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Abstract. Let k, t be coprime integers, and let 1 ≤ r ≤ t. We let D×k (r, t;n) denote the total

number of parts among all k-indivisible partitions (i.e., those partitions where no part is divisible

by k) of n which are congruent to r modulo t. In previous work of the authors [3], an asymptotic

estimate for D×k (r, t;n) was shown to exhibit unpredictable biases between congruence classes. In

the present paper, we confirm our earlier conjecture in [3] that there are no “ties” (i.e., equalities)

in this asymptotic for different congruence classes. To obtain this result, we reframe this question in

terms of L-functions, and we then employ a nonvanishing result due to Baker, Birch, and Wirsing

[1] to conclude that there is always a bias towards one congruence class or another modulo t among

all parts in k-indivisible partitions of n as n becomes large.

1. Introduction

A k-indivisible partition of some integer n > 0 is a nonincreasing sequence λ = (λ1, . . . , λm) of

positive integers such that k - λj for all j and
∑m

j=1 λj = n. We write D×k (n) for the set of all such

k-indivisible partitions of n. In previous work (see [3]), the authors studied the number of parts

congruent to r with respect to a fixed modulus t among all k-indivisible partitions of n. Formally,

this quantity can be defined as

D×k (r, t;n) :=
∑

λ∈D×k (n)

#{λj | λj ≡ r (mod t)}.

Using Wright’s circle method, the authors proved the following asymptotic estimate for D×k (r, t;n)

as n→∞ when k, t ≥ 2 are taken to be coprime and 1 ≤ r ≤ t (see [3, Theorem 1.1]):

D×k (r, t;n) = Ak,t(n)

(
K

2
log n+

(
−ψ

(r
t

)
+ k−1ψ

(
ρk,t(r)

t

))
+ Ck,t +O

(
n−

1
2 log n

))
, (1.1)

where ψ(x) := Γ′(x)
Γ(x) is the digamma function, 1 ≤ ρk,t(r) ≤ t is a representative1 of k−1r modulo t,

and

K := 1− 1

k
Ck,t :=

K

2
log

(
π

√
K

6

)
−K log t+

log k

k
Ak,t(n) :=

3
1
4 e
π
√

2Kn
3

2
3
4K

1
4n

1
4πt
√
k
.

This asymptotic implies a weak asymptotic equidistribution among the congruence classes modulo

t, i.e. for each 1 ≤ r, s ≤ t we have that
D×k (r,t;n)

D×k (s,t;n)
→ 1 as n → ∞. However, it also implies a bias
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1In [3], this representative ρk,t(r) is denoted r, suppressing the dependence on k, t. In this paper, we maintain this
dependence due to its appearance in later proofs
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towards certain congruence classes. If we define

ψk,t(r) := −ψ
(r
t

)
+

1

k
ψ

(
ρk,t(r)

t

)
,

then if ψk,t(r) < ψk,t(s), we have that D×k (r, t;n) < D×k (s, t;n) for large n. This encourages defining

an ordering ≺k,t on the integers {1, . . . , t} (equivalently on Z/tZ), where r ≺k,t s provided that

D×k (r, t;n) < D×k (s, t;n) for sufficiently large n. This ordering depends simultaneously on the size

of k and the congruence class of k modulo t, and is incredibly intricate. For a detailed exposition

of the known properties of ≺k,t, we refer to the authors’ previous paper [3]. It is unclear from

equation (1.1) that ≺k,t is necessarily a total ordering, and so the following conjecture was posed

within the author’s previous paper.

Conjecture (No Ties [3, Conjecture 1.3]). The ordering ≺k,t is a total ordering on Z/tZ when

k, t ≥ 2 are coprime.

This conjecture is resolved by the following theorem, which constitutes our principal result in

the current paper.

Theorem 1.1. Let k, t ≥ 2 be coprime, then for any 1 ≤ r 6= s ≤ t, we have that ψk,t(r) 6= ψk,t(s).

As a consequence, the No Ties Conjecture holds.

