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Introduction

Joe Harris taught a course (Math 224) on representations of reductive Lie groups at
Harvard in Spring 2013. These are my “live-TEXed” notes from the course.

Conventions are as follows: Each lecture gets its own “chapter,” and appears in the
table of contents with the date.

Of course, these notes are not a faithful representation of the course, either in the
mathematics itself or in the quotes, jokes, and philosophical musings; in particular, the
errors are my fault. By the same token, any virtues in the notes are to be credited to
the lecturer and not the scribe.

Please email corrections to amathew@college.harvard.edu.



Lecture 1 Representations of reductive Lie groups notes

Lecture 1
1/28

This is Math 224. The topic of this course is not “representation theory of reductive
Lie groups,” but simply “representation theory,” or simply the study of Lie groups.

Today’s lecture is basically going to be a mishmash. The first part of the lecture will
describe the course mechanics, and the prerequisites. The second part of the lecture
will talk about the philosophy: how we’re going to approach the subject, why it’s
important, and what our attitude is going to be. In the third part of the lecture, we’ll
get started— hopefully!

§1 Mechanics

Our course assistant: Francesco Cavvazani. He will grade the homeworks and hold
weekly recitations, time TBD. We will have weekly homework assignments; the first
one is due a week from today and is already up on the course webpage and is on the
reverse of the syllabus. In general, the homework will be weekly and will be timed
in conjunction with the section. We’ll get the scheduling straight between Wednesday
and Friday.

The text is Representation Theory, by Fulton and Harris. That’s the only textbook.
We’re not going to do the first part of the book, which is representation theory of finite
groups. It’s a good way to get warmed up, to get a sense of the goals of representation
theory and the basic constructions. I am going to be assuming that you have some
familiarity with representations of finite groups. If you want to get a sense of what
that entails, look at the first two or three chapters of this book. It should be something
that you might have seen before. In any case, I would urge you to review it.

Let me mention also — by way of algebra — that we will be working with a lot of
multilinear algebra.

Here are the prerequisites:

• Algebra: representations of finite groups (ch. 1-2 of F+H or Part I of Serre’s
Linear representations of finite groups).

• Algebra: Multilinear algebra. By this, I mean simply the construction of various
objects built up of vector spaces via multilinear constructions: tensor products,
symmetric powers, exterior powers, etc. This material is in F+H, appendix B,
parts I-II.

• Manifolds: What a C∞ manifold is. I’ll say what this is in just a few minutes.
This is one of these things where it’s helpful where you had prior experience. (No
need for metrics, curvature, etc.) In particular, what a tangent space is. Again,
there are many different ways of viewing this: some fairly abstract, some fairly
concrete. It’s useful to have the ability to pass back and forth between these
descriptions.

• Since we don’t offer any courses here on several complex variables: we are going
to be talking about Lie groups in real and complex settings. A real Lie group
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Lecture 1 Representations of reductive Lie groups notes

is an object that is both a group and a differentiable manifold. You can carry
out the same constructions in the category of complex manifolds. To even define
a complex manifold, technically, you need to know what a holomorphic function
in several complex variables is. What I’m telling you is that you don’t. In the
structure of the course, we’re going to be passing fairly soon from Lie groups to
Lie algebras — they’re much easier to study. One of the great triumphs of the
subject is that you can study Lie groups via Lie algebras. So we’re not going to
need too much about several complex variables.

The grading of the course is going to be based largely on the weekly homeworks.
We have the option of having a final exam as well. I’d like your opinion on that.
(Laughter.) Let me try to convince you that it’s not such an unreasonable thing to
do. If it’s not too ominous or threatening – and believe me, it won’t be — it’s not a
bad way to organize the thoughts of the semester and to review the material. Those of
you who are seniors, in particular, will be wandering around aimlessly in the fog, and
a final exam is a good way to focus your energy. I can see this is hopeless, but who
would like to have a final exam? (Nays.) There will be no final exam and problem
sets will determine the grade.

§2 Philosophy

The first thing, I have to put in a plug for the subject as a whole. The theory of Lie
groups is, I think, without question the most central topic in mathematics. It’s hard
to think of a subject that doesn’t involve Lie groups and Lie algebras. It’s very much a
part of differential geometry, in the complex side of algebraic geometry, mathematical
physics, and even number theory. Now number theory may seem like a far stretch from
Lie groups, but not entirely. If you study fancy number theory, you know that things
like groups like GLn over local fields arise very often. When we talk about GLn over
local fields, we use a lot of the ideas of classical Lie groups. So it’s really one of the
most central, one of the most topics, in modern mathematics. (Someone objects: logic
is the most foundational.)

The other thing about representation theory is that it’s a huge success story.
So much of the time, we try to solve problems, and they turn out to be tough. And
we wind up at a point where we are dealing with problems beyond our means. We
understand how to solve quadratic polynomials, so we think, let’s do cubics. And now
we’re talking about elliptic curves and it turns out to be tougher. Then you introduce
invariants that let you describe the solutions you want to find. Pretty soon you get
to the point that even a major breakthrough in the subject has little to do with the
problem you want to solve. The great thing about representation theory is that it’s
not like that: we’re going to ask whether we can classify Lie groups and classify their
representations. The answer is basically yes.

We’re going to identify a class of Lie groups (or Lie algebras) that are sort of
atomic: the simple or semisimple Lie algebras. We are going to develop the coarse
classification and decide to focus on these. Once we focus on those, we can try to
classify the simple Lie groups and the representations. By the end of the semester,
we’ll have a complete list of all the simple Lie algebras and their representations, and
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we’ll construct them explicitly. So the basic problem of classification is solved, and
we will solve it.

There’s one more thing I wanted to say: this is something true in a lot of subjects.
This is a difference in point of view in abstract versus embedded. Let me say a few
words about this. There’s a fundamental shift in viewpoint that took place in many
fields almost simultaneously at the beginning of the twentieth century. All the names
— Lie was a nineteenth century mathematician — but manifolds were defined only in
the twentieth century. Lie was studying subsets of GLn closed under composition and
inversion. There was no such thing as an abstract group.

Nowadays, you define a group as a set with a binary operation which satisfies a
bunch of axioms. It’s not a priori realized as a subgroup of a fixed group. This is
analogous to what happened in topology or differential geometry. In the nineteenth
century, when foundational work in manifolds was done, they didn’t have a manifold:
a manifold to them was a subset of Rn that was defined by smooth functions with
independent differentials. The point was, it was imbedded in Rn. There wasn’t the
notion of an abstract manifold. In algebraic geometry, a variety was a subset of affine or
projective space. In the 1920s Weil and others came up with the notion of an abstract
variety, which lives independently of an imbedding. In every case, this broke up a
subject that was intractable into two tractable pieces:

• Describe all abstract objects.

• Given an abstract object, give its representations as a subobject of a concrete
thing.

That decomposition has been very successful in every field. The one thing that’s dif-
ferent in representation theory is that you have one additional fact present here, which
we’ll come to in due course: the existence of the adjoint representation. A group
comes with a representation for free. If we understand the structure of representa-
tions, we can try to understand the groups themselves—that’s how we’ll understand
the classification of simple Lie groups.

§3 Basic definitions

Let’s talk about the basic objects we will be dealing with. Our objects of interest are
primarily Lie groups. We are going to use Lie algebras as a tool to understand them.
Lie algebras are much simpler but encapsulate a tremendous amount of the structure
of the groups they come from.

1.1 Definition. A smooth (C∞) manifold is a set X with additional structure:

• A topological space structure on X.

• An atlas, i.e. a collection of open sets {Uα} covering X and homeomorphisms

φα : Uα ' ∆ ⊂ Rn

where ∆ is a disk.
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• These homeomorphisms differ by smooth maps from the disk to itself where
defined. In other words, we require that

φα ◦ φ−1
β

is smooth where defined.

(Strictly speaking, we should say — an equivalence class of atlases.)

In other words, we know how to identify small open subsets of X with open subsets
of Rn. Given this condition, we can talk about C∞ functions on X: what we mean is,
given

f : X → R,

we want f |Uα ◦φ−1
α to be smooth as a function ∆→ R. (By the compatibility condition,

it doesn’t depend on the choice of atlas.) Moreover, you can talk about C∞ maps
X → Y between smooth manifolds.

1.2 Definition. A map X → Y between smooth manifolds is smooth if when you
compose it with a coordinate system, it is smooth.

The other half of the definition of a Lie group is the group part.

1.3 Definition. A group is a set X with the structure of two maps

m : X ×X → X, i : X → X,

and an element e ∈ X satisfying the usual group axioms.

1.4 Definition. A Lie group is simply a set endowed with both of these structures
in a compatible way. It’s a set G which is both a smooth manifold and a group, and
the two structures are compatible in the only sense: in the sense that the maps

m : G×G→ G, i : G→ G

are smooth. In other words, we want the group law to respect the manifold structure
on G.

There are a couple of associated definitions.

1.5 Definition. A map f : G → H between Lie groups is a Lie group homomor-
phism exactly if it is:

• A homomorphism of groups.

• A smooth map.

In other words, it’s a map that respects both of the structures.

When we talk, in general, about maps between Lie groups, I’m not going to use
this language: I’m just going to talk about maps. We’re never going to consider maps
between Lie groups that aren’t of this form.

There is one issue here: the notion of a Lie subgroup. We have to be a little
cautious on that score. You would be completely within your rights to assume that a
Lie subgroup is the image of an injection between Lie groups; that’s not quite right.
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1.6 Definition. A Lie subgroup is defined as follows. If G is a lie group, then H ⊂ G
is a Lie subgroup if H is simultaneously:

• A closed submanifold.

• A subgroup.

A closed submanifold means that the topology inherited by H by the inclusion is the
topology of H itself.

There’s one standard example to keep in mind. Take a plane R2 (which is a Lie
group with respect to addition), mod out by a discrete lattice like Z2. We get a torus
T2. Here in R2, the Lie subgroups are easy to describe: they’re lines through the origin.
Lines are subgroups and submanifolds. But the image in the torus is not necessarily a
Lie subgroup. If the slope is irrational, then the image in the torus is going to be this
horrible thing that goes around and around and every point in the torus is going to
be in the closure of the irrational slope line. So we have an inclusion, but the induced
topology goes awry. There are maps

R→ T2

as above, which are immersed subgroups, but not necessarily closed submanifolds.

§4 Examples

Having defined Lie groups, let’s talk about examples. I’d like to give you a roster of
all the players we’re going to be dealing with. When we do an actual classification of
simple Lie groups, it will turn out that I will have described for you all the simple Lie
groups, with exactly five exceptions. So it’s a nearly complete list.

1.7 Example. GLn(R) is the set of invertible n-by-n matrices. This is an open subset
of Rn2

(where the determinant doesn’t vanish), so it’s automatically a manifold. It gets
the manifold structure from Rn2

. The group structure is matrix multiplication.
The only thing that has to be checked — and this does have to be checked — is that

the group law is C∞. So in other words, if I have two matrices (aij), (bij), the entries
of the product should be smooth functions of the factors. But that’s easy: it’s just
a bilinear form in the a’s and b’s. It’s less obvious that the inversion map is smooth.
There’s one word you should say here: cofactors. You can write the inverse as the
matrix of cofactors divided by the determinant. The cofactors are polynomials, hence
smooth; ditto for the determinant.

I want to be able to talk about actions of groups on vector spaces, not just Rn.
When I was a kid, a long time ago, I didn’t understand the fuss about finite-dimensional
vector spaces: why not call them Rn? Then I learned about representations and vector
bundles, and I learned that there is different data here. I don’t just want to think
about GLn(R). If V is an n-dimensional real vector space, then we introduce the Lie
group

GL(V ) = Aut(V ),

and of course, that’s isomorphic to GLn(R) after choosing a basis. I want to be able
to talk about these things without necessarily choosing a basis, though. When we
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introduce more Lie groups, we’re going to describe them as subgroups of matrix groups
and as automorphism groups of objects.

This lets us make the following basic definition:

1.8 Definition. A representation of a Lie group G on a vector space V is a Lie
group homomorphism

G→ GL(V ).

We want to say it this way, and not in terms of matrices, so that we can do things like
form tensor products of representations.

1.9 Example. SLn(R) consists of n-by-n matrices A such that det(A) = 1. This
is visibly a subgroup of GLn(R). You do have to check something here: that it’s a
submanifold. This is a good way to check that it’s a submanifold. How would you
check that it’s a submanifold? If you think of

det : Mn(R)→ R

as a function on the space Mn(R) of n-by-n matrices, then we’re looking at the level
set where det = 1. We just have to show that the differential is nonzero at that point.
Because you have the group structure, it’s enough to check it at the identity. If you
write out the differential of the determinant at the identity, it follows that it’s nowhere
zero on SLn(R), hence it’s a submanifold. The compatibility issue follows from the
corresponding fact on GLn(R).

You can also view SLn(R) in terms of abstract vector spaces. Let V be a vector
space. Then SL(V ) is the subgroup of GL(V ) consisting of automorphisms which
preserve a volume form, i.e. a nonzero element in ∧dimV V ∗. A volume form is an
alternating map

φ :
∏

dimV

V → R

which is not identically zero. This is a useful way to think of it: most of the Lie groups
we define are going to be subgroups of Aut(V ) preserving some additional structure.
Here that structure is a volume form.

Lecture 2
1/30

Today, I want to do two things:

• Examples of Lie groups. Just to give you some idea who the players are in this
game — the ones that keep coming up in mathematics.

• To get started on the analysis: in particular, the notion of isogeny.
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§1 Examples

The basic idea is that there are two ways of describing a Lie group, in general.

• As a subgroup of automorphisms of a vector space defined by preserving some
structure.

• As a subgroup of GLn by specifying matrices.

I want to do both.
We may specify a Lie group as a group of automorphisms of V , an n-dimensional

R-vector space, preserving some additional structure on V .

2.1 Example. SLn(R) consists of automorphisms of Rn preserving a volume form.

Here’s a more elementary example.

2.2 Example. Given the vector space V , a flag V in V is a nested sequence of subspaces

V1 ( · · · ( Vk ( V.

This is a type of structure that an automorphism could preserve. We define:

2.3 Definition. B(V) is the group of automorphisms of V which preserve the flag V.
In other words, this consists of automorphisms φ : V → V such that

φ(Vi) = Vi, ∀i.

2.4 Example. In the previous example/definition, suppose you have a full flag: one
subspace of each dimension. Then k = n − 1 and dimVi = i. Choose a basis for the
vector space

e1, . . . , en ∈ V
such that Vi is spanned by {e1, . . . , ei}. The group B(V), in terms of this basis, is the
group of upper-triangular matrices. That’s pretty much the picture in general. If
the whole flag consists of just one subspace V1 ( V , then the automorphisms preserving
that subspace are the block upper-triangular matrices. In other words, they look
like [

∗ ∗
0 ∗

]
where each ∗ is a block.

Remark. The B here is for Borel, who first studied the role that these play in other
Lie groups.

2.5 Example. Given a flag V in V , we can look at the automorphisms which preserve
the flag and act as the identity on successive quotients.

2.6 Definition. N(V) is the set of automorphisms φ : V → V such that

• φ(Vi) ⊂ Vi.

• (φ− 1)(Vi) ⊂ Vi−1, i.e. φ|Vi/Vi−1
= 1.

Here the “N” stands for “nilpotent:” φ− 1 is nilpotent.

In the case of a full flag, this is upper triangular with ones on the diagonal. In
general, it consists of block upper triangular matrices with identities on the diagonal.
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§2 More examples

Another case consists of automorphisms that preserve some element of the tensor al-
gebra. This is how most of the classical groups are defined. The standard example:

2.7 Example. Suppose Q is a symmetric bilinear form on the vector space V ,
which is a map

Q : V × V → R

which is linear in each factor, and symmetric. I.e., Q ∈ Sym2(V ∗). We assume for the
most part that Q is nondegenerate, i.e. if we think of Q as defining a map

V → V ∗,

then that map is an isomorphism.

2.8 Definition. We set O(V,Q) to be the set of automorphisms of V preserving Q.
In other words, we are looking at automorphisms φ : V → V such that

Q(φv, φw) = Q(v, w), ∀v, w ∈ V.

In other words, an automorphism of V induces an automorphism of Sym2(V ∗) and we
want this automorphism to preserve Q.

In matrix language (if we take V = Rn), we can write Q as the bilinear form given
by a symmetric n-by-n matrix. We can write

Q(v, w) = vtMw,

for M a symmetric n × n-matrix. Of course, if you do that, and write out what this
condition states, then O(V,Q) consists of matrices A ∈ GLn(R) such that

AtMA = M. (1)

That’s true for any symmetric bilinear form. If you take Q to be the standard inner
product on Rn, then M is the identity, then we get the orthogonal group O(n), which
is the space of (invertible) matrices A with

AtA = I.

Given any nondegenerate symmetric bilinear form on V , we can find a basis such
that M is given by block form [

I 0
0 −I

]
,

which is to say that

(v, w) =
k∑
i=1

viwi −
l∑

k+1

viwi

in coordinates. The form is indefinite, and we say that the group that we get is O(k, l).
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Remark. This condition does not imply that the map has determinant one. If n is
odd, for example, −I has determinant −1 and has this condition.

2.9 Definition. We define the special orthogonal group SO(n) to be the subgroup
preserving both the inner product and the determinant. In other words, A satisfying
(1) and detA = 1.

2.10 Example. We can instead take Q to be a skew-symmetric bilinear form, Q ∈
∧2V ∗. If Q is nondegenerate, then dimV is even and we can always write Q via the
block antidiagonal matrix [

0 I
−I 0

]
.

2.11 Definition. The group of automorphisms preserving the nondegenerate skew-
symmetric form Q is called the symplectic group and is denoted Sp2n.

§3 General remarks

It seems like I’ve made some choices along the way. What if I don’t assume that this
thing is nondegenerate? To say that Q is degenerate is to say that the induced map
V → V ∗ has a kernel, i.e. there is a nonzero subspace of vectors in V which pair to zero
against every other vector in V . Any automorphism preserving Q preserves the kernel.
The upshot is that you can describe the degenerate case in terms of the nondegenerate
case.

Why symmetric or skew-symmetric? If Q is any bilinear form, I can still make
the same definition. But any bilinear form decomposes into a symmetric and anti-
symmetric form. And if an automorphism preserves a bilinear form, it preserves the
symmetric and anti-symmetric part. So we get intersections of orthogonal and sym-
plectic groups in GLn.

2.12 Example. Given a random bilinear form (not symmetric or anti-symmetric), the
automorphism group of it is the identity — maybe with some roots of unity. Prove
this.

Why should we not look at higher symmetric powers? Why not skew-symmetric
trilinear forms and automorphisms that preserve that? Or take any Schur functor,
apply it to V ∗, fix an element and see what we get by looking at symmetries that
preserve it. It’s almost always trivial. If you have a vector space of dimension eight or
more, and a general skew-symmetric trilinear form, then there are no automorphisms
of it. It’s not hard to see via a dimension count: just count the dimension of the
automorphism group GLn and count how many distinct trilinear forms. You’ll see that
there are a lot more trilinear forms (dimension

(
n
3

)
) than n2 = dim GLn(R).

In general, if I take higher degree tensors, I get a trivial group.

2.13 Example. If dimV = 7 and α ∈ ∧3V ∗ is general, then the group of automor-
phisms φ : V → V preserving α is a nontrivial group, called G2. When we classify the
simple Lie groups, we’ll see that all of them are the classical groups that are on the
board right now, except for five exceptions: this is one of the exceptions. There’s a
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smattering of other constructions that yield the remaining five simple Lie groups. (The
other exceptional Lie groups are defined using things like the octonions.) There’s a
whole chapter devoted to G2 in the book.

I’d suggest that you just read about the unitary group.
The last variation on all this is to work with a complex vector space, and we get

subgroups of GLn(C): this is a complex Lie group, but you can also think of it as a
real Lie group. We have that GLn(C) is an open submanifold of Cn2

. The one thing
to bear in mind via the SO(n, q) is that the classification of symmetric bilinear forms
via signature doesn’t apply over the complex numbers. There are no positive definite
symmetric bilinear forms over C. There’s no sign. In fact, Q(v, w) = −Q(iv, iw) so
there’s no such thing as a positive definite form. There’s only one orthogonal group
over the complex numbers.

Remark. The quaternions also provide a source of examples, and are important in
defining the compact simple Lie groups.

However, as we’ll see on Friday or next week, passing through the Lie algebra sim-
plifies many things, and equates many different Lie groups. The need for the compact
versions of the symplectic group and so forth becomes less.

§4 Neighborhoods of e generate

There’s one thing I want to do explicitly before we go any further. There’s a basic
fact about Lie groups that actually appears at the beginning of ch. 8, it’s exercise 8.1.
Reading through the text now, it strikes me that it’s such a fundamental idea that we
should prove it now.

2.14 Proposition. If G is a connected Lie group, and U ⊂ G is any open subset
containing the identity e ∈ G, then U generates G.

So if I have a Lie group map, if I know the map on any neighborhood of the
identity, then that determines the map entirely. It suggests that we can understand
maps between Lie groups by understanding what they do locally — and that’s much
simpler to describe. (Then we don’t have to care about the global topology of the Lie
group.)

Proof. Without loss of generality, replace U by U ∩U−1 which contains a neighborhood
of e. So assume that

U = U−1.

Say H ⊂ G is the subgroup generated by U . I claim that H = G. Let’s say that we
have an element g ∈ ∂H, i.e.

g ∈ H \H.

Look at the translate gU , which is a neighborhood of the point g. This means that gU
must intersect H nontrivially. Let’s say

h ∈ gU ∩H.

14
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Now we’re done, basically. Since h ∈ H, we can write h = u1 . . . uk for the ui ∈ U . We
can also write it as gu, u ∈ U . Thus

u1 . . . uk = gu,

which implies that g ∈ H. N

The point is that we can look at maps of Lie groups by looking at the local structure
near the identity.

§5 Isogenies and covering spaces

Let me state and prove a couple of theorems. I want to talk about a class of maps
between Lie groups which are called isogenies. Let H be any Lie group. I want to
consider a discrete subgroup of H, contained in the center Z(H). Let

Γ ⊂ Z(H) ⊂ H

be a discrete subgroup. In this case, we can form the quotient G = H/Γ. A priori, this
is just a group, but the claim is that we can give G the structure of a Lie group in a
unique way, so that the quotient map

H → G ' H/Γ

is a Lie group map (i.e., respects the smooth structure). In fact, that’s obvious. All I
want to say is that a small enough neighborhood of the identity in H maps isomorphi-
cally to a neighborhood of the identity in G, and we give G a differentiable structure
by transfer from H. So there’s a natural way of giving the quotient a Lie group.

Remark. H → H/Γ = G is a covering space map and the fibers are the cosets of Γ.

The other side of this is a less obvious theorem, which will require a little more
work. It states that I can go in the other direction.

Let G be a Lie group. Let H be any connected topological space and consider a
map

H → G

which is a covering space map. (For instance, the covering space S1 z 7→zn→ S1.) Since
H is a covering space of a manifold, it’s also a manifold.

2.15 Proposition. H can be given the uniquely structure of a Lie group once an
identity e′ in H is picked lying above e ∈ G, such that H → G is a Lie group homo-
morphism.

In particular, any connected covering space of a Lie group naturally acquires the
structure of a Lie group in its own right, if we specify which point is going to be the
identity.
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Proof. This is a good example of how everything is determined by what goes on in a
neighborhood of the identity. If I want to define a group law in some neighborhood of
the identity in H, I use the covering space projection and the group law on G. It’s not
clear that I can do this on all of H consistently. The product is unambiguous close to
the identity in H (because near e′, the projection to G is a local isomorphism). Let me
give you a brief indication of how you prove this.

To prove the result, I’m going to do it in a special case and deduce it from it. Let’s
suppose H → G is the universal covering space, or equivalently H is simply connected:
π1(H) = ∗. How do I see in this case that I can necessarily lift? The example is the
covering space

R→ S1.

We consider the group law on G (we can do the same thing for the inverse map), a
map

G×G→ G

and try to lift it to a map H ×H → H. I claim that there’s a unique way to do that
with the identity. That’s because H×H → G×G is a covering space map. So we have
to find a lifting

H ×H

�� ##G
GGGGGGGG
//___ H

��
G×G // G

and the lifting comes from the universal property of the universal covering space.
Namely, H × H → G lifts to the cover H → G once an identity is chosen. The
issue is, why does it satisfy the group axioms — for instance, why is it associative?
This is what the group law has to be. We’re going to do this on Friday. N

Lecture 3
2/1

§1 Recap

I want to finish the proposition from last time. This is what we were in the middle of
saying in the previous class:

• Let H be any Lie group, Γ ⊂ Z(H) a discrete subgroup. Then G = H/Γ (the
quotient group) has the structure of a Lie group such that

H → G

is a morphism of Lie groups (and is a covering space!). The idea is that if I have
any point in the quotient, it corresponds to a coset of the subgroup Γ. I can
describe coordinate charts in H/Γ by taking small coordinate charts upstairs in
G.

16
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• If G is any Lie group and H
π→ G a connected covering space, then H has the

structure of a Lie group and π is a morphism of Lie groups. This is what we
didn’t finish proving (we’ll do it below).

I wanted to go through this because it illustrates something that we do all the time.
Here is an exercise which is a simple case.

3.1 Exercise. Let G be a connected Lie group and let Γ ⊂ G be discrete and normal.
Then Γ ⊂ Z(G). In particular, Γ itself is abelian. This is very straightforward to prove:
we want to say that h ∈ Γ commutes with every g. We’d like to prove that

ghg−1 = h.

Draw an arc γ = γ(t) in the manifold G which starts out at 1 and winds up at g.
Consider what happens when we apply conjugation by this element to h. We have
another arc

γ̃ : t 7→ γ(t)hγ(t)−1.

We consider the conjugates of h by elements along this arc. This γ̃ is again a continuous
arc, and the image at time t = 0 is just h. At the end, we get ghg−1. Finally, since
since Γ is normal, the image of this arc is contained in Γ throughout. So I have a
continuous map from an interval to a discrete space and it follows that γ̃ is constant.

Again, you use the fact that the conjugate varies continuously along the arc and
takes values in a discrete space.

Remark. Alternatively, use the fact that the continuous action of a connected group
acting on a discrete set is constant.

The above exercise shows that, in the proposition at the end of last time, we could
have just assumed that Γ was normal.

Proof of the second part. Let G be a Lie group and π : H → G be a covering map. To
start with assume that H is the universal cover so H is simply connected.

Choose e′ ∈ π−1(e) ⊂ H and we’d like to lift the group structure to H, with e′ the
identity. In other words, we have a diagram

H ×H

��

mH //___ H

��
G×G m // G

and we’d like to lift the multiplication on G to produce a dotted arrow which will be
the multiplication on H. Similarly, we’d like to produce a diagram

H

��

//___ H

��
G

ιG // G

.
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Using the theory of covering spaces, we get unique liftings once we’ve picked a basepoint:
that’s e′. The point is now to check that we actually have a group law on H. For
example, if you want to check that mH is associative, then we have to show

mH(a,mH(b, c)) = mH(mH(a, b), c),

or more colloquially
a(bc) = (ab)c.

We can check that a(bc) ((ab)c)−1 = 1 always by drawing arcs from the identity to each
of a, b, c. This product at all times (as the arcs go from the identity to a, b, c) starts
from the identity and is a continuous arc in H lie entirely in π−1(e)—that’s because
the group law is true in G. Since π−1(e) is discrete, we get that everything is constant
and equal to the identity. (Not included: this argument works for any connected
cover, not necessarily the universal one.) N

§2 Isogeny

The reason that I am introducing this material is that it is the first of our reductions.
We are trying to study representations of Lie groups, or more generally morphisms
between Lie groups. For any two connected Lie groups G,H, we say that G,H are
isogeneous if there exists a Lie group map

G→ H

which is also a covering space map (i.e., with discrete kernel). Isogeny is not an
equivalence relation per se, but it generates an equivalence relation, which is called
isogeny. In each isogeny class, there exists a unique initial member of the class: the
universal covering space. We want to look at all the Lie groups isogeneous to a given
one, and what I’m saying is that they’re all quotients of the universal cover by discrete
subgroups of the center.

3.2 Example. Let’s denote by H the simply connected member of an isogeny class.
If Z(H) is discrete, then there also exists a final object (in the isogeny class) which is
H/Z(H). This is the “bottom” member of the isogeny class. This is called the adjoint
form. Meanwhile, H is called the simply connected form (of an isogeny class).

In most of this semester, we are going to focus on the simply connected form: this is
the one with the most representations. Given a representation of anything else in that
form, compose it with the universal cover map to get a representation of the simply
connected form. There are two problems here:

• First, describe representations of the simply connected form.

• Describe which representations descend to a given (non-simply connected) mem-
ber of the isogeny class.

Remark. If you have a disconnected Lie group, then break up the problem of describ-
ing its representation into two parts. The connected component at the identity is a
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normal subgroup whose quotient is discrete (and often finite). Hence, for most of the
semester, we will work with representations of connected — even simply connected —
and adopt this simplifying assumption. When we solve this problem with respect to
this simplifying assumption, we’ll solve the general problem later. We’ll be able to say
exactly which representations descend to a given form in the isogeny class.

Remark. Algebraic geometry does this as much as any other field. At first, when
people started studying polynomials, they started with polynomials over the real num-
bers. Eventually in the nineteenth century people realized that it’s much easier to work
with algebraic curves or varieties over C than over R. So they made a deal: it’s not
what we set out to do, but let’s describe polynomials over C and once we finish that
we’ll go back and describe real polynomials. Of course, that’s a good example of a
broken promise. But really — it’s much easier to classify algebraic varieties over C
and the starting point to understand real varieties is to understand C varieties. But
unfortunately, most people have abandoned that promise.

§3 The adjoint representation

The construction that will enable us to do this is the theory of Lie algebras. Today, I’d
like to describe the overall framework, and we’ll go back and prove all the assertions
on Monday.

The problem, in general, is to classify all morphisms between Lie groups G,H.
(That subsumes the problem of representation theory, which is where H = GL(V ).) I
am going to assume, for now, that G is connected and simply connected. The starting
point is the remark I made last time. If I want to understand a map

ρ : G→ H

of Lie groups, I can look at the identities eG, eH and any small neighborhoods of the
origin. A small neighborhood of eG maps to a small neighborhood of eH . It’s enough to
know what the map is doing on that open set. I can zoom in and look at the map under
a closer and closer magnifying class. What I see on that small neighborhood determines
the entire map. That’s because for a connected Lie group, any neighborhood of the
origin generates the whole group.

Now I’m going to do something that induces a certain amount of vertigo. Let’s
zoom in on these shrinking open sets in G. What I want to say is that:

3.3 Proposition (First basic principle). Any Lie group map ρ : G→ H is determined
by its differential dρG at eG.

It’s enough to know the map just to first order at the origin and that determines ev-
erything. That’s not obvious. We will prove it on Monday. Let’s just take that as given
for now. It’s a crucial observation: that maps are determined by their linearizations
from

dρe : TeG→ TeH.

We thus have an inclusion

Map(G,H) ⊂ HomVect(TeG,TeH).
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This is pretty striking. The set of all maps turns out to be bounded by this finite-
dimensional vector space. Now all we have to do is ask one simple question: which
linear maps arise in this way, as differentials of Lie group maps? Somehow, the condi-
tion that the map is a Lie group homomorphism should be reflected in the differential.
At the end of the day, we’ll get a complete answer to this question.

Recall that to say that ρ is a Lie group map means that

ρ(gh) = ρ(g)ρ(h), (2)

and I want to say this in a more confusing way. Let mg : G→ G be the multiplication
by g map. Similarly, for h ∈ H, let mh : H → H be multiplication by h on H. To say
that ρ is a Lie group map simply says that we have a commutative diagram

G

mg

��

ρ // H

mρ(g)

��
G

ρ // H

.

It’s hard to say something about the differential at the identity via these diagrams
because none of these maps have fixed points! We’d like something that involves just
the tangent space at the identity.

Instead of looking at multiplication by g, look at conjugation by g. For g ∈ G,
define

φg : G→ G, g′ 7→ gg′g−1.

(Do the same for H.)
If you have a group in general, if you know what the conjugate of any element by

any other element is, does that determine the group structure? No — abelian groups.
So this is less information than knowing mg. But we do know that if ρ is a morphism
of Lie groups, then we have a commutative diagram

G

ψg
��

ρ // H

ψρ(g)
��

G
ρ // H

.

Of course, ψg fixes the identity, so it has a differential

dψg : TeG→ TeG,

and similarly we can differentiate conjugation at the identity in H,

dψh : TeH → TeH.

So for each element in the group, we get an action on the tangent space at the identity.
We get a map, of groups,

G
Ad→ Aut(TeG) = GL(TeG).
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3.4 Corollary. The vector space TeG has a natural representation of G on it.

This is important because it’s a representation for G that we get for free.

3.5 Definition. The representation of G on TeG given as above is called the adjoint
representation.

Granted, this could be a trivial representation, e.g. if G is abelian. So it may not
be a faithful representation. But it is canonically associated to the group G. In the
cases that occupy us for most of the semester — in the case where the simply connected
group has discrete center — then the image of the adjoint representation is the adjoint
form (in fact, its kernel includes the center).

Remark. We have redundant notations: for a vector space V , GL(V ) and Aut(V )
mean the same thing.

§4 Differentiating the adjoint representation

Again, what is true is that a Lie group map has to respect the adjoint representation. If
ρ : G→ H is a Lie group map, then the induced map on tangent spaces has to respect
this. But we’re not quite there yet. What I have is still something that associates to
every element of the group an automorphism of the tangent space. It still explicitly
invokes the group. I want some structure that involves only the tangent space. So how
do I get that?

I have a map

G
Ad→ Aut(TeG)

and I want something that only sees the tangent space. So take the differential of Ad
at the identity! I get a map

ad : TeG→ End(TeG) = Hom(TeG,TeG).

Note that Aut(TeG) ⊂ Hom(TeG,TeG) as an open subset, which determines the tangent
space.

