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ABSTRACT. Let [n] := {0, 1, 2, . . . , n}. Intuitively, all large subsets of [n] have additive structure,
and there exist various ways to formalize this. For instance, Roth showed in 1953 that for large
enough n, any subset of [n] containing more than n(log n)−2+ε elements contains an arithmetic
progression of length 3. Similarly, Szemeredi finds thresholds 0 < δk < 1 and Nk > 0 such that for
n ≥ Nk, subsets of [n] containing more than δkn elements contain arithmetic progressions of length
k.

We establish a new variation: for all d ≥ 1, we find constants 0 < αd < β such that for any box
B = [n1]× · · · × [nd] ⊂ Nd:

(i) any subset of B with more than |B| − αd log |B| elements is additively decomposable, and
(ii) there exists a subset of B of size at least |B| − β log |B| that is has no nontrivial additive

decomposition. To do this, we introduce a tool for working with explicit indecomposable sets, a
condition on subsets of abelian groups which is efficiently checkable and implies their indecompos-
ability.

In the one dimensional case, this answers a 2005 question of Kim and Roush. In higher dimen-
sions, our result represents new additive structure within generalized arithmetic progressions.

1. INTRODUCTION

As usual in arithmetic combinatorics, set

[n] := {0, 1, 2, . . . , n}.

Let [n]d = [n] × [n] × · · · [n]. Large subsets of [n] have a lot of additive structure. For example,
Roth’s theorem... Szemeredi’s theorem... Green’s theorem...

Definition 1. Let [n] := {0, 1, . . . , n} and (n] := {1, . . . , n}.

Definition 2. For sets A,B ⊆ Z≥0, we define A + B as the set of sums {a + b : a ∈ A, b ∈ B}.
If A + B = C, then we say A + B is an additive decomposition of C. Whereas any set can be
decomposed as A = A+ {0}, it is interesting to consider only nontrivial additive decompositions,
that is A + B = C with |A|, |B| ≥ 2. A set without such a nontrivial decomposition is called
irreducible. Elsewhere in the literature, they may be referred to as “Ostmann irreducible,” “prime,”
or “primitive.”

1.1. History. In [1], K. H. Kim and F. W. Roush show that the problem of determining whether
a set of nonnegative integers exhibits a nontrivial additive decomposition is NP-complete. In the
same section, they ask 2 questions:

(1) Is a randomly-chosen subset of [n] more likely to reducible or irreducible?
(2) Of all irreducible subsets P ⊆ [n], what is the maximum value of |P|?
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In [4], Shitov answers Kim’s first question: the number of reducible subsets of [n] is o(2n+1) and
confirm [2], conjecture 10 for b = 2. We answer (2) by finding bounds for n − |P|. Defining
sumsets in the same way in higher dimensions, we extend these bounds to irreducible subsets of
[n]d.

Remark. K. H. Kim, F. W. Roush, and Y. Shitov use the terminology of boolean tropical poly-
nomials. The difference, however, is only cosmetic. The monoid of sets of nonnegative integers
under additive composition is isomorphic to the monoid of boolean tropical polynomials under
multiplication, via the natural isomorphism.

1.2. Main Results.
Our paper concerns a certain set of functions fd : Z+ → Z+ which given as follows:

fd(n) = min
P⊂[n]d irreducible

#([n]d \ P).

Proposition 1.1. Let S ⊆
∏d

i=1[ni] with k := #
∏d

i=1[ni] \ S and n1, n2, . . . nd ∈ Z+. If

dk log 2 + 2dHk + dHd(k2)/de
+ 2d <

d∑
i=1

Hni , (1)

where Hm denotes the mth harmonic number, then S is reducible.

To prove this, we show that dense sets exhibit additive structure; in particular, {0, r} + B = S

for some r ∈
∏d

i=1[ni] and some set B ⊂ S. It is a simple corollary that this proposition extends
to subsets of shifted boxes as well. This gives an lower bound for the value #[n]d \P ,P ⊂ [n]d of
log2(n) + o(log n) when P is irreducible.

