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Abstract. For integers k, t ≥ 2, and 1 ≤ r ≤ t let D×
k (r, t;n) be the number of parts among all

k-indivisible partitions of n (i.e., partitions where all parts are not divisible by k) of n that are

congruent to r modulo t. Using Wright’s circle method, we derive an asymptotic for D×
k (r, t;n)

as n → ∞ when k, t are coprime. The main term of this asymptotic does not depend on r, and

so, in a weak asymptotic sense, the parts are equidistributed among congruence classes. However,

inspection of the lower order terms indicates a bias towards different congruence classes modulo

t. This induces an ordering on the congruence classes modulo t, which we call the k-indivisible

ordering. We prove that for k ≥ 6(t2−1)

π2 the k-indivisible ordering matches the natural ordering.

We also explore the properties of these orderings when k < 6(t2−1)

π2 .

1. Introduction

A partition λ = (λ1, . . . , λℓ) of a positive integer n is a nonincreasing sequence of positive integers

which sum to n. We use the notation λ ⊢ n to say that λ is a partition of n. The λj are called

the parts of the partition λ. Counting functions related to partitions occur in nearly all fields of

mathematics, and thus asymptotic expansions and exact formulae for these functions are treasured

by the mathematical community. Hardy and Ramanujan began the analytic study of partition

functions by studying the number of partitions of n, which we denote by p(n). Their analytic

methods yielded the asymptotic

p(n) ∼ 1

4n
√
3
e
π
√

2n
3 . (1.1)

Hardy and Ramanujan’s proof is remarkable due to its invention of the circle method. This method

allows one to extract the coefficients of a generating function by understanding its asymptotic

behavior near singularities lying on the unit circle, and has seen wide application throughout

analytic number theory since its inception.

Recently, this method has been used to understand how many parts among families of partitions

of n lie in some specified residue class mod t. This question was first explored by Beckwith and

Mertens in [3, 4] for the family of all partitions, and was subsequently explored by Craig in [8] for

the family of partitions into distinct parts. Formally, Craig defined1

D(r, t;n) :=
∑
λ⊢n
λ∈D

# {λj : λj ≡ r (mod t)} ,
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1In [8], the function D(r, t;n) is denoted Dr,t(n).
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where D denotes the set of partitions with distinct parts, and he then proved the asymptotic

D(r, t;n) =
3

1
4 eπ

√
n
3

2πtn
1
4

(
log(2) +

(√
3 log(2)

8π
− tπ

4
√
3

(
r

t
− 1

2

))
n−

1
2 +O(n−1)

)
. (1.2)

More generally, we can consider partitions where no part is repeated k or more times. These are

referred to as the k-regular partitions, and they are in bijection with the k-indivisible partitions,

which have no parts which are divisible by k. This is verified by the simple equality between their

generating functions ∏
n≥1

(
1− qnk

)
(1− qn)

=
∏
n≥1

(1 + qn + · · ·+ qn(k−1)).

Often in the literature, these two types of partitions are both referred to as k-regular partitions.

However, for the sake of clarity, we will always refer to the partitions with no part divisible by k

as the k-indivisible partitions. In a recent paper [12], the authors defined

Dk(r, t;n) :=
∑
λ⊢n
λ∈Dk

# {λj : λj ≡ r (mod t)} ,

where Dk denotes the set of k-regular partitions, and proved the asymptotic

Dk(r, t;n) =
3

1
4 e

π
√

2Kn
3

πt2
3
4K

1
4n

1
4

√
k

(
log k +

(
3
√
K log k

8
√
6π

− tπ(k − 1)K
1
2

2
√
6

(
r

t
− 1

2

))
n−

1
2 +O(n−1)

)
,

(1.3)

where K := 1−1/k. Notice that this is a strict generalization of Craig’s work in [8], as the 2-regular

partitions are exactly the partitions into distinct parts, and in fact the explicit error terms derived

in [12] improve upon those derived in [8]. In this paper, we derive an asymptotic formula for the

number of parts congruent to r mod t among the k-indivisible partitions of n. We define

D×
k (r, t;n) :=

∑
λ⊢n

λ∈D×
k

# {λj : λj ≡ r (mod t)} , (1.4)

where D×
k denotes the set of k-indivisible partitions. We prove the following asymptotic formula

for D×
k (r, t;n).

Theorem 1.1. Let k, t ≥ 2 be coprime integers and let 1 ≤ r ≤ t. If K := 1− 1/k and 1 ≤ r̄ ≤ t

is a representative of k−1r modulo t, then as n→ ∞,

D×
k (r, t;n) =

3
1
4 e

π
√

2Kn
3

2
3
4K

1
4n

1
4πt

√
k

(
K

2
log n+

(
−ψ

(r
t

)
+ k−1ψ

( r̄
t

))
+ Ck,t +O

(
n−

1
2 log n

))
,

where ψ(x) := Γ′(x)
Γ(x) is the digamma function and

Ck,t :=
K

2
log

(
π

√
K

6

)
−K log t+

log k

k
.

Remark. Here we restrict to the case where k, t are coprime for aesthetic reasons. Our method

extends to the non-coprime case; however, this would require additional computation and casework
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while not revealing any deeper structure among the biases for D×
k (r, t;n). For a more detailed

analysis of this choice, see the discussion following Lemma 3.2.

Example. Theorem 1.1 may also be used to obtain accurate numerical estimates for D×
k (r, t;n).

More precisely, let D̂×
k (r, t;n) denote the asymptotic obtained in Theorem 1.1 by ignoring all terms

which are O

(
n−

3
4 log(n)e

π
√

2Kn
3

)
, and define the quotient Q×

k (r, t;n) :=
D×

k (r,t;n)

D̂×
k (r,t;n)

. Figure 1 shows

the convergence of Q×
k (r, t;n) to 1 as n→ ∞.

n 10 100 1000 10000 100000 1000000

Q×
3 (1, 4;n) 0.95865 0.98376 0.99054 0.99260 0.99355 0.99419

Q×
3 (2, 4;n) 1.08452 0.99408 0.98952 0.98943 0.99044 0.99156

Q×
4 (1, 5;n) 0.92882 0.97154 0.98102 0.98437 0.98617 0.98746

Q×
4 (2, 5;n) 0.93232 0.96178 0.97154 0.97618 0.97947 0.98203

Figure 1. Numerics for Theorem 1.1

Because the main terms in equation (1.3) as well as in Theorem 1.1 do not depend on r, asymp-

totically the parts are equidistributed among congruence classes modulo t. Namely, if we let

Pk(n) (respectively, P
×
k (n)) denote the total number of parts in k-regular partitions (respectively

k-indivisible) partitions of n, then Dk(r,t;n)
Pk(n)

approaches 1
t as n→ ∞ and

D×
k (r,t;n)

P×
k (n)

also approaches 1
t

as n→ ∞ if k, t are coprime. However, this weak asymptotic equidistribution does not imply that

there are no biases between residue classes. In fact, analysis of the lower order terms uncovers the

true nature of this bias. In particular, for equation (1.3), r
t is an increasing function in 1 ≤ r ≤ t,

which implies biases towards parts lying in lower congruence classes mod t. The asymptotic derived

the authors thus implies that Dk(r, t;n) ≥ Dk(s, t;n) for 1 ≤ r < s ≤ t when n is sufficiently large.

This matches the results of Beckwith and Mertens in [3] concerning the family of all partitions as

well as the results of Craig in [8] for the family of partitions into distinct parts. In contrast, the

biases obtained for the k-indivisible partitions are not nearly as predictable, and depend greatly on

both the size of k as well as the residue class of k mod t. For brevity, we define

ψk,t(r) := −ψ
(r
t

)
+

1

k
ψ

(
r

t

)
. (1.5)

Using this notation, we have the following corollary exhibiting these biases.

Corollary 1.2. Let k, t ≥ 2 be coprime integers and let 1 ≤ s, r ≤ t. If K := 1− 1/k, then

D×
k (r, t;n)−D×

k (s, t;n) =
3

1
4 e

π
√

2Kn
3

2
3
4K

1
4n

1
4πt

√
k

(
ψk,t(r)− ψk,t(s) +O

(
n−

1
2 log n

))
.