Now, we can think of Ad as a trilinear thing: we can take a transpose

ad : TeG× TeG→ TeG, (X,Y ) 7→ [X,Y ] (3)

which is a bilinear “bracket” operation. This is a binary operation on this vector space
TeG. The key fact is that this has to be preserved under any morphism of Lie groups.
It seems like we’ve been throwing information right and left. But the point is:

3.6 Proposition. Any Lie group map ρ : G → H, then its differential dρe : TeG →
TeH respects this binary operation. In other words, there is a commutative diagram:

TeG× TeG
[·,·]G
��

dρ×dρ// TeH × TeH
[·,·]H
��

TeG
dρ // TeH

.
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This bracket operation must be preserved. A necessary condition that a map
TeG→ TeH arise as the differential of a Lie group map is that it preserves this bracket
structure. The second basic fact is that it is sufficient:

3.7 Proposition (Second basic principle). Suppose G is connected and simply con-
nected. Then any map φ : TeG→ TeH is a differential of a Lie group map if and only
if it respects this bracket operation, i.e. if [φ(x), φ(y)] = φ([x, y]).

We have, in some sense, answered the question. The first basic principle was that a
Lie group map was determined by its infinitesimal structure. The second basic principle
determines when a map on tangent spaces comes from a Lie group map. Thus, in the
case when G is simply connected, we can — in principle — understand maps of Lie
groups out of G. We’ll need to understand this bracket operation for that.

Lecture 4
2/4

§1 The basic setup

Today’s lecture is going to be a turning point: we are going to get to the definition
of a Lie algebra and answer the question from last time. We were looking at maps
between Lie groups, and we observed naively that (if the source is connected) a map
of topological groups G→ H (with G connected) is determined locally, by its value in
a neighborhood of the identity e. But it was better for a Lie group: it was determined
“micro-locally,” in terms of the map tangent space.

From last time:

• If G is a connected Lie group, then any Lie group map ρ : G→ H is determined
by its differential φ = (dρ)e : TeG→ TeH. We therefore have an inclusion

Hom(G,H) ↪→ Hom(TeG,TeH).

There’s a finite amount of data that determines the set of Lie group maps.

• We wondered — and this is the key question — which linear maps φ : TeG→ TeH
arise as the differentials of homomorphisms. We also had an adjoint representa-
tion

Ad : G→ Aut(TeG), g 7→ (dψg)e.

In more detail, for any g ∈ G, we had a map

ψg : G→ G, ψg(x) = gxg−1

given by conjugation by g, which is an automorphism of the Lie group G. The differen-
tial dψg gives an action of g on TeG. We thus get a representation of G on its tangent
space TeG, which comes for free.

Given this, we can take the derivative again, and what we get is a map

ad : TeG→ TidAut(TeG) = End(TeG) = Hom(TeG,TeG).
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What we wind up is a map from the tangent space TeG to the vector space of homo-
morphisms from TeG to itself. That’s a trilinear object. We can take its “transpose”
and we arrive at a bilinear map

TeG× TeG→ TeG.

It’s defined simply by sending

(X,Y ) 7→ ad(X)(Y ).

This is a piece of structure on the vector space itself, making no reference to the group.
That structure, we observe, has to be preserved by any map between the tangent space
of Lie groups that arises from a homomorphism of Lie groups.

4.1 Definition. We write

[X,Y ]
def
= Ad(X)(Y ), X, Y ∈ TeG. (4)

This is called the Lie bracket of X,Y .

The basic statement that we made last time was:

4.2 Proposition. Suppose G is (connected and) simply connected. Then any linear
map φ : TeG → TeH is the differential of a Lie group homomorphism if and only if it
preserves the Lie bracket. In other words, if

[φX, φY ] = [X,Y ]. (5)

I owe you a proof of both of these fundamental statements: that ρ is determined by
its differential and conversely the characterization of derivatives of homomorphisms. On
Wednesday, we’ll introduce a construction that will allow us to prove these statements;
for now we’ll go on.

§2 Describing the bracket

At this point, you might be a little bit skeptical. We have this operation, which comes
from differentiating the group law twice. It sounds pretty airy and abstract. The key
point is that this is something that can be made very explicit. We can describe the
bracket in all cases explicitly.

4.3 Example. We start with the basic example:

G = GL(V ) = Aut(V ),

where TeG = End(V ). We want to know, in this setting, what the bracket is. Here’s
one thing that’s worth bearing in mind; it’s a little difficult to visualize explicitly.

We know that if g ∈ G, then we have an automorphism

ψg : G→ G
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given by conjugation, which extends to a linear map on all of End(V ), sending h 7→
ghg−1. That’s a perfectly well-defined map on not just invertible matrices, but all
matrices. So ψg is a linear map from End(V )→ End(V ) and it is its own differential.
The differential of ψg at I is exactly

h 7→ ghg−1, h ∈ End(V ).

We get a description of the adjoint representation Ad:

4.4 Proposition. ψg = dψg is the map End(V )→ End(V ) sending an arbitrary map
X ∈ End(V ) to gXg−1.

This was pretty easy. Now we’ve got to differentiate this in g, which is a little
trickier since it’s no longer linear. To describe the ad adjoint representation, we start
with X ∈ End(V ), we choose an arc in G with that tangent vector.

So choose a smooth map

γ : (−ε, ε)→ G, γ(0) = 1, γ̇(0) = X.

I want to take the corresponding family of maps from End(V ) → End(V ) and differ-
entiate it. In other words,

ad(X)(Y ) =
d

dt
|t=0γ(t)Y γ(t)−1. (6)

That’s not so bad, since this is a matrix product. I can apply the product rule. This is

ad(X)(Y ) = γ′(0)Y γ(0)−1 + γ(0)Y (γ−1)′(0). (7)

Here I’m talking about the derivative of the arc γ−1 at time zero. How do you differ-
entiate the inverse of an arc? If it was a real-valued function, this is the quotient rule.
What is it in the world of matrices? If I have an arc in the space of invertible matrices,
whose derivative I know, I get a second arc by taking the pointwise inverse. I should
be able to take the derivative and do it. I know that

γ(t)γ(t)−1 = 1,

so that
γ′(0)γ−1(0) + γ(0)(γ−1)′(0) = 0. (8)

This gives
(γ−1)′(0) = −γ−1(0)γ′(0)γ−1(0). (9)

In our example, we know that γ(0) = 1, so we get from (7)

ad(X)(Y ) = XY − Y X. (10)

You’re probably pretty mad: why didn’t I just define the Lie bracket as the com-
mutator to begin with? Let me come back to this. But we’ve seen that the bracket
operation on the tangent space of GL(V ) is just the commutator. Given this, it makes
everything much more concrete. It also applies to any subgroup of GL(V ). If I have a
subgroup H ⊂ GL(V ), I can carry out the exact same analysis, and I find again the
bracket on TeH ⊂ End(V ) is the commutator.

There are some other consequences of this formula for GL(V ). We thus get:
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4.5 Proposition. The Lie bracket (for subgroups for GL(V ), at least) is skew-symmetric,

[X,Y ] = −[Y,X]. (11)

This isn’t at all obvious from the initial definition. Another consequence, which
will use once but never again in this course, is the Jacobi identity:

4.6 Proposition. For a subgroup of GL(V ),

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0. (12)

If you just write this out in terms of the commutators, this is what you get. This
leads to the following definition:

4.7 Definition. A Lie algebra is a vector space g with a skew-symmetric bilinear
map

[·, ·] : g× g→ g,

satisfying the Jacobi identity (12).

It follows that any Lie group has an associated Lie algebra given by the
tangent space at the identity.

Thus we can rephrase the previous result in the language of Lie algebras:

4.8 Proposition. The space of maps G → H where G,H are Lie groups and G is
simply connected, then

Hom(G,H) = HomLie alg(g, h),

for g, h the associated Lie algebras.

§3 Some general remarks

This is the beginning of the shift. It’s going to take us a couple of days to prove the
assertions on the board, but this is the fundamental shift in our understanding of Lie
groups. We can express everything we want to know about Lie groups in terms of
the corresponding Lie algebras, which are much simpler. Lie algebras don’t have this
topology, and they’re much easier to deal with. Given a nonlinear problem, we linearize
it, and describing maps between Lie groups is a very nonlinear problem. Now we’ve
magically converted it to a problem about maps between vector spaces and we know
which maps between vector spaces work.

Again, we haven’t proved it. We’ve seen that a map of Lie groups has to induce
a map of Lie algebras. We’re going to prove that this characterizes maps between Lie
groups over the next week. The main thing, in some sense, that this process of passage
of Lie groups to Lie algebras does is to give us a much simpler object to deal with.
There are other things that are equally important, in practice.

• In the definition above, I didn’t specify that the vector space be finite-dimensional.
There are infinite-dimensional Lie algebras which do arise: for instance, the Lie
algebras of all global vector fields on a smooth manifolds (with the Lie bracket).
We can extend the notion of Lie algebra to infinite-dimensional ones which brings
in many other examples and applications.
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• We can talk about a Lie algebra over any field. We can talk about a Lie algebra
over a finite field. It doesn’t make sense if you think of it as something arising
from Lie groups but the definition makes perfect sense, and people do it. The
remarkable thing is that the correspondence between Lie groups and Lie algebras
persists in this much broader context. We’re not going to talk about Lie algebras
over fields other than R or C.

• However, note that a Lie algebra over R leads to a complex Lie algebra by ten-
soring with C. There’s no analogous assertion at the level of Lie groups. In fact,
the first step in transforming the problem into a solvable one is to pass from a Lie
group to its Lie algebra. The second step is to complexify, because everything is
simpler over the complex numbers. We’re going to classify representations over
complex Lie algebras before going back to R. (The whole classification is much
simpler over C.)

Note however that I did promise that once we described representations of an ar-
bitrary simply connected Lie group, we will be able to describe representations of an
arbitrary Lie group.

§4 Lie brackets and commutators

Let’s go back to the description of the Lie bracket as a commutator. Why not just
define the bracket [X,Y ] to be the commutator? The answer is simply that XY is not
defined. When we imbed G ↪→ GL(V ), its tangent space TeG is imbedded in End(V ).
The space of endomorphisms of V is an algebra in that we can take the product of any
two elements. But, that product doesn’t respect TeG: if we start with two elements of
TeG and take their product in End(V ), that depends on the particular representation.

To restate: given an inclusion G ↪→ GL(V ), we get an inclusion

TeG ↪→ End(V )

and given X,Y ∈ TeG, the product XY need not even be an element of TeG (or rather
in the image). Composing two elements in the image doesn’t preserve the image.
Even when the composition is in the image, it generally depends on the choice of
representation. The product of two elements of a Lie algebra is not well defined.

In the end, we have to define the Lie bracket in a way that does not involve a
particular representation, and then we can use the representation to try to describe it
explicitly. That’s why the definition is what it is.

4.9 Exercise. Come up with an example where the “product” (in End(V )) of two
elements of a Lie algebra isn’t in the Lie algebra.

§5 Some more terminology

The word “algebra” in this context means two different things:

• Up till now, the word “algebra” means essentially a ring: you have an addition
and a multiplication law. Like the algebra of endomorphisms of a vector space:
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you can add maps and compose them. But now we’re using the word “algebra”
in a different sense: Lie algebras are not algebras, which is a bit of a problem,
linguistically.

• When we write down End(V ), it’s both an algebra and a Lie algebra.

• “Lie” is not an adjective! “Lie algebra” is a unitary expression that means some-
thing different from “algebra” satisfying a bunch of properties.

So, a bit of notation: when we write End(V ), we’ll mean it as an algebra in the
usual sense. When we want to think of it as a Lie algebra, we will write

gl(V ),

but sometimes this might not happen. You’re own your own.

§6 Representations of Lie algebras

There’s one more point to set down here.

4.10 Definition. If g is a Lie algebra, a representation of g on a vector space V is
a Lie algebra map

g→ gl(V ).

That means that g is acting on V : for each x ∈ g, we get a multiplication

V → V, v 7→ xv.

When we talk about action of groups, we think of automorphisms: here we’re associ-
ating to each x ∈ g an endomorphism (which could be zero!). The one thing it does
have to satisfy is the commutator relation

[x, y]v = x(yv)− y(xv), x, y ∈ g, v ∈ V. (13)

When we talk about representations of Lie algebras, some of the most basic con-
structions for finite groups will work for Lie algebras as well. For example, we can form
tensor product representations. Given a Lie group G acting on two vector spaces V,W ,
we get a representation of G on V ⊗W by

g(v ⊗ w) = gv ⊗ gw, g ∈ G. (14)

That is, starting with maps G → GL(V ), G → GL(W ) (representations on V,W re-
spectively), we got a representation

G→ GL(V ⊗W ).

What about Lie algebras? In each case, we had an associated Lie algebra and
representations of them, and we want to know how they relate to one another. Suppose
we have Lie algebra maps

φV : g→ gl(V ), φW : g→ gl(W ), φV⊗W : g→ gl(V ⊗W ),
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which we got from differentiating the above Lie group maps. How do these relate to
one another? They do not satisfy (14). Draw an arc γ through the identity G and
γ′(0) = X ∈ g. By definition, the action of X comes from taking the action of γt ∈ G
and differentiating at t = 0. Then

γt(v ⊗ w) = γt(v)⊗ γt(w).

Then differentiating at zero, we get

X(v ⊗ w) =
d

dt
(γt(v ⊗ w)) = Xv ⊗ w + v ⊗Xw. (15)

This is what the tensor product representation of Lie algebras looks like.

4.11 Proposition. Given representations of a Lie algebra g on V,W , we get a repre-
sentation on V ⊗W via

X(v ⊗ w) = Xv ⊗ w + v ⊗Xw. (16)

4.12 Example (Some other examples). If a Lie group G acts on V , it acts on Sym2(V )
given by

g(v2) = (gv)2,

and extending by linearity. (The squares span Sym2(V ).) We are in characteristic not
2.

We can do the same for Lie algebras. Given a representation of g on V , it acts on
Sym2(V ) via

X(v2) = 2vX(v). (17)

Lecture 5
2/6

§1 Recap

From last time, recall:

5.1 Definition. A Lie algebra is a vector space g with a skew-symmetric bilinear
form (Lie bracket)

g× g→ g

satisfying the Jacobi identity (12).

Last time, we got to the end of the sequence of reductions and were led to the
definition of a Lie algebra. Again, that’s the definition, and the basic property —
which we hopefully will prove today — is that:

• Every Lie group G has a Lie algebra g = TeG together with the differential of the
adjoint map, which defines the Lie bracket.
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• We have a bijection between isogeny classes of Lie groups and (finite-dimensional)
Lie algebras over R. In particular, every Lie algebra has associated to it a Lie
group, which we can take to be simply connected.

The basic thing to prove is that if G is connected and simply connected and H is
any Lie group, then we have a bijection

HomLG(G,H) ' HomLA(g, h).

Once we’ve proved this, we will switch from studying the Lie group to studying the
Lie algebra. We’re going to study Lie algebras and morphisms between them, with
the ultimate goal of understanding the theory of Lie groups. (Conversely, we will show
that any Lie algebra over R comes from a Lie group.)

There are a few remarks to make about this definition, which are worth making as
they involve blanket assumptions:

• The definition doesn’t specify whether g is finite-dimensional. As I said last
time, there are lots of examples of Lie algebras which occur “in nature” which
are infinite-dimensional, e.g. the vector space of vector fields on a manifold.

• However, we’re going to be concerned in this class entirely with finite-dimensional
ones. So, we adopt a convention: we will assume that a Lie algebra is finite-
dimensional.

• The definition also doesn’t specify the ground field, and the definition makes
sense over any field. You can do a lot of interesting things with Lie algebras over
other fields, even ones that don’t correspond to geometric objects. We won’t do
that. We will make the assumption that the ground field is R or C, and
by default we will work over R.

• Most of the work we will do will be with complex Lie algebras. Working over C is
a simplifying assumption. If your goal is to classify Lie algebras (or Lie groups)
over R, you’d want to start with C anyway.

• Let me also put down the following fact, and challenge you to think about how
to prove something like this. It’ll become clearer in the next chapter. In fact, any
Lie algebra can be imbedded in gln(R) for some n. It’s not that hard: every
Lie algebra acts on itself by the adjoint action on itself. Any Lie algebra has
an adjoint representation that sends any element x to Adx = [x, ·]. That’s not
necessarily an imbedding, or a faithful representation. But, it only fails to be an
imbedding because the Lie algebra may have a center : elements that commute
with everything else. We can deal with those. (We haven’t defined these terms,
but in the next chapter, we will get to work and do that.)

Once we have a Lie algebra imbedded in gln(R), we will be able to say that every
Lie algebra arises from a Lie group.

Remark. Given the previous remarks, it’s natural to ask whether every Lie group is
imbeddable in GLn(R) for some n. The answer is no; we’ll get to this point relatively
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soon. Not every Lie group has a faithful representation. The simplest example I

know is the universal cover S̃L2(R) of SL2(R) (on the homework, you showed that
π1(SL2(R)) = Z). We’ll see this by analyzing representations of the Lie algebra: every
representation of the Lie algebra gives a representation of the Lie group. We’ll see that
every representation of S̃L2(R) has a kernel.

Remark (Wickelgren). Consider the group G of unipotent upper-triangular 3-by-3
matrices 1 ∗ ∗

1 ∗
1


whose center consists of matrices

Z(G) =

1 0 b
0 1 0
0 0 1


and if we take the subgroup of Z(G) consisting of matrices with b ∈ Z, it follows that
Z ⊂ G as a central subgroup. If we take G/Z, then this has no finite-dimensional
representations.

Let me just make a couple of more definitions and then we can get to prove these
assertions.

5.2 Definition. A morphism of Lie algebras is a map φ : g→ h that preserves the
brackets, i.e. such that

φ([x, y]) = [φ(x), φ(y)]. (18)

A representation of a Lie algebra g on a vector space V is simply a morphism

g→ gl(V ).

This is the same as an action of g on V such that for all x, y ∈ g, then

x(y(v))− y(x(v)) = [x, y]v, v ∈ V. (19)

The main point here is that a representation is the same thing as an action on
a vector space. As we saw last time, we can carry out multilinear operations on
representations of a Lie algebra g in such a way that it is compatible with corresponding
representations of Lie groups. In other words, if V,W are representations of a Lie group
G, yielding representations of g = Lie(G), then to get the representation of g on V ⊗W ,
we differentiate the action of G on V ⊗W . We get

g(v ⊗ w) = g(v)⊗ g(w), g ∈ G (20)

so that
X(v ⊗ w) = X(v)⊗ w + v ⊗X(w), X ∈ g. (21)

Let’s now do the case of the dual representation. A bit of notation: given φ :
V → W between vector spaces, we write φt : W ∗ → V ∗ to be the transpose. Given
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a representation ρV : G → GL(V ) of a Lie group G on a vector space V , we define a
representation on V ∗ via

ρV ∗(g) = ρV (g−1)t. (22)

On the level of Lie algebras, we get

φV ∗(X) = −φV (X)t. (23)

5.3 Exercise. Check that this works.

§2 The exponential map

We need a construction for the proofs of these theorems. For most of the course, we
won’t need this construction, as we will be working with Lie algebras, but it will come
back later. I want to construct the exponential map

exp : g→ G

from the Lie algebra g of a Lie group G.
Suppose X ∈ g = TeG. We can define a vector field on G by taking this one tangent

vector and translating it around. A vector field on a manifold associates to each point
in the manifold a tangent vector at that point. I want to do this by saying that v = vX
is such that

vX(g) = d(mg)e(X). (24)

In other words, we use left translation by g to translate the vector X at e to g.

Remark. Given a map α : M → N sending p 7→ q, then we get a differential

dα = (dα)p : TpM → TqN.

This is also denoted α∗, or α′ (especially if M = R).

A bit of checking shows that this is a smooth vector field. I’m now going to invoke
a classical theorem from differential geometry. It’s not a big theorem, but it runs:

5.4 Theorem. If M is any manifold, and p ∈ M , and v a vector field on M , then
there exists a unique germ1 of an arc γ : (−ε, ε)→M such that:

• γ(0) = p.

• γ′(t) = v(γ(t)) for each t.

In other words, if I have a vector field on a manifold, then I can integrate it. I can
find an arc which passes through a given point and whose tangent vector at every point
comes from the vector field.

Now, I want to combine these two ideas. If I have a Lie group G and I choose
a tangent vector X ∈ TeG = g, then let vX be the corresponding vector field. Let
γ : (−ε, ε)→ G be the corresponding integral curve with γ(0) = e. I claim two things:

1Two such things are equivalent if and only if they agree on an open subset of 0.
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• You can extend this to the entire real line γ : R→ R.

• What you get is actually a homomorphism of Lie groups.

I’m going to do the second part first. We’re going to show that γ is a group
homomorphism where defined. For s, t small, we want

γ(s+ t) = γ(s)γ(t). (25)

The reason is pretty clear. If I fix s, and set α(t) = γ(s + t) and set β(t) = γ(s)γ(t),
then the derivatives of these arcs are exactly the same. We have α′(t) = v(γ(s + t))
while β′(t) = (dmγ(s))γ

′(t). Since v is a left-invariant vector field, these are the same.
So we have two arcs with the same derivative at every point (or rather, satisfy the same
differential equation). Since we’re in characteristic zero, this means that they are the
same arc. That in turn tells me that I can extend the arc forever by adding images
of small neighborhoods of the origin here. It continues to be an integral curve for this
vector field and becomes a homomorphism.

What I’m saying here is that given a tangent vector at the origin, I can “integrate”
it to get a Lie group homomorphism

R→ G.

We’ve proved:

5.5 Proposition. For all X ∈ g, we get a unique Lie group morphism φX : R → G
with φ′X(0) = X.

A couple of remarks:

• We have this map φX for every X ∈ g, which is a homomorphism.

• φX need not be injective! For one thing, if I started with X = 0, I’d get the
constant map R→ G at e.

• If it has a kernel (which is not all of R), it has a discrete kernel, isomorphic to Z,
and we get a circle S1 ↪→ G. (E.g., for instance, if G = S1, this is what happens.)

Lecture 6
2/8

Alright, let’s get started. Today we want to wrap up the discussion from this past
week. The crux of this matter is to prove the two key assertions we made:

• (G connected): Any Lie group map ρ : G → H is determined by its differential
dρ : g → h at the identity. Again, it was relatively elementary to see that
it was determined by its values in any open neighborhood of the identity, but
we’re saying something stronger: just knowing the first derivatives at the origin
determines the map.
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• (G connected and simply connected): A linear map φ : g→ h is a differential of a
Lie group map ρ : G→ H if and only if ρ is a map of Lie algebras. This entirely
characterizes linear maps that arise as differentials of Lie group maps.

Modulo the distinction between a group and its simply connected form, the study of
morphisms of Lie groups is reduced to the study of Lie algebras. Starting on Monday,
we will undertake in earnest the study of Lie algebras. Ultimately our goal is to apply
that back to understand Lie groups and morphisms between them. That’s our program.

§1 The exponential map

Last time, we had a basic construction. Given a Lie group G with Lie algebra g
and X ∈ g, then we defined a vector field v = vX which was left-invariant and with
v(e) = X: that is, we translated X around by the group elements. In other words,

vX(g) = dmg(X), multiplication by g ,mg : G→ G.

We integrated v to arrive at an integral curve γ : (−ε, ε)→ G with γ(0) = 1 and

γ′(t) = v(γ(t)), ∀t ∈ (−ε, ε),

and, because of the left-invariance of the vector field vX , γ turns out to extend to all
of R to be a homomorphism, satisfying γ(s+ t) = γ(s)γ(t).

Proof. (Recap of the proof last time.) Let’s show that

γ(s+ t) = γ(s)γ(t) (26)

where defined. Fix s, and set α(t) = γ(s)γ(t). Set β(t) = γ(s + t). We want to show
that

α ≡ β,

where they are defined. We’ll show that α, β are both integral curves for the vector
field v = vX . Since α(0) = β(0), then they’re the same throughout. Now

β′(t) = γ′(s+ t) = v(γ(s+ t)) = v(β(t)).

Likewise,
α′(t) = mγ(s)γ

′(t) = mγ(s)v(γ(t)) = v(γ(s)γ(t)) = v(α(t))

by left-invariance of the vector field v. This proves that γ is a homomorphism where
defined, which in turn means that we can extend it to all of R by translating. We
conclude that γ extends to a Lie group homomorphism

φ = φX : R→ G, φ̇(0) = X.

N
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Conversely, given any Lie group morphism R → G, it arises in this way under the
above construction, using the same uniqueness result for integrating vector fields. By
uniqueness, it’s natural. That is, if ρ : G → H is any Lie group map, then if I take
X ∈ g, we have a commutative diagram

R

φdρ(X)   @
@@

@@
@@
φX // G

ρ

��
H

.

This follows from the uniqueness of φX (notation as in the previous proof).

6.1 Definition. A map φ : R→ G of Lie groups is called a 1-parameter subgroup:
it’s a subgroup of G which is one-dimensional.

A priori, this map φ is just an immersion (injective differential everywhere); it may
or may not be one-to-one. Here are the three possibilities.

• It has a kernel, which is a discrete subgroup of R, which after rescaling is the
integers.

• φ is injective and closed, so R is a closed subgroup of G.

• φ is injective but only an immersion; it isn’t a closed map.

6.2 Example. Take G = S1 × S1. The Lie algebra is g = R2 with trivial bracket.
Given X ∈ g, integrating amounts to drawing a line on the torus. If I think of the
torus as a plane mod a lattice, then I draw the line on the plane and project to the
torus. If the line has rational slope, then it repeats itself and has a kernel: it defines
a subgroup S1 ⊂ S1 × S1. If the line has irrational slope, then it defines an immersed
(but not imbedded) submanifold R ⊂ S1 × S1. Observe that possibilities are dense in
the Lie algebra.

Nonetheless, the claim is that I can fit all of these maps together and get a single
map which will at least locally behave well.

For each X ∈ g, we’ve defined a map φ = φX : R→ G. Consider all vectors in the
Lie algebra and define them simultaneously.

6.3 Definition. The exponential map exp : g→ G by setting exp(x) = φX(1).

Remark. Observe that φλX(t) = φX(λt). In particular, if I look at the exponential
map and restrict it to any line through the origin in the Lie algebra, I get a one-
parameter subgroup of the Lie group.

The exponential map is a smooth map g → G, as we’ll see below. In fact, exp :
g→ G is the unique smooth map such that:

• (d exp)0 = id.

• exp restricted to any line is a one-parameter subgroup (i.e., it’s a homomorphism).
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So we actually get a diffeomorphism between a neighborhood of 0 in g and a neighbor-
hood of the identity in the group G. I don’t even want to think about what it does
globally. But at least in a neighborhood of zero, it’s well-defined.

The uniqueness of the exponential map gives:

6.4 Proposition. The exponential map is natural. Given a Lie group map ρ : G→ H,
there’s a commutative diagram:

g

dρe
��

exp // G

ρ

��
h

exp // H

.

This proves the first principle. We’ve already observed that any Lie group
map is determined in a neighborhood of the identity. Now, we’ve said that if you know
the differential at the identity, you know the Lie group map in a neighborhood of the
identity, and hence everywhere.

I still owe you a proof that exp is a smooth map. How do we show that? I keep
talking about how it’s good to work in a coordinate-free manner, but now I’m going
to work in GLn and do it explicitly. Whatever I deduce from this will apply to any
subgroup of GLn.

6.5 Example. Explicitly, let’s suppose G = GL(V ) for a vector space V . The corre-
sponding Lie algebra is gl(V ), which is the algebra of endomorphisms of a vector space.
In this case, I can write out the exponential map completely explicitly, and you’ll see
why it’s called that: given an endomorphism X of V , we get

exp(X) = 1 +X +
X2

2
+
X3

6
+ . . . ; (27)

this converges and gives a well-defined automorphism of V . It is an automorphism,
because exp(−X) exp(X) = id. Moreover, by multiplying power series we find that

exp((s+ t)X) = exp(sX) exp(tX).

This is evidently a smooth map which satisfies the conditions that characterize the
exponential map, so this must be it. The same must be true for any subgroup of
GL(V ).2

§2 The Baker-Campbell-Hausdorff formula

Let G be a Lie group with g the Lie algebra.
The point of the previous analysis is that this smooth map

exp : g→ G

is a diffeomorphism from a neighborhood of the origin to the neighborhood of the
identity. Now I can ask: this map is a homomorphism when restricted to a line. It

2Though as we stated last time, there are Lie groups which don’t imbed in GL(V ).
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isn’t a homomorphism in general. I’d like to transport the group law in G over to g
and see what it looks like. If I have two small vectors v, w in the Lie algebra g, I can
exponentiate them to get elements of the group, and I can compose them and then
take the inverse exp−1: what is it the image of? Can I say, in terms of the Lie algebra
structure, what the Lie group structure looks like locally?

6.6 Definition. We define the logarithm map

log : U → g

on a small neighborhood U ⊂ G of the identity as the inverse to the exponential map.

6.7 Example. If the group imbeds in GL(V ), then the logarithm map is

log(g) = (g − I)− (g − I)2

2
+

(g − I)3

3
± . . . .

Note that the individual terms in this power series (which converges when g is close to
the identity) are not intrinsically defined but the sum does.

I’d like to describe the group law on the group ported over to the Lie algebra via
the logarithm or the exponential map.

6.8 Definition. For X,Y ∈ g small enough, define the auxiliary operation

X ∗ Y = log(exp(X) exp(Y )). (28)

This makes sense if X,Y are close enough to zero and the logarithm is defined.
This is the operation we’re going to study. Now, we want to write it out. This is the
crucial formula, which you will use once and never again, so I don’t know how much
to emphasize this.

What is X ∗ Y , for a subgroup of GL(V )? It is

X ∗ Y = log

((
1 +X +

X2

2
+ . . .

)(
1 + Y +

Y 2

2
+ . . .

))
log

(
1 + (X + Y ) +

X2

2
+XY +

Y 2

2
+ . . .

)
.

Now expand this out in a power series:(
1 + (X + Y ) +

X2

2
+XY +

Y 2

2
+ . . .

)
−1

2

(
1 + (X + Y ) +

X2

2
+XY +

Y 2

2
+ . . .

)2

±. . . .

The quadratic terms in this expansion are

X + Y +
X2

2
+XY +

Y 2

2
− (X + Y )2

2
= X + Y +

[X,Y ]

2
.

Then:
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6.9 Theorem. We have:

X ∗ Y = X + Y +
[X,Y ]

2
+

1

12
([X, [X,Y ]] + [Y, [Y,X]]) + . . . . (29)

What this is good for is one thing: we have taken the group law and translated it
back to the Lie algebra. The ∗ operation is what corresponds, via the exponential map,
to the group law, and the key fact is that this is expressible purely in terms of the Lie
bracket. If you know the Lie algebra structure, you can express the Lie group structure
in these terms. The exponential map is generally not a homomorphism: if X,Y don’t
commute, there are additional terms in the above formula. But these correction terms
are expressed purely in terms of the Lie algebra structure. So once I know the Lie
algebra structure, I can create the Lie group structure locally. That is, essentially, the
proof of the second principle.

Remark. This hasn’t been completely proved: we haven’t shown that the higher terms
are also expressible in terms of Lie brackets.

6.10 Corollary. Let G be a Lie group with Lie algebra g. Let h ⊂ g be a subspace.
The subgroup of G generated by exp(h) with Lie algebra h is an immersed subLie group
of G with tangent space TeH = h if and only if h is a Lie subalgebra.

In general, if I take two vectors x, y ∈ h and take exp(x) exp(y), the product is not
necessarily going to be the exponential of a linear combination of x, y. The exponential
map applied to a two-dimensional subspace will generally not be a local Lie subgroup.
But if we started with a Lie subalgebra, then we can appeal to the Baker-Campbell-
Hasudorff formula. We get a one-to-one correspondence between:

• Immersed, connected subgroups H ⊂ G.

• Lie subalgebras h ⊂ G.

That’s the first step in the correspondence between Lie groups and Lie algebras.
Think about this over the weekend. We’re going to start building a dictionary between
phenomena we’re interested in via the group and via the Lie subalgebra. We’re saying
that immersed subgroups correspond to subalgebras. What do normal subgroups cor-
respond to? We are going to carry over the standard definitions of group theory to Lie
algebras.

Proof of the second principle. Given a map φ : g→ h, let j ⊂ g⊕ h be the graph. This
is a Lie subalgebra of g ⊕ h if and only if φ is a Lie algebra map. In this case, there
exists a connected Lie group J ⊂ G × H, an immersed subgroup, with Lie algebra j.
That means that composition of this map

J → G×H p1→ G

is an isomorphism on Lie algebras: it’s therefore a covering space map. (That’s because
j → g ⊕ h → g is an isomorphism.) As G is simply connected, it follows that J ' G
and J is the graph of a Lie group map G→ H with the desired properties. N
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Lecture 7
2/11

Last time, on Friday, we talked about the passage from Lie groups to Lie algebras. We
saw that there is a one-to-one correspondence between Lie algebras and connected,
simply connected Lie groups. We can describe morphisms of Lie groups entirely in
terms of Lie algebras. So we will work mostly with Lie algebras, with the idea that this
is eventually going to apply to Lie groups. Still, what we need to do know is to create
a dictionary between the basic properties of Lie groups and Lie algebras. Mostly, this
is a matter of translation.

§1 The dictionary

First, we should define the notion of an abelian Lie algebra. Given an abelian Lie
group, the associated Lie algebra has all Lie brackets zero.

7.1 Definition. A Lie algebra is abelian if [·, ·] ≡ 0: if all brackets are zero. The
center Z(g) of a Lie algebra g is the collection of X ∈ g such that [X,Y ] = 0 for all
Y ∈ g.

Given a connected Lie group G with Lie algebra g, connected (possibly immersed)
subgroups H ⊂ G correspond to subalgebras h ⊂ g. What corresponds to the notion
of normlaity? Given H ⊂ G which is normal, then that means that

gHg−1 = H, g ∈ G.

If we want to translate this back into the world of Lie algebras, say we have an arc
γ : I → G with γ(0) = e and γ′(0) = X ∈ g, then to say that

γ(t)Hγ(t)−1 = H, ∀t

implies after differentiating that h is stable under the adjoint representation: that is,

Ad(γt)h ⊂ h

under the adjoint representation of G on g. Differentiating with respect to t, we find
that

ad(X) : h→ h,

or that if Y ∈ h, then [X,Y ] ∈ h (for any X ∈ g). This leads to the following definition,
which is the Lie algebra-theoretic analog of the notion of a normal subgroup:

7.2 Definition. A Lie subalgebra h ⊂ g is an ideal if [g, h] ⊂ h.

Remark. It’s natural to ask whether I can form quotients of Lie algebras in the same
way that I can form quotient groups. Given a Lie algebra g and a subalgebra h ⊂ g,
then we can form the quotient g/h as a Lie algebra if and only if h is an ideal.

In analogy with group theory, we have:
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7.3 Definition. We say that g is simple if g has no nontrivial ideals (that is, no ideals
other than 0 and g).