Proposition 1.2. There exists an irreducible set P such that P ∩ [n] is irreducible for each n and
with

#([n] \ P) ≤ logλ(n) + o(1),

where λ ≈ 1.325 is the real root of x3 − x− 1.

This set P arises as the complement of a sequence which is eventually a linear recurrence se-
quence. To show that it is irreducible, we define a stronger notion of irreducibility, which we refer
to as “local irreducibility.” This property is much easier to verify; in fact it can be verified in
O(|S|2) time, whereas in general, factoring sets is NP-Complete.

Using this one dimensional construction, we are able to construct large irreducible subsets of
[n]d. Indeed, we have the following:

Proposition 1.3. Let d ≥ 1. Then,

fd(n) ≤ d logλ n+ o(1),

where λ ≈ 1.325 is the real root of x3 − x− 1.

Theorem 1.4. We have

log2(n) + o(log n) ≤ fd(n) ≤ d logλ n+ o(1),

where λ ≈ 1.325 is the real root of x3 − x− 1.

Proof. This follows from Proposition 1.1 and Proposition 1.2. The asymptotics are outlined in
more detail in Corollaries 2.4 and 3.7. �
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2. BOUNDING IRREDUCIBLE SETS

We first prove Proposition 1.1. To do so, we begin with a lemma.

Lemma 2.1. Let S,A ⊆ G for any abelian group G. Let 0G ∈ A ∩ S. Then there exists B ⊆ G
such that A+B = S if and only if for each s ∈ S, s− a ∈ S for some a and {s− a}+ A ⊆ S.

Proof. Provided A satisfies the condition, setB = {s ∈ S : s+A ⊆ S} and it follows A+B = S.
If instead B exists, for each s ∈ S, write s = a + b for some a ∈ A, b ∈ B. Then since
0 ∈ A, 0 + b = b ∈ S and {b}+ A ⊆ B + A = S as desired. �

A special case of this which we will use throughout this section is the one where A = {0, r} for
some r ∈ Zd. In this case, our hypothesis requires at least one of s− r, s+ r ∈ S for each s ∈ S.
In particular, we have the following corollary.

Corollary 2.2. Let S ⊂ Zd such that |S| ≥ 3 and 0 ∈ S. Let A = {0, r} for r ∈ Zd \ {0}.
S = A+B for some B ⊂ S if and only if for all s ∈ S, s− r ∈ S or s+ r ∈ S.

This corollary demonstrates that, for #
∏d

i=1[ni] \ S too small, S must be reducible with one of
summand sets being a two element set. This observation is the crux of the proof of Proposition 1.1.

Proof of Proposition 1.1. Let R =
∏d

i=1[ni]. Fix S ⊆ R and let k = #R \ S. We may shift S by
l ∈ Zd≥0 such that S ′ = S − l, 0 ∈ S ′, and S ′ ⊆ R− l. Then, Corollary 2.2 applies.

Suppose {0, r} is not a summand of S ′. Then, there exists a ∈ S ′ such that {a−r, a+r}∩S ′ = ∅.
From Corollary 2.2, there are three ways for this to happen:

(1) {a− r, a+ r} ∩ S ′ = ∅, {a− r, a+ r} ⊆ R− l.
(2) {a− r, a+ r} ∩ S ′ = ∅,#{a− r, a+ r} ∩ R− l = 1.
(3) {a− r, a+ r} ∩ R− l = ∅.

Our objective is to exhibit a minimal size for k such that {0, r} cannot be a summand of S for each
r ∈ R \ {0}. For r ∈ R \ {0}, let r ∈ Bi if there exists a ∈ S such that (i) holds. Now, define

B′2 =
⋃

q∈R\S

{
v : vi 6= 0 for exactly one i,

⌊
si + 1

2

⌋
≤ vi ≤ si

}
,

where si = min(qi, ni − qi).
Similarly, define

B′3 = R \
{
v : vi 6= 0 for exactly one i, 0 ≤ vi ≤

⌊ni
4

⌋}
.