Furthermore, if we have

ψk,t(r) > ψk,t(s),

then for sufficiently large n we have that D×
k (r, t;n) > D×

k (s, t;n).

In light of these biases, we may define an ordering on the residue classes {1, . . . , t} mod t. For 1 ≤
r, s ≤ t, we write r ≺k,t s (resp. r ≻k,t s) ifD

×
k (r, t;n) < D×

k (s, t;n) (resp. D
×
k (r, t;n) > D×

k (s, t;n))
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for all sufficiently large n. Also, let O(t) be the number of distinct orderings of {1, . . . t} induced

by ≺k,t over all k such that k ≥ 2 and gcd(k, t) = 1.

Remark. It is not immediately clear from Corollary 1.2 that ≺k,t is in fact a total ordering on

{1, . . . , t}, as we may have that ψk,t(r) = ψk,t(s). However, numerical evidence suggests that there

are no such pairs r, s for any coprime k, t ≥ 2. Furthermore, deep work of Gun, Murty, and Rath

in [11] related to the vanishing of L-functions has shown that there exists a t0 such that the set

{ψ(a/t) | gcd(a, t) = 1} is linearly independent over Q for any t coprime to t0. Thus, for r, s

coprime to t, and t coprime to t0, there are no equalities in the second order term.

Based on the numerical evidence mentioned in the above remark, we make the following conjec-

ture, which implies that for coprime k, t ≥ 2 and r ̸= s, either the congruence class r or s mod t is

strictly more common among k-indivisible partitions of n.

Conjecture 1.3. For coprime integers k, t ≥ 2 and 1 ≤ r < s ≤ t, we have that ψk,t(r) ̸= ψk,t(s).

As we have established, due to the interaction between the multiplicative structures modulo t

and modulo k, the biases among congruence classes for D×
k (r, t;n) are much more complex than

the biases for T (r, t;n) or Dk(r, t;n). We now give an example to illustrate the complexity of the

biases among k-indivisible partitions.

Example. In Figure 2 we give a table of all possible orderings of {1, . . . , t} by ≺k,t for t = 7. Notice

that for k = 2, the congruence class 2 (mod 7) occurs in the fifth position. The bias against the

residue class 2 (mod 7) may be explained by the fact that smallest allowed part which is 2 (mod 7)

is 9. Similarly, for k = 6, 13, 10, 20 the transposition of 7, 6 (mod 7) may be accounted for because

the congruence class of 6 (mod 7) includes 6, 13, 20 as its smallest members. However, for k = 12,

there is a bias against the residue class 5 (mod 7) because its second smallest member is excluded

as a part in 12-indivisible partitions. Thus the ordering is not induced by the natural ordering

on integers, and even further, it is not even induced by the ordering on integers once we lift to

the smallest allowed part in k-indivisible partitions. In total, we also see that the total number of

orderings, O(7), is seven.

k = 2 1 3 5 7 2 4 6
k = 3 1 2 4 5 7 3 6
k = 4 1 2 3 5 6 7 4
k = 5 1 2 3 4 6 7 5

k = 6, 10, 13, 20 1 2 3 4 5 7 6
k = 12 1 2 3 4 6 5 7

All other k 1 2 3 4 5 6 7

Figure 2. Biases among congruence classes mod t for k-indivisible partitions for
t = 7, from most common to least common.

Despite the intricacy present in Figure 2, closer inspection of the second order term ψk,t reveals

interesting patterns among the orderings. We then have the following theorem.
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Theorem 1.4. Let k, t ≥ 2 be coprime integers. Then the orderings ≺k,t satisfy the following:

(1) If 1 ≤ r ≤ t− k, then r ≻k,t r + k.

(2) If 1 ≤ r ≤ y ≤ t and r < s ≤ t, then for k ≥ y(y + 1), r ≻k,t s. Notably, when y = 1, 1 ≻k,t s

holds for any k, s, t ≥ 2.

(3) If k ≥ 6(t2−1)
π2 , then for 1 ≤ r < s ≤ t, we have r ≻k,t s.

(4) If k = mt− 1 for m ≥ 1, then for k ≤
(
π2

6 + 5
2t

)−1
(t2 − 1) we have that t ≻k,t t− 1.

(5) If t > 2 and φ(·) is the Euler’s totient function, then O(t) ≥ φ(t)
2 .

Remark. Observe that

(i) Statement (3) indicates that when k > 6(t2−1)
π2 the ordering reverts to the natural ordering

observed by Beckwith and Mertens, Craig, and the authors in [3, 8, 12]. Furthermore, (4) indicates

that this bound for the maximum ordering which is not natural is asymptotically tight. This bound

also implies that O(t) ≤ 6(t2−1)
π2 and that, for any fixed t, a simple computer search will yield all

the possible orderings arising from these biases.

(ii) Using the techniques of Craig and the authors in [8, 12] respectively, we could, in principle,

make the error terms in Theorem 1.1 explicit, and thus for fixed t find the precise n where the

ordering from Corollary 1.2 among congruence classes takes over. For brevity, we do not include

this calculation.

Numerics also suggest that the quotient O(t)
φ(t) grows sublinearly in t and superlogarithmically in

t (see Figure 3). Thus we make the following conjecture.

Conjecture 1.5. As t→ ∞, we have O(t)
φ(t) = o(t) and log t = o

(
O(t)
φ(t)

)
.

Figure 3. Graph of O(t)
φ(t) as t ranges from 2 to 200

Remark. Although r is hard to predict for general k, it is fixed for k in the same congruence classes

modulo t. See the end of Section 5.5 for a discussion of this idea in relation to log t = o
(

O(t)
φ(t)

)
.
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We now describe the methods used to prove Theorem 1.1. Following the methods established

in [3, 8, 12], we make use of a distinct variation on Hardy and Ramanujan’s circle method orig-

inally due to Wright (see for example [5, 13, 15]). Notably, the relevant generating function for

D×
k (r, t;n) is not modular, and so our application of the circle method differs significantly from

traditional applications. However, as in [3, 8, 12], the generating function may be broken up into

two components, the first of which is modular, and so may be estimated using traditional methods

near one. The second component, which we refer to as the summatory component, is expressible as

a sum of polylogarithms, and so Euler-Maclaurin summation may be used to compute asymptotic

expansions. These estimates are then combined to produce the asymptotic expansion for D×
k (r, t;n)

via Wright’s circle method. This portion of the paper broadly follows the techniques established

by Beckwith and Mertens in [3] and used by Craig as well as the authors in [8, 12]. As in [3], the

asymptotic for D×
k (r, t;n) contains the digamma function ψ(x) = Γ′(x)

Γ(x) . For a discussion of why

this function appears for D×
k (r, t;n) but not for Dk(r, t;n), see the remark following Lemma 3.3.

The paper is organized as follows. In Section 2, we recall known results which we will use

throughout the paper. These include the properties of the digamma function, two distinct variants

on Wright’s circle method (see [5, 13]), and an asymptotic version of Euler-Maclaurin summation

due to Bringmann, Craig, Ono, and Males (see [5]). In Section 3, we derive a convenient form of

the generating function for D×
k (r, t;n) and use Euler-Maclaurin summation as well as modularity

to obtain the necessary bounds on the major and minor arcs for use in the circle method. Section 4

then applies the circle method with these asymptotics to prove Theorem 1.1. Lastly, Section 5 uses

properties of the digamma function to prove Theorem 1.4.
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2. Preliminaries

2.1. Bernoulli Polynomials and Special functions. We recall the definition of the Bernoulli

polynomials. In [10, (24.2.3)], Bn(x) is given by the Taylor expansion

∞∑
n=0

Bn(x)
tn

n!
:=

text

et − 1
. (2.1)

The Bernoulli numbers are the values of these polynomials at 0; i.e., Bn := Bn(0). We note that

B2n+1 = 0 for n > 0.

