DESCENT AND NILPOTENCE IN ALGEBRAIC K-THEORY

AKHIL MATHEW

ABSTRACT. Let A — B be a G-Galois extension of ring spectra in the sense of Rognes. One
can ask how close the map K (A) — K(B)"C is to being an equivalence, i.e., how close algebraic
K-theory is to satisfying Galois descent. In joint work with Clausen, Naumann, and Noel, we
prove that this map is often an equivalence after telescopic localization. The purpose of these
lectures is to outline some of the context of this problem and the ingredients that go into our
results.

In the first lecture, we discuss the descent problem broadly and its origin in the classical work
of Thomason. In the second lecture, we review the classical Dress induction theorem. We discuss
the formalism of G-spectra or spectral Mackey functors, and then explain a homotopical version
of the induction theorem. We explore the resulting idea of “derived defect bases” in the third
lecture and in particular give a “rational to Ly-local” transfer principle for understanding the
derived defect base. In the final lecture, we explain how these ideas can be applied to various
cases of the descent problem in algebraic K-theory.
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1. THE DESCENT PROBLEM

The purpose of these lectures is to describe joint work with Clausen, Naumann, and Noel on
descent theorems in the telescopically localized algebraic K-theory of structured ring spectra and
derived schemes. Along the way, we will highlight some ideas in equivariant stable homotopy theory.
These talks will primarily draw on material from the following three preprints:

e Descent in algebraic K-theory and a conjecture of Ausoni-Rognes [12], by D. Clausen, A.
Mathew, N. Naumann, and J. Noel. arXiv:1606.03328.

e Nilpotence and descent in equivariant stable homotopy theory [2I], by A. Mathew, N.
Naumann, and J. Noel. |arXiv:1507.06869.

e Derived induction and restriction theory [20], by A. Mathew, N. Naumann, and J. Noel.
arXiv:1507.06867.

Further background on the theory of “nilpotence” used in this work can be found in the following
two papers.

e The Galois group of a stable homotopy theory [19], by A. Mathew. arXiv:1404.2156.
e A thick subcategory theorem for modules over certain ring spectra [I8], by A. Mathew.
arXiv:1311.3940.

Our work is inspired by the classical work of Thomason [35] and Thomason-Trobaugh [36], and
we begin by reviewing the context.

1.1. Context. Let X be a (suitably nice) scheme, for example a quasi-projective variety over C. A
basic invariant of X is the Grothendieck group Ky(X) of perfect complexes on X (for appropriate
X, one can work with vector bundles on X).

Ky(X) refines to a more sophisticated invariant. To X, we can associate the algebraic K -theory
spectrum K (X), such that moK(X) ~ Ko(X). The association X — K (X) defines a contravariant
functor from schemes to spectra, introduced by Quillen [29] and Thomason-Trobaugh [36]. We have
groups K;(X) = m;K(X) for ¢ > 0, which are more mysterious in general. There is, nonetheless,
an analogy with algebraic topology that might give one hope for computing these groups.


http://arxiv.org/abs/1606.03328
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We should think of the algebraic K-theory of a scheme as somehow analogous to topological
K-theory KU (of complex topological vector bundles), which defines a cohomology theory on the
category of topological spaces [2]. Given a topological space Y, the topological K-theory KU*(Y')
can be computed via a “local-to-global” principle, i.e., the Atiyah-Hirzebruch spectral sequence

H*(Y;Z) = KU*(Y).

Remark 1.1. We explain briefly why the AHSS can be thought of as a “local-to-global” principle.
Let Y be a compact manifold. To obtain the Atiyah-Hirzebruch spectral sequence for KU*(Y'),
choose a finite open cover Y = U; U --- U U, such that any nonempty finite intersection of the
U;’s is either empty or contractible (e.g., use geodesically convex open subsets). One can compute
KU*(Y) using the Mayer-Vietoris spectral sequence for this cover; this yields the AHSS.

One can ask to what extent algebraic K-theory of schemes behaves like a cohomology theory,
and how computable it is. Algebraic K-theory satisfies a local-to-global principle for the Zariski (or
even Nisnevich) topology: this amounts to a sort of Mayer-Vietoris property. We have the classical
localization theorem of Thomason-Trobaugh. In the regular case, this result is due to Quillen [29].

Theorem 1.2 (Thomason-Trobaugh [36], Quillen [29]). Let X be a quasi-compact and quasi-
separated scheme and let U,V C X be quasi-compact open subsets that cover X. Then the diagram
of connective spectra

K(U)

is homotopy cartesian in Sps.

Remark 1.3. In fancier language, algebraic K-theory is a sheaf of connective spectra on the Zariski
site of X.

The above result enables one to obtain an analog of the Mayer-Vietoris sequence in algebraic
K-theory. One might draw further hope from the rigidity theorem of Suslin [32] identifying the

l-adic completion K (F), for any algebraically closed field F' of characteristic # [ via

—

K(F), ~ ku,.

Rings and schemes are unlike topological spaces, however, in the following sense: a one-point
scheme (e.g., the spectrum of a field) may be arithmetically very interesting, and the K-theory of
fields is quite complicated. Stated another way, the Zariski topology is too coarse to relate well to
algebraic topology. The appropriate replacement is the étale topology on a scheme.

Algebraic K-theory does not, however, satisfy the local-to-global principle for étale covers, e.g.,
Galois extensions. In particular, if one has a G-Galois extension of fields £ C E’, one obtains a
natural map

(1) K(B) — K(E")"“
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and this need not be an equivalence of spectraﬂ Although one has Galois descent for vector spaces
and modules, that procedure cannot be taken inside algebraic K-theory. From this point of view,
algebraic K-theory doesn’t behave like a cohomology theory: it is not a sheaf for the étale topology.

These lectures will focus on variants of and how close these maps are to being equivalences.

1.2. Baby Thomason. A basic observation here is that when one rationalizes, the problem goes
away.

Proposition 1.4 (“Baby Thomason” [35, Th. 2.15]). Let E C E’ be a G-Galois extension of fields.
Then the natural map K(E)g — (K(E")g)"" is an equivalence.

Note that the homotopy fixed points of a rational spectrum are computed at the level of homotopy
groups: that is, if X is a rational spectrum with a G-action, we have 7, X"¢ ~ (1,X)%. A careful
examination of the argument will show that it does not matter if we rationalize or take homotopy
fixed points first, i.e., (K(E")"%)g ~ (K(E")g)". In addition, rather than rationalizing, it suffices
to invert |G].

Proof. The key to this argument, and to all the fancier results, is that K-theory has another
functoriality in the opposite direction.

Construction 1.5. Given a map of rings A — B such that B is a finite projective A-module, we
have a forgetful functor from finite projective B-modules to finite projective A-modules. Algebraic
K-theory is an invariant defined from the category of finitely generated projective modulesﬂ Taking
K-theory of this forgetful functor, this defines a map of K-theory spectra

K(B) = K(A).
This is not a map of ring spectra, but it is a map of K (A)-module spectra (the projection formula).

Returning to the proof of Proposition consider now the G-Galois extension of fields £ C E’.
Let’s consider all the structure that exists on K(FE), K(FE’).

(1) There is a natural map i* : K(E) — K(E') given by extension of scalars.

(2) There is a G-action on E’, which induces a G-action on the category of E’-modules and
thus a G-action on K(E').

(3) There is a natural map i, : K(F') — K(F) which comes from restriction of scalars as
above.

(4) Both the maps i,,i* are G-equivariant, where G acts trivially on K(F) and in the way
described above on K(E’). This follows because E C E’ is G-equivariant.

(5) We compute the compositions in both directions:

(2) ivi* = |G| : K(E) — K(E)
(3) i*i. =Y g:K(E') — K(E).
geG

This follows from two computations:

IPart of the issue is that K(E')"G need not be connective, while K (E) always is by definition. But the map
need not even be an equivalence on connective covers. For fields of finite I-cohomological dimension, the map is an
l-equivalence in high enough degrees as a consequence of the Bloch-Kato conjecture. We will not get into this here
though.

2When we work with ring spectra, we will need to work with perfect complexes.
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(a) If V is an E-vector space, then there is an isomorphism of E-vector spaces V @ g ' ~
@l aV-

(b) If W is an E’-vector space, there is an isomorphism of E’-vector spaces W @ E' ~
(W @p (B'®p E')) = @,ecq W9. Here W @p E' is an E'-vector space by the action
on the second factor and WY refers to the E’-vector space with the same underlying
set as W but with the E’-module action twisted by the automorphism g of E’.

A straightforward diagram chase involving and shows that the map
i* 1 K(E)g — (K(E')g)"¢
is an isomorphism, with inverse given by i./|G|. O

Of course, in stable homotopy theory one is usually more interested in integral or torsion phe-
nomena rather than rational phenomena. The above argument provides no information about those.
Thomason’s main theorem shows that a large piece of the torsion information can be controlled
though.

1.3. A primer on telescopy. Throughout these lectures, we will need a little background from
chromatic homotopy theory. We review here what we need.

Let P, be a perfect complex over Z, i.e., a bounded complex of finitely generated projectives.
Let ¢ : ¥¢P, — P, be a self-map of some nonzero degree d > 0. Some composite of ¢ is null for
degree reasons.