Remark. In general, the set {ψk,t(r) | 1 ≤ r ≤ t} is not linearly independent over Q, even for k, t

coprime. This can be seen via the following example, from [2]:

ψ(1/4)− 3ψ(1/2) + ψ(3/4) + ψ(1) = 0.

Scaling by 1
1−1/k for any k coprime to 4 yields

ψk,4(1)− 3ψk,4(2) + ψk,4(3) + ψk,4(4) = 0,

since k−1r ≡ r modulo 4 for any 1 ≤ r ≤ 4.

In qualitative terms, Theorem 1.1 states that there are no “ties” (i.e., equalities) between different

congruence classes in the second-order term of our asymptotic. The techniques we use to prove

Theorem 1.1 are inspired by the work of Gun, Murty, and Rath concerning the linear independence

of the set {ψ(a/t) | gcd(a, t) = 1} over different number fields [2]. In particular, we make use of

a connection between L-functions and linear combinations of values of the digamma function at

rational points developed by Murty and Saradha in [4]. Furthermore, we prove a more general

theorem concerning the structure of linear relations among values of the digamma function at

rational points, using the same techniques.

Theorem 1.2. Let K be some finite extension of Q over which the t-th cyclotomic polynomial is

irreducible. For a function f : Z/tZ→ K, let Af := {gcd(n, t) | f(n) 6= 0}. Now let f : Z/tZ→ K

be some nonzero function such that

t∑
n=1

f(n)ψ(n/t) = 0

t∑
n=1

f(n) = 0. (1.2)

Then we have that Af * {a, t} for any a dividing t.
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Furthermore, if Af is minimal with respect to inclusion among functions satisfying equation (1.2),

then f(n) = f(hn) for all n and for any h ∈ (Z/tZ)× satisfying h ≡ 1 (mod t/a) for any a ∈ Af .

By translating these questions into the setting of nonvanishing of certain L-functions, we are

able to apply arguments of Baker, Birsch, and Wirsing from [1] in order to reduce Theorems 1.1

and 1.2 to simple facts about the action of (Z/tZ)× (i.e., the group of units in Z/tZ) on Z/tZ.

Remark. Theorem 1.1 follows via a short argument from Theorem 1.2. However, for ease of exposi-

tion, we prove Theorem 1.1 independently, as here the argument can be framed more cleanly using

the language of equivalence relations.

For the sake of convenience, we will call an equality ψk,t(r) = ψk,t(s) a “tie” between r, s modulo

t in k-indivisible partitions. Our goal is to show that any such tie implies that r = s. The paper

is organized as follows. In Section 2 we detail the relationship between L-functions and ties, using

it to prove key properties that ties must satisfy if they exist. In Section 3, we use these properties

to prove Theorem 1.1. Using the same techniques, we prove Theorem 1.2 in Section 4. We also

rephrase Baker, Birch, and Wirsing’s fundamental lemma in terms of the modern theory of Galois

representations in Section 5. Finally, we suggest future problems concerning the behavior of ψk,t(r)

in Section 6.
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2. Propagation of Ties

We wish to show that there are no ties in the second order term of our asymptotic. Before we

begin, we will rephrase the question into one about equivalence relations on Z/tZ, as this notation

will be quite useful for us.

Definition 2.1. Let k, t be coprime. For any 1 ≤ r, s ≤ t, we say that r ∼k,t s provided that

ψk,t(r) = ψk,t(s).

https://github.com/FayeAlephNil/KRegularBiases
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We may view r, s as elements of Z/tZ, and thus this equivalence relation as a relation on Z/tZ.

We use the notation [r]k,t for the equivalence class of r.

Our goal is to show that ∼k,t is trivial, that is, r ∼k,t s implies r = s. To show Theorem 1.1,

we must first explore the properties of ∼k,t. From our previous work in [3], we already know that

[1]k,t = {1}. Our primary technique will be to reduce to this fact; namely, we will be able to derive

the theorem from the following three properties of ∼k,t.

Lemma 2.2. Let k, t be coprime and 1 ≤ r, s ≤ t, then we have the following.

(1) If r, s, t share some common factor x, then r
x ∼k,t/x

s
x .

(2) If 1 ∼k,t r, then r = 1.

