ) meeting L such that the inverse images in P (Γ) and in PL are isomorphic. �

We want to state the basic renormalization result coming out of our monodromy method. For this, we
restrict to the case

(9.5) sdd(Γ′) ≤ 2, ∀Γ′ ⊆ Γ,

with an understanding that appropriate forms ωII(Γ
′) have been chosen so that the differential forms has

log-poles only. The following lemma applies then to φ4-theory. A physicist wishing to apply our results to
another theory needs only check the lemma holds with ωΓ replaced by the integrand given by Feynman rules.

Lemma 9.2. Let τεV be the chains on P(Γ) constructed above (section 4) (including the case τεP (Γ) = σε).

Then, assuming (9.5), we will have

(9.6)
∣∣∣
∫

τεV

ωΓ

∣∣∣ = O(| log |ε||k), |ε| → 0

for some k ≥ 0.

Proof. We first consider the integral for the chain σε = τεP (Γ). Locally on the blowup P (Γ) the integrand will

look like (9.4) but there may be more than one log form; i.e. ω̃dap1/ap1 ∧· · ·∧dapk/apk . An easy estimate for
such an integral over a compact chain satisfying aj ≥ ε gives C(| log ε|)k. The integrals over τεV , V ( P (Γ)
involve first integrating over one or more circles. Locally the chain is an (S1)p-bundle over an intersection
x1 = · · · = xp = 0 in local coordinates. We may compute the integral by first taking residues. V will be the
closure of a torus orbit in P (Γ) associated to a flag Γp ( · · · ( Γ1 ( Γ (proposition 3.4). We may assume
xi is a local equation for the exceptional divisor in P (Γ) associated to Γi ⊂ Γ. By lemma 9.1, our integrand
will have a pole on xi = 0 if and only if sdd(Γi) = 0. (Note that the integrand has no singularities on τεV ,
so we may integrate in any order.) The situation is confusing because sdd(Γi) < 0 ⇒ sdd(Γ//Γi) > 0 so
one might expect non-log growth in this case. The problem does not arise, because the residue will vanish.
Assuming sdd(Γi) = 0, ∀i, the residue integral is

(9.7)

∫
∏
j τ

ε
P(Γj//Γj+1)

ωΓp ∧ · · · ∧ ωΓ//Γ1
.

Since sdd(Γi//Γi+1) = 0, we may simply write (9.7) as a product of integrals and argue as above. �

We want now to apply the argument sketched in the introduction to our situation. There is one mathe-
matical point which must be dealt with first. We want to consider

∫
σt
ωΓ as a function of t. Here we must

be a bit careful. For t = εeiθ and |θ| << 1 we are ok, but as θ grows, our chain may meet XΓ. Topologically,
we have (proposition 6.3) the chains c̃η,ε,θ which miss XΓ and which represent the correct homology class in
H∗(P(Γ)−XΓ,∆t−XΓ∩∆t), but one must show our integral depends only on the class in homology relative
to ∆t, i.e. ωΓ integrates to zero over any chain on ∆t−XΓ ∩∆t. Intuitively, this is because ωΓ|∆t = 0, but,
because ∆t has singularities it is best to be more precise. Quite generally, assume U is a smooth variety of
dimension r, and D ⊂ U is a normal crossings divisor (i.e. for any point u ∈ U there exist local coordinates
x1, . . . , xr near u, and p ≤ r such that D : x1x2 · · ·xp = 0 near u). One has sheaves

(9.8) ΩqU (logD)(−D) ⊂ ΩqU ⊂ ΩqU (logD)

where ΩqU is the sheaf of algebraic (or complex analytic; in fact, either will work here) q-forms on X ,
and ΩqU (logD) is obtained by adjoining locally wedges of differential forms dxi/xi, 1 ≤ i ≤ p. Locally,
ΩqU (logD)(−D) := x1x2 · · ·xpΩ

q
U (logD). All three sheaves are easily seen to be stable under exterior
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differential (for varying q). The resulting complexes calculate the de Rham cohomology for (U,D), U, (U−D)
respectively, [7]. Note that in the top degree r = dimU we have

(9.9) ΩrU (logD)(−D) = OU · x1x2 · · ·xp
dx1 ∧ · · · ∧ dxp
x1x2 · · ·xp

dxp+1 ∧ · · · ∧ dxr = ΩrU .

