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Abstract
The rigidity of a matrix A for target rank r is the minimum number of entries of A that need to be
changed in order to obtain a matrix of rank at most r (Valiant, 1977).

We study the dependence of rigidity on the target field. We consider especially two natural
regimes: when one is allowed to make changes only from the field of definition of the matrix (“strict
rigidity”), and when the changes are allowed to be in an arbitrary extension field (“absolute rigidity”).

We demonstrate, apparently for the first time, a separation between these two concepts. We
establish a gap of a factor of 3/2 − o(1) between strict and absolute rigidities.

The question seems especially timely because of recent results by Dvir and Liu (Theory of
Computing, 2020) where important families of matrices, previously expected to be rigid, are shown
not to be absolutely rigid, while their strict rigidity remains open. Our lower-bound method combines
elementary arguments from algebraic geometry with “untouched minors” arguments.

Finally, we point out that more families of long-time rigidity candidates fall as a consequence of
the results of Dvir and Liu. These include the incidence matrices of projective planes over finite
fields, proposed by Valiant as candidates for rigidity over F2.
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1 Introduction

1.1 Matrix rigidity. Dependence on the field
Matrix rigidity was introduced by Leslie Valiant in his seminal paper [16] as a tool to prove
lower bounds on the complexity of linear arithmetic circuits (where each gate computes a
linear combination of its inputs). Such circuits compute linear functions x 7→ Ax for some
matrix A. Razborov [12] linked the rigidity concept to separating the polynomial hierarchy
in communication complexity.

▶ Definition 1 (Matrix rigidity). Let L/K be a field extension (K is a subfield of L) and
let A ∈ Kn×m. Denote by RL(A, r) the minimum number of non-zero entries in a matrix
Z ∈ Ln×m for which A+ Z has rank at most r. The function RL(A, ·) is called the matrix
rigidity function of A over L.

The definition of rigidity depends on a pair of fields: K, the field in which the matrix
lives, and the extension field L ⊇ K, over which the changes to A are to be made. There are
two natural regimes in which we especially propose to study matrix rigidity.
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41:2 Matrix Rigidity Depends on the Target Field

We say that K is the field of definition of a matrix A ∈ Fn×m (where F is a field) if K is
the smallest subfield of F containing all elements of A.

▶ Definition 2 (Strict rigidity). Let K denote the field of definition of the matrix A. We call
the function RK(A, ·) the strict rigidity function of A.

▶ Definition 3 (Absolute rigidity). We define the absolute rigidity of A as

R∗(A, r) = min
L
RL(A, r),

where the minimum ranges over all extension fields L of the field of definition of A.

The main result of this paper shows, apparently for the first time, that the notions of
strict and absolute rigidity are indeed different. We establish a gap of a factor of 3/2 − o(1)
between these quantities.

The degree of a field extension L/K is the dimension of L over K. Extensions of degree 2
are called quadratic extensions.

▶ Theorem 4. Let K be a field of characteristic zero and let L be a quadratic extension
of K. For every r there exists a 2r × 2r matrix Ar over K such that RL(Ar, r) ≤ 2r while
RK(Ar, r) ≥ 3r − 2.

Note that the second bound requires a lower-bound technique for rigidity.
We expect much larger gaps; indeed, larger gaps will be needed to show the depedence of

Valiant-rigidity on the field (see below).
We also point out that for any matrix A over a field K we have R∗(A, r) = RK(A, r),

where K denotes the algebraic closure of K (Sec. 4). In other words, for every matrix A,
absolute rigidity can be achieved over a finite extension of the field of definition of A (see
Cor. 55). However, effective bounds on the degree of this extension remain an open question.

A similar result holds for linear arithmetic circuits (Prop. 56).

1.2 Valiant-rigidity, non-rigidity results
While the distinction between strict and absolute rigidity seems natural and we find it
somewhat surprising that apparently it has not previously been addressed, unexpected recent
non-rigidity results give particular timeliness to this question.

To discuss these results, we need some asymptotic terminology.
We say that the order of an n×n matrix is n. We use the term “family of square matrices”

to mean a set of square matrices of unbounded order.

▶ Definition 5 (Valiant-rigid). Let F be a family of square matrices. For A ∈ F , let K(A)
denote the field of definition of A, and let L(A) be an extension field of K(A). We say that the
family F is Valiant-rigid over the extension fields L(A) if there exists ϵ > 0 such that for every
function r(n) = O(n/ log logn), for all matrices A in the family, RL(A)(A, r(nA)) = Ω(n1+ϵ

A ),
where nA denotes the order of A.

It seems the term “Valiant-rigid” was introduced in [3] (but their definition did not consider
the effect of the field).

The terms “strictly” and “absolutely” Valiant-rigid should now be self-explanatory.
For one of the families, long believed to be rigid, the family of Walsh–Hadamard matrices,

Alman and Williams [2] proved that it is in fact not strictly Valiant-rigid.
Recently, Dvir and Liu [4] proved that no family of Discrete Fourier Transform (DFT)

matrices for abelian groups G and no family of G-circulant matrices (see Def. 57) is absolutely
Valiant-rigid. However, strict Valiant-rigidity of these families remains an open problem.
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Note that the Walsh–Hadamard matrices are the DFT matrices for elementary abelian
2-groups, yet the Dvir–Liu result does not fully reproduce the Alman–Williams result for
these matrices precisely because of the target field: while Dvir and Liu prove that these
matrices are not absolutely Valiant-rigid, Alman and Williams proved the stronger result
that these matrices are not strictly rigid.

In Section 5 we point out that the following families of long-time rigidity candidates also
fall as a consequence of the results of Dvir and Liu.

1. No family of Paley–Hadamard matrices is absolutely Valiant-rigid. (Note: The orders of
these Hadamard matrices are exponentially denser than the orders of the Walsh–Hadamard
matrices, shown not to be strictly Valiant-rigid by Alman and Williams [2].)

2. No family of point–hyperplane incidence matrices of Galois geometries (projective geo-
metries over finite fields) is strictly Valiant-rigid over any fixed finite field. (Note: The
incidence matrices of finite projective planes were proposed by Valiant [16] as candidates
for rigidity over F2.)

3. No family of point–hyperplane incidence matrices of Galois geometries is absolutely
Valiant-rigid in characteristic zero.

4. No family of Vandermonde matrices whose generators form a geometric progression is
absolutely Valiant-rigid.

We should remind the reader that absolute rigidity is a stronger property than strict
rigidity; and therefore the statement that a matrix is “not strictly rigid” is stronger than the
statement that it is “not absolutely rigid.”

We mention that Samorodnitsky et al. [13] proved rigidity lower bounds for the point-
hyperplane incidence matrices of Galois geometries (projective spaces over finite fields),
conditional on their conjecture that the set of normalized {0, 1}-vectors arising from an arbit-
rary low-dimensional subspace of Fn

2 admits non-trivial approximation by a low-dimensional
Euclidean space. They show that if their conjecture is true, then there exists δ > 0, such
that RF2(Vd, n

(2/d)+δ) ≥ n1−2/d, where Vd is the n× n point–hyperplane incidence matrix of
the d-dimensional Galois geometry PG(d, q). Our results do not refute their conjecture, as
we prove upper bounds for the target rank of an order n · exp(−(logn)c), while [13] aims at
a much smaller target rank, n(2/d)+δ.

1.3 Implications to complexity theory

This line of work may lead to peculiar consequences in complexity theory. Gaps between
strict and absolute rigidity raise the prospect that rational linear functions may be easier to
compute by arithmetic circuits over larger fields than over Q.

▶ Problem 6. Does there exist a family of square matrices A over Q such that the linear
functions x 7→ Ax can be computed by logarithmic-depth, linear-size circuits over C but not
over Q ?

While C can be replaced by a finite extension of Q without changing the topology of
the circuit (Prop. 56), a field extension of bounded degree will not create a gap in circuit
complexity. Indeed, if the degree of the extension L/K is k then operations in L can be
simulated by operations on vectors of length k over K. So our belief that strong separation
of rigidity may exist already for quadratic extensions (Conj. 9), if true, will not help.

CCC 2021
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1.4 Our construction

We make the following “standard assumption.”

(∗) Let K be a field of characteristic zero and let L/K be a quadratic extension.

We prove that under this assumption, the rigidity with respect to K in general does not
equal the rigidity with respect to L. In order to show this, for some A ∈ Kn×n and r, k ≥ 1
one needs to establish both an upper bound and a lower bound,

(UB) RL(A, r) ≤ k (LB) RK(A, r) > k.

It is clear that for all A ∈ Kn×n, the inequality RK(A, r) ≤ (n− r)2 is satisfied. In [16],
Valiant showed that for an infinite field K, almost all matrices A ∈ Kn×n have maximal
possible absolute rigidity R∗(A, r) = (n− r)2. In particular, this means that we should not
expect (UB) to hold, unless A is selected in some special way.

We take the following approach. In order to automatically satisfy (UB) we start with
a matrix M ∈ Ln×n of rank r that has at most k entries not in K. Then every matrix A,
obtained from M by replacing these entries with elements from K, satisfies (UB). Hence,
we only need to show that for a proper choice of M and for a proper choice of changes for
elements not in K, A satisfies (LB).

By our standard assumption (∗), we can write L = K[ω] for some ω ∈ L with ω2 ∈ K.
We focus on the following (algebraic) sets of matrices:

Dr(K, ω) = {M ∈ K2r×2r | rank(M + ωI) ≤ r}, (1)

Cr(K, ω) = {M +D ∈ K2r×2r | M ∈ Dr(K, ω), D ∈ K2r×2r is diagonal}. (2)

By definition, for every A ∈ Cr(K, ω), RL(A, r) ≤ 2r. Our main result is the following.

▶ Theorem 7. Let r ≥ 3. There exists a matrix A ∈ Cr(K, ω) with RK(A, r) ≥ 3r − 2.

As an immediate corollary, we establish the promised gap between the strict and the
absolute rigidities.

▶ Theorem 8. Let K and L satisfy the standard assumption (∗). Then, for every ε > 0
and all sufficiently large r there exists a square matrix M ∈ K2r×2r satisfying RK(M, r) ≥
(3/2 − ε)RL(M, r).

We conjecture that much larger separation is possible.