We’re going to justify focusing on the simple Lie algebras in classification. Over
the next week, we’ll describe various types of Lie algebras, and we’ll see that a Lie
algebra can be broken into a relatively easily understood piece (the maximal solvable
Lie algebra) and the quotient, which will be a direct sum of simple Lie algebras.

§2 Nilpotent, solvable, and semisimple Lie algebras

I want to introduce three more important classes of Lie algebras. To do that, it will
be useful to introduce some auxiliary constructions which we’ll use this week and then
never see again. We’re going to define solvable and nilpotent Lie algebras.

7.4 Definition. Given a Lie algebra g, we define two sequences of ideals in g.

• The lower central series is defined via D0g = g and inductively,

Dig = [g, Di−1g]. (30)

In particular, D1g = [g, g]. This is a descending filtration

D0g ⊃ D1g ⊃ D2g ⊃ . . . .

These are evidently ideals.

• The derived series is a descending sequence of algebras with D0g = g and

Dig = [Di−1g, Di−1g]. (31)

These are ideals, and you can prove it using the Jacobi identity.

Now we make a couple of definitions:

7.5 Definition. We say that a Lie algebra g is nilpotent if the lower central series
eventually terminates at zero: that is, if Dkg = 0 for k � 0.

7.6 Definition. We say that g is solvable if the derived series eventually terminates
at zero: that is, if Dkg = 0 for k � 0.

Of course, nilpotent is a stronger condition than solvable: the terms in the lower
central series contain the analogous terms in the derived series.

7.7 Definition. We say that g is semisimple if g has no nonzero solvable ideals.

As we will see shortly, an equivalent definition to semisimple is that g be a direct
sum of simple Lie algebras. If we can classify simple Lie algebras, we can classify
semisimple ones.

Remark. A subalgebra of a nilpotent (resp. solvable) Lie algebra is nilpotent (resp.
solvable).
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There are key examples of nilpotent and solvable Lie algebras.

7.8 Example. The Lie algebra n of strictly upper-triangular matrices sitting inside
gln is nilpotent. (This is the Lie algebra of the Lie group of upper-triangular unipotent
matrices.) Any Lie subalgebra of n is nilpotent. In fact, we’re going to show that the
converse is true: every nilpotent Lie algebra can be realized as a subalgebra of n.

To see that n is nilpotent, observe that the commutator of strictly upper-triangular
matrices has zeros on the main diagonal and on the diagonal adjacent to it. Repeating,
we get more and more zeros.

7.9 Example. There is a similar example for solvable Lie algebras. This is the Lie
algebra b of all upper-triangular matrices, viewed as a subalgebra of gln. This is no
longer nilpotent, but it is solvable. When you take the commutator, the first time, you
get n ⊂ b. But on the other hand, [b, n] = n so b is not nilpotent. Analogously, every
solvable Lie algebra imbeds inside some b.

Remark. Question: how does this question justify saying that we can ignore solvable
Lie algebras? It’s not true. The idea is to focus on irreducible representations. The
result we’re going to prove is that any representation of a solvable Lie algebra, we can
choose a basis so that the representation consists of upper-triangular matrices. This
means that there is always a one-dimensional subrepresentation. So the only irreducible
representations of a solvable Lie algebra are one-dimensional. That’s our justification
for focusing on the simple case.

Now, I want to say something about solvable Lie algebras that does not have an
analog of nilpotent ones; it is much more the right characterization of them.

Let’s make the following observation.

7.10 Proposition. Given a Lie algebra g, it is solvable if and only if there exists a
sequence of subalgebras

0 ⊂ g1 ⊂ · · · ⊂ gk ⊂ g

such that:

• gi ⊂ gi+1 is an ideal in gi+1 (not necessarily an ideal in g).

• The quotient gi+1/gi is abelian.

Proof. If g is solvable, the derived series is such a sequence of subalgebras. Conversely,
if you have such a sequence of subalgebras, then the elements of the derived series will
be carrying the filtration further and further back and we get solvability. N

As a consequence, we get:

7.11 Corollary. If h ⊂ g is an ideal, then g is solvable if and only if h and g/h are
solvable.

7.12 Corollary. Given a pair of solvable Lie ideals a, b ⊂ g, the span a+b is a solvable
Lie ideal of g.
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Proof. In fact, this follows from the previous corollary, and from the isomorphism

(a + b)/b ' a/(a ∩ b),

which is a solvable Lie algebra. N

Now we’ve come to a definition which doesn’t seem to have a definition in the analog
of group theory.

7.13 Corollary. Given a Lie algebra g, there exists a unique maximal solvable ideal
in g.

7.14 Definition. The radical rad(g) of g is the maximal solvable Lie ideal.

We have an exact sequence

0→ rad(g)→ g→ g/rad(g)→ 0,

and in fact g/rad(g) is semisimple. In fact, if it had any nonzero solvable ideals, we
could take the preimage in g to get a strictly larger solvable ideal in g. Therefore, any
Lie algebra can be thought of as having two component parts: a solvable part and a
semisimple part. It’s not a direct sum, but it is in some sense a decomposition.

If we want to understand irreducible representations of g, we can hope to do so by
understanding the irreducible representations of each piece. As we’ll see, those of a
solvable Lie algebra are easy to describe.

§3 Engel’s and Lie’s theorems

I’m going to prove two theorems that give the characterization of solvable and nilpotent
Lie algebras.

7.15 Theorem (Engel). Let φ : g → gl(V ) be a representation. Suppose that for all
x ∈ g, φ(x) is a nilpotent endomorphism of V . Then there exists a nontrivial vector
v ∈ V such that all of g kills v.

The hypothesis is that everything in g acts nilpotently, so everything in g has a
kernel: we can get a common kernel.

7.16 Corollary. Suppose g ⊂ gl(V ) is a Lie subalgebra which consists of nilpotent
endomorphisms of V . Then there is a basis for V such that g can be simultaneously
strictly-upper-triangularized: that is, g ⊂ n.

Proof of the corollary. If I know that there’s a single vector v ∈ V killed by g, I observe
that g acts on V/v and then keep applying the same logic over and over. N

Proof of Engel’s theorem. One preliminary remark: if X ∈ gl(V ) is an endomorphism
of V which is nilpotent, then that means that there’s a diminishing sequence of sub-
spaces

V ) V1 ) · · · ⊃ Vk = 0,
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such that the action of X carries each subspace in the sequence to the next smaller one.
In particular, adX ∈ gl(gl(V )) (that is, adX is viewed as an endomorphism of
gl(V )) is nilpotent. In fact, (adX)mY ∈ gl(V ) carries Vi into Vi+k−m — let’s come
back to this next time.

Given this fact, let’s prove Engel’s theorem by induction on dim g.

7.17 Lemma. g contains an ideal h of codimension one.

Then we’re going to do the natural thing and look at the action of this subalgebra
h.

Proof. Let h ⊂ g be any maximal proper subalgebra. Then the claim is that h is an
ideal and of codimension one. Look at the adjoint action of h on the vector space g/h.
Every element of h acts nilpotently. By the inductive hypothesis, we can apply Engel’s
theorem to h acting on g/h and find a vector Y ∈ g \ h such that

[Y, h] ⊂ h.

Consider the span of Y + h. This is itself a subalgebra, and since h ⊂ g is maximal, it
follows that Y + h = g. Moreover, [Y, h] ⊂ h implies that h is an ideal. N

We’ll finish the proof of Engel’s theorem on Wednesday. N

Lecture 8
2/13

In this course, we are going to focus almost exclusively on the classical Lie algebras, in
particular the semisimple Lie algebras, and I want to explain why that’s a reasonable
restriction to make. Today, we’re going to finish with chapter 9 of Fulton and Harris.
On Friday, we will do chapter 10, which is a bit of a digression, in the sense that it is
simply a matter of trying to get more familiar with concrete examples of Lie algebras
by describing all Lie algebras of dimensions 1, 2, 3. It’s good to develop your familiarity
but it is skippable. So why don’t you take a look, between now and Friday, and I’ll ask
you how much time to spend on chapter 10. Next week, we’ll hit chapter 11, which
is where the course starts. Chapter 11 is where we start answering the questions that
we’ve set up. So that’s our plan.

§1 Engel’s theorem

Last time, we had Engel’s theorem:

8.1 Theorem (Engel’s theorem). If g ⊂ gl(V ), and X : V → V is nilpotent for each
X ∈ g, then there exists v ∈ V \ {0} such that Xv = 0 for all X ∈ g. In other words,
the kernels all have a common intersection.

For the purposes of comparison, let me put up the version of this for solvable Lie
algebras.
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8.2 Theorem (Lie’s theorem). Let k be algebraically closed of characteristic zero.
If g ⊂ gl(V ) is any solvable Lie algebra, then there exists v ∈ V \ {0} which is a
simultaneous eigenvector for every X ∈ g. That is, for each X ∈ g, we have

Xv = λ(X)v,

for some linear map λ : g→ k.

Engel’s theorem states, under these hypotheses, that there exists a basis for the
vector space of V such that in terms of the corresponding identification of gl(V ) with
gln, the subalgebra g is identified with a subalgebra of the upper-triangular matrices.
The argument here is straightforward: find v killed by every element of g, make that
the first basis vector, and then look at the action on the quotient of V/ {v} and repeat.

Here, the conclusion of Lie’s theorem is — analogously — that there exists a basis
v1, . . . , vn ∈ V such that g becomes contained (in this basis) in the upper-triangular
matrices. Again, the reasoning is analogous, by passing to quotients repeatedly.

Notice one difference between the two theorems. The second theorem depends
only on the Lie algebra: it states that any representation of a solvable Lie algebra
can be represented via upper-triangular matrices. The hypothesis of Engel’s theorem
assumes that every element in g is a nilpotent endomorphism. It is not true that any
representation of a nilpotent Lie algebra can be represented via strictly upper-triangular
matrices (e.g. a diagonal representation).

Proof of Engel’s theorem. This starts with a preliminary remark, which needs to be
fixed (thanks to Omar Antolin-Camerana). Assume every element X ∈ g is nilpotent
(as an element of End(V )). The claim is that the adjoint action

ad(X) : g→ g

is nilpotent for all X ∈ g. The proof, which kind of got sloppy last time, is actually
very simple, as Omar pointed out: we’re saying that X : V → V is nilpotent, so that
Xk = 0 on V (for some k). Now

Ad(X)mY = [X, [X, . . . , [X,Y ] . . . ].

If you expanded that out as a product of X’s and Y ’s, each term of the expansion
would consist of a string of X’s with one Y . If m > 2k, there has to be a consecutive
string of k X’s somewhere and the product has to be zero. That’s going to be a useful
point as we go on.

Now, we’re going to assume inductively that Engel’s theorem is true for
Lie algebras of smaller dimension.

The next point in this proof is:

8.3 Lemma. Under these hypotheses, there exists h ⊂ g of codimension one.

Proof. Let h ⊂ g be a maximal proper subalgebra. We’ll show that h is codimension
one and an ideal. In this case, h acts on both g on h via the adjoint action, so we get an
induced action of h on the quotient g/h. The action of h is nilpotent on this quotient
space (cf. preliminary remark above: in fact it’s even nilpotent on g), which—by the
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inductive hypothesis—means that there is a nonzero vector Y ∈ g/h such that Y is
killed by the adjoint action of h on g/h.

Now we just choose Y ∈ g living over Y ∈ g/h. I can now say that

ad(X)(Y ) ∈ h, i.e. [X,Y ] ∈ h for X ∈ h.

That states that if I take the span of h, Y , then this is a subalgebra of g. That implies,
of course, that it’s equal to all of g, since h was maximal. Thus h is codimension one
and it’s also clear that h is an ideal since

[h, Y ] ⊂ h.

N

Now let g ⊂ gl(V ) be as in Engel’s theorem, and choose an ideal h ⊂ g of codimen-
sion one and let Y ∈ g \ h. By the inductive hypothesis, there exists v ∈ V \ {0} killed
by h. That’s not quite right. But here’s what we do: consider the subspace of all such
vectors. Set

W = {v ∈ V : hv = 0} .
We know that W 6= 0 (by the inductive hypothesis), but let’s look at all such vectors.

Our last claim is:

8.4 Lemma. The subspace W is stable under g: that is, the action of Y preserves W .

Everything in h kills W , so the two claims are equivalent. Once we know that, we
know that Y is nilpotent, so it is nilpotent on W , so it must have a kernel in W : that
means that there is a nonzero vector w in W killed by Y . That means that gw = 0
and w is the vector we want to prove Engel’s theorem.

Proof. This last claim is the reason we’re doing this proof: it’s a basic calculation that
we’re going to see over and over, and it’s going to come up in Lie’s theorem as well.
The proof of the claim is to suppose w ∈ W is any vector. We want to show that
Y w ∈ W . How can I tell that? The space W is defined as the set of vectors killed by
everything in h. If I want to know that a given element is in W , I just have to see that
it’s killed by everything in h.

In other words, to show Y w ∈W , I have to show that for each X ∈ h, we have

X(Y w) = 0, X ∈ h. (32)

But
X(Y w) = Y (X(w)) + [X,Y ]w, (33)

and X(w) = 0, so the first term drops out. On the other hand, [X,Y ] ∈ h (Because h
is an ideal), so [X,Y ]w = 0 as well. So we conclude that (32) holds. This means that
Y w ∈W and this is what we wanted to show. N

This calculation, which seems pretty mindless, is what’s going to unlock a lot of
what we’re going to do. Observe that w is an eigenvector for all of h, and we’re saying
that if some element of the Lie algebra outside h acts on it, we still get an eigenvector
for all of h, again with eigenvalue zero. We’ll say this again, but we’ve now proved
Engel’s theorem. N

44



Lecture 8 Representations of reductive Lie groups notes

§2 Lie’s theorem

The argument of Lie’s theorem is going to go along very similar lines. Instead of looking
for elements which are eigenvectors of g with eigenvalue zero (i.e., elements killed by
g), we are going to look simply for eigenvectors. The first point, in particular, is that
there a codimension one ideal again.

8.5 Lemma. If g is solvable, then there exists h ⊂ g of codimension one which is an
ideal.

Proof. This is easier than the corresponding lemma in Engel’s theorem, because in
Engel’s theorem we didn’t assume anything about the Lie algebra to begin with, just
about the elements as endomorphisms. We know that

[g, g] ( g,

because g is solvable. We observe that g/[g, g] is abelian and therefore I can find an ideal
in g/[g, g] by taking any codimension one vector space h. Take h to be the preimage
of h. N

It’s easier, again, because we’re assuming something about the Lie algebra. Now
comes the part which requires a little more work. Let g be solvable, h ⊂ g an ideal of
codimension one. Let g act on V .

Assume inductively that Lie’s theorem is true for solvable Lie algebras of
smaller dimension. Therefore, since h acts on V , we can find a common eigenvector
v ∈ V \ {0} for all of h. In other words,

Xv = λ(X)v, X ∈ h,

where λ(X) is the eigenvalue: then

λ : h→ k

is a linear functional.

8.6 Definition. In general, when we talk about eigenvectors for the action of a Lie
algebra, we’ll mean that it’s an eigenvector for every element of the Lie algebra, and
the associated eigenvalue is a linear functional on the Lie algebra.

We want to say that we can choose v such that some Y ∈ g \ h has v has an
eigenvector. To do this, fix λ as above, and define

W = Wλ = {v ∈ V : Xv = λ(X)v, X ∈ h} (34)

where, again, λ is a fixed linear functional on h. For some choice of λ, this is nonzero.
The main lemma is:

8.7 Lemma. Choose Y ∈ g \ h (so that Y and h span the Lie algebra). Then Y (W ) ⊂
W . In particular, gW ⊂W .
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Given this, Y has an eigenvector in W , and that’s all we need to know to prove
Lie’s theorem, and we’re done. Again, we can’t take any vector in W , but a specific
one: we find that one by looking at the space of all eigenvectors of h with eigenvalue λ.
Remember that we are working with an algebraically closed field of characteristic zero,
e.g. C.

In general, this is what we’re going to do: given a representation of a Lie algebra,
we’re going to restrict to a subalgebra, break up the action of that subalgebra into
eigenspaces, and look at how the rest of the Lie algebra acts on the decomposition.

Let’s prove the lemma:

Proof. Let w ∈W \ {0}. We have to show that Y w ∈W . Since W is characterized by
how h acts on it, we have to show simply that if X ∈ h, then

X(Y (w)) = λ(X)Y w. (35)

We do exactly the same thing now: we have

X(Y (w)) = Y (Xw) + [X,Y ]w.

The first term is easy to calculate because w ∈W : it is Y (λ(X)w) = λ(X)Y w. That’s
what we want. The second term is a little more of a problem: by definition it is
λ([X,Y ])w since [X,Y ] ∈ h. We get

X(Y (w)) = λ(X)Y w + λ([X,Y ])w.

In particular, we have to show that λ([X,Y ]) = 0. This is a potential problem. How
can we do that? This is going to involve another trick.

8.8 Lemma. λ([X,Y ]) = 0 for X ∈ h, Y ∈ g \ h.

A priori, λ is just a linear functional on h: the claim is that if Wλ 6= 0, then λ
vanishes on commutators. Let’s see why that is.

Proof. Fix w ∈W\{0}. Consider the subspace U which is the span of {w, Y w, Y 2w, . . . }.
This is a finite-dimensional vector space and there is thus a basis of U of the form

w, Y w, Y 2w, . . . , Y nw

for some n.
How does X ∈ h act on U? That’s pretty easy: we have

X(w) = λ(X)w

to start with. Next,

X(Y w) = λ(X)Y w + some multiple of w.

Similarly,

X(Y 2w) = λ(X)Y 2w + a linear combination of w and Y w .
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And so forth. In particular, X carries U into itself (thus U is stable under all of g). In
terms of this basis, it acts as an upper-triangular matrix. The diagonal entries are all
equal to λ(X).

Now, we’re home. This states that the trace of the action of X on U is simply
nλ(X) (where n = dimU), because X is represented by an upper-triangular matrix. If
X is a commutator, then the trace must be zero. If X ∈ [g, g] ⊂ h, then the action of
X on U is the commutator of two endomorphisms of U and therefore has trace equal
to zero, so λ(X) = 0. This proves the claim. N

N

The thing to take away from this, apart from the statement itself, is simply this basic
technique: if you want to understand a representation of a Lie algebra, find a subalgebra
such that you can decompose the restriction of this representation into eigenspaces.
And then look at the action of the rest of the Lie algebra on the decomposition.

Lecture 9
2/15

(No class next Monday; the homework is due on Wednesday.) I thought some more
about the issue of how much time to spend on chapter 10, and I think the answer is
not much: first of all it’s something you can read on your own (and it’s something I
encourage you to do, as you’ll get a sense of how many Lie algebras are out there in
low dimensions). I’m going to say some general things today and then we’re going to
jump into the end of chapter 10, where we discuss the last case.

Today, I want to finish the reduction of the problem of classifying representations to
the problem of classifying representations of simple Lie algebras. What’s the simple
Lie algebra? Let’s find it: we’ll do that today. That corresponds to the last section
of chapter 10 and we’ll go from there. Starting Wednesday, we are going to analyze
representations of actual Lie algebras. We’ll start with chapter 11, representations of
sl2(C) (or of the Lie group SL2(C)).

§1 The radical

First, I want to give a proof of a basic proposition that justifies our restriction to
semisimple Lie algebras. Recall that for any Lie algebra g, we have an exact sequence

0→ rad(g)→ g→ g/rad(g)→ 0

where the radical rad(g) is the maximal solvable subalgebra and

gss
def
= g/rad(g)

is semisimple. This isn’t a split sequence, but we can think of it as a type of decompo-
sition in some sense. I want to claim that if we can describe irreducible representations
of gss, then we can describe irreducible representations of g.
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9.1 Proposition. If V is an irreducible representation of g, then V ' V0 ⊗ L where:

• V0 is a representation of Vss (i.e., the radical of g acts trivially).

• L is one-dimensional.

I haven’t said this explicitly, but it’s pretty clear: one dimensional representations
of Lie algebras are straightforward. A one-dimensional representation of a given Lie
algebra g is the same as a linear functional

g/[g, g]→ k,

because each element of g must act by a scalar, and each element of [g, g] must act by
zero. This proposition thus suggests that to understand irreducible representations of
a general Lie algebra, we may restrict to semisimple ones.

Remark (Warning). There is an error in the first printing of Fulton and Harris.

Proof. The proof is based on the idea we introduced last time. Recall that if h ⊂ g is
an ideal, and if V is a representation of g, then we can introduce for each λ ∈ h∗, the
eigenspace

Vλ = {v ∈ V : Xv = λ(X)v, for all X ∈ h} .

The calculation we made last time is that the entire Lie algebra preserves Vλ.
Now, let h = rad(g). By Lie’s theorem, proved last time, there is an eigenvector for

the action of h on V . For some λ ∈ h∗, we have Vλ 6= 0. Since V is irreducible and
since Vλ is a subrepresentation (by last time), we have

V = Vλ,

so that h acts on the entire representation as an eigenspace. In particular, λ|rad(g)∩[g,g] ≡
0. So we extend the function λ : h→ k (where k = C here) to a function

λ̃ : g→ C

such that λ̃|[g,g] ≡ 0. Let L be the corresponding one-dimensional representation of g.

Then we’re done, as h acts trivially on V0
def
= V ⊗ L∗ and V0 becomes a representation

of gss. N

Remark. This is the philosophical basis for the focus on representations of semisimple
Lie algebras. Now, when we’re dealing with say finite groups, the first thing that we say
is that we can take any representation and break it up as a direct sum of irreducibles.
That’s not the case for representations of Lie groups and Lie algebras in general, so
the idea that it is enough to study irreducible representations is somewhat suspect,
but I’m still going to take this as justification for focusing on the semisimple (and
ultimately the simple) case.
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§2 Jordan decomposition

The next topic I want to talk about has to do with this notion of irreducibility. Recall
that if G is a finite group, and ρ : G → GL(V ) is a representation (over C), there are
two things that are absolutely fundamental to the analysis of representations:

• We have complete reducibility: if W ⊂ V is a subrepresentation, it has a comple-
mentary G-invariant subspace.

• For all g ∈ G, the corresponding endomorphism of V is diagonalizable because
it has finite order: any finite-order automorphism of a complex vector space is
diagonalizable. But we’re going to miss this when it’s gone.

Neither of these is true for representations of Lie groups or Lie algebras in general.
That’s going to hurt us, but let me talk about what is true. Here is what is true for
representations of Lie algebras (or Lie groups).

• Reducibility fails. A natural example: look at the Lie algebra of endomor-
phisms of a 2-dimensional vector space that look like[

0 t
0 0

]
which, for a basis {e1, e2}, send e1 7→ 0 or e2 7→ te1. The subspace spanned by e1 is
invariant and has no complement. The corresponding group under exponentiation
is the group of shears [

1 t
0 1

]
which preserve the x-axis but which shift lines parallel to the x-axis by varying
tilts.

The good news is that reducibility holds for a semisimple Lie algebra. This is
part of the payoff for restricting our attention to semisimple Lie algebras. There’s
a discussion in the proof of how you prove it. There is a purely algebraic proof
going back to the basic definitions, which is kind of a slog and I’m not going to do
it. There is another (and the original) proof, which is an interesting idea called
the unitary trick. I’m just going to say a couple of words about this and then
move on.

How do we prove the complete reducibility of the finite group representation
theory? Introduce a G-invariant hermitian inner product and take orthogonal
complements. The orthogonal complement of a G-invariant subspace is still G-
invariant. How do you know that there’s a G-invariant hermitian inner product?
Take any hermitian inner product and average over the group.

We can’t do that with a Lie group, and generally there won’t be invariant inner
products. It is true if we have a compact group. If we want to average a family
of hermitian inner products over a compact group, we can do this: we have to
integrate the translates of the inner product under the group action. We can’t
do that with an arbitrary group as the volume will be infinite. In other words,
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complete reducibility holds for compact Lie groups. If we’re trying to analyze
representations of SL2(C), that doesn’t help us.

But here’s the trick: representations of a group like SL2(C) are classified by
their representations of their Lie algebra. A given complex Lie algebra may be
the complexification of a lot of different real Lie algebras (there may be different
ones). For instance, for sl2(C), it is the complexification of sl2(R), but it is also
the complexification of su2. Now su2 is the Lie algebra of a compact group. If
you’re looking at representations of sl2(C), you can work with su2, and then for
the compact group SU2. So if I know reducibility for SU2 (which I do because
it’s compact), then I can deduce it for SL2(C) going via the Lie algebra. The
argument is written out in somewhat excruciating detail in the book, but what
makes this work is that if I have a complex semisimple Lie algebra, then it
has a real form which is the Lie algebra of a compact Lie group. This was
Weyl’s original proof of reducibility.

• Diagonalizability also fails in general. For example, if I have the Lie algebra
R, that acts by multiplication by scalars on a one-dimensional vector space, so

everything is diagonalizable. But in the previous representation via

[
0 t
0 0

]
, things

are not diagonalizable. I could take the same Lie algebra and have it act on a
vector space and not have the elements be diagonalizable.

Recall that if I have any endomorphism A ∈ End(V ), then I can write it as a sum

A = Ass +An

of a diagonalizable and a nilpotent part. You can say more: this is the content
of the theorem on the Jordan canonical form. If I choose a basis for which A is
in Jordan canonical form, I can take the diagonal and off-diagonal part of A. In
fact, the two parts commute with each other, and Ass and An are expressible as
polynomials in A. Given an endomorphism of a vector space, we can thus talk
about its diagonalizable and nilpotent parts.

Now, in a Lie algebra g, the same element can act diagonalizably in one repre-
sentation, nilpotently in another representation, and in neither way in a third.
Moreover, the nilpotent and semisimple parts might not be in the image of the
representation. But there is a remarkable fact that holds for semisimple Lie al-
gebras. I can’t tell you that everything acts diagonalizably or nilpotently, but I
can tell you something I won’t prove now:

9.2 Theorem. If g is semisimple, then every X ∈ g has a decomposition

X = Xss +Xn ∈ g (36)

with [Xss, Xn] = 0, such that under any representation ρ : g→ gl(V ),

1. ρ(X)ss = ρ(Xss).

2. ρ(X)n = ρ(Xn).
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In particular, the decomposition into semisimple and nilpotent parts is indepen-
dent of the representation.

The theorem also states that if g acts on some vector space V , and take the endomor-
phism of V induced by some X ∈ g, then the nilpotent and semisimple parts of that
endomorphism are also in the image of the representation.

Remark. The word “semisimple” is overused here. I would really like to call Xss the
“diagonalizable part of X.” The two uses of “semisimple” on the blackboard are not
entirely consistent.

Remark. Justin Campbell points out that there is a nice and comprehensible homo-
logical proof of complete reducibility in Weibel’s book on homological algebra. The
unitary trick relies on the fact that a complex semisimple Lie algebra arises as the
complexification of a real Lie algebra that comes from a compact group, which we’ll
prove at the end of the semester.

We’re trying to think about Lie groups and Lie algebras in conjunction with one
another. It is possible to derive all these results without the use of Lie algebras (or
without the use of Lie groups). There is a book by J. F. Adams that does not acknowl-
edge the existence of a Lie algebra, and derives all the results about representations
by using the unitary trick a lot. But at this point, it’s almost a perverse exercise. You
can also study Lie algebras without acknowledging that Lie groups exist and derive
everything we’re going to derive.

§3 An example: sl2

Let’s get started. We should find a simple Lie algebra.3 What does that mean? A Lie
algebra g is a vector space together with a Lie bracket [·, ·] :

∧2 g → g satisfying the
Jacobi identity. You can try to order them in terms of complexity either by looking at
dim g or by looking at the rank of the commutator. If the rank is zero, you have an
abelian subalgebra, and if the rank is maximal, then every element is a commutator.

Let’s ask a question: What is the smallest-dimensional simple Lie algebra?
This can’t happen in dimension one because dim

∧2 g < dim g if dim g < 3. Let’s
say dim g = 3, so we must have an isomorphism

[·, ·] :

2∧
g ' g.

For all h ∈ g, then the map
Ad(H) : g→ g

must have rank two and its kernel must be the multiples of H itself.
The next thing (and this won’t take too long), is to make the claim that there exists

an H ∈ g such that ad(H) has an eigenvector with nonzero eigenvalue.

3We’re not counting one-dimensional algebras. Recall that a simple Lie algebra is a nonabelian Lie
algebra with no nontrivial ideals.
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Proof. Start with any X ∈ g\{0}. Look at ad(X) : g→ g. Is this nilpotent or not? To
say that it has an eigenvector with nonzero eigenvalue is to say that it’s not nilpotent.
So if it’s not nilpotent, we can take H = X. Suppose ad(X) is nilpotent.

If ad(X) (which has rank two) is nilpotent, then the kernels of successive powers
are growing. This means that there exists Y ∈ ker ad(X)2 \ ker ad(X). In other words,

Ad(X)Y ∈ ker ad(X) = C {X} ,

so that
[X,Y ] = αX, α ∈ C,

and since Y /∈ ker ad(X), we find that α 6= 0. Hence, we can take H = Y . N

Start with such an H, and let X be an eigenvector for ad(H). We can write

[H,X] = αX. (37)

We can scale H to make α anything we want. Think about it: ad(H) is a map g→ g
which has a one-dimensional kernel. It has one eigenvector with eigenvalue α. Because
it’s a commutator (everything in g is a commutator), it has trace zero. So it must have
an eigenvalue −α as well and we let Y by an eigenvector for −α,

[H,Y ] = −αY. (38)

Now we’re almost there. We have a basis {H,X, Y } (this is necessarily a basis),
and we know two out of the three brackets. All that’s left is to say something about
[X,Y ]. But that’s also easy. I’m not going to go through this, because we have two
minutes left, but by Jacobi,

[H, [X,Y ]] = 0, (39)

using (37) and (38). This shows that [X,Y ] is a multiple of H. Rescaling, we can
assume that

[X,Y ] = H. (40)

We thus have a complete description of the Lie algebra: we have the relations:

[H,X] = αX (41)

[H,Y ] = −αY (42)

[X,Y ] = H. (43)

This is sl2(C). The three elements are such that

H =

[
1 0
0 −1

]
(44)

X =

[
0 1
0 0

]
(45)

Y =

[
0 0
−1 0

]
(46)

and these satisfy the above relations with α = 2. On Wednesday, we will understand
all the representations of sl2(C).
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Lecture 10
2/20

§1 sl2(C)

Today, we’re going to begin the heart of the course. To wrap up what we’ve done so
far:

• Largely, we’ve been setting the page. We’re trying to frame the problem in a way
that focuses on the core issues.

• We’ve gone from the initial definition of a Lie group (which is fairly natural) to
the simpler definition of a Lie algebra, which still encodes a lot of information
about the group (i.e., it gets the group up to isogeny).

• We can complexify the Lie algebra to get a complex Lie algebra. A complex
Lie algebra is actually a simpler object than a real Lie algebra. (However, for a
given complex Lie algebra, there may be different real Lie algebras that realize
it.)

• The last step was to focus, among complex Lie algebras, on the simple ones:
the wonderfully named simple complex Lie algebras. This is going to be our
focus for the next month or so.

For those of you who are doing the homework, let’s start fresh. If you have home-
works that are still due, I would suggest that you forget about them and do the current
ones. Homework 4 (the latest) should not be too onerous and should be a chance for
those of you who are behind.

Today, we are going to talk about the Lie algebra sl2(C). One thing which I didn’t
say explicitly, but which is in the last section of the text in ch. 10: for a given complex
Lie algebra there may be several real Lie algebras with that complexification.

10.1 Example. There are exactly two real Lie algebras that complexify to sl2(C):
namely, the obvious sl2(R) and su2 (the Lie algebra of the special unitary group).

Every time we shift in this scheme of things, we simplify in the sense that many
objects that reduce to one object. There’s a chart in the textbook of Lie groups whose
complexified Lie algebra is sl2(C).

Recall:

10.2 Definition. sl2(C) is the vector space of traceless 2× 2-matrices.

Everything in the next month is going to be over C. Last time, we saw that there
was a basis

H =

[
1 0
0 −1

]
X =

[
0 1
0 0

]
Y =

[
0 0
1 0

]
. (47)

The adjoint action was easy to describe; we had

[H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H. (48)
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§2 Irreducible representations

Let V be an irreducible representation of sl2 = sl2(C). Let’s start with an idea that will
be useful in other contexts. We want to invoke the preservation of Jordan decomposi-
tion. That states that under any representation of a simple Lie algebra (which this),
we can decompose an endomorphism coming from the representation into semisimple
and nilpotent parts; those parts are in the image of the representation.

In particular, since H is diagonalizable in the faithful representation on C2, it acts
faithfully in any representation. We get a decomposition of V into eigenspaces of H,
i.e.

V =
⊕
α

Vα,

where Vα = {v ∈ V : Hv = αv}. A priori, the α that appear can be any complex
numbers. If you want to draw a picture, we just have a bunch of complex numbers,
with a subspace attached to each of them. Now, of course, we ask what X,Y do to
each of these subspaces.

Question. What does X do to these subspaces Vα?

Start with a given v ∈ Vα. Where does X send v? A priori, the decomposition of
V =

⊕
Vα is obtained by looking at the action of H. That means, we need to figure

out what H does to Xv to figure out where Xv lands. Is Xv again an eigenvector of
H? If so, with what eigenvalue?

So we need to look at H(Xv). Here is the same calculation that we’ve seen before:

H(Xv) = X(Hv) + [H,X]v = X(αv) + 2Xv = (α+ 2)Xv, (49)

because v ∈ Vα. We find that if v ∈ Vα (i.e., v is an eigenvector with eigenvalue α),
then Xv will again be an eigenvector, with eigenvalue α+2. That answers the question.

10.3 Proposition. X carries the subspace Vα into Vα+2. Similarly, Y carries Vα into
Vα−2.

We find that X,Y shift the eigenvalues over by two, horizontally in the complex
plane. That’s the crucial thing. By the way, what if Vα+2 = 0? That just says that
X|Vα ≡ 0.

In particular, for any α, if we consider the complex numbers congruent to α mod
2Z, and form

W =
⊕
n∈Z

Vα+2n.

Then, since X,Y shift eigenvalues by two (to the left or the right), it follows that
W ⊂ V is invariant under sl2. Hence, since we assumed irreducibility, we have W = V
(if Vα = 0).