The analog of this phenomenon completely fails in the world of stable homotopy theory. That
is, there are lots of examples of non-nilpotent self-maps of finite spectraﬂ of positive degree. This
was first observed by Adams.

Example 1.6. Suppose for simplicity ¢ is odd. Then there is an Adams self-map v; : ¥2¢=2(5°/¢) —
S9/¢ (cf. [1, Th. 1.7]) which induces an isomorphism in K U,-homology. Let T(1) be the homotopy
colimit

T(1) = hocolim (So/f vo5=(20-2)(g0 /gy Uy ) ,

At p = 2, one has a map X%(5°/2) — S°/2 with the same property and we define T'(1) at the prime
2 by inverting this map.

Definition 1.7. A telescope T is the homotopy colimit of a self-map ¢ : 2¢F — F of non-zero
degree d > 0, where F' is a finite spectrum.

Telescopes exist in abundance, thanks to the technology of Hopkins-Smith and in particular their
periodicity theorem [I7, Th. 9]. The Adams construction 7'(1) is only the first of an infinite family.

Construction 1.8. Fix a prime number p. There exists a sequence (F,,, ¢,) of finite p-torsion
spectra F,, of a non-nilpotent central self-maps ¢, : % F, — F, for some d, > 0 with the
following properties.

(1) Fy = SY/p is the Moore spectrum mod p.
(2) F,41 be the cofiber of the self-map ¢, : X4 F,, — F,.

3Finite spectra are the compact objects in spectra; similarly, perfect complexes are the compact objects in the
derived category of Z.
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The inductive existence of the non-nilpotent central self-map of Fj,+1 (and its uniqueness up to
taking powers) is part of the machinery of [I7].

The telescope F},[¢; ] of the map ¢, : Yin . — F, will be called a height n telescope. Although
the homotopy type of this construction depended on some choices, the Bousfield class is independent
of them.

Given any telescope T as in Deﬁnition the p-localization T{,), if it is nonzero, has the property
that T(,) A F, [¢,,1] # 0 for exactly one n. This n is called the height of T' at the prime p.

1.4. Thomason’s results. In [35, B6], Thomason shows that the failure of étale descent (for
instance, the failure of to be an equivalence) can be fixed if one smashes K-theory with the
telescope T'(1) of Example Fix a prime number /.

We assume various technical hypotheses on X ﬂ

(1) ¢ is invertible on X.
) X is noetherian and has finite Krull dimension.

) If £ =2, we have /-1 € I'(X, Ox).
) The residue fields have uniformly bounded étale ¢-cohomological dimension and admit a

“Tate-Tsen filtration” (cf. [35, Th. 2.43]).

In this case, Thomason is able to show that maps of the form are equivalences after one
smashes with T'(1) (considered at the prime ¢). In fact, Thomason obtains an analog of the Atiyah-
Hirzebruch spectral sequence.

2
3
(4

Theorem 1.9 (Thomason [35], B6]). Under the above hypotheses on X, there is a descent spectral
sequence
Ey' o~ H3(X,Z/0(t)2)) = m_s(K(X) AT(1)).

Here Z/0(t/2) denotes the sheaf M?(tm) (where 1y denotes the sheaf of Cth roots of unity) for t even
and is zero for t odd.

In particular, it follows that X — K(X) A T(1) is an étale sheaf of spectra.

Optional Remark 1.10. It is also known that K(X) A T(1) can be obtained by inverting a so-
called Bott element, or by K(1)-localizing K(X)/¢. We refer to the treatment of Mitchell [27] for
a detailed survey.

Optional Remark 1.11. Thomason’s result shows that K(-) AT(1) is an actually a hypercomplete
étale sheaf, which leads to the above descent spectral sequence once the stalks are identified using
Gabber-Suslin rigidity.

Optional Remark 1.12. Using the tools of the Bloch-Kato conjecture (proved by Voevodsky-
Rost), it is possible to say much more, but we won’t get into any of this here.

1.5. Galois extensions. The goal of these talks is to prove a special case of Thomason’s resultsﬂ
where instead of studying the K-theory of ordinary rings and schemes, we study the K-theory of
structured ring spectra, following the philosophy of “brave new rings” of Waldhausen. Instead of
taking the algebraic K-theory of a ring, we take the algebraic K-theory of an E,.-ring R, which
produces a new E-ring K(R). There are numerous computational tools for approaching 7. K (R);
we refer to [31] for a survey of recent work.

AThese types of conditions will play no role in the remainder of these notes as we use very different methods from
Thomason.
5Speciﬁca1]y, we are studying analogs of étale descent whereas Thomason is exploring hyperdescent.
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The idea is to carry over concepts from classical algebra and algebraic geometry to the setting
of ring spectra. For instance, the notion of the étale site has an analog in the world of ring spectra.

Definition 1.13. A morphism R — R’ of E..-rings is étale if the following two conditions happen:
(1) moR — moR’ is an étale morphism of ordinary rings.
(2) The natural map 7R ®n,r ToR' — 7. R’ is an isomorphism.

Given this, one can investigate whether the algebraic K-theory of ring spectra is, after some
periodic localization, a sheaf of spectra on the étale site. The above definition gives a good analog
of the classical theory of étaleness for connective E,.-ring spectra. In the world of nonconnective
ring spectra, however, there are additional morphisms of E..-ring spectra that have many of the
formal properties of étale morphisms. These were introduced by Rognes under the name Galois
extensions.

Definition 1.14 (Rognes [30]). Let G be a finite group. An extension R — R’ of E.-rings together
with a G-action on R’ in E_.-R-algebras is said to be G-Galois if:

(1) R — R'™Y is an equivalence.
(2) The natural map R’ ®@g R’ — [[,co R’ is an equivalence.

A Galois extension R — R’ is said to be faithful when tensoring with R’ is conservative as a functor
Mod(R) — Mod(R).

Optional Remark 1.15. The theory of faithful Galois extensions fits into Grothendieck’s ax-
iomatic Galois theory and one can obtain a Galois group. We refer to [19] for more details.

Example 1.16. Let R be an E-ring spectrum and let R be a G-Galois extension of the commu-
tative ring moR (in the classical sense). Then one has a canonically determined G-Galois extension
R — R’ of E-rings such that moR’ ~ R{, compatible with the G-action.

Example 1.17. The basic example of a Galois extension of E,,-rings is the map KO — KU from
periodic real to complex K-theory. This is a Cy-Galois extension. Note that 7. (KO) is much more
complicated homologically than 7, (KU) (e.g., it has nilpotent elements).

Example 1.18. There are more “chromatic” examples. Given any finite subgroup H of the Morava
stabilizer group G,, at height n, one has an H-Galois extension E" — E,,.

Example 1.19. Let R be a discrete commutative ring where p is nilpotent and let G be a p-group.
Then the extension F'(BG4; R) — R is a G-Galois extension.

The idea is that a Galois extension of E,-ring spectra is supposed to be a “brave new” analog
of a Galois extension of fields or of commutative rings. For example, there is a notion of “Galois
descent” of modules, at least for faithful Galois extensions. Galois extensions are useful in studying
invariants such as Picard groups of Eo.-rings. We refer to [23,[15] for some applications to calculating
Picard groups.

1.6. Galois descent. We can try to use Galois theory to study algebraic K-theory as well. This
leads to the following question.

Question 1.20. Suppose A — B is a G-Galois extension of E,-ring spectra. One obtains a map
K(A) — K(B)"“. How close is this map to being an equivalence?

In particular, Ausoni-Rognes conjecture in [3]:
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Conjecture (Ausoni-Rognes). If A — B is a K(n)-local G-Galois extension, and T is a height
n+ 1 telescope, then the map T A K(A) — T A K(B)"C is an equivalence.

In the setup of Thomason’s work, for Galois descent for discrete rings, one has descent after
smashing with the height one telescope T'(1). One could ask about telescopes at higher heights,
but a theorem of Mitchell [26] implies that if A is a discrete ring and T is a telescope of height > 1,
then K(A) AT is contractible.

In the setup of structured ring spectra, one obtains in general more interesting chromatic phe-
nomena. To understand this, we will use the notion of L,-localization, which is localization with
respect to Morava E-theory.

Our main result is the following.

Theorem 1.21 (Clausen, M., Naumann, Noel [12]). Suppose A — B is a G-Galois extension of
Eoo-ring spectra. Suppose we have an equality [B] = |G| in Ky(B) ® Qﬂ Let T be any telescope.
Then the maps

TAK(A) = T AK(B)"Y = (T A K(B))"¢
are equivalences. This result holds with K -theory replaced by THH,TC, etc.

This result applies to all the Galois extensions listed above.

Example 1.22. For example, it applies to KO — KU using the Wood equivalence KU ~ KOACH.
This shows that the class of the KO-module KU is equal to 2 in Ko(KO).

We have the following general criterion for the condition to be satisfied.

Theorem 1.23 ([12]). Suppose R has the property that moR has no nontrivial idempotents and
Ko(R) ® Q has no nontrivial idempotents. Then the above result holds for every Galois extension
of R.