▶ Conjecture 9. Let L = Q[
√

2]. There exist ε > 0 and matrices M of arbitrarily large order
n = 2r such that RQ(M, r) ≥ n1+ε, while RL(M, r) ≤ O(n).

In particular, we expect that such matrices M can be found in Cr(Q,
√

2).
We also ask whether the maximum possible rigidity can be achieved for matrices in Cr.

▶ Problem 10. Is it true that for infinitely many r there exists a matrix A ∈ Cr(Q,
√

2) with
RQ(A, r) = r2?
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1.5 Known lower bounds on rigidity: untouched minors
Despite decades of effort, progress on proving lower bounds on rigidity for explicit families of
matrices has been limited. The best known general lower bound for a family of explicit n×n

matrices A has the form R∗(A, r) = Ω((n2/r) log(n/r)) [5, 14]. This lower bound is achieved
through the “untouched minors argument”: If all (r + 1) × (r + 1) minors of a matrix A

are non-singular, then to reduce the rank of A to r, one needs to change at least one entry
in every such minor. However, as discussed in [10], that is the best bound one can achieve
through this argument.

For some semi-explicit families of matrices, stronger lower bounds are known. For n× n

matrices whose entries are square roots of distinct prime numbers, Lokam [11] gives optimal,
Ω(n2) absolute rigidity for rank r ≤ n/17. This result uses an algebraic dimension concept
introduced by Shoup and Smolensky [15].

In the domain of reduced randomness, Goldreich and Tal [6] show that for random n× n

Toepliz matrices A over F2 the bound RF2(A, r) = Ω(n3/(r2 logn)) holds for r ≥
√
n.

1.6 Key steps of the proof of Theorem 7. Organization of the paper
First, observe that untouched minors arguments alone cannot answer our question; they
do not distinguish between entries from K and L. In order to prove the lower bound in
Theorem 7 we use a combination of the untouched minors argument and arguments based
on elements of algebraic geometry about the structure of Dr(K, ω).

We begin by noticing that for almost all matrices A ∈ Cr(K, ω), all (r + 1) × (r + 1)
minors are non-singular (Lemma 32). So, an untouched minors argument can be used to
show that if RK(A, r) ≤ 3r − 3, then the entries that are being changed have a “nice” layout
inside [2r] × [2r]. More precisely, we argue that then there are (r + 2) columns with at most
1 element changed in each of them (see Section 3.1).

Next, assume that for some M ∈ Dr(K, ω) and every diagonal matrix D we have
RK(M + D, r) ≤ 3r − 3. We can argue that since there are only finitely many choices for
3r − 3 entries in [2r] × [2r], there should be a fixed set π of 3r − 3 cells in [2r] × [2r], such
that for a “large” set of diagonal matrices D, the rank of M +D can be made ≤ r by only
changing entries inside π (see Section 3.2).

Finally, we exploit the geometry of the set Dr = Dr(K, ω) to show that for almost all
matrices M ∈ Dr no such fixed π exists. In order to do this, we show that among 2r2 entries
in arbitrary r columns of M ∈ Dr there is no algebraic dependence imposed by Dr (see
Section 2). Next, we consider a properly chosen set of r + 2 columns with at most one entry
from π in each of them, and exploit the fact that we have sufficiently many algebraic degrees
of freedom for the entries in these columns so that changing entries in π typically is not
sufficient to make the rank of these columns to be r (see Sections 3.3 - 3.5). This last step is
the hardest part of the proof and requires us to consider several cases.

We present the parts of the proof in a slightly different order than described above. The
geometry of the set Dr is studied in Section 2. Other parts of the proof are contained in
Section 3. We combine these parts into a complete proof of Theorem 7 in Section 3.5.

In Section 4 we show that finite extensions suffice for absolute rigidity. In Section 5 we
prove the refutation of rigidity candidates mentioned in Sec. 1.2.

We review some basic concepts from algebraic geometry over arbitrary fields in Appendix A.
The proofs omitted in Section 3.4 are provided in Appendix B. The model-theoretic reduction
to countable fields is outlined in Appendix C. In Appendix D we exhibit a concrete 5 × 5
matrix of strict rigidity 9 and absolute rigidity 8. Some open problems are raised in Sec. 1.7.

CCC 2021
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1.7 Open problems
The most intriguing question to come out of this work is Problem 6, the separation of the
linear arithmetic complexity of linear functions by the extension field permitted in the circuit.

Strong separation between strict and absolute rigidities is suggested in Conjecture 9.
For a matrix over a field K, absolute rigidity can be achieved over a finite extension of K

(Prop. 49). However, that result is not effective.

▶ Problem 11. Is there a computable function f that maps rational matrices to positive
integers, such that the absolute rigidity of any rational matrix A can be achieved over an
extension of Q of degree ≤ f(A) ? Can such an f be made a function of the dimensions of
the matrix A?

Recent non-rigidity results [2, 3, 4] inspire the following problems.
We remind the reader that by a family of square matrices we mean a set of square

matrices of unbounded order.
In our submission to this conference (Feb. 15, 2021) we proposed the following conjecture.

▶ Conjecture 12. Let F be a finite set of matrices over C. Let A denote the set of all
possible Kronecker products of these matrices (taking each member of F any number of
times). Then no subfamily of A is Valiant-rigid over C.

We stated that this would generalize the result that the DFT matrices for abelian groups of
bounded exponent are not absolutely Valiant rigid [2, 4].

On Feb. 24, 2021, a paper by Josh Alman appeared on arXiv [1] that raises the same
question and answers it in the positive in the case that all matrices in the family F
have the same order. This restriction was subsequently removed by one of us, confirming
Conjecture 12 [8]. That paper also exponentially improves Alman’s non-rigidity exponent.
Like Alman’s, our result establishes strict non-rigidity. We state the main result of [8].

▶ Theorem 13 (Kivva [8]). Given d ≥ 2 and ε > 0, there exists γ > 0 such that the following
holds for any sequence of matrices M1, . . . ,Mn of respective orders di ≤ d over the field F.
Let M = ⊗n

i=1Mi and N =
∏n

i=1 di. If N ≥ d1/γ then RF(M,N1−γ) ≤ N1+ϵ. Here γ can be

chosen to be γ = Ω
(

1
d3/2 log3(d)

· ε2

log2(1/ε)

)
.

The following problem remains open.

▶ Problem 14. Does there exist a strictly Valiant-rigid family of rational circulant matrices?

No such family is absolutely rigid by Dvir and Liu [4].

2 Basic properties of Dr

We continue to make our standard assumption (∗). Let L = K[ω] be a quadratic extension,
where ω2 ∈ K. F denotes an arbitrary infinite field (not necessarily of characteristic zero).

Additionally, we assume that L is a subfield of C. This assumption can be made without
loss of generality. Indeed, a simple model-theoretic argument shows that we can assume that
K is countable (Prop. 91). The proof of Prop. 91 can also be adapted to reducing Theorem 7
to countable fields.

Since K and ω are fixed, we use the notation Dr = Dr(K, ω) and Cr = Cr(K, ω). Recall
that these are algebraic sets in K2r × K2r.
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2.1 Matrices over L of low rank and with few entries outside K
We start by giving a short motivation for the family Dr. Recall the following elementary fact
from linear algebra.

▶ Fact 15. Let M ∈ Fn×n be a matrix of rank r. Let L ∈ Fn×r be a matrix consisting of r
linearly independent columns of M . Then there exists R ∈ Fr×n such that M = LR.

Let L ∈ K[ω]n×r and R ∈ K[ω]r×n. Denote the i-th row of L by ai + biω and j-th column
by xj + yjω, where ai, bi, xj , yj ∈ Kr.

▶ Definition 16. For x, y ∈ Kn define ⟨x, y⟩ =
n∑

i=1
xi · yi.

▶ Observation 17. (LR)ij ∈ K if and only if ⟨xj , bi⟩ + ⟨yj , ai⟩ = 0.

▶ Remark 18. For a field extension of degree k, a similar criterion consists of k − 1 linear
equations to be satisfied by components of R.

▶ Corollary 19. Take n = 2r. Then for every choice of 2r linearly independent vectors
(ai, bi) ∈ K2r there exists a unique choice of 2r vectors (xi, yi) such that LR is in Dr + ωI.

Note that if n ≥ 2r, and L is a generic n×r matrix, we should expect at least n(n−2r+1)
entries of LR to be from L \ K. At the same time, RK(LR, r) ≤ (n − r)2. We prefer the
quotient of these numbers to be as small as possible, which is achieved for n = 2r (if n ≥ 2r).

2.2 Geometry of Dr

In this section we study the geometry of the set Dr. See Appendix A for some basic definitions
and facts from algebraic geometry that are used in this paper.

▶ Definition 20 (projS). For a matrix A ∈ Fn×n and S ⊆ [n] define projS(A) to be the
matrix consisting of columns of A with indices in S.

▶ Definition 21 (Small set). We say that a set A ⊆ Kn is small (in Kn) if it is contained in
a proper algebraic subset in Kn.

▶ Definition 22 (σMτ ). For permutations σ ∈ Sn , τ ∈ Sm and an n×m matrix M , define
σMτ to be the matrix obtained from M by permuting rows by σ and columns by τ .

Our first goal is to show that for S ⊆ [2r] with |S| = r only a small set of matrices from
K2r×r is not in the image of projS : Dr → K2r×r. Note that for every permutation σ ∈ S2r

and M ∈ Dr we have σMσ ∈ Dr. Thus, it is sufficient to study proj[r].

▶ Lemma 23. Let A1, A2 ∈ Kr×r. Assume that A2 is invertible. Then(
A1 −A2

1A
−1
2 + ω2A−1

2
A2 −A2A1A

−1
2

)
∈ Dr. (3)

Proof. Observe that(
A1 + Iω −A2

1A
−1
2 + ω2A−1

2
A2 −A2A1A

−1
2 + Iω

)
=

(
A1 + Iω

A2

)
·
(
I, −A1A

−1
2 +A−1

2 ω
)
. ◀

Next, we observe that a simple condition on M ∈ Dr guarantees that proj[r] is injective.