We also recall the definition of polylogarithms: for s ̸= 1 and |q| < 1, define

Lis(q) :=

∞∑
n=1

qn

ns
,
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and for other q define Lis(q) by analytic continuation. Thus, its derivative satisfies the following

property; if we set q = e−z, then we have,

∂ Lis(q)

∂z
= −Lis−1(q). (2.2)

We also need the expansion of Lis at one. For q = e−z and |z| < 2π, we have

Lis(q) = Γ(1− s)zs−1 +

∞∑
n=0

ζ(s− n)
(−z)n

n!
. (2.3)

Now recall the digamma function ψ, defined as the logarithmic derivative of Γ,

ψ(x) :=
Γ′(x)

Γ(x)
,

where Γ is defined as

Γ(x) :=

∫ ∞

0
e−uux−1 du.

We note the integral representation of ψ(x), given in [10, (5.9.12)] as

ψ(x) =

∫ ∞

0

e−u

u
− e−xu

1− e−u
du (2.4)

for Re(x) > 0. We also require the special values given below from [10, (5.4.12)], where γ is the

Euler-Mascheroni constant:

ψ(1) = −γ ψ′(1) =
π2

6
. (2.5)

We also require the recurrence relation given in [10, (5.5.2)] as

ψ(x+ 1) = ψ(x) +
1

x
(2.6)

and the inequalities (see [1])

log x− 1

x
≤ ψ(x) ≤ log x− 1

2x
, (2.7)

which hold for x > 0. These last two properties of the digamma function play a key role in

establishing Theorem 1.4, and thus in understanding ≺k,t. Finally, note that ψ is increasing on the

interval (0,∞).

2.2. Classical Results on the Partition Generating Function. Here, we note the properties

of the partition generating function given by

P(q) :=
∑
n≥0

p(n)qn =
∏
n≥1

1

1− qn
,

which absolutely converges for |q| < 1. For notational convenience, recall that the q-Pochhammer

symbol defined by

(a; q)∞ :=
∏
n≥1

(
1− aqn−1

)
.

In particular, we may write P(q) = (q, q)−1
∞ . We now recall a bound and an asymptotic for P(q)

when 0 < q < 1, which can be found in Shakarchi and Stein’s book on complex analysis as an
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exercise (see [14, Ch. 10.4.1]). Namely we have for 0 < q < 1 that

logP(q) ≤ π2q

6(1− q)
, (2.8)

logP(q) ∼ π2

6(1− q)
. (2.9)

The next exercise in [14] then uses (2.8) and (2.9) to show the following subexponential bound on

p(n):

p(n) ≤ e(π
2/6+1)

√
n. (2.10)

The bound (2.10) reflects the shape of the asymptotic given by Hardy and Ramanujan given in

(1.1). We also require Euler’s pentagonal number theorem, which will later allow us to bound P(q)

when it appears in a denominator. This classical theorem takes the form

P(q)−1 =
∏
n≥1

(1− qn) = 1 +
∑
m≥1

(−1)m
(
qm(3m+1)/2 + qm(3m−1)/2

)
. (2.11)

Lastly, we state for later reference the modular transformation law for P, which can be found in [2,

Thm. 5.1], and which is crucial for estimating the modular component of the generating function

for D×
k (r, t;n):

P(e−z) =

√
z

2π
exp

(
π2

6z
− z

24

)
P
(
e−

4π2

z

)
. (2.12)

2.3. Euler-Maclaurin Summation. In this subsection, we recall the asymptotic version of the

classical Euler-Maclaurin summation due to Zagier [16], and another version due to Brignmann,

Craig, Ono, and Males in [5] that is suitable for application to functions with poles. Euler-Maclaurin

summation quantifies the difference between the integral
∫ b
a f(x) dx and an approximation of this

integral, namely, the finite sum f(a+ 1) + · · ·+ f(b). In particular, we have

b−a∑
m=1

f(a+m)−
∫ b

a
f(x) dx =

N∑
m=1

Bm

m!

(
f (m−1)(b)− f (m−1)(a)

)
+ (−1)N+1

∫ b

a
f (N)(x)

B̂N (x)

N !
dx,

where B̂n(x) := Bn(x−⌊x⌋), with ⌊x⌋ denoting the greatest integer less than or equal to x. Zagier

proved in [16] that, if there exists an asymptotic expansion for f(z) near z = 0, the Euler-Maclaurin

summation formula may be used to give an asymptotic for
∑∞

m=1 f(mz) as z → 0. Here, we mean

asymptotic expansion in the strong sense, where we write f(z) ∼
∑

n≥0 bnz
n if

f(z)−
N∑

n=1

bnz
n = O(zN+1) as z → 0,

for all N > 0. Many authors have applied this asymptotic form of Euler-Maclaurin summation in

recent years to understand the growth of generating functions without nice modular transformation

laws (for examples, see [3, 5, 6, 7, 8, 9, 12]).

We use the following notations freely throughout the paper. We also set

If :=

∫ ∞

0
f(x) dx
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for any function f for which this integral converges. In [16], Zagier requires that f have rapid

decay at infinity, that is f(x) = O(x−N ) as x → ∞ for any N > 1. The version derived in [5] by

Bringmann, Craig, Ono, and Males requires a less restrictive decay condition on f(x) at infinity,

which they refer to as sufficient decay, which holds if f(x) = O(x−N ) as x → ∞ for some N > 1.

Furthermore, they allow f to have poles at 0. Before stating this version, we state the original

version due to Zagier.

Proposition 2.1 ([16, Proposition 3]). Let f be a C∞ function on the positive real line which has

asymptotic expansion f(x) ∼
∑∞

n=0 cnx
n at the origin, and together with all its derivatives, is of

rapid decay at infinity. Then the function g(x) =
∑∞

m=1 f(mx) has asymptotic expansion

g(x) ∼
If
x

+
∞∑
n=0

cn
Bn+1

n+ 1
(−x)n

as x→ 0+.

Note that this proposition only applies to functions on the real line. In contrast, the version in

[5] may be used for functions on the complex plane. However, we must take z → 0 within some

specified region in order for the asymptotic to hold. To make this precise, for θ > 0, write

Dθ := {z ∈ C : |arg z| < π

2
− θ}.

Notice that if we set z = η+ iy for η > 0, then z ∈ Dθ if and only if 0 < |y| < ∆η for some constant

∆ > 0 depending on θ.

We now provide the asymptotic version of Euler-Maclaurin summation due to Bringmann, Craig,

Males, and Ono which may be used when f has a pole at zero.

Proposition 2.2 ([5, Lemma 2.2]). Let 0 < a ≤ 1 and A ∈ R+, and let f(z) ∼
∑∞

n=n0
cnz

n where

n0 ∈ Z as z → 0 in Dθ. Furthermore, assume that f and all of its derivatives are of sufficient

decay in Dθ. Then we have that

∞∑
n=0

f((n+ a)z) ∼
−2∑

n=n0

cnζ(−n, a)zn +
I∗f,A
z

− c−1

z
(log(Az) + ψ(a) + γ)−

∞∑
n=0

cn
Bn+1(a)

n+ 1
zn

as z → 0 uniformly in Dθ, where

I∗f,A :=

∫ ∞

0

(
f(u)−

−2∑
n=n0

cnu
n − c−1e

−Au

u

)
du,

ψ is the digamma function, γ is the Euler-Mascheroni constant, and ζ(s, a) :=
∑

n≥0
1

(n+a)s is the

Hurwitz zeta function.

2.4. Variants on Wright’s Circle Method. In this subsection, we recall variants on Wright’s

circle method which will be instrumental to our proof of Theorem 1.1. To begin, we recall the

intuition which informs the method. Wright’s circle method (see [15]), although inspired by Hardy-

Ramanujan’s circle method, differs from it by positing only that the generating function F (q) is

largest near a finite number of singularities, and that the contribution of the other singularities can

be treated as an error terms in the integral. Thus, asymptotics for the coefficients of the q-series

for F (q) may be extracted using Cauchy’s integral formula.
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More precisely, given a circle C centered at the origin with radius less than one, we use the term

major arc for the region of C where F (q) is largest, which should include its principal singularities. In

particular, consider a circle of radius e−η and let L := {η+ iy | |y| ≤ π} so that C := {e−z | z ∈ L}.
As in [3, 8, 12], the relevant generating function to our application of the circle method has a

dominating singularity at q = 1. Thus, the major arc C1 is given by C1 = {e−z | z ∈ L ∩Dθ} for

some θ > 0. The minor arc of C is then defined by C2 := C \ C1. As mentioned above, the integral

along the arc C1 is the main term in the asymptotic, and the integral along C2 is an error term.

