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[. Introduction to the Class
Logistical Announcements

e Homework
— Gradescope Invitation Code: ERGXT7Y.
— HW due on Mondays 8PM (except when said otherwise. Next week HW due. Tuesday 9/7
8PM).
— HW assigned in class.
— Homework is less stringent. More about understanding concepts and a way of thinking. This
does not mean the class is any easier.
e Notes on Professor Kriz’s web page.

http://www.math.lsa.umich.edu/ ikriz/math2021695.html

e Office Hours: MWF: 11-12pm.
o A nice reference is [11]

Goals and Philosophy

First version of 695: Homology with coefficients, cohomology, products, and duality. From today’s point
of view, this is not nearly enough. This fits the original goal of algebraic topology, which is telling spaces
apart.

Today: Focus is more on the method than the original goal. Why?

e There aren’t enough examples.
e Constructing interesting spaces is as fundamental as telling them apart.

e Information is not contained just in algebra.

II. Singular (co)homology

II.1. The Basic Definitions

Definition II.1.1
The standard simplex is A" = {(to,...,t,) € R™™ | 3" ¢; = 0,¢; > 0}. Thi sis sometimes

written [to, ..., tn].

Definition I1.1.2

One may define the free group with coefficients in A generated by a set S as
AS ={a:S— A|IF CS finite a(s) :()whcns§ZF}:€BA
seS
The free group is ZS. Note that AS =7ZS ® A. Because we have that

(@Ai) ® B =P (A @ B)

i€l icl

Definition II1.1.3
An n-simplex in a space X is a continuous (default assumption) map o : A" — X.
Let S,,X be the set of all n-simplices in X. We then define C,, X = 7ZS,, X to be the free abelian

group on S, X, and this is the group of n-chains in X
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Definition 11.1.4

If A is an abelian group then C,,(X; A) = AS,, X is the group of singular n-chains with coefficients
in A.
Definition II.1.5

If A is an abelian group, then C™(X; A) .= Hom(C,, X, A). Equivalently this is the set of all functions
Sm(X) — A, which we denote Map(S,,(X), A).

Notice that AS C Map(S, A), with the finiteness condition of AS being the key difference.

To define (co)homology we need some standard maps between standard simplices.
Definition I11.1.6
The j-th face map 9; | A™~! — A™ is defined by taking the tuple (to,...,%n,—1) and inserting a zero
into the j-th place:
(to, .- ytm—1) +— (to,- .. i—1,0,t5, ... s lm—1)
If 0 <4 < j <'m, then we have that 0;0; = 0j410;.
We define d : C,,, X — C,,,_1X. It suffices to define d s

e Let o0 : A™ — X. Then

m

m

do=> (1) (c0d,)

i=0
This corresponds to restricting to the boundary simplices and with signs corresponding to a sense of

orientation.

Lemma II.1.1
The key point is that d2 = 0. This follows via a calculation

:d<z 008)
m—1
~1)"*500;00;

I
Ms

=0 1:0

<.

This follows by dividing up to when j <, and using the crucial formula 0;07 = 0;410;.
Definition I1.1.7
The chain complex C,X is defined to be

d'm dm—
Cn X Cona1 X~ O X —— -+

Using the fact that d,,,—1 o d,, = 0, this is a chain complex as in algebra.

Definition II.1.8
If C is a chain complex, define the m-th homology group:

H,,C = ker(d,,)/im(dym+1)

We call the elements of ker(d,,) the m-cycles and im(d,,+1) the m-boundaries
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Homework 2021-08-30

(1) Show that ZS ® A = AS. Try to recall and use the universal property of ®.
(2) Compute Z/nZ @ Z/mZ for n,m € Z.
Now we take a digression to quickly review some category theory which will help us in our definitions. For
a reference see Category Theory in Context by Emily Riehl [13].
Definition II1.1.9

A category € has a class of objects Ob % and of morphisms Mor ¢’. There are maps S, T : Mor ¢ —
Ob % which stand for source and target as well as Id : Ob% — Mor %, and notably S oId,T o Id are
both the identity on objects.

We call Homg (X, Y) the class of all f € Mor % such that S(f) = X and T(f) =Y. This is sometimes
also denoted by ¢ (X,Y), and we usually assume that this is a set. We also sometimes write [ : X — Y
to mean that f € Home (X,Y) when the ambient category is clear.

Furthermore if f : X — Y and g : Y — Z then we define go f : X — Z. This is associative when
defined and for f: X — Y

Idyof = f = foldy

Example I1.1.1

There are a variety of examples:

Name Objects ‘ Morphisms
Set sets functions
Grp groups homomorphisms
Ab | abelian groups | homomorphisms
Top spaces continuous maps

Also given any category € there is a category € °P which has the same objects as ¥ and the morphisms
point in the opposite direction with composition also reversed.
Definition I1.1.10

A functor F' : € — 2 is a map of objects and of morphisms which preserves Id, S, T', and composition.
One can of course compose functors.

Why are we concerned about this? Well we have functors in algebraic topology

C,, : Top — Ab
C : Top — Chain

This category Chain has objects chain complexes, and the maps are collections of group homomorphisms
fn : A, — B, satisfying the commutative diagram below

A

A, — Ay
J{fn fn—ll
4B
Bn *"> anl

Furthermore H,, : Chain — Ab is a functor, and so we may define the composition H,, : Top — Ab,
overloading notation.
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Even better, 7®7 : Ab x Ab — Ab is a functor, where the product of categories is appropriately defined.
For a specified abelian group A, 7 ® A : Ab — Ab is a functor, which is defined on morphisms as

(fed)(zea)=fz)©a

This will allow us to construct a homology with coefficients functor via “abstract nonsense.” Namely, if C' is

a chain complex then C'® A is a chain complex given below:

s O A e, e

Perfect! Thus with A an abelian group, ? ® A : Chain — Chain is a functor. We then know that C'(X; A) :—
(CX) ® A, and this will be a functor.

Therefore H,,(X; A) := H,,C(X; A) is a functor as well.

At first, this seems strange, as homology with coefficients is determined by homology, and so it cannot
contain new information. However, it contains some new and interesting information.

For cohomology, recall that we defined C™(X; A) = Hom(C,, X, A). Notice that Hom(?, A) : Ab — Ab°?
is a functor. It is defined on objects via pointwise addition, and it is defined on morphisms as follows.

Let f: B — D be a morphism of abelian groups. Then we define Hom(f, A) : Hom(D, A) — Hom(B, A)
as foloows. If we have a morphism h : D — A then:

D—" ;4
/

f /
/

- 7 Hom(f,A)(h)=hof
B -
Definition II.1.11
A functor I': C°P — D is called a contravariant functor from C to D. A “normal” functor is called
covariant. Hom is covariant in the first coordinate, aka if A is fixed then Hom(A, ?) is a covariant functor
from Ab — Ab.

Now say we have a chain complex

dm—1

dm
"'*)Cm*)Cmfl —_— s
Then we may apply Hom(?, A) everywhere, and we get a chain complex in the “reverse” direction:

Hom(d,,,A) Hom(dy,—1,4A)
e Hom(Cyy A) 0 Hom(Cy, A) i

We say that Cochain the category of such “reversed” chains. If C* is a cochain complex, then of course
defining the chain complex C,, = C'~"™ gives us an equivalence Chain 2 Cochain. We may also define
cohomology of a cochain complex as H™(C) = kerd™/im d™~*.

Great! This means we may define C*(X; A) = Hom(CX, A) as a cochain complex and then:
H™(X;A)=H_,,(C*(X;A)) = H_,,(Hom(CX, A))
Functoriality of cohomology then just follows by composing functors:

c . Hom(?,A) o HT
Top —— Chain ——— Cochain®® ——— Ab
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So cohomology is a contravariant functor. Why do we care about cohomology?
e We encounter it in geometry (de Rham)
e Cohomology has additional structure. if R is a commutative ring, then H*(?; R) is a functor from

spaces into commutative rings.

Homework due 2021-09-07

(3a) Write down the differential in C(X; A), C*(X; A) in elements.

(3b) Say in a few words why d,, needs (and preserves) the finiteness condition and why d™ does not.

Definition I1.1.12
Lets introduce a new category Pairs whose objects are pairs of spaces (X,Y’) where Y is a subspace
of X. A morphism (X;,Y7) — (X»,Y3) is a continuous map such that f(Y;) C Ys.

If A is an abelian group, there are functors H,,(?; A) : Pairs — Ab and H™(?; A) — Pairs®® — Ab.

To do this we define C(X,Y) = C(X)/C(Y). That is C,,(X,Y) :== Cpn(X)/Cr(Y), and this will also be
a chain complex of free abelian groups by some basic homological algebra. This follows by the principal that
if T C S then ZS/ZT = Z(S\T).

From this point we cna just define C(X,Y;A4) = C(X,Y)® A and C*(X,Y; A) := Hom(C(X,Y), A).
Taking homology of the chain complex gives homologies H,,(X,Y; A) and H™(X,Y; A).

There is a short exact sequence

0 oY) O(X) —— O(X,Y) —— 0

Note here that an exact sequence is a chain complex with homology zero (although we stop the convention
that if it stops we fill in with zeros, so there is no condition on the first/last maps).

We also have short exact sequences
0— C(Y;A) — C(X;A) — C(X,Y;4) —— 0
0— C*(X,YV;A) —— C*(X;A) —— C*(YV;4A) —— 0

Note! ? ® A and Hom(?, A) are not exact. That is they do not preserve exact sequences. However, they do

behave well with direct products, as

(@ Bz‘) ® = @(Bi ® A)
Hom (@ B, A) = HHom(Bi, A)

So ?® A and Hom(?, A) preserve split exact sequences. For completeness we recall this definition
Definition I1.1.13

A split exact sequence has the form

0 A" B C 0

This exhibits (i,s) : A® C — B, and so Hom(?, A) and ? ® A preserves this.
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A short exact sequence at the level of the chain complexes induces a long exact sequence in homology. L.E.

if C1,C?,C? are chain complexes with a short exact sequence:

0 ct Cc? c3 0

Then there is a long exact sequence in homology
o —— H,(C) —— H,(C2) —— H,(C3) —2 H, 4(C1) — -

Where the morphisms between n-th homology are the induced maps and the  morphism is complicated (see
3])
Definition I1.1.14
Let F,G : C — D be functors. A natural transformation 7 : F' = G consists of a collection of
maps ny : F(X) — G(X) for every object X in C so that for any map f: X — Y the diagram below

commutes

F(X) 5 G(X)
F(f) lG(f)
ny

Great!

Definition I11.1.15
Two categories C, D are equivalent when there are functors F' : C' — D and G : D — C' such that

FoG=Idp and G o F = 1d¢. Here = denotes a natural isomorphism.

A long exact sequence in homology of a space (X,Y") with coefficinets in A is given below
S Hy (Vi A) —— H (X3 A) —— Ho(X, Y5 A) — 2 Hy (V3 A) —— -
And in cohomology we have
e H™(X, Y A) —— H™(X; A) —— H™Y; A) —2 H™ (X, Y5 A) —— -
Both 0, § are natural.

11.2. Eilenberg-Steenrod Axioms

We now list the Eilenberg-Steenrod axioms for homology (cohomology). First H,(?; A) and H™(?; A) are

covariant /contravariant functors respectively from Top or Pairs into Ab.
Homotopy Axiom

We also require that homotopic maps in Top or Pairs induce the same map in (co)homology.

We can define categories hTop and hPairs whose objects are the same as Top and Pairs and whose
morphisms are equivalence classes of maps up to homotopy.

Then the above condition is the same as requiring that H™(?; A) and H™(?; A) are covariant/contravariant
functors from hTop or hPairs into Ab.

The key idea to providng this axiom is something called a chain homotopy.

Definition II.2.1

Let f,g: C — D be chain maps. A chain homotopy is a sequence of homomorphisms of abelian
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groups hy, : Cy, — Dyyqq satisfying
dh+hd=f—g

One can then define hChain, whose objects are chain complexes and whose morphisms are chain-

homotopy classes of chain maps.
Excision Axiom

Let Z CY C X where Closurex (Z) C Interiorx (Y).
Then there is a map of pairs (X \ Z,Y \ Z) C (X,Y) given by the inclusion. This induces an isomorphism
on H,,(7; A), H™(?; A).

Limit Axioms

Take a collection os spaces X;. Then the inclusions X; — [], X; induces isomorphisms:

@Hm(Xi;A) — H,, <HXZ»;A>
H™ (HX“A> = [[H™(X:; A)

More generally we have something nice that holds for homology and not for cohomology if you know about
limits of diagrams F': J — Pairs.

H,,(lim F; A) = lim H,,,(F; A)
Exactness Axiom

Each pair (X, A) induces a long exact sequence via the inclusions as above in (co)homology

o Hoy (Y3 A) —— Ho (X3 A) —— Ho(X, Y5 A) — 2 Hyy (Vi A) —— -
And in cohomology we have
S HMX, Y A) —— H™(X; A) —— H™(Y; A) —2 H (X, Y A) —— -

At this point if we replace H,, by F,, and H™ by E,, we obtain what are called generalized (co)homology

theories.
Dimension Axiom

To get ordinary (co)homology, we require that H,,(x) = H™ (%) = 0 for m # 0.
Homework 2021-09-07

Define E,,(X) = Ep(X,0) and E,,(X) := E,, (X, %) where  is a basepoint.

(4a) Using the long exact sequence, prove that for any generalized (co)homology and a based space X
Em(X) = Em(X) D Em(*)
E™(X) =E™(X)® E™(x).
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Using reduced (co)homology, we can simplify to talking about based spaces instead of about pairs. However,
En(X,A) % E,,(X/A), where X/A is the quotient space (even made into a Hausdorff space). Although this
holds for special classes of pairs (X, A), we cannot use it to reduce.

We can get rid of this problem by defining some new constructions.
Definition I1.2.2
The mapping cone CY of a space Y is definde to be

CY = (¥ x [0,1)/(Y x {1})
The mapping cone C'f of a map f:Y — X is defined to be
Cf =(X[[CY)/(y,0) ~ f(y)

The quotient topology here is universal. That is a map C'f — Z is in a natural bijection with maps

g : X — Z such that g o f is nullhomotopic.