CCC 2021
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▶ Lemma 24. Let A1, A2 ∈ Kr×r and M ∈ Dr. Assume that proj[r](M +ωI) =
(
A1 + ωI

A2

)
has rank r (over L). Then, A2 is invertible, and M is uniquely determined by proj[r](M),
and we have

M = ϕ[r]

(
A1
A2

)
:=

(
A1 −A2

1A
−1
2 + ω2A−1

2
A2 −A2A1A

−1
2

)
.

Proof. Denote L = proj[r](M + ωI). Since rank(L) = r, M + ωI = LR for some R ∈ Lr×2r.
Let R = (X1 + Y1ω,X2 + Y2ω) for X1, Y1, X2, Y2 ∈ Kr×r. The inclusion M ∈ Dr imposes
the following constraints.

A1Y1 +X1 = I, A1Y2 +X2 = 0, A2Y1 = 0 and A2Y2 = I. (4)

The last equality implies that A2 is invertible. Therefore Y1 = 0, Y2 = A−1
2 , X1 = I and

X2 = −A1A
−1
2 . ◀

Define U[r] to be the set of X ∈ K2r×r such that the matrix formed by the last r rows
of X is non-singular. Note that ϕ[r] : U[r] → K2r×r defined in the lemma above is a regular
map according to Def. 82 (see Lemma 83).

Due to Lemma 24, it will be convenient to work with the following subset of Dr.

D′
r = {M ∈ Dr | ∀S ⊂ [2r], |S| = r : rank(projS(M + ωI)) = r}. (5)

Let I2r,r ∈ K2r×r be the identity matrix padded with r zero rows. Define

L = {L ∈ K2r×r | all r × r minors of L+ ωI2r,r are non-singular}. (6)

▶ Observation 25. L is an irreducible Zariski-open subset of K2r×r.

Proof. The set of L for which L + ωI2r,r has a singular r × r minor is a finite union of
proper Zariski-closed subsets of K2r×r. Since, K2r×r is irreducible, this union is a proper
Zariski-closed subset. Hence L is Zariski-open and it is irreducible, as a Zariski-open subset
of an irreducible set. ◀

Then, by Lemmas 23 – 24, for every L ∈ L there exists a unique matrix M ∈ Dr with
proj[r](M) = L. For ϕ[r] as in Lemma 24, define

D∗
r = {ϕ[r](L)T | L ∈ L}. (7)

▶ Lemma 26. The set D∗
r is an irreducible quasi-affine variety. Moreover, D∗

r ⊆ D′
r, and for

every S ⊆ [2r] with |S| = r only a small set of matrices in K2r×r is not in projS(D∗
r ) ⊆ K2r×r.

Proof. Observe, that for L ∈ L and M = ϕ[r](L), any r distinct rows of M + ωI are linearly
independent. Therefore, MT ∈ D′

r, and so D∗
r ⊆ D′

r. The set L ⊆ K2r×r is a non-empty
Zariski-open irreducible set. Recall that Dr is an affine algebraic set. By Lemma 24, the set
D∗

r is equal to ψ−1
[r] (L) ∩ Dr, where ψ[r] : K2r×2r → K2r×r is defined by M 7→ proj[r](MT ).

Since ψ[r] is regular, D∗
r is a quasi-affine algebraic set. The map (ϕ[r])T : L → K2r×2r is

regular, so D∗
r is irreducible (see Obs. 76).

For every S ⊆ [2r] with |S| = r, let ϕS : US → K2r×2r (defined similarly as in Lemma 24)
be an inverse function to projS , where US is a Zariski-open subset of K2r×r where ϕS is
well-defined. The map ϕS is regular and injective. Therefore, by Lemma 24, projS(D∗

r) =
(ϕS ◦ ψ[r])−1(L), and so it is a Zariski-open subset of K2r×r. Hence, only a small set of
matrices in K2r×r is not in projS(D∗

r) ⊆ K2r×r. ◀
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Def. 78 defines the notion of “almost all elements” of an irreducible quasi-variety. Since
we have not proved that Dr is irreducible, we need a special definition to formalize our
references to “almost all elements of Dr.”

▶ Definition 27 (Almost all elements of Dr). We shall say that some property holds for
almost all matrices in Dr if it holds for almost all elements of D∗

r .

We believe that, in fact, Dr is irreducible. If that is the case, Def. 27 remains consistent with
Def. 78.

By Obs. 79, if each of a finite number of properties holds for almost all elements of Dr,
then they all hold simultaneously for almost all elements of Dr.
▶ Remark 28. If A ⊆ D∗

r is such that for some S ⊆ [2r] with |S| = r the set projS(A) is
small in K2r×r, then by Lemma 26, almost all matrices in Dr are not in A.

▶ Definition 29 (D#
r ). Let D#

r denote the set of matrices M ∈ D∗
r such that for all k ≤ r

every k × k minor of M is non-singular.

▶ Corollary 30. D#
r is a non-empty Zariski-open subset of D∗

r .

Proof. Let X be the Zariski-open subset of K2r×r consisting of matrices with all k × k

minors being non-singular for all k ≤ r. Then, D#
r =

⋂
S⊆[2r], |S|=r

(
D∗

r ∩ proj−1
S (X)

)
. ◀

▶ Definition 31 (Diag(Fn×m)). Define Diag(Fn×m) to be the set of matrices in Fn×m that
have non-zero entries only in the cells with indices {(i, i) | 1 ≤ i ≤ min(n,m)}.

▶ Lemma 32. For every M ∈ D#
r let LM be the set of D ∈ Diag(K2r×2r) ∼= K2r such that

some (r + 1) × (r + 1) minor of M + D is singular. Then LM is a proper Zariski-closed
subset of Diag(K2r×2r).

Proof. Let X be an (r + 1) × (r + 1) minor of M + D that involves k diagonal entries
of D: x1, x2, . . . , xk. Then k > 0. Moreover, det(X) is a polynomial over K in variables
{xi | i ∈ [k]} and the coefficient in front of x1x2 . . . xk is the determinant of a minor
formed by rows and columns of X that have no diagonal entries of D. Since M ∈ D#

r , this
coefficient is non-zero. Hence, the set of D for which det(X) = 0 is a proper Zariski-closed
set in Diag(K2r×2r). Since Diag(K2r×2r) ∼= K2r is irreducible, the finite union (over all
(r+ 1) × (r+ 1) minors) of proper Zariski-closed subsets is a proper Zariski-closed subset. ◀

3 A lower bound on the strict rigidity for a matrix in Cr

In this section we prove the following stronger version of Theorem 7.

▶ Theorem 33. Let r ≥ 3. For almost all matrices M ∈ Dr there exists a diagonal matrix
D ∈ Diag(K2r×2r) such that RK(M +D, r) ≥ 3r − 2.

▶ Definition 34 (F(π)). For π ⊆ [n]× [m] denote by F(π) the subset of matrices in Fn×m with
zero entries in every cell outside of π (we assume that n and m are clear from the context).

Assume RK(M + D, r) ≤ 3r − 3 for all diagonal matrices D. Intuitively, since there
are only finitely many subsets π ⊂ [2r] × [2r] of size 3r − 3, there should exist π such
that for a “large set” of diagonal matrices D there exists a corresponding Z ∈ K(π) with
rank(M +D + Z) ≤ r. In Section 3.2, we are going to make this intuitive argument precise.

Then, in order to prove Theorem 33 it is sufficient to show that for an arbitrary fixed π

of size 3r − 3 for almost all matrices M ∈ Dr there is no “large set” of diagonal matrices D
such that rank(M +D + Z) ≤ r for all D is this set and all Z ∈ K(π).
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3.1 Structure of the subsets of [2r] × [2r] with at most 3r − 3 elements
We start the discussion towards the proof of Theorem 33 with the study of the structure of
the subsets of [2r] × [2r] with at most 3r − 3 elements.

▶ Definition 35 (Well-distributed). Let m ≥ r + 1. We say that π ⊆ [2r] × [m] is well-
distributed, if every (r + 1) × (r + 1) minor contains at least one element of π.

Note that if π is not well-distributed and all (r + 1) × (r + 1) minors of A ∈ C2r×2r are
non-singular, then for every Z ∈ C(π) we have rank(A+ Z) ≥ r + 1. By Lemma 32, for all
M ∈ D#

r , for a Zariski-open (so, “large”) set of diagonal matrices D all (r + 1) × (r + 1)
minors of M +D are non-singular.

Hence, we mainly need to concentrate on well-distributed sets π.

▶ Observation 36. Let π ⊆ [2r] × [m] be well-distributed. Then for any set of r+ 1 columns,
π contains elements in at least r distinct rows.

Proof. If not, we immediately find an (r + 1) × (r + 1) minor with no elements from π. ◀

▶ Lemma 37. Let π ⊆ [2r] × [2r] be well-distributed. For each i ∈ [2r], let ti be the number
of elements of π in the i-th column. Let t(j) be the j-th smallest number among {ti | i ∈ [2r]}.
1. Then, either t(r+2) = 1, or |π| ≥ 3r − 2.
2. If t(1) = 1, then either t(r+3) = 1, or |π| ≥ 3r − 2.

Proof. Assume t(r+2) ≥ 2. By Observation 36, r + 1 columns that contain the least number
of elements from π have at least r elements from π. The other r− 1 columns contain at least
2(r − 1) elements from π. Thus, in this case, |π| ≥ 3r − 2.

Finally, if t(1) = t(r+2) = 1, but t(r+3) ≥ 2, then |π| ≥ 2(r − 2) + r + 2 = 3r − 2. ◀

▶ Definition 38 (Matching). We say that π ⊆ [n] × [m] is a matching if the projections of π
on each of its two coordinates are injective.

▶ Lemma 39. Let r ≥ 3. Assume that π ⊆ [2r] × [r + 3] has precisely one element in every
column and is well-distributed, then π contains a matching of size r + 2.

Proof. Note that |π| = r + 3 and Observation 36 implies that π has elements in at least r
rows. Since 3r > r + 3 for r ≥ 3 there is at least one row with ≤ 2 elements. Considering
r + 1 columns that do not contain these elements, by Observation 36, we get that π has
elements in at least r + 1 distinct rows. Since 2r + 1 > r + 3 for r ≥ 3 there are at least
two rows with precisely one element in each. We match each of these rows to the unique
available column. Consider the set of the other r + 1 columns. By Observation 36, there
are at least r rows that have elements in these columns. Since every column has precisely 1
element, by picking one element in each row we will get a matching of size r + 2. ◀

3.2 Reduction to a fixed well-distributed π

▶ Definition 40 (Unbounded). For a subfield F ⊆ C we say that a set of points {xi}i∈I ⊆ F
is unbounded, if it is unbounded as a set in C.