As a corollary, we can prove the analog of étale descent in localized algebraic K-theory, using
the definition of étale from Definition [[.13

Corollary 1.24. Let R be an Eo.-ring and let T be any telescope. Then the association R’ +—
T N K(R) is a sheaf of spectra on the étale site of R.

Rationalized algebraic K-theory of discrete rings satisfies finite flat descent as well. We prove
the following result, which generalizes the above to the non-Galois case.

Theorem 1.25 ([12]). Let A — B be a morphism of Es-rings such that B is perfect as an A-
module. Suppose that the induced wrong-way map Ko(B) @ Q — Ko(A) ® Q is surjective. Then for
any telescope T, the natural map

T AK(A) = T ATot(K(B) = K(B®a B)= ...)
18 an equivalence.
Question 1.26. Is there an example of a Galois extension which fails to satisfy the hypotheses of

our result?

6Note that B is a perfect A-module, so [B] defines a class in Ko(B).



DESCENT AND NILPOTENCE IN ALGEBRAIC K-THEORY 9

2. DERIVED INDUCTION AND RESTRICTION THEORY

Let A — B be a G-Galois extension of E,,-rings. Our goal is to analyze the descent comparison
map K(A) — K(B)"®. An idea of Carlsson suggests that the comparison map K(A4) — K(B)"“
should be analogous to the map X¢ — X" from fixed points to homotopy fixed points, when X is
a G-space or a G-spectrum. We will discuss this story more in the final lecture. Before that, we will
shift gears away from algebraic K-theory to discuss some tools for analyzing the map X¢ — X"C.

The next goal of these lectures is to develop the theory of F-nilpotent G-spectra. The theory
of F-nilpotence gives tools for proving that such comparison maps are equivalences. The main
references for F-nilpotence are [21] 20]. Classical induction and restriction theory, with which we
shall start, is of course much older.

Throughout, let G be a finite group.

2.1. Coefficient systems and families. In this subsection, we introduce the basic problem and
set up some notation.

Definition 2.1. Let O(G) denote the orbit category of G: that is, the category of G-sets of the
form {G/H, H < G} and G-maps between them.

Example 2.2. Suppose G = C3. Then O(G) has two objects, Cy/e and Cy/C5. The object Co/Cy
is terminal. We have Home(c,)(Ca/e, Ca/e) ~ Cy and Homp(c,)(Ca/Ca, Ca/e) = 0.

Definition 2.3. A functor O(G)°? — Ab is called a coefficient system.
Remark 2.4. Let M be a coefficient system. Then for each H < G, we have an abelian group
M(G/H). We have the following functoriality.

(1) Whenever H' < H, we obtain a restriction map
Rest, : M(G/H) — M(G/H')

induced by the natural map of G-sets G/H' — G/H.

(2) Whenever H, H' are conjugate by an element g € G so that H' = g~ 'Hg, we have a
conjugation isomorphism G/H ~ G/H’ given by multiplication on the right by g. This
induces an isomorphism

cg: M(G/H) ~ M(G/H").
(3) These satisfy some natural relations which we will not write out explicitly.
The following example gives a large source of coefficient systems for any finite group.

Example 2.5. Let Gp™ denote the category of finite groups and injections between them. Suppose
F : (Gp™)° — Ab is a functor. Suppose that for any group K, the inner automorphisms of K act
trivially on F(K).

Then for any group G, we obtain a coefficient system on G which sends G/H — F(H). The
hypothesis that inner automorphisms of K act trivially on F'(K) is necessary to obtain a well-defined
functor.

Here are two basic examples:

(1) Fix a field k. Group cohomology with coefficients in k gives an example of a coefficient
system on (. That is, there is a natural functor

O(G) — Ring,, G/H — H*(H;k).
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(2) Given a finite group K, let R(K) denote the complex representation ring of K, i.e., the
Grothendieck group of finite-dimensional complex representations of K. For any finite
group GG, we obtain a coefficient system from the representation rings of the subgroups.
There is a natural functor

O(G)*P — Ring, G/H — R(H).

We now include an example of a coefficient system that will be important for the descent ques-
tions.

Example 2.6. Let £ C F' be a G-Galois extension of fields and let i € Z>g. Then we have a
coeflicient system given by

G/H — K;(F™).
In fact, we have a functor O(G)°? — Ring sending G/H ~ FH and we can compose this functor
with K : Ring — Ab.

Definition 2.7. A family of subgroups F is a collection of subgroups of G which is closed under
subconjugation. Given a family F, we let Ox(G) denote the subcategory of O(G) spanned by the
G-sets {G/H,H € F}.

Example 2.8. Common examples of families of subgroups include the p-subgroups, the abelian
subgroups, the cyclic subgroups, etc. If H is a normal subgroup of G, then the subgroups contained
in H form a family of subgroups of G.

Let M be a coefficient system. Our setup is that we are interested in M (G/G), which might
be hard to compute, while we have M(G/H) for H € F for some family . We obtain a basic
comparison map

(4) M(G/G)—  lm  M(G/H).
G/HEO £ (G)or

Question 2.9. How close is the comparison map to being an isomorphism?

Example 2.10. Suppose F = {(1)} is the family consisting only of the trivial subgroup. Let us
unwind what happens here. We have a G-action on the G-set G/e given by right multiplication.
Our comparison map becomes

M(G/G) — M(G/e)®,
For example, in the setting of the G-Galois extension E C F, we obtain the map K;(E) — K;(F)%.
We saw earlier that these maps are rational isomorphisms.

Example 2.11 (Cartan-Eilenberg). Let G be a finite group and let F be the family of p-subgroups.
Let k be a field of characteristic p. Then the natural comparison map
H*(G; k) — lim H*(H; k)
G/HeOx(G)ep
is an isomorphism.
We next include the examples involving representation rings. Note that R(G), as a ring, is easy

to determine when G is abelian: in this case, we have R(G) ~ Z[G"] where GV = Hom(G,C*) is
the group of characters of G.



DESCENT AND NILPOTENCE IN ALGEBRAIC K-THEORY 11

Example 2.12 (Artin induction). The map
R(GN/IG)l = lim  R(H)[1/|G]]
G/HEO£(G)or

is an isomorphism when F is the family of cyclic subgroups. Note that when we tensor with C
(instead of inverting |G|), we even have an isomorphism

R(G) @z C ~ Fun(Gconj, C),
where Gonj denotes the set of conjugacy classes of elements in G.
When we do not invert the order of GG, one has to choose a larger family of subgroups.

Example 2.13 (Brauer induction). The map
R(G) — lim R(H)
G/HEOx(G)op
is an isomorphism when F is the family of Brauer elementary subgroups. A group H is called
Brauer elementary if H ~ P x P’ where P is a p-group and P’ is cyclic.

2.2. Mackey functors and Dress induction. To prove results such as the inverse limit decom-
positions of Artin and Brauer induction (and treat more general questions involving )7 it is
fundamental that the coefficient systems in question have an additional functoriality in the other
direction. Instead of being simply coefficient systems, they are Mackey functors.

Remarkably, it is the induction homomorphisms that enable one to prove that comparison maps
(4) are equivalences.

Definition 2.14. We define the effective Burnside categomﬂ Burng as follows.

(1) The objects are given by the finite G-sets.
(2) Given finite G-sets S and T, the maps Hompyrm,, (S, T) is given by isomorphism classes of

N
VANV AN

AXTB .

N,

The effective Burnside category is a pre-additive category: to add spans, we can take their disjoint
union.

(3) To compose spans

we form the span

"The terminology “effective” is due to Clark Barwick [7].
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Definition 2.15. A Mackey functor is a functor M : Burng — Ab which carries disjoint unions
of finite G-sets to direct sums of abelian groups. (In particular, M is determined by its values on
the G-orbits.)

Construction 2.16. Let FinSetg be the category of finite G-sets. There is a natural functor
FinSetg — Burng

which is the identity on objects, and which carries a morphism f : .S — T to the correspondence

S .
f
idg
S T
Similarly, one constructs a functor FinSety — Burng.

Let M be a Mackey functor. From the above two functors, we obtain the following data. For
any map of finite G-sets f : S — T, we obtain homomorphisms

ff o M(T) = M(S), fo:M(S)— M(T).
These have the following properties:

(1) f*, f« are naturally functorial (in opposite directions) in the morphism f : S — T. Note in
particular that M restricts to a coefficient system (by considering the functoriality along

f).
(2) Given a pullback diagram of finite G-sets

T A T,
b
g—1.g
we have an equality
(5) P o= flp" M(S') — M(T).

Conversely, given an association T' +— M(T') from finite G-sets to abelian groups together with
functorialities f — f*, fi satisfying the base-change relation , one obtains a Mackey functor.

Definition 2.17. Let M be a Mackey functor for the group G. Given subgroups H' < H < G,
then we have a natural map f: G/H' — G/H. We write

(6) Res#, = f* . M(G/H) — M(G/H'),

(7) md¥, = f.: M(G/H') — M(G/H).