Definition I1.2.3

Given a space Y, its suspension SY is defined by
SY = (Y x[0,1])/(y,0) ~ (4,0), (y,1) ~ (¥, 1)
The upshot of mapping cones?

Proposition I1.2.1
For an inclusion f : Y — X, E,,(Cf) 2 Ep(X,Y), and likewise E™(Cf) = E™(X,Y).

Proof. This is just some simple arguments from the Ellenberg-Steenrod axioms
En(Cf) 2 En(Cf.%) = En(Cf,CY)
> FEn,(C_f,C_Y)=2 E,(X,Y)
Where we define:
C_Y =Y x10,1/2]
C-f=X][C-Y)/(y0) ~ f(y)

The third isomorphism above follows by excision on CY \ C_Y C CY C Cf, and the others follow by
homotopy equivalences between pairs (C'f,*) ~ (Cf,CY) and (C_f,C_Y) ~ (X,Y).

Similarly for cohomology. .v.

We always have an inclusion X = C'f. We can then ask what is C'i? Well

Ci= (CX[]CY)/(4,0) ~ (f(1),0)

This then allows us to see that Ci ~ SY, where SY is the suspension (see Definition I1.2.3). This is visualized
by Figure 1 Why is this? Well there are maps SY — Ctv — SY = Ct/CX which give a homotopy equivalence.
Explicitly for SY — C't, we map

(5, 1) = (f(y), 1 —2t) (0<t<1/2)
(y,t) = (y,2t — 1) (1/2<t<1)

10
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Y

X

[

FiGUurE 1. C. for the inclusion ¢ : X — Cf

This suggests that Ep,(X) 2 Epy1(SX) (which will be on homework).
It also suggests an alternative formulation of the Ellenberg-Steenrod axioms.
Definition 11.2.4
Functors E,, : hBased — Ab are called a generalized based homology theory provided that:

(1) We have an exact sequence for every map of spaces f: Y — X:

Bn(v) 220 B (x) 229 B (Cf)

where ¢ : X < C'f is the inclusion.

(2) There is a natural isomorphism
Epn(X) 2 By (SX)

for all m € Z.

Similarly for cohomology. The product axiom involves the wedge sum.

Definition II.2.5

Given based spaces X; we define their wedge sum by:

il i

Definition 11.2.6

We call a generalized based homology theory Em additive provided that the inclusions provide an
isomorphism

iel iel

Likewise, a generalized based cohomology theory E™ is called additive provided that the inclusions
induce an isomorphism

HE’ULXi < Em (\/ XL)

el i€l

THe based and unbased sets of axioms are equivalence. Why? Well given an unbased theory FE,, we may
define E,,(X) := E,,(X, ) and prove the suspension axiom as well as exactness.

Likewise, given a based theory E,, we may define E,,(X) = E,,(X;) where X, = X[[{*}. For
f:Y < X we define E,(X,Y) = E,(Cf).

We then can prove a long exact sequnece from Ct ~ SY for + : X — C'f and the suspension axiom.

11
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Similarly for cohomology
I1.3. Computing ordinary (co)homology

How do we actually compute it? Well we need a nice category of spaces. The CW-complexes.
Definition I1.3.1
Let X =J,~_, Xi, where
) =X 1CXgCX C -
are given the subspace topology, and Z C X is closed if and only if Z N X is closed in X; for each i. We
say X is a CW-complex.
We mandate that X, is built from X, 1 by adjoining m-cells along their boundaries to X,,_1. For

clarity recall the definitions of an m-cell D™ and its boundary S™~! = dD™.
D™ = {(Ilv s 7'7;""/) e R™ | ZT? < 1}577171 = {(-771, cee ,.C(Jm) e R™ | T,2 = 1}

More formally, we are given a set I, of m-cells, and there is a map fo, : I, x S™ ' — X,,_; called the

attaching map so that the following is a pushout diagram

—1 fm
Im x Sm ? Xm—l

l l

I, x D" — X,,
This gives a formula for X,, as follows:
X = (X1 [ [T x D™))/ (i) ~ fnlisy)
Often X, is called the m-skeleton.

Definition I1.3.2
A CW-pair is defined the same way except X_; = Z instead of ().

Homework #2
(1) There is a long exact sequence in reduced homology for any based inclusion 7 : Y — X
i Ep(Y) —— Enp(X) —— Ep(X,Y) —— Epp g (V) —— -

Hint: a long exact sequence is a chain complex with homology 0. Consider the LES of the inclusion
* — % and map it into the unbased LES of i. Then consider the “quotient chain complex”
(2) Show that E,,(X) = Epi1(SX).
This essentially follows by the following, letting

Sy X =X x[1/2,1]/(x,1) ~ (2/,1) 2 CX ~ x
SoX = X x [1/2,3/4]
S_X =X x[0,3/4]/(z,0) ~ (2',0) 2 CX =~ x

Apply the long exact sequence of a pair to show

Em+1(S—X7 SOX) = Em(SOX) = Em(X)

12
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Then apply excision and homotopy equivalence to show that
Epi1(SX, %) 2 Eny1(SX, 54 X) & B (S-X, So X).

Definition 11.3.3
A cell map (cellular map, CW-map) between CW-pairs [ : (X, Z) — (Y,T) is a continuous map
which preserves skeleta. That is f(X,,) C Y.

Theorem II1.3.1

Every (continuous) map between CW-pairs is homotopic to a cell map.

Proof in Hatcher (Theorem 4.8 [3]). An elaboration of the proof. Why is every map f : S¥ — S™ for k < m
homotopic to the constant map. It’s clear if images misses a point S™ \ {*} ~ %. But f ~ smooth map,

which always misses a point. v

Proposition I1.3.2
If (X,Z) is a CW-pair, then X/Z ~ Cv where ¢ : Z — X. As a consequence

En(X,Z) 2 E(CL) = Ep(X/)2Z)

This works more generally when Z < X has the homotopy extension property (HEP), which holds for
CW-pairs)

Definition I1.3.4
The mapping cylinder M f of a map f:Y — X is given as

Mf: (Y < [0,1) ] X)/(w,0) ~ f(y)

Definition I1.3.5
A map f:Z — X is a cofibration (satisfies HEP) if there is a left inverse r : X x [0,1] = M f of
the map

fiMf— X x[0,1]
(y,t) = (f(y), 1)

x — (x,0)

A more explicit definition is given by the commuting diagram below, which means that if we have g

and ¢g; commuting then there must exist a g;.

N N |

%

! Y fxId

See [6] Chapter 6 for details.

13
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A CW-pair is a cofibration. Only need to observe that S™~1 C D™ is a cofibration, because cofibrations

do well with pushouts. This means we need a retract of
S™=1 % 0,1 U D™ x {0} = D™ x [0,1]
But this is homeomorphic to
D™ x {0} — D™ x [0,1]

And this has a retract given by taking every (z,t) to (z,0)..
If . : Z — X is a cofibration then Ct ~ X/Z. We know that M. é X x [0,1] has a left inverse. We can

perform Mv/(Z x {1}), and this gives Ct ]Q X % [0,1]/Z x {1} has a left inverse r’.
Restrict ' to X/Z = X x {1}/Z x {1} 4
We claim that £ is a homotopy inverse to ¢ : Ct — X/Z. The details of this will be on the homework

Calculating (Co)homology of CW-pairs

First we’ll look at Ordinary homology with coefficients in Z. Make a chain complex C°''(X, Z). Namely,
look at the homology

0 ifk#m

Hi(Xoms Xom-1) = He( X/ Xom—1) = H, s | =D HL(S™) =
k( 1) = H(Xm/Xm-1) k(}{ > @ k(S™) {ZIm G E—m

We can calculate Hy,(S™) by noting it is the m-fold suspension of SO = {,*}.
That is Hp, (X, Xm—1) = ZI,, is the free abelian group on the set of m-cells. We then have from the

long exact sequence of a pair the map 0y, below, which we can combine with the inclusion j,,_1:

Bm jmfl
Hm(XM7XTYL—1) — Hm—l(Xm—l) E— Hm—l(Xm—la Xm—2)
We can set d!! = j,. 1 0 9,,. Some calculations with long exact sequences of pairs shows that this gives a
chain complex.
This allows us to define C°°'(X) as

dcell

ZI,, ZI,,

And we can of course define
Ccell(X;A) _ Ccell(X) ® A
Ceen(X; A) = Hom(CCCH(X), A)

Theorem 11.3.3

We in fact have
Hy(X; A) = Hy (C(X; 4))
Hm(X; A) _ Hm(Ccell(X; A))

The proof will be later.

Next time: How to calculate dee!.

14
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Homework #2

(3) Prove that if Z <% X is a cofibration then X/Z ~ C. (detailed hint in lecture).
Last time, we defined for a CW-complex X [more generally a CW-pair (X, Z)], a chain complex C<'(X, Z) :

Z[I,,], where I, is the set of m-cells.
We also observed that Z[I,,,] = f[m(Xm/Xm_l) = Hp(Xom, Xm—1)-
This allows us to build a chain complex with coefficients or a cochain cell complex via ?® A and Hom(?, A).
Furthermore, the differential d°"! : Z[I,,,] — Z[I,,_1] is obtained as a connecting map composed with an

inclusion:
7]
Hm(X'rn)Xm—l) E— Hm—l(Xm—l) E— Hm—l(Xm—laXm—Q)

This can be shown to give a chain complex as desired (see 592 Notes).
How do we actually compute d!'? Well it’s 0 if m = 0. Then if m = 1, the 1-cells are oriented line

segments, and:
d$®"(e) = beginning point — end point

Now for e € I,,, with m > 1 we compute d%ﬁ“(e) differently. Namely we have a map f,, : S™ ! x I, = Xp_1.

We can then write:

f
-1

gt A X1/ Xns =\, S
We take this map in homology (apply H,,—1(7;Z)). It gives a map:
Z — LI, 1]l — deell(e)
We are using the fact that:
Hyoy [ \/ S 2 € Hua(S™).
Im_1 i€lp_1

However, we could also just project this map down, sending every cell except ¢ to the basepoint and mapping
¢ by the identity:

\/ Smfl N Smfl

Imfl
And then take homology.
We are then given another problem! Given a continuous map f : S¥ — S* for k = m — 1 > 1, what does

it induce in homology?
Hy(S%) —— Hy,(S%)
72— 7

1 — deg(f)

15
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We may homotope f to a smooth map, so let us assume € S* and there exists an open neighborhood U of

x so that:

Such that f:V; — U is a diffeomorphism (C'), and we let f : y; € V; — .
Theorem 11.3.4
deg(f) = Zle 0i, where o; = 1 if f|vv preserves orientation and o; = —1 if f!v reverses orientation.

A good book for this material is Milnor’s Topology from a differential viewpoint [9].

Example I1.3.1
Consider RP™, which is the space of all lines through the origin in R™*! or S™/z ~ —z.
This has a CW-complex structure. We

Rl QR2g"'ng+l

RP° C RP! C --- C RP™

This is a CW-filtration, and RP™ is an m-dimensional CW-complex (meaning it only has cells up to
dimension m).

For RP? we have the 2-cell vy as the top hemisphere, in general the m-cell is {(zg, . .., Tm) € S™ | 1 >
0}. the boundary is exactly when z,, = 0, whihc is S™~!. The attaching map is then the quotient
Ssm=1  Rp™—1L
So then we have that:

CeYRP™) Z—Z— =77

degrees m m-1 .- 1 0

The attaching map S™! — S7'/S™2 sends the northern hemisphere to a point and the southern

hemisphere to its antipode. After some work one works out that these maps are zero or two in homology:

1+(-1)™  14(—1)m !
Ceell(RP™) A e e A BN S BN
degrees m m—1 e 1 0
We can then compute that if m is even:
Z ifk=0
Hiy(RP™) < Z/27 if 0 <k <m odd
0 otherwise

And if m is odd we have:

7 if k=0,m
Hi(RP™) Z/27 if 0 <k <m odd

0 otherwise

16



Faye Jackson September 15th, 2021 MATH 695 - 11.4

The cellular chain complex C°! is not functorial in continuous maps, but it is functorial in cell maps
f: X =Y where f(Xj) CYy. Because then there is an induced map Xy /X1 — Y /Yr—1. Then we can
just take reduced homology to get wedges of spheres:

X/ X1 = Y3 /Y1
\/Sk Hk Xk/Xk 1)—>Hk Yk/Yk 1= \/Sk

This can again be computed using the degree of maps S* — S*.
Homework #3

1a) Calculate Hy(RP™;Z/2Z) by definition using cellular homology. You may use C®!'(RP™) from class.
1b) Prove that the quotient ¢ : RP™ — RP™/RP™! (embedded as in class) is not homotopic to a
constant map (use homology with suitable coefficients H,, (¢; Z/27Z)).
1¢) For which values of m > 0 is H,,(¢; Z) non-zero?
1d) Construct an m-dimensional CW-complex X with only one m-cell such that the projection ¢ : X —
X/X.m—1 is homotopic to a constant map. [Think simple].
These are bpts each and due next Monday (9/20).

