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Abstract. Given an elliptic fibration π : M → S2 with singular locus ∆ ⊆ S2, let Br(π) < Mod(S2,∆) be

the subgroup of the spherical braid group consisting of those braids that lift to a fiber-preserving diffeomor-

phism of M . We classify the order n = |∆| elements of Br(π) up to conjugacy in Br(π). To do so, we relate
these conjugacy classes to special points on the SL2-character variety for (S2,∆) that correspond naturally

to the exceptional elliptic curves C/Z[ω] and C/Z[i] with their associated norms on Z[ω] and Z[i]. We also

show that there are no elements of order n− 1 or n− 2 in Br(π), as there are in Mod(S2,∆).

1. Introduction

A smooth elliptic fibration π : M → S2 of an oriented 4-manifold M is a smooth map M → S2 with

finitely many critical values ∆ ⊆ S2 such that the fibers π−1(b) are smooth elliptic curves for b ∈ S2 \∆ and

nodal elliptic curves for b ∈ ∆. Note that this equips π with a section1 s : S2 → M picking out the basepoint

of each elliptic curve. Examples include the rational elliptic surface, given by blowing up P2 along the

intersection points of two generic cubics, and the elliptically fibered K3 surfaces. Given an elliptic fibration

π : M → S2, let

Diff+(π) := {F ∈ Diff+(M) | F takes fibers of π to fibers of π}.

The smooth automorphism group of π as defined by Farb–Looijenga (see [FL24]) is

Mod(π) := π0(Diff+(π)),

Tracking the location of the singular fibers under an element of Diff+(π) gives a braid monodromy represen-

tation:

ρ : Mod(π) → Mod(S2,∆),

where ∆ ⊆ S2 is the singular locus of π and Mod(S2,∆) := π0(Diff+(S2,∆)), with Diff+(S2,∆) consisting

of diffeomorphisms of S2 mapping ∆ to itself setwise. We study the image

Br(π) := im(ρ) < Mod(S2,∆), (1.1)

of the braid monodromy ρ. Thus Br(π) associates to each elliptic fibration π a subgroup of the spherical braid

group2 Mod(S2,∆). The subgroup Br(π) < Mod(S2,∆) consists of those braids that lift to a fiber-preserving

diffeomorphism of M . For convenience, let n := |∆| be the number of singular fibers. In this paper, we

classify the conjugacy classes of elements of order n in Br(π) and show that there are no elements of order

n− 1 or n− 2, as there are in Mod(S2,∆).

Classifying torsion elements in Br(π) up to Br(π) conjugacy is intimately tied to a theorem of Murasugi

which classifies the finite order elements of Mod(S2,∆) up to conjugacy in Mod(S2,∆) [Mur82]. Murasugi

shows that every finite order element of Mod(S2,∆) is conjugate to a power of one of the following:

(1) The order n rotation σ1 · · ·σn−1.

(2) The order n− 1 rotation, achieved by placing one marked point at the north pole and the remainder

along the equator.

1For us, we consider only elliptic fibrations π : M → S2 with nodal singularities without multiples. Further, the role of a section

is auxiliary to our results, and so one may instead consider genus one fibrations.
2There are two distinct notions of the spherical braid group, one is Bn(S2) := π1(Confn(S2)), the fundamental group of n-point

configurations in S2, the other is Mod(S2, {p1, . . . , pn}), a marked mapping class group. These differ by an exact sequence
1 → Z/2Z → Bn(S2) → Mod(S2, {p1, . . . , pn}) → 1 [FM12, §9.1.4]. In this paper we restrict ourselves to the latter notion.
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(3) The order n − 2 rotation, achieved by placing one marked point at the north pole, another at the

south pole, and the remainder along the equator.

A similar classification in Br(π) does not follow formally, however. First, each conjugate bgb−1 of a finite order

element g ∈ Mod(S2,∆) for b ∈ Mod(S2,∆) may or may not appear in the subgroup Br(π) < Mod(S2,∆π).

The conditions for whether such an element bgb−1 lies in Br(π) are given in Section 2 and further explained

in Section 3. Second, a single conjugacy class in Mod(S2,∆π) may split into multiple distinct conjugacy

classes in Br(π). The relationship between these classifications is further complicated by the fact that the

index [Mod(S2,∆π) : Br(π)] = ∞, which we show in [Jac25]. Nonetheless, we prove the following.

Theorem 1.1 (Torsion in Br(π) of order n, n− 1, and n− 2). Let π : M → S2 be an elliptic fibration

with n nodal fibers. The following hold:

(a) There are exactly two distinct conjugacy classes in Br(π) of elements with order n. Furthermore,

up to replacing Br(π) by a conjugate subgroup in Mod(S2,∆), these two classes are represented by

r = σ1 · · ·σn−1 ∈ Br(π) and r−1 = TnrT
−1
n ∈ Br(π), where Tn is the Garside half-twist defined by

Tn = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1,

and σ1, . . . , σn−1 are standard half-twist generators of Mod(S2,∆π).

(b) There are no elements of order n− 1 in Br(π),

(c) There are no elements of order n− 2 in Br(π).

Note that, despite part (c) of Theorem 1.1 ruling out elements of order n − 2, there do exist elements

whose orders divide n− 2 and do not divide n− 1 or n itself. For an example, see (7.10) in Section 7. The

proof of Theorem 1.1 relies on an understanding of the Hurwitz action of Mod(S2,∆) on the SL2-character

variety for (S2,∆), which we now recall.

Br(π) and SL2-character varieties. We prove Theorem 1.1 by showing that each part is equivalent to a

corresponding statement classifying simultaneous conjugacy classes of n-tuples of matrices in SL2 Z which

satisfy particular conditions. We first detail the relationship between Br(π) and the Hurwitz action on the

SL2-character variety.

