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Lets deal with examples of the cup product. That is when R is a commutative ring we have a map

^ : H∗(X;R)⊗H∗(X;R)→ H∗(X;R)

which is given by the Eilenberg-Zilbur theorem from ∆ : X → X ×X, and gives H∗(X;R) the structure of

a graded commutative ring.

Lets cover the case when X = BG, for G a discrete group. π1X = G and the universal cover X̃ of X is

contractible.

Then

H∗(X;R) = H∗(G;R) = Ext∗Z[G](Z;R).

Translating the sotry to algebra: Let C be a Z[G]-free resolution of Z. Then C⊗ZC is a Z[G]⊗Z[G] = Z[G×G]-

free resolution of Z (by the Kunneth theorem)

We have the diagonal homomorphism g 7→ (g, g). Via the diagonal morphism, C ⊗Z C is also a Z[G]-free

resolution of Z. This is free because G-action on G×G is a free action. By the functoriality of resolutions,

there exists some map of Z[G]-module chain complexes

C → C ⊗Z C

which induces 1 : Z→ Z on H0 (unique up to chain homotopy). Once we have this, we obtain a map

Hom(C,R)⊗R Hom(C,R)→ Hom(C ⊗Z C,R)→ Hom(C,R)

Example .0.1

Lets go with G = {1, α} with α2 = 1. Then the free Z[G]-resolution of Z is

C : · · · 1−α−−−→ Z[G]
1+α−−−→ Z[G]

1−α−−−→ Z[G]

Then G×G = {1, α, β, γ} with α2 = β2 = γ2 = 1 and αβ = γ. The double chain complex is

...
...

· · · Z[G×G] Z[G×G]

· · · Z[G×G] Z[G×G]

1−β

1−α

1−β

1+α 1−α

Now lets look at C → C ⊗Z C, thinking of C with the maps γ. On each term, where do I send 1.

α

1 1− γ = 1− α+ α(1− β) 1

And then we do this again

1

α α+ β = α− 1 + 1− β

1 1 + γ = 1 + α+ α(β − 1)
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Homework #5

(3) Denoting by en the 1 ∈ Z[{1, γ}] ∈ C, prove that

en 7→
∑
` even
k+`=n

ek ⊗ e` + α
∑
` odd
k+`=n

ek ⊗ e`

Prove that this gives a (Z{1, γ}-equivariant) chain map C → C ⊗Z C.

Every Z/2 in bidegree k, ` goes to Z/2 in bidegree k + `. This tells us that

Hm(Z/2;Z/2) = Hm(RP∞;Z/2) = Z/2

That is the cup product

^ : Hk(RP∞;Z/2)⊗Z/2 H
`(RP∞,Z/2)→ Hk+`(RP∞;Z/2)

is an isomorphism, since the left and right hand sides are both Z/2. We conclude thatH∗(RP∞;Z/2) = Z/2[x].

REcall that Hn(RP∞;Z) is Z when n = 0, Z/2 in even degrees, and zero in odd degrees.

The cup product is functorial in the ring. Thus

H∗(RP∞;Z)→ H∗(RP∞;Z/2)

This is given as

...
... 0 Z/2

b2,Z/2 a4,Z/2

0 Z/2

b,Z/2 a2,Z/2

0 Z/2

1,Z a0,Z/2

Thus H∗(RP∞;Z) = Z[b]/(2b). If ` is any number then H∗(Z/`;Z) = Z[b]/(`b), where b is in degree 2. Note

that if p and a ∈ Z/p = H1(Z/p,Z/p) in degree one then

a ^ a = (−1)1·1a ^ a = −a ^ a

a ^ a = 0

Thus H∗(Z/p;Z/p) = Z/p[b]⊗Z/p ∧Z/p[a]

Back to topology. The unit sphere S∞ in C∞ =
⊕
∞ C. Then S1 acts on S∞ by multiplying in every

coordinate.

Thus Z/` < S1 acts on S∞. BZ/` = S∞/Z/`.Also CP∞ = S∞/S1, which one can call BS1, but S1 is a

topological group (not discrete).
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H∗(CP∞;Z) H∗(BZ/`;Z)

Z Z/`

0 0

Z Z/`

0 0

Z Z
One can deduce that H∗(CP∞;Z) = Z[b] (in degree 2). Functoriality gives H∗(CPm;Z) = Z[b]/(bm+1).
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