We show B2 ∪B3 ⊆ B′2 ∪B′3.
First, let r ∈ B2 and a ∈ S ′ such that (2) holds. If ai − ri < −li for some i, then a + r ∈

(R− l) \ S ′. If ri 6= 0 for exactly one i and 0 < ri ≤ bni/4c, then

r ∈ {v : vi 6= 0 for exactly one i,
⌊
ai + li + ri + 1

2

⌋
≤ vi ≤ ai + ri + li},

since ri > ai + li, so r ∈ B′2. Otherwise, r ∈ B′3.
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Next, suppose r ∈ B2, a ∈ S ′ such that (2) holds and ai + ri > n − li for some i. Then,
a− r ∈ (R− l) \ S ′. If ri 6= 0 in exactly one i and 0 < ri ≤ bni/4c, then

r ∈ {v : vi 6= 0 for exactly one i,
⌊
ni − (ai + li) + ri + 1

2

⌋
≤ vi ≤ ni − (ai + li) + ri},

so r ∈ B′2. Otherwise, r ∈ B′3.
Finally, if r ∈ B3, r ∈ B′3 if r has more than one nonzero index. If it has only one such ri then,

since there exists a ∈ S such that ai + ri > ni and ai − ri < 0, ri > ni/2 and r ∈ B′3.
Thus, we have B2 ∪B3 ⊆ B′2 ∪B′3, as desired.
Now, define a function µ : Zd≥0 → Z≥0 where

µ(x) =

{
1
ai

ai 6= 0 for exactly one i,
0 otherwise.

For A ⊂ Zd≥0, let

µ(A) :=
∑
a∈A

µ(a).

Note that each pair q, r ∈ (R− l) \ S ′ corresponds to at most one member of B1. In particular,
they correspond to (|q1 − r1|/2, . . . |qd − rd|/2) if each index is integral and the point between q
and r is in S ′. Thus, #B1 ≤

(
k
2

)
and µ(B1) ≤ dHd(k2)/de

.
Moreover, since H2l −H` ↗ ln 2,

µ({v : vi 6= 0 for exactly one i,
⌊
si + 1

2

⌋
≤ vi ≤ si}) < ln 2 +

2

si

for a fixed si. Since there are dk sets unioned to form B′2 and each si can appear in each axis, we
have

µ(B′2) < dk ln 2 + 2dHk.

Finally,

µ(B′3) ≤ d
n∑

i=dn4 e

1

i
< 2d.

Thus,

µ(B1 ∪B2 ∪B3) ≤ µ(B1 ∪B′2 ∪B′3) < dk ln 2 + 2dHk + dHd(k2)/de
+ 2d.

As µ(R) =
∑d

i=1Hni , to prevent all options of r for factoring S with a set of the form {0, r},
we require µ(B1 ∪B2 ∪B3) ≥

∑d
i=1Hni .

Therefore, for any k such that

µ(B1 ∪B2 ∪B3) ≤ µ(B1 ∪B′2 ∪B′3) < dk ln 2 + 2dHk + dHd(k2)/de
+ 2d <

d∑
i=1

Hni ,

S is reducible. �
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Corollary 2.3. Let S ⊆
∏d

i=1[ni]− l with n1, n2, . . . nd ∈ Z+ and l ∈ Zd. Let k := #
∏d

i=1[ni]\S.
Then, S is reducible if

d
(
k ln 2 + 2Hk +Hd(k2)/de

+ 2
)
<

d∑
i=1

Hni . (2)

Proof. Suppose k satisfies (2). Note that S + l ⊆
∏d

i=1[ni]. Thus, from Proposition 1.1, S + l =
A+B for A,B ⊂ Zd, #A,#B ≥ 2. Thus, S = A− l +B and S is reducible. �

Letting n1, n2, . . . nd = n, we can translate Proposition 1.1 into an upper bound on the size of
the largest irreducible subset of [n]d.