Here, we recall the version of Wright’s circle method due to Bringmann, Craig, Males, and Ono

(see [5]) which we will use in the proof of Theorem 1.1.

Theorem 2.3 ([5, Proposition 4.4]). Suppose that F (q) is analytic for q = e−z where z = x + iy

satisfies x > 0 and |y| < π, and suppose that F (q) has an expansion F (q) =
∑∞

n=0 c(n)q
n near

q = 1. Let N,∆ > 0 be fixed constants. Consider the following hypotheses:

(1) As z → 0 in the bounded cone |y| ≤ ∆x (major arc), we have

F (e−z) = CzBe
A
z

N−1∑
j=0

αjz
j +Oθ(|z|N )

 ,

where αs ∈ C, A,C ∈ R+, and B ∈ R.
(2) As z → 0 in the bounded cone ∆x ≤ |y| < π (minor arc), we have∣∣F (e−z)

∣∣≪θ e
1

Re(z)
(A−ρ)

for some ρ ∈ R+.

If (1) and (2) hold, then as n→ ∞ we have

c(n) = Cn
1
4
(−2B−3)e2

√
An

(
N−1∑
r=0

prn
− r

2 +O
(
n−

N
2

))
,

where pr :=
r∑

j=0
αjcj,r−j and cj,r :=

(
− 1

4
√
A

)√
A

j+B+1
2

2
√
π

· Γ(j+B+ 3
2
+r)

r!Γ(j+B+ 3
2
−r)

.

Remark. Although the constant C in Theorem 2.3 does not appear in [5], we see that it is equivalent

to the result in [5] by factoring out C from each αi.

We also require Ngo and Rhoades’ implementation of the circle method to functions of logarithmic

type (defined in [13] and restated in the proposition below). Before stating this variant, we define

for brevity

(v,m) :=
Γ
(
v +m+ 1

2

)
m!Γ

(
v −m+ 1

2

) .
For functions L∗, ξ∗ which are holomorphic in the unit disk, we also define the q-series coefficients

of L∗(q)ξ∗(q) by

V (n) =
1

2πi

∫
C

L∗(q)ξ∗(q)

qn+1
dq.

We then have the following from [13].
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Theorem 2.4 ([13, Proposition 1.9]). Let L∗, ξ∗ be holomorphic functions within the unit disk

satisfying the following hypotheses for q = e−z, z = η + iy with η > 0, 0 ≤ |y| ≤ π:

(1) For every positive integer N , as |z| → 0 in Dθ, we have that

L∗(q) =
log z

zB

(
N−1∑
m=0

αmz
m +Oθ(z

N )

)
,

where αm ∈ C and B is a real constant (in this case we say L(q) has logarithmic type near 1).

(2) As z → 0 in Dθ, we have that

ξ∗(q) = zB−1ec
2/t
(
1 +O

(
e−γ/z

))
,

where γ is a positive real number.

(3) As z → 0 within the region D′
θ := {z ∈ C | Re z > 0, z /∈ Dθ},

|L∗(q)| ≪θ η
−C ,

where C = C(θ) is a positive real constant.

(4) As z → 0 within the region D′
θ

|ξ∗(q)| ≪θ ξ(|q|)e−ϵ/η,

where ϵ = ϵ(θ) is a positive real constant.

Then we have an asympototic formula for the q-coefficients of L∗(q)ξ∗(q)

V (n) = e2c
√
nn−

1
4

(
N−1∑
m=0

n−
m
2
(
c′r + cr log n

)
+O

(
n−

N
2 log n

))
where, with δm≥1 = 1 when m ≥ 1 and zero for m < 1, we set

a∗m(s) := −
min(s−1,m)∑

j=0

Γ(s+ 1)(−2)2j−m

Γ(s− j)(j + 1)(2π)
1
2

(s− 1− j,m− j),

ℓs,m :=

(
− 1

4c

)m cs−
1
2

−4π
1
2

(s,m),

ℓ′s,m :=

(
− 1

4c

)m cs−
1
2 log c

2π
1
2

(s,m) + δm≥1
cs−m− 1

2

2m+ 1
2

a∗m−1(s)

and

cm :=

m∑
s=0

αsℓs,m−s c′m :=

m∑
s=0

αsℓ
′
s,m−s.

Remark. In [13], hypothesis (2) requires that γ > c2. However, it is sufficient to have γ > 0 for the

estimate arising from (2) to be an error term. Similarly, in [13], the statements of hypotheses (3)

and (4) are written as

L∗(q) ≪θ z
−C

|ξ∗(q)| ≪θ ξ
∗(|q|)e−ϵ/z.

However, these are simple typographical errors, as can be discovered by closely reading the proof.
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3. Estimates on the Major/Minor Arcs

3.1. Generating Functions. In this subsection, we break the generating function D×
k (r, t; q) of

D×
k (r, t; q) into its modular and summatory components, and then we write the latter in a form to

which we can apply Euler-Maclaurin summation. Let

D×
k (r, t; q) :=

∑
n≥0

D×
k (r, t; q)q

n

be the generating function of D×
k (r, t;n). We then have the following expression for D×

k (r, t; q).

Lemma 3.1. We have that

D×
k (r, t; q) =

(qk; qk)∞
(q; q)∞

∑
k ∤m

m≡r (mod t)

qm

1− qm
,

and if gcd(k, t) = 1 then

D×
k (r, t; q) =

(qk; qk)∞
(q; q)∞

 ∑
m≡r (mod t)

qm

1− qm
−

∑
m≡r̄k,t (mod t)

qmk

1− qmk

 ,

where 1 ≤ r̄k,t ≤ t is the representative of rk−1 (mod t).

Proof. First note that when gcd(k, t) = 1 the second equality follows from the first by writing∑
k ∤m

m≡r (mod t)

qm

1− qm
=

∑
m≡r (mod t)

qm

1− qm
−

∑
k|m

m≡r (mod t)

qm

1− qm

and changing variables. It is a classical fact that ξk(q) := (qk+1, qk+1)∞(q, q)−1
∞ is the generating

function for k-indivisible partitions. Now for k ∤ m define D×
k,m(q) as the generating function for

k-indivisible partitions where each partition is weighed by how many parts of size m it contains.

We see that

D×
k,m(q) = ξk(q) ·

∑
j≥1 jq

jm∑
j≥0 q

jm
= ξk(q) ·

qm(1− qm)

(1− qm)2
= ξk(q) ·

qm

1− qm
.

Recalling equation (1.4), the result then follows by summing over m ≡ r (mod t) for k ∤ m. □

We break this generating function up into the following components:

ξk(q) :=
(qk, qk)∞
(q, q)∞

, L×
k (r, t; q) :=

∑
k ∤m

m≡r (mod t)

qm

1− qm
.

We call ξk(q) the modular component and Lk(r, t; q) the summatory component.2

Remark. Note that ξk(q) exactly matches that found in the authors’ previous work [12] because

the number of k-regular partitions and the number of k-indivisible partitions are in fact the same.

Thus, we may apply many of the same estimates derived in [12] here. As the estimates derived in

2In Beckwith and Mertens work (see [3]), the summatory component L is multiplied by (2π)−1/2q1/24 to easily apply
Ngo-Rhodes’ variant of the circle method. The notation in this paper matches that of Craig in [8] and the authors
in [12].
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[12] are explicit and those needed in this paper are only asymptotic, we provide alternate proofs of

these estimates for ease of reading.

We thus first concern ourselves with L×
k (r, t; q). For brevity, we will suppress the dependence of

r̄k,t on k, t where these are clear. Now define E×(z) := e−z

1−e−z = Li0(q). We now see that when

gcd(k, t) = 1, L×
k (r, t; q) may be expressed as two sums over integers of E× evaluated at specific

values.