Definition 2.18. A Green functor is a Mackey functor M together with the following structure:
(1) For each finite G-set S, M(.S) has the structure of a commutative ring.
(2) For each map f:S — T, f*: M(T) — M(S) is a map of commutative rings.
(3) For each map f: S — T, f.: M(S) — M(T) is a map of M(T)-modules (where M(S) is
given the M (T)-module structure via f*). This is called the projection formula.
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Example 2.19. Let H' < H be subgroups of a finite group G. We then have a homomorphism
1, . R(H') — R(H)

obtained by inducing H’-representations to H-representations. Using the Ind. maps, we can con-
struct a functor

O(G) — Ab, G/Hw— R(H)
but where the functoriality comes from the induction homomorphisms. This combines with the

representation ring coefficient system to yield a representation ring Green functor. That is, there
is a Green functor M such that:

(1) For H < G, we have M (G/H) = R(H).

(2) For a map f : G/H' — G/H, we have that f* : R(H) — R(H') is given by restricting

representations and f, : R(H') — R(H') is 1&,.
One can make similar constructions in group cohomology (using the “corestriction” functoriality).
2.3. The Dress induction theorem.
Definition 2.20. We say that a Green functor M is induced from a family F if the induction
homomorphism
Ind: @ M(G/H) — M(G/G)
HeF

has image containing the unit, or equivalently (by the projection formula) if the map is surjective.

When a Green functor is induced from a family, then one gets a decomposition of M(G/G) by
the following fundamental result of Dress.

Theorem 2.21 (Dress). Suppose M is a Green functor for the finite group G which is induced
from F. Then the restriction map

M(G/G) — @1 M(G/H)
G/HEOx(G)op
is an isomorphism.
Example 2.22. The classical theorems of Artin and Brauer state that the representation ring

Green functor is induced from the families of cyclic and Brauer elementary subgroups, respectively.
That is, let G be a finite group. Then:

(1) There exist classes ¢ € R(C)[1/|G]] for each cyclic subgroup C' C G such that we have
1= Y Indg(zc) € R(G)[1/|G]].
CCG cyclic

(2) There exist classes yg € R(H) for each Brauer elementary subgroup H C G such that we
have

1= > md% (zy) € R(G).

HCG elementary

Example 2.23. In group cohomology, one observes that if G is a finite group, P C G a p-Sylow
subgroup, and k a field of characteristic p, then the map H*(P; k) — H*(G; k) given by corestriction
(i.e., the induction in the Mackey functor) carries 1 to [G : P], which is a unit in k.
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2.4. G-spectra. Mackey functors arise in “nature” as the homotopy groups of a G-spectra. Our
goal is to describe an induction and restriction theory that applies directly to the G-spectra, rather
than to their homotopy groups.

It is not within the scope of these lectures to cover the foundations of G-spectra. There are
several basic facts about them to know.

(1) Let Spy denote the category of G-spectra and let Sg denote the category of G-spaces.
Given any two G-spectra £ and F, there is a natural spectrum of maps Homg,, , (E, F).
(2) There is an adjunction
(X7,0%) : Sg = Spg-
Any G-spectrum E defines a “cohomology theory” on G-spaces via
E*(X) = n_yHomg,, (X, E),

for any k € Z. This cohomology theory satisfies analogs of the usual Eilenberg-Steenrod
axioms for a cohomology theory on topological spaces.

(3) There are G-spectra representing many naturally occurring cohomology theories on G-
spaces. For example, there is a G-spectrum HIF, € Sp, with the property that if X is a
G-space, then we have a natural isomorphism

HF,*(X) = H*(Xpa;F,p),

i.e., HF, represents Borel-equivariant cohomology. Here X, ~ (X x EG)/G is the homo-
topy orbits or Borel construction for G acting on X.
Similarly, we have G-spectra KOg and KUg representing real and complex equivariant
K-theory.
(4) Given a G-spectrum E, we write

7 E ~ Homs,, (EYG/H, E) = E*(G/H),

and this clearly defines a coefficient system with values in graded abelian groups. This
actually extends naturally to a Mackey functor. In fact, this follows from the fact that
there are more maps between X°G/H and ¥G/K in Spg than in Sg or O(G). We
actually have

moHomg,, (XY G/H,X7G/K) ~ Ko(Hompym (G/H,G/K)),

where K denotes taking group completion of the abelian monoid Hompym, (G/H,G/K).

(5) There is a natural smash product on Sp.. This leads to the notion of a G-ring spectrum:
that is, an associative algebra up to homotopy. It also leads to more highly structured
notions. Given a G-ring spectrum, then the homotopy groups are naturally arranged into
a Green functor.

Let E be a genuine G-spectrum. As we saw, the homotopy groups of E naturally form a Mackey
functor, given by
G/H — nl' E = Homg,,(G/H4, E).
In fact, it is possible (following Guillou, May, and Barwick) to set up the theory of G-spectra via
“spectrum-valued” Mackey functors. This makes it very transparent that the homotopy groups
should take values in Mackey functors.

Definition 2.24. Given a G-spectrum F, for every H < G, we obtain a spectrum

EY ¥ Homg,(G/H,, E),
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where we consider the spectrum of maps from G/H, into E. Since this is defined as maps out of
G/H, one sees that G/H ~ E defines a functor O(G)°? — Sp.

Definition 2.25. A spectral coefficient system is a functor O(G)°P — Sp.

Therefore, given any G-spectrum E, we obtain a spectral coefficient system G/H + Ef. A key
observation is that there is more structure on the fixed points of a G—spectrumﬁ

For this, we will need to modify our definition of the effective Burnside category. We should
instead work with the effective Burnside 2-category Burng, which is a (2, 1)-category (or category
weakly enriched in groupoids) such that:

(1) The objects, as before, are given by the finite G-sets.
(2) Given finite G-sets S, T, we have that Hompyuen, (S, T) is the groupoid of correspondences
of finite G-sets from S to T" and isomorphisms between them.

Definition 2.26. A spectral Mackey functor is a functor F : Burn’ — Sp with the property

that if S and T are finite G-sets, then the natural map F(SUT) — F(S) x F(T) is a homotopy
equivalence. Given a spectral Mackey functor F' and a map of finite G-sets f : S — T, we obtain
maps f*: M(T) — M(S) and f,. : M(S) — M(T) which satisfy a base-change relation up to
coherent homotopy.

In other words, one simply reproduces the definition of a Mackey functor but replaces Ab with
Sp. Since Sp is an (0o, 1)-category rather than a 1-category, a functor Burng? — Sp generally does
not factor through Burng (while a functor to abelian groups does).

Construction 2.27. Given a G-spectrum E, there is a spectral Mackey functor Fy : Burng? — Sp
with the properties:

(1) If T is a finite G-set, we have an equivalence Fg(T') ~ Homg, (X7, E).

(2) If f: T — T’ is a morphism of finite G-sets, we obtain a morphism Fr(T") 5 Fg(T) given
by precomposing with f.

(3) If f: T — T’ is a morphism of finite G-sets, we obtain a morphism Fg(T) Iy Fg(T') as

follows. A basic feature of Spy, is that X5°T, X°T" are self-dual with respect to the smash
product. In particular, we also have an identification

F(T) ~ Homg,,_ (ST, E) ~ Homs,_ (S°, EASTT) = (EASPT)C.

Using this identification, the map f, : Fg(T) — Fg(T’) comes from taking fixed points in
the natural map EAXTET — EAXSET.

Theorem 2.28 (Guillou-May; Barwick [I4]). There is an equivalence of homotopy theories (e.g.,
model categories or oco-categories) between Spe and the theory of spectral Mackey functors.

In particular, a G-spectrum is specified precisely by its fixed point data, provided that we
remember all the relations between them that come from the Burnside (and not simply the orbit)
category.

8By contrast, the G-homotopy type of a G-space is entirely encoded by a functor O(G)°? — S by Elmendorf’s
theorem. A naive G-spectrum is equivalent data to a spectral coefficient system.
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2.5. Derived induction and restriction. We can consider derived analogs of the above compar-
ison maps.

Definition 2.29. Let F be a family of subgroups of G. Let E be a G-spectrum. Then we have a
comparison map

(8) E€ — holimg peo,(qyr B

The right-hand-side can be identified with Homg, (EF;,E) = F(EF,,E)Y where EF is the

classifying space of the family and F'(-,-) denotes the function spectrum. Here all the maps between

the fixed points are the restriction maps. Note that the limit is replaced by a homotopy limit.
Similarly, we have a comparison (induction) map

(9) hOCO]img/Heo}.(G)EH — EG.

In the language of equivariant stable homotopy theory, the left-hand-side can be identified with
(EF. A E)Y and the map is induced by the nontrivial map EF, — S°.

We have the following “derived” analog of the Dress induction theorem. In some form, it goes
back to Thomason [35], at least when F = {(1)}. It is stated (again for F the trivial family) in [16]
Sec. 10].

Theorem 2.30 (Thomason machine; Hill-Hopkins-Ravenel [16]; Mathew-Naumann-Noel [20]).
Suppose that E is a G-ring spectrum and F is a family of subgroups. Suppose that the map @ has
image including 1 € 1oES. Then the restriction map 18 an equivalence, as is

Definition 2.31. We will say that a G-ring spectrum is induced from F if the hypothesis of the
above result hold.

Remark 2.32. In @, we can identify the left-hand-side with the fixed points (EF, A E)¢. In
other words, a G-ring spectrum is induced from F if and only if the map EF; A E — E has image
in homotopy (on G-fixed points) including the unit.