(3) If r ∼k,t s and h is coprime to t, then rh ∼k,t sh.

The first property follows from the fact that ψk,t(r) = ψk,t/x(r/x) when x divides both r, t.

This is an immediate consequence of computing that ρk,t(r) = ρk,t/x(r/x), which can be shown by

elementary modular arithmetic (recall that 1 ≤ ρk,t(r) ≤ r is a representative of k−1r modulo t).

The second property was proved in [3], as noted before. To prove the third property, we will use

the connection to L-functions developed by Murty and Saradha in [4].

2.1. Ties and the Vanishing of L-functions. To understand the existence of ties, we first use a

result of Murty and Saradha (see [4]) to relate this to the nonvanishing of a particular Dirichlet-like

L-function. Then, we will apply a key lemma appearing in the proof of a nonvanishing theorem due

to Baker, Birch, and Wirsing concerning such L-functions (see [1]). Our exposition of the following

connection follows that of Murty, Gun and Rath in [2].

To begin, let f be some periodic arithmetic function with period t. Throughout, f takes algebraic

values, and in fact in our application the values of f will be rational. To this function, we can

associate an L-series

L(s, f) =

∞∑
n=1

f(n)

ns
,

which converges for Re s > 1. It is well known that L(s, f) may analytically continued to the entire

complex plane, apart from s = 1, where L(s, f) may have a simple pole. The residue at this pole

is given by
∑t

r=1 f(r). Furthermore, if this residue is zero, then the series

∞∑
n=1

f(n)

n

converges to L(1, f). As shown by Murty and Saradha [4] this can be related to sums of the

digamma function at rational arguments, since in this case

L(1, f) = −1

t

t∑
r=1

f(r)ψ(r/t). (2.1)

This provides our candidate choice of a function f . Let 1r : Z/tZ→ {0, 1} be the indicator function

for the congruence class r modulo t. Define

fr,s(n) := −1r(n) + 1s(n) +
1k−1r(n)

k
− 1k−1s(n)

k
. (2.2)
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Then by equation (2.1), L(1, fr,s) = 0 if and only if r ∼k,t s, as

L(1, f) = −1

t
(ψk,t(r)− ψk,t(s)) .

As Baker, Birch, and Wirsing’s result concerns series of the form
∑∞

n=1
f(n)
n , we’ve thus converted

our problem into these terms. Using their notation, let Ft be the collection of such functions f

which are periodic with period t and taking algebraic values for which

∞∑
n=1

f(n)

n
= 0.

For convenience, we also let Q denote the algebraic numbers and ξ = e2πi/t. We are now prepared

to state the key lemma.

Lemma 2.3 (Baker, Birch, Wirsing [1, Lemma 4]). Let f be periodic with period t and suppose

L(1, f) = 0. Furthermore, let σ be any automorphism of Q, and let h the integer defined modulo t

by σ−1ξ = ξh. Then fσ(n) := σf(hn) also satisfies L(1, fσ) = 0.

Equipped with this lemma, we are prepared to prove item 3 in Lemma 2.2.

Proof of item 3 in Lemma 2.2. Let r, s ∈ Z/tZ and let f be defined by equation (2.2). Furthermore,

fix some h coprime to t. By coprimality, we know there is some automorphism σ of Q so that

σ−1ξ = ξh. Furthermore, since f takes rational values, we see that

fσ(n) = σf(hn) = f(hn).

We now may compute that, as a function on Z/tZ,

fσ(n) = −1r(hn) + 1s(hn) +
1k−1r(hn)

k
− 1k−1s(hn)

k

= −1h−1r(n) + 1h−1s(n) +
1k−1h−1r(n)

k
− 1k−1h−1s(n)

k
.

Since we know r ∼k,t s if and only if L(1, f) = 0, this implies L(1, fσ) = 0 by Lemma 2.3. This in

turn implies h−1r ∼k,t h−1s. Because (Z/tZ)× is a group, this is sufficient. �

3. Proof of Theorem 1.1

Equipped with the above propagation results, we may begin our proof that ∼k,t is trivial. We

will only use the properties of ∼k,t listed in Lemma 2.2, which we recall here.