Let π : M → S2 be an elliptic fibration. A choice of basepoint b ∈ S2 \∆ gives an associated monodromy

representation

ϕπ : π1(S
2 \∆, b) → Mod(π−1(b)) ∼= Mod(Σ1) ∼= SL2 Z,

by identifying π−1(b) with the standard torus Σ1. Note that changing the basepoint b or the identification of

π−1(b) with Σ1 changes ϕπ by conjugation, and hence associated to π is a point [ϕπ] in the integral character

variety3

XZ(S
2,∆) := Hom(π1(S

2 \∆), SL2 Z)/ SL2 Z,

where SL2 Z acts by simultaneous conjugation. The spherical braid group Mod(S2,∆) naturally acts on

XZ(S
2,∆) via precomposition by (outer) automorphisms on π1. The induced action of Mod(S2,∆) on

XZ(S
2,∆) is referred to as the Hurwitz action. A theorem of Moishezon (see Theorem 2.1 below) implies

that the liftable braids are precisely the stabilizers of [ϕπ] ∈ XZ(S
2,∆); that is

Br(π) = StabMod(S2,∆)[ϕπ]. (1.2)

We discuss this further in Section 2. For now, recall that choosing generators γ1, . . . , γn for π1(S
2,∆)

surrounding each puncture counterclockwise realizes the representation ϕπ as a factorization in the mapping

3XZ(S
2,∆) itself is not a variety. However, the GIT quotient Hom(π1(S2 \∆),SL2 C) � SL2 C) does form a variety, commonly

referred to as the character variety. We refer to XZ(S
2,∆) as the integral character variety for convenience and for context.
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class group

ϕπ(γ1) · · ·ϕπ(γn) = Id .

By Picard–Lefschetz theory, each ϕπ(γi) is a Dehn twist about a simple closed curve in π−1(b) ∼= Σ1 [End21].

We refer to the ordered tuple (ϕπ(γi)) ∈ (SL2 Z)n as the monodromy factorization associated to the fibration

π.

We now return to Theorem 1.1. By Murasugi’s theorem, an order n element of Br(π) is given as a

conjugate brb−1 ∈ Br(π) with b ∈ Mod(S2,∆), where r is the order n rotation. Applying (1.2) shows that

rb−1 · [ϕπ] = b−1 · [ϕπ], i.e., that these representations are conjugate. We call b−1 · [ϕπ] a rotation invariant

monodromy representation. By choosing generators γi ∈ π1(S
2 \∆) appropriately, we obtain a notion of a

rotation invariant monodromy factorization. In Section 3, we show that part (a) of Theorem 1.1 is equivalent

to the following theorem classifying rotation invariant monodromy factorizations up to conjugacy.

Theorem 1.2 (Rotation Invariant Monodromy Factorizations). Call an ordered n-tuple (X1, . . . , Xn)

in (SL2 Z)n a rotation invariant monodromy factorization provided that for some C ∈ SL2 Z:
(1) X1 = Tv, where Tv(x) = x + (x, v)v is a symplectic transvection in a primitive vector v ∈ Z2.

Equivalently, X1 is conjugate to
(
1 −1
0 1

)
.

(2) Xi+1 = CXiC
−1 for i ∈ Z/nZ

(3)
∏n

i=1 Xi = Id

Then there are exactly two rotation invariant monodromy factorizations (X1, . . . , Xn) in (SL2 Z)n up to

simultaneous conjugation. Explicitly, for any such sequence (X1, . . . , Xn), n is divisible by 12 and there is

some matrix D ∈ SL2 Z so that exactly one of the following holds

(a) (DX1D
−1, . . . , DXnD

−1) =

((
1 −1

0 1

)
,

(
1 0

1 1

)
,

(
1 −1

0 1

)
, . . .

)
or

(b) (DX1D
−1, . . . , DXnD

−1) =

((
1 −1

0 1

)
,

(
2 −1

1 0

)
,

(
1 0

1 1

)
,

(
1 −1

0 1

)
, . . .

)
The tuples falling into case (a) are said to have period 2 and the tuples falling into case (b) are said to have

period 3.

Experts may notice the similarity between Theorem 1.2 and a theorem of Moishezon and Seiler, which

states that any two tuples (X1, . . . , Xn) satisfying
∏n

i=1 Xi = Id and with Xi ∈ SL2 Z conjugate to

(
1 −1

0 1

)
lie in the same Hurwitz orbit (up to simultaneous conjugation) [Moi06, Lemma 8]. However, in contrast,

Theorem 1.2 states that there are only two rotation invariant monodromy factorizations up to simultaneous

conjugacy within the Hurwitz orbit.

We delay the precise statements of the analogous classifications corresponding to parts (b) and (c) of

Theorem 1.1 to Section 6, given there as as Theorem 6.1 and Proposition 6.2.

Geometric interpretation of r and r−1 = TnrT
−1
n . Let π : M → S2 be an elliptic fibration with n

singular fibers. Observing that (SL2 Z)ab = Z/12Z and that all Dehn twists are conjugate in SL2 Z, we find

that n = 12d for some d ≥ 1. The two conjugacy classes r and r−1 = TnrT
−1
n in Br(π) are associated to

two distinct monodromy factorizations for π, given by different choices of simple closed curves γi (resp. γ
′
i)

enclosing each puncture. In Theorem 1.2, ρπ(γi) ∈ SL2 Z (resp. ρπ(γ
′
i)) appear as the matrices given in (a)

and (b). Interpreted geometrically, these factorizations are given by

(Tα · Tβ)
6d = Id (Tα · Tδ · Tβ)

4d = Id, (1.3)
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respectively, where the curves α, β, δ are the vertices of a triangle labeled counterclockwise on the Farey

tesselation (see Figure 2 in Section 7 below) and Tα, Tβ , Tδ are the corresponding Dehn twists. Each of these

monodromy factorizations are fixed up to conjugacy by r under the Hurwitz action, and the latter is obtained

from (Tα · Tβ)
6d by applying the Garside half-twist Tn. We can associate the first monodromy factorization

to the order 4 automorphism of the elliptic curve Ei = C/Z⟨1, i⟩, and the second monodromy factorization

to the order 6 automorphism of the elliptic curve Eω = C/Z⟨1, ω⟩ with ω = e2πi/3. The automorphisms of

these elliptic curves naturally appear in the proof of Theorem 1.1. Unsurprisingly, the number rings Z[ω]
and Z[i] also appear and play a pivotal role.