It follows that we get a maps

(9.10) ΩrU [−r]→ Ω∗
U (logD)(−D); Γ(U,ΩrU )→ Hr

DR(U,D).

In particular, taking U = P(Γ)−XΓ, we see that integrals
∫
ch.rel.∆t

ωΓ are well-defined.

Theorem 9.3. We suppose given a graph Γ such that all core subgraphs Γ′ ⊆ Γ have superficial divergence
sdd(Γ′) ≤ 0 for a given physical theory. Let ωΓ be the form associated to the given theory. Let N be the
upper-triangular matrix of size K ×K described in the previous section, where K is the number of chains of
core subgraphs

Γp ( · · · ( Γ.

Then the lefthand side of the expression below is single-valued and analytic for t in a disk about 0 so the
limit

(9.11) lim
|t|→0

exp(−N
log t

2πi
)




∫
τ t
P(Γ)

ωΓ

...∫
τ tV
ωΓ

...




=



a1

...
ak




exists.

Proof. The proof proceeds as outlined in section 1.3. N is chosen to be nilpotent and such that the lefthand
side has no monodromy. The lemma 9.2 assures that terms have at worst log growth. Since they are
single-valued on D∗, they extend to the origin. �

Remark 9.4. It is time to compare what we are calculating here with what a physicist computes according
to Thm.(7.3). The transition is understood upon noticing that in our constructions of chains, we pick up the
residue from each exceptional divisor by computing the monodromy. In physics we iterate those residues as
iterated integrals. Below the top entry a1 this gives different rational weights to them in according with the
scattering type formula of [6]. We discuss this below in section (9.1).

Definition 9.5. With notation as above, the renormalized value
∫
σ ωΓ is the top entry in the column vector

exp(+N log t
2πi )

(
a1

...

)
.

Remark 9.6. Note that the terms
∫
τ tV
ωΓ on the lefthand side of (9.11) may be calculated recursively. As

in lemma 9.2 above, V corresponds to a flag of core subgraphs of Γ. As in formula (9.7), the integral dies
unless all the Γi//Γi+1 are log divergent. In this case, one gets

(9.12) (2πi)p−1
∏∫

τ t
P(Γi//Γi+1)

ωΓi//Γi+1
.

If, in addition, the subquotients Γi//Γi+1 are primitive, i.e. they are log divergent but have no divergent
subgraphs, then the integrals in (9.12) will converge as |t| → 0. Upto a term which is O(t) and can be
ignored in the limit, they may be replaced by their limits as t → 0. These entries in (9.11) may then be
taken to be constant.

Example 9.7. Consider the dunce’s cap fig.(2). It has 3 core subgraphs, but only the 2-edged graph γ with
edges 1, 2 is log divergent. Thus, the column vector in (9.11) has 4 entries, but only 2 are non-zero. Dropping

unnecessary rows and columns, the matrix N =

(
0 −1
0 0

)
. The constant entry in the column vector is

(9.13) 2πi

∫

σγ

Ω1

ψ2
γ

∫

σΓ//γ

Ω1

ψ2
Γ//γ

= 2πi
(∫ ∞

0

da

(a+ 1)2

)2

= 2πi.
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It remains to connect
∫
σ
ωΓ to the physicists computation.

9.1. lMHS vs ΦR. Let us understand how the period matrix pT = (a1, a2, · · · , ar) which we have con-
structed connects to the coefficients cj

(9.14) ΦMOM(Γ)(q2/µ2) =

r∑

j=1

cj(Γ) lnj q2/µ2.

Going to variables

tΓ, a1, . . . , a|Γ[1]|,
∑

ai = 1,

t1, b1, . . . , b|Γ1
[1]|,
∑

bi = 1,

. . . ,

tp, z1, . . . , b|Γp[1]|,
∑

zi = 1,

for a chain of core graphs Γp ( · · · ( Γ1 ( Γ gives, for each such flag and constant lower boundaries ǫ, an
iterated integral over

(9.15)

∫ ∞

ǫ

dt

∫ ∞

ǫ/t

dt1 · · ·

∫ ∞

ǫ/t/t1···/tp−1

dtp.