▶ Definition 41 (Cr,π, C′
r,π). For π ⊆ [2r] × [2r] define

Cr,π = {A ∈ Cr | ∃Z ∈ C(π) : rank(A+ Z) ≤ r}, and

C′
r,π = {A ∈ Cr | ∃Z ∈ K(π) : rank(A+ Z) ≤ r}. (8)
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▶ Lemma 42. Let M ∈ Dr and P be a finite collection of subsets of [2r] × [2r]. Let ΩM

be a non-empty Zariski-open set in Diag(K2r×2r). Assume that for every diagonal matrix
D ∈ ΩM we have M + D ∈

⋃
π∈P

Cr,π. Then there exist unbounded sets E1, E2, . . . E2r ⊆ K

and π ∈ P such that for all diagonal D with Dii ∈ Ei for all i ∈ [2r] we have M +D ∈ Cr,π.

Proof. For π ∈ P , consider the algebraic set

WM (π) = {(D,Z) | D ∈ Diag(C2r×2r), Z ∈ C(π), rank(M +D + Z) ≤ r}.

Since Diag(C2r×2r) ∼= C2r, we can treat WM (π) as a subvariety of C2r ×C|π|. The projection
on the first coordinate p : (D,Z) 7→ D is regular, so by Chevalley’s Theorem (Theorem 87) the
image p(WM (π)) under this projection is a constructible set for every π. Since a constructible
set is an intersection of a closed and an open set, for every π, either p(WM (π)) is Zariski-open,
or there exists a non-trivial polynomial fπ that completely vanishes on p(WM (π)). If neither
of p(WM (π)) is Zariski-open, then there exists a nontrivial polynomial (e.g.,

∏
π∈P fπ)

that vanishes on
⋃

π∈P p(WM (π)), and so vanishes on ΩM . This is a contradiction, as
Diag(K2r×2r) ∼= K2r is irreducible and ΩM is non-empty Zariski-open.

Hence, there exists π ∈ P , such that p(WM (π)) is Zariski-open in Diag(C2r×2r), and so
Ω′

M = ΩM ∩ p(WM (π)) is Zariski-open in Diag(K2r×2r). Hence, the claim of the lemma
follows from Lemma 85. ◀

Note that in the definition of Cr,π we allow the entries of Z to be from C instead of K.
So if P contains a superset of {(i, i) | i ∈ [2r]} the lemma above gives a trivial statement.
Thus we shall consider two different regimes, when π is “close to containing the diagonal”
and when it is not.

More precisely, as we saw in Lemma 37, there exists a subset S′ ⊂ [2r] of size r + 2 such
that every column with index in S′ has at most one element of π. We will discuss how to
pick S′ in Section 3.5, if for π this choice is not unique. We distinguish two cases: (a) when
π restricted to columns in S′ is a subset of the diagonal and (b) when it is not.

In the case (a) we will show that for almost all M ∈ D#
r for all diagonal D ∈ Diag(K2r×2r)

we have A = M +D /∈ C′
r,π.

By applying Lemma 42 to the collection of all π from the case (b), we get that there exists
a π from case (b) and a “large” set of diagonal matrices D such that A = M +D ∈ Cr,π. We
will argue that this does not happen for almost all M ∈ D#

r .
Both in case (a) and in case (b) we only study the matrix B = projS′(A) and show that

for almost all M there is no change of entries inside π that allows to get a matrix of rank
≤ r from B.

3.3 Case when π in columns S′ coincides with the diagonal
In the next lemma we show that for almost all M ∈ Dr there is no Z ′ ∈ Diag(K2r×(r+2))
such that rank(proj[r+2](M) + Z ′) ≤ r.

In this and next section we use ei to denote the vector in Kr with entry 1 in coordinate i
and 0 in all other coordinates.

▶ Lemma 43. Let r ≥ 3. Consider A1 ∈ Kr×r and an invertible matrix A2 ∈ Kr×r. Define

vi = −A2
1A

−1
2 ei + ω2A−1

2 ei and wi = −A2A1A
−1
2 ei.

For a diagonal matrix Z ∈ Kr×r and z1, z2 ∈ K consider

T (Z, z1, z2) =
(
A1 + Z v1 v2
A2 w1 + z1e1 w2 + z2e2

)
.
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The set of matrices (A1, A2) ∈ K2r2 for which there exist Z ∈ Diag(Kr×r), z1, z2 ∈ K s.t.
rank(T (Z, z1, z2)) ≤ r is small in K2r2 .

Proof. Assume rank(T (Z, z1, z2)) ≤ r. Since A2 is invertible, the last two columns of
T (Z, z1, z2) can be expressed as a linear combination of the first r columns. Let yi ∈ Kr

satisfy(
A1 + Z

A2

)
yi =

(
vi

wi + ziei

)
.

Then

yi = A−1
2 (wi + ziei) ⇒ (A1 + Z)A−1

2 (wi + ziei) = vi,

−A2
1A

−1
2 ei + ziA1A

−1
2 ei + Z(−A1A

−1
2 ei + ziA

−1
2 ei) = −A2

1A
−1
2 ei + ω2A−1

2 ei.

Let αi = A1A
−1
2 ei and βi = A−1

2 ei. Then for all k ∈ [r] we have

Zkk = ω2βik − ziαik

−αik + ziβik
.

Hence, for all k ∈ [r],

ω2β1k − z1α1k

−α1k + z1β1k
= ω2β2k − z2α2k

−α2k + z2β2k
. (9)

This can be rewritten as

α2k

(
ω2β1k − z1α1k

−α1k + z1β1k
− z2

)
= z2β2k

(
ω2β1k − z1α1k

−α1k + z1β1k

)
− ω2β2k. (10)

The coefficient in front of α2k is 0 if and only if

ω2β1k − z1α1k = −z2α1k + z2z1β1k ⇔ β1k = z1 − z2

ω2 − z1z2
α1k.

Unless z1 = z2 = ±ω, such equation can hold for at most one index k, or the set (A1, A2) ∈
K2r2 is small. If the coefficient in front of α2k is non-zero for some k, then α2k can be
expressed as a rational function of α1k, β1k, β2k and z1, z2. Hence, for every k either α2k is
a function of α1k, β1k, β2k and two parameters z1, z2, or β1k is a function of α1k and z1, z2.
In any case, for r ≥ 3 we see that the set (A1, A2) ∈ K2r2 that satisfy Eq. (9) is small. ◀

3.4 Case when π in columns S′ does not coincide with the diagonal
In the lemmas below we think of T as of a matrix obtained by permuting rows and columns
of projS′(M + D + Z ′) for M ∈ D#

r , D ∈ Diag(K2r×2r) and Z ′ ∈ Cπ. The variables xi

correspond to selected diagonal entries of D and the variables Z, zi correspond to entries of
Z ′.

Let Ĉ = C ∪ {∞} be the Riemann sphere, i. e., the one-point compactification of C with
respect to the usual complex norm.

▶ Observation 44. Let f : Ĉ → Ĉ be defined as f(x) = ax+ b

cx+ d
for a, b, c, d ∈ C. If

{f(xk)}∞
k=1 converges to y in Ĉ, then there exists x ∈ Ĉ such that f(x) = y.

Proof. If ad − bc ̸= 0, take x to be the limit of {xk}∞
k=1 in Ĉ. Else, pick an arbitrary

x ∈ Ĉ. ◀
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▶ Lemma 45. Let r ≥ 3. Let j1 /∈ {1, 2} and j2 /∈ {2, j1} be elements of [r]. Let E1, E2 ⊆ K
be unbounded sets. For v1, v2, w1, w2 ∈ Kr, A1 ∈ Kr×r, an invertible matrix A2 ∈ Kr×r,
x1, x2 ∈ K, z1, z2 ∈ C and a diagonal matrix Z ∈ Cr×r consider

T (x1, x2, Z, z1, z2) =
(
A1 + Z v1 v2
A2 w1 + z1e1 + x1ej1 w2 + z2e2 + x2ej2

)
.

The set of (A1, A2) ∈ K2r2 , for which there exist v1, v2, w1, w2, s.t. for all x1 ∈ E1, x2 ∈ E2
there exist Z ∈ Diag(Cr×r), z1, z2 ∈ C s.t. rank(T (x1, x2, Z, z1, z2)) ≤ r, is small in K2r2 .

Proof. Since A2 is invertible and the rank of T (x1, x2, Z, z1, z2) is ≤ r, ∀i ∈ {1, 2} we have

(A1 + Z)A−1
2 (wi + ziei + xieji) = vi,

A1A
−1
2 (ziei + xieji

) + ZA−1
2 (wi + ziei + xieji

) = vi −A1A
−1
2 wi.

Denote γi = vi −A1A
−1
2 wi, αi = A1A

−1
2 ei, βi = A−1

2 ei and ϕi = A−1
2 wi. Then

Zkk = γik − ziαik − xiαjik

ϕik + ziβik + xiβjik
, ∀k ∈ [r],∀i ∈ {1, 2}, so (11)

γ1k − z1α1k − x1αj1k

ϕ1k + z1β1k + x1βj1k
= γ2k − z2α2k − x2αj2k

ϕ2k + z2β2k + x2βj2k
∀k ∈ [r]. (12)

Fix x2 ∈ E2. By passing to a subsequence for x1 ∈ E1 we may assume that
lim

E1∋x1→∞
z1(x1, x2)/x1 = c ∈ Ĉ is well-defined. For this subsequence,

lim
E1∋x1→∞

γ2k − z2α2k − x2αj2k

ϕ2k + z2β2k + x2βj2k
= −α1kc+ αj1k

β1kc+ βj1k
∀k ∈ [r].

Hence, using Observation 44, there exists z2 = z2(x2) such that

γ2k − z2α2k − x2αj2k

ϕ2k + z2β2k + x2βj2k
= −α1kc+ αj1k

β1kc+ βj1k
∀k ∈ [r].