Lemma 3.2. When gcd(k, t) = 1, we have

L×
k (r, t; q) =

∑
ℓ≥0

E×((ℓt+ r)z)−
∑
ℓ≥0

E×((ℓt+ r̄)zk).

Proof. Immediate from the definitions of L×
k (r, t; q) and E×(z). □

Lemma 3.2 will allow us to use Euler-Maclaurin summation to estimate L×
k (r, t; q) on the major

arc when k, t are coprime using similar techniques to those found in [3, 8, 12]. On the other hand, if

gcd(k, t) = d > 1, then we can reduce to when k, t are coprime. In particular, the ξk component does

not change in this case, and the summatory component changes in a predictable way. This involves

casework on d and on r. In these cases, the summatory component is either zero, matches that of

Beckwith and Mertens,3 or may be written as L×
k/d(r/d, t/d, q

d). Thus, the methods established in

this paper and in [3] would be sufficient to analyze the behavior of the biases when gcd(k, t) > 1.

We will now provide a polylogarithm expansion for E×(z), as well as a series expansion near zero

which we may apply when performing Euler-Maclaurin summation.

Lemma 3.3. We have that

E
(N)
× (z) = (−1)N Li−N (q) =

N !(−1)N

zN+1
+

∞∑
m=0

BN+m+1

(N +m+ 1) ·m!
zm, (3.1)

where the second equality only holds when |z| < 2π.

Proof. Immediate from (2.3) and (2.2) as well as the special values ζ(−N−m) = (−1)N+mBN+m+1

N+m+1 .

□

Remark. E× and all its derivatives have rapid decay within any region Dθ. However, E
(N)
× does

have a pole of order N +1 at zero, which through Proposition 2.2 ultimately leads to the digamma

function appearing in the asymptotic derived in Theorem 1.1. In contrast, the pole cancels in the

analogue of E× within [12].

Specializing Lemma 3.3 to N = 0, we have a series expansion for E× near zero, by which we

define constants em by

E×(z) =
e−1

z
+
∑
m≥0

em
m!
zm :=

1

z
+
∑
m≥0

Bm+1

(m+ 1) ·m!
zm.

We now state for later use the transformation law for ξk(q), which may also be found in [12,

Lemma 3.4].

3As before, Beckwith and Mertens include a factor of (2π)−1/2q1/24
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Lemma 3.4. For q = e−z and ε := exp
(
−4π2

kz

)
, we have that

ξk(q) =
1√
k
exp

(
π2

6z

(
1− 1

k

)
+

z

24
(k − 1)

)
P(εk)

P(ε)
.

Proof. This follows immediately from the modular transformation law (2.12) and the expression

ξk(q) =
P(q)
P(qk)

. □

3.2. Asymptotics on the Major Arc. In this subsection, we provide the necessary asymptotics

for ξk(q) and L
×
k (r, t; q) on the major arc which we will need to prove Theorem 1.1. The arguments

for L×
k (r, t; q) follow similarly to those for Lk(r, t; q) in [12], but they require the use of Proposi-

tion 2.2 because E× has a pole at zero. This leads to the appearence of the digamma function ψ

in the asymptotic derived in Theorem 1.1.

We now obtain the asymptotic for L×
k (r, t; q) on the major arc. Let ∆ > 0 be fixed, and set

δ :=
√
1 + ∆2. Furthermore from here on we refer to Dθ := {η + iy | η > 0, |y| ≤ ∆η} as the major

arc.

Lemma 3.5. Let 0 < a ≤ 1, then∑
m≥0

E×((m+ a)z) = − log z

z
− ψ(a)

z
+O(1)

as z → 0 uniformly in Dθ.

Proof. We apply Proposition 2.2 to E× with A = 1 using the series expansion derived in Lemma 3.3.

Because E× has principal part 1
z , this yields∑

m≥0

E×((m+ a)z) =
I∗E×,1

z
− 1

z
(log(z) + ψ(a) + γ) +O(1).

We now must compute I∗E×,1, this is precisely

I∗E×,1 =

∫ ∞

0

e−u

1− e−u
− e−u

u
du.

By the integral representation for ψ provided in equation (2.4) we have that I∗E×,1 = −ψ(1). We also

see that ψ takes on the special value ψ(1) = γ from equation (2.5). This concludes the proof. □

We may now apply Lemma 3.5 to each portion of L×
k (r, t; q) separately.

Corollary 3.6. Let k, t ≥ 2 be coprime integers and let 1 ≤ r ≤ t, then

L×
k (r, t; q) = −K log z

tz
+

1

tz

(
k−1ψ

( r̄
t

)
− ψ

(r
t

)
−K log t+

log k

k

)
+O(1),

for K := 1− 1/k, as z → 0 uniformly in Dθ.

Proof. Write L×
k (r, t; q) as in Lemma 3.2 as

L×(r, t; q) =
∑
m≥0

E×

((
m+

r

t

)
tz
)
−
∑
m≥0

E×

((
m+

r̄

t

)
tkz
)

and then apply Lemma 3.5 with a = r
t ,

r̄
t and the changes of variables z = tz, tkz respectively. □
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For ease of reading, we now prove an asympototic version of Lemma 3.8 from [12]. To do so,

we first require a basic lemma concerning exponential sums and geometric series, which appears as

Lemma 3.7 in [12].

Lemma 3.7. Suppose we have a series of the form
∑

m≥b e
f(x) such that f ′(x) is decreasing and

f ′(b) < 0 then ∑
m≥b

ef(x) ≤ ef(b)

1− ef ′(b)
.

Proof. By the mean value theorem, for every m ≥ b, f(m+1)−f(m) = f ′(c) ≤ f ′(b) for c between

m and m+ 1. Therefore, using the geometric series formula,∑
m≥b

ef(x) ≤
∑
m≥b

ef(b)e(m−b)f ′(b) =
ef(b)

1− ef ′(b)
. □

We may now prove the required asymptotic

Lemma 3.8. Let z = η + iy be any complex number 0 ≤ |y| ≤ ∆η, then as η → 0 we have

ξk(q) = Φk(z)
(
1 +O(e−ρ/z)

)
,

where ρ > 0 and

Φk(z) :=
1√
k
exp

(
π2

6z

(
1− 1

k

)
+

z

24
(k − 1)

)
.

Proof. Recalling that ε = e−4π2/kz, Lemma 3.4 and Euler’s pentagonal number theorem (2.11) gives

ξk(q) = Φk(z) ·
P(εk)

P(ε)
= Φk(z) ·

1 +
∑
m≥1

(−1)m
(
ε

m(3m+1)
2 + ε

m(3m−1)
2

)1 +
∑
m≥1

p(m)εkm

 .

Applying equation (2.10), we may write∣∣∣∣∣∣
∑
m≥1

p(m)εkm

∣∣∣∣∣∣ ≤
∑
m≥1

e2.7
√
m |ε|km =

∑
m≥1

e2.7
√
m−4π2mRe(1/z).

Using that Re(1/z) = η

|z|2 ≥ 1
δη and differentiating with respect to m yields

d

dm

(
2.7

√
m− 4π2mRe(1/z)

)
=

1.35√
m

− 4π2Re

(
1

z

)
≤ 1.35− 4π2

δη
.

For small enough η, this quantity is negative, and so Lemma 3.7 applies to yield P(εk)−1 = O(εk).

Therefore, we have that

ξk(q) = Φk(q) · (1 +O(ε))(q +O(εk)) = Φk(q)(1 +O(e−ρ/z)),

where ρ = −4π2/k > 0. □

3.3. Asymptotics on the Minor Arc. In this subsection, we bound L×
k (r, t; q) and ξk(q) on the

minor arc. We begin by bounding L×
k (r, t; q).
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Lemma 3.9. Let k, t ≥ 2 and 1 ≤ r ≤ t. Assuming that z = η + iy satisfies η > 0, then we have∣∣L×
k (r, t; q)

∣∣ ≤ eη

η2
.