Example 2.33. Suppose for example that F = {(1)}. Then becomes
(10) EY - EMC L (BUhhG,

This basic map, from fixed points to homotopy fixed points, has played an important role in
algebraic topology.
We also have the map of @D, which becomes

(11) Ene — EC,

called a transfer map. If has image containing the unit, then is an equivalence by the
above machine.

Remark 2.34. The reader may have noted a difference in our treatment of the derived in-
duction and restriction pictures. In the setting of Green functors M, we considered the map
Dyer M(G/H) — M(G/G) (given by the sum of the induction maps) and asked whether its im-
age contained the unit. It naturally factored through a colimit h%InG/HeO}-(G) M(G/H) - M(G/Q),
which the above direct sum surjected onto. In the setting of derived induction theory, the homo-
topy colimit hocolimg/, He@f(g)EH can have classes in homotopy that do not show up in the direct
sum @y r EH_ For example, if X is a spectrum with a G-action, X, can have larger homotopy
groups than X. This is in fact what will happen in our applications.
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In the next lecture, we will discuss more the consequences of derived induction and restriction
theory and describe a powerful tool for verifying that the above hypotheses are satisfied.

3. F-NILPOTENT (G-SPECTRA

We will restart the discussion of derived induction and restriction theory in this lecture from a
different point of view.

3.1. Thick subcategories and nilpotence. Let C be a triangulated category which is idempotent-
complete. The latter condition means that if X € C and if e : X — X is an idempotent endomor-
phism, then there is a splitting in C given by X ~ Xe ® X (1 —e).

Definition 3.1. A thick subcategory of C is a full subcategory D C C such that D is triangulated
and idempotent-complete. This means:
(1) 0eD.
(2) Given an exact triangle X’ — X — X" in C, if two out of the three objects belong to D,
then the third does as well.
(3) If X € D and admits a decomposition in C, X ~Y' @ Y"” then YY" € D as well.

The classification and analysis of thick subcategories of triangulated categories is an active field,
starting with the classification for p-local finite spectra by Hopkins-Smith [I7].
Let C be a ®-triangulated category. That is, we assume that:
(1) C is a symmetric monoidal category with tensor product ® and unit 1.
(2) C is a triangulated category.

(3) The functor C x C 8 € is exact in each variable.

Definition 3.2. A thick subcategory Z C C is called a thick ®-ideal if for all X € C,Y € Z, we
have X @ Y € 7.

Thick ®-ideals in particular have been studied extensively, e.g., in the work of Balmer [4] on the
spectrum of a ®-triangulated category.

Definition 3.3 (Bousfield). Let C € CAlg(Cat?™) and let A be an associative algebra object in
C. Then we say that an object X € C is A-nilpotent if it belongs to the thick ®-ideal generated
by A.

3.2. F-nilpotence. Let G be a finite group. The homotopy category Ho(Sp) is a ®-triangulated
category and we will work in it.

Construction 3.4. Given H < G, we define a commutative algebra object Ay = F(G/Hy,S2) €
Sp¢ as the Spanier-Whitehead dual to the G-space G/H. The commutative algebra object Ay has
the property that

Modsp,, (Ar) ~ Spy,
cf. [6] and [21, Sec. 5.3].

Definition 3.5. Let G be a finite group and let F be a family of subgroups. We let C = Sp and
take Ar = [[cr Ar. We say that a G-spectrum is F-nilpotent if it is Ax-nilpotent.

Remark 3.6. Given a subgroup H C G, there is a restriction functor Resfl : Spe — Spy from
G-spectra, which has a biadjoint functor Indg :Spy — Spe- A G-spectrum is F-nilpotent if and
only if it belongs to the smallest thick subcategory of Ho(Sp() generated by the G-spectra which
are induced from a subgroup in F.
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The notion of F-nilpotence is very closely connected to the induction and restriction theory
discussed in the previous lecture.

Proposition 3.7. Given an F-nilpotent G-spectrum E, the comparison maps and @D are
equivalences.

Proof. When the G-spectrum F is itself induced from an H-spectrum for some H € F, a for-
mal argument (amounting to a certain augmented cosimplicial object being split) shows that the
comparison maps are equivalences. Since and @[) are morphisms between exact functors, the
collection of G-spectra E for which they are equivalences forms a thick subcategory, which therefore
contains all F-nilpotent G-spectra. (|

For a G-ring spectrum, F-nilpotence is equivalent to the derived induction map @ being an
equivalence, or to being induced from F.

Proposition 3.8. Let R be a G-ring spectrum. Then R is F-nilpotent if and only if R is induced
from F. This happens if and only if the G-ring spectrum R N\ EF is contractible.

For a general G-spectrum, one can reduce to the case of a ring spectrum by considering the
endomorphism ring. This follows from the following result.

Proposition 3.9. A G-spectrum E is F-nilpotent if and only if the endomorphism ring object
F(E,E) € Spg is F-induced.

3.3. Consequences of F-nilpotence. Let R be a G-ring spectrum. Consider the Green functor
w. R. If R is F-nilpotent, we can ask whether 7 R is induced from the family of subgroups F in
the sense of Definition We can also ask whether 7R can be recovered from w’R for H € F,
i.e., whether is an isomorphism. The answer to the both questions is no in general.

Since R is F-nilpotent, we have

RC ~ hocolimg/Heof(G)RH
under the induction maps. This gives a homotopy colimit spectral sequence converging to m, R®
where the Fy term is given
lim® Ft(RH),
G/HeOx(G)
where li_n}s G/HEO(C) denotes the left derived functors of the colimit functor. The Ey" line is given
; H
by hﬂG/HeOF(G) m(R™). We have a natural map
lim m(RY) —» mRY,
G/HEO#(G)

and this is surjective for all ¢ if and only if 7o R is induced in the sense of Definition However,
this map is simply the edge homomorphism in a spectral sequence. In particular, F-nilpotence does
not imply that the homotopy groups are induced. However, it implies something close.
Proposition 3.10 ([20]). Suppose the G-ring spectrum R is F-nilpotent. Then:
(1) The Green functor my R ®z Z[1/|G|] is induced from F. In particular, the comparison map
(12) ¥R — lim mHR
O]:(G)Op

becomes an isomorphism after inverting |G|.



DESCENT AND NILPOTENCE IN ALGEBRAIC K-THEORY 19

(2) Moreover, the map is an N -isomorphism: that is,
o Any element in the kernel of this map is nilpotent.
e Given x € @O;(G)np 7HR, there exists N such that N belongs to the image. If R is

p-local, then we can take N to be a power of p.

Remark 3.11. The class of F-nilpotent G-spectra is closed under cotensors: if X is a G-spectrum
and E is F-nilpotent, then the function spectrum F (X, E) is F-nilpotent. In particular, given
an F-nilpotent G-ring spectrum E and a G-space Y, then the G-ring spectrum F(Yy, E) is F-
nilpotent. Therefore, one obtains analogous results for the (Mackey-functor valued) E-cohomology
of Y.

3.4. Some examples of derived defect bases. Given any G-spectrum M, there is a unique
smallest family F such that M is F-nilpotent.

Definition 3.12. The minimal family F such that M is F-nilpotent is called the derived defect
base of M.

‘We now describe the derived defect bases of the two key examples of equivariant spectra discussed
earlier.

Theorem 3.13 (Quillen [28] and Carlson [11]; cf. also Balmer [5]). The G-spectrum Hk represent-
ing Borel-equivariant cohomology with coefficients in a field k of characteristic p is F-nilpotent for
F the family of elementary abelian p-subgroups, i.e., subgroups isomorphic to (Cp)™ for some n.

We can apply Proposition to the example of Hk. After inverting |G|, there is no interesting
information as the higher cohomology is all annihilated. However, the second statement leads to
an interesting consequence. In particular, one has the following celebrated result.

Theorem 3.14 (Quillen [28]). Let G be a finite group and let F denote the family of elementary
abelian p-subgroups. Then the comparison map
H*(G; k) — m H* (A k)
G/AcO£(G)oP
is a uniform F-isomorphism: that is, there exists N such that
(1) Ewvery element of the kernel is nilpotent of exponent N.
(2) Given any x € @G/Ae@;(g)op H* (A k), P belongs to the image of the comparison map.

Remark 3.15. Note that the group cohomology is generally difficult to compute for a general
group, but there are certain groups for which one knows the answer. For instance, one knows the
answer for an abelian group. If G = Cpn, then we have H*(C); k) ~ Al(a_1) ® P(S-2), and for
any abelian p-group, the cohomology is determined by the Kiinneth theorem as a tensor product
of an exterior and a polynomial algebra.

We can also determine the answer for equivariant K-theory.

Theorem 3.16. The derived defect base of equivariant K-theory KUg is given by the family of
cyclic subgroups of G.

Remark 3.17. After inverting the order of G, the above result combined with Equation gives
that the representation ring Green functor becomes induced from the family of cyclic subgroups
after inverting |G|. This is, of course, the statement of Artin’s induction theorem.