By passing to a subsequence for x2 ∈ E2 we may assume that lim
E2∋x2→∞

z2(x2)/x2 = c′ ∈ Ĉ.
Then

lim
E2∋x2→∞

α1kc(x2) + αj1k

β1kc(x2) + βj1k
= c′α2k + αj2k

c′β2k + βj2k
∀k ∈ [r].

Hence, using Observation 44, there exists c′′ such that

α1kc
′′ + αj1k

β1kc′′ + βj1k
= c′α2k + αj2k

c′β2k + βj2k
∀k ∈ [r]. (13)

Since j2 ̸= 2, this gives a dependence for αj2k on other variables with last index k and 2
parameters c′, c′′, if c′ ̸= ∞. If c′ = ∞, we get a dependence for α2k on other variables with
last index k and a parameter c′′. Hence for r ≥ 3 the set of matrices (A1, A2) ∈ K2r2 that
satisfy Eq. (13) is small in K2r2 . ◀

The next two lemmas can be proved in a similar fashion, so we defer their proofs to
Appendix B.

CCC 2021



41:14 Matrix Rigidity Depends on the Target Field

▶ Lemma 46. Let r ≥ 3. Consider A1 ∈ Kr×r and an invertible matrix A2 ∈ Kr×r. Define

vi = −A2
1A

−1
2 ei + ω2A−1

2 ei and wi = −A2A1A
−1
2 ei

Let E2 ⊆ K be an unbounded set. For a diagonal matrix Z ∈ Cr×r and z1, z2 ∈ C, x2 ∈ K,
consider

T (x2, Z, z1, z2) =
(
A1 + Z v1 v2
A2 w1 + z1e1 w2 + z2e3 + x2e2

)
.

The set of matrices (A1, A2) ∈ K2r2 , such that for all x2 ∈ E2 there exist Z ∈ Diag(Cr×r),
and z1, z2 ∈ C such that rank(T (x2, Z, z1, z2)) ≤ r, is small in K2r2 .

Proof. See Appendix B, Lemma 88. ◀

▶ Lemma 47. Let r ≥ 3. Let j1 /∈ {1, 2} be an element of [r]. Let E1, E2 ⊆ K be unbounded
sets. For v1, v2, w1, w2 ∈ Kr, A1 ∈ Kr×r, an invertible matrix A2 ∈ Kr×r, x1, x2 ∈ K,
z1, z2 ∈ C and a diagonal matrix Z ∈ Cr×r consider

T (x1, x2, Z, z1, z2) =
(
A1 + Z v1 v2 + x2e1
A2 w1 + z1e1 + x1ej1 w2 + z2e2

)
.

The set of matrices (A1, A2) ∈ K2r2 , for which there exist v1, v2, w1, w2 ∈ Kr, s.t. for all
x1 ∈ E1 and x2 ∈ E2 there exist Z ∈ Diag(Cr×r), z1, z2 ∈ C s.t. rank(T (x1, x2, Z, z1, z2)) ≤
r, is small in K2r2 .

Proof. See Appendix B, Lemma 89. ◀

▶ Remark 48. Note that in Lemmas 43 and 46 we assume that v1, v2, w1 and w2 have
the specific form given by Lemma 24, while in Lemmas 45 and 47 we cannot make such
assumption. The reason is that Lemmas 45 and 47 treat matrices obtained from M ∈ Dr

after its rows and columns are permuted in the way that does not respect the diagonal. And
so, in this case, Lemma 24 cannot be applied.

3.5 Proof of Theorem 33
Finally, we are ready to prove Theorem 33.

Proof of Theorem 33. Let P denote the collection of the subsets of [2r] × [2r] with precisely
3r − 3 elements. Let P0 ⊂ P denote the set of well-distributed π ∈ P.

Recall that D#
r denotes the set of matrices M ∈ D∗

r such that for all k ≤ r every k × k

minor of M is non-singular.
Fix M ∈ D#

r . Assume that for every D ∈ Diag(K2r×2r) we have RK(M +D, r) ≤ 3r − 3.
This means that for every D ∈ Diag(K2r×2r) there exists π ∈ P and Z ∈ K(π) such that

rank(M +D + Z) ≤ r.

Let LM be the set of D ∈ Diag(K2r×2r) ∼= K2r such that some (r + 1) × (r + 1) minor
of M +D is singular. By Lemma 32, LM is a proper Zariski-closed subset of Diag(K2r×2r).
Define ΩM = Diag(K2r×2r) \ LM .

Observe that for all D ∈ ΩM , for all π ∈ P \ P0 and for all Z ∈ C(π) we have

rank(M +D + Z) ≥ r + 1.
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From now on we restrict ourself to taking D ∈ ΩM . Hence, in the rest of the proof we
may assume that π is well-distributed.

Let S ⊆ [2r] denote the set of indices of columns that have at most 1 element of π. Then,
by Lemma 37, |S| ≥ r + 2, and if there is no column with 0 elements, then |S| ≥ r + 3.

Now we want to pick a subset S′ of r + 2 indices from S. We use the following rules.
1. If there is a column with index in S that contains 0 elements of π, select S′ to be an

arbitrary subset of S of size r + 2 that contains this index.
2. Otherwise, every column with index in S has precisely 1 element of π and |S| ≥ r + 3.

a. If π = {(i, i) | i ∈ S} pick S′ to be an arbitrary subset of S of size r + 2.
b. If π disagrees with the diagonal in precisely 1 position, choose S′ to consist of columns

where π agrees with the diagonal.
c. If π disagrees with the diagonal in precisely 2 positions, choose S′ to contain only one

column where they disagree. Moreover, using Lemma 39, we can pick such S′ so that
π restricted to columns in S′ defines a matching.

d. Else, π has at least 3 elements not on the diagonal. We claim that it is always possible
to pick S′ so that
π defines a matching, when it is restricted to the columns in S′.
π disagrees with the diagonal in at least 2 positions when it is restricted to the
columns with indices in S′.
π contains an element with column index in S′ and row index not in S′.

To justify that, first shrink S to be of size r + 3 by preserving the condition that π
disagrees with the diagonal in at least 3 columns. If π is a matching on S, choose any
(i, j) ∈ π with i ̸= j and define S′ = S \ {i}. Otherwise, by Lemma 39, π contains a
matching of size r + 2, so there is precisely one row i with 2 elements in columns j1
and j2. Moreover, there is j ∈ S such that the row with index j has no element of π.
To get S′ delete from S any of the elements j1, j2 that is different from j. Such S′

satisfies all the desired properties.

Let π′ ⊆ [2r] × S′ denote the restriction of π to the columns in S′ and define a matrix
B = projS′(M). If there is a column of B with no element of π′ we add an element to π′ in
this column to the row that has no element of π′, and if possible, with an index not in S′.
Thus, we may assume that every column of B contains precisely one element of π′, and π′

defines a matching.
By permuting the rows and columns of M in a way that preserves the diagonal, we may

assume that S′ = [r + 2]. We also assume that coordinates in ΩM are permuted accordingly.
We want to show that for almost all M and all π ∈ P0 there is no “large set” (in the

sense of Lemma 42) of diagonal matrices D ∈ Diag(K2r×2r) such that for arbitrary D in this
set rank(M +D + Z) ≤ r for some Z ∈ K(π).

To do this, we show how to permute rows and columns of B in order to apply one of the
lemmas proved in Sections 3.3 and 3.4. We have three cases for π′.
(A) If π′ coincides with the diagonal, then by Lemma 43 for almost all matrices M ∈ D#

r

there is no diagonal matrix Y ∈ Diag(K2r×(r+2)) such that B + Y has rank at most r.
(B) If π′ disagrees with the diagonal in precisely one column, then by the choice of S′, π′ has

an element in a row that is not in S′ = [r+2]. We may permute the rows and the columns
of B, so that the diagonal is preserved and π′ = {(i, i) | i ∈ [r + 1]} ∪ {(r + 3, r + 2)}.
Then it follows from Lemma 46 that for almost all matrices M ∈ D#

r there are no
unbounded sets E1, E2, . . . , Er+2 such that for every matrix D ∈ Diag(C2r×r) with
Dii ∈ Ei for i ∈ [r + 2] there exists Y ∈ C(π′) for which B +D + Y has rank at most r.
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(C) If π′ disagrees with the diagonal in at least 2 columns, then, by the choice of S′, there
is a row with index j1 > r + 2 that has an element of π′ in the column i1 ∈ S′ = [r + 2].
Moreover, there is at least one other column i2 with an element of π not on a diagonal.
Since π′ defines a matching, we can permute the rows and the columns of B so that
π′ becomes the diagonal and columns i1, i2 are mapped to columns r + 1 and r + 2.
Let σ ⊆ [2r] × [r + 2] be the the image of the diagonal after such permutation. By the
construction of π′, σ has the entry in column r + 1 in the row with index ≥ r + 3 and
the entry in column r + 2 in the row distinct from r + 2. If the entry of σ in the last
column is in the row with index ≤ r we can further permute the first r columns and
rows in the way that preserves the diagonal, so that the entry of σ in the last column
becomes in the first row.
Let E1, E2, . . . , Er+2 be unbounded subsets of K (which may depend on M) and let
σ′ = σ \ {(i, i) | i ∈ [r]}. Let D ∈ K(σ) be such that Dij ∈ Ej for all (i, j) ∈ σ and let
D′ be a part of D supported on σ′. Then, by Lemma 45 and Lemma 47, if for every
D there exists Y ∈ Diag(C2r×(r+2)) such that B +D + Y has rank at most r, then for
every D, proj[r](B) +D′ belongs to a proper Zariski-closed subset Bπ′ of K2r×r, which
depends only on π′.
This means that there exists a non-trivial polynomial f ∈ K[xij ]i∈[2r], j∈[r] such that
f(proj[r](B) +D′) = 0. Consider this as a polynomial with variables dij , which are the
(i, j)-th entries of D′ with (i, j) ∈ σ′. Since every variable dij independently can take
infinitely many values we get that this is a trivial polynomial in variables dij . Since f is
non-trivial, we get that entries of B satisfy some non-trivial polynomial.
Therefore, for almost all M ∈ D#

r there are no unbounded sets E1, E2, . . . , Er+2 such
that for every matrix D ∈ Diag(C2r×r) with Dii ∈ Ei for i ∈ [r + 2] there exists
Y ∈ C(π′) for which B +D + Y has rank at most r.