Proof. By the triangle inequality and arguing similarly to Lemma 3.10 in [12], we have that∣∣L×(r, t; q)
∣∣ ≤ ∑

m≥1

|q|m

1− |q|m
=
∑
m≥1

σ0(m) |q|m ,

where σ0 denotes the number of positive integer divisors of m. Because σ0(m) ≤ m, we have∣∣L×(r, t; q)
∣∣ ≤ ∑

m≥1

mqm =
|q|

(1− |q|)2
.

Applying the tangent bound for e−z, we see that

|q|
(1− |q|)2

=
eη

(eη − 1)2
≤ eη

η2
. □

In order to apply Ngo and Rhodes version of Wright’s circle method (see Theorem 2.4), we

require the following estimate for |ξk(q)| in terms of ξk(|q|) on the minor arc.

Lemma 3.10. As z = η + iy → 0 within the region ∆η ≤ |y| ≤ π we have that

|ξk(q)| ≪k,∆ ξk(|q|)e
−ϵ
η ,

for some ϵ > 0, so long as ∆ is sufficiently large.

Proof. First we apply Lemma 3.4 to see that

ξk(q) =

√
1

k
exp

(
π2

6z

(
1− 1

k

)
+

z

24
(k − 1)

)
P(e−4π2/z)

P(e−4π2/kz)
.

Taking absolute values then yields, for K := 1− 1/k, that

|ξk(q)| =
√

1

k
exp

(
π2K Re(1/z)

6
+

η

24
(k − 1)

) ∣∣∣P(e−4π2/z)
∣∣∣∣∣P(e−4π2/kz)
∣∣

≤
√

1

k
exp

(
π2K Re(1/z)

6
+

η

24
(k − 1)

)
P(e−4π2 Re(1/z))∣∣P(e−4π2/kz)

∣∣ .
Now note that, as we are on the minor arc, Re

(
1
z

)
= η

|z|2 ≤ 1
δ2η

. Thus, we have that

exp

(
π2K Re(1/z)

6
+

η

24
(k − 1)

)
≤ Φk(η) exp

(
−π

2K

6η

(
1− 1

δ2

))
.

In light of this inequality, set

ϵ :=
π2K

6

(
1− 1

δ2

)
> 0.

We now apply the transformation law given in Lemma 3.4 once more along with the fact that

|q| = e−η to yield

|ξk(q)| ≤ Φk(η)e
−ϵ/ηP(e−4π2 Re(1/z))∣∣P(e−4π2/kz)

∣∣ = ξk(|q|)e−ϵ/η P(e−4π2/η)

P(e−4π2/ηk)
· P(e−4π2 Re(1/z))∣∣P(e−4π2/kz)

∣∣ .
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We may then choose δ > 1 sufficiently large such that Re
(
1
z

)
≤ 1

ηk . For such δ, we have

|ξk(q)| ≤ ξk(|q|)e−ϵ/η P(e−4π2/η)∣∣P(e−4π2/kz)
∣∣ .

Applying Equation (2.8) furnishes the inequality

P
(
e−4π2/η

)
≤ exp

(
π2e−4π2/η

6(1− e−4π2/η)

)
≤ exp

( η
24

)
= O(1),

using the tangent bound for ex. To bound the denominator, we may again use Euler’s pentagonal

number theorem (as in Lemma 3.8) to see that∣∣∣P(e−4π2/kz)
∣∣∣−1

= 1 +O
(
e−4π2/kz

)
.

We may then use the inequality Re
(
1
z

)
= η

|z|2 ≥ η
π2+η2

> 0.99η
π2 for small η to yield that∣∣∣P(e−4π2/kz)

∣∣∣−1
= 1 +O

(
e−3.96η/k

)
= O(1).

Combining all of the above yields the desired estimate

|ξk(q)| ≤ ξk(|q|) ·O
(
e
− ϵ

η

)
.

□

4. Proof of Theorem 1.1

Here we apply Theorems 2.3 and 2.4 to D×
k (r, t; q) to obtain Theorem 1.1. To apply Theorems 2.3

and 2.4, we break up our series as

ξk(q)

(
L×
k (r, t; q) +

K log z

tz

)
=:
∑
n≥0

ak(r, t;n)q
n =: Ak(r, t; q) (4.1)

ξk(q)
K log z

tz
=:
∑
n≥0

ck(t;n)q
n. (4.2)

so that D×
k (r, t;n) = ak(r, t;n)− ck(t;n) by Lemma 3.1. Notice that Theorem 2.3 directly applies

to (4.1), whereas Theorem 2.4 applies to (4.2).

Lemma 4.1. Let k, t ≥ 2 and let 1 ≤ r ≤ t. We have

ak(r, t;n) =
31/4e

π
√

2Kn
3

23/4K1/4n1/4πt
√
k

(
k−1ψ

( r̄
t

)
− ψ

(r
t

)
+

log k

k
−K log t+O(n−1/2)

)
as n→ ∞, where K := 1− 1/k.

Proof. To apply Theorem 2.3 to (4.1), we must show that

Ak(r, t; q) =
1

tz
√
k
e

π2K
6z

(
k−1ψ

( r̄
t

)
− ψ

(r
t

)
−K log t+

log k

k
+O(z)

)
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on the major arc (see condition (1)). This follows directly from Corollary 3.6 and Lemma 3.8. We

must also show on the minor arc that

|Ak(r, t; q)| ≪∆ e
1

Re(z)

(
π2K
6

−ρ
)

for some ρ > 0 (see condition (2)). This follows directly from Lemmas 3.9 and 3.10 for sufficiently

large δ > 1. Theorem 2.3 then implies the result. □

We will now apply Theorem 2.4 in order to estimate ck(t;n).

Lemma 4.2. Let k, t ≥ 2 and N > 0. We have

ck(t;n) =
31/4e

π
√

2K
3

n

23/4K1/4n1/4πt
√
k

(
−K

2
log

(
π

√
K

6

)
− K

2
log (n) +O(n−1/2 log n)

)
as n→ ∞, where K := 1− 1/k.

Proof. As before, let η > 0, z = η + iy, q = e−z, and define the major arc by 0 ≤ |y| ≤ ∆η and

the minor arc by ∆η ≤ |y| ≤ π. For convenience, we rescale ξk(q)
K log z

tz to ξ∗k(q)L
∗
k(t; q), which are

defined by

ξ∗k(q) :=
√
k exp

(
−z(k − 1)

24

)
ξk(q)

and

L∗
k(t; q) :=

K log z

tz
√
k

exp

(
z(k − 1)

24

)
.

We see that L∗
k(t; q) trivially satisfies hypothesis (1) with B = 1 for any N > 0. Furthermore,

L∗
k(t; q) satisfies hypothesis (3) on the minor arc, as for any ∆, if z = η + iy → 0 within the region

∆η ≤ |y| ≤ π, we have that ∣∣∣∣ log zz
∣∣∣∣≪∆

1

η2
.

We now verify that ξ∗k(q) satisfies hypotheses (2) and (4). On the major arc, Lemma 3.8 implies

that

ξ∗k(q) = e
π2K
6z

(
1 +O

(
e−

4π2

kz

))
,

and so ξ∗k satisfies (2) with β = 0, c2 = π2K
6 , and γ = 4π2

k . Finally, Lemma 3.10 immediately

implies, on the minor arc, that

|ξ∗k(q)| ≪k,∆ ξ∗k(|q|)e
− ϵ

η

for some ϵ > 0 when ∆ is chosen sufficiently large. Thus, we may apply Theorem 2.4 which

immediately implies the result if we choose N = 1. □

Combining Lemmas 4.1 and 4.2 yields Theorem 1.1.

5. Proof of Theorem 1.4

5.1. Estimates for Differences of the Digamma Function. In this subsection, we provide

useful estimates for differences ψ(a)−ψ(b) of the digamma function. Throughout, we only consider
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the digamma function on (0,∞). Define for a > 0 the function

ψa(x) := ψ(x+ a)− ψ(x).

Because ψ is increasing, ψa is always positive. First note that we may successively apply the

recurrence (2.6) to see, for any integer N ≥ 1, that

ψa(x) = ψa(x+N) +
N−1∑
n=0

a

(x+ n)(x+ a+ n)
. (5.1)

In order to use this equation to obtain an infinite series representation of ψa(x), we require the

following lemma.