Corollary 2.4. We have
fd(n) ≥ log2(n) + o(log n).

Proof. From Proposition 1.1, we have that, for all n,

m := min
P⊆[n]d irreducible

#([n]d \ P)

satisfies
m ln(2) + 2Hm +Hd(m2 )/de + 2 ≥ Hn.

As Hl = ln(l) + o(1), we have

m ln(2) + 4 ln(m) + o(1) ≥ ln(n),

implying the desired result. �

3. CONSTRUCTING LARGE IRREDUCIBLE SETS

We begin by constructing a large 1-dimensional irreducible set by introducing local irreducibil-
ity.

Definition 3. Let G be an abelian group and let S ⊆ G with 0 ∈ S. Let (S,≺) be a totally ordered
set such that for a, b ∈ S \{0}, we have a ≺ a+b. We say that S is locally irreducible with respect
to ≺ or ≺-locally irreducible if the following hold:

(1) s+ s /∈ S where s covers 0, and
(2) for all t ∈ S with s ≺ t, there exists u ∈ S such that u ≺ t and u+ t /∈ S.

This has a natural monotonicity: if S is locally irreducible, then the set of the first n elements
of S with respect to ≺ is locally irreducible. Moreover, any finite locally irreducible set can be
extended arbitrarily.

Proposition 3.1. If S is ≺-locally irreducible, then S is irreducible.

To prove this, we first prove a helpful lemma.

Lemma 3.2. Let G be an abelian group and S ⊂ G such that 0 ∈ S. If S is reducible, S = A+B
for A,B ⊆ S with #A,#B ≥ 2.

Proof. Suppose S is reducible andA+B = S is a nontrivial reduction of S. Then, since S contains
0, there exists a ∈ A and b ∈ B such that a+ b = 0. Without loss of generality, assume A = A−a
and B = B + a. Thus, both contain 0. This implies A,B ⊂ S, as desired. �

We now proceed to a proof of Proposition 3.1
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Proof. Let A+B = S 6= {0} and by Lemma 3.2 let A,B ⊆ S. Both must contain 0 as 0 ∈ S and
the sum of all nonzero rank elements is nonzero rank. Let s ∈ S be the element covering 0. Since
s ∈ S and s ≺ s+ t for t ∈ S \ 0, we must have s ∈ A or B. Without loss of generality, let s ∈ A.
Since s + s /∈ S, we must have s /∈ B. Next, define ρb to be the minimal rank of an element of a
nonzero element of B or∞ if B = {0}. Let b be the corresponding element in B if it exists. For
all c ∈ S with rank less than ρb, we have c = ac + bc. Since bc = 0, we have ac = c and thus
c ∈ A. However, if b exists, then there exists some d ∈ S with rank less than ρb with b + d /∈ S.
Since d ∈ A, it follows A+B 6= S. Hence we conclude B = {0} and thus S is irreducible. �

In the case of S ⊂ Z+, we use the standard total ordering denoted by <. Moreover, this is the
only total ordering which is additive, hence we will refer to <-locally irreducible subsets of Z+ as
just locally irreducible, as no other ordering is possible.

Example 1. Not every irreducible set is locally irreducible. For instance, [n] ∪ {2n + 1} is irre-
ducible for any n but not locally irreducible for n ≥ 2.

We will now construct a locally irreducible set P with #([n] \ P) = O(log n).
Let (ai)10i=1 = (2, 4, 8, 11, 16, 22, 27, 44, 54, 91). For i ≥ 11, let ai = ai−2 + ai−3. Our locally

irreducible set P will be given by Z≥0 \ (ai)∞i=1. The following identity, satisfied for i ≥ 12, will
be useful going forward.

ai + ai−4 = ai−2 + ai−3 + ai−4 = ai−1 + ai−2 = ai+1

Proposition 3.3. P is locally irreducible.