We list some examples for geometrically natural G-spectra.
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G-spectrum Derived defect base
HF, Elementary abelian p-subgroups (Quillen, Carlson)
HZ Elementary abelian subgroups (at any prime)
MU Abelian [-subgroups for any ! (Quillen’s “complex-oriented descent”)
E, Abelian p-subgroups of rank < n (Hopkins-Kuhn-Ravenel)
KUg,KOg Cyclic subgroups (Artin, Bojanowska-Jackowski)

3.5. The main tool. The main tool in our descent results is a method for transferring rational
descent information (which is usually much easier to come by) to chromatic information.

Fix a G-ring spectrum R. Our goal is to consider comparison maps (8) and to prove that, after
modifying them by smashing with a telescope, they become an equivalence.

Theorem 3.18. Let R be an Eo -algebra in G-spectra. Suppose Rg is F-nilpotent. Let T' be any
telescope. Then R AT is also F-nilpotent. In particular, the maps

(13) T AR — T Aholimg/geo, (g)or R — holimgpreo, (qyer (T A RY)

is an equivalence.

Proof. We can choose T to be a ring spectrum itself. To show that R AT is F-nilpotent, it suffices

to show that the G-ring spectrum RAT A E}", or equivalently its G-fixed points (R AT A Ef)G,
is contractible. Since T is arising as a nonequivariant spectrum here, we have

(RATANEF)® =T A(RAEF).

The condition that Rg is F-nilpotent is equivalent to the condition that R A EF is rationally
trivial, where EF is an E-algebra in SpGﬂ Equivalently, one has that the non-equivariant E.-
ring (R A E\.JF)G is rationally contractible. By the next result below, this forces that T'A (R A E\.JF)G
is contractible.

Since T'A R is F-nilpotent, it follows that the map

T A R — holimg, geo,(cyor (T A R™)

is an equivalence. To see that the map from the second to the third term in is an equivalence,
we observe that if R' = F(EF,,R), then T'A R’ is also F-nilpotent as a ring spectrum receiving
a map from T'A R. Taking G-fixed points and using that is an equivalence, we find that the
second and third terms in are equivalent. 0

Remark 3.19. The condition that Rg is F-nilpotent is purely algebraic. It is equivalent to
assuming that the Green functor m; Rg is induced from the family F.
3.6. The May nilpotence conjecture.

Theorem 3.20 ([22]). Let R be an Eoo-ring spectrum. Suppose Ry =0. Then RAT =0 for any
telescope T'.

Proof. This is a consequence of the nilpotence theorem of [I3] together with some analysis with
power operations, which is carried out in [22]. O

Example 3.21. Let us show that KUg is nilpotent for the family of cyclic subgroups. When we
rationalize, we have mKUqs @ Q ~ R(G) ® Q, and this is induced from the cyclic subgroups by
Artin’s theorem. Therefore, KUg ® Q is nilpotent for the family of cyclic subgroups.

9Though7 notably, not a genuine commutative ring spectrum in the sense of Hill-Hopkins-Ravenel.
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4. APPLICATIONS TO ALGEBRAIC K-THEORY

In this final lecture, we will outline the proofs of our main descent results in algebraic K-theory.

4.1. The general setup. We first discuss a generalization of the Galois descent problem in alge-
braic K-theory. These ideas appear in Thomason [34] and a detailed exposition of them appears in
the early sections of the thesis of Merling [25].

Let C be a category (or co-category) that can be the input to algebraic K-theory. For example,
C could be:

(1) An exact category (as in Quillen [29]).
(2) A Waldhausen category (as in Waldhausen [37] or Barwick []]).
(3) A stable oo-category (as in [10]).

Suppose C is acted on by a finite group G. This is not necessarily a strict action, but rather an
action up to coherent homotopy.

Example 4.1. Suppose C is an ordinary category with an action of a finite group G. Let us spell
out what this means concretely:

e We have functors Fy : C >~ C for each g € G. We assume F, = id.
e We have an isomorphisms cg, 4, : Fy, 0 Fy, >~ Fg,q,.
e For a triple g1, g2, g3, we have an equality of the two natural isomorphisms Fy, o Fyy, o Fyy, ~

Fy, 4,9, that one can write down. (This is the analog of a cocycle condition.)

Fix a G-action on C.

Construction 4.2. We can form the homotopy fized points C"“, which will be of the same form —
an exact, Waldhausen, or stable oo-category. To give an object X € C"® amounts to specifying an
object Xy € C together with a coherent choice of isomorphisms X, ~ F, X, for g € G (satisfying a
cocycle condition as above if C is an ordinary category, and higher analogs if C is an co-category).

Example 4.3. Suppose G acts trivially on C. Then C"¢ = Fun(BG, C) is the co-category of objects
in C equipped with a G-action and G-equivariant maps between them.

Example 4.4. Let G be a finite group and let v € H?(G;C*). Choose a cocycle ¢ : G x G — C*
representing «. Then there is a G-action on the category Vectc of complex vector spaces such that,
for each g € G, the functor Fj is the identity. However, for gi,g2 € G, the isomorphism ¢4, 4, is
given by multiplication by ¢(g1, g2). Unwinding the definitions, it follows that Vectéc is given by a
category of c-twisted representations of G.

In general, algebraic K-theory does not commute with inverse limits of categories. Thus, one
may ask:

uestion 4.5. How close is the map K (C"®) — K(C)"“ to being an equivalence?
g

4.2. Galois descent. Our claim is that the above question is a (vast) generalization of the K-
theory Galois descent question, through the theory of Galois descent for modules. The reason that
this construction is relevant to our problem is the following.

Example 4.6 (Classical Galois descent). Let E C F be a G-Galois extension of fields. Then there
is a G-action on the category Vectpr of F-vector spaces. Given an F-vector space V, an element
of the group g € G takes V to F-vector space V9, which has the same underlying set, though the
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F-action is twisted by g. The homotopy fixed points are given by the category of E-vector spaces,
ie.,
VecthS ~ Vectp.

We describe this explicitly for R C C.

Example 4.7. There is a Cs-action on the category of complex vector spaces Vectc which sends
a C-vector space V to its complex conjugate V. Here V has the same underlying set as V, but the
C-action is twisted by complex conjugation. The homotopy fixed points of the Cy-action are given
by the category of pairs (V,¢) where V € Vectc and ¢ : V ~ V is a C-antilinear involution. Under
the functor (V,¢) — ker(¢ — 1), this category is equivalent to the category of R-vector spaces.

It is possible to formulate a derived version of Galois descent in the setting of faithful Galois
extensions of E,.-rings. The following result seems to have been noticed independently by several
authors.

Theorem 4.8 (Gepner-Lawson, Meier [24], Banerjee). Let A — B be a faithful G-Galois extension
of Eoo-1ing spectra in the sense of Rognes. Then there is an equivalence of symmetric monoidal
oo-categories Mod(A) ~ Mod(B)"“.

Given an E-ring A, the algebraic K-theory K(A) of A is defined to be the algebraic K-theory
of the stable co-category Perf(A) of perfect (or dualizable) A-modules. Taking dualizable objects
in the above equivalence, one obtains a Galois descent statement

Perf(A) ~ Perf(B)"¢.

Therefore, Question for the G-action on Perf(B) is precisely the question of how close K(A) —
K(B)"¢ is to being an equivalence.

4.3. Equivariant algebraic K-theory. The idea of Carlsson is that the above map K (C"%) —
K(C)"“ is analogous to the map from fixed points to homotopy fixed points for a G-spectrum. To
make that into more than an analogy, one uses the following construction of an equivariant algebraic
K -theory spectrum which we outline.

Construction 4.9. Let C be an co-category with G-action. Suppose that C admits finite coprod-
ucts.
Let Cato denote the co-category of co-categories. There is a functor F¢ ¢ : Burngy — Caty as
follows:
(1) We have G/H + ChH.
(2) The restriction morphisms are given as follows. Given a morphism f : G/H — G/H' in
O(G), we have the obvious functor f* : C"H' — chH,
(3) The dual morphisms are given as follows. Given a morphism f : G/H — G/H' in O(QG),
we have the functor f, : C"H — CMH' which is left adjoint to f*.

Definition 4.10 (Compare Merling [25], Barwick [7], Barwick-Glasman-Shah [9]). Let C be a small
stable co-category equipped with a G-action.
Compose the functor Fe ¢ with algebraic K-theory (which, as in [10], defines a functor from

stable oo-categories to spectra). We obtain a spectral Mackey functor, or equivalently a G-spectrum,
K¢(C) such that, for every H < G.

Ko () = K(ch).

We can also ask a generalization of Question [£.5]
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Question 4.11. Let C be a category with a G-action. Given a family F, how close is the map
K(C") — holimg, geo,(g)or K (C"7)

an equivalence? This map is applied to the G-spectrum K¢ (C).

4.4. General descent results. Suppose C is a symmetric monoidal, stable co-category equipped

with a G-action. For each H < G, we have a natural functor C*¢ — C". We let Indg denote its
biadjoint.

Theorem 4.12. Let C be a symmetric monoidal stable co-category with a G-action. Fix a family
F. Suppose there exist objects xyy € C"H for each subgroup H € F such that

3 [Indg(m)} e Ko(ChF)
HeF
becomes a unit in Ko(C"®) @ Q. Then for any telescope T, the map
T AK(C") — T Aholimg) greo»(qyer K (C")
is an equivalence.