Method of Proof for Theorem 1.2. To prove Theorem 1.2 we first prove that the conjugating matrix

C has finite order. Thus TvTCv · · ·TCk−1v has finite order, where Ck = − Id. The second step of the proof

consists of analyzing and computing the trace polynomial

f(v) = tr(TvTCv · · ·TCk−1v).

We then show that the level sets of this polynomial are ellipses, at which point we can simply identify the

integral points v ∈ Z2 where |f(v)| ≤ 2. The level sets of the trace polynomials naturally correspond to

integral points in Z[i] and Z[ω] with specified norms. We display these here as Figure 1, and delay the

explanation for the proof. The method of proof for Theorem 6.1 and Proposition 6.2 is similar and relies on

analyzing the conjugating matrix C as well.

−3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Figure 1. The three conics N(p+ qω) = 1, N(p+ qi) = 2, and N(p+ qω) = 3, where N
is the norm of the corresponding number ring.

Organization of the Paper. In Section 2 we explain Moishezon’s theorem classifying elliptic fibrations,

and review a maps version of the theorem which allows us to determine when a braid lifts to Diff+(π) via

the monodromy representation. Using this description, we prove the equivalence of Theorem 1.1 part (a)

and Theorem 1.2 in Section 3. After doing so, we directly compute the aforementioned trace polynomial

and prove Theorem 1.2 in Section 4. Following this, we give an algebraic motivation for the appearance of

the norms on Z[i] and Z[ω] in Section 5. In Section 6, we state and prove Theorem 6.1 and Proposition 6.2,

which are equivalent to part (b) and part (c) of Theorem 1.1 respectively. Finally, we indicate in Section 7

the difficulties that orders smaller than n, n− 1, and n− 2 present for our proof.
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2. Monodromy and Lifting Mapping Classes

Let π : M → S2 be an elliptic fibration. We assume throughout that each singular fiber of π has one critical

point i.e., that the singularities are stable. For convenience, let ∆π ⊆ S2 denote the set of singular values

of π; when the fibration π is unambiguous we will instead write ∆ = ∆π. As discussed in the introduction,

the braids in Mod(S2,∆) which lift to a fiber-preserving diffeomorphism of M are referred to as the liftable

braids, and the subgroup consisting of liftable braids is denoted Br(π).

We now give a description of the liftable braids in terms of the Hurwitz action, essentially due to Moishezon.

Let

ϕπ : π1(S \∆, b) → Mod(π−1(b)) ∼= Mod(Σ1) ∼= SL2 Z (2.4)

be the monodromy representation of π, choosing some identification π−1(b) with the standard torus Σ1 once

and for all. As discussed in the introduction, the action of Mod(S2,∆) acts on the collection of conjugacy

classes of all such representations via its outer action on π1. The induced action is the familiar Hurwitz

action from the theory of Lefschetz fibrations, and can be phrased in terms of the monodromy factorization.

The orbit of [ϕπ] under the Hurwitz action is referred to as the Hurwitz orbit. Equipped with this notation,

we may state the theorem of Moishezon.

Theorem 2.1 (Moishezon [Moi06, Lemma 7a]). Let π : M → S2 be an elliptic fibration, then Br(π) is the

stabilizer of [ϕπ] ∈ XZ(S
2,∆), i.e, the conjugacy class of the monodromy representation ϕπ, under the action

of Mod(S2,∆).

Remark 2.2. Moishezon original phrasing of Theorem 2.1 is slightly different. However, the statement

in Theorem 2.1 follows immediately. See Endo’s survey for a similar statement in the literature [End21,

Theorem 3.3].

Using Theorem 2.1, Moishezon classified elliptic fibrations by showing that all conjugacy classes of ho-

momorphisms π1(S
2 \∆) → Mod(Σ1) ∼= SL2 Z that take simple loops about the punctures to Dehn twists

lie in a single Hurwitz orbit. Note that the presence of a single such homomorphism implies that n = |∆|
is a multiple of 12, since (SL2 Z)ab = Z/12Z and each Dehn twist is sent under the abelianization map to

1 ∈ Z/12Z.

Theorem 2.3 (Moishezon [Moi06, Theorem 9]). The number n = 12d of singular fibers of a genus one

Lefschetz fibration π : M → S2 determines π in the following sense: given two genus one fibrations π, π′ :

M,M ′ → S2 with the same number of singular fibers, there are diffeomorphisms F, f making the following

diagram commute

M M ′

(S2,∆π) (S2,∆π′).

F

f
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Furthermore, simple loops γ1, . . . , γn on (S2,∆) may be chosen so that the monodromy factorization of π is

(TαTβ)
6d = Id,

where α, β are curves with geometric intersection number i(α, β) = 1 and Tα, Tβ denote the respective Dehn

twists about these curves.

In general, following Endo, we call two genus one fibrations π, π′ : M,M ′ → S2 weakly isomorphic provided

there exists such a pair (F, f) of diffeomorphisms so that

M M ′

(S2,∆π) (S2,∆π′)

F

f

commutes [End21, Definition 3.1]. Changing π by a weak isomorphism changes Br(π) by conjugation in

Mod(S2,∆π). Furthermore Mod(π), as defined in the introduction, consists of the isotopy classes of weak

isomorphisms from π to itself.