We see from (A), that there is a set M of almost all matrices M ∈ D#
r , such that for

all D ∈ ΩM and all well-distributed π, for which π′ coincides with the diagonal, there is no
Z ∈ K(π) with rank(M +D + Z) ≤ r.

Let P1 ⊆ P0 be the set of well-distributed π ⊆ [2r] × [2r] for which the π′, constructed
by the rules above, does not end up in case (A), i.e. π′ does not coincide with the diagonal.

Assume that M ∈ M. Then for any D ∈ ΩM there should exists a π ∈ P1 and Z ∈ K(π)

such that rank(M +D + Z) ≤ r. Using Lemma 42, applied with P = P1, we deduce that
there exists a set π ∈ P1 and unbounded sets E1, E2, . . . , E2r ⊆ K, such that for any D ∈
Diag(K2r×2r) withDii ∈ Ei for every i ∈ [2r], there exists Z ∈ C(π) with rank(M+D+Z) ≤ r.
Let S′ be as above and B = projS′(M). Then rank(B+projS′(D)+projS′(Z)) ≤ r. However,
for almost all matrices M this gives a contradiction with (B) or (C).

Thus, for almost all M ∈ D#
r there is D ∈ Diag(K2r×2r) with RK(M+D, r) ≥ 3r−2. ◀

4 Field extension: avoiding transcendentals

In this section we prove that absolute rigidity can always be achieved over a finite extension.
Recall that a field extension L/K is finite if dimK L is finite. Recall also that we wrote
R∗(A, r) to denote the absolute rigidity of A for target rank r.

▶ Proposition 49. Let A be a matrix over the field K. Then there exists a finite extension
L/K such that for all r ≥ 0 we have R∗(A, r) = RL(A, r).

▶ Notation 50 (weight). For a matrix A, let w(A), the weight of A, denote the number of
nonzero entries of A.
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We begin with some simple observations.

▶ Observation 51. If L/K is a field extension and A is a matrix over K, then, for all r ≥ 0,
we have RK(A, r) ≥ RL(A, r). ◀

▶ Definition 52. For a field K let cl(K) denote the algebraic closure of the pure transcendental
extension of K of countably infinite transcendence degree.

▶ Observation 53. Let A be a matrix over the field K. Then for all r ≥ 0, we have
R∗(A, r) = Rcl(K)(A, r).

Proof. Fix r. By definition, R∗(A, r) ≤ Rcl(K)(A, r). We need to prove the reverse inequality.
Let L be an extension of K such that R∗(A, r) = RL(A, r). So there exists a matrix D

over L, of weight R∗(A, r), such that rank(A−D) ≤ r. Let M ⊆ L be the subfield generated
by K and the elements of D. Then RL(A, r) = RM(A, r). But M can be embedded in cl(K)
and therefore, by Obs. 51, RM(A, r) ≥ Rcl(K)(A, r). So R∗(A, r) = RL(A, r) = RM(A, r) ≥
Rcl(K)(A, r). ◀

We shall need the following well-known result, which is often the first step in the proof of
Hilbert’s Nullstellensatz. See, e. g., Cor. 1.2 in Chap. 9, §1 of [9].

▶ Fact 54. Let L/K be a field extension. Assume L is a finitely generated K-algebra. Then
the extension L/K is finite.

Proof of Proposition 49. We need to achieve RL(A, r) = Rcl(K)(A, r) for all r. For each r

we have a matrix Zr over cl(K) of weight ≤ R∗(A, r) such that rankcl(K)(A− Zr) ≤ r. Let
Z denote the set of elements of the matrices Zr, r ≥ 0. This is a finite set. (If r ≥ rk(A)
then Zr = 0.) Let B = K[Z] denote the K-algebra generated by Z. Let M be a maximal
ideal of B, and let L = B/M. So L is an extension field of K.

Let φ : B → L denote the natural epimorphism. So φ fixes all elements of K. Moreover,
for every matrix B we have w(φ(B)) ≤ w(B) and rank(φ(B)) ≤ rank(B) (because singular
minors are mapped to singular minors). Therefore rank(A − φ(Zr)) = rankφ(A − Zr) ≤
rank(A − Zr) ≤ r, and w(φ(Zr)) ≤ w(Zr). This proves that RL(A, r) ≤ R∗(A, r). The
reverse inequality holds by definition.

Finally we need to show that the extension L/K is finite. This is immediate from Fact 54,
given that L = K[φ(Z)] is a finitely generated K-algebra which is a field. ◀

We observe that Prop. 49 is equivalent to saying that absolute rigidity is achieved over
the algebraic closure of the field of definition of the matrix.

▶ Corollary 55. Let A be a matrix over the field K. Then R∗(A, r) = RK(A, r), where K
denotes the algebraic closure of K. Moreover, this statement is equivalent to Prop. 49.

Proof. Assume Prop. 49. Let L be a finite extension of K such that R∗(A, r) = RL(A, r).
Then L can be embedded in K, so a reference to Obs. 51 proves the Corollary.

Now suppose the Corollary is true. For every r, let Br be the matrix over K such that
rank(Br) ≤ r and w(A− Br) = R∗(A, r). Let S ⊂ K be the (finite) set of elements of the
matrices Br. Then, for all r, we have R∗(A, r) = RK[S](A, r). But K[S] is a finite extension,
proving Prop. 49. ◀

A similar result holds for linear arithmetic circuits.
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▶ Proposition 56. Let E/K be a field extension. Let A be a linear arithmetic circuit over
the field E that computes a linear function x 7→ Ax over K (so A is a matrix over K). Then
A can be simulated by a linear arithmetic circuit A′ over a finite extension of K such that
A′ has the same set of nodes and wires as A.

Proof. Each node of A computes an E-linear combination of its inputs. Let Z denote the
set of all the coefficients occurring at nodes. Let B = K[Z] denote the K-algebra generated
by Z. Let M be a maximal ideal of B, and let L = B/M. So L is an extension field of K.
We shall define the linear arithmetic circuit A′ over L.

Let φ : B → L denote the natural epimorphism. So φ fixes all elements of K. Now keep
all nodes and links in A but replace each scalar a ∈ Z involved in A (as a coefficient of
a linear combination at a gate) by φ(a). So this circuit will compute the transformation
x 7→ φ(A)x. But φ(A) = A (since φ fixes K pointwise), so the simulation is complete.

Finally, as before, the extension L/K = K[φ(Z)]/K is finite by Fact 54. ◀

5 Refutation of more candidates for rigidity

In this section we show that, as corollaries to the results of Dvir and Liu [4], more long-running
candidates for rigidity fail.

▶ Definition 57 (G-circulants). Let G be a finite abelian group of order n, and let A = (aij)
be an n × n matrix over a domain D. Let the rows and columns of A be labeled by the
elements of G. We say that A is a G-circulant if there is a function f : G → D such that for
all i, j ∈ G we have aij = f(i− j). A circulant matrix is a G-circulant where G is the cyclic
group of order n.

Recall that by a family of square matrices we mean a set of square matrices of unbounded
order.

▶ Theorem 58 (Dvir–Liu).
(a) No family of G-circulants over C (for variable G) is Valiant-rigid over C.
(b) No family of circulants over a fixed finite field is strictly Valiant-rigid.

Part (a) is stated in [4, Theorem 1.5]. Part (b) is stated in [4, Theorem 7.27].

5.1 Point–hyperplane incidence matrices
Finite projective geometries of dimension d are defined by geometric axioms. “Desargues’
Theorem” is not one of the axioms; geometries satisfying this additional axiom are called De-
sarguesian. The Desarguesian finite projective geometries are precisely the Galois geometries
PG(d, q) constructed from finite fields (q is the order of the field).

In fact, for d ≥ 3, all projective spaces are Desarguesian. However, this is not the case for
d = 2 (finite projective planes), so we need to make this distinction. Here we are interested
only in Galois geometries.

Let q be a prime power and d ≥ 2. The points as well as the hyperplanes of the d-
dimensional Galois geometry PG(d, q) can be represented by equivalence classes of nonzero
vectors in Fd+1

q , where the equivalence relation is defined by scaling (one vector is a scalar
multiple of the other). In particular, there are N := (qd+1 − 1)/(q − 1) points and the
same number of hyperplanes in this geometry. Let a be a point represented by a vector
x ∈ Fd+1

q \ {0} and let b be a hypeplane represented by a vector y ∈ Fd+1
q \ {0}. Then a and

b are incident if and only if xT y = 0 (x and y are “orthogonal”). (We view x, y as column
vectors.)
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The incidence matrix of this geometry is the N × N (0, 1) matrix of which the rows
are labeled by the points, the columns are labeled by the hyperplanes, and an entry of 1
represents incidence.

▶ Lemma 59. Let q be a prime power and d ≥ 2. Under appropriate numbering of the points
and hyperplanes, the point–hyperplane incidence matrix of the Galois geometry PG(d, q) is a
circulant matrix.

Proof. This is a consequence of the existence of a Singer cycle in GL(d+ 1, q), i. e., a linear
transformation σ of Fd+1

q that cyclically permutes the nonzero vectors. The existence of such
a transformation follows from the fact that the muliplicative group of Fqd+1 is cyclic: View
Fd+1

q as the additive group of Fqd+1 and let σ be the multiplication by a generator of the
multiplicative group of Fqd+1 ; this is a linear transformation of Fd+1

q .
Any linear transformation of Fd+1

q preserves the “scaling” equivalence relation, so σ also
gives a cyclic permutation of the points and the hyperplanes.

Let A ∈ GL(d+ 1, q) be an invertible matrix and let let B denote its inverse-transpose.
Then, for any x, y ∈ Fd+1

q we have xT y = 0 if and only if (Ax)T (By) = 0. So in this sense,
the pair (A,B) preserves orthogonality.