10.4 Corollary. The eigenvalues of an irreducible representation of sl2 form an un-
broken string of complex numbers separated by twos.
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This a priori arbitrary configuration of eigenvalues in facts has to consist of an
unbroken string of complex numbers differing from one another by twos.

Now comes the last part of the puzzle. Let’s look at this string of eigenvectors.
The natural thing is to start at one end of the string and apply X or Y to that. Start
with an eigenspace Vα at the end of the string, in the right-handed sense (so <(α) is
maximized). This implies that

Xv = 0, v ∈ Vα. (50)

because Xv ∈ Vα+2 = 0. The key claim is:

10.5 Proposition. Choose v ∈ Vα \ {0} where the eigenvector α is such that <(α) is
maximized. The entire (irreducible) representation V has as basis the vectors v, Y v, Y 2v, . . . ,
(that is, these vectors are linearly independent as long as they’re nonzero).

The linear independence of these vectors is clear because they are eigenvectors of H
with different eigenvalues. The claim is that the nonzero vectors in this sequence form
a basis. The string α, α− 2, α− 4, . . . of eigenvalues keeps going: Y keeps moving the
eigenvalues to the left. Part of the consequence of this result is that all the eigenspaces
are one-dimensional.

This one-dimensionality, by the way, is one thing — as we look at more complicated
Lie algebras — which is special to sl2.

Proof. The proof will tell us more than the statement itself. We’ve seen that v, Y v, . . . ,
forms a basis as long as it is nonzero. Let W be the subspace spanned by v, Y v, Y 2v, . . . :
the claim is that W is sl2-invariant. Since V is irreducible, it follows W = V .

Why is W invariant? It is Y -invariant. Every element Y iv is an eigenvector for H,
so H acts acts on the basis of W by scalar multiplication. Finally, we have to show
that XW ⊂W .

• To start with, Xv = 0: we started with a vector killed by v.

• What about X(Y v)? We have

X(Y v) = Y (Xv) + [X,Y ]v = Hv = αv.

So X kills v and sends Y v to αv. (A priori, we knew from the above that X(Y v)
would be an eigenvector for H with eigenvalue H, but we’re saying more.)

• Let’s do X(Y 2v). We have

X(Y 2v) = Y XY v + [X,Y ]Y v = αY v + (α− 2)Y v.

• The same reasoning is going to work forever. X is going to shift each of these
basis vectors Y kv to a multiple of the previous one. In particular, X preserves
W (which is the claim).

• More precisely, the claim (proved inductively) is that

X(Y kv) = (α+ (α− 2) + · · ·+ (α− 2k + 2))Y k−1v. (51)
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The proof is now complete.
N

The proof gives us a bit more. At some point, Y kv = 0: we’re in a finite-dimensional
vector space. In fact, Y is nilpotent. We can choose Y such that Y kv = 0, Y k−1v 6= 0.
Then the coefficient

(α+ (α− 2) + · · ·+ (α− 2k + 2)) = 0,

which gives us a strong constraint on α.
Anyway, the proof gives us a decomposition of V into a direct sum of one-dimensional

eigenspaces from α on down. Since H is a commutator, the sum of all the eigenvalues
that appear in this decomposition has to be zero. This means that the diagram of
eigenvalues has to live on the real values, and it shows that the maximal eigenvalue
has to be an integer.

10.6 Proposition. The maximal eigenvalue α ∈ Z≥0 and the eigenvalues are symmet-
ric around 0. In other words,

V = Vα ⊕ Vα−2 ⊕ · · · ⊕ V−α.

The eigenvalues that arise form a string of integers, separated by two and symmetric
about the origin.

We now have the question of existence and uniqueness. But we’ve understood them.
We have written down a basis for a putative irreducible representation with a given
highest eigenvalue and written down how X,Y,H act, and they satisfy the commutation
relations.

10.7 Proposition. There is a unique irreducible representation Wn of dimension n+1
of sl2 with highest eigenvector n for each n ∈ Z≥0. The eigenvalues are n, n−2, . . . ,−n
and the eigenspaces are one-dimensional.

As above, Y shifts everything over to the left; X shifts everything over to the right;
and H multiplies things in the graded pieces by suitable scalars.

10.8 Example. If n = 0, we get the trivial 1-dimensional representation (everything
acts by 0).

10.9 Example. If n = 1, we get the standard representation on C2. If we realize sl2
as a space of 2 × 2-matrices, it acts on a 2-dimensional vector space. Then H is the
diagonal matrix with eigenvalues ±1, X moves everything to the right, and Y moves
everything to the left.

10.10 Example. If n = 2, we get the adjoint representation. This follows from
the commutation relations [H,X] = 2X, [H,H] = 0, [H,Y ] = −2Y : the eigenvalues of
H acting on sl2 are X,H, Y , and X has the highest eigenvalue.

In some sense, we have already constructed all the irreducible representations of
sl2, but there is a more intrinsic way of doing it.
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10.11 Example. If V ' C2 is the standard representation, then the irreducible rep-
resentation Vn is SymnV . For example, let’s do Sym2.

If V = 〈a, b〉 has a basis a, b, then Sym2V has a basis a2, ab, b2. Let’s say the
representation is the standard one:

Ha = a, Hb = −b (52)

Xa = 0, Xb = a (53)

Y a = b, Y b = 0. (54)

Then in Sym2V ,
H(ab) = (Ha)b+ a(Hb) = 0,

and likewise
H(a2) = 2aH(a) = 2a2

and
H(b2) = −2b2.

This is the description of the adjoint representation.

Here’s a fact which is true for sl2 but not in general.

10.12 Corollary. All irreducible representations are isomorphic to their dual.

In fact, there is a unique irreducible representation of each dimension! The dual-
ization flips the eigenvalues around zero, which preserves the string of eigenvalues.

10.13 Corollary. If V is any representation of sl2, then V ' V ∗.
Proof. It’s true for irreducibles, and any representation is a direct sum of irreducibles.

N

This corollary won’t be true for general simple Lie algebras.

10.14 Corollary. Every irreducible representation has either 0 or 1 as an eigenspace.
Therefore, V is irreducible if and only if

dimV0 + dimV1 = 1,

and in general, dimV0 + dimV1 is the number of irreducible factors.

Given an arbitrary representation of sl2, if I tell you the dimensions of the eigenspaces,
then that will tell you which irreducibles appear in the decomposition. To indicate a
representation, we can draw a sequence of dots, and draw circles around the dots to
indicate eigenspaces (with multiplicities). The multiplicities of these eigenvalues is go-
ing to form a symmetric string of positive numbers, increasing to the left of the origin
and decreasing to the right of the origin. Given the diagram with the dimensions of
the eigenspaces, then I can tell you what the decomposition into irreducibles is.

The promise was, if I understand representations of sl2, then I could understand
representations of the Lie groups. You should go back and check this. But I want to go
back to the Lie algebras and play a game, basically. A sort of test of our understanding
of these representations is: if I carry out a multilinear operation on these irreducible
representations, can I identify the decomposition of the resulting one? Let me phrase
this as a question which we’re going to spend a little while on Friday.

Question. Which irreducibles appear in the representation W3 ⊗W4?
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Lecture 11
2/22

§1 Recap

Let’s recall where we are. I want to do two things today:

• I want to finish the discussion of representations of sl2 by talking about plethysm.

• We’re going to start on a crucial example, which is sl3. In case you’re worried
that we are going to slog through the Lie algebras one after another, these are
the two crucial cases. Once we’ve done them, you will have seen the paradigm
that will work to analyze the representations of every simple Lie algebra.

Recall from last time:

11.1 Proposition. The irreducible representations of sl2 = sl2(C) are exactly the
symmetric powers of the standard representation C2.4

We wrote
Wn = SymnV.

What’s more important is to recall how we arrived at this. We would start with an
irreducible representation V , and we would look at the action of the diagonal element
H ∈ sl2 and decompose by eigenspaces (by the theorem on the Jordan decomposition,
H will act diagonalizably on every representation). So we would get a decomposition

V =
⊕
α∈C

Vα, Vα = {v ∈ V : Hv = αv}

and we represented these subspaces by points in the complex plane corresponding to
α. We saw, however, that the eigenvalues were actually integers and the eigenvalues
were given by

n, n− 2, . . . ,−n
and each eigenspace has dimension one. The picture of the Lie algebra action on this
decomposition is very simple. H carries each of these one-dimensional subspaces by
eigenvalues, by assumption. Now X moves each of the eigenspaces by two to the right:
this was the fundamental calculation. Given an eigenvector v ∈ Vα for H, we had
Xv = Vα+2. By the same token, Y Vα ⊂ Vα−2.

You can see directly that this is a description of the nth symmetric power. Take the
monomials in two basis elements of C2 and check that they have the right eigenvalues.
The point is that any irreducible representation is of this form.

Given an irreducible representation, we know that the eigenvalues form an unbro-
ken string of complex numbers differing by two, and take the eigenvector for
the eigenvalue on the far right. We take a vector v ∈ V which is killed by X and
starting with that, generated the entire representation. So we got a pretty complete
description of representations of sl2.

I promised you at the end of the discussion, I was going to describe representations
of the groups we started with. Let’s give an example of how it plays out.

4This is just the realization of sl2 as a subspace of 2-by-2 matrices.
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11.2 Example. There are exactly two groups with Lie algebra sl2. They are SL2(C)
and—since SL2(C) is simply connected, it sits at the top of the identity—the quotient
SL2(C)/ {±I} = PSL2(C). That’s because the center of SL2(C) is ±1. I didn’t do
this in class, but I think it’s worthwhile if you’re trying to think back to Lie groups,
it’s worth looking at the diagram at the end of chapter 10. The diagram describes all
real Lie groups whose complexified Lie algebra is sl2(C).

Now, incidentally, PSL2(C) = SO3(C) is also the automorphism group of a complex
vector space preserving a nonzero symmetric bilinear form (and having determinant
one).

The representations of SL2(C) are exactly the representations of sl2(C) (by simple
connectivity), so the representations are exactly the Wn = SymnC. To figure out the
representations of PSL2(C), we have to look at when the center acts trivially on the
representations. The center acts trivially on Wn if and only if n is even. This is sort
of the picture — representations will be parametrized by some lattice in a cone and
representations of the adjoint form will be parametrized by some sublattice.

§2 Plethysm

In representation theory, we take the representations we know and apply constructions
from multilinear algebra: symmetric powers, tensor products, and so forth. We’d like to
describe how they decompose into irreducibles. It’s all over the homework this week. In
this case, since we know the representations in terms of eigenspaces and eigenvalues, we
can answer the questions completely mechanically. There are some interesting things
we can see along the way, for instance the isomorphism asserted earlier

PSL2(C) ' SO3(C).

11.3 Example. Start with the representation V = C2 and consider V ⊗ V . Now
V has eigenvalues (of H) consisting of ±1. The eigenvalues on the tensor product are
going to be the four pairwise sums and so the eigenvalues on V ⊗ V are −2, 0, 0, 2. In
terms of the diagrams we’ve been drawing, we’d have dots at −2, 0, 2 and with 0 circled
twice to indicate the double eigenvalue. It’s pretty clear that there’s only one way to
decompose this into irreducibles. We get

V ⊗ V ' Sym2(V )⊕ C

where C is the trivial representation. Of course, you knew this already: the tensor
square decomposes into Sym2 and

∧2. And since sl2 acts tracelessly, the wedge square
of the standard representation is trivial.

11.4 Example. Let’s take Sym2(V )⊗Sym2(V ). The eigenvalues of this tensor product
will be the pairwise sums of the eigenvalues of Sym2V , which are {−2, 0, 2}. If I take
all pairwise sums of these, I’m going to get

{−4,−2,−2, 0, 0, 0, 2, 2, 4} .

This tells us what the decomposition into irreducibles. Namely,

Sym2(V )⊗ Sym2(V ) ' Sym4(V )⊕ Sym2(V )⊕ C.
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If you wanted to know more than this abstractly, if you wanted to actually see the
decomposition, then you also know what to do. Start with an eigenvector for Sym2(V )⊗
Sym2(V ) which is extremal: so X kills it. The argument we discussed last time is that
the representation generated by this extremal eigenvector gives the copy of Sym4. Then
we peel that off and keep going. So, we can do this both abstractly and concretely.

11.5 Example. I said a moment ago that tensor square is naturally a direct sum of
the exterior square and its symmetric square, i.e.

Sym2(V )⊗ Sym2(V ) = Sym2(Sym2(V ))⊕
2∧

(Sym2(V )). (55)

If I look at the eigenvalues on Sym2(Sym2(V )), the eigenvalues are the pairwise un-
ordered sums of Sym2(V ), i.e. the pairwise unordered sums of {−2, 0, 2}. So we easily
get

Sym2(Sym2(V )) ' Sym4(V )⊕ C.

Similarly, we get
2∧

Sym2(V ) ' Sym2(V ),

which is not surprising, because
∧2 of a three-dimensional thing is isomorphic to its

dual, and representations of sl2 are self-dual.
Let’s look at homogeneous polynomials of degree two whose arguments are homo-

geneous polynomials of degree 2. I could substitute and get a polynomial of degree
four: that’s the factor of Sym4(V ) in Sym2Sym2(V ). But the trivial factor that occurs
is interesting. There’s an element of Sym2Sym2(V ) which is fixed under the action of
the group SL2(C). That’s a symmetric bilinear form preserved under the action of the
group.

If I look at the action of SL2(C) on Sym2(V ) ⊗ Sym2(V ), it acts preserving a
symmetric bilinear form. That induces the isomorphism

sl2(C) ' so3(C).

There’s a long discussion in the book about geometric plethysm, which is near to
my heart. I would urge you to take a look at the discussion in the book, which is
old-style classical algebraic geometry (like Veronese surfaces, rational normal curves,
and so on).

§3 sl3

The Lie algebra sl2 is central because it is the simplest example of a simple Lie algebra.
Aside from that, one of the ways we’re going to describe more complicated Lie algebras
like sl3 and so forth is as a span of copies of sl2.

But there’s a lot that you don’t see in sl2: it’s in some sense too simple. On the
other hand, when we get to sl3, we will see all the wrinkles that will appear in general.
Once we’ve done sl3, there will be no more surprises. We will see the pattern in
general.
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When we did sl2, we wrote down three elements which formed a basis. We just
went on from there. If I want to extend a similar analysis for sl2, I have to ask what
was special about H,X, Y .

• The first answer is that H is diagonalizable, in any representation by the preser-
vation of Jordan canonical form.

• What made X,Y work? The basic idea is that if I have an eigenvector v ∈ V
such that Hv = αv (for some representation V of sl2), then

H(Xv) = X(Hv) + [H,X]v = αXv + 2Xv = (α+ 2)Xv, (56)

so we get that Xv is an eigenvector of H of eigenvalue α + 2. This calcula-
tion worked because [H,X] was proportional for X. In other words, X is an
eigenvector for the adjoint action of H.

That’s going to be our plan. We are going introduce the analog of H for sl3. We’re
going to decompose the rest of the Lie algebra looking at the action of H. We’ll start
carrying this out today, and should finish on Monday.

What plays the role of H? This is the big change. In sl3, we don’t have just one
diagonalizable element up to scalars: we have a two-dimensional space. That is the
fundamental change. The role of the single element H in sl2 is going to be played
by a vector space of matrices (again, the traceless diagonal ones).

11.6 Definition. We write h ⊂ sl3 for the subspace of diagonal matrices,

h =


a1

a2

a3

 .

Let’s make one crucial observation now. If I have commuting diagonalizable endo-
morphisms of a vector space, then they are simultaneously diagonalizable. (This is a
special case of the calculation in (56).) If I have a diagonalizable endomorphism H of
a vector space V and I have another endomorphism that commutes with H, then it
preserves the decomposition of V into eigenvectors. That’s what I want to apply here.

Remember I said about a week ago—we wanted to generalize the notion of eigen-
vector and eigenvalue. Given a vector space of endomorphisms, an eigenvector for
that vector space of endomorphisms is a vector which is carried into a multiple of itself
under any element of that vector space; what multiple it is will be a linear functional
on that vector space.

11.7 Definition. Let V be a representation of sl3. Given α ∈ h∗, we set

Vα = {v ∈ V : Hv = α(H)v, for all H ∈ h} .

We call this the eigenspace for the action of h with eigenvalue α.

The main thing here is that eigenvalues are no longer numbers; they’re linear func-
tionals on h. Just by way of notation, since we’re going to be working with h∗, we
should introduce some generators for it.
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11.8 Definition. We can imbed h ⊂ C3: it is the subspace of triples of complex
numbers with sum zero. Therefore, h∗ is the complex span of three linear functions
L1, L2, L3 with the relation L1 + L2 + L3 = 0. It comes to us naturally as a quotient.

For any representation V , I can write

V =
⊕
α∈h∗

Vα,

and this is the eigenspace decomposition for the action of h.
Now, that is, for the time being at least, what takes the role of H and the eigenspace

decomposition. The next step is to figure out what plays the role of X,Y . Again, the
observation is that X,Y were eigenvectors for the action of H. So, consider the adjoint
action of h on all of sl3(C). In this way, I get a decomposition as a vector space

sl3(C) =
⊕
α∈h∗

gα.

We’re going to choose as our analogs of X,Y , elements of these eigenspaces.

11.9 Example. One eigenspace I know: h, since it’s abelian, acts by zero on itself. So
I can write the above decomposition in a more refined form

sl3(C) = h⊕
⊕

α∈h∗\{0}

gα.

How do I go about finding eigenvectors for this action? It’s pretty easy. The
eigenvectors for h acting on sl3 itself are what you think. Let Eij be the matrix with
(i, j)-entry 1 and all other entries zero. There are six of these for i 6= j. The claim
is that the Eij span exactly the eigenspaces that appear here. That makes sense, by
counting dimensions. It’s easy to figure out the eigenvalues. The eigenvalue of h on
Eij is Li −Lj . Those are the six eigenvectors in the Lie algebra that are going to play
the role of X,Y .

How do we draw these? When the eigenvalues were scalars, we drew them as points
on a real line. Now that they belong to a two-dimensional vector space, we draw them
as points in the plane.

We’d like to retain some symmetry here and not make too many choices: when we
have a vector space C 〈L1, L2, L3〉 /(L1 +L2 +L3), the natural thing is to draw it on a
hexagonal lattice. We can put L1, L2, L3 as the third roots of unity in the plane.

We now have:

• A decomposition of sl3 into a two-dimensional eigenspace h (the dot at 0) and
one-dimensional subspaces (of h) corresponding to a hexagon in the plane.

• The fundamental calculation goes through as before. An element X ∈ gα will
carry gα to gα+β under the adjoint action. The adjoint action by an eigenvector
just shifts the eigenspaces of h. That is,

[gα, gβ] ⊂ gα+β.

• This doesn’t quite describe the Lie algebra, though. But the structure turns out
to be implicit in the above diagram. This is going to be the fundamental diagram
we’re going to be working with.
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Lecture 12
2/25

§1 Recap on sl3

Today, we’re going to see what representations of sl3 look like. We won’t finish the
story today, because some aspects of the story that were immediate for sl2 that were
immediate—existence and uniqueness—will take a little longer. Let’s recall where we
were.

To describe the structure of sl3, we introduce the subalgebra h consisting of the
diagonal (trace-free) matrices, so

h =

a1

a2

a3

 , a1 + a2 + a3 = 0, (57)

and we observe that dimC h = 2. The action will also take place in the dual vector
space h∗, which is spanned by the linear functions L1, L2, L3 which pick out a1, a2, a3

in a matrix. We have L1 + L2 + L3 = 0 ∈ h∗ and this is the only relation. So

h∗ = C 〈L1, L2, L3〉 /(L1 + L2 + L3).

We’re going to take the Lie algebra g = sl3, and decompose it by the action of h.
Because h acts diagonally in the standard representation, it acts diagonally in any
representation, e.g. the adjoint one. The action of h on g gives an eigenspace decom-
position.

The zero eigenspace is h ⊂ g itself. Then we have other eigenspaces gα, α ∈ h∗ \{0}
where

gα = {X ∈ g : [H,X] = α(H)X for all H ∈ h} , (58)

and we have the decomposition

g = h⊕
⊕

α∈h∗\{0}

gα. (59)

In fact, α runs over the pairs Li − Lj , for 1 ≤ i 6= j ≤ 3, and

gLi−Lj = CEij , (60)

where Eij is the matrix with 1 in the (i, j)th entry and zero elsewhere. This sort of
decomposition is going to work for any simple Lie algebra.

The idea, again, is to find this abelian subalgebra, look at how it acts on the whole
Lie algebra by the adjoint action, and break it up into eigenspaces. This describes the
action of h on g. We want to know the action of g on g, though—the structure of the
Lie algebra.

However, we can say how the Lie bracket acts with respect to the decomposition:

12.1 Proposition. If X ∈ gα, Y ∈ gβ, then ad(X)(Y ) = [X,Y ] ∈ gα+β, i.e.

[gα, gβ] ⊂ gα+β. (61)
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Proof. We need to see how h acts on the commutator [X,Y ]; we have

ad(H)(ad(X)Y ) = ad(X)(ad(H)Y ) + ad[X,Y ](Y )

= ad(X)(β(H)Y ) + α(H)Ad(X)(Y )

= (α+ β)(H)[X,Y ].

This is the standard calculation. N

(There is a picture that can be drawn by placing the Li on a hexagonal lattice...
To be added.)

Notice that if I start with a one-dimensional eigenspace gα, and look at g−α (the
opposite eigenspace), and then I throw in their commutator [gα, g−α] ⊂ h, then we get
a subalgebra

gα ⊕ g−α ⊕ [gα, g−α].

It is a subalgebra since h acts diagonally on g±α.
In fact, what we have in here is a copy of sl2. For every pair of opposite eigenvalues,

we get a copy of sl2. One of the techniques we’re going to be using is to restrict to
these subalgebras.

12.2 Definition. We write sα for the subalgebra gα ⊕ g−α ⊕ [gα, g−α], which is iso-
morphic to sl2.

Concretely, taking α = Li − Lj , we can write

sα = CEij ⊕ CEji ⊕ CHij (62)

where Hij is the diagonal matrix with 1 in the ith place and −1 in the jth place. This
is more or less the structure of sl3, although I haven’t told you how to take brackets
fully. But, we have all the relevant information we need to analyze representations.

§2 Irreducible representations of sl3

Let V be an irreducible representation of g = sl3. Let’s look at the decomposition of
V into eigenspaces of h; we write

V =
⊕
α

Vα, α ∈ h∗, (63)

where
Vα = {v ∈ V : Hv = α(H)v, for all H ∈ h} . (64)

The crucial observation is again the same:

12.3 Proposition. If v ∈ Vβ, X ∈ gα, then

Xv ∈ Vα+β. (65)

Proof. For any H ∈ h, we have

H(Xv) = X(Hv) + [H,X]v = X(β(H)v) + α(H)Xv = (α+ β)(H).(Xv).

So Xv is an eigenvector for h with eigenvalue α+ β. N
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In other words, gα carries the eigenspace Vβ into Vα+β. This is very much
like the picture for sl2. If I have an irreducible representation, all the eigenvalues that
appear all differ from each other by linear combinations of the eigenvalues Li−Lj that
appear in the decomposition of g into gα. In other words, {α : Vα 6= 0} is contained
in a translate of the hexagonal lattice generated by the Li −Lj. If I have any
irreducible representation and take its corresponding eigenvalues, they will all differ
from each other by integral linear combinations of the Li − Lj . Otherwise, we would
be able to find a proper subrepresentation: given an irreducible representation, I have
to be able to get from any eigenspace to any other eigenspace.

At this point, we need some language. Just because it’s getting a bit complicated,
here’s the language we will use:

12.4 Definition. • For an arbitrary representation V , the α ∈ h∗ such that Vα 6= 0
are called the weights.

• The corresponding subspaces Vα are called the weight spaces.

• A vector in Vα is called a weight vector with weight α.

The weights of a given representation are contained in a translate of this lattice. We
should distinguish special weights, which are the weights of the adjoint representation.
These are the weights {Li − Lj} for sl3.

12.5 Definition. The roots, denoted R, are the weights of the adjoint representation.
Again, we can talk about root spaces and root vectors.

The lattice spanned by the roots is called the root lattice. We will denote it by
ΛR.

Now we can get to work. This assertion amounts to the analog for sl3 of the
assertion we made for sl2: the eigenvalues for H ∈ sl2 formed an unbroken string of
scalars differing in succession by twos (for an irreducible representation). We’ll come
to the unbroken chain assertion in time, but we have seen that the eigenvalues of an
irreducible representation of sl3 live in a translate of the root lattice.

What did we do next for sl2? We started with an extreme eigenvalue. For sl2, we
said that the weights form a finite string of numbers. We said, let’s go to one end of
that string. We went to a vector with maximal eigenvalue for H, and we saw that it was
killed by X. Then we saw that you could get the whole representation by repeatedly
applying Y . That gave us everything we need. The key was to start with the far right
(or far left) of the representation. That raises a question: what are we going to do in
this case? We’re not on a one-dimensional vector space anymore and the eigenvectors
now form a string differing by elements of a lattice.

We’re going to just ignore this, and go to what we call an extreme eigenvalue, and
extreme with respect to a seemingly random linear functional. The procedure involves
an arbitrary choice. Going back to our representation V , we’re going to choose a linear
functional on h∗ which we’re going to take as an arbitrary measure of size.

Procedure. Choose a linear functional ` on h∗ which is irrational with respect to ΛR.
For a given V , let α0 be the weight of V with maximal real part on `.
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In other words, we’re looking at the diagram, choosing an irrational direction, and
saying “that way is up.” Then we’re picking the highest eigenvalue with respect to
that notion of “up.” Given α0 extremal as above, choose v ∈ Vα0 . What we have now
is a vector v such that

Hv = α0(H)v, ∀H ∈ h,

and it’s killed by half of the root space.
Let’s actually go ahead and simply make a choice.

12.6 Definition. We set `(aL1 + bL2 + cL3) = a1a + a2b + a3c where a1 > a2 > a3

and a1 + a2 + a3 = 0.

Then we get:

12.7 Proposition. If X ∈ gα such that `(α) > 0, then XVα0 = 0.

For example, that means

gL1−L2v = gL1−L3v = gL2−L3v = 0.

In effect, we’ve separated the roots into two halves: the positive roots and the
negative roots (depending on what ` does). For an arbitrary representation, go to
the eigenvalue that’s furthest out in terms of this linear functional. If I apply any of
these positive root vectors, I get zero since we started at an extremal eigenspace. So,
we can find an eigenvector for h that is killed by half of the root vectors (by the positive
root vectors).

(The choice of ` was in some sense not really necessary: the really important point
was to decide on the positive and negative roots.)

12.8 Proposition. Given such a vector v ∈ Vα0, then the images of that one vector un-
der successive applications of the negative root spaces (in the example, E2,1, E3,2, E3,1)
span V .

If I go out to my highest (or extremal) weight vector, then if I go out in the direction
of any of the positive root spaces, there’s nothing there and I get zero. Now I just want
to do the obvious thing and start applying the negative root spaces and see what I
generate.

Proof. We haven’t proved this result yet. We have to show that the images of v under
successive applications of the negative root spaces is a subrepresentation of g. We’ll do
this on Wednesday. N

Let’s write down some consequences.

• All the weights in V are obtained from α0 after adding negative roots (or Z≥0-
combinations of negative roots). In particular, all the weights lie inside a third
of a plane obtained by starting at v0 and applying E2,1 and E3,2. That’s the
counterpart for sl3 for the claim in sl2: we start with a highest weight vector and
then keep applying Y ’s to it.
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• If I look at the edges of this third of a plane, e.g. by taking α0 and adding L2−L1

successively, then all the eigenspaces have dimension one. There’s only way to
get from α0 to one of these eigenspaces along these lines. It’s not true that the
weight spaces interior to this one-third of a plane are necessarily one dimensional.
There might be multiple ways to get from α0 to another weight space. This is
something that never happens for sl2.

• The next thing I want to do is the following. Remember that I said that in
analyzing representations of sl3, we would use these copies of sl2 sitting inside.
Here for example, if I just look at the weight spaces of these representation that
live along this edge (α0 − n(L2 − L3)), then that forms a subrepresentation of
sL2−L3 (but not a subrepresentation of sl3!). That means we’re going see an
unbroken string of one-dimensional eigenspaces which is going to have a certain
symmetry.

Lecture 13
2/27

§1 Continuation of sl3

I’d like to recall where we are, and today hopefully I can get to the statement of the
main theorem, where we promise to describe all representations of sl3 = sl3(C).

Recall:

• We have a decomposition

sl3 = h⊕
⊕

α∈h∗\{0}

gα (66)

where h is the diagonal matrices and there are six nonzero gα, each one-dimensional.

• Here α is always Li − Lj , 1 ≤ i 6= j ≤ 3.

• The natural way to draw them (the Li − Lj) is as a hexagonal figure.

• gLi−Lj = CEij where Eij is 1 in the (i, j)th entry and zero elsewhere.

• If we look at two opposite root spaces, we can take their direct sum and their
commutator and get a copy of sl2 in sl3. We’re going to use what we know about
these three copies of sl2 to get information.

• We define
sα = gα ⊕ g−α ⊕ [gα, g−α]. (67)

If α = Li − Lj , the commutator part is CHij where Hij is the diagonal matrix
with a 1 on the ith diagonal entry and a −1 in the jth diagonal entry. In other
words,

sLi−Lj = C 〈Eji, Eij , Hij〉 . (68)
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• This is called the root space decomposition. The roots describe a large part
of the structure of the Lie algebra. We have [gα, gβ] ⊂ gα+β and we know the
adjoint action of h on each gα. A priori, we don’t get all the structure of the Lie
algebra, but in fact this diagram does tell you everything you need to know to
reconstruct the Lie algebra. (In fact, with five exceptions, the simple Lie algebras
are all ones we’re familiar with; the exceptional ones are going to be constructed
from their root system. Look in the book for g2, which is the simplest case.)

Now we want to analyze a general irreducible representation. Let V be an irre-
ducible representation of sl3. The basic idea here is, we have the weight space decom-
position

V =
⊕
α∈h∗

Vα, (69)

where the Vα are eigenspaces for the action of h. We’d like to know if we can go on,
given this decomposition, and say how the other parts of the Lie algebra act on these
subspaces Vα. Again, we saw that

XVβ ⊂ Vα+β, X ∈ gα. (70)

In other words, we’re going to see that the weights of an irreducible representation will
differ from one another by linear combinations of these roots. That’s because if I start
with any eigenvector and start applying all these different operators, we have to get the
whole thing (by irreducibility). So, all the weights of an irreducible representation will
differ from one another by elements of the root lattice, which is the lattice generated
by the root vectors.

In the case of sl2, the next thing we did was to go to the extremal eigenvalue (either
go to the far right or far left). We want to do the same thing here. We’re going to take
this diagram of roots and we’re going to draw a random irrational line, and instead of
the “farthest right” or “farthest left” we’re going to look at the weight farthest from
this line. That’s going to be called the highest weight for the representation. The
idea is, if I go to the weight space farthest away from this line, it’s necessarily going to
get killed by these three vectors Li−Lj , i < j (for a certain choice of linear functional).
We’re splitting the roots into positive and negative roots. When we got to an
extremal weight, by definition, we can’t go any further, and consequently that vector
is going to be killed by the positive roots Li − Lj , i < j.

We find:

13.1 Proposition. Given the irreducible representation V , there exists v ∈ Vα0 \ {0}
for some α0 with

gαv = 0, α ∈ R+ (71)

where R+ denotes the set of positive roots.

13.2 Definition. Such a vector v is called a highest weight vector.

13.3 Proposition. Under these circumstances, we can generate the whole represen-
tation V by taking a highest weight vector v and taking the images of v under the
successive applications of the three negative root spaces.
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This means that the weights that occur are going to lie in a third of a plane, which
is what you get when you take the lines through the highest weight in the directions
L2 − L1 and L3 − L2. In other words, you start with v, and apply E21, E32, E31

successively, and that’s going to move us along two rays starting from α0.
(Pictures should be added here.)
A consequence is:

13.4 Corollary. The subspace Vα0 (the highest weight subspace) is one-dimensional.

In fact, we can say any the same thing of any weight that occurs along any of the
two edges of the third of a plane. If there’s only way to get from the highest weight to
another weight by applying negative roots, then that means the analogous subspaces
are one-dimensional. I.e., α0 + n(L2 − L1), α0 + n(L3 − L2).

13.5 Corollary. V has a unique highest weight vector (up to scalars).

This is once we’ve chosen a decomposition of the roots into positive and negative
roots.

Proof of Proposition 13.3. Let wn be any word, any string of length ≤ n, in E21 or
E32. We let Wn be the subspace of V spanned by all wn(v). WE write W =

⋃
nWn.

The claim is:
E12Wn ⊂Wn−1, E23Wn ⊂Wn−1. (72)

This means that W is stable under g. It’s clearly preserved under h, and it’s clearly
carried into itself by the negative root spaces. But the claim is that it is carried into
itself by the positive roots. I don’t have to prove it for E31 since it’s in the commutator
of positive root spaces.

The proof is pretty much the same as it always is, and it’s by induction. Observe
that W0 = C 〈v〉 and W−1 = 0. In this case, E12, E23 kill v so they go from W0 to
W−1 = 0, so that’s the base case. Let’s suppose u ∈Wn, which means

u = E21wn−1v, or u = E32wn−1v.

Suppose we’re in the first case. Then

E12u = E12E21wn−1v = E21E12wn−1v + [E12, E21]wn−1v, (73)

where [E12, E21] ∈ h and wn−1v is an eigenvector for h. It’s easy to see from this that
E12u ∈Wn−1 by the inductive hypothesis.

Another possibility is that u = E32wn−1v. Then

E12u = E12E32wn−1v = E32E12wn−1v + [E12, E32]wn−1, (74)

where the second term is zero as [E12, E32] = 0. Using induction, we get that this is in
Wn−1. (The other cases are similar.) N

This is the same as what happened for sl2: we started with a highest weight vector,
kept applying Y , and got the whole thing. We had to check, though, that after applying
Y , the result was invariant under X.
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§2 Irreducible representations

Let V be an irreducible representation. We’re starting with a highest weight vector
v ∈ V . Calling it a highest weight vector means that it’s killed by half the root spaces.
Then, applying the negative root spaces to v gets the whole representation V .

Now, we have these copies of sl2 sitting inside sl3. Let’s start at the highest weight
vector and apply E21. We get a string of one-dimensional weight spaces. That is a
subrepresentation of the subalgebra sL2−L1 . What do we know about representations
of sl2? Their representations are symmetric about zero and form unbroken strings
differing by two.

