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1. Lecture 1 - 2020-08-31 - Metric Space Review

1.1. Stuff

Homeworks will be due fridays

1.2. Norms/Distance Functions

We begin with the definition of a metric space

Definition 1.2.1 (Metric Space)
A set X is called a metric space if for all points p, q ∈ X, there is an associated number d(p, q) ∈ R≥0,

defined to be the distance between p and q, such that

(a) Non-Negativity – d(p, q) ≥ 0, and d(p, q) = 0 if and only if p = q.
(b) Reflexivity – d(p, q) = d(q, p)
(c) Triangle Inequality – d(p, q) ≤ d(p, r) + d(r, q)

In other words, there is a distance function d : X → [0,∞) satisfying those 3 properties. We then
call (X, d) a metric space.

Let’s look at some examples, specifically the `p norms. Letting our set be X = Rd, let

~p = 〈p1, p2, · · · , pn〉, ~q = 〈q1, q2, · · · , qn〉
We can then define

d2(p, q) =

 d∑
j=1

(qi − pi)2
 1

2

= ‖~p− ~q‖ = 〈q − p, q − p〉 12

Note that the middle version of this metric is the euclidean metric.
We can verify that d2 satisfies the triangle inequality using the Cauchy-Schwarz inequality, which is

Theorem 1.2.1 (Cauchy-Schwarz)
Let V be an inner product space with inner product 〈·〉. Then, for arbitrary ~u,~v ∈ V , we have that

|〈~u,~v〉|2 ≤ 〈~u, ~u〉 · 〈~v,~v〉

Proof. Math 296 �

To then prove the triangle inequality for d2, we procede as follows.

Proof. Fix arbitrary ~p, ~q, ~r ∈ Rd. We wish to show d2(~p, ~q) ≤ d2(~p, ~r) + d(~r, ~q). Let ~x = ~p− ~r, y = ~r− ~q, thus
~x+ ~y = ~p− ~q.

‖~x+ ~y‖2 = 〈~x+ ~y, ~x+ ~y〉 = 〈~x, ~x〉+ 〈~y, ~y〉+ 2〈~x, ~y〉 Multi-linearity of 〈·〉

≤ ‖~x‖2 + ‖~y‖2 + 2 ‖~x~y‖ Cauchy-Schwarz 1.2.1

≤ (‖~x‖+ ‖~y‖)2

‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖ Take square root of both sides

d2(~~p, ~~q) ≤ d2(~p, ~r) + d2(~r, ~q) Convert back to d2 notation

�

Of course, we can generalize this d2 to be ds, for any s ∈ (0,∞), as follows. We will also change the name
to `s.

Definition 1.2.2 (`p-norm)
Let s ∈ (0,∞). We then say the `s norm `s : Rd → R≥0 is

`s(~q, ~p) =

 d∑
j=1

|qj − pj |s
 1

2
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Proving these satisfy the triangle inequality is much harder. See math 296, pset 10a, problem 107. If you
didn’t take 296, dm me on discord. We can also generalize this to allow for s =∞, if we allow this abuse of
notation

Definition 1.2.3 (`∞-norm)
Let `∞ : Rd → R≥0, defined by

`∞(~q, ~p) = max{|qj − pj | |1 ≤ j ≤ d}

1.3. Topology

These above norms/distance functions give us a notion of distance, which we can then use to define a
topology. Recall the definition of a topology.

Definition 1.3.1 (Topology)
Let X be a set. Let U ⊂ P(X). We then say (X,D is a topological space provided that

(a) ∅, X ∈ U
(b) U is closed under arbitrary union.
(c) U is closed under finite intersection.

We say a set N ∈ U is open.

We can create a topology from a metric space (X, d) by defining what our open sets will be

Definition 1.3.2 (ε-Neighborhood)
Let (X, d) be a metric space. Then, for x0 ∈ X, we define the ε-neighborhood around x0, denoted

Nε(x0), to be the set {x ∈ X | d(x, x0) ≤ ε}.

Definition 1.3.3 (Metric Space Open Set)
Let (X, d) be a metric space. A subset U ⊆ X is called open if for all p ∈ U , there exists an ε > 0

such that Nε(p) ⊆ U .

Note that these satisfy the criterion listed to be a toplogical space. Let’s prove it

Lemma 1.3.1 (Metric Space gives a Topology)
Let (X, d) be a metric space. Then, letting U denote the set of open sets in X, as defined in 1.3.3,

(X,U ∪ {X, ∅}) forms a topological space.

