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.1. Constructing E∞ Operads

An E∞ operad in spaces consists of the following

(1) C(m) ' CW-complex, Σm-equivariantly, and Σm acts freely on the cells (when G acts on the sets of

cells of a CW-complex we call this a G-CW-complex).

(2) C(m) ' ∗ (non-equivariantly).

Start with any operad M satisfying (1). For example M(m) = Σm. Then a M-algebra is a monoid (an

associative, unital).

Čech resolution If X is an object of a category G (with product), then this builds a simplicial object EX

in the same category G, that is a functor ∆op → G.

Then we set EXm = X × · · · ×X︸ ︷︷ ︸
m+1 times

. Labeling these coordinates 0, . . . ,m then the i-th face map {0, . . . ,m−

1} → {0, . . . ,m} gets mapped to the projection away from the i-th coordinate.

The degeneracies are given by applying the diagonal X
∆−→ X ×X in the appropriate coordinate given by

{0, . . . ,m+ 1} → {0, . . . ,m}. Namely this sends i, i+ 1 to i, so apply the diagonal to the i-th coordinate. In

some sense we have “EX = X∆,” or as a right Kan Extension along ∆→ ∗.
In Set,Top (compactly generated weakly Hausdorff spaces see [may]). Here we have the geometric

realization. If Y• is a simplicial space (simplicial object in Top, then

|Y•| =
∐

Ymxx∆m/(y, αt) ∼ (Y•(α)y, t) (α ∈ Mor(∆))

It suffices to just take faces and degeneracies (the generators).

Proposition .1.1

If X 6= ∅, then |EX| ' ∗.

Proof sketch. We have some basepoint ∗ ∈ X. Then we have that

|EX| =
∐
m≥0

X{0,...,m} ×∆m/(y, αt) ∼ (EX(α)y, t).

We have a map hs : |EX| → |EX| given by

hs((x0, . . . , xm), [t0, . . . , tm]) = ((x0, . . . , xm, ∗), [(1− s)t0, . . . , (1− s)tm, s]).
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(2) Verify that this definition is compatible with face and degeneracy identification, proving that for a

non-empty space X, |EX| ' ∗.

If s = 0, then h0 = Id, and if s = 1¡ then h1 is constant at (∗, 1) by face/degeneracy identifications.

Geometric realization preserves products (triangulation of ∆m × ∆n by shuffles). If D is a simplicial

operad in spaces, then |D•| is also an operad. This shows us by definition then that |EM| is an E∞ operad.

Definition .1.1

An E∞-space is an algebra over an E∞-operad in spaces.

We can play the game to show that D-algebras have colocalization, giving a derived category.
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Theorem .1.2

The derived category does not depend on the particular E∞-operad chosen.

Proof sketch. If D, ξ are E∞-operads then there is a diagram

D × ξ

D ξ

proj. π1 proj. π2

For a homomorphism of operads f : ξ → D we have a pullback functor f∗ : D-algebra → ξ-algebra, one

proves that π∗1 , π
∗
2 induce equivalence of derived categories of algebra.s

[mayGeometryIterated] does this more concretely without derived categories.

.2. Infinite Loop Space Theory

Recall that a generalized cohomology theory is determined by some based spaces Zn where n ∈ Z equipped

with weak equivalences

Zn
∼−→ ΩZn+1. (?)

In fact N0 would do. GivenZ0, define Z−m = ΩmZ0.

The spaces Zm of (∗) are called infinite loops spaces. Peter May notices that infinite loop spaces (up to

') are E∞-spaces, and connected E∞-spacesm are infinite loop spaces.

Application: Construction of generalized cohomology theories. For example, we can consider alegbraic

K-theory.

Why are infinite loop spaces E∞-spaces. Consider thatE∞-spaec are commutative monoids up to homotopy

and all reaonsonable higher homotopies.

What does this have to do with loops: πm is commutative for m ≥ 2. Consider a space of the form Ω∗X,

X is a based space, and ΩmX is Hom(([0, 1]m, ∂[0, 1]m), (X, ∗)).
Peter May invented an operad so that m-loop spaces are E∞ algebras over this operad ξm.

The litte n-cubes operad Em(k) is merely a configuration of k cubes in [0, 1]m with disjoint images.

It is obvious then that ΩmX (as defined above) is a Cm-aglgebra (same as our proof of commutativity of

π,).

Inclusions of operads

E1 ↪→E2 ↪→ · · · .

Take a little cubes ×[0, 1] Then

C∞ =
⋃
Cn.

May tells us that C∞ is a C∞-algebra, that is an E∞-operad algebra.
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