Proof. The hypotheses imply that K¢ (C)g is F-nilpotent. Now K¢ (C) is an E-algebra in Sp.; by
Theorem B.18 O

4.5. Example: Galois descent in algebraic K-theory.

Theorem 4.13. Let A — B be a faithful G-Galois extension and suppose that the map Ky(B)®@Q —
Ko(A)®Q is surjective. Then the map TAK(A) — TAK(B)"C is an equivalence for any telescope
T.

Proof. This follows from the above result. By definition, the algebraic K-theory of a ring spectrum
R is the algebraic K-theory of the stable co-category of perfect R-modules. We take C = Perf(B)
with the G-action induced from the G-action on B. By Galois descent, we have C"“ = Perf(A). The
induction functor C"® — C corresponds in this picture to the forgetful functor Perf(B) — Perf(A).
Thus, this result is a special case of the above. ([l

Proposition 4.14. Suppose A is an Eo-ring spectrum and the following holds:
(1) mpA has no nontrivial idempotents.
(2) Ko(A) and has no nontrivial idempotents.

Then any faithful G-Galois extension A — B has the property that Ko(B) ® Q — Ky(A) ® Q is
surjective, so that the above Galois descent result applies.

4.6. Representation theory. We consider now a polar opposite to the situation of Galois descent.
Let A be an Eo.-ring and fix a finite group G. Consider C = Perf(A) with trivial G-action. Then
for any H,
Kg(CO)f = K(C") = K (Fun(BH,Perf(A)))
We can think of this as a sort of “representation category” over A.

Definition 4.15. For a finite group G, we define R(G;A) = Ko(Fun(BG, Perf(A4))). With G
fixed, the collection {R(H, A)} . naturally assemble into a Green functor on G. In particular,
if H C G, we have induction and restriction morphisms Ind$ : R(H; A) — R(G; A) and Res$ :
R(G;A) — R(H; A).
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Definition 4.16. Fix a finite group G and a family F of subgroups of G. We will say that A-based
Artin induction holds with respect to the family F if there exist classes g € R(H; A) ® Q for each
H € F such that 1 = ZHG]_-Indg(wH).

Example 4.17. The classical Artin induction theorem states that if A = C, then A-based Artin
induction holds for any finite group for the family of cyclic subgroups.

4.7. We can now state the basic connection between Artin induction and descent in algebraic
K-theory.

Theorem 4.18. Fiz a finite group G and a family F of subgroups of G. Let A be an E-ring.
Suppose A-based Artin induction holds with respect to F. Then for any R-linear oo-category C with
G-action, the G-spectrum L, Kg(C) is F-nilpotent. In particular, (?7) is an equivalence.

Proof sketch. Since a module over an F-nilpotent ring spectrum is F-nilpotent, it suffices to con-
sider the case C = Perf(R) with trivial G-action. It is now easy to see that F-nilpotence for the
rationalization is equivalent to the A-based Artin induction theorem.

|

Example 4.19. Suppose A-based Artin induction holds with respect to the family of subgroups
F of the group G. In this case, the assembly map

hocolimeg, geo () K (A[H]) — K(A[G])
becomes an equivalence after L,-localization.

4.8. Some examples of Artin induction. We now give some examples where A-based Artin
induction holds for interesting families of subgroups.

Example 4.20. Let A = Z. Then for any finite group G, A-based Artin induction holds for
the family of cyclic subgroups by a theorem of Swan [33]. It is easy to see that R(G;Z) is the
Grothendieck group of the (exact) category of finitely generated free abelian groups with G-action
(which Swan considers).

Example 4.21. Let A be a complex orientable E,.-ring (we do not assume the map MU — A is
E though). Then A-based Artin induction holds for the family of abelian subgroups.

To see this, let G be a finite group. Choose a faithful complex representation V of G and
consider the flag variety F(V)4; it admits a finite cell decomposition with abelian stabilizers. In
particular, the class that F'(V) A A € Fun(BG, Perf(A)) defines in R(G; A) is a linear combination
of the classes of G/H, A A for H C G abelian. However, complex orientability also implies that
F(V)y N A € Fun(BG,Perf(A)) is a direct sum of even shifts of the unit. This gives an Artin
induction theorem.

Example 4.22. Let A = KU. Let G be a finite group such that |G| is only divisible by 2,3, 5.
Then A-based Artin induction holds for the family of rank < 2 abelian subgroups.

This result reduces to the case where G = (Z/p)? for p = 2,3, 5. For such p, there exists a non-
toral imbedding G < G for G a compact, simply connected Lie group [?]. One can then imitate the
argument above by considering the G-action on the flag variety of G; it is crucial that the G-action
on the flag variety can be trivialized after smashing with complex K-theory.

Conjecture. For any finite group G, KU -based Artin induction holds for the family of rank < 2
abelian subgroups.
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APPENDIX A. A PRIMER ON NILPOTENCE AND DESCENT

A.1. Thick and localizing subcategories. Let C be a stable oo-category (such as the derived
category of a ring, or the homotopy category of spectra) which is idempotent-complete. The latter
condition means that if X € C and if e : X — X is an idempotent endomorphism, then there is a
splitting in C given by X ~ Xe ® X (1 —e).

Definition A.1. A thick subcategory of C is a full subcategory D C C such that D is triangulated
and idempotent-complete. This means:
(1) 0eD.
(2) Given an exact triangle X’ — X — X" in C, if two out of the three objects belong to D,
then the third does as well.
(3) If X € D and admits a decomposition in C, X ~ Y’ @ Y"”, then Y'|Y" € D as well.

Suppose that C has all colimits, or equivalently all direct sums. Then we say that a full subcategory
D C C is localizing if D is thick and is also closed under colimits (equivalently, all direct sums).

Definition A.2. Given any set S of objects of C, there is a smallest thick subcategory of C that S
generates, denoted (S). There is similarly a smallest localizing subcategory (S), . generated by S.

loc

We now give two basic and important examples of localizing and thick subcategories.

Example A.3. Let C = D(Z) be the derived co-category of Z. Fix a prime number p. Then we
have a localizing subcategory C; C C given by those objects X € C whose homology is all p-power
torsion, or equivalently such that the p~!-localization is contractible, i.e., X[1/p] ~ 0. The fact
that C; C C is a localizing subcategory follows easily from the long exact sequence in homology
associated to a cofiber sequence of chain complexes and the fact that p~!-localization commutes
with direct sums.

Example A.4. We have a thick subcategory Co C C = D(Z) defined as follows. An object X € C
belongs to Cs if and only if there exists n such that multiplication by p™ : X — X is nullhomotopic.
A diagram chase shows that if we have a cofiber sequence X’ — X — X" in C and if p® annihilates
X' while p? annihilates X", then p®*? annihilates X. Using this, one sees that Co forms a thick
subcategory.

Note the following difference between the above two examples. The subcategory C; is not only
thick, but localizing: it is closed under arbitrary direct sums. However, Cs is not closed under
arbitrary direct sums because €D, Z/p'Z does not belong to Cs. It is the second example that we
will primarily be interested in.

The idea is that localizing subcategories are usually specified by “torsion” conditions (such as
the condition of being p-power torsion), while thick subcategories can also be specified by analogous
bounded torsion conditions (such as the condition of being annihilated by a fized power of p). In
many cases, when C is compactly generated, it is easier to classify the thick subcategories of the
compact objects C¥ than the localizing subcategories of C.

Example A.5. Fix a subset S C SpecZ of prime ideals in Z. For s € S, we let k(s) denote the
residue field at s (so either I, or Q). Given a subset S C SpecZ, we have a localizing subcategory
Dg(Z) consisting of all objects X € D(Z) such that X ®z k(s) = 0 for all s € S. Every localizing
subcategory of D(Z) is of this form and the localizing subcategories are in bijection with the subsets
of SpecZ. If we take S = SpecZ \ {(p)} for a prime number p, we obtain precisely the localizing
subcategory of Example [A-3]
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Example A.6. Let C = Sp be the oco-category of spectra. In this case, a classification of localizing
subcategories of C is far from known. However, the thick subcategories of the stable co-category C*
of finite spectra has been carried out by Hopkins and Smith [I7]. Without getting into the details
in this lecture, every thick subcategory is cut out by the collection of finite spectra which are acyclic
with respect to a certain collection of Morava K-theories.

A.2. Towers and cosimplicial objects. Let’s give another important example of a thick subcat-
egory.

Example A.7. Fix an arbitrary idempotent-complete stable co-category C € CatP™. Let Tow(C)
denote the oco-category of towers in C, i.e., Fun(Z%,C). An object is given by a tower

"'—>X2—>X1—>X()

and cofiber sequences in Tow(C) are determined pointwise at each stage. We will say that a tower
{X;} is nilpotent if there exists N such that each map X;;n — X; is nullhomotopic. Note that
the nilpotent towers form a thick subcategory Tow™(C) C Tow(C).

Remark A.8. There is a functor D(Z) — Tow(D(Z)) which sends an object M € D(Z) to the

tower --- — M 2 M. An object M belongs to the subcategory Cy of Example if and only if
this tower is nilpotent in the above sense.