(1) If x | r, s, t and r ∼k,t s then r
x ∼k,t/x

s
x .

(2) 1 ∼k,t s implies s = 1.

(3) If h is coprime to t and r ∼k,t s then rh ∼k,t sh.

We begin with the simplest case, when one of r, s is coprime to t.

Lemma 3.1. If r ∼k,t s and one of r, s is coprime to t, then r = s. Furthermore, if r ∼k,t s and

gcd(r, t) = gcd(s, t) then r = s.

Proof. Without loss of generality, suppose that r is coprime to t. Then by item 3, 1 ∼k,t r−1s, and

so s = r since [1]k,t = {1}. The latter statement follows by item 1, by reducing with respect to

gcd(r, t) = gcd(s, t). �



6 F. JACKSON AND M. OTGONBAYAR

We now handle the general case. For the sake of contradiction, take r 6= s within Z/tZ satisfying

r ∼k,t s. Furthermore, take t to be the smallest t where this occurs. For convenience, let a =

gcd(r, t) > 1, b = gcd(s, t) > 1 and r = ar′, s = bs′ (a = 1 or b = 1 is the coprime case above). If

x | a, b and x > 1, then we may reduce r, s, t by x via item 1 to get a tie with smaller t. Since

we took the smallest t, this is a contradiction. Thus we must have gcd(a, b) = 1. At least one of

a, b > 1 is odd, and so without loss of generality, let p | a, with p > 2.

Our aim here is to build some h coprime to t so that rh ≡ r (mod t), and sh 6≡ s (mod t). We

will then have that sh ∼k,t s, but gcd(sh, t) = gcd(s, t) since h is coprime to t. This contradicts

Lemma 3.1. As this fact is purely elementary number theory, we separate it into its own lemma.

Lemma 3.2. Let r, s ∈ Z/tZ with gcd(r, t), gcd(s, t) > 1 be coprime. Furthermore, let p > 2 be

some prime so that p | gcd(r, t). Then there is some h coprime to t so that rh ≡ r (mod t), but

sh 6≡ s (mod t).

Proof. We set

h :=
ty

p
+ 1,

where y is some integer which is nonzero modulo p. We claim we can choose y modulo p so that h

satisfies the desired properties. First we see that

rh =
rty

p
+ r ≡ r (mod t)

sh =
sty

p
+ s 6≡ s (mod t).

The first statement follows since p | r, so t | rty/p. The second follows since if t | sty/p, we have

that p | sy, but if p | sy then p | gcd(s, t) or p | y. In the first case, gcd(r, t) and gcd(s, t) are not

coprime, and in the second, y ≡ 0 (mod p).

Now we must show that y may be chosen such that h is coprime to t. Let p′ 6= p be some prime

dividing t. Then h ≡ 1 (mod p′). Modulo p, we find that h ≡ ty
p + 1, thus it suffices to pick some

y 6≡ 0 (mod p) so that ty/p 6≡ −1 (mod p). There is at most one y modulo p so that ty/p ≡ −1

(mod p), and there are p − 1 > 1 nonzero elements of Z/pZ. Thus, pick a y 6≡ 0 (mod p) with

ty/p 6≡ −1 (mod p). Such a y has that h is not divisible by any prime dividing t, and so h, t are

coprime as desired. �

With this, we have Theorem 1.1 by the argument above. �

4. Proof of Theorem 1.2

Fix some finite extension K of Q over which the t-th cyclotomic polynomial is irreducible.

Furthermore, fix some function f : Z/tZ→ K satisfying

t∑
n=1

f(n)ψ(n/t) = 0
t∑

n=1

f(n) = 0. (4.1)
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Via the connection to L-functions, this is equivalent to the condition that

L(1, f) =
∞∑
n=1

f(n)

n
= 0.

As before, let ξt := e2πi/t be a primitive t-th root of unity. By [1, Theorem 1], we cannot have

Af ⊆ {1, t}. Similarly, we have the following more general result.

Lemma 4.1. Af * {a, t} for any a ∈ Z/tZ.