To put it more systematically: let sL1−L2 = C 〈E12, E21, H2,1〉; then⊕
Vα0+n(L2−L1)

is a subrerpesentation of sL1−L2 and the eigenspaces are symmetric about the line
orthogonal to L1 − L2. Because we know that any representation of sl2 has integral
eigenvalues, then all the weights that occur here lie in the white lattice of points in h∗

with integral values on the Hi,j . That is, there is a symmetry around the “orange” line
that kills H1,2.

Now, find an element along this line α0 + n(L2 − L1) which is killed by E21; then
you get to the end of a string like that. Then you get to a vector which is again
killed by half the roots, but for a different half. So you keep going around and get
a hexagonal diagram. This is the picture of the weights that we know about so far.
They’re obtained by initial highest weight by reflecting around the lines which are the
kernels of the elements Hi,j . Conversely, all the points interior to the hexagon are going
to occur as weights of the representation.

13.6 Proposition. If V has a highest weight vector with weight α0, then the weights
of V are exactly the weights α ∈ h∗ congruent to α0 modulo the root lattice ΛR and
located inside the hexagon with vertices obtained from α0 by reflecting α0 in the lines
`(Hij) = 0.

This hexagon is not a regular hexagon. In fact, it could have been a triangle. Note,
however, that the choice of the highest weight was determined only up to six: the
highest weight would have to be one of the vertices of the hexagon.

There are a lot of things we don’t have yet: for instance, we don’t have an existence
or uniqueness theorem for representations given a highest weight. The theorem is:

13.7 Theorem. For all pairs a, b ∈ N2, there exists a unique irreducible representation
of sl3 with highest weight aL1 − bL3.

We’ll actually see how to construct them via multilinear algebra.
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Lecture 14
3/1

§1 sl3

Today, we want to finish the discussion of the Lie algebra sl3 and of the corresponding
Lie group. Starting on Monday, we’re going to discuss the general picture, for represen-
tations of any semisimple Lie algebra. (This is chapter 14, which we’ll start next week.)
On the one hand, sl3 is just one example; on the other hand, it introduces a lot of the
ideas, constructions, and techniques we’ll use in general. So in fact, 90% of Monday’s
lecture will be stuff that you could guess already based on the examples sl3, sl2. Once
we’ve done about the general paradigm, we’re going to return to examples. We’re going
to talk about the special linear group or algebra, the orthogonal and symplectic groups
(and algebras) and see how this plays out.

Very briefly, let me recall where we are. We drew a picture of the vector space h∗,
the dual to the space of diagonal traceless matrices, and given any representation we
could identify the weights as points on a certain white lattice, the weight lattice
(see below). We saw that the set of weights that occurred forms a hexagon.

Namely, we take the roots of the Lie algebra sl3, which are the weights of the
adjoint representation. We saw that those are Li − Lj , i 6= j. There’s one issue, which
is just notational: the roots are the eigenvalues of h on itself, and we’re not including
0 in the root diagram. Again, we get a decomposition

sl3 = h⊕
⊕
i,j

gLi−Lj ,

where gLi−Lj = C 〈Eij〉. Having said this much, we tried to mimic the case of sl2 for
sl3. We chose an ordering of the weights. We took an irrational linear functional and
took the weight that was furthest out.

Remark. What is the intrinsic characterization of the weight lattice? For any root
α ∈ R, we have a one-dimensional root space gα and its “opposite” g−α and we have
the copy of sl2 given by

sα = gα ⊕ g−α ⊕ [gα, g−α].

In the case of sl2, there’s a one-dimensional abelian subalgebra which acts on two
root spaces. We have a canonical generator in [gα, gα], which is the element which
has eigenvalues ±2 in the adjoint representation. Let Hα be that element (we could
take Hα = Hi,j in case α = Li − Lj) and Hα acts on g±α with eigenvalues ±2; that
determines Hα. The weight lattice is the lattice of all elements of h∗ which take
integral values on Hα. Given any representation V of g, all the eigenvalues of Hα on
V must be integers (by the analysis of sl2).

When choosing an ordering of the roots, that’s a decomposition

R = R+ tR−
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into positive and negative roots (given by splitting along a hyperplane). There are
six possible choices we could make for this, but we’re going to make the choice

R+ = {Li − Lj , i < j} , R− = {Li − Lj , i > j} .

If I have any representation V , then V contains a (nonzero) vector v with two proper-
ties:

• v is an eigenvector for h, so v ∈ Vα0 for some α0.

• v is killed by all the positive root spaces. That is, gαv = 0 for α ∈ R+.

In other words, we choose a linear functional that separates the positive roots from
the negative roots. Then we go to the weight of V which has the highest value under
this linear functional. If we increase this weight by any positive root, we’re no longer
a weight, and that’s how we get the claim. These are called highest weight vectors
for the representation.

In fact, we saw:

14.1 Proposition. If V is irreducible, then V has a unique such vector (up to scalars).

That is, if we go to a representation and choose a highest weight vector v, then we
can take the subspace generated under v by applying the negative root spaces and that’s
a subrepresentation.5 If we started with something irreducible, the subrepresentation
must be the whole thing.

In general, given any representation V , in this way we get a bijection between:

• Irreducible subrepresentations of V .

• Highest weight vectors in V (mod scalars).

Let me just remind you, finally, of a theorem we’re going to prove today after doing
some examples. It’s exactly what’s missing so far: an existence and uniqueness result.
Given the symmetry in the weight diagram, we note that the highest weight has to be
in a certain cone: it has to be of the form aL1 − bL3 for a, b ∈ N2. (Note that zero is
a natural number.)

14.2 Theorem. Given a, b ∈ N2, there is a unique irreducible representation Γa,b of
highest weight aL1 − bL3.

These are all the irreducible representations, since all irreducible representations
have a highest weight vector. We thus have a classification of all irreducible represen-
tations of sl3. In the case of sl2, we had a lattice: all the elements of h∗ which were
integral on H. We saw that the weights of any representation were symmetric about
reflection the origin, and we associated to any representation a highest weight. For sl3,
we have a two-dimensional h∗, a lattice, and the claim is that there is a highest weight
vector in a sector. We can classify irreducible representations up to isomorphism by
lattice points in that closed wedge.

5In fact, an irreducible one. The dimension of the highest weight space is one-dimensional: so if the
representation were reducible, only one of the summands could contain the highest weight vector and
that would be the whole representation.
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§2 Examples

Beyond the existence and uniqueness, we’d like to be able to construct the representa-
tions. For sl2, we could take the symmetric powers of the standard representation. It’s
going to be a little trickier for sl3, and you can start thinking where these are going to
come from.

Let’s start with the simplest of all representations, in some sense, which is the
standard representation. There are too many letters, but let me remind you of the
standard representation.

14.3 Example. Consider V ' C3 ' C 〈e1, e2, e3〉 where{
Eijej = ei

Eijek = 0 k 6= j
.

We find that the matrix a1

a2

a3


acts with eigenvalues a1, a2, a3 on e1, e2, e3. These are the linear functionals L1, L2, L3.
We find that ei is an eigenvector for h with eigenvalue Li. The weight diagram consists
of {L1, L2, L3} and we get a triangle in the weight space. (The hexagonal picture is
sort of degenerate now.) In fact,

V = Γ1,0.

14.4 Example. On V ∗, that’s also C3, and give it the dual basis 〈e∗1, e∗2, e∗3〉. By the
definitions, we find that {

Eijei = −ej
Eijek = 0 k 6= i

,

and the matrix a1

a2

a3


sends e∗i to −aie∗i . The weights are exactly the −Li, 1 ≤ i ≤ 3. In fact,

V ∗ = Γ0,1.

Now you can take tensor products of V, V ∗ to build up new representations. Note
that V ⊗ V automatically decomposes into Sym2V and

∧2 V .

14.5 Example. Let’s look at
∧2 V . That’s the representation whose weights are the

pairwise sums of distinct weights of the original representation. That means that the
weights of

∧2 V are the Li+Lj , i < j. (There are three of them.) But of course, we can
write that as Lk, k ∈ [1, 3], and these are exactly the weights of the dual representation.
It follows from the theorem that

2∧
V ' V ∗,
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but we can see that directly. You have a natural pairing

V ×
2∧
V →

3∧
V ' C

which gives the duality.

14.6 Example. What about Sym2V ? Now we have weights Li + Lj , i ≤ j. I get
2L1, 2L2, 2L3 and then I also get the other intermediate weights Li + Lj , i < j. This
is irreducible. You want to say that it’s not a superposition of two weight diagrams.
If you start with the irreducible representation with highest weight 2L1, you can argue
that all the weights in Sym2V must occur there. So Sym2V occurs a copy of Γ2,0 but
in fact

Sym2V ' Γ2,0,

and you see that from the weight diagram. This diagram is not a union of other
allowable diagrams.

The same logic applies, and tells us:

14.7 Proposition. The symmetric powers SymnV and SymnV ∗ are irreducible and
are the Γn,0,Γ0,n.

In fact, SymnV has a basis given by the monomials {ei1ei2 . . . ein} with weights
Li1 + · · · + Lin and these are all distinct weights. So we find that all the weights
occur with multiplicity one. The weights of SymnV form a giant triangle. The vertices
correspond to the standard diagram of monomials in three variables. Now since SymnV
contains a highest weight vector en1 with highest weight nL1, it contains Γn,0. Now last
time we saw that the irreducible representation Γn,0 contains all the lattice points in
the triangle spanned nL1, nL2, nL3. Looking at the multiplicities gives the result.

Remark. If V,W are any representations of sl3 with highest weight vectors v ∈ Vα, w ∈
Wβ, then v ⊗ w ∈ V ⊗W is again a highest weight vector with weight α + β. That’s
visible. When X ∈ g acts on V ⊗ W , it acts by applying X to each factor then
summing. Therefore, if I took Γa,b ⊗ Γc,d, that contains a highest weight vector with
weight (a+ c)L1 − (b+ d)L3 and therefore

Γa+c,b+d ⊂ Γa,b ⊗ Γc,d,

and that in particular shows existence. We find that

Γa,b ⊂ SymaV ⊗ SymbV ∗.

Let’s look at the first example of this.

14.8 Example. What is V ⊗ V ∗? This should give us the irreducible representation
with highest weight L1 − L3. You already know that representation: it’s the adjoint
representation, which is irreducible as we have a simple Lie algebra. L1 −L3 is a root.
So

Γ1,1 ' sl3.
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If we look at V ⊗ V ∗, the weights are Li − Lj , i 6= j, each taken once; it also has
the weight 0 taken three times. We find that

V ⊗ V ∗ ' Γ1,1 ⊕ Γ0,0

and that corresponds to the contraction (trace) map V ⊗ V ∗ → C. The kernel is Γ1,1,
the traceless 3-by-3 matrices.

Let’s do one more interesting case, which is going to spill out.

14.9 Example. Let’s try to construct something we haven’t already seen. Let’s look
at Sym2V ⊗ V ∗. This is the first such tensor product that we’re not going to be able
to construct naively. This is going to have a highest weight vector of highest weight
2L1 − L3 corresponding to e2

1e
∗
3. It’s in the interior of the cone and when we reflect it

around, we’re going to get a hexagon.
So Γ2,1 ⊂ Sym2V ⊗ V ∗ but we want to identify the rest of it. One observation is

that all the weights on the boundary in Sym2V ⊗ V ∗ occur with multiplicity one (this
requires a check). We know that the same is true for the figure of Γ2,1. In the interior,
though, it’s a different story. There are only nine weight spaces on the boundary (or you
can write it out explicitly) and we find that the interior weights of Sym2V ⊗ V ∗ occur
with multiplicity three. So we find that some multiple of the standard representation
might be left over. We’ll resolve this next time.

Lecture 15
3/4

Today, the plan is to finish talking about representations of sl3. Wednesday is going to
be a sort of big day, in that based on the examples we’ve seen, we’re going to lay out
the analysis of simple Lie algebras in general. We’re going to describe the paradigm
that you apply to analyze an arbitrary simple Lie algebra and its representations. We’ll
lay out the steps, all of which are analogous to the steps we’ve seen for sl2, sl3. It still
remains to go ahead and carry out the analysis, and we’ll start that on Friday, or on
Monday—depending on how much time we spend on the Killing form. This is going to
be the paradigm that guides us through the next month or so, when we’ll understand
the representations of the classical Lie algebras (i.e., with five exceptions, all simple Lie
algebras.) I’m going to defer this week’s homework assignment to Wednesday, since we
didn’t cover as much as planned.

Let me just state the main theorem:

15.1 Theorem. We have a bijection between:

• Irreducible representations of sl3.

• Weights that live in a certain hexagonal lattice (generated by L1, L2, L3) in h∗)
and in the cone spanned by L1 and −L3. In other words, this is the set of all
elements of h∗ of the form aL1 − bL3 : a, b ∈ Z≥0.

The bijection sends a representation to its highest weight.
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Let me talk about where this is coming from, and then move on. We have not fully
proved this yet. The proof of existence is something we basically did last time. We
observed that I have two representations V,W , and highest weight vectors v ∈ V,w ∈W
of weights α, β (that is, vectors which are eigenvectors for h and killed by the positive
root spaces), then the element v ⊗ w ∈ V ⊗W with highest weight α + β. There was
one more observation:

15.2 Lemma. If V is any representation, and v ∈ V is a highest weight vector of
weight α0, then if I start with v and start applying the negative root spaces successively,
then I get an irreducible subrepresentation of V .

I’ve gotten tired of saying “applying the negative root spaces successively,” so let
me introduce some notation now, and then I’ll come back to the lemma. Recall that
when we choose that linear function on h∗, it has the effect of breaking the roots

R = R+ tR−

lying on opposite signs of a line. It’s natural to introduce:

15.3 Definition. We write b = h ⊕
⊕

α∈R− gα. This is called a Borel subalgebra,
which we’ll introduce when we talk about the general paradigm.

Again, sl3 consists of the two-dimensional h and the six root spaces: if we take the
negative root spaces and add them to h, we get a Lie subalgebra.

Proof. So, to restate the lemma: we take the highest weight vector v, and apply b over
and over. It’s the smallest subspace of V that contains v and is stable under application
of b. The main point of the lemma is that the subspace is invariant under the positive
root spaces, which was an explicit calculation. For irreducibility, we used the following
argument: if W = bv (repeatedly applying b) and

W = W1 ⊕W2,

then the decomposition commutes with the decomposition into weight spaces for h. In
particular

Wα0 = (W1)α0 ⊕ (W2)α0

where Wα0 is one-dimensional (when we apply the negative root spaces, we never get
back to the original weight). So one of W1,W2 contains v and that one must contain
all of W .

N

Proof of uniqueness and existence. Given this lemma and these observations, we con-
clude that if I look at

SymaV ⊗ SymbV ∗,

where V is the standard representation, this contains an irreducible subrepresen-
tation with highest weight aL1 − bL3. The corresponding highest weight vector up to
scalars is ea1 ⊗ (e∗3)b inside the tensor product of symmetric powers. That proves the
existence right there, and gives us a recipe for constructing irreducible representations.
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We just go to this tensor product, and pick the subrepresentation generated by one
vector.

Uniqueness: Let V,W be irreducible representations with highest weight vectors
v, w of the same weight α, we want V ' W . If that’s the case, form V ⊕W where
(v, w) ∈ V ⊕W is a highest weight vector of weight α. If U = b(v, w) ⊂ V ⊕W is the
subrepresentation generated by (v, w) in the direct sum, then U is again irreducible,
by that lemma. What we observe is that U is irreducible, V and W are irreducible, so
when we look at the projection maps

U → V, U →W,

these are nonzero (they send (v, w) to v, w) and are hence isomorphisms. Hence,
U ' V 'W . N

That shows that there exists an irreducible representation of highest weight aL1 −
bL3 for any a, b.

15.4 Definition. We denote by Γa,b the irreducible representation with highest weight
aL1 − bL3.

We don’t know at this point what the relation between Γa,b and SymaV ⊗ SymbV ∗

where V is the standard representation.

§1 Examples

Let’s look at the first nontrivial example and see what the general pattern is. We’ve
seen that there are irreducible representations corresponding to the highest weights
aL1−bL3. The SymaV were already irreducible as were the SymbV ∗. The first example
not of this form was the adjoint representation Γ1,1.

Let’s now search for Γ2,1. As we just said, the place to look for it is sitting inside

Γ2,1 ⊂ Sym2V ⊗ V ∗, V ' C3.

Let’s start by looking at the weight diagrams. We know that Γ2,1 has highest weight
2L1 − L3 and to generate all the weights of this representation, we start with this
representation and reflect successively about the “red lines.” We get this hexagon of
weights and the weights of this irreducible representations are the elements of the weight
lattice congruent to any of these weights modulo the root lattice and lying inside the
hexagon. Also, all the dimensions of the weight spaces on the boundary are one. But
we don’t know the dimensions of the eigenspaces inside the remaining three interior
weights, and that’s really important. We will have a couple of formulas that will tell
us this for a simple Lie algebra.

Note that we know the weights of Sym2V ⊗ V ∗ because we know the weights of
each factor and the weights add in a tensor product.

• In the case of V ∗, we have −L1,−L2,−L3,

• In the case of Sym2V , we get 2L1, L1 + L2, 2L2, L1 + L2, 2L3, L2 + L3.
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• When we add these, we get the weights 2Li − Lj , i 6= 3, weights −2Li, and each
Li with multiplicity three. (A total of eighteen, as we should get.)

• For example the vectors with weight L1 are e2
1 ⊗ e∗1, e1e2 ⊗ e∗2, e1e3 ⊗ e∗3.

Here’s what we’re going to do: start with the vector e2
1⊗e∗3 (a highest weight vector

with weight 2L1 − L3) and start pushing it around by the negative weight spaces.
OK, let’s recall: Eij is the matrix that carries ej 7→ ei, ek 7→ 0 for k 6= j and acts

on the dual representation via e∗i 7→ e∗j , e
∗
k 7→ 0 for k 6= i. We’re just going to take

this highest weight vector and keep applying the negative root spaces. Consider for
instance

E21E32(e2
1 ⊗ e∗3) = E21(−e2

1 ⊗ e∗2) = −2e1e2 ⊗ e∗2 + e2
1 ⊗ e∗1.

Consider similarly

E32E21(e2
1 ⊗ e∗3) = 2e1e3 ⊗ e∗3 − 2e1e2 ⊗ e∗2.

This is something you should do at home, if you do it at all. What we get is the
computation of the dimensions of the weight spaces of Γ2,1 and what we’re left with

Sym2V ⊗ V ∗ ' Γ2,1 ⊕ V.

Remark. There’s another way to see this. If this is a valid isomorphism, we should have
a projection map. In particular, we should have a projection map Sym2V ⊗ V ∗ → V .
But we do have such a map: contraction. Given a decomposable tensor uv and an
element v∗, we map that to (u, v∗)v + u(v, v∗). That’s a map of representations which
is onto V and the calculation we made shows that Γ2,1 is the kernel of that map.

In general, we have contraction maps and the general statement is that there are
contraction maps SymaV ⊗ SymbV ∗ → Syma−1V ⊗ Symb−1V ∗. The claim is that:

15.5 Proposition. The kernel of this contraction map is Γa,b.

(See the textbook.) Equivalently, we have a decomposition of SymaV ⊗ SymbV ∗

into Γa,b and Syma−1V ⊗Symb−1V ∗, so inductively we get the decomposition in general.
We find:

SymaV ⊗ SymbV ∗ =

min(a,b)⊕
i=0

Γa−i,b−i.

That in turn gives us an explicit formula for the dimensions of the irreducible repre-
sentations, or equivalently the multiplicities.

Lecture 16
3/6

§1 Outline

Let me say a word about this before you get started. Anytime you teach a subject,
there are two different approaches: you can start with examples and generalize from
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there, or you can start with the theory and see how it specializes. There’s a lot to be
said for both approaches, but in the case of Lie algebras, something almost unique is
going on: by the time we’ve done all the special cases, we’ve done the general theory
(with five exceptions). That tips the balance towards this example-driven approach.

There are nine basic steps in analyzing a simple Lie algebra g (over C):

1. Identify a subalgebra h ⊂ g which was abelian and acted diagonalizably under
all representations. We would also like it to be maximal with respect to this
property. This is going to be called a Cartan subalgebra, by definition a
maximal abelian subalgebra which acts diagonalizably. (We’re relying crucially
here on the preservation of Jordan decomposition.)

In every case, it’ll be pretty clear what this should be.

2. As we did before, once we’ve got this subalgebra h, we have to know how h acts
on the rest of the Lie algebra by conjugation. We get a Cartan decomposition

g = h⊕
⊕

α∈h∗\{0}

gα, (75)

where gα is the eigenspace of h with eigenvalue α (in the adjoint representation).
These gα’s are called the root spaces, and the eigenvalues α 6= 0 that occur are
called roots. (The set of roots is denoted R.)

If you happen to choose h too small, at this point you’ll notice: you’ll get a zero
eigenspace that is larger than h. In fact, h is maximal if and only if the centralizer
of h is h itself.

3. Let’s write down some facts which we will observe in specific cases:

• Each gα is one-dimensional.

• R = −R. That is, if α is a root, then so is −α.

• R generates a sublattice Λ in h∗ of rank equal to the (complex) dimension
of h∗.

• One really crucial consequence is the following. Here g and h are complex
vector spaces. However, the roots R span a real vector space h∗R = Λ ⊗Z R
whose complexification is h∗. All the pictures that we will draw is of this
real vector space.

• By the standard calculation, we have

[gα, gβ] ⊂ gα+β. (76)

This gives us a beginning picture of how the Lie algebra acts on itself. We
know how h acts (diagonally) in terms of this decomposition and now we’ve
seen some information of how the different pieces bracket with each other.

4. We get a beginning picture of what representations look like. If V is any repre-
sentation of g, then we can write down a weight space decomposition

V =
⊕
α∈h∗

Vα, (77)
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where h acts on Vα by the eigenvalue α. Moreover, gα carries Vβ into Vα+β. So
we have a picture of eigenvalues as dots in h∗R.

5. Next, we need to introduce distinguished subalgebras (as we did for sl2, sl3).
For all α ∈ R, we have

sα = gα ⊕ g−α ⊕ [gα, g−α].

Remember, we got a lot of mileage in the case of sl3 from looking at these small
subalgebras and looking at how they acted on representations. In the case of sl3
at least, these were all copies of sl2 and we could use what we knew about sl2.

I want to quote some facts in general. These distinguished subalgebras sα are
all copies of sl2 floating around. In order to prove this, I need to know that
[gα, g−α] is nonzero so that it is a one-dimensional subspace of h and we get a
three-dimensional subalgebra sα. Next, we need to know that the one-dimensional
subspace [gα, g−α] acts nontrivially on g±α. That we’ll assume as well.

6. Given this, observe that there’s a distinct element of [gα, g−α]. This one-dimensional
space acts diagonally on g±α and nontrivially, so there is a unique element of this
subspace which acts on gα with eigenvalue 2 and on g−α with eigenvalue −2. (In
other words, I want to recreate the generators in sl2.)

Let Hα ∈ [gα, g−α] with this property (i.e., so that α(Hα) = 2). We thus get
these distinguished elements Hα ∈ h.

7. We want to observe that for any representation V , the eigenvalues of the dis-
tinguished elements Hα are integers; that’s true of any representation of sl2. In
other words, given any representation of g, all the h-eigenvalues will be linear
functionals on h that are integral on these distinguished elements. We thus
introduce the weight lattice ΛW ⊂ h∗ which consists of

ΛW = {α ∈ h∗ : α(Hβ) ∈ Z, for all β ∈ R} .

In particular, the weights of any representation are in ΛW : in particular, R ⊂ ΛW
by looking at the adjoint representation. We haven’t shown this yet, but any
element of ΛW arises as weight.

8. I want to offer a teaser here. This is something that’s way ahead of us, and for
the next few weeks we’re going to be sticking to Lie algebras. But at the end of
the day, at least part of the goal is to understand representations of Lie groups.
There are several different groups associated to a given complex Lie algebra.
Once we’ve understood representations of Lie algebras, we want to know which
representations lift to Lie groups. I said that ΛR ⊂ ΛW and the quotient is a
finite abelian group ΛW /ΛR. Given the Lie algebra g, it has an adjoint form
G0 (i.e., the simply connected form modded out by the center).

16.1 Theorem. Then ΛW /ΛR ' π1(G0).
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In other words, the structure of the Lie algebra encodes the fundamental group
(or the center of the simply connected form). It’s in these terms that we can
identify which representations lift to which forms of the group. The forms of the
Lie algebra g correspond exactly to subgroups of ΛW /ΛR.

16.2 Theorem. A representation V lifts to the Lie group G if and only if the
weights of V lie in the corresponding subgroup of ΛW /ΛR.

In particular, the representations that descend to the adjoint form are the ones
whose weights live in the root lattice. This is how we will understand represen-
tations of semisimple Lie groups.

9. We need to introduce a group of symmetries. The crucial element of this analysis
is to look at these distinguished subalgebras and restrict to elements of these
subalgebras to get information about the weights of the representations. We’ve
already used this with the sα. We know that the eigenvalues of the diagonal
elements Hα must be symmetric about the origin, though. In other words, there’s
a lot of symmetry in the weights of any representation.

For any root α ∈ R ⊂ h∗, I get a distinguished elementHα ∈ sα ⊂ g. I’d like to say
that under representation of g, the eigenvalues of Hα are integers symmetric about
zero. That suggests we introduce the hyperplane Ωα = {β ∈ h∗ : β(Hα) = 0}. We
have a direct sum decomposition

h∗ ' Cα⊕ Ωα.

We let wα be the involution on h∗ with eigenvalue 1 on Ωα and −1 on Cα.

10. The basic observation is that the weights of any representation are invariant
under this involution wα. The group generated by the involutions wα is called
the Weyl group and is denoted by W: this is a symmetry of the roots. More
generally, if V is any representation, then the weights of V forms a subset of h∗

invariant under the action of W. In the case of sl3, the Weyl group is the group
generated in the lines orthogonal to the roots: it is S3.

11. Let me do something which isn’t logically necessary. We saw that in the case of
sl3, h was the space of diagonal traceless matrices, and the dual was the space
of linear functions L1, L2, L3 modulo L1 + L2 + L3. When drawing a picture of
the vector space, it seemed natural to draw the symmetry and draw L1, L2, L3

at 2π/3 degrees. We were implicitly invoking an inner product on h∗, which is
respected by the symmetries in the Weyl group. That’s again a feature of the
general situation. We have a Killing form, which is a positive-definite inner
product on h∗R invariant under the Weyl group. (It’s going to be a symmetric
bilinear form on the entire Lie algebra and thus its dual.) This will help us
visualize things.

12. The next step is to produce an ordering of the roots. We need a decomposition

R = R+ tR−,
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into positive and negative roots, where R+, R− lie in half-spaces. So I choose
a hyperplane with irrational slope in h∗R and look at the roots to either side.

13. Next, I want to start talking about highest weight vectors and the classification
by highest weights. This will start on Friday.

Lecture 17
3/8

Today, I want to recall briefly the story thus far, and get a pretty complete algorithmic
process for describing a representation of an arbitrary simple Lie algebra. Some of
those things are not proved in general, but we’ll observe them in specific cases. Very
very briefly, the steps so far for a simple Lie algebra g:

1. We introduced the Cartan subalgebra h ⊂ g. This is a maximal subalgebra which
is both abelian and diagonalizable

2. We get the Cartan decomposition

g = h⊕
⊕

α∈R⊂h∗\{0}

gα.

It makes sense to focus on the distinguished subalgebras, which are the sub-
algebras

sα = gα ⊕ g−α ⊕ [gα, g−α],

and we stated that this was isomorphic to sl2. One of the crucial things we do
is to apply our analysis of sl2 to any Lie algebra by restricting to distinguished
subalgebras.

3. Given these isomorphisms, we get distinguished elements Hα ∈ h: these live
in [gα, g−α] and act on gα with eigenvalue 2. This determines Hα uniquely.

4. We get the weight lattice ΛW , which is the set of linear functions α ∈ h∗ such
that α(Hβ) ∈ Z for each β ∈ R. Every representation of g has weights that
in this lattice, because the eigenvalues of Hα are integers, so if ΛR is the root
lattice, then

ΛR ⊂ ΛW .

5. Let’s illustrate this for sl3. We have six roots Li−Lj , i 6= j which we can draw in
a hexagonal lattice with L1, L2, L3 located at the cube roots of unity. The weight
lattice has index two in the root lattice.

6. From restricting to the sα, we already saw that the weights of any representation
lie in the weight lattice. But we also got a little more: the weights are invariant
under certain involutions of h∗.
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The object we’re producing is the Weyl group W, which is generated by the
involutions

Wα =

{
1 on Ωα = {β ∈ h∗ : β(Hα) = 0}
−1 on Cα

.

7. In order to visualize this, it’s sometimes helpful to introduce an inner product
called the Killing form. This is a symmetric bilinear form on h (and corre-
spondingly on h∗) and it’s also positive definite on the real space h∗R spanned by
the root lattice. It’s invariant under the Weyl group.

8. We introduce an ordering of the roots, a decomposition of R into R = R+ tR−
where each is contained in a half-space in the real vector space h∗R. The ordering
of the roots is a choice, but it’s a negligible choice, since any two choices differ
by an automorphism of the Lie algebra.

9. We get two things out of this. We get Borel subalgebras (this is not mentioned
in the book)

b = h⊕
⊕
α∈R−

gα,

and then what I get is a subalgebra. In fact, we know that [gα, gβ] ⊂ gα+β here.

10. The real point of this is that, given an ordering of the roots, we have the notion
of a highest weight vector. If I have any representation V , I say that a vector
in V is a highest weight vector if it is an eigenvector for h and is killed by
the positive root spaces. (I.e., find a weight as far from the hyperplane with
irrational slope as possible.) Every representation has a highest weight vector,
and an irreducible representation has a unique one (up to scalars). The weight
of this vector is called the highest weight of the representation.

The word “highest” is sometimes replaced by “dominant.”

11. The third observation, which we proved in the case of sl2, sl3 and is proved in
general similarly: if V is any representation and v ∈ V any highest weight vec-
tor, then the subrepresentation bv obtained by taking v and taking the subb-
representation generated by this one vector v is an irreducible representation of
g.

12. If V is any irreducible representation, then the set of weights of V (contained in
ΛW ) is obtained by starting with the highest weight and then adding an element
of ΛR. I.e., if α0 is the highest weight, then all the weights of V are congruent to
α0 mod ΛR. Moreover, if we take the convex hull of the orbit Wα0, and take the
intersection of the coset α0 +ΛR with that convex hull, then the set of all weights
in the representation is that set. This is a generalization of the fact that the
weights of an irreducible sl2-representation form an unbroken string of integers.

As the example of sl2 suggests, there is a nice picture that describes the multi-
plicities, but we’re not there yet.
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13. When we have this picture of the weights of V , we can ask ourselves where the
highest weights live. The answer is that the highest weights are weights with
nonnegative inner product (with respect to the Killing form) with all the positive
roots. We want to introduce a cone in h∗R, which is called a Weyl chamber.

We define
W =

{
α ∈ h∗ : B(α, β) ≥ 0, β ∈ R+

}
,

(where B is the Killing form) or equivalently that

W =
{
α : α(Hβ) ≥ 0, β ∈ R+

}
.

In other words, we’re saying the following: take a connected component of the
complement in h∗R of the union of these hyperplanes Ωα and take the closure. The
basic observation is that the highest weights are always in this Weyl chamber.

Essentially, we’re repackaging the basic choice we made when ordering the roots.
The set of orderings of the roots is acted upon simply transitively by the Weyl
group, and the Weyl group acts simply transitively on the set of the Weyl cham-
bers.

14. The main theorem, which describes all representations, is as follows:

17.1 Theorem (Main theorem). The association that sends an irreducible repre-
sentation V to its highest weight α ∈ h∗ is a bijection between the set of irreducible
representations of g and the intersection of the weight lattice ΛW with the Weyl
chamber W.

15. I want to go back again to the example of sl3. When we made the statement that
we could start with a highest weight vector and apply the negative root spaces
successively to get a subrepresentation, what did we say? We wanted to say that
the result bv was invariant under the positive root spaces. In fact, you don’t have
to check every positive root space. For sl3, there are three positive root spaces,
but one is the commutator of the other two.

In a lot of ways, instead of dealing with all the positive roots, it’s sufficient to
look at a subset which generates additively.

17.2 Definition. A simple (or primitive) root is a positive root α ∈ R+ if it
isn’t the sum of two other positive roots.

We don’t know this yet, but we can generate the Borel subalgebra simply by
taking the root spaces corresponding to the simple roots and h. Every positive
root is a sum of simple roots.

16. This is sort of a fun exercise in euclidean geometry, but observe that the simple
roots are all at angles ≥ π/2 from each other, and therefore they are linearly
independent. Since ΛR spans the vector space, it follows that the number of
simple roots is equal to dim h. In general, the number of roots — although we
have not seen this yet — grows quadratically with the dimension of the Cartan
subalgebra, so focusing on the simple roots is a simplification.
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17. The Weyl chamber is a simplicial cone. We can characterize it as the set of
vectors that form an acute or right angle with all the simple roots (instead of all
positive roots): that is, it is an intersection of exactly dim h half-spaces (which is
what it means to be a simplicial cone). That’s something that you don’t see in
2-space.

18. That, finally, leads us to our last definition. This is going to come out of the blue,
in some sense, though it’s useful in terminology, and we’ll see this explicitly in
every case. We’re going to introduce the notion of fundamental weights. Look
at the edges of the Weyl chambers and look at the first weight lattice point on each
of these edges. We said that the Weyl chamber is a simplicial cone. It hasm edges,
for m the dimension. If I look at w1, . . . , wm which are the smallest elements of the
weight lattice along the edges of the Weyl chamber, then they generate ΛW ∩W as
a semigroup. What does that say? It states that we can use the same notation as
we used for sl3. We can identify the smallest lattice vectors along the cone, called
fundamental weights, and we can express any lattice vector as a nonnegative
linear combination of them. So we can index all irreducible representations by
m-tuples of nonnegative integers. This tells us something important: we’re going
to have to prove this main theorem eventually. The uniqueness proof it’s easy;
it’s the proof we gave for sl3. Existence is something we’ll see case-by-case but
is harder to prove in general. This is saying that, to prove existence, it’s enough
to exhibit m irreducible representations with highest weights the fundamental
weights.