Proof. The first criterion is satisfied immediately.
We will now show for an arbitrarily sized set {Ua | a ∈ α} for some index set A, U =

⋃
a∈A Ua is open. Fix

arbitrary p ∈ U . This implies there exists ana ∈ A, for which there exists εa ∈ R>0 such that Nεa(p) ⊆ Ua,
by the definition of union and open set. Then, again by the definition of set union, Nεa(p) ⊆ U . As this was
for arbitrary p ∈ U , we can thus conclude that U is open.

Now, fix arbitrary finite set of open sets {Ui | 1 ≤ i ≤ n}, n ∈ N. Let U =
⋂n
i=1 Ui. Fix arbitrary p ∈ U .

By the definition of set intersection, we can thus conclude that for all 1 ≤ i ≤ n, p ∈ Ui. Thus, as each Ui is
open, we conclude for all 1 ≤ i ≤ n, there exists an εi such that Nεi(p) ⊆ Ui. Let ε = min{εi | 1 ≤ i ≤ n}.
Then, by the definition of set intersection, Nε(p) ⊆ Nεi(p) ⊆ Ui for all 1 ≤ i ≤ n, and thus Nε(p) ⊆ U . As
this was for arbitrary p ∈ U , we conclude that U is open. �

From now on, it will be assumed a metric space is equipped with the above topology and I won’t bother
to waste words explaining so. Now for a useful lemma

Lemma 1.3.2 (Neighborhoods are Open)
Let (X, d) be a metric space. Then, for arbitrary p ∈ X and r ∈ R>0, Nr(p) is open.

3
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Proof. Fix arbitrary such p and r. Now, fix arbitrary q ∈ Nr(p). Let ε = (r−d(p, q)). Fix arbitrary x ∈ Nε(q).
This implies

d(x, q) ≤ r − d(p, q) Metric Space Open Set, 1.3.3

d(x, q) + d(p, q) ≤ r
d(x, p) ≤ r Triangle Inequality

x ∈ Nr(p) Metric Space Open Set, 1.3.3

As this was for arbitrary q, we conclude Nr(p) is open. �

Now, let us define a closed set

Definition 1.3.4 (Metric Space Closed Set)
Let (X, d) be a metric space. A subset U ⊆ X is called closed if X \ U = U c, the complement of U ,

is open

We now note that closed sets have properties inverse to those of open sets – namely that the set of closed
sets is closed under arbitrary intersection and finite union. ∅ and X will still be closed sets, however, so not
inverse in that regard.

The full proof looks much like that of the one for open sets, but using demorgan’s law to pass between
openness and closedness

1.4. Points

Definition 1.4.1 (Limit Point/Accumulation Point)
Let (X, d) be a metric space. Letting E ⊆ X, a point p is called a limit point of a set E if every

neighborhood of p contains a point q 6= p such that q ∈ E.

Note that by this classes convention, we will be using neighborhood to mean open ball.
As an example of this definition, we see that letting E = [0, 1) ∪ {2}, we have that 1 is a limit point of E,

but 2 is not.
Heres a short theorem related to limit points.

Theorem 1.4.1
Let (X, d) be a metric space. Let E ⊆ X. Let p be a limit point of E. Then, every neighborhood of

p contains infinitely many points of E.

Proof. Assume for the sake of contradiction that there exists such a neighborhood, with radius r, for which
the conclusion does not hold – namely, it contains only a finite number of points of E. Let this neighborhood
be denoted Nr(p), and let Nr(p)∩E = {q1, q2, · · · , qn}, for some n ∈ N. Let m = 1

2 min{d(p, qi) | 1 ≤ i ≤ n}.
We can then see that Nm(p) does not have any qi contained within it, as m < d(p, qi) by the definition of
min. However, as p is a limit point of E, there exists a point q ∈ E and q ∈ Nm(p). However, such a q would
have been in Nr(p) as well, as m < r. This is a contradiction, and thus we conclude our original assumption,
that the intersection of E and Nr(p) was finite, is incorrect. �

Corollary 1.4.2
A finite set cannot have any limit points

Proof. Apply theorem 1.4.1. Immediate issue, as this a finite set E. �

One important use of limit points is that they can be used to classify closed sets in a different way

Theorem 1.4.3 (Closed if and only if Contains Limit Points)
Let (X, d) be a metric space. Then a set E ⊆ X is closed if and only if the set of limit points of E is

a subset of E.