Example I1.3.2
We can also look at CP™, which is the space of all lines through the origin in C™*!. That is, it is:

{Goreoszm) €C™T I N1 =1}/ (2~ 2 = J2] = |2)
We also have a CW-filtration:

CcpP’ccCPtC.--CccCP™
We have a 2m-cell given by {(zo, czm) | Szl zm € R,z > O}. We have a pushout:

Smel N Cmel

D*m P cpm

To know the induced pushout map is a homeomorphism, one uses that it is bijective, P is compact, and
CP™ is Hausdorff.
We can also compute C!'(CP™):

cel(CP™)  Z 0 z 0 Z

degrees 2m  2m-1 2m-2 .- 1 0
So every map is the zero map. This allows us to say that:

Z if 0 <k <m, even

0 otherwise

v - {
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I1.4. The Generalized Homology of CW-complexes

Let us try to define C°"(X) for a generalized homology theory E and see what goes wrong. We let
E,, = E,,(x) be the coefficients F..
We know that:

For a CW-complex X, we have that:

We do get a differential:
7]
d: Eerq(X;nprl) — Eerqfl(prl) — Ep+q71(Xp717Xp72)

However, we now have a chain complex for each choice of ¢ € Z. We draw this for p increasing to the right

and ¢ increasing on the upper side:

q=2 Es[I] Eo[] B[l ¢— ---

g=1 E (1) By (L] EilbL) ¢ -

q=0 Eo[Io] EolLh] Eoll5) —— ---

g=-1 E_[Iy) +— E 1 [1) «— E_4[5] +— -+~
p=0 p=1 p=2

18
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We have a “total dimension” p + ¢. This is called the E'-page of a spectral sequence. And this is in fact the

Atiyah-Hirzebruch spectral sequence. In general we can have:

q=2 Ej, El, By e—

qg=1 Ej, El, B}, — -

q=0 Efo El, o) JApE—

q=-1 Ej_4 Ef 4 E} ¢ -
p=0 p=1 p=2

The homology of each sequence is called the E2-page.

q=2 Ejo ¢ Ei, Ely¢— -

g=1 Ej, E}, B}, — -

q=0 Ej < El, Elo— -

qg=-1 Ef 4 El _, E} ¢ -
p=0 p=1 p=2

; : . B2 2 .
We get a differential do : B | — E;_q ,1q:

1 1 1
Ep o Ei, E3 5

1 1 1
Eq Ei, E3q

1 1 1
Edo Ei E3

S
S
Y

1 1 1
Eo,—1 Ey 4 Ez,—l

In general we get a differential on the r-th page d. : B, , — E/_, ..
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And we take algebraic homology:
r+1 __ r
Ep,q - H(szq)
We can then define:
EJ7, = colim, E 2
Still a whole plane full of groups. Have we calculated E,;4(X)? Well we can consider:
FpEpqX = S(Ep1qXp = EpigX)
Then F_q =0C Fy C Fy C---. This is an increasing filtration (complete), and we have:
U FpEpiqX = EpgX

Which follows by the limit axiom of homology:

Theorem I1.4.1 (Atiyah-Hirzebruch)

By, = FpEp X/ Fy 1B, ,X. This is called the associated graded object.
We have E2 = H,(X, E,).

For an abelian group A, a complete filtration on A is:
0=F1ACFRACFHAC--.
Where A = |, F;A. Then the associated graded object is:
E°A; = (F{A/Fi_1A)i>0
Example I1.4.1

Suppose that (F;A) is a complete filtration of an abelian group A and suppose (F;A/F;_1A) =2 Z[S;].
Then:

A=Pzs)|=z l]_[si

Proof. There is a short exact sequence:

0—— FiflA F,LA FiA/FiflA —0

A free abelian group is projective so this splits. For splitting just lifts the free generators € S; to F; A and
extends by the universal property.

We can conclude F;A > F; 1 A® F;A/F;_1A. Induction finishes the proof. f

This is called an extension in a spectral sequence. What good is a spectral sequence (for example the
AHSS, Atiyah-Hirzebruch spectral sequence) when we only know Eg,q and not the higher differentials?

The simplest scenario: sometimes they are ruled out.

Example 11.4.2

When E = H(?; A) is the ordinary homology. In that case AHSS looks like the following on the first
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page:

g=1 0 0 0
Thus no higher differentials are possible, and no extensions are possible because the associated graded
object only has one term.

So if we prove that the AHSS works, it implies the theorem about He!! = Hsingular,

Someitmes the differential can also be ruled out in a more subtle way. For example when Eg q = 0 for

p + ¢ odd (any higher differential will decrease the total dimension by one). In this case, we can still have
extensions.

Homework #3

(2) Suppose a generalized homology theory K has coefficients Ko, = Z, Ko,,,—1 = 0, m € Z. Calculate

K,CP™ for all £ € Z. Use AHSS, and put together the information mentioned in class.
Remark I1.4.1

In most (homological) spectral sequences, the pages are denoted by E},- This has nothing to do with

the generalized homology theory E in last class. On Homework, generalized homology theory is called
K, the spectral sequence terms should still be denoted by £,

Today we show that the groups H,,(X,Y;A), H™(X,Y; A) are completely determined (algebraically) by
H,(X,)Y)=H,(X,Y;Z) and H*(X,Y) = H™(X,Y;Z).

However, the way they are determined is not completely functorial. The key point: C(X,Y") (singular
chain complex) are chain complexes of free abelian groups (terms are free abelian groups).

Theorem 11.4.2

Any chain complex of free abelian groups can be written as follows:

C= @ M)

me7Z

The brackets denote a “shift” of a chain complex by m, and J7;, is a complex of the form:

0 B m Z m 0

2 1 0 -1

Where the map B,,, = Z,, is injective and Hy.%4;, = H,,(C) (note that Hy. 7, = 0 for k # 0).

Proof. C : -+ = Cppy1 — Cpy = Cpyer — -+ We let Z,,, = kerd,, and B,, = imd,,41.
Hy 5, = Hy, C = Zp, / B,

Then
Note that we have a short exact sequence:

C
0 Ly, — Cpy,

Bp,_.1——0

Now Bp—1 C Zpm—1 C Cr—1. Cpy—q is free abelian, so B,,—1 is free abelian as well (see [5] for the algebra).
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Thus this splits (say by s.,—1), and we have that:

Cm +1 O’H’L C’rn —1 Cm -2

QGBSmT Q@SWLlT Q@szT Q@SmE'T

e —— Zm+1 @Bm E— Zm@Bm—l E— Zm—l @Bm—Q e Zm—2 @Bm,—B —_—

v

Given the simple complex ¢ : B C Z, we have Hy.7¢ = H. What is H,(#'®A)? Well Hy(#®A) = HRA.
Why? Well ® is right exact so:

0 B A H 0

B®A Z®A H®A—0

And then we set Tor?(H, A) := H,(# ® A). Is this well-defined? For this to be well-defined, the answer
needs to depend only on H, not on 7. We’ll postpone this for now, and we’ll prove it later in greater

generality.

Similarly, what is the cohomology of Hom (5%, A)? Well we have left exactness so:

0 B Z H 0

Hom(B, A) +—— Hom(Z, A) <—— Hom(H,A) +——0

Then H° Hom(X, A) = Hom(H, A). We then set Exty(H, A) :== H' Hom(X, A).
Example 11.4.3
Let H=7/2Z and A =7Z. Then ¢ : Z ENA Homming into Z we have:

Hom(;%”,A):Z&Z

Then Hom(Z/2Z,7) = 0 = Exty(Z/22Z, 7). And Exty,(Z/27,7) = 7./27.

From the structure theorem of chain complexes of free abelian groups, commutation of homology with
shifts, and direct sum, we get the following wonderful result
Theorem I1.4.3 (The Universal Coefficient Theorem)

We have that

H,(X,Y;A) 2 (Hp(X,Y)® A) @ Tork(H,,_1(X,Y), A)

?

H™(X,Y:;A) = Hom(H,,(X,Y),A) ®Ext}(H,_1(X,Y), A)

Thus we’ve reduced the problem to figuring out how to calculate Tor? and Extj,.

A slight catch: This is not completely functorial, namely the splittings are not natural transformations.

Functorially, we only have short exact sequences:

0 —— Hp(X,Y)@A ——— H, (X, Y; A) —— Tor?(Hp1(X,Y), A) —— 0

0 —— Ext}(Hp 1(X,Y),A) —— H™(X,Y; A) —— Hom(H,,(X,Y),A) —— 0
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These split, but not naturally.

This actually works for any chain complex of free abelian groups.
Homework #3

3a) Calculate Tor(Z/mZ,Z/n7Z), where m,n € Z.
3b) Calculate Ext}(Z/mZ,Z/nZ) where m,n € Z.
The cases where one of them is 0 may need special care.
A headstart on next class—the general theory of all this. Namely, resolutions.
Definition I1.4.1
Let R be any commutative ring, and let M be an R-module. A free R-resolution of M is a chain

complex of free R-modules

¢ e Cs Ch Co

Then Hy¢ = M, H,% = 0 for k # 0.
Now let V be any other R-module. We define:

TOI‘,,I:(]\/[, N) = Hm,((é) ®R N)
Ext} (M, N) :== H™ Homg(%, N)

It is still true that:
Torf(M,N) =M @r N
Ext% (M, N) = Hompg (M, N)

Before we defined the R-modules Ext}y, Tor? for a commutative ring R. If R is not commutative, then
Extly (M, N) is defined if M, N are both left R-modules. In general, then, Ext (M, N) is just an abelian
group. Then Tory is defined when M is a right R-module and N is a left R-module, and it is only an abelian
group.

Example 11.4.4

Let G be a group. The group ring Z[G] is the free abelian group on G wiht multiplication given by
the multiplication in G (and extended by distributivity).

For example, if G = Z/2Z. Then we can consider Z[Z/27Z]. Let G = {1,a} be the particular

representative, with oo -« = 1. Then:
(k + la)(n +ma) = (kn + fm) + (km + fn)a

Bad habit (in general G): A Z[G] module is called a “G-module.” This clashes with other terminology.
This really means that G acts on M by linear maps. And of course a left G-action and a right action

are equivalent by gm < mg~!.

Definition I1.4.2
Let M be a G-module. We define the homology and cohomology of G with coefficients in M by:

H, (G5 M) == Tor2) (7, M)
H™(G; M) = Bxtjg(Z, M)
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Back to topology.
Definition 11.4.3

Let G be a group, A G-CW-complex is a G-equivariant space (space with a G-action) X where
X =U,en, Where X 1 =) (indeed we can take X _; to be a G-space to get a G-CW-pair).

I, (the set of m-cells) is a G-set (set with a G-action). Furthermore, f,, : I, x S™ 1 — X,, i isa

G-equivariant map (when tking the G-action to be trivial on the sphere). Then X, is a pushout:

I, x st Iy x,

I l

In, X anl — Xm

Suppose we have a G-space X which is both free (all the I,,, are free G-sets, aka gxr = = g =1) and
X ~ x non-equivariantly..
Then C'X is a free Z[G]-resolution of Z. Why? Well because ZI,, is a free Z|G]-module, and we have

an exact sequence (because X ~ x) given by:

ZI,, Tl . ZI, z

So we have that X/G is CW-complex (with set of m-cells I,,, /G). Furthermore C°*"(X/G) = C*"(X) @y Z.
More generally, using that I,,, is G-free:

Z(ln] ®zi6) Z = Z[1m /G|
Likewise,
Cean(X/G) = Homyq)(C*(X), Z)
Homgg)(Z1m, Z) = Hom(Z|[I,,/G], Z)
We can conclude that:
Hm(G;Z) = Hn(X/G)
H™(G;Z) = H™"(X/G)
We sometimes write BG = X/G, where X ~ (non-equivariantly) is a free G-CW-complex. This is also
sometimes called the classifying space of G.
We call X = EG, and it is the universal cover of BG via the quotient map. Therefore 7 (BG) = G and

7 (EG) = m(BG) = 0 for k > 1. We will come back to this in more detail.

Example I1.4.5

Let G = {1,a} = Z/2Z. Consider RP*> = J,, RP™ (a CW-complex with the union topology). Then
RP®° is ain fact a BG. Why?

Well the universal cover of RP* is S$°°, which we know to be contractible (and will be a EG). To

see this think of a homotopy:
h (JC - ): t(mo,xl,...)+(1ft)(O,mo,O,:vl,O,:vg,...)
AR T (o, 1, - ) + (1= £)(0, 20, 0, 21,0, 2o, ... |

Thus the identity is homotopic to (xg,z1,...) — (0,20,0,2,0,22,...). Then we can use the straight line

homotopy to (1,0,0,...). This gives a homotopy from the identity to the constant map.
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The map S°° — RP®° is the quotient map identifying antipodal points. Thus letting « act on S* by
the antipodal map we have the desired structure. We then see that:

Z ifk=0

H\,(Z/2Z2;7) = H,RP> =< 7Z/27 if k > 0 odd
0 otherwise
Z ifk=0

H"(Z/27Z;7) = H"RP>® = { 7Z/2Z if k > 0 even
0 otherwise

Homework #4
la) Prove that the following is a free Z[Z/kZ]-resolution of Z (with the trivial action), where k € Z\ {0}:
s Z[Z/kT) — Z(2/k7) s 2(2)k7) — Z[Z/KZ)

Let Z/kZ = {1,a,a2,...,a* '} with ¥ = 1. Then we can set T(1) = 1 — a, Then N(1) =
l+a+a?+---+aF L
1b) Calculate H,,(Z/kZ;7Z) and H™(Z/kZ;Z) when k # 0.

Note: S can be considered as the unit sphere in C, namely

{(z0,#1,-..) | 2m € C, finitely many nonzero, Z lzm|? = 1}.

Then Z/kZ — S* via the k-th roots of unity. One can then make S a Z/kZ-CW-complex via a bit of
work. Then BZ/kZ = S*° /(Z/kZ). This is sometimes known as an infinite lens space.

One can make it in such a way that C°®" EZ/kZ can be chosen to be precisely the resolution given in
Homework #4 1a.

Next time: Correctness of definition of Tor, Ext.

Today we start the proof that the definitions of Tor and Ext are correct. For simplicity, we assume R is a
commutatative rign.

We start with a key lemma.

Lemma I1.4.4

Let Co and D, be free R-resolutions of R-modules M, N, respectively. Let ¢ : M — N be a

homomorphism of R-modules. Then there exists a, unique up to chain homotopy, R-chain map ¢ : Cy —

D, such that Hyp = .

Comments: Recall HyC = M, HyD = N, H,C = H;D = 0 for k > 0.

Definition I1.4.4

Let f,g9: Coe — D4 be chain maps. a chain homotopy h : f ~ g has
dh+hd=f—g

Notice that h: C),, — D41
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Proof of Ezistence. Let M; = imd{ = C;/kerd{ and N; = imdP = C;/kerdP. We have short exact

sequences, and because Cy, Dy are free we can lift in the generators:

0 M, Cy M 0
I I
| I @0 JSD
+ +

0 Ny Dy N 0

Homological algebra then guarantees a map M; — N;. Note that --- — C7 and - -+ — D; are free resolutions
of My, Ny, because ker df = imd$ and ker dP = im d?. Thus we can construct @, inductively from the map

" Y
M, — Nj. v

Proof of Uniqueness. Suppose 1,92 : Co — Do both induce ¢ in Hy. Then @1 — @2 induces 0. Thus it
suffices to show that if ¢ induces zero, then it is chain homotopic to zero.