Proof. It is clear that 0 ∈ P , that 1 is the minimal nonzero element of P , and that 2 /∈ P . The main
obstacle will be to show the second condition, that is, for 1 < p ∈ P , there exists q < p such that
p+ q /∈ P .

It can be verified directly that P ∩ [a18] is locally irreducible using algorithm 2 in the appendix1.
For any p ∈ P such that p < a15, let q ∈ P with q < p, q + p /∈ P ∩ [a19]. Such a q exists as we
directly verified above. We have:

p+ q < 2a15 < a15 + a16 = a18

Therefore p + q = ai for some 1 ≤ i ≤ 17, and it follows that p + q /∈ P . This will serve as our
base case.

Next, let ai−1 < p < ai for i ≥ 16.
(1) If ai − p 6= aj for any j, then set q = ai − p.

q = ai − p < ai − ai−1 < ai−5 < p

Thus q < p, and since q 6= aj , we know q ∈ P . Thus p + q = ai /∈ P , and P is locally
prime at p.

(2) If ai − p = ak for k = i− 1, i− 2, i− 3, i− 5 then p /∈ P and we don’t need to check this
case.

(3) If ai− p = ai−4, then let q = 2ai−4. We have p+ q = ai+ ai−4 = ai+1 /∈ P . Furthermore,
ai−2 = ai−5 + ai−4 < q < ai−4 + ai−3 = ai−1, hence q ∈ P . Since q < ai−1 < p, this
verifies that P is locally irreducible at p.

1No computer is needed. In fact, the complement of this set is small enough that this can be done, only moderately
painfully, using pencil and paper!
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(4) If ai − p = ak for k = i − 6, i − 7, then let q = ai+1 − ai + ak. Then we have q =
ai+1 − ai + ak = ai−4 + ak. Since ai−3 = ai−4 + ai−8 < q < ai−5 + ai−4 = ai−2, we have
p+ q = ai+1 /∈ P , q ∈ P and q < p. Thus P is locally irreducible at p.

(5) If ai − p = ak for k ≤ i − 8, then let q = ai+2 − ai + ak. We have q = ai−1 + ak. Then
ai−1 < q clearly. Furthermore:

q < ai−1 + ai−8 < ai−1 + ai−7 + ai−8 − ai−8 = ai−1 + ai−5 − ai−8 = ai − ai−8 < p

Thus, q < p < ai. Since p+ q = ai+2 /∈ P , q ∈ P , and q < p, (2) holds at p.

�

Proposition 3.4. #([n] \ P) ∼ logλ(n), where λ ≈ 1.325 is the real root of x3 − x− 1.

Proof. By [3], Lemma 8, ai+1

ai
→ λ. It follows that logλ

ai+1

ai
→ 1. For δ > 0, let Nδ denote the

minimum N such that | logλ
an+1

an
− 1| < δ for all n ≥ Nδ. Then, for all k ≥ 0,∣∣∣∣ logλ(aNδ+M+k)

#[aNδ+M+k] \ P
− 1

∣∣∣∣ ≤ logλ aNδ +Nδ

Nδ +M + k
+

M

Nδ +M + k
δ

Which, with sufficiently small δ and large M , can be made as small as we like. If aNδ+M+k < n <
aNδ+M+k+1, then similarly

∣∣∣∣ logλ(n)#[n] \ P
− 1

∣∣∣∣ ≤ logλ aNδ +Nδ + 1 + δ

Nδ +M + k
+

M

Nδ +M + k
δ

�

This completes the proof of Proposition 1.2. We are now able to extend this construction into
higher dimensions to construct a large irreducible setQ(n1, . . . , nd) ⊂ [n1]× [nd]× · · · × [nd]. In
doing so, we make heavy use of the generality of the definition of ≺-local irreducibility. First, we
define the sets P(n) for each n.