Proof. We will first prove the forward direction. Let E be closed, and suppose p is a limit point of E. If
p /∈ E, then p ∈ Ec, which is open. This implies there exists an e ∈ R>0 such that Nr(p) ⊆ Ec, by the
definition of an open set. This in turn implies that Nr(p)∩E = ∅, which is a contradiction, as the intersection
of any neighborhood around a limit point must be nonempty, by defintiion.

4
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We will now prove the backwards direction. Suppose that every limit point of E belongs to E. Take
p ∈ Ec. Since p is not a limit point of E, there exists an r ∈ R>0 such that Nr(p) ∩ E = ∅ by definition of
limit point. This implies that Nr(p) ⊆ Ec. as this was arbitrary p, we conclude that Ec is open, and thus E
is closed. �

Definition 1.4.2 (Isolated Point)
Let (X, d) be a metric space. Letting E ⊆ X, if p ∈ E is not a limit point, then P is called an isolated

point.

Definition 1.4.3 (Interior Point)
Let (X, d) be a metric space. Letting E ⊆ X, an interior point of E is a point p ∈ E such that there

exists an r ∈ R>0 such that Nr(p) ⊆ E.

The set of interior points of E is commonly denoted E̊.

As an example, let E = [0, 1) ∪ {2}, and X = [0,∞). Then 0 is an interior point, and E̊ = [0, 1).

If we change only X to (−∞,∞), 0 is no longer an interior point, and E̊ = (0, 1).
This highlights the important fact about topologies, mainly that the ambient space changes many topo-

logical notions.

1.5. Properties of Sets

Definition 1.5.1 (Bounded Set)
Let (X, d) be a metric space. A set E ⊆ X is bounded if there exists p ∈ X and an M ∈ R>0 such

that for all q ∈ E, d(p, q) ≤M , or equivalently, Nm(p) ⊇ E.

Definition 1.5.2 (Dense Set)
Let (X, d) be a metric space. A set E ⊆ X is dense in X if for all p ∈ X, p is either a limit point of

E, or p ∈ E, or both.

As an example, let E = [0, 1] ∪ {π}. Then, E ∩Q ∪ {π} is dense in E. However, E ∩Q is not.

Definition 1.5.3 (Perfect Set)
Let (X, d) be a metric space. Let E ⊆ X. E is called perfect is E is closed and every point of E is a

limit point of E.

As an example, [0, 1] in R is perfect, but [0, 1] ∪ {π} is not perfect.
As a final overview of this, lets consider the following examples, in two spaces – R2 and C. Note these are

homeomorphic spaces.

Closed Open Bounded Perfect
{z | |z| < 1} − + + −
{z | |z| ≤ 1} + − + +

F ⊆ R2, F is finite. + − + −
{(n, 0) | n ∈ N} + − − −
Zn = { 1n | n ∈ N} − + + −

C + + − +
A line segment connecting points a and b. − − + −

5
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2. Lecture 2 - 2020-09-02 - More Metric Space Review

2.1. Stuff

Office hours will be monday 8am-9am, wednesday 4pm-5pm.
First pset out friday.

2.2. Recall

Recall last time we were discussion the metric space topology. We will continue this review today.

2.3. Closure

Definition 2.3.1 (Closure)
If (X, d) is a metric space, and E ⊆ X, we denote by E′ the set of limit points of E. The closure of

E is the set E = E ∪ E′.
As an example, letting X = R and E = (0, 1], E′ = [0, 1] = E. If we had let E = (0, 1] ∪ {2}, then

E′ = [0, 1], but E = [0, 1] ∪ {2}.
Theorem 2.3.1 (Properties of Closure)

Let (X,U) be a topological space. Let E ⊆ X. Then the following hold.

(a) E is closed
(b) E = E if and only if E is closed
(c) If E ⊆ F and F is closed, then E ⊆ F .
(d) E is the smallest, with respect to set containment, closed set containing E

Proof. We will first prove statement (a).

We will show that E
c

is open. Fix arbitrary q ∈ Ec. Then, q /∈ E′ ∪ E, i.e. q is not a limit point of E.
This implies there exists a neighborhood N(q) such that N(q) ∩ E = ∅ by Limit Point/Accumulation Point,
1.4.1. Next, we see that as N(q) is open, we must also have N(q) ∩ E′ = ∅. If we assume for the sake of
contradiction that this intersection is not empty – say they intersect at point p – the there would be an open
neighborhood N(p) ⊆ N(q) for which there exists p′ ∈ N(p) ⊆ N(q) such that p′ ∈ E, contradicting our
above statement, namely that N(q) ∩ E = ∅.