3. Equivalence of Theorem 1.1 part (a) and Theorem 1.2

Let π : M → S2 be an elliptic fibration with n nodal singular fibers located along ∆ ⊆ S2. Theorem 2.1

identifies the subgroup Br(π) of liftable braids with the stabilizer of the conjugacy class of the monodromy rep-

resentation. This identification is the essential ingredient in showing part (a) of Theorem 1.1 and Theorem 1.2

are equivalent. Let

ϕπ : π1(S
2 \∆) → Mod(T 2) ∼= SL2 Z

be the monodromy representation of π. By Moishezon’s classification of elliptic fibrations (see Theorem 2.3

above), there are simple loops γ1, . . . , γn about each critical value of ∆ so that

γ1 · · · γn = Id

ϕπ(γ2i+1) =

(
1 −1

0 1

)

ϕπ(γ2i) =

(
1 0

1 1

)
.

(3.5)

Furthermore, by Theorem 2.1, a mapping class f lies in Br(π) if and only if ϕπ ◦ f∗ is conjugate to ϕπ for

any lift of f to an automorphism of π1(S
2 \ ∆) (i.e., via the Hurwitz action). We will denote that two

representations ϕ, ϕ′ are conjugate by ϕ ≃ ϕ′. To simplify notation, let

r := σ1 · · ·σn−1 ∈ Mod(S2,∆) (3.6)

be the 2π/n rotation of (S2,∆), where σi is a half-twist supported on a neighborhood of the once-punctured

disks on the interiors of γi and γi+1. Note that, by the theorem of Murasugi mentioned in the introduction,

the rotation r represents the unique order n conjugacy class in Mod(S2,∆) [Mur82]. Before we proceed with

the proof that part (a) of Theorem 1.1 and Theorem 1.2 are equivalent, we require an elementary fact about

centralizers in spherical braid groups.

Lemma 3.1. If n := |∆| > 2, then the centralizer ZMod(S2,∆)(r) of r = σ1 · · ·σn−1 in Mod(S2,∆) is the

cyclic group ⟨r⟩.
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Proof. We deduce this from the analogous fact in the braid group. Let Bn be the braid group on n strands.

Applying the capping homomorphism (see [FM12, Section 3.6.2]), gives an exact sequence

1 → ⟨T̃ 2
n⟩ → Bn → Mod(S2,∆) → 1,

with T̃n the lift of Tn, defined by

T̃n = (σ̃1 · · · σ̃n−1)(σ̃1 · · · σ̃n−2) · · · (σ̃1σ̃2)σ̃1,

where each σ̃i is a lift of σi. Let r̃ be the lift of r which rotates the n marked points around the center of

the disk. Let g ∈ Mod(S2,∆) centralize r, and choose a lift g̃ ∈ Bn. Then g̃r̃g̃−1 = r̃T 2k
n for some k ∈ Z.

Furthermore, r̃n = T 2
n , and so this implies that g̃r̃g̃−1 = r̃1+nk. Conjugation by g̃ thus restricts to an

automorphism of ⟨r̃⟩, implying that 1 + nk = ±1. Since k ∈ Z and n > 2, the only solution to this equation

is k = 0. Therefore g̃ lies in the centralizer of r̃. Proposition 3.3 of [GW04] shows that ZBn(r̃) = ⟨r̃⟩, and so

g̃ ∈ ⟨r̃⟩. It follows that g ∈ ⟨r⟩ as claimed. □

With the above in hand we can now prove the equivalence of Theorem 1.2 and part (a) of Theorem 1.1.

Proof that Theorem 1.2 implies part (a) of Theorem 1.1. Let r ∈ Mod(S2,∆) be the order n rotation. By

Murasugi’s theorem (see the introduction), any order n element of Br(π) is conjugate to r by some b ∈
Mod(S2,∆). Thus, it suffices to consider elements of the form brb−1 for b ∈ Mod(S2,∆). Choose loops

γ1, . . . , γn realizing the standard monodromy as in (3.5). A direct calculation shows that ϕπ ◦ r∗ is conjugate

to ϕπ via the conjugating matrix C4 :=
(
0 −1
1 0

)
exchanging the simple closed curves corresponding to ( 10 )

and ( 01 ). By the aforementioned theorem of Moishezon (see Theorem 2.1), the conjugate brb−1 belongs to

Br(π) if and only if ϕπ ◦ (brb−1)∗ is conjugate to ϕπ by some matrix in SL2 Z. Adopting the notation ≃ for

conjugacy between maps, we may rewrite this as

ϕπ ◦ b∗ ◦ r∗ ◦ b−1
∗ ≃ ϕπ (3.7)

ϕπ ◦ b∗ ◦ r∗ ≃ ϕπ ◦ b∗. (3.8)

Let Xi = ϕπ(b∗(γi)). Then X1 · · ·Xn = Id since b∗ is an automorphism of π1. Because b∗ is represented by a

diffeomorphism, each b∗(γi) is represented by a simple loop around a single puncture, and so Picard-Lefschetz

theory implies that Xi = Tv ∈ SL2 Z for some primitive vector v ∈ Z2. Direct calculation gives r(γi) = γi+1,

so that

(ϕπ ◦ b∗ ◦ r∗)(γi) = Xi+1,

and so the conjugacy (3.8) implies that for some C ∈ SL2 Z we have Xi+1 = CXiC
−1 for all i. In summary,

C,X1, . . . , Xn satisfy assumptions (1) to (3) in Theorem 1.2:

(1) X1 ∈ SL2 Z is given by symplectic transvection in the vanishing cycle, by Picard-Lefschetz theory.

(2) Xi+1 = CXiC
−1.

(3)
∏n

i=1 Xi = Id.

Thus, assuming that Theorem 1.2 holds, there exists some conjugating matrix D ∈ SL2 Z so that either

Xi = DYiD
−1 for all i or Xi = DZiZ

−1 for all i, where

(Y1, Y2, Y3, . . .) :=

((
1 −1

0 1

)
,

(
1 0

1 1

)
,

(
1 −1

0 1

)
, . . .