Lemma 5.1. For any a > 0, ψa is decreasing and

lim
x→∞

ψa(x) = 0.

Proof. Using the logarithmic bounds (see (2.7)) for ψ(x), we have

0 < ψa(x) < log

(
x+ a

x

)
− 1

2(x+ a)
+

1

x
< log

(
1 +

a

x

)
+

1

x
,

which implies the desired limit. Let y > x > 0. We must prove that ψa(y) < ψa(x). Write this

inequality using (5.1) as

ψa(x+N) +

N−1∑
n=0

a

(x+ n)(x+ a+ n)
> ψa(y +N) +

N−1∑
n=0

a

(y + n)(y + a+ n)
.

We also have
1

(x+ i)(x+ a+ i)
>

1

(y + i)(y + a+ i)

since y > x > 0. As ψa is arbitrarily close to 0 for large inputs, we choose N large enough to make

|ψa(y +N)− ψa(x+N)| ≤ |ψa(x+N)|+ |ψa(y +N)| < 1

x(x+ a)
− 1

y(y + a)
,

which proves that ψa is decreasing. □

Lemma 5.1 combined with equation (5.1) gives us the expansion

ψa(x) = a

∞∑
m=0

1

(x+m)(x+ a+m)
. (5.2)

We will later require the following estimates for the ψ difference function.

Lemma 5.2. Let 0 < b < a ≤ 1, then we have the following inequalities:

(a− b)

(
1

ab
+

1

b+ 1

)
< ψ(a)− ψ(b) < (a− b)

(
1

ab
+
π2

6

)
.

Further, if a, b > 1
2 , then we have

ψ(a)− ψ(b) < (a− b)

(
1

ab
+
π2

6
− 5

9

)
.
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Proof. Using the expansion (5.2) and splitting off the first term, we see that

ψ(a)− ψ(b) = (a− b)

∞∑
m=0

1

(b+m)(a+m)
≥ (a− b)

(
1

ab
+

∞∑
m=1

1

(b+m)(1 +m)

)
because a ≤ 1. Similarly, because b > 0 we have that

ψ(a)− ψ(b) > (a− b)

(
1

ab
+

∞∑
m=1

1

(m+ 1)(mb+m)

)
= (a− b)

(
1

ab
+

1

b+ 1

)
,

where the last equality is a simple telescoping sum. For the other direction we may use that a, b > 0

to see that

ψ(a)− ψ(b) = (a− b)
∞∑

m=0

1

(b+m)(a+m)
≤ (a− b)

(
1

ab
+

∞∑
m=1

1

m2

)
= (a− b)

(
1

ab
+
π2

6

)
.

For the case a, b > 1
2 , if we use the bound

1

(a+ 1)(b+ 1)
<

4

9
,

instead of bounding by 1, we get the result. □

When one of the values is 1, we have stronger bounds

Lemma 5.3. Let 0 < a < 1, then we have that

(1− a)

(
1

a
+
π2

6
− 1

)
< ψ(1)− ψ(a) < (1− a)

(
1

a
+ 1

)
.

Proof. As in the proof of Lemma 5.2, write

ψ(1)− ψ(a) = (1− a)

(
1

a
+

∞∑
m=1

1

(m+ 1)(a+m)

)
.

We then see that because 0 < a < 1

π2

6
− 1 =

∞∑
m=1

1

(m+ 1)2
≤

∞∑
m=1

1

(m+ 1)(a+m)
≤

∞∑
m=1

1

m(m+ 1)
= 1.

This yields the result. □

5.2. Proof of (1) in Theorem 1.4. Let k, t ≥ 2 be coprime and let 1 ≤ r ≤ t− k. For the proof

of (1), we may instead show the result when mk ≤ t < (m + 1)k for every nonnegative integer

m. Since k, t are coprime, we have mk < t. Note that when m = 0, there is nothing to check,

as t − k ≤ 0, and there is no 1 ≤ r ≤ t − k. Thus suppose that m ≥ 1. As before, we will use

Corollary 1.2 and instead show ψk,t(r) > ψk,t(r + k). Note that because r ̸≡ 0 (mod t), we have

that r̄ ̸≡ 0 (mod t), and this implies that r + k = r̄ + 1 because r̄ < t.

We first check the lower r values, namely when 1 ≤ r < m. In this case, we require the following

lemma.

Lemma 5.4. Let x, a be positive real numbers and k ≥ 2 an integer. Then we have

kψak(xk) > ψa(x).
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Proof. We expand both sides by (5.2), which yields

kψak(xk) = ak2
∞∑
n=0

1

(xk + n)(xk + ak + n)
and ψa(x) = a

∞∑
n=0

1

(x+ n)(x+ a+ n)
.

Comparing term by term, we see that

k2

(xk + n)(xk + ak + n)
≥ 1

(x+ n)(x+ a+ n)
⇐⇒ k2(x+ n)(x+ a+ n) ≥ (xk + n)(xk + ak + n).

The right hand side holds if and only if

(xk + nk)(xk + ak + nk) ≥ (xk + n)(xk + ak + n).

However, this inequality holds trivially because everything is positive. In fact, equality only holds

when n = 0. Thus, the inequality is strict for at least one term, implying the result. □

Let 1 ≤ r̄ ≤ m. Thus r ≡ kr̄ (mod t), and 1 ≤ kr̄ ≤ km ≤ t, so r = kr̄. Applying Lemma 5.4

with a = 1
t and x = r̄

t then proves (1), noting that r + k = r̄ + 1 because m < t. For r ≥ m+ 1, it

suffices to show the following lemma, which is a rewritten form of (1) appearing in Theorem 1.4.

Lemma 5.5. Let k, t be coprime and suppose that mk ≤ t < (m+1)k for some m ≥ 2. If r̄ ≥ m+1,

then we have that

kψk/t

(r
t

)
> ψ1/t

(
r

t

)
.

Proof. We consider (k,m, t) = (2, 1, 3) separately. Indeed, this can easily be checked numerically.

Thus, the (k,m) = (2, 1) case is covered. Here we may replace r by the lowest value not covered

by the first case and r by t− k by Lemma 5.1. Thus, it suffices to prove

kψk/t

(
1− k

t

)
> ψ1/t

(
m+ 1

t

)
.

Using (5.2), we may write

kψk/t

(
1− k

t

)
= k2

∞∑
j=1

1

j(jt− k)
, ψ1/t

(
m+ 1

t

)
=

∞∑
j=1

t

(jt− t+m+ 1)(jt− t+m+ 2)
.

If we look at each term, it suffices to show that

k2

j(jt− k)
>

t

(jt− t+m+ 1)(jt− t+m+ 2)

or, equivalently,

k2 >
jt

jt− t+m+ 2
· jt− k

jt− t+m+ 1
.

Because k ≥ 2, we have

jt(jt− k) < (jt− 1)(jt− k + 1),

which upon expanding and cancelling terms we are left with k > 1. Thus we need to prove that,

k2 >
jt− 1

jt− t+m+ 2
· jt− k + 1

jt− t+m+ 1
.
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We now see that if m ≥ 2, then km ≥ m + 2, which implies t ≥ km + 1 ≥ m + 3. If m = 1, then

k ≥ 3 would imply t ≥ km+ 1 ≥ m+ 3. Thus we have that

jt− 1

jt− t+m+ 2

is maximized when j = 1. Similarly, we have that the second term

jt− k + 1

jt− t+m+ 1
,

is maximized when j = 1 if the numerator is larger than the denominator. That is we must have

k+m ≤ t. But notice that we have t ≥ km+ 1 = (k− 1)(m− 1) + k+m ≥ k+m because m ≥ 1.

Thus, we only need to check the case when j = 1, which may be written as

k2 >
t(t− k)

(m+ 1)(m+ 2)
.

We may then cross-multiply to write this inequality as

(m+ 1)(m+ 2) >
t

k

(
t

k
− 1

)
,

which holds because t < (m+ 1)k. □

As before, the above shows (1) due to Corollary 1.2 and the fact that r + k = r̄ + 1.