Thus, we conclude that N(q) ∩ (E′ ∪E) = ∅, and thus by Metric Space Open Set, 1.3.3, E
c

is open, and
thus E is closed.

We will now prove statement (b).
The forward direction follows from part (a). We will now prove the backwards direction. We know by

Theorem 1.4.3 that E′ ⊆ E. Thus, E′ ∪ E = E. Thus, E = E.
We will now prove statement (c).
Let F ⊆ X such that E ⊆ F and F is closed. We then conclude that as any limit point of E is also a

limit point of F , and by Theorem 1.4.3, F contains all of it’s limit points, that E′ ⊆ F . Thus, E′ ∪ E ⊆ F .
We will now prove statement (d).
Assume there exists a closed set F such that E ⊆ F ⊆ E. By part (c), we conclude that E ⊆ F , and thus

by two way containment, F = E. �

Theorem 2.3.2 (Supremum is in Closure)
Let E be a nonempty set of real numbers, which is bounded above. Then, y = sup(E) ⊆ E.

Proof. If sup(E) ∈ E, then we are done.
If sup(E) /∈ E, by the characteization of supremum, we know for all ε > 0 there exists an x ∈ E such that

y − ε < x < y, and thus sup(E) is a limit point by definition. �

2.4. Compact Sets

Recall the definitions of open cover and compactness.

6
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Definition 2.4.1 (Open Cover)
Let (X,D) be a topological space. An open cover of a set E ⊆ X is a collection {Ga | a ∈ A} for

some indexing set A, with for all a ∈ A,Ga is open, and E ⊆
⋃
a∈AGa.

Definition 2.4.2 (Compact Set)
Let (X,U) be a hausdorff topological space. A set E ⊆ X is compact is any open cover of E admits

a finite subcover.

As an example, any finite set is compact.
Let’s now cover some basic properties of compact sets.

Theorem 2.4.1 (Compact implies Closed and Bounded)
Let (X, d) be a metric space and K ⊆ X be compact. Then K is closed and bounded.

Proof. We will first show K is closed. Fix arbitrary q ∈ Kc. For each p ∈ k, we then know there exist
Up and Wp such taht p ∈ Up, q ∈ Wp, and Up ∩Wp = ∅, by the hausdorff property.1. We next note that
{Up | p ∈ K} is an open cover for K. We then conclude that it admits some finite subcover, which we can
write as {Upi | 1 ≤ i ≤ n} for some n ∈ N.

Now, let W =
⋂

1≤i≤nWpi . We note that as the finite intersection of open sets, W is open. We also note

that by choice of Wpi , that W ∩ Upi = ∅ for all 1 ≤ i ≤ n. Thus, we conclude that W ∩K = ∅, i.e. W ⊆ Kc.
Thus, we conclude that as q was arbitrary that Kc is open, and thus K is closed.

We will now show that K is bounded. Fix arbitrary point p ∈ X. Consider the set of open sets

C = {Nn(p) | n ∈ N}
We see that as N is unbounded, for all q ∈ K, there exists an n ∈ N such that d(p, q) < n. Thus, C is an
open cover of K. As K is compact, it admits some finite subcover

C′ = {Nni(p) | 1 ≤ i ≤ m}
where m ∈ N. As this set is finite, we conclude that n = max{ni | 1 ≤ i ≤ m} exists. We thus conclude that
K ⊆ Nn(p), and thus K is bounded. �

Now, our motivating question has become whether the converse is true. In general, it will be no. However,
in Rd, and other euclidean spaces, the Heine-Borel theorem says the converse is true. However, maybe we
could get a partial converse, with some stronger condition required for the reverse direction. We will work
towards that, but we need to do some other things first.

Theorem 2.4.2 (Closed Subset of Compact is Compact)
Let K be a compact set in a topological space. Then any closed set C ⊆ K is compact.