Consider the augmented resolutions C,, — -+ — C7 — Cy — M — 0 and likewise for D. We construct
ho by noting that for z € Cy we have dop(z) = ¢(do(z)) = 0. Thus @(z) = diy for some y € D;. We can
then lift on free generators.

Now suppose we have constructed the homotopy h : ¢ ~ 0 in degrees < m.

Then we know that:

Ao (P = B d) = A @ — Al oy
= Gm-1dm — dhd
= hdd+dhd —dhd=0

Thus by exactness (@, — hdp,)(x) = dy for free generators x € Cy,, and so we can lift on the free generators.

v

Corollary 11.4.5
Free resolution is a functor R-Mod — h-R-Chain.

Both Hom(?, N) and ? ® g N preserve chain homotopy, and chain homotopy preserves homology. Thus
Tor and Ext are well-defined.
Recipe: If F is any additive functor R-Mod — % to an additive category which preserves chain homotopy

(aka extends to a functor on the homotopy category of R-chains), then we can define left derived functors

L., F by applying F' to a free resolution and then taking H,,.
Instead of a free resolution, it suffices to require that C,, be projective (projective resolution).
Definition I1.4.5
P is projective if for every g: M — N and f : P — N there exists a f : P — M such that gf = f.

M

o

g

|
~

~
SR
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We turn around the arrows and say @ is injcetive if for every g : N < M and f : N — @ there exists a
f: M — Q@ such that fg= f.

Q

+—Z+—o0o
lx
Q

N
| N

M

We also have injective resolutions, where we have Qo — Q1 — Q2 — --- with H°Q = M and H™Q =0
for m > 0.
Lemma 11.4.6

Injective resolutions ar ea functor R-Mod to h-R-Chain.

Existence of “enough injectives”. In Ab, injective is exactly being divisible, that is for all € G there exists
m € N such that there exists y € G with my = =z.

Injective R-modules are given as Homgz (R, G) with G a divisible abelian group. This will give that injective

resolutions exist. The rest of the proof is the same as for projectives. 4

Right derived functors R™F' are then defined by applying F' to an injective resolution and taking m-th
cohomology.

The case of Tor and Ext is:
Tor’ (7, N) = L,,(? ®r N)
Tor® (M, ?) = L,,,(M®g?)
Exty(?,N) = L,,(Hompg(?,N))
Exts (M,?) = R™(Hompg(M,?))

Note if F is right exact then LoF = F and if F is left exact then ROF = F.
Next Time: Abelian Categories.

Homework #4

(2) Prove that if P,T are projective resolutions of R-modules M, N and ¢ : M — N is a homomorphism
of R-modules then there exists a (unique up to R-chain homotopy) @ : P — T such that Hyg = ¢.

1I.5. Abelian Categories

We take a quick digression to define limits/colimits in a category.
Definition I1.5.1
A diagram is a functor D : I — .

Definition I1.5.2

A cone over a diagram D : [ — % is an object X in % so that for each i € [ there is a map
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n; : X — D(i). Furthermore for every map i EN j in I we have the following commuting triangle:

X
D) — 29 )

Example I1.5.1
Product is the limit of a diagram with index category I = {x1,*3}. Pullback is also a limit over a

diagram e — e <— e. Equalizers are also limits.

Definition I1.5.3

A limit lim D over a diagram D : I — % is a “universal cone”

That is lim D is a cone over D, with maps 7; : lim D — D(i) such that for any other cone T over D
with maps p; : T — D(i) we have that there is a unique arrow f : T'— lim D such that the following

diagram commutes for all 4:

Hi lim D

m

T
|
m
|-
D(1)
Dually wqge have the notion of a colimit.

Example I1.5.2
The coproduct, pushouts, and coequalizers are all colimits.

Definition I11.5.4
colim () is called an initial object, as there is a unique arrow colim®) — T for every T lying in %.

Likewise lim ) is called a terminal object, as there is a unique arrow T — lim () for every T lying in &

Note: Limits and colimits are only defined up to isomorphism (given by the universal property). However
there is only one such isomorphism at the level of cones (i.e. respecting the limiting cones over the diagram).
Definition IL.5.5

A functor is called right exact when it preserves finite colimits. It is called left exact when it preserves

finite limits.

Now we’ll think a bit about abelian categories.
Definition I1.5.6

A category with zero has an initial object and a final object such that the unique morphism I — T
from the initial object to the terminal object is an isomorphism.

In such a category for any X,Y we have an arrow 0 : X — Y given by the unique composition
X—=-0—-Y.

Example I1.5.3
Ab, R-Mod, BasedSpaces, BasedSets.
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In a category with zero, we can define kernels and cokernels.
Definition I1.5.7
In a category with zero, ker f is the equalizer of f : X — Y and 0. That is we take the limit over the

diagram:
/
X —=Y
0
Likewise a cokernel coker f is the coequalizer of f : X — Y and 0 (that is the colimit of the above

diagram.

Definition I1.5.8
In any category, f : X — Y is a monomorphism when for any g,h : Z — X such that fg = fh we
have g = h.

Likewise f: X — Y is an epimorphism when for any w,v : Y — Z such that uf = vf we have u = v.

Definition I1.5.9

An abelian category is an Ab-enriched category with zero and with finite limits and colimits such

that every epimorphism is a cokernel and every monomorphism is a kernel.
You can prove a lot of nice properties about abelian categories. Including all the additive properties of
abelian groups.
e XY 2X[[Y=2X]]Y.
e Mory(X,Y) is an abelian group and composition is bilinear.

Definition I1.5.10

Enough projectives in an abelian category ¢ provided that for all X in & there exists a projective P

and an epimorphism P — X.
This gives us projective resolutions and left derived functors. If you have enough injectives (that is for
every object X you have a monomorphism X < @ into an injective) that gives you injective resolutions and

right derived functors.

We have enough projectives and injectives in R-Mod. You also have enough injectives in abelian sheaves.

11.6. Commutativity of Tor

We want to show that Tor’ (M, N) = Tor (N, M), and that this isomorphism is canonical.
Idea: Resolve both M, N. Call C a free resolution of M and D a free resolution of N. Redefine
Tor® (M, N) = H,,(C ®g D). We need to define C @ D, and prove that we get the same thing.

Given two chain complexes C' and D, we must define their tensor product C ®g D.

If D is just an R-module N, then we want C'®g N. It’s certainly then incorrect to take the componentwise

tensor product.
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We can take a two-dimensional grid of tensor products:

|

i ——Cn @Dy ——— Crm1 @ Dy —— -+

> Cro @ Dppy —— Crp1 @ Dy g ——> -+

I [

Definition I1.6.1
This is a double chain complex A,, ,,,. We have two differentials 0 : A,, ,, =+ Ap—1,m and 6 : A, ,,, —

Ay m—1 such that:

00 =0 00 =0 00 =60

Definition I11.6.2
We define (C ®pg D)pm = Cp, @r Dy, the tensor product of two chain complexes, to be the double

chain complex with differentials given by d¢ @ Idp and Id¢ ® dP.

Definition I1.6.3

Given a double chain complex A, the totalization |A| is a chain complex given by
4, = D Are
k+l=m
dz = 0z + (—1)kéx

Reversing roles of k, £ gives an isomorphic chain complex. Apply the sign (—1)¥ to z € Ay .

We can then redefine Tor’ (M, N) = H,,(|C ®r D|) where C,D are projective resolutions of M, N.
Nobody writes the totalization, so H,,(|C @ D|) = H,,(C ®r D).

Homework #4

(3) Suppose we have a double chain complex C such that
o H,(Cy+,0)=0
o Cpy=01if £ <0 (equiv. £ < N fixed)
So cut off in the bottom, rows exact. Then H,,(|C|) = 0. (Hint: First prove it when there exists a L
such that for all k C}, o = 0 if £ > L. Can induct on L using short exact sequences of chain complexes,
which leads to a long exact sequence in homology. Then express C' as a colimit of such sequences
with L increasing, use commutation of homology with colimits of sequences).
Using this, it’s fairly easy to prove that Tor is commutative using the program outlined below. You
consider the augmented resolution C of M given by --+ - Cpy, = Cpu_1 — -+ = Cyg = M — 0 for a free
resolution C' of M. This is exact, and there is actually a short exact sequence 0 — M[-1] — C—C—0.

30



Faye Jackson September 27th, 2021 MATH 695 - I1.6

By the homework H*(é ®pr D) = 0. By long exact sequence, we then have that:
Hp(C®r D) =0 —— Hp(C®r D) — Hyy_ 1 (M[~1] ®g D) — Hyp_1(C ®5 D) =0
If C' and D are free R-resolutions of R-modules M, N (for R a commutative ring) then
H,,(C ®r D) = Hy,(C ®g N) = Tor (M, N)

Therefore Tor’ (M, N) = TorZ (N, M), because C @ D = D @ C.
Let R =7Z. A corollary is
Corollary I1.6.1 (Kunneth Theorem)

Let C, D be chain complexes of free abelian groups. Then

H,(CoD)= P H(C)oH(D)e @ Tori(Hy(C),Hy(D))
k+l=m k+0=m—1

naturally we have a exact sequence

0 —— @yismm Hi(C) © H(D) —— Hyp(C © D) —— Byy ey Tor{(Hi(C), Ho(D)) —— 0
but the splitting is not natural.

Proof. Although C and D are not free resolutions, recall that they are direct sums of shifted free resolutions

C = Hnm)
meZ
where J7;, is a Z-free resolution of H,,C. Similarly for D. .v.

What about an arbitrary commutative ring R, C' and D are chain complexes of free R-modules?

We have a Kunneth spectral sequence:

E, = P Torf(H,C,H/D) = H,.4(C ®g D)
k+4=q

For R = Z (more generally a principal ideal domain) we only have Toré% = ®g, Torf , Ef,q =0forp>1.
No room for d” for r > 1, so E? = E*, and the spectral sequence collapses.

Comment: If R is a field, every module is free. Thus

Hyn(M@rN)= @ Hi(M)®r Hi(N)
k+4=m

Comment: For any commutatative ring R, we have a natural homomorphism of R-modules
Hy,(C) ®@r He(D) = Hy4¢(C ®@g D)[c] @ [¢] = [e® ]

ifc=dathen c®cd =d(a® ).
Can this be used to calculate H,,, (X x Y) for X,Y spaces? Well we're looking at C(X x Y) versus
C(X)® C(Y). That is maps A™ — X x Y versus (AF — X) @ (A = Y).
This is different except in degree zero, because
CO(X X Y) = CO(X) ® C()(Y)
ZIX xY|ZX QLY
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Theorem I1.6.2 (Eilenberg-Zilber)

There exist natural chain maps

p:C(X)®CY)—=C(X xY)
P:C(XxY)=CX)oCY)
which are Id in degree zero and moreover v is naturally homotopic to Id and ¢ is naturally homotopic
to Id.
In other words: C'(X x Y) is naturally homotopic to C'(X) ® X (Y).

Note: Also similarly for coefficients in a commutative ring R. Especially useful when R is a field via
the Kunneth Theorems.

Over Z this gives a kunneth theorme for spaces

Ho(XxY)= B H(X)oH(Y)e P Torf(Hy(X),Hy(Y))
k4+l=m k+f=m—1

In Eilenberg-Zilbur theorem, natural homotopy h means each h,, is natural.

Strategy for proving Eileberg-Zilbur theorem. We are trying to construct natural homomorphisms

Cn(X xY)— @
Cr(X)Cy(Y)— @

where @ : Top x Top — Ab. Because Cp, (X x Y) = Z[S;(X x V)] and Cx(X) @ Co(Y) = Z(Sk X x SpY),
our problem is equivalent to constructing a natural map of sets
Sm(X xY)— @
Sk(X) X Sg(Y) — o

Lemma I1.6.3 (Yoneda Lemma)

Natural transformations Morg(T,?) — ¥ where W : C' — Set are in bijection with elements of U (T).
To prove the Eilenberg-Zilbur theorem, proceed by induction on m (resp. k + £).
Suppose there is a natural transformation Cx X ® CpY — Cjy¢X X Y is constructed for k 4+ ¢ < m. Let
k+£4=m.
We need to construct a natural transformation
p: CrXC)Y — CkJrgX xY
By Yoneda lemma, we only need to construct

o((Id: AF = AF) @ (Id : AY = AY) = u € Cryo(AF x AY)

z

We must have that du = ¢(dz), but we already know (dz) by inductive hypothesis. Butthen

de(dz) = p(ddz) =0
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©(dz) is then a cycle, so it is a boundary
Hy 1 (AF x A =0

(m =1 needs a special case). Thus ¢(dz) = du for some u. We then just can lift on these free generators.
Other direction 9 : Cpp (X X Y) = @4y, Ck(X) @ Co(Y).
We need to map this on the identity A™ — A™ we special case m = 1. For m > 1 by Kunneth theorem

H,,(CA™ ® CA™) = 0.

Homework #35

(1) Prove that for EZ maps ¢, we have ¥ ~ Idcxgcy naturally.
Use induction. For k + ¢ = m we need to construct a natural map
h:CXQCY » P CX®CY
p+g=m+1
where both sides are considered as functors Top x Top — Ab.
The funtor Cp X ® C,Y is again the free abelian group on Sy X x S,Y.
By Yoneda lemma, we need to construct h(z) € (C(AF) ® C(A*)),ny1 where

z = (IdAk,IdAe) S Sk(Ak) X S@(Ae).

We want that
dh(z) + hdz = Yp(z) — 2z
Thus
dh(z) = Yp(z) —z — hdz
We verify that d(¢¢(z) — z — hdz) = 0. Then the target has zero homology in degree m > 1.

In Yoneda Lemma:
Mora(Y,Y) Y

const(Idy) lG(f) J{f

A functor is representable when G(X) = Mor¢(Y, X) for some Y.
This is, more generally, called a universal element
Definition 11.6.4
Let G : C — D be a functor and let X € D. A universal element for X,G is a D-morphism
X — G(Y) for some Y € C with

X - G Y
X lg(q) E
G(2) Z

such that for every D-morphism A : X — G(Z) there exists a unique C-morphism ¢ : Y — Z such that
h=G(g) o p.
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Example I1.6.1
* — Id is a universal element for the representable functor G : C' — Set Where G(Z) = Mor¢(Y, Z).
This is the statement of the Yoneda Lemma
The universal element for X, G if it exists, is unique up to isomorphism.
If the universal element exists for every object x € D for a fucntor G : C' — D, then Y, is functorial in X.
We have a functor F': D — C where F(x) is universal for z, G.