)

(Z1, Z2, Z3, Z4, . . .) :=

((
1 −1

0 1

)
,

(
2 −1

1 0

)
,

(
1 0

1 1

)
,

(
1 −1

0 1

)
, . . .

)
.
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If (X1, . . . , Xn) is simultaneously conjugate to (Y1, . . . , Yn), then ϕπ ◦ b∗ ≃ ϕπ and so b ∈ Br(π). Therefore

brb−1 ∈ Br(π) is an order n element in the conjugacy class of r. If instead (X1, . . . , Xn) is simultaneously

conjugate to (Z1, . . . , Zn), then for the Garside twist Tn defined by

Tn = (σ1σ2 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1

we have that ϕπ ◦ b∗ ≃ ϕπ ◦ (Tn)∗. Therefore (Tnb
−1) lies in Br(π) and so brb−1 lies in the same conjugacy

class as r−1 = TnrT
−1
n . It is clear that r−1 itself lies in Br(π), since r does.

Finally, it suffices to see that the conjugacy classes of r and r−1 = TnrT
−1
n in Br(π) are distinct. Suppose

not. Then there is some b ∈ Br(π) so that brb−1 = TnrT
−1
n . Then T−1

n b centralizes r, and so applying

Lemma 3.1, we have that T−1
n b = rk for some k. However, this would imply that Tn = br−k ∈ Br(π), and we

know that (Tn · ϕπ)(γi) = Zi by direct calculation. The sequence Zi cannot be simultaneously conjugated to

Yi, and thus Tn ̸∈ Br(π), giving us a contradiction. □

The proof that part (a) of Theorem 1.1 implies Theorem 1.2 is similar to the above, and we omit it

for brevity (and since we do not need it). The essential realization is that any matrices Xi satisfying the

assumptions of Theorem 1.2 induce a point in the Hurwitz orbit of ϕπ which is fixed by the rotation r.

4. Proving Theorem 1.2 via the Trace Polynomial

Proof of Theorem 1.2. Let C,X1, . . . , Xn ∈ SL2 Z satisfy Items 1 to 3 of Theorem 1.2. For convenience, we

recall Items 1 to 3 here:

(1) X1 = Tv, where Tv is the symplectic transvection Tv(x) = x + (x, v)v for some primitive vector

v ∈ Z2,

(2) Xi+1 = CXiC
−1 for i ∈ Z/nZ,

(3)
∏n

i=1 Xi = Id.

Note that Xi = TCi−1v, as CTwC
−1 = TCw for any primitive vector w ∈ Z2.

Step 1: The conjugating matrix C has order 3, 4, or 6.

It is well known that Tv = Tw if and only if v = ±w, and so Tv = TCnv implies Cnv = ±v. As a conse-

quence, each eigenvalue of C is a root of unity. Since C ∈ SL2 Z, the eigenvalues of C satisfy a monic degree

two polynomial with integral coefficients, and so must be one of 1,−1, i,−i, ω, or −ω, where ω = e2πi/3 is a

primitive 3rd root of unity. In the latter four cases, there are two distinct eigenvalues, and so C3, C4, C6 = Id

respectively in each case (by diagonalizing C). In the first case, where C has eigenvalue 1 with algebraic

multiplicity 2, this implies either C = Id or Cv = v, hence Xi = Tv for all i, and so
∏n

i=1 Xi = Tn
v ̸= Id.

Similarly, if C has eigenvalue −1 then Xi = Tv, and the product cannot be the identity.

Note further that if C has order 4 then C2 = − Id, and hence Xi is periodic with period 2. Otherwise, Xi

has period 3. Note also that (SL2 Z)ab = Z/12Z and Tv maps to a generator of Z/12Z under the abelianization

map (see [FM12, p. 123]). As a consequence, n must be divisible by 12. Since the period of (X1, . . . , Xn) is

k ∈ {2, 3}, Item 3 may be rewritten as

(X1 · · ·Xk)
n/k = Id .

We define the trace polynomial as

f(p, q) := tr(X1 · · ·Xk) = tr(Tv · · ·TCk−1v) ∈ Z[p, q],

8
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in the coordinates v = ( pq ). Since X1 · · ·Xk is finite order, its trace has absolute value at most two, i.e.,

|f(p, q)| ≤ 2.

Step 2: Up to a change of coordinates in SL2 Z, f is given by an explicit polynomial of the norm

N(p+ qλ) := (p+ qλ)(p+ qλ)

where λ is a 3rd or 4th root of unity.

Because C has order 3,4, or 6, it must be conjugate in SL2 Z to one of the three matrices4

C3 =

(
0 −1

1 −1

)
, C4 =

(
0 −1

1 0

)
, C6 =

(
1 −1

1 0

)
,

with orders 3, 4, and 6 respectively, note that C3 = C2
6 (see [FM12, p. 201]). Hence, by applying a global

conjugacy, one may assume that C is one of these three matrices. At this point, one can explicitly compute

the polynomials in each case, which we will denote by f3, f4, and f6 respectively:

f3(p, q) = −(N3 + 1)(N2
3 + 2N3 − 2)

f4(p, q) = −2(N4 + 1)(N4 − 1)

f6(p, q) = (N3 − 1)(N2
3 − 2N3 − 2),

where Nj := N(p+ qζj) and ζj = e2πi/j

Step 3: Determining when |fj(p, q)| ≤ 2 and Tv · · ·TCk−1v = Id.