Proof. Suppose Af ⊆ {a, t}. We see that the linear combination above may be rewritten as

t∑
n=1

gcd(n,t)=a,t

f(n)ψ

(
n/a

t/a

)
= 0.

Setting g(m) = f(ma), then g : Z/(t/a)Z→ K, and furthermore L(1, g) = 0, as

t/a∑
m=1

g(n)ψ(m/t) = 0

t/a∑
m=1

g(n) = 0.

Thus by [1, Theorem 1], we have a contradiction, as Ag ⊆ {1, t/a}, and clearly the t/a-th cyclotomic

polynomial is irreducible over K. �

This also shows that |Af | ≥ 2. Now suppose that Af is minimal with respect to subset inclusion

among nonzero functions satisfying equation (4.1).

Fix some r with f(r) 6= 0 and let a := gcd(r, t). We must show the equality f(n) = f(hn) for

any n and any h ∈ (Z/tZ)× satisfying h ≡ 1 (mod t/a). First we see from Lemma 2.3 that

t∑
n=1

f(hn)ψ(n/t) = 0,

since there is some σ ∈ Gal(Q/K) with σ−1ξt = ξht as the t-th cyclotomic polynomial is irreducible

over K. This implies that L(1, fσ) = 0, which then implies the claimed equality. Now set g(n) =

f(n)− f(hn). We see that

t∑
n=1

g(n)ψ(n/t) = 0

t∑
n=1

g(n) = 0.

We will now show that Ag ( Af , and thus g(n) = 0 for all n, proving the theorem.

First note that Ag ⊆ Af , since gcd(hn, t) = gcd(n, t). Thus it suffices to show that a 6∈ Ag. To

do this, let s ∈ Z/tZ with gcd(s, t) = a. We first compute hs modulo t. To do this note that since

a | s and also t/a | h− 1 we have that that t | (h− 1)s, and thus hs = s (mod t). This completes

the proof, as then g(s) = 0, for all such s, showing that Ag ( Af . �

5. Connection to Galois Representations

The key lemma of Baker, Birch, and Wirsing can be phrased in terms of a K-linear representation

of the Galois group Gal(Q/K). This illustrates an unexpected relationship between linear relations

among values of the digamma function at rational values and representation theory. Throughout
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this section, we’ll consider the following Q-vector space V :

F :=
{
f : Z→ Q | f is periodic

}
.

Note that F is a Q vector space with countable dimension. This vector space is equipped with

linear maps L(s,−) from F into C, given by the L-function

L(s, f) =

∞∑
n=1

f(n)

ns

for Re(s) > 1. Of particular interest to us are the subspaces

F0 :=

{
f ∈ F |

t∑
n=1

f(n) = 0, where t is the period of f

}
FK := {f ∈ F | ∀n ∈ Z, f(n) ∈ K}

FK,t := {f ∈ FK | f has period t} ,

as well as F0
K ,F0

K,t (defined in the same way as F0). On F0, the L-functions above may be extended

to s = 1, and so

L(1, f) =

∞∑
n=1

f(n)

n

defines a linear operator on F0. In the previous section, we were focused on understanding whether

certain linear combinations belonged to the kernel of L(1,−). The key lemma of Baker, Birch, and

Wirsing amounts to the invariance of this kernel under a certain action of Gal(Q/K).

Proposition 1. Let σ ∈ Gal(Q/K). For any f ∈ F , define fσ by the formula

fσ(n) = σf(hn)

where, if f has period t, h is defined modulo t by σ−1ξt = ξht . Then in fact, (σ, f) 7→ fσ defines a

K-linear representation of Gal(Q/K).

Furthermore, if L ⊆ Q is Gal(Q/K) invariant then F0,FL,FL,t are invariant subspaces for this

representation. More strikingly, kerL(1,−) is an invariant subspace of F0.

Proof. The claimed invariances for F0,FL, and FL,t are easy to check, and the final statement

follows from the work of Baker, Birch, Wirsing in [1, Lemma 4]. Thus it suffices to show that

this mapping truly defines a K-linear action. First, if f has period t, it also has period tx for any

natural number x ≥ 1, so we must show that the action does not depend on choosing the minimal

period. To do this, note that since ξt = ξxtx

σ−1ξt = (σ−1ξtx)x = (ξhtx)x = ξht ,

where σ−1ξtx = ξhtx.