We will often be dealing with cosimplicial objects rather than towers. Recall [?, ?77] the
oo-categorical Dold-Kan correspondence between towers and cosimplicial objects in a stable oo-
category which implies that these are essentially the same data.

Example A.9. Let C € CatP®f. Let Fun(A,C) denote the oo-category of cosimplicial objects in
C. In this case, one has a totalization Tot(X*) which is the inverse limit of the tower {Tot, (X*)}.
We will say that a cosimplicial object X* is quickly converging if it has the property that the
quotient tower {Tot, (X*)/Tot(X*)} is nilpotent.

The notion of a quickly converging cosimplicial object will play an important role for us. Let
X* € Fun(A,C). In general, the construction Tot(X*®) is an infinite homotopy limit (over the
category A). For example, the construction X*® — Tot(X*®) need not commute with a construction
like p~!-localization. But when X*® is quickly converging, the totalization Tot(X®) behaves much
more like a finite homotopy limit.

Proposition A.10. Let F': C — D be any exact functor. Let X® : A — C be any quickly converging
cosimplicial object. Then the cosimplicial object F(X®) € Fun(A, D) is quickly converging and
F(Tot(X*)) ~ Tot(F(X?*)).
Suppose for example C = Sp. Then we have a spectral sequence
Ey' = H (mX®) = m_.X".
The hypothesis of quick convergence has a consequence for this spectral sequence too.

Proposition A.11. Suppose X® € Fun(A,C) is quickly converging. In this case, the spectral
sequence collapses at a finite stage with a horizontal vanishing line.
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A.3. Approximations by A-modules. In the rest of this lecture, we will discuss the theory of
thick subcategories in the context of approximating objects by modules over an algebra.

Let C € CAlg(Catggrf) be a symmetric monoidal, stable co-category with a biexact tensor prod-
uct. Let A be an associative (or As) algebra object in C.

Let X € C. Then we can try to approximate X by objects in C which are A-modules. For
whatever reason, we might expect that A-modules in C are easier to understand than general
objects in C.

Example A.12. If C = Sp is the oco-category of spectra and A = HIF,, then we have an equivalence
Mods,(A) ~ D(F,),

and the derived co-category D(F),) of F, is considerably simpler than Sp itself.

Example A.13. Let G be a finite group. Let C = Sp and let A = F(G/H,,S") be the Spanier-

Whitehead dual of the G-space G/H where H < G. Then Mods,,, (A) ~ Spy (cf. [?]). Therefore,

approximating a G-spectrum by A-modules amounts to approximating it by G-spectra induced
from H.

Assumption A.14. Henceforth, we assume that the unit is compact in C and A is dualizable in

C.
There are essentially two different and dual ways we could try to approximate X by A-modules
in C.
(1) Write X as a homotopy limit of A-modules (but where the maps are not necessarily A-

module maps).
(2) Write X as a homotopy colimit of A-modules.

There is essentially a tautological way of carrying out each.
Construction A.15. Let X € C. Then we form a cosimplicial object
CB*(A4, X) = {A@X:&A@A@X} }

We have a natural augmentation from X and so we obtain a map X — Tot(CB®(A, X)). The
target Tot(CB®(A4, X)) is called the A-completion of X. Tt is the Bousfield localization of X with
respect to A.

Construction A.16. Let X € C. Then we have a dual construction D(CB*(4)) ® X € Fun(A,C)
which is again augmented over X. The geometric realization of D(CB*(A)) ® X is called the
A-cellularization of X. It is a colimit of A-modules, and is the universal such mapping to X.

Definition A.17. Suppose C is presentable and the unit is compact. We will say that an object
X is A-complete if it is equivalent to its A-completion. We will say that an object is A-torsion
if it is equivalent to its A-cellularization, or equivalently if it belongs to the localizing subcategory
of C generated by the A-modules.

Example A.18. Let C = D(Z) and let A = Z/pZ. Then given X € D(Z), we have that the
A-completion of X is given by

LaX ~ X, ~1im X @3 Z/p",

while the A-cellularization of X is given by
Cell4(X) ~ hocolim, X" YZ/p") @ X ~ =Y (Z]p~']/Z) ® X.
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An object is A-torsion if and only if it is p-power torsion.

A.4. Nilpotent objects and the Adams spectral sequence. In the situation of the previous
subsection, we will now single out a class of objects which are well-approximated from both sides
by A-modules. These are the A-nilpotent objects.

Definition A.19. A thick subcategory Z C C is called a thick ®-ideal if for all X € C,Y € Z, we
have X ® Y € Z. Similarly, we have the definition of a localizing ®-ideal.

Definition A.20 (Bousfield). Let C € CAlg(Cat?™™) and let A be an associative algebra object in
C. Then we say that an object X € C is A-nilpotent if it belongs to the thick ®-ideal generated
by A.

Remark A.21. This notion plays an important role in some of the foundational theorems in
chromatic homotopy theory.

Proposition A.22. Suppose X € C. Then the following are equivalent:
(1) X is A-nilpotent.
(2) The cobar construction CB®(A, X) has totalization given by X (i.e., X is A-complete) and
s quickly converging.

Proof. If X is an A-module, then the cobar construction quickly converges to the appropriate
target: in fact, the cobar construction CB®(A) ® X, augmented over X, admits a splitting or extra
degeneracy which gives a cosimplicial homotopy to the constant cosimplicial object X. (|

Construction A.23. Suppose that X is A-nilpotent. Then we obtain a spectral sequence
H*(m(CB*(4, X)) = m—sX,

called the A-based Adams spectral sequence.

When X is an A-module, the spectral sequence degenerates at E5 and everything vanishes in
filtration s > 0. When X is merely A-nilpotent, the spectral sequence collapses at a finite stage
with a horizontal vanishing line.

A.5. The basic argument. Let (C,®,1) be a symmetric monoidal, stable co-category and let A
be an algebra object of C. In the previous lecture, we defined an object of C to be A-nilpotent if it
belongs to the smallest thick ®-ideal containing A.

Suppose now that A is dualizable and 1 € C. In that case, we saw (Proposition that if
R € C is an algebra object, then R is A-nilpotent if and only if R is A-torsion, i.e., belonged to the
localizing subcategory of C generated by the A-modules. The purpose of this lecture is to describe
a significant simplification that happens when R has the additional structure of an E..-algebra
object.

Assumption A.24. (C,®,1) is a presentably symmetric monoidal stable co-category. A is an
algebra object and is dualizable. The unit 1 is compact.

We will need to use the following basic construction.

Construction A.25. Fix a prime p and a height n. The assumption that C is presentable and
stable enables us to construct a localization functor Lf : C — C. This functor annihilates precisely
the localizing subcategory generated by objects of the form F'A C where F is a type n+ 1 complex
and C € C. Equivalently, L} can be described by smashing with the spectrum LfS°. When n = 0,
Lg is given by rationalization.
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The main goal of this lecture is to prove the following result:

Theorem A.26. Let C be a presentable, stable co-category and suppose the unit is compact. Let
R € CAlg(C). Suppose Ry is A-nilpotent. Then LR is A-nilpotent.

Theorem [A:26] is the key ingredient to proving these K-theory descent results. The rational
argument described at the beginning of these lectures (Proposition will correspond to the
rationalization of an object being A-nilpotent for appropriate A. Theorem will let us deduce
Lf-local descent results from rational ones.

We will need the following criterion for nilpotence of algebra objects.

Proposition A.27. If R € Alg(C), then R is A-nilpotent if and only if it is A-torsion.
Proof. The condition that R should be A-torsion is that the natural map
|IR@D(CB*(A4))| — A

is an equivalence. Since homotopy groups commute with filtered colimits, it follows that there exists
n such that

sk, R ® D(CB®*(4))| — R

has image in homotopy containing the unit. In particular, we can find a map R — |sk, R @ D(CB®(A))|
such that the composite

R - |sk, R ® D(CB*(A))| —» R

is the identity. That is, R is a retract of |sk, R ® D(CB®*(4))|. Clearly |sk,R @ D(CB®*(4))| is
A-nilpotent as a finite colimit of terms each of which is an A-module. Therefore, R is A-nilpotent
itself. |

This is an analog of the simple fact that if Ry is a p-power torsion ring, then in fact Ry is
annihilated by a fixed power of p: specifically, that power which vanishes in Ry. In the next lecture,
we will see an additional criterion in the case where R is an E-algebra object of C.

Our goal is to first reduce to a question about E.,-ring spectra.

Reduction to C = Sp. Suppose R € CAlg(C) has the property that Rg is A-nilpotent. We want to
show that LflR is A-nilpotent, or equivalently A-torsion since it is an algebra object. This means
that the localization

(LLR)[A™] =0.
Equivalently, form the A~!-localization T' = R[A™!], which is an E..-algebra in C. We are given

that Tp = 0 and we want to show that L{T = 0 as well.
To check that an E..-algebra B in C vanishes, we can form the construction

Home¢ (1, B) € CAlg(Sp)

and show that it vanishes. Therefore, if we let T= Hom¢(1,7), then T is an E-ring spectrum.
Our hypotheses imply that Ty = 0, and we need to show that L{T = 0 as well. This is a general
statement about E..-ring spectra [22]. O
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