Take some h ∈ SL2 Z so that hCh−1 = Cj for j ∈ {3, 4, 6}. Then for Yi = hXih
−1 we have Y1 = Thv,

Yi = CjYi−1C
−1
j , and

∏n
i=1 Yi = Id. Thus we can assume without loss of generality that C = Cj , and instead

classify the possible v = ( pq ) such that |fj(p, q)| ≤ 2. By direct computation, we find that

|tr(X1X2X3)| = |f3(p, q)| ≤ 2 =⇒ N3 = N(p+ qω) ≤ 1 (if C = C3)

|tr(X1X2)| = |f4(p, q)| ≤ 2 =⇒ N4 = N(p+ qi) < 2 (if C = C4)

|tr(X1X2X3)| = |f6(p, q)| ≤ 2 =⇒ N3 = N(p+ qω) ≤ 3, (if C = C6)

where ω = e2πi/3. These regions are the interiors of conics in the (p, q) plane, as displayed in Figure 1. There

are then a finite number of possibilities of v ∈ Z2 for each C. When C = C3, there is one C-orbit of primitive

vectors up to sign which satisfy |f3(p, q)| ≤ 2:

v = ±

(
1

0

)
Cv = ±

(
0

1

)
C2v = ±

(
−1

−1

)
.

In this case, direct computation shows that TvTCvTC2v is a parabolic element of infinite order. When C = C4,

there is again one orbit up to sign

v = ±

(
1

0

)
Cv = ±

(
0

1

)
,

in this case TvTCv has order 6, and Tv, TCv is precisely the pair Y1 and Y2 identified in the statement of the

theorem,

Y1 =

(
1 −1

0 1

)
Y2 =

(
1 0

1 1

)
.

4These matrices correspond precisely to those regular polygons tiling the plane as well as the number rings Z[i] and Z[ω]
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Finally, we turn to when C = C6, there are then two C-orbits of primitive vectors up to sign where

N(p+ qω) ≤ 3.

v = ±

(
1

0

)
Cv = ±

(
1

1

)
C2v = ±

(
0

1

)
,

w = ±

(
2

1

)
Cw = ±

(
1

2

)
C2w = ±

(
−1

1

)
.

A simple calculation verifies that TvTCvTC2v has order 4, and corresponds to the triple identified in the

theorem statement

Z1 =

(
1 −1

0 1

)
Z2 =

(
2 −1

1 0

)
Z3

(
1 0

1 1

)
.

Furthermore, the product TwTCwTC2w is a parabolic element of infinite order. Because (X1 · · ·Xk) must

have finite order, these calculations imply that X1, . . . , Xn must be equal to one of Y1, . . . , Yn or Z1, . . . , Zn,

depending on whether C = C4 or C = C6, completing the proof. □

Granted the equivalence of Theorem 1.2 and part (a) of Theorem 1.1 proved above, we have then completed

the classification of order n elements in Br(π) for π : M → S2 a genus one Lefschetz fibration with n singular

fibers.

5. An Algebraic Approach to the Trace Polynomial

Before proving parts (b) and (c) of Theorem 1.1 and discussing the difficulties which arise from the

approach above for orders less than n − 2, we will describe an invariant theory approach to Step 2. This

alternate description explains why one might expect the polynomials f3, f4, f6 to be polynomials in the norms

N4, N3 in more algebraic terms. To begin, we note the following proposition.

Proposition 5.1. Let C,X1, . . . , Xn ∈ SL2 Z satisfy Items 1 to 3 of Theorem 1.2, and let (X1, . . . , Xn) have

period k. Then

f(p, q) = tr(TvTCv · · ·TCk−1v) ∈ Z[p, q],

for v = ( pq ), is invariant under the centralizer ZGL2 Z(C) of C in GL2 Z acting on Z[p, q]. Furthermore,

ZGL2 Z(C) ∼= D2k, the dihedral group with 2k elements.

Because D2k is a Coxeter group, standard methods such as the Chevalley-Shephard-Todd Theorem, which

states that the invariant ring C[p, q]D2k is a free polynomial algebra, apply over C. In this case, we are

actually able to compute the full invariant ring over Z, since there is an integral choice of generators for the

invariant ring over C.

Proposition 5.2. Let C ∈ SL2 Z have order 3, 4, or 6 and let H be the centralizer of C in GL2 Z, then

Z[p, q]H ∼=

Z[N(x+ yω), (x+ yω)6 + (x+ yω)6] C has order 3 or 6

Z[N(x+ yi), x2y2] C has order 4

where the isomorphism is by an SL2 Z change of coordinates.

Proof. By applying a global conjugation, let C be one of C3, C4 or C6. The conjugating matrix L so that

C = LCjL
−1 induces the coordinates x, y given in the theorem. One verifies that the centralizer is generated

by C,− Id, ( 0 1
1 0 ) and is isomorphic to D2k, where k = 2 if C has order 4 and k = 3 if C has order 3 or 6.

If C = C3 then C6 lies in the centralizer as well. A direct computation shows that the generators claimed

10
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above are in the invariant ring. The Jacobian criterion states that polynomials g1, . . . , gn ∈ C[x1, . . . , xm] are

algebraically independent provided that the differential dg1 ∧ · · ·dgn is not identically zero [Hum90, §3.10].
When n = m, we identify the wedge product with the determinant and write J(g1, . . . , gn) = detJ (g1, . . . , gn),

where J (g1, . . . , gn) is the matrix of partial derivatives. Applying the Jacobian criterion in this case verifies

algebraic independence:

J(N(x+ yω), (x+ yω)6 + (x− yω)6) = det

(
2x− y 6(2x− y)(x4 − 2x3y − 6x2y2 + 7xy3 + 4)

2y − x 6(2y − x)(y4 − 2y3x− 6y2x2 + 7yx3 + 4)

)
= 6(2x− y)(2y − x)(y4 − 9xy3 + 9x3y − x4) ̸= 0

J(N(x+ yi), x2y2) = J(x2 + y2, x2y2) = det

(
2x 2xy2

2y 2x2y

)
= 2x3y − 2xy3 ̸= 0.