Lecture 18
3/11

§1 The Killing form

Let me say a little about the Killing form. It’s a symmetric bilinear form B on the Lie
algebra g. In other words, it is a map

B : g× g→ C.

As we’ll see, what it does in terms of the Cartan decomposition is pretty elementary.
What is crucial is the restriction of B to the Cartan subalgebra itself. We’ll see that
it is nondegenerate, and induces an isomorphism h ' h∗. We’ll use the symbol B both
for the bilinear form on g, its restriction B|h, as well as the induced form on h∗ (via
the isomorphism h ' h∗ that B induces).

18.1 Definition. Given X,Y ∈ g, we look at the adjoint actions on g. We define the
Killing form

B(X,Y ) = Tr(ad(X) ◦ ad(Y )), (78)

where ad(X), ad(Y ) : g→ g. Observe that this is symmetric by symmetry of the trace.
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The picture that we have of the adjoint action of g on itself tells us what to expect.
We have the Cartan decomposition

g ' h⊕
⊕
α∈R

gα,

and we typically draw that as a diagram of dots. The point is, what each of these gα
does is to shift every root space over. Commuting with gα carries gβ → gα+β, and in
particular it has trace zero: everything is moving somewhere else. In other words, we
have

Tr(ad(X)|g) = 0, X ∈ gα, α ∈ R.

The same is true if X ∈ h, because X acts by zero on h, and the actions on g±α cancel
each other out. That is, the trace of any X acting on itself is zero. But when we
compose, we don’t have to get zero.

For example, if X ∈ gα, Y ∈ g−α, then ad(X) ◦ ad(Y ) could have nonzero trace.
But we have

B(gα, gβ) = 0 unless α+ β = 0, (79)

and so therefore we have an orthogonal decomposition

g = h⊕
⊕
α∈R+

gα ⊕ g−α.

On each two-dimensional summand, the inner product looks like[
0 1
1 0

]
.

It doesn’t tell us much about the root spaces, but the real point is the action on h. If
we have X,Y ∈ h, we know how they act on the Lie algebra. They kill everything in
h. On gα, they act by scalars α(X), α(Y ). In other words,

B(X,Y ) =
∑
α∈R

α(X)α(Y ). (80)

A couple of other observations. Again, this is something we’re going to see in
practice in every case: this form is nondegenerate. Another thing, it’s positive definite
on the real subspace hR spanned by the distinguished elements Hα. Likewise, on h∗R.
Just bear in mind: if we have a symmetric bilinear form on a complex vector space, it
can’t have a sign. If B(x, y) > 0, then B(ix, iy) < 0. But when we restrict to a real
subspace, it can have a sign, and in this case it does. The key fact again is that this is
invariant under the Weyl group. If you want to identify the Killing form, you usually
only care about it up to scalars, and you just look for something invariant under the
Weyl group.

We will (necessarily) have to come back to this when analyzing arbitrary semisimple
Lie algebras.
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§2 sln

I’d like to go through the next few chapters of the book, i.e. all the classical Lie
algebras. We’re going to discuss sln, spn, son. There are many things that I could
spend an unlimited amount of time talking about, but I’m open to suggestions.

Again, g = sln consists of traceless n-by-n matrices. If we’re looking for an abelian
subalgebra acting diagonally under some faithful (and hence any) representation, why
not just take the diagonal matrices?

18.2 Definition. We choose the Cartan subalgebra h ⊂ sln to be the subalgebra of
(traceless) diagonal matrices: this is the collection of n-tuples {(a1, . . . , an) :

∑
ai = 0}.

We don’t know that it’s maximal yet, but if it’s not maximal, then there will be
a zero eigenspace of the action outside itself, and we’ll see that this doesn’t happen.
What is the Cartan decomposition?

18.3 Definition. Let V ' Cn be the standard representation of Cn.

18.4 Definition. We let Eij ∈ sln (for i 6= j) to be the endomorphism of Cn that
carries the jth basis vector to the ith basis vector and all other basis vectors to zero.
That is,

Eij(ej) = ei, Eij(ek) = 0, k 6= j.

We let Hi (which is not in the Lie algebra) be the matrix with

Hi(ei) = ei, Hi(ek) = 0, k 6= i.

By the same calculation as always, we find that Eij is an eigenvector for the action
of h. The eigenvalue is Li − Lj where the notation {Li} is as before.

18.5 Definition. We can think of h∗ = C 〈L1, . . . , Ln〉 /(L1 + · · ·+ Ln = 0) where Li
is the linear functional picking out the ith coordinate.

In other words, we have
gLi−Lj = CEij ,

and we get the Cartan decomposition for sln,

sln ' h⊕
⊕
i 6=j

CEij , CEij = gLi−Lj . (81)

There are no zero eigenvalues for h except h itself, so it is in fact a Cartan subalgebra.
This collection of roots is invariant under the symmetric group Sn, and the Killing

form has to be as well. If I look at h, then that’s a representation of Sn, and there’s a
unique inner product invariant under Sn, which is just the standard inner product on
Cn.

How do we visualize this? Think about the case we’ve already done. In the case of
sl3, we looked at the vectors L1, L2, L3 ∈ C3 and we projected into the plane with sum
zero, and we wound up with three vectors which formed the vertices of an equilateral
triangle. In general, we can view the Li as forming the vertices of an (n − 1)-simplex
centered at the origin in h∗.
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What’s the next step in our general algorithm? We have to introduce the dis-
tinguished subalgebras. The distinguished subalgebras correspond to pairs of opposite
roots, where we take the corresponding root spaces and throw in their commutators.
We get

sLi−Lj = C 〈Eij , Eji, Hi −Hj〉 . (82)

This is obviously a copy of sl2: it’s just the two-by-two matrices that are zero outside
the ith and jth rows and columns. The distinguished element of h, the HLi−Lj is
exactly Hi −Hj .

What did we get out of the distinguished elements in general? First, we got an
integrality condition on the eigenvalues of any representation: the eigenvalues of any
representation have to have integral eigenvalues on the Hi −Hj . That should identify
the weight lattice.

Indeed, the weight lattice is

ΛW = Z 〈L1, L2, . . . , Ln〉 . (83)

The root lattice is the subspace spanned by the pairwise differences Li − Lj , i.e.

ΛR = Z 〈Li − Lj , i 6= j〉 (84)

and the quotient ΛW /ΛR is exactly Z/n. (This is the center of the simply connected
form SLn(C), which consists of the roots of unity.)

The other thing that we got was a collection of symmetries. Under any represen-
tation of sln, if we restrict to sLi−Lj , the eigenvalues of Hi −Hj are symmetric about
zero. This lets us say that the weights are invariant under a bunch of reflections.

Recall that h∗ = {
∑
aiLi} /(L1 + · · ·+ Ln). The hyperplane ΩLi−Lj orthogonal to

the root Li−Lj , or equivalently the annihilator of the distinguished element Hi−Hj , is
exactly the set

∑
akLk such that ai = aj . The reflection operator about this hyperplane

is the one that simply exchanges ai, aj . The Weyl group simply acts by permuting
coordinates, and in particular it’s Sn acting by permuting coordinates.

The next step is based on choosing an ordering of the roots, and it’s a choice that
we have to make (although the end result won’t depend on the choice).

18.6 Definition. We set R+ to be {Li − Lj , i < j}, as we’ve done in the two cases
before.

In terms of this ordering of the roots, I want to observe that the simple roots (the
roots of this form that can’t be expressed as sums of roots of this form) are exactly the
Li − Li+1. As predicted, there are exactly enough of them. More to the point, we can
describe the Weyl chambers. We can describe the chamber that contains the vectors
with positive inner product with the simple roots. The Weyl chamber is a simplicial
cone, it’s an intersection of n− 1 half-spaces in Rn−1. That is,

W =
∑

aiLi, a1 ≥ a2 ≥ · · · ≥ an ∈ R.

This is a simplicial cone: it’s defined by n − 1 linear inequalities. In particular, the
next thing we want to do is to look at the edges of this cone. Those are exactly the
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places where all but one of the inequalities are in fact equalities. We have a bunch of
equal coefficients and one jump. The edges of W are spanned by the vectors

L1

L1 + L2

L1 + L2 + L3

L1 + · · ·+ Ln−1 = −Ln

Notice that the intersection of the Weyl chamber defined by these inequalities and the
weight lattice (the integer linear combinations of the Li) is the set of integral linear
combinations of the Li satisfying these inequalities, and it is generated as a semigroup
by these vectors L1, L1 +L2, L1 +L2 +L3, . . . . This was the observation that we made
before, which doesn’t follow immediately, which is that when we take the Weyl chamber
and intersect with the weight lattice, it’s generated by the primitive vectors along the
edges. These are what we called the fundamental weights: every weight in the Weyl
chamber is a nonnegative linear combination of these.

There is exactly one irreducible representation for each element in W ∩ΛW , corre-
sponding to the highest weight.

18.7 Definition. We will call the unique irreducible representation with highest weight
a1L1 + a2L2 + · · · + anLn = b1L1 + b2(L1 + L2) + · · · + bn−1(L1 + · · · + Ln−1) by the
name Γb1,...,bn−1 .

In particular, the irreducible representations correspond to (n − 1)-tuples of non-
negative integers. Let’s just look at a first couple of examples, to prove the existence
half of the fundamental theorem.

Now, take n = 4.

18.8 Example. The standard representation V ' C4. The weights are the Li, which
are alternate vertices of a cube (as you might draw). The highest weight is simply L1.
So, we’re also writing V = Γ1,0,0, but I’ll still call it V .

18.9 Example. The next simplest is the dual representation V ∗. The weights of the
duals are the negatives of the weights of V , so the weights are {−Li}. In other words,
they correspond to the remaining weights of a cube that you might draw; the highest
weight is −L4 = L1 + L2 + L3. That gives us V ∗ = Γ0,0,1.

18.10 Example. What’s the next thing to look? Tensor, exterior, symmetric products
of these. The simplest would be

∧2 V . If we look at, the weights are Li + Lj , i < j.
Those correspond to the midpoints of the faces of the cube you might draw. This
is again irreducible. You can’t write this as a union of two other weight diagrams
symmetric under S4 and the highest weight is L1 + L2, so this is Γ0,1,0.

Thus, we’ve proved the existence half! Every weight in the intersection of the weight
lattice with this cone is a nonnegative linear combination of the fundamental weights,
so we get highest weight representations as we want by tensoring up.
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Lecture 19
3/13

§1 sln

We consider g = sln and choose the Cartan subalgebra consisting of diagonal trace-
less matrices in sln. We let h∗ = C 〈L1, . . . , Ln〉 /(L1 + · · · + Ln). The roots R =
{Li − Lj , i 6= j} and we let the positive roots be R+ = {Li − Lj , i < j}. The Weyl
group W is Sn acting on h∗ by permuting the generators Li.

19.1 Example. For instance, the reflection through the root Li − Lj interchanges Li
and Lj and gives a transposition.

The Weyl chamber is the collection

W =
{∑

aiLi, a1 ≥ a2 ≥ · · · ≥ an
}
.

The intersection of the Weyl chamber with the weight lattice is generated by the prim-
itive vectors, the fundamental weights, which live on a cone. These are the weights

L1, L1 + L2, L1 + L2 + L3, . . . .

Any point in the weight lattice and in the Weyl chamber is a nonnegative integral linear
combination of the fundamental weights. The fundamental theorem is:

19.2 Theorem. There is a unique irreducible representation Γa1,...,an−1 (for a1, . . . , an−1 ∈
Z≥0) with highest weight a1L1 + a2(L1 + L2) + · · ·+ an(L1 + · · ·+ Ln).

Let’s do some examples with n = 4.

19.3 Example. The standard representation V ' C4 has weights L1, . . . , L4: it has
highest weight L1 and is what we call Γ1,0,...,0.

19.4 Example. Then we have the dual representation V ∗, which we can identify with∧3 V using the pairing

V ⊗
3∧
V → C

which is sl4-equivariant. We can see it in any case. What are the weights of
∧3 V ?

They are the triple sums of distinct weights of V . We can compare this with the weights
of V ∗, which are {−Li}. This is therefore a Γ0,0,1.

19.5 Example. We can also look at
∧2 V , whose highest weight is L1 + L2. The

diagram of weights looks like an octahedron if you draw it. This is irreducible (no
proper subconfiguration invariant under the Weyl group), and it’s Γ0,1,0.

At this point, we have proved the existence theorem. We have exhibited represen-
tations with highest weights (1, 0, 0), (0, 1, 0), (0, 0, 1), and if we look at tensor products
of these, we can get representations with a highest weight vector of any weight (a, b, c).
Then, we take the subrepresentation spanned by that vector.

There’s a similar description in sln in general. For sln:
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19.6 Example. V ' Cn has highest weight L1. To get the other representations with
fundamental highest weights, we look at the exterior products

∧k Cn whose weights are
the sums of k distinct Li’s. The highest weight is L1 + · · ·+Lk, and this is a Γ0,...,1,...0

where 1 is in the kth slot. When we get to
∧n−1 V ' V ∗, we get the Γ0,...,1. In general,

Γa1,...,an−1 ⊂ Syma1V ⊗ Syma2

(
2∧
V

)
⊗ · · · ⊗ Syman−1(

n−1∧
V ).

It is generated (under the negative root spaces) by the highest weight vector (e1)a1 ⊗
(e1 ∧ e2)a2 ⊗ . . . . This proves the existence theorem for sln.

Let’s go back to n = 4. We’ve the three fundamental representations, the exterior
powers of V . It’s natural to ask what happens when we take tensor and symmetric
powers of these. We consider, for example:

19.7 Example. Consider V ⊗
∧2 V and see how it decomposes. The weights of this

are exactly the sums of the Li and the pairwise distinct sums. There are two types of
sums. There are the 2Li + Lj , i 6= j (twelve of these, with multiplicity one) and also
the Li + Lj + Lk for i 6= j 6= k (where each of the latter occurs three times). This
accounts for the twenty-four dimensions. This is not an irreducible representation. For
example, we have a map, a surjective map

φ : V ⊗
2∧
V �

3∧
V ' V ∗

and the claim is that the kernel of this map is the irreducible representation with
highest weight 2L1 + L2. In other words,

V ⊗
2∧
V ' Γ1,1,0 ⊕ V ∗.

The representation Γ1,1,0 ⊂ V ⊗
∧2 V is obtained by applying E2,1, E3,2, E4,3 to the

highest weight vector there, which is e1⊗ (e1 ∧ e2). In fact, we have to show that Γ1,1,0

has weights Li +Lj +Lk, i 6= j 6= k occur with multiplicity two, and we can do this by
writing down Γ1,1,0 ⊂ V ⊗

∧2 V .

19.8 Example. Let’s look at V ⊗
∧3 V (for sl4) and this contains a copy of the

highest weight L1 − L4. We have a map to
∧4 V ' C and the kernel of V is the

representation Γ1,0,1. This is exactly the adjoint representation, whose weights are the
Li−Lj (including the case i = j). If I think of this as the kernel of V ⊗ V ∗ → C, then
I’m exactly looking at traceless endomorphisms of V , i.e. sl4. So

V ⊗
3∧
V ' C⊕ Γ1,0,1.

That’s something you can try to think about in general for sln: how does the adjoint
representation fit in?
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In general, we’d like to describe Γa1,...,an as a subrepresentation of the tensor product
of symmetric powers as a kernel of contraction maps. But that still isn’t enough to an
irreducible representation. Here’s what does work (and these are things called Schur
functors); I’d urge those of you who are interested to read about in the text (sec. 6.1
and 15.3). You may also have to look at section 4.1, 4.3.

The basic idea is very simple and straightforward. A basic idea that we’ve seen
many times is that

V ⊗ V ' Sym2V ⊕
2∧
V.

All I want to ask: is there an analogous decomposition of V ⊗ V ⊗ V ? By analogous, I
mean that if V is a representation of anything, then the summands are likewise repre-
sentations. How would you characterize this? Here’s the point: if V is a representation
of a group G, then V ⊗ V is a representation of G. But it’s also a C2-representation
by switching the two factors and that commutes with the action of G. There are two
irreducible representations of C2, the trivial and the alternating one, and we break up
V ⊗ V via the C2-pieces.

For V ⊗ V ⊗ V , that’s a representation of whatever group acted on V , but it’s
also a representation of S3, and I can take this and break it up into the irreducible
representations of S3. There are three irreducible representations of S3: the trivial one,
the alternating one, and the standard on C2, so I get a decomposition

V ⊗3 ' Sym3V ⊕
3∧
V ⊕ S2,1(V )⊕2,

where S2,1(V ) is a Schur functor. In general, these come up by decomposing tensor
powers under the symmetric group action.

To construct the irreducible representations of sln, apply Schur functors to the
stnadard one.

Lecture 20
3/15

§1 Geometric plethysm

The goal is to understand decompositions of irreducible representations in geometric
terms. I’m going to be using the language of algebraic geometry to some degree. I’m
going to ask lots of questions that I don’t know the answer to, even though they deal
with very simple objects, and I urge you to think about them if you have any interest.

The basic idea is: up to now we’ve been studying representations of groups and
algebras, i.e. actions on vector spaces. If I have a linear automorphism of a vector
space, that induces an automorphism of the projective space, and we can talk about
the geometry of that action. If I look at a group like SLn, it acts on a vector space
V = Cn, and it’s transitive on nonzero vectors. Correspondingly the action on P(V )
is transitive. If I look at other representations of SLn, like SymnV , then the action of
SL(V ) is no longer transitive. Instead, the orbits in projective space are interesting
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algebro-geometric objects: they are locally closed algebraic subsets whose closures are
varieties. We can try to understand the geometry of these varieties.

20.1 Example. Let’s work with SL2. Let V be the standard representation, V ' C2.
We have now a language for all the irreducible representations of SL2: the irreducible
representations are exactly SympV = Γn by the usual notation system for irreducible
representations. Recall, SL2 acts correspondingly on P(V ) ' P1 and correspondingly
on P(SymnV ) ' Pn. The action is transitive on P1 but for n ≥ 2, it’s no longer
transitive.

What does this look like? How can I distinguish one polynomial of degree two on
a 2-dimensional vector space from another? There really is only one distinction you
can make. Among homogeneous degree two polynomials on a two-dimensional vector
space, there are the squares, and the non-squares. The products of linearly independent
forms, and the squares of forms. There are thus two linearly independent orbits. All
the squares are congruent mod SL2, and all the products of distinct linear factors are
congruent mod SL2, because SL2 acts 3-transitively on P1. What do the two orbits
look like? The squares form a conic curve. The complement of that conic curve are
the general quadratic polynomials.

For cubic polynomials, there will also be three orbits under the SL2-action: the
cubes of linear forms (when there is a single triple root), products of squares of linear
forms with another linear form (when there is a double root and a distinct simple root),
and the general polynomial (a product of three distinct factors). Again, only finitely
many orbits.

For quartic polynomials, if you look at the action of SL2 on P(Sym4V ), you have
continuous families of quartics: they’re distinguished by the j-function. The roots of
the quartic are four points on P1 (defined up to conjugation), and the invariant of them
is the j-function. (Once you’re above dimension three, there are continuous families.)

In general, SL2 acts on P(SymnV ) ' Pn and this action preserves the locus of
polynomials which are simply nth powers of linear forms.

Remark. If V is any vector space, then the projectivization P(V ) of V refers to the
space of one-dimensional linear subspaces of V : that is, (V \ {0})/C∗. (There’s some
dispute about this; in modern algebraic geometry this would be P(V ∨).) Given v ∈
V \ {0}, we let [v] denote the corresponding point in projective space.

In particular, we have a map

P(V )→ P(SymnV ), [v] 7→ [vn];

it isn’t a linear map, but it is an algebraic map and the image of this map is a curve
called the rational normal curve. These are, in some sense, the simplest and most
fundamental algebraic varieties which are not complete intersections. Beyond the conic,
they’re not complete intersections. In coordinates, this is the image of the map in
homogeneous coordinates

[x, y] 7→ [xn : xn−1y : · · · : yn].
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(You could object that there should be binomial coefficients here: if I raise (xe1 +ye2)n,
then I’d see these, but I’m just rescaling the coordinates. In characteristic p, this is a
big issue.)

In affine coordinates, this is simply the map

t 7→ (1, t, t2, . . . , tn).

The final thing to say about it is that I can describe the ideal in the ring of all polynomi-
als on Pn: it is generated by quadratic polynomials, specifically if I call the homogeneous
coordinates z0, . . . zn, the polynomnials are

zizj − zkzl, i+ j = k + l,

and these cut out the ideal of this polynomial. In particular, the space of squares in
P2 is a conic, cut out by a single polynomial, the discriminant.

20.2 Example. Let’s now focus on the case of SL2, where we already have a picture.
Consider Sym2(Sym2V ): I can think of them as quadratic polynomials on Sym2V . As
such, I naturally have a map

Sym2(Sym2V )→ Sym4(V )

given by restricting to P1 to get a homogeneous quartic on P1. This is clearly surjec-
tive. What is the kernel? The kernel is simply the trivial representation, by counting
dimensions: it’s just the ideal of the rational normal curve in degree two, so generated
by the discriminant. The kernel is spanned by the unique quadratic polynomial in P2

vanishing on P1.
Here’s a question. What is the splitting? In other words, we have constructed a

very natural and obvious exact sequence: but as a representation of SL2, Sym2Sym2V
is uniquely a direct sum of C and Sym4V . It’s more than an extension, it’s a splitting
in exactly one way. In particular, Sym4V ⊂ Sym2Sym2V . Here Sym4V is quartic
polynomials on P1 and Sym2Sym2V is quadratic polynomials on P2. I can tell you the
answer in one form. SL2 acts as the automorphisms of P2 that preserve P1. I’m looking
for a space of quadratics on P2.

Given a conic, I can take its tangent line. If I take the rational normal curve, and
look at all the tangent lines, and all their squares, then the span of all those polynomials
is this subspace. I want to argue on the grounds that it can’t be anything else. You
have a map P1 → P5 sending a point to the tangent line containing it: that’s a degree
four map P1 → P5 contained in the image of the Veronese surface, hence is a hyperplane
section of that.

Evan suggests taking the map Sym2Sym2V → C via the discriminant.

20.3 Example. We want a map Sym4V → Sym2(Sym2V ) and the claim is that the
image is the hyperplane spanned by squares of tangent lines to the rational normal
curve. Given a polynomial f of degree one, then there is a “natural” way to write it
as a quadratic polynomial of quadratic polynomials. What is a degree four polynomial
on P1? Up to scalars, that’s just a four-tuple of points on P1. If I give four points on
the rational normal curve, there’s a natural choice of a quadratic in P2—-i.e., a conic
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curve—-that intersects the rational normal curve in four points. So I have a way of
associating to a conic in the plane and four points another conic which intersects it in
those four points. How is this possible?

Let’s go to the case n = 3. In this case, I get

P1 → P3

imbedded as a twisted cubic, t 7→ [1, t, t2, t3]; this is the simplest example of a curve in
algebraic geometry which is not a complete intersection. Now P3 = P(Sym3V ) so we
get a short exact sequence

0→ Sym2V → Sym2Sym3V → Sym6V → 0.

Again, this is saying that if I have a twisted cubic curve, and I have six points on
that twisted cubic, then there is a canonically associated quadric surface containing
these. Second question: what is the image of the rational normal curve in P(Sym2V ) ⊂
P(Sym2Sym3V )? There are distinguished conics vanishing on it, which are the singular
quadrics containing the curve...

(I was sufficiently lost here that the notes are incomplete.)

Lecture 21
3/25

§1 sp2n

The current homework is now going to be due on next Monday instead of today. We’re
working on specific Lie groups and Lie algebras. Today, we want to do the symplectic
Lie group (or Lie algebra).

21.1 Definition. Let V be a vector space. Let’s start with a nondegenerate, skew-
symmetric bilinear form

Q : V × V → C.

Any bilinear form on a vector space gives a map from a vector space to its dual; it’s
nondegenerate if and only if this map is an isomorphism. The existence of such a form
implies that the dimension of V is even.

We’ll write dimV = 2n. If I think of Q ∈
∧2 V ∗ (that’s what it means to be skew-

symmetric and bilinear), the condition of being nondegenerate is equivalent to saying
that Q ∧ · · · ∧Q ∈

∧2n V ∗ is nonzero.

One consequence of that is that any automorphism of V that preserves Q necessarily
preserves its nth wedge product, and that is a nonzero volume form. In particular, any
element of the group Sp2n that I’m about to define has determinant one.

21.2 Definition. We write Sp(V,Q) to be the set of automorphisms A : V → V such
that Q(Av,Aw) = Q(v, w) for all v, w ∈ V . It’s the automorphisms that preserve the
quadratic form.

95



Lecture 21 Representations of reductive Lie groups notes

If I take this relation and differentiate it, then I’m going to find that the Lie algebra
sp(V,Q) is given by the set of endomorphisms X of the vector space V with the property
that

Q(Xv,w) +Q(v,Xw) = 0, v, w ∈ V. (85)

The group is defined as the set of automorphisms that preserve the bilinear form. The
Lie algebra is the subalgebra of sln consisting of endomorphisms whose induced action
of
∧2 V ∗ kills Q. That’s what it means to preserve in the Lie algebra sense.
We basically have a normal form here. Any such Q can be put in the following

form: we can choose a basis V ' C2n such that the bilinear form Q is represented by
a standard skew-symmetric matrix in block-diagonal form

M =

[
0 I
−I 0

]
.

In other words,
Q(v, w) = (vt)Mw.

If I want to write out what condition this defines on the matrix, all I have to do is
multiply. If a matrix X is written in block form

X =

[
A B
C D

]
,

then
sp2n =

{
X : (Xt)M +MX = 0

}
, (86)

or in other words
C = Ct, B = Bt, At +D = 0. (87)

§2 Cartan decomposition

We now need to choose a maximal diagonalizable abelian subalgebra. Here we’re just
going to take the diagonal elements in this Lie algebra. If it’s not maximal, we’ll find
out when we perform the root space decomposition.

Let’s recall that Eij is the matrix which is 1 in the (i, j)th entry and all other entries
are zero. If you want to think of it as a linear transformation, it’s the map

ej 7→ ei, ek 7→ 0,∀k 6= j.

In other words, we take
h = C 〈Eii − Ei+n,i+n〉1≤i≤n , (88)

where we take Hi = Eii − Ei+n,i+n as the basic diagonal elements. For h∗, I’m going
to choose the dual basis Li, so that Li is the linear functional which is value 1 on Hi

and zero on the other Hj , j 6= i.
Now we need to describe the root spaces. If I look at the action of h on the rest of

the Lie algebra, what are the eigenspaces? If I have a given diagonal element, and I
want to know what it’s commutator with an arbitrary Eij , it’s precisely

[
∑

arErr, Eij ] = (ai − aj)Eij . (89)
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This is true in any algebra of matrices.
Now let’s try to pick matrices in sp2n.

• The simplest thing to do would be to take A so that it has one nonzero entry,
and B and C to be zero. So for i 6= j ∈ [1, n], we can take

Eij − En+j,n+i.

This is an eigenvector for h with eigenvalue Li − Lj .

• The other thing we can do is to take B to be an arbitrary nonzero symmetric
matrix and everything else zero. For i 6= j ∈ [1, n], we can take Ei,n+j − Ej,n+i.
This is an eigenvector with eigenvalue Li + Lj .

• We can do the opposite thing: take C to be nonzero and everything else to be
zero. That is, we take En+i,j + En+j,i and the eigenvalue is −Li − Lj .

• I can also take Ei,n+i or En+i,i. The eigenvalues here are 2Li and −2Li, respec-
tively.

For n = 2, we’re in the plane. The basic picture is that the roots are Li−Lj , i 6= j,
Li +Lj , −Li −Lj , and the 2Li,−2Li. The roots form a square in the plane when you
draw them. In the case n = 3, you can write them out—probably the best thing is
not to draw the axes but to draw a cube whose sides have length two, centered at the
origin. The midpoints of the faces are simply the ±Li. In terms of this cube, the roots
are simply the midpoints of the edges, and then also the ±2Li. What we get is the
vertices of an octahedron... The vertices of the octahedron are the ±2Li.

Remark. Also, sl2 is the same as sp2.

Let’s get to work again. We’re supposed to describe the distinguished subalgebras
of sp2n. If you recall, these are copies of sl2 sitting inside this Lie algebra, and they’re
gotten by taking pairs of opposite root spaces and their commutator. That gives me a
3-dimensional subspace. For example, if I take the distinguished subalgebra associated
to Li − Lj , that means that I take

C 〈Eij − En+j,n+i, Eji − En+i,n+j , Hi −Hj〉 .

This subalgebra, which is just sl2, is great: we need, though, to normalize it so that we
can identify the distinguished element which acts by ±2. What multiple of Hi−Hj acts
on the two preceding basis elements with eigenvalues ±2? The answer is, it’s Hi −Hj

itself. The distinguished element, which we typically call HLi−Lj , is just Hi −Hj .
We do the same for the rest:

• sLi+Lj has distinguished element Hi +Hj .

• s−Li−Lj has distinguished element −Hi −Hj . (Actually, this one is included the
previous one.)

• s2Li has distinguished element Hi.
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• (We don’t need to do s−2Li .)

The Killing form is pretty much as it’s drawn; one thing that’s in contrast to [sln
is that the roots were exactly these Li − Lj in this quotient of C 〈Li〉. They were all
conjugate under the Weyl group and they all had the same length. That’s not true
here. There are two types of root lengths: there are the ±Li ± Lj , i 6= j (the short
roots) and the long roots ±2Li. There will always be at most two distinct lengths,
in any simple Lie algebra. You’ll see, when we do the odd orthogonal groups, is that
the role of the long and short roots will be different.

The point of all this is, having defined and described these distinguished elements,
we know that under any representation of sp2n, the eigenvalues of these distinguished
elements are always integers. So any allowable weight has to take integer values on
the Hi. That is, the allowable weights are the integral linear combinations of the Hi.
(This is going to be different in the orthogonal algebra: that’s going to lead to the spin
representations.) The crucial detail here is that there’s no coefficient in front of the
distinguished elements Hi.

21.3 Proposition. The weight lattice ΛW is simply Z 〈L1, . . . , Ln〉.

We also see what the Weyl group is: the Weyl group is generated by reflection
around the hyperplanes orthogonal to the roots. The roots are the ±Li ± Lj .

The Weyl group is generated by reflections around the short roots Li − Lj , i 6= j
(which exchanges Li and Lj) and the reflection around the long roots 2Li (which flips
Li 7→ −Li and leaves the rest fixed). In general, the Weyl group takes {L1, . . . , Ln}
into

{
±Lσ(1), . . . ,±Lσ(n)

}
. If you think of this as a group of automorphisms of h, it

fixes the axes—as axes, as lines, and collectively (not individually). We have a map
from the Weyl group W to Sn describing how it acts on the coordinate axes and the
kernel is simply (Z/2)n. We have an exact sequence

0→ (Z/2)n →W → Sn → 0,

and it’s a so-called wreath product. (A semi-direct product.)
Let me just do a couple more things and then we’ll get started with examples on

Wednesday. We’re almost at the end of our algorithm at this point. The main thing
that’s left at this point is to choose an ordering of the roots. So I’m going to do that.
That’s going to be a linear functional ` : h∗R → R and I’m going to take the one that
sends

∑
aiLi 7→

∑
ciai with c1 > c2 > c3 > · · · > cn > 0. That’s an ordering of the

roots. In those terms, we can describe the positive and the negative roots.

• The positive roots are the ±2Li, Li + Lj and, for i < j, Li − Lj .

• The negative roots are the rest.

• The primitive positive roots are the L1 −L2, L2 −L3, . . . , Ln−1 −Ln, and finally
2Ln. (As predicted, there are n of these.)

What does this mean? It means that the Weyl chamber is the intersection of the
half-planes corresponding to those vectors, againa simplicial cone. The Weyl chamber
consists of the vectors here that form an acute angle with each of the positive roots,
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i.e. forms a positive angle with the primitive positive roots. So that’s the locus of
linear combinations of

∑
aiLi such that a1 ≥ a2 ≥ · · · ≥ an ≥ 0. That’s the common

intersection of n linear inequalities on this real vector space. In particular, it has n
faces and n edges: the edges we get the ones where we get equality in all but one of
these: that is: where a1 = a2 = · · · = ak ≥ ak+1 = · · · = an = 0.

The fundamental weights are the smallest weight vectors along each of these n
edges, and they are

L1, L1 + L2, L1 + L2 + L3, . . . , L1 + · · ·+ Ln.

We see that, exactly as predicted, that the intersection of the Weyl chamber with the
weight lattice is just the semigroup generated by these n vectors.

Lecture 22
3/27

Today, we’re going to focus on sp4.

§1 Recap of sp2n

Let’s recall where we were for sp2n in general:

• The symplectic Lie algebra consists of block matrices

[
A B
C D

]
where B,C are

symmetric and A = −Dt.

• h = C 〈Hi = Eii − En+i,n+i〉.

• The roots divide into four components:

root α gα Hα

Li − Lj Eij − En+j,n+i Hi −Hj

Li + Lj Ei,n+j + Ej,n+i Hi +Hj

−Li − Lj En+i,j + En+j,i −Hi −Hj

2Li Ei,n+i Hi

−2Li En+i,i −Hi

• The weight lattice is the standard rectilinear lattice Z {Li}. The root lattice is a
sublattice of index two. This corresponds to the fact that the center of the simply
connected form is Z/2 = {±I}. If you look at the adjoint form, the fundamental
group is Z/2.

• The positive roots are the 2Li, Li + Lj and also Li − Lj for i < j.

• The primitive positive roots are the Li − Li+1 and 2Ln.

• Once we identify a highest weight vector in an irreducible representation, we just
have to take that and repeatedly apply the primitive negative root spaces to get
the whole thing.
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• The Weyl chamber is the locus of linear combinations
∑
aiLi such that a1 ≥

a2 ≥ · · · ≥ an ≥ 0.

• We have fundamental weights

L1, L1 + L2, L1 + L2 + L3, . . . , L1 + · · ·+ Ln.

These are the first integral weights that occur on the edges of the Weyl cham-
ber. Every weight lattice point inside the Weyl chamber is a nonnegative linear
combination of these.

• We set some notation: for a1, . . . , an, we let Γa1,...,an be the irreducible represen-
tation of weight a1L1 + · · ·+ an(L1 + · · ·+ Ln). We’ll see in just a moment that
they do actually exist.

• The Weyl group is the group of orthogonal transformations of Rn that preserve
the union of the coordinate axes: it’s a wreath product of Sn and (Z/2)n.