As the integral has a logarithmic pole along any ti integration, the difference between integrating against the
chains, which only collect the coefficients of ln ǫ for each such integral, and the iteration above is a factorial
for each flag. A summation over all flags established the desired relation using tree factorials [14]:
As the entries in the vector (a1, · · · )T are in one-to-one correspondence with forests of Γ, identifying a1 with
the empty forest, we can write the top-entry defined in Defn.(9.5) as

(9.16)
∑

[for]

(
ln t

2πi

)|[for]|

a[for],

where

(9.17) a[for] = p1(Γ//[for])
∏

j

p1(γj),

using the notation of Eqs.(7.14,7.62). Then,

(9.18) ∂ln tΦMOM(Γ)(t) =
∑

[for]

aug(Γ)

(
ln t

[for]
∗
!

)|[for]|

a[for].

Here, [for]∗! is a forest factorial defined as follows. Any forest [for] defines a tree T and a collection of edges
C such that PC(T ) and RC(T ) denote the core sub- and co-graphs in question. The complement set T [1]/C
defines a forest ∪iti say. We set [for]

∗
! =

∏
i ti!, for standard tree factorials ti! [14]. For example, comparing

the two graphs

(9.19) Γ1 = , Γ2 = ,

we have the two vectors

(9.20)




p1

( )

p1

( )
p1

( )

p1

( )
p1

( )

p1

( )
p1

( )
p1

( )



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and

(9.21)




p1

( )

p1

( )
p1

( )

p1

( )
p1

( )

p1

( )
p1

( )
p1

( )




.

Hence, we find the same ln2 t term upon computing Eq.(9.16) for the monodromy.
On the other hand, the tree factorials deliver 1/2 for that term in the case of Γ1, and 1 for Γ2, while we

get 2 in both cases for the term ∼ ln t. Indeed, the flag

(9.22) ( (

corresponds to a tree with two edges. The term ∼ ln2 t comes from the cut C which corresponds to both of
these edges. The complement is the empty cut, whose tree factorial is 3! simply. As we took a derivative
with respect to ln t, we get a factor of aug(Γ) = 3, which leaves us with a factor 3/3! = 1/2.

For , we note that the tree factorial is 3 instead of 3! (we have two flags instead of one), which

leaves us with a factor 1.

9.2. Limiting Mixed Hodge Structures. In this final paragraph at the suggestion of the referee we
outline the structure of a limiting mixed Hodge structure associated to a variation of mixed Hodge structure
and how it might apply to the Feynman graph amplitudes.

Let Γ be a log divergent graph with n loops and 2n edges. The graph hypersurface XΓ : ψΓ = 0 is a
hypersurface in P2n−1, and the Feynman integrand represents a cohomology class

(9.23)
[ Ω

ψ2
Γ

]
∈ H2n−1(P2n−1 −XΓ,C) = H2n−1(P2n−1 −XΓ,Q)⊗ C = HC = HQ ⊗ C.

The cohomology group has a mixed Hodge structure, which means there are defined two filtrations:
(i) The weight filtration W∗HQ which is defined over Q and increasing. It looks like

(9.24) 0 ⊂W2nHQ ⊂W2n+1HQ ⊂ · · · ⊂W4n−2HQ = HQ.

Blowing up on XΓ so it becomes a normal crossings divisor D∗, there is a spectral sequence relating the
graded pieces W2n−1+i/W2n−1+i−1 to the Tate twist by −i of the cohomology in degree 2n − 1 − i of the
codimension i− 1 strata of D. (So, for example, grW2n is related to ⊕jH2n−2(Dj)(−1) where D =

⋃
Dj .)

(ii) The Hodge filtration F ∗HC which is defined over C and decreasing:

(9.25) (0) ⊂ F 2n−1 ⊂ F 2n−2 ⊂ · · · ⊂ F 1 = HC.

