Complexity of the Zeckendorf Graph Game

Ben Baily¹, Faye Jackson², and Ethan Pesikoff³

Williams College¹, University of Michigan², and Yale University³

August 20, 2021

Roadmap

- Explanation of Zeckendorf's Theorem and the Zeckendorf Game
- Generalization to the Zeckendorf Graph Game
- PSPACE-completeness
- Extensions and Further Questions

The Fibonacci Numbers

Definition

The Fibonacci Numbers are a recursively defined sequence so that $F_0 = 1, F_1 = 2$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

Theorem (Zeckendorf, 1972)

Every integer m > 0 may be written uniquely as a sum of non-adjacent Fibonacci numbers.

Example

$$2021 = 1597 + 377 + 34 + 13 = F_{15} + F_{12} + F_7 + F_5$$

Definition of the Zeckendorf Game

Definition (Baird-Smith, Epstein, Flint, Miller)

Consider bins labeled by each Fibonacci number $F_0 = 1, F_1 = 2, \ldots$ Begin with n summands in the bin labeled F_0 . The combine move is:

$$F_i^{(1)} \wedge F_{i+1}^{(1)} \to F_{i+2}^{(1)}$$

 $(1,1,0) \to (0,0,1).$

We also have a splitting move:

$$F_i^{(2)} \to F_{i-2}^{(1)} \wedge F_{i+1}^{(1)}$$

 $(0,0,2,0) \to (1,0,0,1).$

And boundary moves $F_0^{(2)} \to F_1^{(1)}$, $F_1^{(2)} \to F_0^{(1)} \wedge F_2^{(1)}$. Players take turns making moves, and the last player to move wins.

MERGE ONES

1	2	3	5	8
9	0	0	0	0
7	1	0	0	0

COMBINE

1	2	3	5	8
9	0	0	0	0
7	1	0	0	0
6	0	1	0	0

MERGE ONES

1	2	3	5	8
9	0	0	0	0
7	1	0	0	0
6	0	1	0	0
4	1	1	0	0

COMBINE

1	2	3	5	8
9	0	0	0	0
7	1	0	0	0
6	0	1	0	0
4	1	1	0	0
3	0	2	0	0

SPLIT

1	2	3	5	8
9	0	0	0	0
7	1	0	0	0
6	0	1	0	0
4	1	1	0	0
3	0	2	0	0
4	0	0	1	0

MERGE ONES

1	2	3	5	8
9	0	0	0	0
7	1	0	0	0
6	0	1	0	0
4	1	1	0	0
3	0	2	0	0
4	0	0	1	0
2	1	0	1	0

COMBINE

1	2	3	5	8
9	0	0	0	0
7	1	0	0	0
6	0	1	0	0
4	1	1	0	0
3	0	2	0	0
4	0	0	1	0
2	1	0	1	0
1	0	1	1	0

COMBINE

1	2	3	5	8
9	0	0	0	0
7	1	0	0	0
6	0	1	0	0
4	1	1	0	0
3	0	2	0	0
4	0	0	1	0
2	1	0	1	0
1	0	1	1	0
1	0	0	0	1

1	2	3	5	8
9	0	0	0	0
7	1	0	0	0
6	0	1	0	0
4	1	1	0	0
3	0	2	0	0
$\frac{4}{2}$	0	0	1	0
2	1	0	1	0
1	0	1	1	0
1	$\mid 0 \mid$	0	0	1

Player One Wins! Notice that $9 = F_4 + F_0 = 8 + 1$, the Zeckendorf Decomposition.

Results about the Zeckendorf Game

- All games terminate in $O(n \log n)$ moves. [Bai+20]
- The shortest game (greedy algorithm) takes n-Z(n) moves where Z(n) is the number of summands in the Zeckendorf Decomposition. [Bai+20]
- There is a non-constructive winning strategy for the second player for all $n \ge 10$ using a strategy stealing argument. [Bai+20]
- How difficult is the Zeckendorf Game?

The Zeckendorf Graph Game

We may reenvision the Zeckendorf Game as being played on a **directed** path graph rather than on a tuple:

We can also think of playing the game on different Directed Graphs.

Playing the ZGG

PSPACE

Definition

A problem is in **PSPACE** if it can be solved by a machine which has polynomial-size memory.

Definition

A problem is **PSPACE-hard** if any instance of any other game in PSPACE can be reduced to to an instance of the game in question, and **PSPACE-complete** if it is both PSPACE-hard and in PSPACE.

Our result is one about PSPACE-completness for the ZGG played on a wide family of digraphs. Before we state the family, let's state what we want to be true about this family.

• Termination: Acyclic

Our result is one about PSPACE-completness for the ZGG played on a wide family of digraphs. Before we state the family, let's state what we want to be true about this family.

- Termination: Acyclic
- Polynomial Termination: Leveled

Our result is one about PSPACE-completness for the ZGG played on a wide family of digraphs. Before we state the family, let's state what we want to be true about this family.