To show that this truly defines an action, fix f, g ∈ F of periods t1, t2 respectively as well as

σ, τ ∈ Gal(Q/K) and c ∈ K. First note that f + g has period t = t1t2, and by the above we may
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set h, h′ so that σ−1ξt = ξht , τ
−1ξt = ξh

′
t . Then we have that

(cf)σ(n) = σ(cf(hn)) = σ(c)σf(hn) = cσf(hn) = cfσ(n)

(f + g)σ(n) = σ((f + g)(hn)) = σf(hn) + σg(hn) = fσ(n) + gσ(n),

and also

(τσ)−1ξt = σ−1τ−1ξt = σ−1ξh
′
t = ξh

′h
t

(fσ)τ (n) = τfσ(h′n) = τσf(hh′n) = f τσ(n).

Therefore this is in fact a K-linear representation of Gal(Q/K). �

Remark. Let Qab denote the maximal abelian extension of Q. The action of Gal(Q/K) on FL
where L ⊆ K ⊆ Qab is defined entirely in terms of its action on the roots of unity. Thus, this

representation factors through Gal(Qab/K). This greatly simplifies the analysis of the problem, as

Gal(Qab/K) can be computed explicitly.

In our particular case, we deal with the subspaces F0
K,t for fixed t and K ⊆ Qab. Here, the

representation is completely determined by the action of Gal(Qab/K) on the t-th roots of unity,

and so in fact factors through Gal(Q(ξt)/K) ⊆ Gal(Q(ξt)/Q) ∼= (Z/tZ)×. Furthermore, the space

FK,t is finite-dimensional over K, and so the representation theory is entirely classical.

6. Future Work

Theorem 1.1 shows that ψk,t(r)− ψk,t(s) 6= 0 for any coprime k, t and distint 1 ≤ r, s ≤ t. This

leaves open the question of how large or how small this difference can be, and it also leaves open

the question of whether two of these differences can coincide. More qualitatively, how quickly does

the gap between the counts D×k (r, t;n) and D×k (s, t;n) grow, and does the gap grow at a different

rate for each pair r, s?

The methods employed in this paper are unequipped to deal with the first question outright, as

the Galois twist f 7→ fσ simply preserves kerL(1,−), and it is not known how the size of L(1, f)

compares to that of L(1, fσ) when L(1, f) 6= 0. For convenience, define the quantities

Ψk,t := {|ψk,t(r)− ψk,t(s)| | 1 ≤ r < s ≤ t}

Mk,t := max Ψk,t Mt := max
gcd(k,t)=1

Mk,t

mk,t := min Ψk,t mt := min
gcd(k,t)=1

mk,t.

As we can see in Figure 1,Mt grows linearly in t. In fact, something better is true. The quadruples

(k, t, r, s) for which |ψk,t(r)− ψk,t(s)| are maximal are extremely predictable. They are given by

(k, t, r, s) = (t− 1, t, 1, t− 1).

In contrast, mt behaves erratically. A naive plot of mt is displayed in Figure 2. Plotting − logmt

gives a more illuminating picture, as in Figure 3. Motivated by these plots, we make the following

conjecture.

Conjecture 6.1. Mt/t→ 1 as t→∞ and the function
∣∣logmt/

√
t
∣∣ is bounded. Furthermore the

maximum Mt is achieved by the quadruples (k, t, r, s) = (t− 1, t, 1, t− 1).
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Remark. Generating these plots is very computationally expensive. Naively, one must compute

|ψk,t(r)− ψk,t(s)| for each 1 ≤ r, s ≤ t and each k coprime to t and less than 6
π2 (t2 − 1). Im-

provements to the algorithm used to produce these numerics would help provide further evidence

of Conjecture 6.1

Figure 1. Plot of Mt for 3 ≤ t ≤ 50

Figure 2. Plot of mt for 3 ≤ t ≤ 50
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Figure 3. Plot of − logmt in blue versus 1.7
√
t in orange for 3 ≤ t ≤ 50
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