Let these two proposed generators be referred to as F1, F2. One may check that

|D2k| = 4k = deg(F1) deg(F2).

Hence, these are generators for C[x, y]H (see [Hum90, p. 67]). Because F1, F2 ∈ Z[x, y] are primitive

polynomials, we in fact obtain that these are generators for Z[x, y]H as desired. □

Note that the trace polynomial f has total degree 4 or 6 depending on whether (X1, . . . , Xk) has period

k = 2 or k = 3. To show that f(p, q) is a polynomial in the norm N4 = N(x + yi) or N3 = N(x + yω)

respectively it thus suffices by Proposition 5.2 to determine the degree 2k homogeneous part of f . This

computation must be carried out directly, and yields −2N2
4 and ±N3

3 respectively.

6. Orders n− 1 and n− 2

Let τ ∈ Mod(S2,∆) be the order n − 1 rotation and η ∈ Mod(S2,∆) be the order n − 2 rotation. For

convenience, we modify η by isotopy so that it fixes a neighborhood of the south pole, and choose a basepoint

within this neighborhood. When dealing with τ , we can choose the south pole itself as the basepoint, and let

the north pole be one of the punctures. One can choose generators γ′
1, . . . , γ

′
n−1, δ and γ′′

1 , . . . , γ
′′
n−2, ν1, ν2

for π1(S
2 \∆) so that

τ(γ′
i) = γ′

i+1 (for i ∈ Z/(n− 1)Z)

τ(δ) = γ−1
1 δγ1

η(γ′′
i ) = γ′′

i+1 (for i ∈ Z/(n− 2)Z)

η(ν1) = ν1

η(ν2) = γ−1
1 ν2γ1,

where γ′
i and γ′′

i are loops about the equatorial punctures, δ and ν1 are loops about the north pole, and ν2 is

a loop about the south pole. Note that, choosing γ′
i, γ

′′
i , δ, ν1, and ν2 appropriately gives

δγ′
1 · · · γ′

n−1 = 1 ν1γ
′′
1 · · · γ′′

n−2ν2 = 1.

Similarly to Section 3, to prove parts (b) and (c) of Theorem 1.1 it suffices to show that there are no

monodromy representations which are fixed up to conjugacy by τ and η respectively. By evaluating such

a representation ρπ : π1(S
2 \∆) → SL2 Z at our choice of generators, we reduce to showing that there are

no monodromy factorizations fixed by τ or η. Thus, parts (b) and (c) of Theorem 1.1 are implied by the

following statements.

11
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Theorem 6.1. Let n ≥ 1, then there are no tuples (X1, . . . , Xn−1, L) ∈ (SL2 Z)n of matrices satisfying the

following for some C ∈ SL2 Z:
(1’) X1 and L are symplectic transvections,

(2’) L
∏n−1

i=1 Xi = Id,

(3’) CXiC
−1 = Xi+1 and CLC−1 = X−1

1 LX1.

Proposition 6.2. Let n ≥ 1, then there are no tuples (X1, . . . , Xn−2, L1, L2) ∈ (SL2 Z)n satisfying the

following for some C ∈ SL2 Z:
(1”) X1, L1, L2 are symplectic transvections,

(2”) L1

(∏n−2
i=1 Xi

)
L2 = Id,

(3”) CXiC
−1 = Xi+1, CL1C

−1 = X−1
1 L1X1, and CL2C

−1 = L2.

We now show that Theorem 6.1 and Proposition 6.2 imply parts (b) and (c) of Theorem 1.1 respectively.

Proof that Theorem 6.1 implies part (b) of Theorem 1.1. j Let π : M → S2 be an elliptic fibration, and let

τ ∈ Mod(S2,∆) be the order n − 1 rotation. By Murasugi’s theorem (see the introduction), τ represents

the unique order n− 1 conjugacy class in Mod(S2,∆) [Mur82]. Hence any order n− 1 element of Br(π) is

represented by bτb−1 ∈ Br(π) for some b ∈ Mod(S2,∆). Let

ρπ : π1(S
2 \∆) → SL2 Z

be the monodromy representation of π. By Moishezon’s theorem (see Theorem 2.1 above), we know that

bτb−1 ∈ Br(π) if and only if ρπ ◦ (bτb−1)∗ is conjugate to ρπ. We choose generators γ′
1, . . . , γ

′
n−1, δ so that

τ(γ′
i) = γ′

i+1 (for i ∈ Z/(n− 1)Z)

τ(δ) = γ−1
1 δγ1

where γ′
i are loops about the equatorial punctures and δ is a loop about the marked fixed point of τ . Note

that δγ′
1 · · · γ′

n−1 = Id. Therefore, letting Xi = ρπ(b∗(γ
′
i)) and L = ρπ(b∗(δ)) we conclude that there is some

matrix C ∈ SL2 Z so that

CXiC
−1 = Cρπ(b∗(γ

′
i))C

−1 = ρπ(b∗(τ∗(γ
′
i))) = ρπ(b∗(γ

′
i+1)) = Xi+1

CLC−1 = Cρπ(b∗(δ))C
−1 = ρπ(b∗(τ∗(δ))) = ρπ(b∗(γ

−1
1 δγ1)) = X−1

1 LX1.

Furthermore, because ρπ and b∗ are group homomorphisms, LX1 · · ·Xn = Id. By Picard-Lefschtz theory,

we also know that Xi, L are symplectic transvections. Therefore, (X1, . . . , Xn−1, L) ∈ (SL2 Z)n is a tuple

satisfying the conditions of Theorem 6.1. No such tuple exists, and so there can be no such b ∈ Mod(S2,∆)

so that bτb−1 ∈ Br(π). □

The proof that Proposition 6.2 implies part (c) of Theorem 1.1 is identical, and so we omit it for brevity.

With this motivation, we prove Theorem 6.1 and Proposition 6.2.