The filtrations are subject to the compatibility condition that the filtration

(9.26) F p(grWq ⊗ C) := F pHC ∩Wq ⊗ C
/
F pHC ∩Wq−1 ⊗ C

is the Hodge filtration of a pure Hodge structure of weight q. (This is simply the condition that F ∗grWq ⊗C

be q-opposite to its complex conjugate, i.e. that grWq ⊗ C = F p ⊕ F
q−p+1

for any p.)

Let us say that a class ω ∈ HC has Hodge level p if ω ∈ F pHC − F p+1HC. An important problem is
to determine the Hodge level of the Feynman form (9.23). One may speculate that the Hodge level of the
Feynman form equals the transcendental weight of the period. (The transcendental weight of a multizeta
number ζ(n1, . . . , np) is the sum of the ni.) For example, in [4] one finds many examples of Feynman
amplitudes of the form ∗ζ(N) where * is rational. In all known cases N = 2n − 3. To estimate the Hodge
level, one may use the pole order filtration [7], 3.12. One blows up on XΓ ⊂ P2n−1 to replace X by a normal
crossings divisor D =

⋃r
i=1Di. Let ω on P2n−1−XΓ be a (2n−1)-form and let I ⊂ {1, . . . , r} be the indices

i such that ω has a pole along Di. Write pi + 1 for the order of this pole, with pi ≥ 0. Then the Hodge level
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of ω is ≥ 2n − 1 −
∑
pi. (For a more precise statement, see op. cit.) For example, if XΓ is smooth (this

happens only when n = 1) one would get p1 = 1 so the Hodge level would be ≥ 2n− 2.

Proposition 9.8. For the Feynman form, at least 2 of the pi ≥ 1. The pole order calculation thus suggests
the Hodge level of the Feynman form above is ≤ 2n− 3.

Proof. The situation for n = 1 is trivial, so we assume n ≥ 2. The space of symmetric n × n-matrices has

dimension d := n(n+1)
2 . Let Pd−1 be viewed as the projectivized space of such matrices, so a point corresponds

to a matrix upto scale. The determinant of the universal matrix defines a hypersurface X ⊂ Pd−1. More
generally, we define Xp ⊂ Pd−1 to be the locus where the rank of the corresponding symmetric matrix is

≤ n− p. We have X = X1, and it is easy to see that Xp has codimension p(p+1)
2 in Pd−1. Points in Xp will

have multiplicity ≥ p on X .
There is an inclusion ρ : P2n−1 →֒ Pd−1 such that XΓ = X ∩ P2n−1. Points of X2 ∩ P2n−1 will have

multiplicity ≥ 2 in XΓ and codimension ≤ 3 in P2n−1 . This means that in the local ring on P2n−1 at a
general point of X2 ∩ P2n−1, there will be functions x1, x2, x3 which form part of a system of coordinates
on P2n−1 such that a local defining equation ψ for XΓ lies in (x1, x2, x3)

2. We may construct our normal
crossings divisor D as above by first blowing up X2 ∩ P2n−1 in P2n−1. Subsequent blowups will not affect
the pole order, which may be computed at the generic point of the exceptional divisor E. We have

(9.27)
dx1dx2dx3 · · ·

ψ2
=
x2

1dx1d(x2/x1)d(x3/x1) · · ·

x4
1φ(x1, x2/x1, x3/x1, . . .)

.

It follows that the Feynman form has a double pole on E as well as a double pole on the strict transform of
XΓ in the blowup. �

Remark 9.9. (i) To give a complete proof that the Hodge level is ≤ 2n − 3 one would have to show the
double order pole was not killed by an exact form.
(ii) It would be exciting to be able to say something about the weight filtration on H2n−1(P2n−1 −XΓ).
(iii) The data in [4] suggests that double zetas which occur will have transcendental weight 2n − 4. For
example, the bipartite graph Γ consisting of the 12 edges joining sets of 3 and 4 vertices has Feynman
amplitude a rational multiple of ζ(3, 5). In general, a calculation as above shows X3 ∩P2n−1 has multiplicity
≥ 3 and codimension ≤ 6. If one could show that for the bipartite Γ that this codimension drops to 5, then
the same argument as above would yield 3 poles with pi ≥ 1, suggesting a Hodge level 2n− 4.