Then we have
Morp(X,G(Z)) = More(F(X), Z)

naturally. In this case we say that F': D — C is left adjoint to G.
n: X — GF(X) is given by universality, and is called the unit of the adjunction. Symmetrically, we have

a natural transformation € : FG(Y') — y called the counit.
One can prove that F' is left adjoint to G if and only if we have natural transformations 7 : Id — GF and
€ : FG — Id such that

F G
F—" ror £, F a5 arqg £ q

Id Id

commute. These are called the triangle identities.
Example I1.6.2
Let R be a commutative ring. Then M®pr? is left adjoin to Hompg (M, ?).

Duals: M* : Homp(M, R).
This also extends to R-Chain. There is a notion of a closed tensor category, an abelian category with ®

satisfying the “obvious axioms.”

III. Products in (co)homology

Natural product in H*(X; R) where X is a space and R is a commutative ring. Start with A: X — X x X.
This gives
CX -CXxX)-CX®CX
via the Eilenberg-Zilber theorem. Tensoring by R gives
C(X;R) = C(X;R)®r C(X;R)
:wq Dualize the above example to get
C*(X;R) ®r C*(X;R) & C*(X; R)
H*(C*(X;R)) ®pr H*(C*(X;R)) & H*(C*(X; R))

This is called the cup product —.
Properties, it is associative, unital, and graded-commutative. Aka for z € H*(X; R) and y € H*(X; R)

we have

kZ(

z—y= (="~

We actually get good rings (e.g. polynomial rings).
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Homework #5

(2) Consider the functor F' : Grp — Ring given by G — Z[G].
Prove that the right adjoint to F' is the group of units

R—{g€ R| 3k, gk =1}

(use universality).

Lets deal with examples of the cup product. That is when R is a commutative ring we have a map
— H*(X;R)® H*(X;R) —» H*(X; R)

which is given by the Eilenberg-Zilbur theorem from A : X — X x X, and gives H*(X; R) the structure of

a graded commutative ring.
Lets cover the case when X = BG, for G a discrete group. m X = G and the universal cover X of X is

contractible.
Then
H*(X;R)=H*(G;R) = Ext%G] (Z;R).

Translating the sotry to algebra: Let C be a Z[G]-free resolution of Z. Then C®;C is a Z|G|QZ[G] = Z|G x G-
free resolution of Z (by the Kunneth theorem)

We have the diagonal homomorphism g — (g, g). Via the diagonal morphism, C ®z C' is also a Z|G|]-free
resolution of Z. This is free because G-action on G x G is a free action. By the functoriality of resolutions,

there exists some map of Z[G]-module chain complexes
C—-C®zC
which induces 1:Z — Z on Hy (unique up to chain homotopy). Once we have this, we obtain a map
Hom(C, R) ® g Hom(C, R) — Hom(C ®z C, R) — Hom(C, R)

Example II1.0.1
Lets go with G = {1, a} with o = 1. Then the free Z[G]-resolution of Z is

C:o 2% 76 S 76 25 Z(6)

Then G x G = {1,a, 3,7} with o = 32 =42 = 1 and a8 = 7. The double chain complex is

L — 7Z[G x G] =% Z]G x G
ll—ﬁ ll—ﬁ
22 716 x G] =% Z[G % G

Now lets look at C' — C ®z C, thinking of C' with the maps v. On each term, where do I send 1.
e’

!

l——1l—y=1l-a+a(l-7) 1
And then we do this again
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' a+f=a—-1+1-p

!

1%1—1—7:1—}—04—1—0((6—1)

Homework #5

(3) Denoting by e, the 1 € Z[{1,~}] € C, prove that

€n — Z e, Xep+ Z er X ey

{ even £ odd
k+l=n k+l=n

Prove that this gives a (Z{1,~}-equivariant) chain map C' — C ®z C.
Every Z/2 in bidegree k, ¢ goes to Z/2 in bidegree k + ¢. This tells us that

H™(Z)2;7,)2) = H™(RP*; Z/2) = 7./2
That is the cup product
— : HY(RP™; Z/2) @7, H'(RP™®,Z/2) — H* T/ (RP>;Z/2)

is an isomorphism, since the left and right hand sides are both Z/2. We conclude that H*(RP*°;Z/2) = Z/2]x].
REcall that H™"(RP*°;Z) is Z when n = 0, Z/2 in even degrees, and zero in odd degrees.
The cup product is functorial in the ring. Thus

H*(RP*;Z) — H*(RP*;Z/2)
This is given as

0 ——— 72
V2, 2)2 —— a*,Z/2
00— Z)2
b,2)2 —— a®,Z/2
00— Z)2
1,2 — a%,Z/2

Thus H*(RP*°; Z) = Z[b]/(2b). If £ is any number then H*(Z/¢;Z) = Z[b]/(¢b), where b is in degree 2. Note
that if p and @ € Z/p = HY(Z/p,Z/p) in degree one then

1-1

a—a=(-1)y"a—a=—-a—a

a—a=0
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Thus H*(Z/p; Z/p) = Z/p[b] ®z,, NZ/pla]
Back to topology. The unit sphere S in C* = @__  C. Then St acts on S by multiplying in every
coordinate.

Thus Z/¢ < S* acts on S*®°. BZ/{ = S /7/¢.Also CP>® = §*° /S which one can call BS!, but S! is a

topological group (not discrete).

H*(CP>;Z) — H*(BZ/!;7)

Z— TN

7 7
One can deduce that H*(CP>°;Z) = Z[b] (in degree 2). Functoriality gives H*(CP™;Z) = Z[b]/(b™+1).

IV. Homotopy Theory of Based

We will be doing homotopy theory in Based because it is a category with zero, which means we can talk

about kernels and cokernels!!!
Definition IV.0.1

A homotopy f; : X x [0,1] — Y is called based provided that f; preserves the basepoint for all
te0,1].

In other words it’s a based map of f; : X A [0,1]4 — Y where X A[0,1]4 = (X x [0,1])/(x x [0,1]).
Definition IV.0.2

The based mapping cone Chaseq f associated to a given based map f:Y — X is given by

Chased = Cf/(* X [07 1]) = (XH(Y X [07 1]))/(*’t) ~ ok (y7 1) Ok, (y,O) ~ f(y)

This is sometimes denoted by C'f despite the conflicting notation.

The based suspension XY =Y A S' = Caseqa(Y — *) is a special case.

If Y, X are CW complexes and f is a cellular map,

Cbased f =~ Cf

(same proof as for the suspension).
Denote by [X,Y] = Morpgased (X, Y) (based homotopy classes of based maps X — Y).
Proposition IV.0.1

Let f:Y — X be a based map. Let Z be a based space. Then the induced sequence of

Y%X%Cf

given by applying [—, Z]
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is exact. That is
kerlf, 2] = Sfi, 2]

Proof. To prove that im[i, Z] C ker[f, Z]. This follows if ¢ f ~ 0. But the mapping cone is almost rigged this
way

then hg =if and h; = 0.
Now we need to prove that ker[f, Z] C im[i, Z]. Well let g € ker|[f, Z] this means that we have a diagram

Y%X%Cf

0 ig
Y|

Z

¢

Note that we have the following
vy T x i cof . 0iavx

Theorem IV.0.2
Let f:Y — X be a based map. Let Z be a based space. Then we hve a long exact sequence

)

[» [$2Cf, Z) —— [$2X,Z] —— [S2Y, Z]

[» =Cf, 7] —— [2X, 2] =4 sy, 7] 7

L cf,z] 22 1x, 7z Ay 7
(and

Observation: [¥X,Y] is a group, [X2X,Y] is an abelian group (as is [£™X,Y]) (same proof as for ).
Dualizing, €2 is right adjoint to 3 : Based — oBased. And this also works in hBased.
The mapping cone also has a dual construction.
Definition IV.0.3
Let f: X — Y be a map of based spaces. The homotopy fiber F f is defined by

Ff={(z,w)

reX,w:[0,1] = Y,w(0) = f(z),w(l) =*}
with the compact-open topology. And there’s a canonical projection Ff 2 X.
Lemma IV.0.3
Let Z be a based space and let f: X — Y be a based map. Then the sequence
2, P 25 (2,x] 2 12,Y]

is exact.
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Homework #86

(2) Prove Lemma IV.0.3.

Notice also that

Iy

OX~Fg = Qv arp L Ff Py x
A great reference for this is [6] (it’s the best part of the book!).

Theorem 1V.0.4
Let f: X — Y be a based map and let Z be a based space. Then we have a long exact sequence

)

[» Z,02Ff] —— [Z2,02X] —— [Z,0%Y]

L 1Z,9Ff] —— [z,0x] 2" 17, av]
)

[» 1z, Ff] 2P 1z, x) 21 170y

Again [Z, Q" X] = [¥"Z, X] are groups for n > 1 and abelian groups for n > 2.
If we take Z = S° = {*,00} then because ¥"S° = "

[S°,Q"X] = [S™, X] = T, ().
Thus there is a long exact sequence in homotopy groups:

[—> 7T2(Ff) —_— 7T2(X) —_— 7T2<Y>

[9 m(Ff) — m(X) —— m(Y) j

[—> ’/T()(Ff) Emd 7T0(X) —_— 7T0(Y)
A< X is an inclusion, this suggests defining
T (X, A) = 71 (F%)

Let f: X — Y be a based map. We would like to understand the actual fiber F := f~1(x) in terms of
our understanding of the homotopy fiber F'f.
Definition IV.0.4
The map f: X — Y is called a fibration provided that it satisfies the homotopy lifting property.

Namely if Z is some space and we have a commutative diagram
A —> X
{5
Z x [0, 1}
Given a map ¢ : Z — X and a homotopy h: Z x [0, 1] — Y so that h(z,0) = fg(z) then there exists a
homotopy h : Z x [0,1] — X such that H(z,0) = g(z) and fH(z,t) = h(z,1).
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Proposition IV.0.5
If f: X — Y is a based fibration then F(f) ~ f~1(*).

Homework # 6

(3) Prove Proposition IV.0.5. For hints, consider that

FH) = F(f)

x> (x, consty).

If f is a fibration, how do we go F(f) — f~1(x). Well consider that we have a commutative diagram

((:L'vw)vt) — w(t)
Thus there is a lift h: F(f) x [0,1] — X. Take ~ = hy.
To show ay ~: F(f) — F(f), use the path only part of the way.
For ya ~ Id we need a map f~!(x) — f~1(). h will preserve the const, downstairs. ..should

allow us to construct the homotopy.

Definition IV.0.5
A map f: X — Y is called a fiber bundle provided that for all y € Y there is some open neighborhood
U of y such that there is a diagram

fHU) —=5 UxF

i| |

U——7—U

Definition IV.0.6

Let Y be a space. A refinement of an open cover {U; };cr is another open cover {V;},cs such that for
allj there exists and i with V; C U;.

An open cover {U; }i¢r is called locally finite if for all z € Y there is an open neighborhood W of x
and a finite set F' C I such that if s € I'\ F then U; N W = (.

A space is paracompact if every open cover has a locally finite refinement.

Example IV.0.1
Almost all nice spaces are paracompact
e All manifolds are paracompact.

o All CW-complexes are paracompact.

Theorem IV.0.6
If f: X — Y is a fiber bundle and Y is paracompact then f is a fibration.
See May’s book for a proof [6].
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Example IV.0.2
A covering is a fiber bundle whose fiber F' is discrete. This implies that it satisfies the homotopy
lifting property with uniqueness.

Let f: X — Y be a based covering with Y paracompact. Then F(f) ~ f~!(x). Thus 7, f~'(* =0
——
discrete

for m > 0.
Now the long exact sequence gives us that for m > 2
0= (F) — T(X) —— T (Y) —— Tt (F) =0
Therefore m,, f is an isomorphism for m > 2.

This shows that 7,,(S1) = 0 for m > 2 because the universal cover of S* is R — S* and R ~ *. Thus
S! ~ BZ.

More generally, if the universal covering of a nice space X is contractible, then 7,,(X) = 0 for m > 2.
We would then call X “hyperbolic” in the most general sense.

All surfaces are hyperbolic except S2,RP2. Caution: geometers would not consider the torus hy-
perbolic, but it does satisfy this property. This implies that all surfaces except S2,RP? have that
X ~BmX.

We also know that 7, (RP>°) = 0 for m > 1 because the universal cover of RP* is S ~ x. This
shows that RP> is a BZ/2.

Definition IV.0.7
Notice that ST — §27+1 L5 CP7 is an action, where we view S' as the unit sphere in C acting by

multiplication on the unit sphere in C™+!

Thus this is a fiber bundle, and hence a fibration.
The most striking case is m = 1, because then CP! 2 §2. as then we have S' — §3 ER S?, which is
called the Hopf fibration

Proposition IV.0.7
m (S3) = 7,,(S?) for m > 3.

Proof. We have the following long exact sequence for m > 2 from the Hopf fibration

o

0=mmn(SY) —— mn(S?) — 71 (S?) —— mm_1(SY) =0

" Y
And so we’re done. v

This is most striking when m = 3, because then m3(S®) & Z, so 73(5?) = Z.

Actually, 74,,—15%™ is infinite, 7, S™ = Z, and all other homotopy groups of spheres are finite.

This really clues us in to how complex homotopy groups are, as 7, (S™) can be nonzero even when m > n.
Now lets think about how to construct generalized cohomology theories. In the based version this is given

by the axioms

X Y Cf

Eme — s EmY — EmX
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is exact. And also E™TIYX =~ EmX naturally. We could also require the axiom that
E™ Vxi=]] E™X,
i il
Suppose 1 give you based spaces Z,,, m € Z, such that Z,,, ~ QZ,, 1. Then we can define EmX = (X, Zpm)-

Then of course
E"HSX = [BX, Zimsi] = [X, 2mi1] = [X, Zm] = E™X.