§2 Examples

22.1 Example. Let me draw once more this standard picture: for sp4, this is in
the plane. There is the standard representation V ' C4. The standard basis
vectors e1, . . . , e4 are eigenvectors with eigenvalues L1, L2,−L1,−L2 for the diagonal
subalgebra. This corresponds to Γ1,0. The weights of any representation are symmetric
under the Weyl group. In particular, for the symplectic Lie algebra, that the weights
are invariant under transformation x 7→ −x. Since representations are determined by
their weights, we conclude that any representation is isomorphic to its dual.
(This wasn’t true for sln, n > 2.)

22.2 Example. A natural thing to start doing is to take tensor products. Let’s start
with

∧2 V . The weights here are the pairwise sums of the two distinct weights of V .
We get ±Li ± Lj for i 6= j and we also get 0 with multiplicity two. This gives us six
weights. Is this irreducible? You can see that it is not irreducible in two different ways.
Start with the highest weight vector with weight L1 +L2: that corresponds to e1 ∧ e2.
Whatever it corresponds to, an irreducible representation is obtained by applying the
primitive negative root spaces. The primitive negative vectors are L2 − L1 and −2L2.
You can only get from L1 + L2 to 0 in one way.

But also: by definition, the symplectic Lie algebra consists of endomorphisms that
preserve a skew-symmetric bilinear form. We have a natural map

∧2 V → C which is
contraction with applying the skew-symmetric bilinear form.

In any case, I conclude that
∧2 V has a one-dimensional subrepresentation. The

quotient
∧2 V/C has weights of multiplicity one and is consequently irreducible, since

otherwise 0 would have to occur twice. We now get Γ0,1: the highest weight is L1 +L2.

22.3 Example. Now that we’ve constructed Γ1,0 and Γ0,1, we’ve proved the existence
theorem for irreducible representations. In fact,

Γa,b ⊂ SymaΓ1,0 ⊗ SymbΓ0,1.
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22.4 Example. What is Sym2V ? The weights, first of all, are the pairwise sums
of the weights of V , but now we’re allowing repeated weights. So that would be
±Li ± Lj(i 6= j), ±2Li, and 0 taken twice. It’s right there: these are the weights of
the adjoint representation. This is also Γ2,0 since the highest weight is 2L1. Think
about this for a little bit. The adjoint representation is the symmetric square of the
standard representation. For the orthogonal representation, it’s

∧2 of the standard
representation.

22.5 Example. Writing W = Γ0,1, let’s consider V ⊗W (twenty-dimensional). The
weights are going to be the pairwise sums of the weights of V and the weights of W .
So we get:

• ±2Li ± Lj (twelve of these).

• ±Li (each taken three times).

This contains a weight vector for 2L1+L2. In other words, e1⊗(e1∧e2). I’m claiming
that if I apply the primitive negative root spaces to this, I can’t get to everything else
in the representation. In other words, I’m claiming that the representation is not
irreducible. In fact, V ⊗W ⊂ V ⊗

∧2 V and V ⊗
∧2 V →

∧3 V . Now
∧3 V ' V ∗ ' V .

So inside V ⊗ W , there’s a copy of the standard representation. In fact, the map
V ⊗

∧2 V →
∧3 V is simply a natural map in the exterior algebra of V . The kernel of

this can’t include V ⊗W , and the composite map is not zero.
So we can split off a copy of V from the tensor product V ⊗ W . Is what’s left

irreducible? What’s left only assumes the weights ±Li with multiplicity two rather
than three and is sixteen-dimensional. Let’s look at Hom(V ⊗W,V ). If in fact there
were two copies of V inside V ⊗W , then we’d have a two-dimensional space of maps
Hom(V ⊗W,V ). But we can also write this as Hom(W,V ⊗V ). And we already know
how to determine this because we know how V ⊗ V splits as a sum of irreducibles.

You can also do this by direct calculation. Given the time, I won’t do that in full.
We can check the map (which is the wedge product) V ⊗W → V is in fact irreducible,
and hence isomorphic to Γ1,1. By explicit calculation, we can check irreducibility.

22.6 Example. We can look at
∧2W and Sym2W . Here we know the weights of W ,

so we get for the weights of Sym2W , ±2Li±2Lj , ±Li±Lj ,±2Li, and 0 with multiplicty
three. It clearly contains Γ0,2. Does it contain other stuff as well? We have a wedge
product map

2∧
V ×

2∧
V →

4∧
V ' C,

which is symmetric. It’s a symmetric bilinear pairing and it factors through Sym2(
∧2 V )

and you can restrict to Sym2W → C and that splits off a trviail summand. So

Sym2W ' Γ0,2 ⊕ C.

(Observe that it can’t have more than one trivial factor because Hom(W,W ) is one-
dimensional.)
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22.7 Example. More interesting is
∧2W . Here we’re looking at pairwise sums of

distinct sums of W . The weights of W are ±Li±Lj and 0. So the weights of
∧2W are

±2Li,±Li ± Lj and 0 taken twice. The same trick above shows that C can’t show up
twice. But this is in fact the adjoint representation. This is the interesting observation:
we have an interesting isomorphism

Sym2V '
2∧
W.

It’s a reflection of something we’re going to start seeing next time, when we do the
next string of classical Lie algebras. There are low-dimensional coincidences among
low-dimensional classical Lie algebras. This reflects

sp4 ' so5.

Now so4 ' sl2⊕sl2, so4 ' sp4, and so6 ' sl4, and then after that there aren’t any more
low-dimensional coincides. We’ll see how the root systems end up looking the same.

By the way, we haven’t proved at this point that two simple Lie algebras with the
same root system are isomorphic. Let me just do one more thing for sp2n in general
and then we’ll call it quits for symplectic Lie algebras.

22.8 Example. Let’s work with sp2n in general. Start with the standard representa-
tion V ' C2n with highest weight L1. That suggests we can find the other irreducible
representations with the fundamental weights by looking at exterior powers. Now
V ' Γ1,0,...,0. Then

∧k V is going to contain a copy of Γ0,...,1,...,0 with 1 in the kth
spot. The highest weight vector is e1 ∧ · · · ∧ ek. That proves the existence theorem
in general. It’s natural to ask how to actually describe the irreducible representations.
There is a general construction, an analog of Weyl’s construction by taking kernels of
contraction maps. You can read about it in the text. There is one case where I can
tell you how to identify the irreducible representations, and that is for the fundamental
representations. If I look at

∧k V , since I have a natural element of
∧2 V ∗, I have a

contraction map
k∧
V →

k−2∧
V.

The claim is that the kernel of this map is the irreducible representation with highest
weight L1 + · · ·+Lk. You can see this by this cute trick. The time we spent analyzing
representations of sln is not wasted, because inside sp2n, we have a subspace sln: the

block-diagonal matrices

[
A 0
0 −At

]
. So you can study the kernel as a representation of

sln.

Lecture 23
3/29

Correction (courtesy Yale Fan): in Exercise 17.4 of the textbook, the correct multiplic-
ities are 0, 1, and 4.
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§1 Plans

Let’s start with the orthogonal Lie algebras. There’s a distinction between the even
and odd cases, so2n and so2n+1. The even case will be notationally much simpler. The
odd case will be more closely related to the symplectic Lie algebras.

One thing that’s different for the orthogonal Lie algebras is that the weights of the
standard representation don’t generate the weight lattice. The significance of that is,
you can’t find all the representations of son sitting inside the tensor algebra of the
standard representation, as we have seen in examples up till now. Rather, the weights
of the standard representation generate an index 2 subgroup of the weight lattice. We
need to add the spin representations, which aren’t representations of the orthogonal
group but of the universal cover.

Even though the weights of the spin representation is smaller than the highest weight
of the standard representation, the representation associated to it is much bigger (than
2n or 2n + 1). The spin representation has dimension of the order 2n. Don’t start
looking for it among low-dimensional representations.

Also, we’ll start talking about coincidences. The first four orthogonal Lie algebras
(I’m not counting so4) all coincide with Lie algebras we’ve seen before. For me, by far
the best way to see this is by algebraic geometry. You can use the adjoint forms of
these Lie algebras as automorphism groups of algebraic varieties. In those terms, it’ll
fall right out — the coincides we have in low dimensions.

Here is a list of coincidences:

• so3 ' sl2.

• so4 ' sl2 ⊕ sl2.

• so5 ' sp4.

• so6 ' sl4.

We’ll see why this is true, but that’s it. After this, all the orthogonal Lie algebras
will be new.

§2 so2n

23.1 Definition. The group SO(V,Q) (over the complex numbers) is the group of
automorphisms of a complex vector space V that preserve a nondegenerate symmetric
bilinear form Q on V .

Over the complex numbers, all nondegenerate symmetric bilinear forms are con-
gruent. They’re all the same. Given a nondegenerate symmetric bilinear form, we can
always choose a basis in which it’s the standard quadratic form given by the identity
matrix. We can also choose a basis in which it’s given by a block antidiagonal matrix,
like the skew-symmetric form that we dealt with in the symplectic case.

Let’s suppose dimC V = 2n. Choose a basis e1, . . . , e2n for V such that

Q(ei, en+i) = Q(en+i, ei) = 1, Q(all others) = 0.
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In other words, Q is given by

Q(x, y) = (xt)

[
0 I
I 0

]
y,

so the matrix has the same form as in the symplectic case, except that a minus sign is
missing.

The Lie algebra so2n is thus the Lie algebra of block matrices

[
A B
C D

]
such that

A = −Dt, B,C skew-symmetric.

Why do we choose this quadratic form and not the diagonal form? I’m going to
hold off on answering that question for a few minutes.

The rest of the analysis is going to be similar.
We’re going to take h to be the diagonal matrices in so2n. In other words, h is the

span of the diagonal matrices Hi = Eii−En+i,n+i. (These are the same elements as in
the symplectic Lie algebra.)

We’re going to write h∗ = C 〈L1, . . . , Ln〉 where the Li are the dual basis to the Ei.
Next, we’ve got to describe the roots. We have pretty much the same roots. Now

A and D satisfy the same relations as before. So we can look at block diagonal matrices
(where C = B = 0), and there it’s the same calculation we made last time.

• We take Eij −En+j,n+i as a root space corresponding to the root vector Li−Lj .

• We can also take Ei,n+j − Ej,n+i, which has eigenvalue Li + Lj .

• En+i,j − En+j,i with eigenvalue −Li − Lj .

• We don’t see the remaining 2n roots that we saw for the symplectic case because
of the skew-symmetry condition.

Next, we want to describe the distinguished elements for each of the roots. They’re
the same as in the symplectic case. We have

H±Li±Lj = ±Hi ±Hj . (90)

So again, the roots are ±Li ± Lj .

23.2 Example. For instance, when n = 2, we have just four roots: they form the
vertices of a square. There’s one thing that you can see right off the bat. This con-
figuration of roots is contained in the union of two orthogonal lines. In general, if you
look at a semisimple Lie algebra, and you find that the roots all lie in the union of
complementary subspaces, that tells you that the Lie algebra is actually a direct sum.
If you act on any of the roots in one subspace by something in the other, you’ll get
zero because there are no place to go. That gives the decomposition

so4 ' sl2 ⊕ sl2,

and while we’ll see this from other points of view, you can see it from the root diagram.
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23.3 Example. Let’s consider n = 3. Then again the roots are ±Li ± Lj where the
Li are standard basis vectors. You can see this by taking a cube centered at the origin
and taking the midpoints of the edges. We’ve seen this root diagram before, and it’s
the root diagram of sl4, and that reflects a coincidence.

We’ll prove that a (semisimple) Lie algebra is determined by its root diagram, but
right now we don’t know that, so we haven’t proved the exceptional isomorphisms
above, but it’s motivation.

§3 so2n+1

The odd orthogonal case is more complicated because we can’t use the same notation.
We’re going to choose a basis of our 2n+ 1-dimensional vector space V with quadratic
form Q such that

Q(ei, en+i) = 1, Q(e2n+1, e2n+1) = 1, Q(all others) = 0.

The matrix giving the quadratic form is0 I 0
I 0 0
0 0 1

 .
This is as close to what we can get as before. I can now write the Lie algebra so2n+1

as the space of matrices in a similar block form:

so2n+1 =

X =

A B E
C D F
G H J

 ,
 (91)

where we have the conditions:

• B,C skew-symmetric.

• A = −Dt.

• E = −Ht, F = −Gt, J = 0.

The Cartan subalgebra h is generated by the same elements Hi: note that we don’t
get any new diagonal elements from so2n. All the root spaces we had for so2n are still
root spaces. However, we get new root spaces. For instance, we get new root vectors

Ei,2n+1 − E2n+1,n+i,

and this is an eigenvector for h with root Li. We also get new root vectors

En+i,2n+1 − E2n+1,i

and the root is −Li. So this looks a lot like the symplectic Lie algebra, except there
the roots were ±2Li rather than ±Li. We can also describe the distinguished elements:

HLi = 2Hi, H−Li = −2Hi. (92)
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The difference here is that the roots here are half their previous twice and the distin-
guished elements are twice their previous size.

For example, when n = 2, we have the four roots ±Li ± Lj from before, but also
the ±Li. So it’s the vertices and edge-midpoints of a square. Note that if you rotate
this by 45 degrees, you see the isomorphism so5 ' sp4 (at least at the level of root
systems).

I just want to introduce some language here. There’s a distinction here that we can
make between the case of sln and the even orthogonal algebras so2n. In these cases,
all roots are the same length. However, for sp2n, so2n+1, we have exactly two
different root lengths. This will be true for the exceptional Lie algebras as well.
This distinction is significant enough in practice is that the first are called simply
laced and the second are called not simply laced. Maybe you’re already familiar
with this from algebraic geometry, but there are a number of theorems proved for
simply laced things and not in general.

§4 Weyl group and weight lattice

Let’s look at the Weyl group. Once again:

• The roots of so2n are ±Li ± Lj . (The distinguished elements are ±Hi ±Hj .)

• The roots of so2n+1 are ±Li±Lj ,±Li. (The distinguished elements are ±Hi±Hj

and ±2Hi.)

The Weyl group is the group of transformations generated by reflections in the
hyperplanes perpendicular to the roots. In the case of so2n+1, it is the same as for sp2n:
it’s the wreath product that we saw before. (It’s all transformations that preserve the
union of the coordinate axes.) For so2n, we have fewer reflections to play with: only
the ±Li ± Lj . Reflecting in Li − Lj exchanges Li and Lj , so we get the permutations.
We also get some sign changes—but we can only change an even number of signs. So
again, what we see is that the Weyl group surjects on Sn (corresponding to the action
on n coordinate axes) and the kernel is (Z/2)n−1 and in the kernel, we can only flip an
even number of signs.

In the case of so2n, the weight lattice consists of linear functionals that have
integral values on all of the ±Hi ± Hj . So that includes the Li, but it also includes
1
2(
∑
Li). That’ll still have integral values on all of these. The weight lattice is

Z
〈
L1, . . . , Ln,

L1 + · · ·+ Ln
2

〉
.

In the case of the odd orthogonal Lie algebras, the same thing happens, because of this
2 that pops up. Because we have this 2Hi, we get the same weight lattice.

§5 Remarks

Why do we prefer this off-diagonal quadratic form to the standard one? Why not take
the one given by the identity matrix? The answer has to do with the distinction of
working over R or over C. Over C, any two nondegenerate symmetric bilinear forms

106



Lecture 24 Representations of reductive Lie groups notes

are equivalent. Over the reals, they’re different: you have the index of a symmetric
bilinear form. The one given here has n positive and n negative eigenvalues (or n+ 1
positive and n negative).

You see the differences in the Lie groups. Ultimately, we want to understand not
just complex Lie algebras, but real Lie groups. Eventually we want to ask, what are
the real Lie algebras that complexify to a given one (say, son). When we take the
corresponding Lie groups, we’re going to get differently behaved Lie groups.

Say V is a real vector space with quadratic form Q : V × V → R. Let SO(V,Q)
be the automorphisms of V preserving Q. I’ll let so(V,Q) be its Lie algebra. When I
complexify this, I’m going to get the standard son, but over the reals, there are different
Lie algebras. Let’s see how they’re reflected in the group.

Take hR ⊂ so(V,Q) be the intersection of the usual complex subalgebra h with this.
Let’s look at the corresponding Cartan subalgebra in the real case. What does it look
like when I exponentiate? In all the cases I’ve looked at, when we take an abelian
Lie algebra—the Cartan subalgebra in any one of these algebras—the corresponding
Lie subgroup is (C∗)n. If I let H be the exponential of hR inside SO(V,Q), then
this can take different forms. If Q is given by the identity matrix, then H is simply a
compact torus. If Q is given by the off-diagonal form, then H ' Rn. It’s not something
we’re going to use logically, but when we talk about different real forms of a complex
Lie algebra, then we make a distinction based on what the exponential of the Cartan
subalgebra looks like (some product of (S1)’s and R’s). When it’s S1’s, then we talk
about the compact form. When it’s a collection of copies of R, it’s called the split
form. Over non-algebraically closed fields, you’re going to see different Lie groups with
the same Lie algebra after complexifications.

This is true, not just for the orthogonal Lie algebras, but for all of them. There are
compact forms, split forms, and all others inbetween. If I look at sln+1C, then I have
two forms. I have slnR (the split form) and the compact form sun. It’s not just the
Cartan subalgebra that is compact, it’s the whole thing.

Lecture 24
4/1

§1 son

Once again, we’re working with son. We recall that:

• The roots for so2n are the ±Li±Lj : the distinguished elements are the ±Hi±Hj .

• For so2n+1, the roots are {±Li ± Lj ,±Li} and the distinguished elements are
±Hi ±Hj and ±2Hi.

The weight lattice is ΛW = Z 〈L1, . . . , Ln, α〉 where α = 1
2

∑
Li. We discussed the

Weyl group last time.
The Weyl chambers are as follows:

• For so2n+1, the Weyl chamber is W = {
∑
aiLi, a1 ≥ a2 ≥ · · · ≥ an ≥ 0}.
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• For so2n, the Weyl chamber is twice the size: it’s
∑
aiLi such that a1 ≥ a2 ≥

· · · ≥ an−1 ≥ |an| — in particular, an doesn’t have to be positive.

The edges of W are as follows:

• For so2n+1, the fundamental weights are simply L1, L1 +L2, . . . , L1 + · · ·+Ln−1,
and finally α ≡ L1+···+Ln

2 . They’re the same as for the symplectic Lie algebra
except that the last fundamental weight can be divided by two.

• For so2n, the fundamental weights are L1, L1 + L2, . . . , L1 + · · · + Ln−2, α ≡
L1+···+Ln

2 , β ≡ L1+···+Ln−1−Ln
2 .

We’ve defined in particular these two fundamental weights α, β.

Remark. Remember that the Li are the dual basis to the basis {Hi = Eii − En+i,n+i}
of h.

Remark. The odd orthogonal algebras look a lot more like the symplectic algebras.

Remark. The weights of the standard representation are:

• For so2n, they’re ±Li (with standard basis vectors ei).

• For so2n+1, they’re ±Li and 0 (the last basis vector is killed by the Cartan
subalgebra).

Remark. If I have a nondegenerate bilinear form on a vector space V invariant under
the action of the Lie algebra, that gives an isomorphism V ' V ∗, and so

End(V ) ' V ⊗ V '
2∧
V ⊕ Sym2V,

and in these terms, the orthogonal Lie algebra is the skew-symmetric part (if the
bilinear form is symmetric) and the symplectic Lie algebra is the symmetric part. More
precisely, if the bilinear form is symmetric, then the subalgebra of gl(V ) preserving it
is
∧2 V , and if the bilinear form is skew-symmetric, then the subalgebra preserving it

is Sym2V .
The point is, the adjoint representation for the orthogonal Lie algebra is exactly∧2 of the standard representation. Its weights are just the pairwise sums of distinct

elements. That lets you see the roots of these two Lie algebras: they’re the pairwise
sums of distinct weights of the standard representation.

Remark. If you take a general bilinear form, what is the subalgebra of gl(V ) preserving
it? You’ll find that it’s too small to be interesting.

Remark. Why look only at bilinear forms? We could pick any element of the tensor
algebra of V or V ∗ and look at the subalgebra of gl(V ) preserving it. The answer is
that you don’t get interesting elements that way. If you look at elements of

∧3 V , they
don’t tend to have many automorphisms.
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Remark. Of course, the weights of the standard representation are all Z-linear combi-
nations of the {Li}. In particular, if you take tensor products or duals of the standard
representation, you don’t get everything in the weight lattice. There are also spin
representations.

But think about it: low-dimensional orthogonal subalgebras tend to coincide with
other algebras already described, whose representations we’ve understood. So the low-
dimensional spin representations should be already described in terms of what we al-
ready understand.

§2 Low-dimensional isomorphisms

I also want to show you the isomorphisms between so{3,4,5,6} and other Lie algebras via
algebraic geometry.

24.1 Example. so3. The roots are ±L1 and that looks like sl2. Of course, it is sl2:
we have an isomorphism

so3 ' sl2.

From a geometric point of view, I want to give an isomorphism of the adjoint forms
of these two Lie algebras. The adjoint form of sl2 is PGL2 and this is the group of
automorphisms of the Riemann sphere, which algebraic geometers like to call P1 and
draw as a line. You can imbed this by what’s called the Veronese imbedding as a
conic curve C in P2. For instance, the map P1 → P2 given by monomials of degree two.
The image is a conic curve: it’s the zero locus of a quadratic form.

There are two things to see: all automorphisms of P1 induce automorphisms of P2

that carry the conic to itself. This gives an isomorphism

PGL2 ' Aut(P1) ' Aut(P2, C),

and the automorphisms of P2 that preserve C are the ones which are (up to scalars)
orthogonal transformations. In other words, this is PSO3(C).

This is the first example where we’ve already seen the spin representation, although
we didn’t know to call it that. The standard representation of so3 is exactly the
Sym2 of the standard representation of sl2. You can see this by looking at the weights.
The standard representation of sl2 is the spin representation of so3. To find the spin
representation, we have to take a sort of square root of the standard representation.

24.2 Example. Here there’s so4. The thing here is, the root diagram for so4 has
four roots, ±L1,±L2. We saw that this is the root diagram of sl2 × sl2: note that
the root diagram is contained in the union of two orthogonal subspaces. The adjoint
representation is not irreducible: the Lie algebra is reducible.

In fact, we have an isomorphism

so4 ' sl2 × sl2.

Again, to identify the spin representations, we note that the adjoint representation
breaks up into two irreducible representations—which are exactly the doubles of the
fundamental (standard) representations of each copy of sl2. These again are the sym-
metric squares of the spin representations.
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Let me take a minute to describe this at adjoint forms. PSO4 is automorphisms of
P3 that preserve a smooth quadric hypersurface Q. A quadric hypersurface comes from
taking the zero locus of a nondegenerate symmetric bilinear form. So

PSO4 = Aut(PSO4, Q)0

where 0 denotes the connected component at the identity. A smooth quadric surface
in P3 has two rulings by lines: there are two families of lines on Q. These lines are
there for any smooth quadric (any two smooth quadrics are isomorphic). You wouldn’t
see them if your picture of a quadric was a sphere in R3. These two families of lines
correspond to an isomorphism

Q ' P1 × P1,

imbedded via the Segre map. The automorphisms of P3 preserving the quadric, mod-
ulo connected components, are the automorphism of Q (we take connected components
to avoid the automorphism that flips the two factors). So

Aut(Q)0 = Aut(P1)×Aut(P1) = PSL2 × PSL2.

There’s an echo of this when you talk about so6.

Lecture 25
4/3

Here’s the plan:

• Today: SO5, SO2n+1, SO6, SO2n. Friday: Clifford algebras and spin representa-
tions.

• Next week: classification (Ch. 21)! This is a long-promised result that justifies
focusing on all these specific examples.

• The week after: Weyl character formula (24).

• Finally: the passage to (real) Lie groups (23, 26).

Today, we’ll finish the concrete examples, modulo the fact that we have yet to
exhibit all the representations of the orthogonal Lie algebras.

§1 Low-dimensional isomorphisms

Let’s recall the exceptional isomorphisms:

• so3 ' sl2.

• so4 ' sl2 × sl2.

• so5 ' sp4.

• so6 ' sl4.

We’ve proved the first two isomorphisms. We’ll see the rest of them in the future.
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§2 so5

Let’s now look at so5. This has a 2-dimensional Cartan algebra and the root diagram
consists of the vertices and midpoints of the edges of a square centered at the origin.
That is, the ±Li,±Li ± Lj . The Weyl chamber is spanned by L1 and α = L1+L2

2
and those two are the fundamental weights: the highest weights of all irreducible
representations are the Z≥0-linear combinations of these weights.

Where are the representations? They’re staring us in the face, except for the ones
involving α.

25.1 Example. We look at the standard representation of so5 on C5. I’ll call this
V = Vso5 . It has weights ±Li, 0. The highest weight is L1.

25.2 Example. Next,
∧2 V is the adjoint representation of so5, and we can see its

weights directly: they are the pairwise sums ±Li±Lj ,±Li (and zero with multiplicity
two). The highest weight is L1 + L2, so

∧2 V is the irreducible representation coming
from 2α.

The picture of the root diagram for sp4 is analogous, except that it’s rotated.

25.3 Example. Under the isomorphism sp4 ' so5, which has not yet been specified,
the standard representation Vso5 is obtained from

∧2 Vsp4 by modding out by the trivial
one-dimensional subspace C. In other words, Vsp4 is the standard representation of sp4

of dimension four, we take the exterior square, and that contains a trivial summand:
we mod out by that.

25.4 Example. The standard representation of sp4 corresponds to the spin repre-
sentation of so5. In fact, we have

∧2 Vso5 ' Sym2Vsp4 . Once again, to describe the

spin representation, we have to take a symmetric square root of
∧2 V (the adjoint

representation).

§3 so2n+1

In these terms, we should describe the odd orthogonal algebras in general. Recall that
we have an n-dimensional Cartan subalgebra.

• The roots are ±Li ± Lj ,±Li.

• The Weyl chamber is the set of linear combinations
∑
aiLi, with a1 ≥ · · · ≥ an ≥

0.

• The edges of the Weyl chamber occur where n − 1 of these n inequalities are
satisfied.

• The fundamental weights are the first weight lattice vectors along these lines,
namely L1, L1 + L2, . . . , L1 + · · ·+ Ln−1,

L1+···+Ln
2 .

The basic theorem is that we can get all the representations except the last one
simply from the standard representation:
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25.5 Theorem.
∧k Vso2n+1 is the irreducible representation with highest weight L1 +

· · ·+ Lk for k = 1, . . . , n.

This gives us n−1 of the n fundamental representations: we have to find a “square
root” of

∧n V . In other words, this theorem lets us construct exactly half the irreducible
representations of so2n+1.

Remark. In the symplectic case, every representation was self-dual (this was some-
thing that wasn’t true for sln, n ≥ 3). For sp2n, the Weyl group includes −1, so all
representations are isomorphic to their duals. In the case of the odd orthogonal alge-
bras, −1 is also in the Weyl group and we get that all representations are self-dual.
For the even ones, that’s no longer the case in general.

§4 so2n

For so6, the root system looks like the midpoints of the edges of a reference cube
centered at the origin. The Weyl chamber is exactly the cone over the triangle spanned
by L1, L1+L2, L1+L2+L3, but these aren’t fundamental weights: we need α. There’s a
second fundamental weight here, which is β = L1+L2−L3

2 . Let’s look for representations.

25.6 Example. The standard representation of so6 has weights ±Li; these correspond
to the weights of the cube. The highest weight is L1.

25.7 Example.
∧2 Vso6 is the irreducible representation with weight L1 + L2. This

isn’t one of the fundamental representations though: it doesn’t even lie on an edge.

25.8 Example. Let’s look at
∧3 V . The weights are ±Li±Lj±Lk and ±Li (each taken

twice). These ±Li ± Lj ± Lk look like the vertices of the “reference cube.” The first
thing you can see is that it’s not irreducible. It has a subrepresentation with highest
weight L1 + L2 + L3. In fact,

∧3 V is a sum of two ten-dimensional representations.
These summands are the representations with weights L1 +L2 +L3 and L1 +L2−L3.
This phenomenon will be true in general.

We now want to see the isomorphism so6 ' sl4. Let’s work with the adjoint forms
PSO6, PSL4. Now PSL4 is the automorphism group of P3. Moreover, PSL4 acts on
the Grassmannian G(2, 4) of 2-dimensional subspaces of C4. It turns out that

PSL4 = Aut0(G(2, 4)).

In general, the automorphism group of G(k, n) is exactly PGLn except when k = n/2.
If you choose an isomorphism V ' V ∗, then you get an involution of the Grassmannian
taking every plane to its annihilator. Those form the second connected component.

OK, G(2, 4) is a projective variety. Given a 2-plane in C4 spanned by v, w, you
can take v ∧ w ∈

∧2 C4. Let’s view this mod scalars, so this is well-defined element of
P(
∧2 C4) = P5. If I chose a different basis, I’d still get the same wedge product, up

to scalars. What is the image? The image consists of all vectors η ∈
∧2 C4 such that

η ∧ η = 0. In other words,
2∧
C4
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is not a vector space, it’s a vector space with a nondegenerate symmetric bilinear form,
and the elements that square to zero form the Grassmannian. It follows that

PSL4 = Aut(G(2, 4)) = Aut(P5, Q) = PSO6.

That gives the isomorphism
sl4 ' so6.

Finally, there’s the isomorphism so5 ' sp4. To get this, look at the previous
isomorphism to find PSp4 ⊂ PSL4 that preserve a skew-symmetric bilinear form,
which corresponds to automorphisms of P5 fixing Q and fixing a hyperplane. That’s
PSO5.

Lecture 26
4/8

In this week, we’re going to study the classification of complex simple Lie algebras.
To give an overview:

• It’s the same thing we ever do with classification. We start with a (simple) Lie
algebra g, introduce a Cartan subalgebra h ⊂ g, consider the roots, and get a
root system R ⊂ h∗R.

• That root system is crucial in all aspects of representation theory. We’ve asso-
ciated to a simple Lie algebra a root system. We will have to prove that this
data determines the Lie algebra.

• A root diagram gets associated to a Dynkin diagram, which is a simple object.
One can classify these.

A priori, R is just a finite subset of the real euclidean (via the Killing form) vector
space h∗R. (Recall that this is the real linear subspace of h∗ spanned by the roots.)

26.1 Definition. The pair (h∗R, B) (for B the Killing form) is denoted E. R ⊂ E is
the root system.

R is a priori a finite subset of E, but it has several special properties that we’ll
include in the definition of a root system. Here are some of the special properties:

• R is finite and spans h∗ C-linearly (so spans h∗R R-linearly).

• If α ∈ R, then −α ∈ R. If k ∈ Z, then kα /∈ R for k 6= {±1}.6

6If α is a root, look at the subalgebra
⊕

k∈Z gkα. That’s a representation of sα. Suppose α is one of
the two smallest elements in this chain. Then I see that this representation contains a copy of sα itself.
So I can write this as a direct sum of sα and V . Now Hα acts on sα with eigenvalue two, and we’re
saying that’s the smallest eigenvalue. That means that V has no eigenvectors for Hα with eigenvectors
±1,±2. That states that V is a trivial representation. In particular, there are no other root spaces
further out.
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• For each α ∈ R, the reflection wα about the hyperplane orthogonal to α carries
R to R.

• To motivate this property, recall that for each α ∈ R, we have a distinguished
subalgebra sα = gα ⊕ g−α ⊕ [gα, g−α] and a particular element Hα ∈ [gα, g−α]
which acts on gα with eigenvalue two. The second key factor we encountered
when we did the analysis is that the distinguished elements Hα always act with
integral weight. This means that β(Hα) ∈ Z. This doesn’t mean anything — Hα

is some element that comes from the structure of the Lie algebra.

But I can rewrite this as

β(Hα) =
2 〈β, α〉
〈α, α〉

∈ Z.

We’re now going to axiomatize this.

26.2 Definition. A root system is a subset R ⊂ E, where E is a euclidean space,
satisfying the above conditions. We say that R is reducible if R ⊂ V ∪V ⊥ for V ( E,
V 6= 0. (These correspond to semisimple Lie algebras.)

It turns out that simple Lie algebras are determined by their root systems, so the
problem becomes to classify root systems. The first thing is to derive some consequences
of the fourth integrality condition.

Fix roots α, β ∈ R. Let θ = θ(α, β) be the language between the two, so

〈α, β〉 = cos θ|α||β|.

I can plug this in there to get

ηβ,α ≡
2 〈β, α〉
〈α, α〉

= 2 cos θ
|β|
|α|

.

The point is, if I multiply ηβαηαβ, I get that

4 cos2 θ ∈ Z.

So 4 cos2 θ ∈ {0, 1, 2, 3, 4}. If we assume α is not simply ±β, we get 4 cos2 θ ∈ {0, 1, 2, 3}.
You can list the possibilities. The possibilities are,

• θ = π/2: the two roots are perpendicular.

• θ = π/3 or 2π/3, in which case |α| = |β|.

• θ = π/4 or 3π/4, in which case |α| 6= |β|. In fact, the ratio of lengths is
√

2.

• We haven’t seen this in practice, but θ = π/6 or 5π/6, and the ratio of the length
is
√

3.

26.3 Definition. The rank of a root system (R,E) is the dimension dimE.
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(Note that any two Cartan subalgebras of a Lie algebra are conjugate under the
adjoint action, although we haven’t proved it.)

26.4 Example. In rank 1, it’s two vectors α,−α.

26.5 Example. In rank 2, root systems are living in a plane. For vectors in R2,
there’s a notion of adjacencies. The angles between any two adjacent vectors in a rank
2 root system are equal. In fact, reflection about a vector followed by −1 preserves
the two adjacent vectors. What is that angle? The angle could be any one of the four
possibilities. We could get the four unit vectors (for so4), we could get θ = π/3 (for
sl3), θ = π/4 (for so5 ' sp4), and θ = π/6 (where the roots alternate between long and
short roots) —- which is the root system G2.

Lecture 27
4/10

§1 Dynkin diagrams

Today, I want to introduce the Dynkin diagram. Let me recall what we’re dealing
with.

27.1 Definition. A root system is a collection R of nonzero vectors in euclidean
space E (with inner product (·, ·)) of some finite dimension n (called the rank of the
root system) that satisfies the following axioms:

• R is finite and spans E.

• For all α ∈ R, then kα ∈ R if and only if k = ±1.

• The reflection wα about the hyperplane perpendicular to α preserves R.