Proof of Theorem 6.1. Let (X1, . . . , Xn−1, L) satisfy the conditions of the theorem and let X1 = Tv and

L = Tw for primitive vectors v, w ∈ Z2. As before, n = 12d for some d ≥ 1 since (SL2 Z)ab = Z/12Z. Note

that Cn−1 fixes X1 by conjugation. Hence Cn−1(v) = ±v. As argued in Step 1 in Section 4, either C ·v = ±v

or C has order 3, 4, or 6. If C ·v = ±v, then X1 = Xi for all i. Therefore L = X−n+1
1 . However, since n ≥ 12,

this is impossible, since the only symplectic transvection which is a power of X1 is X1 itself.

12
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If C2 = − Id, then

Tw = C2TwC
−2 = X−1

2 X−1
1 TwX1X2 = T(X1X2)−1w.

and so X1X2(w) = ±w. Therefore X1X2 = ±Lk for some k ∈ Z, and so

L(X1X2)
6dX−1

2 = Id,

but then ±L6dk+1 = X2. Because X2 and L are both symplectic transvections, this is impossible unless

6dk + 1 = 1. However, this implies that k = 0, and so X1X2 = Id. Applying the abelianization map, this

would imply that 2 = 0 in (SL2 Z)ab ∼= Z/12Z, a contradiction.

Otherwise, C3 = ± Id and

T = C3TwC
−3 = X−1

3 X−1
2 X−1

1 TwX1X2X3 = T(X1X2X3)−1w

and so X1X2X3(w) = ±w. As before, X1X2X3 = ±Lk for some k ∈ Z and so

L(X1X2X3)
4dX−1

3 = Id,

which implies ±L4dk+1 = X3. As before, this implies that 3 = 0 in Z/12Z. □

Proof of Proposition 6.2. Let (X1, . . . , Xn−2, L1, L2) satisfy the conditions of the proposition. Conjugating

Item (2”) by the given C ∈ SL2 Z gives

X−1
1 L1X1 · · ·Xn−2X1L2 = Id

X−1
1 L−1

2 X1L2 = Id,

and so L−1
2 X1L2 = X1. Let X1 = Tv, where v ∈ Z2 is some primitive vector. Then L2 · v = ±v, and since L2

is a symplectic transvection L2 = X1. Because CL2C
−1 = L2, we also have that Xi = X1 for all i. Therefore

L1X
n−1
1 = L1X1 · · ·Xn−2L2 = Id,

and so L1 = X1−n
1 . Since L1 and X1 are both symplectic transvections, this is only possible if 1 − n = 1.

But then n = 0, and so the only such tuple is the empty tuple. □

Hence, we have proved parts (b) and (c) of Theorem 1.1.

7. Difficulties Inherent in Classifying Small Orders

We now explain why the methods above do not generalize to classifying elements of order n/a for a | n.
As an example of an order n/2 element of Br(π), one may consider simple closed curves α, β, γ, δ forming the

vertices of two triangles (α, γ, β) and (α, β, δ) labeled clockwise in the Farey complex (see Figure 2). The

monodromy ϕ corresponding to the factorization

((TαTγTβ)(TβTδTα))
n/6 = Id (7.9)

is not conjugate to r · ϕ, where r is the order n rotation. However it is conjugate to r3 · ϕ. Hence the

monodromy factorization (7.9) corresponds to a “new” order n/3 conjugacy class not arising as the cube of

either of the order n conjugacy classes discussed in Theorem 1.1, and so the order n/2 element corresponding

to (7.9) does not belong to a Z/nZ subgroup of Br(π).

When a = 2, a similar argument to the proofs of Theorems 1.1 and 1.2 shows that classifying elements of

order n/2 is essentially equivalent to classifying primitive vectors v, w ∈ Z2 so that

|trTvTwTCvTCw · · ·TCn/2−1vTCn/2−1w| ≤ 2.
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α β

δ

γ

i

ω

Figure 2. Farey Tesselation labeled α, δ, β as well as points i, ω = e2πi/3 under the identi-
fication of the Poincaré disk with H2.

As before, C is of finite order, and so can be conjugated to one of C3, C4, C6. Thus we obtain three

polynomials g3(v, w), g4(v, w), g6(v, w), and we wish to find the lattice points in Z4 satisfying |gj(v, w)| ≤ 2.

Two three-dimensional slices of g6 = 0 are displayed in Figure 3.

(a) w2 = 0 (b) w2 = −4

Figure 3. Noncompact 3-dimensional slices of g6 = 0 where w = (w1, w2) is restricted to
a hyperplane.

There are two primary obstructions to generalizing the proof of Theorem 1.1 above, which are implicitly

linked:

(1) The invariant ring Z[v, w]H , where H is the centralizer of C acting diagonally on the v, w coordinates,

is significantly more complex than the invariant ring computed in Proposition 5.2.

(2) The real algebraic locus of |gj(v, w)| ≤ 2 in R4 is not compact, as can be seen in Figure 3.

Similar difficulties arise when considering which powers of τ and η lie in some conjugate of Br(π), where τ

and η are the order n− 1 and n− 2 rotation respectively. For example, consider the following monodromy

factorization for an elliptic fibration π with 24 singular fibers, i.e., of a K3 surface:

Tα(TβTα)
6(TβTα)

5Tβ = Id, (7.10)

where α, β are curves with intersection number i(α, β) = 1. The monodromy factorization (7.10) is fixed

by η12, which can be verified using the generating set for π1(S
2 \ ∆) given in Section 6. Hence (7.10)

14
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represents an element of order 11 in Br(π), while there is no element of order 22, contrasting sharply with

Murasugi’s theorem. Despite these difficulties, the symmetry involved in the construction of the monodromy

factorizations corresponding to the two order n conjugacy classes and the conjugacy class of order n/2

displayed in (7.9) suggests leveraging the geometry of the Farey complex as a general approach.
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