We already proved exactness, and the product formula also holds. It turns out that every generalized
cohomology theory is obtained this way.
Definition IV.0.8
The mapping cocylinder of a map f: X — Y is

Nf={(z,w) |z e X, w:[0,1] =Y, w(0)=f(x)}

The projection (x,w) +— x is a homotopy equivalence N(f) ~ X. Furthermore (z,w) — w(l) is a
fibration. This leads to a way to replace maps by fibrations
Cf —— Nf —=Y

|~ o

XTY

The dual version with f : Y — X and the mapping cylinder M f = (Y x [0,1]) [T X/(y,0) ~ f(y) we

have y — (y, 1) is a cofibration.

Y Mf Cf
Idl ~ l
Y ﬁ X

Theorem IV.0.8 (Serre Spectral Sequence)
Let FF - X i> Y be a fibration with 7gY, 7Y = 0. Then there is a spectral sequence

E2, = Hy(Y,Hy(F; A)) = Hpyq(X; A)
(Y general also works. Have to use homology with local coefficients).
Recall that
d": By, — Ej

p—r,q+r—1
oo . Id
qu = colim qu

Er+1 _ H(Er’dr)

There is an exhaustive filtration F_; =0, F,H,,(X; A) with J F, H,,(X; A) = H,,(X; A).
We don’t have to worry about convergence because the serre spectral sequence exists entirely in the

first quadrant. Recall also that
FyHpy g X/ Fp1Hpig(X) = ESZ
Also there is a cohomological spectral sequence:

EY' = HP(Y; HY(F; A)) = HPT(X; A)
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In this case we have
d, : BP9 — pptra-rtl
E..,=H(E.Jd,)
FoH™(X; A) = H™(X; A)
Fo2F 2
And for N > 0 we have Fy H™(X; A) = 0. We then also have
EP? = colim EPY = FPHPI(X; A)/FPTIHPT(X; A).

If A is a commutative ring, then FE, is a spectral sequence of rings. That is F, are bigraded rings,

graded-commutative with respect to the total degree p + ¢ and d, satisfies
dr(zy) = (o) -y + (—1)1"z - d,(y)

Where |z| is the total degree of x.

This is in Serre’s thesis (paraphrased less rigorously in Spanier’s book).
Homework #7

(1) Calculate completely the homological and cohomological Serre spectral sequence of the Hopf fibration
St — 83 — S? with coefficients in Z. (Note this is unreduced, so we have to worry about degree
Z€ero).
... back to generalized cohomology. In the based version for X ENLN Cf we have
(1) EmCf By I ErX i exact
(2) EmX =~ EmHiyX.
« E™\, X; = ][, E™(X,)
If T have a sequence of based spaces Z,, m € Z and Z,, — ) then I can put E™X = [X, Z,]. Tt turns out
(in a proper setting) to be an if and only if, every generalized cohomology (satisfying 3x) is given like this.
... Something is being swept under the rug. Namely Chaseq f may not be homotopy equivalent to Cyunpased f
and XX ~ SX might not hold. We should require that * < X, Y are cofibrations for the unbased and based
constructions to agree.
Example IV.0.3
“Ordinary” cohomology = singular cohomology with coefficients in A (abelian group). What are the
spaces Z,,? Well test it for X = S*. Then

~ A ifk=
e Zom = [S*, Z] = H™(S*; A) = nE=m
0 otherwise
This is called an Eilenberg-MacLane space, K (A, m) has 7, (K(A4,m)) = A and 7, (K (A, m)) whenever
n#m. (form=1, K(A,1)~ BA)

There are loose ends to tie up

(1) Are the spaces K (A, m) unique up to homotopy equivalence?
(2) Do we automatically have K(A,m — 1) ~ QK (A, m)?
(3) For what (based) spaces X is H™(X; A) determined just by the fact that Z,, = K(A,m)?
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An answer: For X a CW-complex ﬁ[m(X; A) is determined. Namely X,,/X,,—1 =\/; S™, and we know
the cohomology of this. Functoriality hands us C* ,,(X; A), telling us H™,(X; A) = H™(X; A).

cell cell

The moral of the story:

e Develop a notion of “equivalence of spaces” using homotopy groups.

e Approximate spaces by CW-complexes with respect to this equivalence

e An equivalence of CW-complexes is a homotopy equivalence.

Next time: Another (first “nontrivial”) example of generalized cohomology, K-theory. Based on

U(m) = m X n complex matrices whose columns form an orthonormal basis of C™.

A
A 0
0 1
Then U = J,, U(m) with the union topology.

Theorem IV.0.9 (Bott)
Bott periodicity tells us that Q?U ~ U.

Then U(m) C U(m + 1) with

The corresponding generalized cohomology theory for Za,,+1 == U, Zay, = QU is called (topological complex)
K-theory.

V. Bott Periodicity

Let M be a Riemannian manifold, that is a smooth manifold M equipped with an inner product 7'M, for
each x € M which is smoothly varying in z.

Variational problem in a Riemannian manifold: Find the shortest path connecting two points (length of a
path [ ds)

Local Solution: second order differential equation = the geodesic equation. The solutions are called
geodesics.

They are straight lines in R™, great circles on S™ (embedded as a unit sphere in R™+1).

Note: a geodesic may not actually be the shortest path between two points. For example walking around
the “bad” portion of a great circle is still a geodesic.

Definition V.0.1

A (compact) symmetric space is a compact connected Riemannian manifold such that for each P € M

there exists an isometry ¢tp : M — M such that ¢p(P) = P and Dup is —1 on T'M,,.

Example V.0.1
S™ is a symmetric space. Take (1,0,...,0) € S™ then map

(o, T1, -y Tm) — (To, —T1, -y —T)

It turns out that this implies isometries act transitively on M and so M is a homogeneous space G/H
(for G a compact Lie group and H a closed subgroup). And in fact, H is the fixed points for a certain kind
of involution (Cartan involutions).

In fact a connected compact Lie group is a symmetric space. t1 = (g + g~ 1).

This is classified by Cartan
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Definition V.0.2

Let M be a compact connected Riemannian manifold. Let P,@Q € M and h be a homotopy class of
paths between P,Q (rel boundary). Call v = (P, Q, h).

The space of all paths from P to ¢ homotopic to h is homotopy equivalent to (2M ), (a connected

component of QM).
Consider M* C (2M)g be the subspace of the shortest geodesics (parameterized by scaled arc length).

Theorem V.0.1 (Bott [2])
If M is a symmetric space and v = (P, @, h), then M" is also a compact connected space. Furthermore
MY — (QM)q induces an isomorphism in 7; for 0 < ¢ < «, an onto map on 7, where « is a certain

number called the index.

The index « is defined as follows. If I have a geodesic h connecting P, () then we can slightly deform
this geodesic into a “nearby geodesic” satisfying the Jacobi equations. These can then cross at some

point along h. We then say

ap = Z dim(space of nearby geodesics crossing at R)
Re(P,Q)

a = min ayp,
h

For more information about this geometry see [4].
This implies
Theorem V.0.2 (Freudenthal Suspension)
Sm=1 <y Q8™ for m > 1 induces an isomorphism in homotopy groups 7 for k < 2m — 2 and it is
onto in degree k = 2m — 1.
This shows that 7,5™ — 7, 119™T! — Tp25™ %2 — ... then eventually these are isomorphisms.

These are stable homotopy groups of spheres. Namely this is 7, 5™ for m > 0 and k fixed.

Homework #7

(2) Prove that for m > 1, m1(U(m)) = Z. Recall that U(m) is unitary (can think of as complex linear
maps which are also isometries) m x m (complex) matrices. Note that U(m) acts on the unit sphere
S§2m=1in C™ transitively.

The isotropy group is U(m — 1). Therefore we have a fibration sequence
Ulm—1) = U(m) — §*™~1.

use LES in homotopy groups for induction. U(1) = S!, so we know the statement for that case.

VI. Whitehead’s Theorem and CW approximation

Definition VI.0.1
A map f: X — Y is called an m-equivalence if myf : mpX — 7Y is onto and for all x € X,
mef (X, x) = mp (Y, f(2)) is
(a) An isomorphism for k < m

(b) Onto for k =m.

A weak equivalence (or equivalence) is a map [ : X — Y which is an m-equivalence for all m.
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From now on [Z, X] = Morytop(Z, X) (unbased).
Theorem VI1.0.1 (Whitehead’s Theorem)
This is a two-parter!
(1) Let f: X — Y be an m-equivalence (resp. weak equivalence). Then [Z, f]: [Z,X] — [Z,Y] is a
bijection when Z is a CW-complex with dimension < m and onto when Z is a CW-complex of
dimension m (resp. bijective for every CW-complex 7).

(2) For every space X there exists an m-equivalence v : Z,, — X where Z,, is a CW-complex of

dimension < m (resp. a weak equivalence v : Z — X where Z is a CW complex).

Back to Bott’s Theorem
Let M be a compact Riemannian manifold (connected). P,Q € M points, h a homotopy class of paths
from P to Q, v = (P,Q,h).

MY = {all shortest (by arc length) geodesics from P to @ path-homotopic to h}

The index a: The minimum index «ay of geodesics path-homotopic to A where ay, > 0.
The index of a geodesic ay, is the sum over points R interior to h of the dimension of the space of nearby
geodesics beginning at the same starting point and also coinciding in R.
M? includes into the space of paths from P to @ in M, which is homotopy equivalent to (XM )o.
Theorem VI1.0.2 (Bott)
If M is a compact symmetric space and v = (P,Q,h) as above then M" is a compact symmetric

space and
Lt MY — (QM),
is an (o — 1)-equivalence.

Example VI.0.1
M = 8™ then M” ~ S"~1 as the shortest geodesics are the meridians. Then oy = 2(m — 1). Thus
Sm=l 5 QS™ is a [2(m — 1) — 1]-equivalence.

General principle of compact symmetric spaces M (contains connected compact Lie groups). Take a closed
geodesic at P. Then M = G/H where G is the group of isometries and H = Iso(P). Then M* = H/Iso(P,Q),
where @ is the opposite point along the geodesic.

Example VI.0.2

Complex Bott periodicity. Take M = U(2m) , P to be the identity, and Q = —P. Then take h to be

e along the diagonal. Then

MY = U(2m)/(U(m) x U(m))

Index is 2m + 2 — oo.
Thus U/(U x U) — (QU)y is a weak equivalence.
U—U/(Ux{e}) = U/(U x U) is a fibration sequence. Therefore U ~ Q(U/(U x U)).
We can write BU := U/(U x U). Bott’s theorems say BU — (QU ).
Likewise BU x Z =+ QU. This means that Q(BU x Z) ~ U.
Thus Q*U ~ U.
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Complex K-theory is then
K™(X)=1[X,Zy]
Where Z,, is defined by

Zmi—{ BU x Z if m even

U if m odd

What happens if we replace U(m) by O(m)? Well then it becomes a mit more complicated. Let BO =
0/(0O x O), and note that U(m) C O(2m), and also that if Sp(m) is the m x m unitary quaternion matrices
then Sp(m) C U(2m).

n QYBOXZ) Z_

8m BO x 7 Zam
8m+1 0 Z8m—1
8m + 2 o/U Zgm—2
8m + 3 U/ Sp Z8m—3
8m+4  BSpxZ  Zsmou
8m +5 Sp Z8m—5
8m + 6 Sp/U Z8m—6
8m + 7 U/o Zgm—7

8(m + 1) BO X Z Z8(m71)'
For X a CW-comples, KO™ X = [X, Z,,,].

Homework #7

(3) Calculate KO™ (%), m,(BO x Z), m € Z.
Use that

O(m) has two path-connected components

U(m), Sp(m) are path-connected
O(m —1) — O(m) — S™~1 is an action (fibration sequence) in R™.

Sp(m — 1) — Sp(m) — S*™~! is an action (fibration sequence) in H™.
(4) Prove that if f : X — Y is a weak equivalence and X,Y are CW-complexes then f is a homotopy

equivalence. (use Whitehead’s Theorem)

Homework due Wednesday October 20th at SPM.

Recall Theorem VI.0.1, specifically the statement that every space X is m-equivalent to a CW-complex Z,,
of dimension < m, and weakly equivalent to a CW-complex Z. Z,, is sometimes called a formal m-skeleton
of X.

Remark VI.0.1

If f: X =Y is a weak equivalence (X,Y are any spaces) then f induces an 2 in singular homology.
H,f:H,X - H,Y.

Proof Sketch. Express singular homology in terms of maps from CW-complexes. Consider a singular cycle
c=Y . ak0k, 0 : A™ — X. We can construct a CW-complex Z by taking [ [, A™/ ~, which is the minimal
equivalence relation making it into a cycle (identify (m — 1)-faces on which oy, oy restrict to the same singular

(m — 1)-simplex).

47



Faye Jackson October 20th, 2021 MATH 695 - VI.O

c lifts to a singular cycle on Z. To show H,, f is onto, let ¢ € C},,Y be a cycle representing a class in H,,Y.
We constructed a CW-complex (of dimension m) Z, Z — Y so that ¢ — c.

We can then lift Z — Y up to homotopy to a map Z — X using Whitehead’s theorem. Thus we
constructed a lift of [¢] € H,,Y to H,, X under f. =

The argument for boundaries to show injectivity is analogous. L 4

We add an axiom to generalized cohomology: E,,f (resp. E™f) is an isomorphism when f is a weak
equivalence.

From the point of view of representing generalized cohomology by homotopy classes of maps into some
based spaces: We need a sequence of based spaces Z,, with a based weak equivalence Z,,, = Q2Z,,41.

For a CW-complex X, E™(X) = [X, Z,,] (unbased).

For a general space X, find a weak equivalence v : X’ — X and define E™(X) = [X', Z,;]. Then E™f is
an isomoprhism when f is a weak equivalence.

How to prove the approximation statement from Theorem VI.0.1 from the first statement?

Proof. We do this by induction. The base case is to take Zy — X, where Zj is the discrete set of path-
components of X. This is of course onto in 7.

Suppose we have an n-dimensional CW-complex Z,, and an n-equivalence v : Z,, — X. This is an
isomorphism on 7;, ¢ < n, and onto on 7,. 7" may not be = on m,. There may be classes a; : S™ — Z,, so
that 7" o ay; ~ *.