• For all α, β ∈ R, the quantity

ηβα ≡
2(β, α)

(α, α)
= 2 cos θ

‖β‖
‖α‖

∈ Z.

Observe that wα has the property that wα(β) = β − ηβαα.

We say that a root system is irreducible if it is not contained in the union of two
orthogonal planes.

This is modeled on the root systems of Lie algebras. One of the statements we’re
going to prove is that every root system does come from a unique Lie algebra. There
is a one-to-one correspondence between root systems and semisimple Lie algebras.

27.2 Example. In the rank two case, there are exactly four root systems, and they
simply depend on the angle between any two adjacent vectors.

• We have {±e1,±e2}. (This one is reducible.)

• We have the sixth roots of unity (for sl3).
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• We have the vertices and midpoints of a square, for so5 ' sp4.

• We have the g2 root system, with angle π/6 between them.

27.3 Example. In rank three, there are only three irreducible root systems: the ones
we know about. These are sl4 ' so6, sp6, and so7.

Let me tell you about Dynkin diagrams, and then we can prove some facts about
root systems in general. In fact, the entire structure of the Lie algebra is encoded in
the root system, but the Dynkin diagram is a more efficient representation.

27.4 Definition. Given a root system, we pass to the collection of simple (or prim-
itive) roots.

We have a collection of roots in E, so we choose a hyperplane H such that no root
lies in H; that splits the set of roots into positive and negative roots. We get

R = R+ tR−,

and we can define a primitive or simple root as an element of R+ which cannot be
expressed as a sum of elements in R+.

27.5 Example. In the case of sln+1, the simple roots are the elements L1−L2, . . . , Ln−
Ln+1 which lie in C 〈L1, . . . , Ln+1〉 /

∑
Li.

27.6 Example. In so2n+1, the roots live in C 〈L1, . . . , Ln〉 and the simple roots are
L1 − L2, . . . , Ln−1 − Ln, Ln.

27.7 Example. For sp2n, we have the simple roots L1 − L2, . . . , Ln−1 − Ln, 2Ln.

27.8 Example. For so2n, the simple roots are L1 − L2, . . . , Ln−1 − Ln, Ln−1 + Ln.

It’s enough to specify the configuration of simple roots, as it turns out. Since every
positive root is a sum of simple roots, the simple roots span. It turns out that the
simple roots are linearly independent, so there are exactly n of them. Moreover, the
angle between any two simple roots cannot be acute (as we’ll show). The angle between
simple roots can only be {π/2, 2π/3, 3π/4, 5π/6}.

27.9 Definition. To draw a Dynkin diagram, we draw one node for each simple
root α. Given two nodes α, β, we ask what the angle between them is, and:

• We draw one line between α, β if the angle is 2π/3; in this case the roots have
the same length.

• We draw two lines if the angle is 3π/4.

• We draw three lines if the angle is 5π/6.

• We draw no lines if the angle is π/2.

We say that a Dynkin diagram is irreducible if it is connected.

If the angle between two simple roots has angle 3π/4, 5π/6, we add an arrow point-
ing from the longer root to the short root (or between the corresponding nodes).
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27.10 Theorem. The only Dynkin diagrams that come from irreducible root systems
are:

• A string of dots each connected to the next with a single line. This is An associated
to sln+1.

• A string of dots each connected to the next with a single line, except the last is a
double line with an arrow pointing to the end. This is Bn for so2n+1.

• The same as Bn with the last arrow reversed, for sp2n (this is Cn).

• A string of dots each connected to the next with a single line, with a “forked tail”
at the end, for so2n (this is Dn).

• Five exceptional Dynkin diagrams, called G2, F4, E6, E7, E8.

27.11 Example. We can see the coincidences among small Lie algebras by looking
at the Dynkin diagrams. For instance, B2 ' C2, giving the isomorphism so5 ' sp4.
Similarly, D2 has two unconnected dots, and so4 is a product sl2 × sl2.

For rank three, D3 is isomorphic to A3, so that so6 ' sl4. These are all the
coincidences.

The usual convention to avoid these coincidences is to require n ≥ 2 for Bn, n ≥ 3
for Cn, and n ≥ 4 for Dn.

If I’m going to prove the main theorem above, we’re going to need to prove some
more properties of root systems and derive a series of consequences. After that, we
need to show that we can reconstruct the entire Lie algebra from the Dynkin diagram.

§2 Returning to root systems

Let’s write down some more properties of root systems that are consequences of the
axioms.

• Given a pair of roots α, β ∈ R, for α 6= ±β, I want to look at the string of
elements β + kα for k ∈ Z, the α-string through β. Let’s suppose

β − pα, . . . , β, β + α, . . . , β + qα

is the longest string around zero consisting of roots. Then this string has length
at most 4: that is, p+ q ≤ 3.

• More specifically, p+ q = ηβα.

Proof. Apply wα to β + qα to get the other end of the string β − pα. On the other
hand, that’s the same thing as β − ηβαα− qα. So we get

p− q = ηβα.

Now, apply this same logic to the root at one end of the string: β + qα. For that,
q = 0, so we get that the length of the string is ηβ+qα,α which has absolute value at
most 3. The logic here to deduce that the length is at most here is to apply this equality
to the root at the end of the string. N
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The primary consequence of this is to tell us when the sum of two roots is a root.

• If α, β are roots, and α 6= ±β, then if the angle θ(α, β) is strictly obtuse, then
α+ β is a root again.

• Conversely, if the angle is strictly acute, then α− β is a root.

• If the angle is exactly π/2, then α + β, α− β are either both roots or both non-
roots.

For example, if the angle is obtuse, then that says that q is strictly positive, so
β + α is a root. This is what we’re going to use to build up the root system from the
set of simple roots.

• If α, β are distinct simple roots, then α − β is not a root (so the angle between
α, β is obtuse) and α+ β is a root if and only if θ(α, β) > π

2 .

Indeed, write β = α+ (β −α). Now β is a simple root so it isn’t the sum of simple
roots. So if β − α is a root, it’s a negative root. But I can also write it the other way:
α = β + (α− β), which means that α− β can’t be a positive root either. That means
that β − α can’t be a root at all.

That implies:

• The simple roots are linearly independent.

Indeed, if you have a collection of vectors in a euclidean space lying in a half-space
with non-acute pairwise angles between them, they must be linearly independent.

We’re going to use these facts to show that these are the only Dynkin diagrams
arising from root systems. Next, we’re going to show that a Dynkin diagram is enough
to recover the entire Lie algebra. The first is a theorem in euclidean geometry. The
second is a statement about Lie algebras. It’s saying that we can reconstruct a Lie
algebra from a very minimal amount of information.

Lecture 28
4/15

§1 Recovery

(No notes for the previous lecture.)
Today, we’re going to discuss reconstructing a semisimple Lie algebra from its

Dynkin diagram. The classification for simple Lie algebras has two parts. First, you
introduce the Dynkin diagram. Then you have to classify all allowable Dynkin dia-
grams (i.e., those arising from semisimple Lie algebra), which is a matter of studying
root systems via euclidean geometry. The other half is reconstruction.

There are two steps:

118



Lecture 28 Representations of reductive Lie groups notes

• Recovering the root system from the Dynkin diagram. (The Dynkin diagram is
exactly the information describing the simple or primitive roots.) The idea is
that if we know what the simple roots are, we can recover all the roots. Every
root is a linear combination of the simple roots, so the question is which linear
combinations of the roots are roots and which are not. We showed inductively
last time (for which there were no notes) how to do that inductively.

You can go back to what we said on Friday and interpret it by saying that “you
get all roots by reflecting in hyperplanes Ωα to known roots α.” That is, you start
with the simple roots, and reflect them about each other, and keep repeating the
process. That’s what you need to remember from Friday’s lecture.

• We want to see how to recover the Lie algebra from the root system R.

Last time, when we discussed the Killing form, we said that it was an inner product
on hR which was invariant under the Weyl group. We’ll need a little more:

1. Recall that we have two spaces, h ⊂ g and h∗. The roots R ⊂ h∗. In the original
h, we have distinguished elements Hα for each root α ∈ R. Namely, for each α,
we have a distinguished subalgebra sα = g±α ⊕ [gα, g−α] and we pick a unique
element Hα to play the role of H ∈ sl2.

2. In h∗, we have a hyperplane Ωα which was the annihilator of the distinguished
element Hα. Likewise, in h, we have the kernel of α itself.

3. The isomorphism h ' h∗ given by the Killing form carries the hyperplanes to one
another. It almost, but not quite, carries α into Hα: that is, it does up to a scalar
factor.

28.1 Proposition. The isomorphism h ' h∗ given by the Killing form carries
Ωα to ker(α) and carries α to 2Hα

B(Hα,Hα) .

Proof. Remember how the Killing form is defined. Given X,Y ∈ g, we have

B(X,Y ) = Tr(ad(X) ◦ ad(Y )),

which is symmetric since the trace of a commutator is zero. Recall the following
identity: for A,B,C ∈ End(V ), we have

Tr([A,B]C) = Tr(A[B,C]).

This follows by writing out

Tr(ABC −BAC) = Tr(ABC −ACB).

Given this, we can write for H ∈ h,

B(Hα, H) = B([Xα, Yα], H) = B(Xα, [Yα, H]) = B(Xα, α(H)Yα).

If α(H) = 0, then B(Hα, H) = 0; this is what we wanted. Moreover, let’s say
that Tα ∈ h is the element corresponding to α ∈ h∗. By definition, that means

B(Tα, H) = α(H).
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That says that

Tα =
Hα

B(Xα, Yα)
=

2Hα

B(Hα, Hα)
.

N

4. We know that g = h ⊕
⊕

α∈R gα where the gα are one-dimensional. We need
to introduce a basis for the gα and then need to specify what the products are.
Here’s the proposal. I’m going to start with the simple roots, α1, . . . , αn ∈ h∗,
which come to us with the Dynkin diagram. We let H1, . . . ,Hn ∈ h be the
corresponding dual elements up to some scalar multiples still unspecified.

Start by choosing any (nonzero) element Xi ∈ gαi . Then, choose Yi ∈ g−αi such
that [Xi, Yi] = Hi. That gives a total of 3n elements: a basis for h and a basis
for the simple root spaces and their opposites.

What are we going to do now? We’re going to try to describe a basis for the
remaining root spaces. Namely, we’re going to take brackets of these basic gen-
erators. I want to say that if I have a root space which isn’t simple, I can express
it as a partial sum of simple roots whose partial sums are roots, and bracketing
repeatedly gives a nonzero element of the root space.

28.2 Definition. A sequence of indices I = i1, . . . , ir ∈ [1, n] is admissible if
the partial sums of the sequence are all roots (i.e. αi1 +αi2 + . . . αik is a root for
all k). We let αI =

∑r
k=1 αik .

For any α ∈ R+, we saw in the previous lecture (for which there are no notes),
there is an admissible sequence I with αI = α. In this case, if I just take the
commutators in that order,

XI
def
= [Xir , [Xir−1 , . . . , [Xi2 , Xi1 ] . . . ],

is a nonzero element of the root space gαI . We’re going to take these (and the
YI?) as a basis and now we have to specify how to multiply. Also, we have to
specify when there are two different admissible sequences summing to the same
element, how the two elements differ.

5. If αI = αJ , how are XI , XJ related?

28.3 Lemma. If αI = αJ , then XJ = qXI where q ∈ Q is a function of the two
sequences I, J and is determined by the Dynkin diagram.

Proof. Induction on r (the length of the sequence). It’s trivial for r = 1. Since
the simple roots are linearly independent, I and J are permutations of each other.
If the last elements of I, J agree, then we’re done by induction. In any event,
the last term k = ir must appear somewhere in J , but if k = jr, we’re done by
induction. If not, we have to figure some way to manuever this factor to the front.

Observe that
XJ = q1[Xk, [Yk, XJ ]], q = q(k, J,DD).
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Point: we have a subalgebra sαk ' sl2 and this acts on the αk-string, whose length
is determined by the Dynkin diagram. If I tell you the length of the αk-string,
then I’ve told you the sl2-representation.

So I can relate XJ to [Xk, [Yk, XJ ]]. Let s be the largest integer such that js = k.
Let K = j1, . . . , js.

(getting lost here...) N

Lecture 29
4/17

§1 Summary

Last time, we were just about done with the proof of the main theorem that the Dynkin
diagram of a semisimple Lie algebra determines the Lie algebra. We did everything we
needed to do, so I want to summarize the result.

• The Dynkin diagram (DD) describes the simple roots, and from there we can get
all the roots. That is, we get the root system R ⊂ E.

• We choose bases Hi ∈ h, Xi ∈ gαi , Yi ∈ gαi where the αi are simple roots. We
choose Hi to be normalized appropriately.

• For all α ∈ R+, we choose an admissible sequence I = (αi1 , . . . , αir) such that∑
αik . “Admissible” means that all the partial sums are themselves roots.

• Write XI = [Xir , [Xir−1 , [Xir−2 , . . . , Xi1 ] . . . ]. These (together with analogous Yα
and h form a basis for the Lie algebra).

• If I and J are admissible with the same sum, then

XI = qXI , q = q(I, J,DD).

Taking products of sequences can be done by repeatedly applying Jacobi, but
that’s not totally clear.

• In this way, you can write down the entire multiplication table.

This proves uniqueness, but existence is harder.

§2 Constructing G2

Today, I want to talk about constructing the Lie group G2, because that’s the one
exceptional group that we can describe like the classical groups. Then, I want to talk
about the complex Lie groups associated to the simple Lie algebras. We’re going to
need a more easily manipulated formal framework of discussing representations, and
we’ll introduce the representation ring and characters.

So far, we’ve usually defined Lie groups as automorphisms of a vector space that pre-
serve some tensor. For instance, SL(V ) consists of automorphisms of V that preserve

121



Lecture 29 Representations of reductive Lie groups notes

a top-form φ ∈
∧n V (for n = dimV ). Similarly, Sp(V,Q) consists of automorphisms

of V preserve a Q ∈
∧2 V ∗, and similarly for SO(V,Q). In each case, we’re looking

at some element in the tensor algebra T (V ), and we’re looking at some subgroup of
AutC(V ) preserving this element. Why these three and no others? If you chose a vector
space V of dimension n, then dim Aut(V ) = n2.

Now
∧2 V ∗ has dimension

(
n
2

)
, and the group Aut(V ) acts nearly transitively on

it (consisting of the nondegenerate forms). If I pick a general element of
∧2 V ∗, the

isotropy subgroup should have dimension n2 −
(
n
2

)
. If I do this with

∧3 V ∗, I get
(
n
3

)
,

and that grows much more quickly. In particular, dim
∧3 V ∗ grows much more quickly

than dim Aut(V ) as dimV grows. The automorphism group of a general element in
the tensor algebra (away from Sym2 or

∧2) is trivial when dimV is large.
But let’s try to do this when V is small.

Question. What is Aut(V, φ) when φ ∈
∧3 V ∗?

29.1 Example. When dimV = 3, we get SL3.

29.2 Example. When dimV = 4,
∧3 V ∗ ' V , so we’re looking at matrices of the

form [
1 ∗
0 A

]
,

and it isn’t even a semisimple group.

29.3 Example. When dimV = 5, we get a “Sp5” except that the form has a kernel.
That is, an element of

∧3 V ∗ is the same as an element of
∧2 V .

29.4 Example. When dimV = 6, we get something interesting: we can’t relate an
element of

∧3 V to a quadratic form. The automorphism group turns out to be SL3×
SL3.

29.5 Example. When dimV = 7, we get a 14-dimensional group, and that’s G2. You
can see this worked out in chapter 22.

The remaining four exceptional Lie algebras can’t be constructed this way.

§3 Groups associated to classical Lie algebras

Let’s look at forms of sln+1.

29.6 Example. The group SLn+1(C) is connected and simply connected, so that is the
simply connected form. Recall that if we have a fiber bundle X → M with connected
fiber F , we have a long exact sequence of homotopy groups

· · · → π2M → π1F → π1X → π1M → ∗.

Look at the action of SLn+1(C) on Cn+1\{0}. This is a transitive action, with stabilizer
H. So we get a bundle

H → SLn+1(C)→ Cn+1 \ {0} .
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Here the base has the homotopy type of a S2n+1. Now H, homotopically, is just SLn(C)
crossed with Cn, so it is homotopically SLn(C). We get

π1(SLn(C))→ π1(SLn+1(C))→ π1(S2n+1) = ∗,

and inductively we get the simple connectivity assertion.
The center is just the scalar matrices which are roots of unity, so the set of

exp(2πik/(n + 1)) for k = 0, 1, . . . , n and is isomorphic to Z/(n + 1). The adjoint
form is PSLn+1(C), which is the quotient of the simply connected form by its center.

There are intermediate forms, for instance SL4/ {±I} is isomorphic to SO6(C).
Which representations of SLn+1(C) (or of sln+1(C)) lift to which models?

29.7 Example.

Lecture 30
4/22

Today, we’ll continue discussing forms of the simple complex Lie algebras. In the
rest of the group, we’d also like to discuss which representations lift to which groups,
and then we’ll discuss the Weyl character formula and representation rings. Time
permitting, I’d like to talk about the classification of real forms of complex Lie algebras
and homogeneous spaces.

§1 Forms of the classical Lie algebras

Last time, we talked about the special linear group and its forms.

30.1 Example. Recall that in the case of SLn(C), the natural group was simply
connected, and we proved this using fiber bundles. This was at the top of the “tower”
of groups with Lie algebra sln(C). The center is Z/n (the scalar matrices). The forms
of sln(C) are the quotients of SLn(C) by subgroups of the center; the bottom of the
“tower” is PSLn(C). The groups in the middle typically don’t arise, but when n = 4,
then

SL4(C)/(Z/2) ' SO6(C).

There’s also the question of which representations lift to which groups. For any
complex semisimple LA, we had a configuration of lattices inside h∨R. We had

ΛR ⊂ ΛW ⊂ h∗R.

I also want to consider the duals of these lattices,

Λ∗W ⊂ Λ∗R ⊂ hR.

Suppose I have a given group G. Consider the exponential map restricted to h; that
gives a map exp : h → H ⊂ G (the image is a Cartan subgroup) and there’s always
a kernel, which turns out to be between 2πiΛ∗W and 2πiΛ∗R. (In each case, the group
in question is isomorphic to (C∗)n – this is an observed phenomenon.) In the simply
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connected form, the kernel is Λ∗W , while in the adjoint form, the kernel is Λ∗R. The
point is, we have a correspondence between forms of the Lie algebra and intermediate
groups between Λ∗W and Λ∗R. A given representation of g lives to a form G if and only
if the weights (which live in h∗) take integer values on this intermediate lattice.

30.2 Example. Sp2n(C) is simply connected. The center of Sp2n(C) is {±I} = Z/2,
so there are only two forms of sp2n(C): Sp2n(C) and PSp2n(C) = Sp2n(C)/ {±1}.

30.3 Example. For m ≥ 3, π1(SOm(C)) = Z/2. The center of SOm(C) consists of
scalars, and there either aren’t any (if m is odd) or there are ±I (if m is even).

• For m = 2n+ 1, there are only two forms: the universal cover Spin2n+1(C) (with
center Z/2) and SO2n+1(C).

• For m = 2n, we have a sort of tower of groups. We have Spin2n(C), which
is simply connected—by definition the universal cover. Then we have a two-
fold cover Spin2n(C) → SO2n(C). We get another two-sheeted cover, though
SO2n(C)→ PSO2n(C).

There’s a further bifurcation, though. If n is odd, Z(Spin2n(C)) = π1(PSO2n(C)) =
Z/4, meaning SO2n is the unique intermediate form between the simply connected
form and the adjoint form. If n is even, though, then the group is Z/2×Z/2 and
we have two other intermediate groups. So there are either three or five forms.

Let’s prove the claim made at the beginning of the example, that Sp2n(C) is sim-
ply connected. To understand the topology of these groups, you want them to act
transitively on a manifold, so that you can get a fiber bundle H → G → G/H. Let’s
consider Sp(V,Q) for V a vector space with a symplectic form Q. I want to say that
this acts transitively on the manifold M = {(v, w) ∈ V × V : Q(v, w) = 1}. When you
prove that nondegenerate skew-symmetric bilinear forms are conjugate to one another,
the standard approach is to start with any vector v in the vector space. That has self-
inner-product zero, but you can find a second vector w such that Q(v, w) = 1. Then
you take those as the first two basis vectors and choose the remaining basis vectors
from the orthogonal complement of them. That argument essentially shows that M is
acted upon transitively by Sp(V,Q).

How to understand M? If v 6= 0, then there are always lots of w with Q(v, w) = 1.
In other words, M fibers over V \{0} by sending (v, w) 7→ v. Now V \{0} is topologically
a sphere of dimension 4n − 1 and so is highly connected. The fibers of this map are
as follows. If I fix v, then w is constrained to lie in an affine hyperplane, which is
contractible. In particular,

M ∼ S4n−1.

As soon as n is positive, then π1M = π2M = 0.
We get a fiber sequence

H → G→M,

where H is the stabilizer of a given element (v, w) and is therefore Sp2n−2 (the au-
tomorphisms of Q restricted to the orthogonal complement of (v, w)). We thus get a
homotopy fiber sequence

Sp2n−2(C)→ Sp2n(C)→ S4n−1,
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and inductively we see that Sp2n is simply connected. (Note that the induction starts,
since Sp2 ' SL2 is simply connected.)

30.4 Example. Let’s now study π1(SOm(C)), again inductively. If you’re studying
the real orthogonal group, you study it by acting on the unit sphere. Consider (V,Q)
with dimV = m and Q a nondegenerate symmetric bilinear form. Then SOm(C) acts
on M = {v : Q(v, v) = 1}. Here the stabilizer is exactly SOm−1(C).

Two things here will be a little more complicated. Start with m = 3 (since SO2

isn’t semisimple). There, we know that SO3 is doubly covered by SL2: we have a
two-sheeted cover

SL2(C)→ SO3(C),

and we know that SL2 is simply connected, so π1(SO3(C)) is Z/2.
What does the space M look like? For that, I’m going to propose choosing a

particular quadratic form—they’re all the same. Take V = Cm and Q(z, z) =
∑
z2
α.

What is the locus where this has value one? I write z = x + iy out in terms of real
and imaginary parts. To say that Q(z, z) = 1 is to say that

∑
x2
α −

∑
y2
α = 1 and∑

xiyi = 0. That’s some subset of R2n. Let’s consider a map from M to the unit
sphere sending x+ iy 7→ x/ ‖x‖ and that gives a map to Sm−1. The fibers are simply
linear subspaces. So we’re good. When m ≥ 4, this is highly connected and we get the
desired homotopy groups.

Lecture 31
4/26

§1 Setup

Last time (no notes), we started setting up the Weyl character formula. We’ll discuss
it today and Monday.

Let g be a semisimple Lie algebra. We associate to g the weight lattice Λ. Choose
an ordering of the roots, and a corresponding Weyl chamber and fundamental
weights. The fundamental weights are exactly the smallest weights that occur
along the edges of the Weyl chamber. In every case, we saw that the Weyl chamber
is a simplicial cone (the intersection of n half-planes), so that it has n edges. If we
look at the smallest lattice vectors at each edge, then they form a set of generators of
Λ. We’ll call the fundamental weights ω1, . . . , ωn, and we consider the fundamental
representations Γ1, . . . ,Γn—these are the irreducible representations with weights
ωi.

31.1 Definition. R(g) is the representation ring of g: the Grothendieck group of
g-representations (with ring structure from the tensor product). So R(g) is the free
abelian group on the irreducible representations.

Last time, we saw that R(g) is simply the polynomial ring on the classes of
Γ1, . . . ,Γn, the fundamental representations. This is just a reflection of the fact (which
we didn’t really explain but observed) that the fundamental weights form a basis for
the lattice. Every weight in the Weyl chamber is a nonnegative linear combination
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of fundamental weights, so every representation appears inside a tensor product of
fundamental representations.

We still want to know more, though. So we introduce a second object: the group
algebra Z[Λ] of the weight lattice, which we call the character ring. We could write
this as Z 〈e(λ)〉λ∈Λ and where

e(0) = 1, e(λ)e(µ) = e(λ+ µ).

We have a character map
char : R(g)→ Z[Λ]

This map sends a representation V to the linear combination
∑

λ∈Λ(dimVλ)e(λ): that
is, the character map simply keeps track of the weights of a representation. This map
is an isomorphism

R(g) ' Z[Λ]W ,

where W acts on the character ring by permuting the e(λ).

31.2 Example. In the case of sln+1, the weight lattice is Z 〈L1, . . . , Ln+1〉 / 〈
∑
Li = 0〉.

We write Xi = e(Li), so that X−1
i = e(−Li). The Weyl group acts by permuting the

Li.
We have

Z[Λ] = Z[x1, . . . , xn+1]/(
∏

xi = 1).

If we want to describe the subring invariant under the Weyl group, we can look at the
fundamental representations. The fundamental weights are

L1, L1 + L2, . . . , L1 + · · ·+ Ln = −Ln+1,

and the corresponding representations are the standard representation and its exterior
powers:

V,Λ2V, . . . ,ΛnV ' V ∗.

The weights of V are L1, . . . , Ln+1 so the character of V is X1 + · · · + Xn+1, and
so the character of

∧k V is σk(X1, . . . , Xn+1) (elementary symmetric polynomials).
The conclusion is that the invariant subring is simply the polynomial ring on these
symmetric polynomials.

31.3 Example. For sp2n, the weight lattice is Z 〈L1, . . . , Ln〉. The fundamental weights
are L1, L1 + L2, . . . , L1 + · · ·+ Ln. The fundamental representations are the standard
one V , and the kernels of the maps

∧k V →
∧k−2 V given by contraction by the

skew-symmetric bilinear form.
The standard representation has weights L1, . . . , Ln,−L1, . . . ,−Ln, so the character

of V is
X1 +X2 + · · ·+Xn +X−1

1 + · · ·+X−1
n ,

and the characters of
∧k V are the elementary symmetric polynomials ck in theXi, X

−1
i .

The characters of the fundamental representations are the differences ck − ck−2. So

R(g) = Z[Λ]W = Z[c1, c2 − c0, c3 − c1, . . . , cn − cn−2] = Z[c1, . . . , cn].
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31.4 Example. Let’s do so2n+1. The weight lattice Λ = Z
〈
L1, . . . , Ln,

L1+···+Ln
2

〉
. The

fundamental weights are L1, L1+L2, . . . , L1+· · ·+Ln−1, and then L1+···+Ln
2 . As before,

Xi = e(Li) and
√
Xi = e(Li/2). The corresponding fundamental representations are

V,
2∧
V, . . . ,

n−1∧
V,S,

where S is the spin representation. The character of V is X1 + · · ·+Xn +X−1
1 + · · ·+

X−1
n + 1. The character bk of

∧k V can be obtained from this. The character of S is

b =
∑

X
±1/2
1 X

±1/2
2 . . . X±1/2

n .

The weights of the spin representation are the image of the highest weight under the
Weyl group. The representation ring is Z[b1, . . . , bn−1, b].

31.5 Example. Consider so2n. As in the odd orthogonal case, the same Λ, Li. The
Weyl group here is just a little smaller: you’re allowed to permute the axes and
change an even number of the axes. The fundamental weights here consist of L1, L1 +
L2, . . . , L1+· · ·+Ln−2, and the remaining two fundamental weights are L1+···+Ln

2 , L1+···+Ln−1−Ln
2 .

The corresponding representations are V,
∧2 V, . . . ,

∧n−2 V , and the two spin represen-
tations S+,S−. The characters of

∧k V are the symmetric polynomials inX1, . . . , Xn, X
−1
1 , . . . , X−1

n .
Then we have the two characters of the spin representations,∑

even

X
±1/2
1 . . . X±1/2

n ,
∑
odd

X
±1/2
1 . . . X±1/2

n ,

where the sum is “even” or “odd” according to the parity of minus signs allowed in the
exponents.

Let’s now go back to the general case. There is a special weight. Take the sum∑
α∈R+ α. The claim is that this is divisible by two in the weight lattice, and

once I divide it by two, it’s the smallest weight in the interior of the Weyl chamber.
Let’s write

ρ =
1

2

∑
α∈R+

α.

It’s also the sum of the fundamental weights. For now, let’s assume these facts.

31.6 Definition. For λ ∈ ΛW , set Aλ =
∑

w∈W(−1)we(w(λ)) ∈ Z[ΛW ].

The Weyl group has a canonical homomorphism to Z/2 (determinant). We’re taking
the vertices of the convex hull of the irreducible representation with highest weight λ
and adding them up with a sign. This is alternating under the Weyl group. If λ is
invariant under a reflection in the Weyl group, then Aλ = 0.

Let’s assume the following, to be proved on Monday.

31.7 Lemma. Aρ =
∏
α∈R+(e(α/2)− e(−α/2)) = e(−ρ)

∏
(e(α)− 1).

31.8 Theorem (Weyl character formula).

char(Γλ) =
Aρ+λ

Aρ
. (93)
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Here Γλ is the irreducible representation with highest weight λ.

31.9 Example. Let’s do sln+1. The fundamental weights are L1 + · · ·+Li. In partic-
ular, ρ = nL1 + (n− 1)L2 + · · ·+ Ln = 1

2

∑
1≤i<j≤n+1(Li − Lj). Let Xi correspond to

Li. Then

Aρ =
∑

σ∈Sn+1

(−1)σ
(
e(nLσ(1) + · · ·+ Lσ(n))

)
=
∑
σ

(−1)σXn
σ(1) . . . Xσ(n).

This is a van der Monde determinant, so it’s
∏
i<j(Xi −Xj). We’ll see that there’s a

similar phenomenon for all the groups.

Lecture 32
4/29

Let g be a semisimple Lie algebra, Λ the weight lattice, α1, . . . , αn the simple roots,
ω1, . . . , ωn the fundamental weights. We let

char : R(g)→ Z[Λ]W

be the character map from the representation ring of g. The simple roots form a very
broad set, which hug the hyperplane that separates the roots, while the fundamental
weights are all concentrated in the Weyl chamber.

Recall that ρ is the distinguished weight, which is ρ = 1
2

∑
α∈R+ α, and it’s also

ρ = ω1+· · ·+ωn (so, in particular, it is a weight). By virtue of the second expression, it’s
the smallest weight in the interior of the Weyl chamber (which consists of nonnegative
linear combinations of ω1, . . . , ωn). Next, for λ ∈ Λ, we defined

Aλ =
∑
w∈W

(−1)we(w(λ)). (94)

Observe that this is not in (Z[Λ])W : this expression is skew-symmetric with respect to
the Weyl group.

32.1 Theorem (Weyl character formula). If Γλ is the irreducible representation with
highest weight λ, then

charΓλ =
Aλ+ρ

Aρ
. (95)

It’s not even clear that this makes sense. It’s not clear that the quotient makes
sense in the character ring. Note, however, that since both the numerator and the
denominator are skew-invariant under the Weyl group, the quotient (if it exists) is
W-invariant.

We’ll do this calculation in a larger ring, where we allow half-weights. We’re going
to work with the group ring of 1

2Λ, and then I’m going to enlarge that to allow formal
power series. In other words, I’m going to take

Z[[
1

2
Λ]],

which means that we’re allowing “infinite linear combinations” (but only in one direc-
tion).
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32.2 Lemma. Aρ =
∏
α∈R+(e(α/2)− e(−α/2)).

Proof. We’re going to take ρ = 1
2

∑
α∈R+ α as the definition. So we can write the

right-hand-side as

A
def
= e(−ρ)

∏
α∈R+

(e(α)− 1).

We want to show that this is Aρ.

• First, let’s show that A is alternating (since Aρ is). It’s enough to do this for the
reflections that come from the simple roots. If w is the reflection about the ith
simple root (or about the plane perpendicular to this), then I want to say that
wA = −A. The reflections about the simple roots generate the Weyl group.

That will follow, in turn, from the sublemma. Remember this picture of the simple
roots as the positive roots closest to the hyperplane that separates positive from
negative roots. When I reflect about a root closest to the hyperplane, it’s going
to send that particular root to its negative, and permute the other positive roots.

32.3 Lemma. The reflection w about a simple root αi carries αi to −αi and
permutes the other positive roots.

Proof. If β ∈ R+, then β =
∑
mjαj for the mj ≥ 0. If I reflect about αi, then I

get

wβ = β − 2β.αi
αi.αi

αi.

In particular, w(β) is the same sum of
∑
mjαj minus some multiple of αi. If

β = αi, of course, what we get is −αi. If β is any other positive root, there’s
another positive coefficient mj (j 6= i), so the expression for w(β) still has positive
coefficients. But as we saw, every root is a nonnegative linear combination of
simple roots or nonpositive linear coefficient. If there’s one positive coefficient,
then the root is positive. N

As an example, we find that if w is the reflection about αi as above, then

wρ = ρ− αi,

because w basically permutes the summands and flips one sign. In particular,

2
(ρ, αi)

(αi, αi)
= 1,

which gives ρ =
∑
ωi. (In fact, 2

(ωj ,αi)
(αi,αi)

= δij .) This is what we claimed earlier.

Now, we get

wA =
∏
α∈R+

(e(wα/2)− e(−wα/2))

and this is −A by the above smaller lemma.
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• A itself is a finite product, so you can multiply out, and you can see that its
highest weight is ρ itself. The highest weight term appears with coefficient 1.

• Now, I want to write formally 1
A , and for this purpose I want to use the last

expression A = e(ρ)
∏

(1− e(−α)). I get

1

A
= e(−ρ)

∏
α∈R+

(1 + e(−α) + e(−2α) + . . . ).

Hence,
Aρ
A

= Aρe(−ρ)
∏
α∈R+

(1 + e(−α) + e(−2α) + . . . ),

and it follows that this expression has highest weight 0. The only term in the
ratio that lives in the Weyl chamber is the constant term 0. On the other hand,
it’s symmetric, so it has to be 1, and we’re done. The question is to find the right
ring in which to make this calculation.

We can apply the same reasoning to
Aλ+ρ
Aρ

, which has highest weight λ, and the same
reasoning shows that it has finitely many terms in the Weyl chamber. It’s invariant
under the Weyl group, so it has finitely many terms. So this expression

Aλ+ρ
Aρ

lies where

we’d like it to: in the ring Z[Λ]W . So the Weyl character formula makes sense. N

In the case of sln+1, we get a very explicit expression in terms of the Schur poly-
nomials. Originally, the Weyl character formula came from a prior knowledge of sln+1,
and that goes back to the discussions in ch. 15 and that goes back to representations
of the symmetric group. But we never did that and never introduced Schur functors.
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