Definition 4. For n ≥ a18, let P(n) = (P ∩ [n]) ∪ {n}. Otherwise, set P(n) = {0, n}.

Lemma 3.5. P(n) is locally irreducible.

Proof. First, if n < a18 then clearly P(n) is locally irreducible. Otherwise, if n ≥ a18 and n ∈ P ,
then P(n) = P ∩ [n] and P(n) is locally irreducible. Otherwise, let n = ai for some i ≥ 18. Then,
let p ∈ P(ai).

Case 1: If p < ai−3, then let q ∈ P ∩ [n] such that p + q /∈ P ∩ [ai], a subset of P(n) which we
know to be locally irreducible. We know p+ q < ai−3+ ai−2 = ai, hence p+ q /∈ P(ai) as
the only difference in the two sets is whether they contain the element ai, and p+ q 6= ai.

Case 2: If ai−3 < p < ai−2− ai−10, then the proof of 3.3 shows that we can pick q ∈ P ∩ [p− 1] =
P(ai) ∩ [p− 1] such that p+ q = ai−2 or ai−1.
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Case 3: Else, ai−2− ai−10 ≤ p. Either q = p− 1, p− 2 ∈ P(ai) as the sequence ai is sparse. Then:

p+ q

≥ 2ai−2 − 2ai−10 − 2

= ai−2 + (ai−3 + ai−7)− 2ai−10 − 2

= (ai−2 + ai−3) + (ai−7 − ai−10)− ai−10 − 2

= ai + ai−9 − ai−10 − 2

= ai + ai−14 − 2

> ai

Thus there exists q < p such that p+ q /∈ P(ai).
In any case, for p ∈ P(ai), there exists q < p ∈ P(ai) such that pq /∈ P(ai). Thus P(ai) is locally
irreducible. �

Definition 5. We define Qd(n1, . . . , nd) by building its complement. For convenience, let e1 =
(1, 0, 0 . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, 0, . . . , 0, 1).

(Qd(n1, . . . , nd))
C =

d⋃
i=1

{pei : p ∈ [ni] \ P(ni)} ∪ {n1e1 + ei : 2 ≤ i ≤ d}

What we have just done is definedQ(n1, . . . , nd) by turning the ith axis from [ni] into P(ni), then
removing the neighbors of ne1 except for (n− 1)e1.

Proposition 3.6. The set Qd(n1, . . . , nd) is ≺-locally irreducible, where ≺ denotes the lexico-
graphical order.

Proof. We check the conditions directly. For ease of notation, denote Q(n1, . . . , nd) by Q. That
0 ∈ Q follows from the fact that 0 ∈ P(n) for all n. Let r denote the minimal nonzero element of
Q. If n1 ≥ a20 then r = e1, else r = n1e1. In either case, 2r /∈ Q as neither 2 nor 2n1 is ever in
P(n1). Next, let p ∈ Q and p � r.

Case 1: p = ke1. Since P(n1) is locally irreducible, choose j < k such that j + k /∈ P(n1), and
set q = je1 ≺ ke1 = p.

Case 2: p = ei, i ≥ 2. By construction n1e1 ∈ Q and n1e1 ≺ p. Since p + n1e1 /∈ Q, local
irreducibility holds at p.

Case 3: p = kei, i ≥ 2, k > 1. As in the first case, the local irreducibility of P(ni) allows us to
construct such a q.

Case 4: p = k1ei1 + k2ei2 + · · · + kmeim ,m ≥ 2, kj > 0, where the components are in increasing
lexicographical order. Then q := ni1ei1 ≺ p and p+q is outside of the box [n1]×· · ·× [nd],
thus p+ q /∈ Q.