Next we should consider the mixed Hodge structure necessary for the relative period calculation. Recall
(3.3) we work in a toric blowup P = P (Γ)→ P2n−1. Let B ⊂ P be the complement of the big toric orbit in
P . It is the union of the strict transform of the coordinate divisor ∆ ⊂ P2n−1 and the exceptional divisors.
Let Y ⊂ P be the strict transform of XΓ. The relevant cohomology group is the middle group in the sequence

(9.28) H2n−2(B − Y ∩B; Q)→ H2n−1(P − Y,B − Y ∩B; Q)→ H2n−1(P − Y,Q).

If all the subgraphs Γ′ ( Γ have sdd(Γ′) < 0, then renormalization is unnecessary. The Feynman amplitude
as we have defined it is simply a period of the mixed Hodge structure (9.28). The weight filtration for the
group on the left involves the cohomology of the strata of the normal crossings divisor B. For example, we
have an exact sequence

(9.29) H0(B(1) − Y ∩B(1),Q)→ H0(B(0) − Y ∩B(0),Q)→W0H
2n−2(B − Y ∩B(0),Q).

Here we write B(i) for the disjoint union of the components of the strata of dimension i. We know from
corollary 5.3 that Y ∩ B(0) = ∅, and a bit of thought about the combinatorics of B(i), i = 0, 1 reveals that

W0H
2n−2(B−Y ∩B,Q) = Q(0). This gives a map of the trivial Hodge structure Q(0) to our period motive:

(9.30) Q(0)→ H2n−1(P − Y,B − Y ∩B; Q).

When the period is a rational multiple of ζ(2n − 3) we expect that there is a map of Hodge structures
Q(3− 2n)→ H2n−1(P2n−1 −XΓ,Q) and that the extension of Q(3− 2n) by Q(0) associated to ζ(2n− 3) is
a subquotient of (9.28).

Finally the main focus of this paper has been the renormalization case when one or more proper subgraphs
of Γ has sdd = 0. In this case, the Feynman form will have a pole along one or more divisor in B, so (9.28)
is no longer the relevant Hodge structure. In this case, we work with the limiting mixed Hodge structure
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Hlim associated to Ht := H2n−1(P2n−1 − XΓ,∆t − ∆t ∩ XΓ). Let D be a small disk around t = 0, and
let D∗ = D − {0}. Then HD∗ =

⋃
t6=0Ht becomes a local system on D∗. Let HD∗ = HD∗ ⊗ OD∗ be the

corresponding analytic bundle. If we untwist by the monodromy, we get a trivial local system (h = dimHt)

(9.31) ChD∗
∼= exp(−N log t)HD∗ ⊂ HD∗ .

Since this local system is trivial, it extends (trivially) across t = 0. It also has a canonical Q-structure
defined from the Q-structure at any point t0 6= 0. The analytic bundle HD∗ has a Hodge filtration F ∗HD∗

coming from the Hodge filtrations on the Ht. (Note the Hodge filtration is not horizontal, so there is no
Hodge filtration on the local system HD∗ .) From (9.31) we get a canonical trivialization of the analytic
bundle HD∗ ∼= OhD∗ and hence a canonical extension across t = 0. One can show [5], 2.1(i) that the Hodge
filtration extends across t = 0 as well.

Thus, on the fibre H0 we have a Hodge filtration and a Q-structure. If you think in terms of periods,
i.e. using the pairing H∨

0,Q ×H0 → C, the above description of the Hodge filtration as a limit across t = 0

coincides with the computation (9.11). What we have not given is the weight filtration. This monodromy
weight or limiting weight filtration is more subtle, essentially being determined by the endomorphism N
together with the given weight filtrations on the fibres Ht. We hope that the computation of N in this
paper will help to understand this structure, but at the moment the weight structures on the Ht are not
well enough understood to say more. For the general theory, the interested reader is referred to [5] and the
references cited there.
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