We can just glue disks along each of these to fix the issue. Also 4" may not be onto on m,41. To fix this
if B; : ST — X is not represneted then

Zni1 = Zn U HD”“ U ]_[S"+1/ ~
i J

Where ~ attaches D"*! via o; and S™*! via their base point in Zj.

By definition we get a map y"*! : Z,, ;1 — X. This satisfies the inductive step because

e = in 7; for i < n comes from cellular approximation of maps, because we can approximate S™ — Z,, 1
via maps S” — Z,.

e For the same reason, it is onto on 7,. It is then injective on 7, by the gluings made above, as we
killed all the relations.

e It is onto on 7,1 by construction.

We're done! For the infinite case set Z = |J, Z;. v

Notice: Say X is path-connected. Say m;(X) = 0 for i < m (we say X is (m — 1)-connected). 1-connected
means 71 (X) = 0, that is X is simply connected.
Then we can set Z,,—1 = *. Furthermore, Z,, is a bouquet of spheres over generators of 7w, X. Z,, 41 is
a bouqeut of spheres over generators of 7, X, and m,,41X, and then we attach m-disks along relations in
TmX .
Definition VI.0.2 (Hurewicz Homomorphism)
7, X — Hy(X;Z). This is given by taking some « : S*¥ — X and mapping

Hy o
—

Hy(S*;7) Hy(X;7)
1+ h(a)

Computing cell homology, we get
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Theorem VI1.0.3 (The Hurewicz Theorem)
If X is (m — 1)-connected, then the Hurewicz homomorphism h : 7, X — H,,(X;Z) is the abelian-

ization if m = 1, and an isomorphism if m > 1.
. . Y
Proof. Our construction of Z,, 1 above makes this clear. v

Homework # 8

(1) Compute 72(S* v S?). Use universal cover and Hurewicz theorem.
It is also easy to construct by the methods above, a Cw-complex K (II, m), IT a group (abelian if m > 1)
such that
I ifi=m

0 otherwise

WZK(]._LWL) = {

We can construct Z,,+1 by the above method (generators and defining relations of 7). Then just keep
attaching cells to kill all higher homotopy groups.

Same method implies that any two such CW-complexes K (II,m) are homotopy equivalent (use Whitehead
Theorem).

We even get a weak equivalence K (IT, m—1) = QK (II,m). This way we can construct singular cohomology
out of the Whitehead theorem. Namely this gives [X, K (II, m)] — H™(X;II).

How do we do this for homology? Duality! We’ll get there soon.

Homework #8

(2) The Quillen + construction. Let X be a connected CW-complex. Let m1(X,2) = G, v € Xy. Let
H C G be a subgroup such that [H, H] = H, that is H* = 0.

Attach a 2-cell ey, to each element h € H to form a CW-complex Y. Note (Y, X) is a CW-pair,
and Y is connected. Let p: Y — Y be the universal cover. Let X = p~1(X). Choose a lift € of
each cell ey.

Then € represents a class of oy, € HQ(EN/, )~()

(a) Prove that oy, lifts to a class @, € Ho(Y) (use the fact that the abelianization of H is zero, the
long exact sequence in homology, and Hurewicz).

(b) Observe that @ is in the image by the Hurewicz map of an element uj, € m5(Y, %) where 7 € X
Form a CW-complex X+ by attaching a 3-cell to Y along each pouy : S = Y.

(c) Prove that the inclusion X — X induces an isomorphism in homology (use cellular homology,
the additional attached cells cancel out).

(d) m (X, 2) = G/H where H is generated by all g~'hg, g € G, h € H (aka the smallest normal
subgroup of G containing H).

Example VI.0.3
Say G = H = A,, for n > 5. Then [A,, A,] = A, so we can form the plus construction.

Then BA, - BA}, and by this HyBA, - HyBA; . Then m BAS = 0.

n?

Thus homology is not an adequate measure of equivalence of spaces (does not imply weak equivalence).

The reason Quillen invented this was to define higher algebraic K-theory of commutative rings. If R is a
commutative ring, put GLo R = |J,,~( GL,, R. The analogy with K-theory (imperfect), note U(m) € GL,, C
is a homotopy equivalence by the Gram-Schmidt process. Then GL,, C ~ U.
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But we're cheating, GL., C has topology from C. For R general it is considered discrete. If we consider
H = [GLy R,GL R] € GLy R = G then
Theorem VI1.0.4 (Steinberg)
[H,H] = H.

Quillen: Take K,,R = 7,,(BGLx RT) (with respect to H), for m > 0. Then set KoR to be the
Grothendieck group of isomorphism classes of finitely generated projective R-modules. People knew earlier
that K1 R = GLo R/[GLs R, GLo R], and there was a natural geometry to this. But people could not do it
purely algebraically, and instead were able to do it with homotopy groups.

Definition VI.0.3
HELP (Homotopy Extension and Lifting Property). A map f: X — Y satisfies HELP with respect

to a pair (Z, A) if the following diagram completes

A—— 0 L Ax[01] > 4

Lemma VI.0.5 (The HELP Lemma)
If m,,—1(e) is injective and m,,(e) is onto, then e satisfies HELP for the pair (Z, A) = (D™, S™~1).

Proof Sketch. Put a lid on first (injectivity property). If the garbage can does not fill, move the lid (onto
as

property). Be careful when m = 1. More detail is in [6].

Lemma VI1.0.6 (The HELP Lemma 2)
If e : X — Y is an m-equivalence (resp. weak equivalence), then it satisfies HELP with respect to
CW-pairs of dimension < n (resp. all CW-pairs)

(Induction on cells).

Proof of Whitehead’s Theorem. We now prove Theorem VI.0.1. We will use HELP. Let e : X — Y (changed
notation, permuted) be an m-equivalence (or weak equivalence). We wish to study the map [Z, €] : [Z, X] —
[Z,Y] for a CW-complex Z.

For surjectivity, apply HELP to the pair (Z, (). For injectivity apply HELP to (Z x [0,1], Z x {0,1}). 4

Next Time: This applies in more general settings than spaces. In particular, we can use it on chain
complexes for derived functors and derived categories. We also really want to use it for spectra, which will

allow us to understand duality.

VI.1. Derived Categories
Definition VI.1.1

Setup: C'is a category E C C is a subcategory (we call the morphisms of F equivalences and write
f: X = Y). We assume “2 out of three property” that for f : X — Y, g: Y — Z that if two out of

f,9,9f are equivalences then so is the third. Also we assume that all isomorphisms belong to E.
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A derived category (if one exists) with respect to this data is a category DC' together with a functor
® : C — DC which is universal among functors F' : ' — @ which take all morphisms in E into
isomorphisms.

Strict version: ®(e) is an isomoprhism for all e € Mor(E). For all F : C — @ satisfying F'(e) is an
isomoprhism for all e € Mor(F) there exists a uique G : DC — @ with G® = F..

Lax version: For all e € Mor(FE), ®(e) is an isomorphism. For all F': C' — @ satisfying this same
property there exists a G : DC' — @ togehter with a natural isomorphism « : G o ® — F. For any
other functor H : DC — @ together with a natural isomorphism A : H o ® — F' there exists a unique
w:H — G with A = ko (ud).

E Q Q

C
A P
K /// / /
P e r\

DC

\/,

Observation: The two definitions are equivalent if ® : C' — DC' is bijective on objects.
Concrete construction of derived categories:

where we have an analog of the Whitehead Theorem (or its dual) (given above definition)
An object Z € Ob(C) is called co-local if for every e : X =+ Y we have

Mora(Z, X) 2etZ9)

Mor¢(Z,Y)
is a bijection. For example, CW-complexes are co-local. We say that we have co-localization if for every
X € Ob(C) there exists X’ which is co-local and an equivalence X’ = X. If always we have X' € B for
some B C Ob(C) (with every object of B colocal), we say this is colocalization by B
This situation is exactly the content of Whitehead’s theorem in hTop.
Theorem VI.1.1
If C, E are as above and we have a colocalization by B C Ob(C') then the derived category DC exists

and it is equivalence to the full subcategory of C' on B.

Proof. ® : C — DC given by X — X’. This is functorial because for f : X — Y we can use colocality of X’
to get a unique map X’ — Y.

ae

The other checks are similarly trivial. L 4

Definition VI.1.2
A cell complex is a space X = [J X ()
0=X_1)C X C
X(m) is obtained fromX(,, 1y by attaching cell in any dimension J,,d;, : J,, — No with
H Sd —> X(m
J€Im

X(m) is the pushout
L Jm
I_Ije‘]m SdJ ! — X(m 1)
o
e, DY —— X(m)

Observe that cell complexes also satisfy the Whitehead Theorem.
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Homework #9

(1) Prove that every cell complex is homotopically equivalent to a CW-complex.
Let A be an abelian category with coproducts and enough projectives
For all X € Ob(A) there exists a projective P and an epimorphism P — X.

We can look at h-A-Chain. We can define a cell chain complex

0=X_1)C X<
We say P, is a projective chain complex with zero differentials.
We then can take
CP(m) Pimy — Panyk © Plmy(k—1) — Flam)(k-1) ® Plmy(h—2) —— -+~
H.CPg,) =0.
We require X(,,) is a pushout

Plm) % Kim-1)
l l
CPuny — X(m)
One can prove the Whitehead Theorem precisely analogously
The equivalences are quasiisomprhisms (chain maps which induce isomorphisms in homology),
Theorem VI.1.2
Cell chain complexes are colocal in h-A-Chain with respect to quasiisomorphisms and one has colo-

calization by cell chain complexes.
We define

DA := Dh-A-Chain

called the “derived category of the abelian category A.”

If A is an abelian category, we denote
DA ~ Dh-A-Chain

Equivalences are quasiisomorphisms (induce isomorphisms in homology).
Cell chain complexes are colocal and we have colocalization when there are coproducts and enough

projectives. For objects X,Y € A we have
Ext’} (X,Y) = Morpa(X,Y[m])

Proof. If C' is a projective resolution in degree 0, then C' is cell (individual degrees = cells).
Then by definition

EXtZL(X,Y) = Morh—A—Chain(ny[m]) = Hm(Hom(X, Y)) = MOI‘DA(X, Y[m])

¢

because C' is colocal.

What about Tor (not in every abelian category, must have ® first).
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VI.2. Derived Functors

The most general notion does not even involve derived categories, but instead just involves a functor
¢:C—D.
Given a functor F' : C — @, may not factor through ®. But is there a “universal” functor D — @ with

respect to this data. Two ways

Q

Q

20

N

such that for every G : D — Q) provided with a x : G® = F we have a unique yx : G — F’ with
k=mnopud

that is
Q

Q
%,

.
7

G
This is called a right Kan extension, aka a left derived functor. Denoted by LF'.
Example VI.2.1
Suppose ® : C — DC, with vx : X’ = X a colocalization. Then if F': C — @ then the (total) left

derived functor exists and is defined by
LF(X)=F(X")

We have the morphism F(X’') — F(X) via F(vx). If G : DC — @ and G® = F then the map
G(X') — F(X') is handed to us because G(X') = G(X).

If I have a functor 7 ® N then

TorZ (2, N) = L(H,,(? ® N)).
That is

Tor’ (M, N) = H,,(C ®g N)

where C' is a projective resolution of M (colocal).
What about localization
Theorem VI.2.1
If an abelian category A has enough injectives and products then h-A-Chain has localization with
respect to co-cell chain complexes. Turn around arrows in the definition of cell chain complexes, replace
projective by injective.
Technical Issue: H, does not commute with inverse limits of sequences. Say we have the following chain

complexes
"'—>X2—>X1—)XQ

then H,, limy X}, is not in general isomorphic to limg H,, (Xk).
The symmetric statement for colimits holds. In general lim of a sequence has one right derived functor

lim'. However, lim! = 0 if we have the Mitag-Leffler condition in each
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X1 Xo

-— H, X, — H,, X,
The Mitag-Leffler condition (in an abelian category) says that the composed images at each stage eventually
become constant.
Important notes
e There are abelian categories which have enough injectives but not enough projectives
e If we have localization, we have right derived functors (defined symmetrically to left derived functors,
instead a left Kan extension) e.g. (sheaf cohomology is to apply right derived functors to global

sections).
Homework #9

(2) Prove that if f : X — Y induces an isomorphism in homology (coefficients in Z) and X,Y are simply
connected, then f is a weak equivalence.

(Consider the Serre spectral sequence in homology of the fiber sequence F'f — X — Y).
Eﬁq = Hp(Y,Hg(F[)) = Hpsq(X).

We have an increasing filtration Fy, on Hy4(X), and Epf = FyHp,((X)/Fp—1Hpi(X).
If you think of this

Hy(X) = FpHp(X) Epo Epo = Hy(Y)
Hyf

called the edge map. Deduce that H,Ff = 0 for all p > 0. Then observe that 7 (F f) is abelian
(long exact sequence on homotopy groups). Finally, deduce that 7, (F f) = 0 for all m, and conclude

that that f must be a weak equivalence via the long exact sequence on homotopy groups.

VI.3. Localization in Topology

There is an alternative approach to deriving h Top. Essentially we mimic the formal structure on the
singular set S, X = {A™ — X}. These formal structures will be called simplicial sets.
To do this, we must determine what distinguished maps are there between the standard simplices A™?

Well, we have faces
0; - A™ — AL
[ty .- stm] = [toy - s tic1, 0,8, .o bl
We can realize that this corresponds to
{0,...,m} = {0,...,m+1}
Jr g (4 <1)
jr g+l (J =1)
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Compositions correspond to order-preserving injections. There is also a map in the other direction.
A™ 5 AL
[ty .- stm] = [toy -y tic1, ti + tit1s tivay vy b
This corresponds to the map
{0,...,m} —-{0,...,m —1}

JrJ (J<1)

J—=Jj—1L (J >1)
These are called degeneracies, and are order-preserving surjections. Triangulation of objects with simplicial
sets can be used to verify the homotopy axiom of homology.

Definition VI.3.1

We call A the simplicial category. The objects are Ny, and we write m = {0, ..., m}. The morphisms

are non-strictly order preserving maps.

Definition VI.3.2
If C is a category, the category of simplicial objects in C' (A°P — (') is the category of functors

A°P — (' and natural transformations.