Let now A be the matrix of a Singer cycle and let B denote its inverse-transpose. Let a0
be a point represented by the vector x ̸= 0 and b0 a hyperplane represented by the vector
y ̸= 0. For k ∈ Z, let ak be the point represented by Akx and let bk be the hyperplane
represented by the vector Bky. So ai = aj if and only if i ≡ j (mod N), and the same holds
for the bi. We also note by the foregoing that ai and bj are incident if and only if ai+1 and
bj+1 are incident. This means that arranging the points in the order a0, . . . , aN−1 and the
hyperplanes in the order b0, . . . , bN−1, the incidence matrix becomes a circulant. ◀

We obtain the following two corollaries from Theorem 58.

▶ Corollary 60. For no family of Galois geometries is the corresponding family of point–
hyperplane incidence matrices absolutely Valiant-rigid in characteristic zero.

▶ Corollary 61. For no family of Galois geometries is the corresponding family of point–
hyperplane incidence matrices strictly Valiant-rigid over any fixed finite field.

Galois planes are the Galois geometries PG(2, q). It follows from Corollary 61 that
for no family of Galois planes is the corresponding family of point-line incidence matrices
Valiant-rigid over F2. This is noteworthy because Valiant [16] suggested (without making a
distinction between Desarguesian and non-Desarguesian planes) that the incidence matrices
of finite projective planes might be candidates for rigidity over F2.

5.2 Vandermonde matrices
In this section we show that Vandermonde matrices of which the generators form a geometric
progression are not absolutely Valiant-rigid.

▶ Definition 62 (G-Hankel matrices). Let G be a finite abelian group of order n. Let f : G → F
be a function from G to a field F. We define the G-Hankel matrix corresponding to f as the
n× n matrix, whose rows and columns are labeled by the elements of G, and the element in
position (g, h) is f(g + h).

As pointed out in [4], by permuting the rows of a G-Hankel matrix one can get a
G-circulant matrix. Therefore such a pair of matrices has the same rigidity.

The classical Hankel matrices are the special case of G-Hankel matrices where G is the
cyclic group of order n.
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▶ Observation 63. Let V be a Vandermonde matrix over a field K with generators that form
a geometric progression. Then there exist diagonal matrices D1 and D2 over K such that
D1V D2 is a Hankel matrix.

Proof. Assume that the generators of V are sai−1 for i = 1, 2, . . . , n. Then the (i, j)-th entry
of V is s(j−1)a(i−1)(j−1). Define a pair of diagonal matrices with entries

(D1)ii = ai(i−1)/2 and (D2)jj = s−(j−1)aj(j−1)/2.

Clearly, the entries of D1 and D2 belong to K. Moreover,

(D1V D2)ij = a1+(i+j)(i+j−3)/2.

Thus, D1V D2 is a Hankel matrix. ◀

This observation, combined with part (a) of Theorem 58 by Dvir and Liu, yields the
following corollary.

▶ Corollary 64. Let F be a family of Vandermonde matrices over fields of characteristic zero,
with generators that form a geometric progression. Then F is not absolutely Valiant-rigid.

Proof. Note that multiplication by a diagonal matrix with non-zero entries does not change
rigidity, so for D1 and D2 defined as above, RK(V, r) = RK(D1V D2, r). ◀

5.3 Paley–Hadamard matrices
Hadamard matrices have for decades been considered candidates for rigidity. To everyone’s
surprise, Alman and Williams [2] recently showed that the Walsh–Hadamard matrices are
not strictly Valiant-rigid.

In this section we remove a lot more Hadamard matrices from the list of rigidity candidates.

▶ Corollary 65. No family of Paley–Hadamard matrices is absolutely Valiant-rigid.

While the orders of the Walsh–Hadamard matrices are the powers of 2, the Paley–
Hadamard matrices are exponentially more frequent: for every prime power q ≡ −1 (mod 4)
there is a Paley–Hadamard matrix of order q + 1, and for every prime power q ≡ 1 (mod 4)
there is a Paley–Hadamard matrix of order 2q + 2.

Let q be an odd prime power and let χ : Fq → {0, 1,−1} ⊆ C denote the quadratic
character over Fq. So for x ∈ Fq, we have χ(x) = 0 if x = 0; χ(x) = 1 if x ≠ 0 is a square in
Fq and χ(x) = −1 if x is not a square.

▶ Definition 66 (Paley–Hadamard matrices). For an odd prime power q define a q× q matrix
Q with Qi,j = χ(i− j).

if q ≡ −1 mod 4, consider a matrix H = I +
(

0 1T

1 Q

)
, where 1 is an all-ones vector.

if q ≡ 1 mod 4, consider a matrix H obtained by replacing each entry of
(

0 1T

1 Q

)
with

a 2 × 2 matrix in the following way.

1. Each entry 0 is replaced with
(

1 −1
−1 −1

)
;

2. Each entry ±1 is replaced with ±
(

1 1
1 −1

)
.

The matrix H is a Hadamard matrix and is called a Paley–Hadamard matrix.
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▶ Observation 67. Let q be an odd prime power and let Q be the corresponding Paley–
Hadamard matrix.

If q ≡ −1 mod 4, then the lower right q × q submatrix of H is a G-circulant matrix,
where G is the additive group of Fq.
If q ≡ 1 mod 4, then the lower right 2q × 2q submatrix of H consists of 4 blocks that are
G-circulants for the additive group of Fq.

Proof. If q ≡ −1 mod 4, the statement immediately follows from the definition of the matrix
Q. If q ≡ 1 mod 4, denote by H0 the right-lower 2q × 2q submatrix. Note that the matrix
obtained from H0 by looking at the entries on the intersection of odd rows and odd columns
is Q+ I, and so is a circulant. Similarly, the matrices obtained by looking at the intersection
of even rows and even columns, odd rows and even columns, and even rows and odd columns
are circulants. ◀

This observation, combined with Theorem 58, proves Corollary 65.
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A Basic concepts of algebraic geometry

In this appendix we review basic notions of the algebraic geometry that are needed in this
paper. Our definitions follow [7], but, critically, we do not make the assumption that a field
is algebraically closed.

Let F be an infinite field. F[x1, x2, . . . , xn] denotes the ring of polynomials in variables
x1, x2, . . . , xn, with coefficients in F.

▶ Definition 68 (Affine algebraic set [7, p.2]). A set V ⊆ Fn is called an (affine) algebraic
set if it is the set of common zeros of a set of polynomials, P ⊆ F[x1, x2, . . . , xn].

▶ Theorem 69 (Hilbert basis theorem). Every affine algebraic set in Fn can be defined by a
finite set of polynomials in F[x1, x2, . . . , xn].

▶ Definition 70 (Irreduciblility). A topological space is irreducible if it is not a union of two
nonempty proper closed subsets.

▶ Observation 71. The intersection of a finite number of non-empty open subsets of an
irreducible topological space is non-empty (and open).

Proof. For two sets this is equivalent to the definition of irreducibility; the full statement
follows by induction. ◀

▶ Definition 72 (Zariski topology 1 [7, p.2]). The Zariski topology on Fn is the topology in
which the closed sets are precisely the affine algebraic sets of Fn.

▶ Proposition 73. The Zariski topology on Fn is a topology, and Fn is irreducible.

Proof. To prove irreducibility, let A1 and A2 be two Zariski-closed proper subsets of Fn. Let
the nonzero polynomial fi vanish on Ai. Let a ∈ Fn be a point at which (f1f2)(a) ̸= 0. It
follows that a /∈ A1 ∪A2. ◀

▶ Definition 74 (Locally closed set). In a topological space, a set is called locally closed if it
can be written as an intersection of an open set and a closed set.

▶ Definition 75 (Zariski topology 2). Let V ⊆ Fn be a locally closed set in the Zariski topology.
The Zariski topology on V is the restriction of the Zariski topology on Fn to V .

▶ Observation 76. Let V and W be topological spaces. Let f : V → W be a continuous
surjective map. If V is irreducible, then W is irreducible.

▶ Definition 77 ((Quasi-)affine variety [7, p.3]). An irreducible affine algebraic set is called
an affine variety. A Zariski-open subset of an affine variety is called a quasi-affine variety.

It is easy to see that a quasi-affine variety is irreducible by definition.

▶ Definition 78 (Almost all). We say that some property holds for almost all points in a
(quasi-)affine variety if it holds for some non-empty Zariski-open subset of the variety.

We now restate Obs. 71.

▶ Observation 79. If each of a finite number of properties holds for almost all points of a
quasi-variety V , then they all hold simultaneously for almost all points of V .
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▶ Definition 80 (Regular function [7, p.15]). Let V be a quasi-affine variety in Fn. A function
f : V → F is regular at a point p ∈ V if there exists a Zariski-open neighbourhood p ∈ U ⊂ V

and polynomials g, h ∈ F[x1, x2, . . . , xn] such that h is nowhere zero on U and f = g/h on
U . We say that f is regular on V if it is regular at every point of V .

▶ Lemma 81 ([7, Lemma 3.1]). A regular function f : V → F is continuous.

▶ Definition 82 (Morphism [7, p.15]). Let V,W be a pair of quasi-affine varieties. A morphism
(or a regular map) ϕ : V → W is a continuous map such that for every open set U ∈ W ,
and for every regular function f : U → F the function f ◦ ϕ : ϕ−1(U) → F is regular.

Clearly, the composition of two morphisms is a morphism.

▶ Lemma 83 ([7, Lemma 3.6]). Let X be a quasi-affine variety and Y ⊆ F be an affine
variety. A map (of sets) ϕ : X → Y is a morphism if and only if xi ◦ ϕ is a regular function
on X for each i, where x1, x2, . . . , xn are the coordinate functions on Fn.

▶ Observation 84. Let E1, E2, . . . , En be infinite subsets of F. Suppose the polynomial
f ∈ F[x1, x2, . . . , xn] vanishes on the Cartesian product E1 × · · · × En. Then f is the zero
polynomial.

▶ Lemma 85. Let U be a non-empty Zariski-open subset of Fn, where F is a subfield of C.
Then there exist E1, E2, . . . En ⊆ F such that E1 ×· · ·×En ⊆ U and each Ei is an unbounded
set in C.

Proof. Since U is Zariski-open, there exists a polynomial f ∈ F[x1, . . . , xn], such that if
f(a1, . . . an) ̸= 0, then (a1, . . . , an) ∈ U . Let E′

1, E
′
2, . . . E

′
n ⊆ F be finite sets, such that for

all ai ∈ E′
i, i ∈ [n] we have f(a1, a2, . . . , an) ̸= 0. Then it is easy to see that for an arbitrary

j there exists bj /∈ E′
j such that the same condition holds when E′

j is replaced with E′
j ∪ {bj}.