We are able to construct a q as desired in all cases, thus we conclude that Pd(n) is ≺-locally
irreducible. �

Corollary 3.7.
fd(n) ≤ d logλ(n) + o(1),

where λ ≈ 1.325 is the real root of x3 − x− 1.
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Proof. In Proposition , we constructed an irreducible subset of [n]d with d logλ(n) + d− 1 + o(1)
elements in its complement. The number of elements removed from each axis is logλ(n) + o(1)
from Proposition 3.4. For a fixed d, the result then follows. �

4. FUTURE WORK

4.1. Exploring f1(n). Naturally, one can work to refine the constants α, β. There is particular
interest in refining the bounds on f1(n). Our computations suggest that both of our bounds can be
tightened substantially.

In the future, we will Have values of f1(n) here
Probably from like n = 1 to 30 or so

The following conjecture is natural to make based on our available data and also follows from
one’s intuition. If proven, it would substantially help understand the behavior of f1(n).

Conjecture 4.1. The function n− f1(n) is monotone increasing.

4.2. Finding large irreducibles inside arbitrary sets. We begin by defining a more general ver-
sion of the functions fd.

Definition 6. Let S be a finite subset of N. Then we define:

g(S) = max{|A| : A ⊂ S and A is irreducible}
It suffices to ask this question in the case S ⊂ N due to the following idea of Frieman:

Proposition 4.2.
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5. APPENDIX: ALGORITHMS

Algorithm 1: Checking LI Directly
S ⊂ Z≥0 with |S| <∞ and m the least positive element of S;
if 2m ∈ S then

return False;
for s ∈ S+ do

let As = {t ∈ S+ : t < s};
if As + {s} ⊂ S then

return False;

return True;

Proposition 5.1. Algorithm 1 is correct.
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Proof. As Algorithm 1 directly checks if the 2 conditions of local irreducibility hold, it clearly
correctly decides the local irreducibility of P . �

Algorithm 2: Checking LI Via SC

Result: True if S is LI, False otherwise
S ⊂ Z≥0 with |S| <∞ and m the least positive element of S;
let T = {t ∈ SC : t > m};
if 2m ∈ S then

return False;
let T−t = {t′ ∈ T, t′ < t};
let sj = min{s ∈ S, s ≥ j}+max{s ∈ S, s < j};
let T+

t = {t′ ∈ T, t < t′ ≤ st};
for t ∈ T do

if T+
t = ∅ then
return False;

else
for t′ ∈ T−t do

if t− t′ /∈ T then
if T+

t−t′ − {t− t′} ⊂ T then
return False;

return True;

Proposition 5.2. Algorithm 2 is correct.

Proof. Suppose S is not locally irreducible. If 2m ∈ S where m is the least positive element of
S, then Algorithm 2 will correctly return False. Otherwise, let p denote the minimal element such
that p + {s ∈ S : s < p} ⊂ S. Let t = minT \ [p] and t′ = maxT ∩ [p]. If t > st′ , then T+

t′ is
empty and Algorithm 2 will return False. Otherwise, t ≤ 2p− 1. By assumption that (2) fails at p,
we know t − p ∈ T . We can therefore write p = t − t′′ for some t′′ ∈ T . If t′′′ − p ∈ S for any
t′′′ ∈ T+

p then (2) succeeds at p, hence T+
p − p ∈ T and Algorithm 2 will return False.

Suppose instead that Algorithm 2 returns False. If 2m ∈ S, then S is not locally irreducible.
Otherwise, let t denote the index at which Algorithm 2 returns False. If T+

t = ∅, then since
t < min(S \ [t]) + q ≤ st for all q < p, q ∈ S, it follows (2) fails at min(S \ [t]). Otherwise, there
exists t′ such that t− t′ ∈ S and T+

t−t′ − {t− t′} ⊆ T . �

Remark. In most cases, Algorithm 1, running in O(#S2) time, is faster. However for very dense
sets, Algorithm 2, running in O((#[max(S)] \ S)3) time, is faster.
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