Proof. Fix arbitrary open cover of C. We then notice that by adding Cc, we obtain an open cover of K.
We then extract the finite subcover from the new open cover of K. However, as Cc ∩ C = ∅, we can safely
remove Cc from the resulting finite open cover of K, which will then also be a finite open cover of C. �

Theorem 2.4.3 (Finite Intersection Property)
If for some arbitrary index set A, K = {Ka | a ∈ A} is an arbitrary collection of closed sets, with

at least one Kc ∈ K with Kc compact, such that the intersection of any finite subcollection of K is
nonempty, then

⋂
a∈AKa is non-empty.

Proof. Assume for the sake of contradiction that
⋂
a∈AKa = ∅. We can thus conclude that this

⋃
a∈AK

c
a = X,

by De’ Morgans law. Thus, {Kc
a | a ∈ A} is an open cover for Kc. By the compactness of Kc, we conclude

that there exists some finite subcover {Kc
ai | 1 ≤ i ≤ m}, with m ∈ N, for Kc. Thus, we conclude

Kc ⊆
m⋃
i=1

Kc
ai

1Note metric spaces are hausdorff

7



Wen Plotnick Math 395 - 2.5

But, we then see that,

Kc 6⊆

(
m⋃
i=1

Kc
ai

)c
=

m⋂
i=1

Kai

Thus, we conclude that

Kc ∪

(
=

m⋂
i=1

Kai

)
= ∅

which contradicts the finite intersection property as stated in the theorem.
Thus, our assumption that

⋂
a∈AKa = ∅ was wrong, and thus said set is nonempty. �

This definition wasn’t given in lecture, but I think it’s new so I’ll include it.

Definition 2.4.3 (Sequential Compactness)
Let (X,D) be a topological space. A set K ⊆ X is sequentially compact if every sequence of points

in X has a convergent subsequence converging to a point in X.

Note that the following theorem is true in a slightly more general setting – however, this more general
setting is beyond the scope of this course for now, so we will just only worry about being in a metric space.

Theorem 2.4.4 (Compactness implies Sequential Compactness)
Let K be a compact set in a metric space. Let (xn) be a sequence of points in K. Then there exists

a convergent subsequence (xnk
) that converges to a point in K.

Proof. Suppose we turn the sequence into the set {xn} = {xn | n ∈ N}. Assume it has no limit point in K.
This implies for arbitrary p ∈ K, there exists a neighborhood Nδp(p) for which Nδp(p) ∩ {xn} has at most

cardinality one2, by Limit Point/Accumulation Point, 1.4.1. We therefore conclude that{
Nδp(p) | p ∈ K

}
is an over cover of K. Therefore, in admits a finite sub-cover. However, we see that the union of this finite
subcover must be a finite set, as each Nδp(p) has at most one element. We therefore conclude that {xn} is a
finite set, and thus one element of {xn} must appear an infinite number of times in the sequence (xn). Thus,
we can take this constant subsequence to get a convergent subsequence of (xn).

Now, if {xn} has a limit point p ∈ K, we then know for all k ∈ N that {xn} ∩ N1/k(p) 6= ∅. Fix an
arbitrary element in this intersection, and call it xnk

. We then see that the sequence (xnk
) converges to p,

as d(xnk
, p) < 1/k for all k ∈ N, and thus we have a convergent subsequence of (xn). �

As a remark, we note then that if K is compact, and E ⊆ K and E is infinite, then E must have a limit
point in K. This is because we can create a sequence (en) where en = em =⇒ n = m. Then, we use the
same method as the first part of the above proof to reach a contradiction, in that there are a finite number
of unique elements of the sequence, leading to the conclusion that E must have a limit point.

Finally, we note that the converse of this statement is also true in Rd.

2.5. Compactness in Rd

We now shift our attention specifically to Rd, starting with a theorem from 295.

Theorem 2.5.1 (Nested Interval Property in R)
Suppose In = [an, bn] is a nested sequece of closed intervals, i.e. In ⊇ In+1. Then

⋂
n∈N In 6= ∅.

Proof. We first note that (an) is an increasing sequence. As (an) is bounded above by b1, we conclude it’s
supremum exists – let x = sup{an | n ∈ N}. Thus, ∀n ∈ N, an ≤ x.

Now, we note that as (bn) is decreasing, we know that an ≤ bn ≤ bm for all n ≥ m.
However, as ap ≤ an for all p ≤ n, we conclude that for all n ∈ N, for all m ∈ N, am ≤ bn. Thus, by the

characterization of the supremum, we conclude an ≤ x ≤ bn for all n ∈ N. Thus, x ∈
⋂
n∈N In.

�

2cardinality one occurs when p ∈ {xn}
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