Moreover, such bj can be taken so that its complex norm is greater than 1 plus the maximum
of the norms of all elements that are currently in E′

j . Since we can in turn increment the
size of each Ei, the claim follows by passing to the limit. ◀

▶ Definition 86 (Constructible set). In a topological space, a set is called constructible if it
is a finite union of locally closed sets.

▶ Theorem 87 (Chevalley’s theorem). Let f : V → W be a regular map between algebraic
sets over F. Then f(V ) is a constructible set in the Zariski topology on W .

B Omitted proofs

In this appendix we provide the proofs of Lemmas 46 and 47.

▶ Lemma 88. Let r ≥ 3. Consider A1 ∈ Kr×r and an invertible matrix A2 ∈ Kr×r. Define

vi = −A2
1A

−1
2 ei + ω2A−1

2 ei and wi = −A2A1A
−1
2 ei

Let E2 ⊆ K be an unbounded set. For a diagonal matrix Z ∈ Cr×r and z1, z2 ∈ C, x2 ∈ K
consider

T (x2, Z, z1, z2) =
(
A1 + Z v1 v2
A2 w1 + z1e1 w2 + z2e3 + x2e2

)
.

The set of matrices (A1, A2) ∈ K2r2 such that for all x2 ∈ E2 there exist Z ∈ Diag(Cr×r),
and z1, z2 ∈ C such that rank(T (x2, Z, z1, z2)) ≤ r is small in K2r2 .
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Proof. Assume rank(T (x2, Z, z1, z2)) ≤ r. Since A2 is invertible, the last two columns of
B(x2, Z, z1, z2) can be expressed as a linear combination of the first r columns.

For convenience, define x1 = 0, j1 = 1 and j2 = 3. Let yi ∈ Kr satisfy(
A1 + Z

A2

)
yi =

(
vi

wi + zieji
+ xie2

)
.

Then

yi = A−1
2 (wi + zieji + xie2) ⇒ (A1 + Z)A−1

2 (wi + zieji + xie2) = vi,

−A2
1A−1

2 ei+ziA1A−1
2 eji +xiA1A−1

2 e2+Z(−A1A−1
2 ei+ziA

−1
2 eji +xiA

−1
2 e2) = −A2

1A−1
2 ei+ω2A−1

2 ei.

Let αi = A1A
−1
2 ei and βi = A−1

2 ei. Then for all k ∈ [r] we have

Zkk = ω2β1k − z1α1k

−α1k + z1β1k
and Zkk = ω2β2k − z2α3k − x2α2k

−α2k + z2β3k + x2β2k
.

Hence, for all k ∈ [r],

ω2β1k − z1α1k

−α1k + z1β1k
= ω2β2k − z2α3k − x2α2k

−α2k + z2β3k + x2β2k
. (14)

By passing to a subsequence for x2 ∈ E2 we may assume that lim
E2∋x2→∞

z2(x2)/x2 = c ∈ Ĉ

and lim
E2∋x2→∞

z1(x2) = c′ ∈ Ĉ are well-defined. Then we must have

ω2β1k − c′α1k

−α1k + c′β1k
= −cα3k + α2k

cβ3k + β2k
∀k ∈ [r].

If c ̸= ∞, for every k this gives a non-trivial rational equation for α2k in terms of other
variables αik, βik and c, c′. If c = ∞, for every k we get a nontrivial rational equation for α3k

in terms of other variables and c′. In any case, for r ≥ 3 the set of matrices (A1, A2) ∈ K2r2

that satisfy Eq. (14) is small in K2r2 . ◀

▶ Lemma 89. Let r ≥ 3. Let j1 /∈ {1, 2} be an element of [r]. Let E1, E2 ⊆ K be unbounded
sets. For v1, v2, w1, w2 ∈ Kr, A1 ∈ Kr×r, an invertible matrix A2 ∈ Kr×r, x1, x2 ∈ K,
z1, z2 ∈ C and a diagonal matrix Z ∈ Cr×r consider

T (x1, x2, Z, z1, z2) =
(
A1 + Z v1 v2 + x2e1
A2 w1 + z1e1 + x1ej1 w2 + z2e2

)
.

The set of matrices (A1, A2) ∈ K2r2 , for which there exist v1, v2, w1, w2 ∈ Kr, s.t. for all
x1 ∈ E1 and x2 ∈ E2 there exist Z ∈ Diag(Cr×r), z1, z2 ∈ C s.t. rank(T (x1, x2, Z, z1, z2)) ≤
r, is small in K2r2 .

Proof. Similarly, as in Lemma 45, Eq. (11) holds for i = 1. For the second column we get

(A1 + Z)A−1
2 (w2 + z2e2) = v2 + x2e1.

Denote γi = vi −A1A
−1
2 wi, αi = A1A

−1
2 ei, βi = A−1

2 ei and ϕi = A−1
2 wi, then

Zkk = γ2k − x21[k = 1] − z2α2k

ϕ2k + z2β2k
.
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Combining this with Eq. (11) for i = 1, we get

γ1k − z1α1k − x1αj1k

ϕ1k + z1β1k + x1βj1k
= γ2k − x21[k = 1] − z2α2k

ϕ2k + z2β2k
.

Similarly, as in Lemma 45, by fixing x2 ∈ E2 and passing to the subsequence for x1 ∈ E1, we
deduce that there exist c(x2) ∈ Ĉ and z2 = z2(x2) ∈ Ĉ such that

γ2k − x21[k = 1] − z2α2k

ϕ2k + z2β2k
= −α1kc(x2) + αj1k

β1kc(x2) + βj1k
∀k ∈ [r].

Again, as in Lemma 45, by passing to the subsequence for x2 ∈ E2 we may deduce that there
exist c′ and c′′ in Ĉ such that

1[k = 1] + c′α2k

c′β2k
= α1kc

′′ + αj1k

β1kc′′ + βj1k
∀k ∈ [r]. (15)

If c′′ ̸= 0, then α1k can be expressed through other variables αik, βik and c′, c′′. Since j1 ̸= 2,
if c′′ = 0, then αj1k can be expressed in terms of other variables αik, βik and c′. Thus, the
set of matrices (A1, A2) that satisfy Eq. (15) is small in K2r2 . ◀

C Reduction to countable fields

In this section we outline the basic model theory that allows us to consider countable fields
only for our main result.

▶ Proposition 90. Let us fix positive integers n, r, s. Let X = (xij) be an n× n matrix of
variables. Then there is a first-order formula φ(xij) in the language of fields that expresses,
over any field F, the statement that RF(X, r) = s.

Proof. Rank is first-order expressible (look at a finite number of determinants). There is a
finite number of s-tuples where the matrix can be changed. Combine these. ◀

Let us fix positive integers n, r, s, t. We wish to prove a statement of the following form:

(∗∗) If K is a field of characteristic zero and L/K is a quadratic extension then there
exists an n× n matrix A over K such that RK(A, r) ≥ s and RL(A, r) ≤ t.

▶ Proposition 91. If statement (∗∗) holds whenever K is countable then it always holds.

Proof. Let L = K[ω] where ω2 =: u ∈ K. Let us add a name for u as a constant to the
signature of rings, so we talk about the model (K, u). By the downward Löwenheim–Skolem
theorem, this model has a countable elementary submodel (K′, u). Let now L′ = K′[ω]. So
L′/K′ is a quadratic extension (because u ∈ K′).

Let us now apply (∗∗) to this extension. Let A be a matrix over K′ with the required
properties: RK′(A, r) ≥ s and RL′(A, r) ≤ t.

Now RL(A, r) ≤ t follows immediately because L′ ⊆ L. On the other hand, in the light
of Prop. 90, RK′(A, r) = RK(A, r), because K′ is an elementary submodel of K. ◀
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D A 5 × 5 matrix with different strict and absolute rigidity

In this appendix we provide a concrete example of a matrix that shows a difference between
strict and absolute rigidity. Specifically, we exhibit a matrix A ∈ Q5×5 such that RQ(A, 2) = 9
and RQ[

√
2](A, 2) = 8. Consider the 5 × 2 and 2 × 5 matrices

L =


1 −

√
2√

2 −1
3 −

√
2 1

12 − 7
√

2 1
10 − 7

√
2 1 + 2

√
2

 and R =
(

1 0 2 +
√

2 3 + 2
√

2 1√
2 1 1 + 2

√
2 2 − 3

√
2 3 +

√
2

)
.

The product LR has 8 irrational entries:

L ·R =


−1 −

√
2 −2 9 −1 − 3

√
2

0 −1 1 2 + 6
√

2 −3
3 1 5 + 3

√
2 7 6

12 − 6
√

2 1 11 10 15 − 6
√

2
14 − 6

√
2 1 + 2

√
2 15 −8 17


The following matrix, A ∈ Q5×5, differs from LR in only these 8 entries.

A = 1
16


−16 34 −32 144 67

0 −16 16 −89 −48
48 16 43 112 96
137 16 176 160 −92
39 73 240 −128 272

 (16)

In other words,

A− LR =


0 ∗ 0 0 ∗
0 0 0 ∗ 0
0 0 ∗ 0 0
∗ 0 0 0 ∗
∗ ∗ 0 0 0

 , (17)

where each ∗ hides some non-zero entry. We selected every entry of A at positions marked
by ∗ independently uniformly at random from {−135/16,−134/16, . . . , 135/16}.

Note that Eq. (17) immediately implies that RQ[
√

2](A, 2) ≤ 8.
We use exhaustive computer search to verify that RQ(A, 2) > 8. We consider all the(25

8
)

= 1, 081, 575 combinations of 8 cells among the 5 × 5 cells. Having fixed a set of 8
cells, we introduce variables for their entries, and use Matlab to verify that the system of(5

3
)2 = 100 polynomial equations, saying that the determinant of every 3 × 3 minor is zero,

has no rational solutions. In fact, we obtain the following stronger result.

▶ Proposition 92. If a 5 × 5 complex matrix B of rank ≤ 2 differs from A in at most 8
positions then B is either LR or its algebraic conjugate (replace every occurrence of

√
2 by

−
√

2).
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