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Introduction

Let R be a commutative ring. One of the basic ways we
can study R is to study structures over R: for instance,
R-modules.

One of the basic tools that one has in studying R-modules
is Grothendieck’s theory of faithfully flat descent. Given
a faithfully flat R-algebra R ′, this states that the data of
an R-module M is equivalent to that of its base-change
R ′ ⊗R M with appropriate “descent data.”

Given an R ′-module N, a descent datum on N is an
equivalence of R ′ ⊗R R ′-modules R ′ ⊗R N ' N ⊗R R ′

satisfying a cocycle condition.
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Grothendieck’s theorem

Theorem (Grothendieck)

If R → R ′ is a faithfully flat morphism of commutative rings,
then there is a canonical equivalence between the category of
R-modules and the category of R ′-modules with descent data.

Example

To give a vector space V over the real numbers R is equivalent
to giving a vector space W over C (here W is the extension of
scalars W = V ⊗R C) together with a C-antilinear map
ι : W →W with ι2 = idW .

The purpose of this project is to describe an analog of faithfully
flat descent with ring spectra, but for morphisms that do not
superficially appear to be faithfully flat.
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Ring spectra and module spectra

In stable homotopy theory, the analog of a ring is called a
ring spectrum.

Just as a spectrum gives rise to a cohomology theory on
spaces, a ring spectrum gives rise to a cohomology theory
on the category of topological spaces with cup products.

Let R be an associative (A∞) ring spectrum. In this case,
there is a theory of R-module spectra. [2, 4].

If R is given a commutative (E∞) structure, then one can
in addition tensor R-modules and one gets a symmetric
monoidal product on R-modules [2, 4].

Many important objects in modern algebraic topology
have this type of additional structure.
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Working with R-module spectra

Let R be an A∞-ring spectrum. How does one work with
R-module spectra? There are several basic tools one has.

Given a ring spectrum R, one has its homotopy groups
π∗(R), which form a graded, associative ring.

Given an R-module M, the first invariant that one sees are
its homotopy groups π∗(M), which are a graded module
over π∗(R).

Given R-modules M,N, to understand the space of
R-module maps M → N, there is a spectral sequence

Exts,tπ∗(R)(π∗(M), π∗(N)) =⇒ πt−sHomR(M,N).

Upshot: the simpler that π∗(R) is homologically, the easier
it will be to work with R-module spectra.
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Examples

1 Complex K -theory KU is an example of an E∞-ring
spectrum whose homotopy groups are homologically
simple: π∗(KU) ' Z[β±1] where β has degree two.

2 As a result, it is possible to classify perfect KU-modules in
terms of algebra; the Ext spectral sequence degenerates.

3 However, a closely related E∞-ring spectrum, real
K -theory KO, has much more complicated homotopy
groups

π∗(KO) ' Z[t±1, η]/(2η, η3) where|t| = 8, |η| = 1.

4 Homologically, the homotopy groups of π∗(KO) have
infinite dimension, and so the Ext spectral sequence is
much more complicated here.
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Descent theory

Let R → R ′ be a morphism of E∞-ring spectra. There is a
notion of faithful flatness that makes reference only to the
homotopy groups of R and R ′.

Definition

R ′ is faithfully flat over R if:

1 π0(R)→ π0(R ′) is a faithfully flat morphism of (ordinary)
commutative rings.

2 The map π∗(R)⊗π0(R) π0(R ′)→ π∗(R ′) is an
isomorphism.
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The faithfully flat descent theorem

Definition

Let R → R ′ be a morphism of E∞-ring spectra. The cobar
construction is the cosimplicial E∞-ring

R ′ ⇒ R ′ ⊗R R ′
→
→
→ . . .

and the ∞-category of descent data is the totalization of the
cosimplicial ∞-category

Tot
(
Mod(R ′) ⇒ Mod(R ′ ⊗R R ′)

→
→
→ . . .

)
.

Theorem (Lurie)

Let R → R ′ be a faithfully flat morphism of E∞-ring spectra.
Then the ∞-category of R-modules is equivalent to the
∞-category of R ′-modules with descent data.
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KO and KU

1 This does not help us if we want to study KO-modules.
Any KO-algebra faithfully flat over KO has to have
homotopy groups of infinite homological dimension, too.

2 A key observation (due to Rognes, Gepner-Lawson,
Meier, and others) is that there exists a morphism of
E∞-ring spectra KO → KU which behaves like a C2-torsor
in ordinary algebraic geometry (like R→ C).

Theorem (Gepner-Lawson, Meier)

There is a C2-action on the symmetric monoidal, ∞-category
Mod(KU) of KU-module spectra whose homotopy fixed points
are given by Mod(KO).

3 As a result, it is possible (Hopkins) to use techniques of
Galois descent to work with KO-modules, e.g., to
compute the Picard group.
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Thick subcategories and tensor-ideals

Definition

Let C be a triangulated category (or a stable ∞-category). A
full subcategory C′ ⊂ C is thick [3] if:

1 C′ is closed under cofibers and desuspensions (i.e., is a
triangulated or stable subcategory).

2 C′ is closed under retracts. Equivalently, if X ⊕ Y ∈ C′,
then X ,Y ∈ C′.

Suppose C is given a symmetric mononoidal structure. Then C′
is called a thick tensor-ideal if whenever X ∈ C′ and Y ∈ C,
then X ⊗ Y ∈ C′.
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Descendability

Let R → R ′ be a morphism of E∞-ring spectra. Then R ′

defines an object in Mod(R).

Definition (Balmer [1]; M. [5])

The map R → R ′ is descendable if the thick tensor-ideal that
R ′ generates in R-modules is the entire ∞-category of
R-modules.

This is equivalent to the condition that the cobar construction
from R → R ′ not only converges to R, but should define a
constant pro-object.
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Examples of descendable morphisms

Example

1 Faithfully flat extensions under countability hypotheses.
2 Quotienting by a nilpotent ideal in ordinary commutative algebra

(e.g., C[ε]/ε2 → C).
3 (Carlson) Let G be a p-group and k a field of characteristic p.

Then the map

kBG →
∏

A⊂G elementary abelian

kBA

is descendable.
4 (Hopkins-Ravenel) The map LnS0 → En, where En is Morava

E -theory and Ln denotes En-localization is descendable.
5 KO → KU (in fact, any faithful Galois extension in the sense of

Rognes).

It is important that these examples (except the first) are not
faithfully flat.
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Main result

Theorem (M.)

The conclusion of faithfully flat descent holds for a descendable
morphism of E∞-ring spectra. That is, there is an equivalence

Mod(R) ' Tot
(
Mod(R ′) ⇒ Mod(R ′ ⊗R R ′) . . .

)
.

As a result, one obtains numerous examples of non-faithfully
flat descent in stable homotopy theory. Often, when π∗(R) is
homologically complicated and π∗(R ′) is simpler, the
∞-category of descent data is actually much easier to work
with.
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Applications

These ideas have several applications to the understanding of
certain invariants of structured ring spectra.

1 A new point of view on Rognes’s Galois extensions [8] and
a formulation in terms of axiomatic Galois theory (as well
as several computations of Galois groups) in [5].

2 Calculations of Picard groups of topological modular forms
using descent spectral sequences (joint with V. Stojanoska
[7]).

3 Classifications of thick subcategories of modules over ring
spectra such as TMF [6].

4 Generalizations of Quillen’s F -isomorphism theorem to
equivariant cohomology theories (joint work in progress
with N. Naumann and J. Noel).
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