5.3. Proof of (2) and (3) in Theorem 1.4. We now prove (2), and in the process prove (3).

Let 1 ≤ r ≤ y ≤ t, r < s ≤ t, and k, t ≥ 2 be coprime. In light of Corollary 1.2, it suffices to show

that ψk,t(r) > ψk,t(s). In other words, we must show that

ψ
(s
t

)
− ψ

(r
t

)
>

1

k

(
ψ
( s̄
t

)
− ψ

( r̄
t

))
,

where 1 ≤ r̄ ≤ t is the representative of rk−1 mod t, and similarly for s̄. The left hand side is

minimized when s = y + 1, r = y whereas the right hand side is maximized when s̄ = 1, r̄ = 1
t .

Thus we may instead show that

ψ

(
y + 1

t

)
− ψ

(y
t

)
>

1

k

(
ψ (1)− ψ

(
1

t

))
.

Lemma 5.3 implies that

ψ (1)− ψ

(
1

t

)
<
t2 − 1

t
.

Likewise, Lemma 5.2 implies that

ψ

(
y + 1

t

)
− ψ

(y
t

)
>

1

t

(
t2

(y + 1)y
+

t

y + t

)
>

1

t

(
2t2 + y(y + 1)

2y(y + 1)

)
>

1

t

(
t2 − 1

y(y + 1)

)
.

Therefore, it suffices to take

k ≥ y(y + 1),

proving (2).
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Now we prove (3). When y = t− 1, we may use Lemma 5.3 instead of Lemma 5.2 to see that

ψ (1)− ψ

(
t− 1

t

)
>

1

t

(
t

(t− 1)
+
π2

6
− 1

)
>
π2

6t
.

Thus it suffices to take k ≥ 6(t2−1)
π2 , proving (3).

5.4. Proof of (4) in Theorem 1.4. Let k = mt−1, then we wish to show that ψk,t(t) > ψk,t(t−1)

for sufficiently small m. Note that for any 1 ≤ r ≤ t− 1, since k ≡ −1 (mod t), we have r̄ = t− r,

and we have t̄ = t. Thus, we may rewrite this inequality as

1

k

(
ψ (1)− ψ

(
1

t

))
> ψ(1)− ψ

(
t− 1

t

)
.

Applying Lemma 5.3 and equation (5.2), it suffices to show that

t− 1

tk

(
t+

π2

6
− 1

)
>

1

t

∞∑
n=0

1

( t−1
t + n)(n+ 1)

.

We then see that, since π2

6 =
∑∞

n=1
1
n2 ,

−π
2

6
+

∞∑
n=0

1

( t−1
t + n)(n+ 1)

=
1

t

∞∑
n=0

1

(n+ 1)2
(
t−1
t + n

) ≤ 1

t− 1
+

1

t

∞∑
n=1

1

(n+ 1)2n

=
1

t− 1
+

2

t
− π2

6t
≤ 5

2t
.

Thus, it suffices for k to satisfy

t− 1

tk

(
t+

π2

6
− 1

)
>

1

t

(
π2

6
+

5

2t

)
.

Rearranging, we have that ψk,t(t) > ψk,t(t− 1) whenever

k < (t− 1)

(
t+

π2

6
− 1

)(
π2

6
+

5

2t

)−1

.

Estimating then yields the result.

5.5. The Proof of (5) in Theorem 1.4. Now we prove (5). To do so, we show that for k ∈ (t/2, t),

the least common residue is k (mod t); in other words, for 1 ≤ r ≤ t and r ̸= k, then r ≻k,t k.

Assume that k ∈
(
m−1
m t, m

m+1 t
)
for 2 ≤ m < t. Doing so will not exclude any allowed t

2 < k < t

because k = m−1
m t for some m would violate coprimality with t. We divide into 2 cases: r ≤ m and

r ≥ m+ 1. Note that since r ̸= k and k < t, r̄ ̸= 1.

Suppose that 2 ≤ r ≤ m, then we have 1− 1
r ≤ 1− 1

m < k
t < 1, which implies

0 < rk − (r − 1)t < t.

Thus, r = rk − (r − 1)t. Moreover, we have (r̄ − 1)k < (r̄ − 1)t, and so

r = rk − (r − 1)t < k.
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Thus, we obtain that

ψk,t(r) = −ψ
(r
t

)
+

1

k
ψ

(
r

t

)
> −ψ

(
k

t

)
+

1

k
ψ

(
1

t

)
= ψk,t(k)

because ψ is increasing.

Now assume r > m. We need to prove that

ψk,t(r) > ψk,t(k),

which is equivalent to

ψ

(
r

t

)
− ψ

(
1

t

)
> k

(
ψ
(r
t

)
− ψ

(
k

t

))
.

Assume for the moment that m > 2, and we will later handle the case of m = 2 separately. Because

r ≥ m+ 1, r ≤ t and ψ is increasing, it suffices to show the inequality

ψ

(
m+ 1

t

)
− ψ

(
1

t

)
> k

(
ψ(1)− ψ

(
k

t

))
.

Using Lemma 5.2, the left hand side is bounded by

ψ

(
m+ 1

t

)
− ψ

(
1

t

)
>
m

t

(
t2

m+ 1
+

t

t+ 1

)
=

mt

m+ 1
+

m

t+ 1
>

mt

m+ 1
.

Using Lemma 5.3, the right hand side is bounded by

k

(
ψ(1)− ψ

(
k

t

))
< k

t− k

t

(
t

k
+ 1

)
=
t2 − k2

t
< t

(
1− (m− 1)2

m2

)
.

Thus, we need to prove
mt

m+ 1
> t

(
1− (m− 1)2

m2

)
,

which is equivalent to
(m− 1)2

m2
>

1

m+ 1
.

This holds when m ≥ 3, as

(m− 1)(m2 − 1) ≥ 2(m2 − 1) > m2.

Now we consider m = 2. If r = 3, we have

ψ

(
3

t

)
− ψ

(
1

t

)
>

2

t
· t

2

3
=

2t

3
.

The condition k ∈ ( t2 ,
2t
3 ) implies that 0 < 3k − t < t, which gives r = 3k − t. Thus we have

r
t >

k
t >

1
2 , which implies

ψ
(r
t

)
− ψ

(
k

t

)
<

2k − t

t

(
t2

(3k − t)k
+
π2

6
− 5

9

)
,

using the special case of Lemma 5.2. The bounds on k imply that

(2k − t)t

(3k − t)k
<

1

2
.
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We can see this by clearing denominators and factoring, which gives

0 < (2t− 3k)(t− k),

where we know both terms are positive. Thus, we find that

k

(
ψ
(r
t

)
− ψ

(
k

t

))
< k

(
1

2
+

(
π2

6
− 5

9

)
2k − t

t

)
<

2t

3
.

If r ≥ 4, then we have

ψ

(
r

t

)
− ψ

(
1

t

)
>

3t

4
.

For the other side, we have

k

(
ψ
(r
t

)
− ψ

(
k

t

))
< k

(
ψ(1)− ψ

(
k

t

))
<
t2 − k2

t
<

3t

4
,

which finishes the proof that k is the least common residue class modulo t. Thus, for each k ∈ ( t2 , t),

the ordering will be distinct. When t > 2, there are exactly φ(t)
2 numbers in ( t2 , t) that are coprime

to t because gcd(i, t) = gcd(t− i, t). Thus, there are at least φ(t)
2 distinct orderings.

Remark. Concerning Conjecture 1.5, the following heuristic points to a strategy which might be

used to prove the conjecture. If k′ = k +mt for integer m, then ψk,t and ψk′,t differ only by the

weighing factors 1
k and 1

k′ . Thus, if r < s and r ≺k,t s, then there exists a “switching point” Sk

such that r ≺k′,t s when k′ < Sk and r ≻k′,t s when k′ ≥ Sk. If for a set of pairs (r, s) these

switching points are sufficiently spaced out to occur at different values of k′ = k + tm, then these

k′ induce distinct orderings. The difficulty of this approach lies in finding suitable pairs (r, s) that

have convenient switching points. However, data suggests that it is possible to find a set of pairs

(r, s) which has cardinality linear in m, after which a simple calculation would yield that O(t)
φ(t) is at

least on the order of log(t).
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