- Termination: Acyclic
- Polynomial Termination: Leveled
- Legible Gameboards: Planar

Our result is one about PSPACE-completness for the ZGG played on a wide family of digraphs. Before we state the family, let's state what we want to be true about this family.

- Termination: Acyclic
- Polynomial Termination: Leveled
- Legible Gameboards: Planar
- PSPACE-hardness: Successfully Reducible

Leveled Digraphs

Definition

A directed graph is leveled if every node has a level and each edge points down exactly one level.

Lemma (Small, 2021)

Lemma (Small, 2021)

F_0	6
F_1	1
F_2	0
F_3	1
F_4	0

Key: White 0, Black 1, Blue 2.

Lemma (Small, 2021)

F_0	4
F_1	2
F_2	0
F_3	1
F_4	0

Key: White 0, Black 1, Blue 2.

Lemma (Small, 2021)

F_0	5
F_1	0
F_2	1
F_3	1
F_4	0

Key: White 0, Black 1, Blue 2.

Lemma (Small, 2021)

F_0	3
F_1	1
F_2	1
F_3	1
F_4	0

Key: White 0, Black 1, Blue 2.

Lemma (Small, 2021)

F_0	2
F_1	0
F_2	2
F_3	1
F_4	0

Key: White 0, Black 1, Blue 2.

Lemma (Small, 2021)

F_0	0
F_1	1
F_2	2
F_3	1
F_4	0

Key: White 0, Black 1, Blue 2.

Lemma (Small, 2021)

F_0	0
F_1	0
F_2	1
F_3	2
F_4	0

Key: White 0, Black 1, Blue 2.

Lemma (Small, 2021)

F_0	0
F_1	1
F_2	1
F_3	0
F_4	1

Key: White 0, Black 1, Blue 2.

Lemma (Small, 2021)

F_0	0
F_1	0
F_2	0
F_3	1
F_4	1

Key: White 0, Black 1, Blue 2.

PSPACE-Completeness

Theorem (SMALL, 2021)

The Zeckendorf Graph Game (ZGG) on planar leveled digraphs is PSPACE-Complete.

Reduction to PSPACE-completeness

The PLRS-ZGG

Definition

We say a sequence (a_n) is a Positive Linear Recurrence Sequence (PLRS) if a_0, \ldots, a_{k-1} are specified, and for $n \geq k$ it is given by a linear recurrence of the form

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots c_k a_{n-k}$$

with $c_i > 0$. We say it is non-increasing if $c_1 \ge c_2 \ge \cdots \ge c_k > 0$.

Example

Let
$$a_0 = a_1 = a_2 = 1$$
, and for $n \ge 3$, $a_n := 3a_{n-1} + 2a_{n-2} + a_{n-3}$. 1, 1, 1, 6, 21, 76, 276, ...

PLRS-ZGG

The Zeckendorf Game and Zeckendorf Graph Game are based on the Fibonacci recurrence relation. We may define analogous games based on non-increasing PLRS with generalized move sets.

Theorem (SMALL, 2021)

These generalized games, played on the doubly-infinite path graph, terminate in $O(n^2)$ moves where n is the number of starting chips.

Theorem (SMALL, 2021)

 $\label{lem:eq:constraint} Each \ non-increasing \ PLRS \ game \ on \ planar \ leveled \ digraphs \ is \\ PSPACE-Complete.$

Further Questions

- Given that the ZGG is very algorithmically hard, can we show that the Zeckendorf Game is, too?
- How far can the results on the ZGG be pushed to PLRS-ZGGs or even other classes of recurrences all-together?

Acknowledgments

This research was done as part of the SMALL REU program and was funded by NSF grant number 1947438.

Special thanks to our co-researchers Henry Fleischmann and Luke Reifenberg, to Irfan Durmic for figures and illustrations, and Steven J Miller for his mentorship.

References

P. Baird-Smith et al. "The Zeckendorf Game". In: Combinatorial and Additive Number Theory III. Ed. by Melvyn B. Nathanson. Springer Proceedings in Mathematics & Statistics. Cham: Springer International Publishing, 2020, pp. 25–38. ISBN: 978-3-030-31106-3. DOI: 10.1007/978-3-030-31106-3_3.

Michael Sipser. Introduction to the Theory of Computation. 1st. International Thomson Publishing, 1996. ISBN: 053494728X.

The Formula Game

Definition

In **The Formula Game**, two players take turns choosing truth values for a finite set of quantifiers $x_1, x_2, x_3, \ldots, x_m$, given a statement of the form

$$(y_{11} \lor y_{12} \lor y_{13}) \land (y_{21} \lor y_{22} \lor y_{23}) \land \cdots \land (y_{n1} \lor y_{n2} \lor y_{n3}).$$

Each y_{ij} represents either x_k, \bar{x}_k for some $1 \leq k \leq m$. Player 1 wins if at the end, the statement is True.

Theorem ([Sip96], Theorem 8.11)

The Formula Game is PSPACE-complete.

Reduction to PSPACE-completeness