We will talk about simplicial sets. Consider that A(m) := A™ is a functor A — Top, called the topological
realization.

The topological realization of a simplicial set S : A°P — Set is left adjoint to the singular set functor.

1SI="T] Sm x A™/(s, fz) ~ (Sf(s),2) (f :m —an)

mENg

Triangulation of prism says that
(SXT)m = Sm X Ty
IS x T =S| x |S]

Simplicial sets generalize simplicial complexes, “are” CW-complexes (after calculation).
A" : k € Ob(A) — Mora(k,n) is a simplicial model of A™. We then have that

0o _% 1
é?ié

is a model for the unit interval.
Definition VI.3.3

A simplicial homotopy is a natural transformation Al xS T.

We call two morphisms f,g : S — T simplicially homotopic if they are equivalent in the smallest

equivalence relation containing simplicial homotopy.

Then we have h — A°P-Set with objects simplcial sets and morphisms simplicial homotopy classes of A°P-
morphisms.

This category has localization with respect to Kan complexes
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Definition VI.3.4
A Kan complex S is a simplicial set satisfying the Kan condition. To phrase this, consider V}* in A",
which is obtained by ommitting the open n-simplex and the k-th face.

In terms of simplicial sets this is
Vi:j—=A{fe€Homa(j,m)|{0,....k=1,k+1,....,m} € im f}.

We have a natural injection V" < A".
Then S satisfies the Kan condition provided that every morphism f : V! — S extends to a morphism
f:A" > S

ZZ%S

o
\[ o

S
ANG

We say that S is a minimal Kan complex if the extension f is unique.

Definition VI.3.5
An equivalence of simplicial sets is a morphism f : S — T such that |f]| : |S| — |T| is a weak
equivalence (homotopy equivalence since these are CW complexes).

Theorem VI.3.1

The simplicial realization induces an equivalence of categories

D — A°P-Set = Dh — A°P-Set — Dh Top = D Top .

The = above comes from the fact that inverting equvalences identifies homotopic maps.

Addendum: Every Kan complex is simplicial homotopy equivalent to a unique (up to isomorphism) minimal
Kan complex.
We conclude that
MINIMAL KAN COMPLEXES (up to =) ARE IN BIJECTION
WITH WEAK HOMOTOPY TYPES
where a weak homotopy type are homotopy classes of CW-complexes. Unfortunately, this is not a practical
solution because minimal Kan complexes are extremely difficult to write down (try doing it for S*, RP*>,

these are easier because they are K(G,1)s).
Homework #9

(3) Prove that for every space X, the singular set S, X satisfies the Kan condition.
Another topic is localization within D Top. If E is some genrealized homology theory (preserving weak
equivalence), then we can say that f : X — Y is an E-equivalence if E, f is an isomorphism.
Example VI.3.1
E = HZ. Then

e HZ7-equivalence is not in general a weak equivalence.

e HZ-equivalence is a weak equivalence if X,Y are simply connected.

Theorem VI1.3.2 (Bousfield)

D Top has localization with respect to E-equivalence for any chosen generalized homology E.

56



Faye Jackson November 1st, 2021 MATH 695 - V1.3

Even if E is an ordinary homology theory, of interest is £ = HQ localization is called rationalization.
HZ/p is called p-completion, and HZ,) is called p-localization, where Z,) = {k=Y | pt K}Z.
Say for simply connected spaces, this is fairly well understood. Lets consider HQ.
Theorem VI1.3.3
If f: X — Y induces an isomorphism in HQ, and X,Y are simply connected. Then f induces an
isomorphism 7, X @ Q & 1,,Y ® Q.
Serre in 1953 provied this in the case ma f is onto (Annals of Math). He then wrote

“Nous insisterons par la-desrus” <> “We shall not insist on it”

Definition VI.3.6

A simplicial set X which satisfies the inner Kan condition, which says any

Vi — X

1
.
-
-
-
-
.

A’n,
for 0 < k < m, then X is called a quasicategory.

Lurie uses quasicategory interchangeably with oo-category, which is a vague term meaning many different
but roughly equivalent things.

The homotopical information in an co-category is the same as a category where the sets of morphisms are
given a topology and composition is continuous (topological category).

Back to Serre and Hurewicz!
Definition VI.3.7

X is a simple space provided that X is path-connected which means that m (X)) is abelian and 7 (X)
acts trivially on every m,, (X).

Past homework showed that SV S? is not simple.

Theorem VI1.3.4 (The Relative Hurewicz Theorem)
If X is a simple space, then if m;(X) ® Q = 0 for i < m, then the Hurewicz map m,,(X) — H,,(X;Z)
becomes an isomorphism upon tensoring with Q to get m,,(X) ® QtoH,,(X; Q).

o
Proof Sketch. By induction, using the Serre spectral sequence of the fiber sequence QX — x — X. \ 4

Theorem VI1.3.5
If f: X — Y induces an isomorphism in H,(?,Q) = H.(?,Z) ® Q and X,Y are simply connected,

then f induces and isomorphism in 7.(?) ® Q.

Proof sketch. Following the method of homework, we get that H.(F(f)) ® Q = 0.
We would like to deduce 7, F(f) ® Q = 0, which one does through the Relative Hurewicz Theorem @

Remark VI.3.1

Let X be a path-connected space. Create a map X f—m> X,,, which induces an isomorphism on m; for
i < m. Then take m;(X,,) =0 for j > m (attach cells to X to kill ms,,).

Then we have X™ := F(f,,) = X Im, Xm-

We get a tower X,,, = X,,_1 — -+ — Xo. We then get a fiber sequence
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K(mpm1X,m+1) = X,,11 — X,,. If X is a simple space, then this fiber sequence extends by 1 to
the right

K(ﬂm+1X7m+1) —_— Xm+1 Xm —_— K(7rm+1X,m+2)
This is called a Postnikov tower.

Rational homotopy theory: Localization of the full subcategory of D Top on simply connected (simple)

spaces of finite type at equivalences being those maps inducing 2 in H,(?; Q) (that is on 7.(?) ® Q).
For a space X, there exists a model of C*(X;Q) which is a graded-commutative differential graded
algebra.
Definition VI1.3.8
A is a graded commutative DGA provided that if x € A,,,y € A,, then
Ty = (_l)nmyl,
and the differential satisfies

d(zy) =dz-y+ (—1)"z - dy

For a simplex A", take differential forms on the affine envelope of A™. Algebraically
Qlzo, - yxn)/(xo + -+ + 2y =1) ®/\[da:o,...,dmm]/(dxo +---+dz, =0)

If X is a simplicial complex (or a simplicial set), take the limit of these DGAs over its simplices. There’s a
paper by Sullivan in 1979 which is relevant.

For a space X, we construct in this way a graded commutative DGA over Q. There is an appropriate
notion of chain homotopy of graded commutative DGAs. Then this homotopy category satisfies colocalization
with respect to cell DGAs.

A cell DGA is defined as A() € Agng1) € --+ with A ={J,, A,y where

Atmg1) = Ay @ F(zi | i € Iy)

where F is the free graded commutative algebra and z; are homogeneous generators with dz; € A(,,). Recall
that the free graded commutative algebra is F(z) = Q[z] for z in even degree and A[z] = Q[z]/2? if z is in
odd degree. Take the tensor product for more than one generator.
In fact, A is called minimal if it is cell and dz; is decomposable (sum of monomials and generators, each
of which has monomial degree at least two).
Theorem VI1.3.6
There exists a unique (up to DGA-isomorphism) minimal graded commutative DGA in each isomor-

phism class in the derived category.

The upshot: There is a unique model of a simple space of finite type up to H,(?; Q)-equivalence by a

minimal DGA (minimal model).
Homework #10

(1) Consider the commutative DGA

A= Qla] g \ J\lde]
Q

with deg(z) even. This is the tensor algebra, modulo (dz)? = 0.
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Prove that H'A=Q if i =0 and 0 if i > 0.
[Hint: Write down a basis of A

Remark VI1.3.2
If we know that H*Q[z] ® A[dx] = Q in degree zero for = of even degree then

IFQMVHJA®Ameuﬂ%Fqgﬂﬁ@pd®AMmD:Q

in degree zero. By the Kunneth Theorem

VI.4. Rational Homotopy Theory

If X is a simply connected CW complex of finite type (finitely many cells in each dimension). Equivalently
(homotopically) the realization of a simplicial set with finitely many non-degenerate simplices in every
dimension.

We calculate Q* X by taking limit over non-degenerate simplices. Use the fact that

Q*A™ :Q[$0,~--;xm]/zxi:1®/\[d$0,~--7d$m]/zdxi:0

where the degree of z; is zero and the degree of dx; is 1.
Then QX is a graded commutative DGA. We can of course talk about
Definition VI.4.1

A cell graded-commutative DGA is a DGA (@ expressible as

Q=40 CAq S A={JAwm)

where we have that
Almg1) = Aim) @ Flsmi |1 € Iny] ® /\ (odd degree generators) @ Q[even degree generators].

Where F(s1,...,Sy,) is the free graded commutative algebra on sq,...,s,,. We say it has generators in
degrees d,,,; (even or odd).
Forces: cochain degrees > 2. Furthermore we require ds,,; C A(,). As an algebra A(,,) = F (Qm)-

We have an augmentation ideal J,, = {q | ¢ € Qm} of A(yy).

We say A is minimal if dg; € J2, (the decomposable elements).

“Whitehead Theorem”: Equivalences = quasiismorphisms = morphisms of graded-commutative DGAs
inducing = in cochain cohomology.
Theorem VI.4.1
There exists a derived category D of graded commutative DGAs, with respect to quasiisomorphism.
Each isomorphism class in D contains a unique minimal DGA up to DGA isomorphism (this is called a

minimal model).

Therefore we have for compact generated CW-complexes of finite type, a unique minimal model A — Q*X.
Moreover A = F[S] where QS is the dual of rational homotopy groups of X.
If S, C S is the subset of generators of degree m then

TmX @ Q = Hom(Qva Q) = Map(sma @)
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Example VI1.4.1
Take X = CP™. How is Q*CP™ represented?
Well H*(CP™; Q) = Q[x]/(x™*1) with the cochain degree of z is 2.
Then we have a map of DGAs

Qlu] — @ Ccp™
urru,fu] =

m+1 m—+1

=0,s0u = dv. This gives a map

Qlu] ® /\[U] — Q*Cp™

Impose the relation x

m—+1

Where we have dv = u , so the degree of v is 2m + 1. This is a quasiisomorphism with a bit of work.

Therefore
Q fi=22m+1
0 otherwise

Homework #10

(2) Find the rational minimal model of S™ (m > 1) and use it to calculate 7, 5™ ® Q for all k.
Deligne-Morgan: A simply connected CW complex of finite type X is called formal if Q* X is quasiisomor-
phic to H*(X; Q) with zero differential
Theorem VI1.4.2
Every simply connected smooth projective variety over C is formal.

Griffiths-Harris: Principles of Algebraic Geometry.

What does an alegbraic topologist make of this? “m,, ® Q are not interesting”
Or, perhaps, better point: The torsion is more interesting to algebraic topology.

Another thing worth mentioning: What if we replace Q with another field?

characteristic 0 — same story
characteristic > 0 — doesn’t work.
By complicated, we mean we get stuck on the first step. We are not able to make a model of C*(X;F,) which
would be a graded-commutative DGA. (if you do HW problem 1, it does not work in characteristic > 0).

The fact that this fails in characteristic > 0 is related to something known as Steenrod operations.

VII. Steenrod Operations
For X a CW complex of finite type then with the actions of swapping from Z/2
C*(X) @ C*(X) = C*(X x X) <25 ¢*(X)

but this cannot be done Z/2-equivariantly. The steenrod operations measure how much this fails using group
homology.

There is no natural map filling the diagram below (commuting up to homotopy)
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C(X x X)
where C(X) = C(X;Z/2) which is Z/2-equivariant, using the action z @ y — y ® .
This would bean that the chains in the image would be Z/2-fixed. This turns out to be impossible!
What is posible? Consider a Z[Z/2]-free resolution of Z, e.g.

L —— ZJ7)2] = 7]7)2) 2 7[7/2) =2 Z]7/2]
which we call R. It is possible to construct a Z/2 equivariant

R®C(X) —— C(X) ® C(X)

e, |

C(X x X)
R makes it a free F3[Z/2]-modules. Universal element Id : A™ — A™ (like in the Eilenberg-Zilber element),
but we can ® it with a free generator in R (R ® C'(X;Z/2)) is also representable.

Like in the cup product tratement. Dualize to cohomology
R C*"(X)®C*(X) = C*"(X).

R remains homologically graded. So C*(X) is put in homological degree —.

We can also write
R ®g2/9) (C*(X) ® C*(X)) = C*(X).

Z/2 acts on H*(X) ® H*(X) by a permutation representation. We know H*(X) has basis «;,? € I and so
we can map a; @ a; — a; Q Q.

We then get a non-canonical map
R ®zz/2) (H*(X) ®@ H* (X)) = R ®zjz/9) (C*(X) ® C*(X)) — C*(X).
However we do get a canonical map
H.(Z/2; H(X)® H*(X)) - H*(X)
with coefficients in Z/2. If we order I then

H*(X)® H*(X) = PFZ/2] - i @ 0; © P F2 - 0 @ .

i<j i=j
We know that Hy(Z/2;Z/2) = H,(RP*>,Z/2) = Z/2 for all k > 0. Call this generator e.
If o; € H™X (m depending on i), then

H.(Z/2; H(X)® H*(X)) - H*(X)
er ®a; ® ay LPry 9 e grmekx
We may then define a Steenrod Operation
S¢' =Dy :H"X — H™MX

by taking k = m — 1.
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Facts: S¢=™ : H™X —7? (undefined, sometimes set to zero). The map Sq¢™ : H™X — H?™X sends x to
22, And then Sq°(x) = , which is very nontrivial from this point of view.

Also Sq<°(x) = 0, which is also nontrivial. The operations between 0 and m are completely mysterious.

We also have that

m

Sq™ (xy) = 3 S (@)Sq™ " (y)

i=0
where juxtaposition denotes the cup product. The coproduct in H.(Z/2,Z/2) is e, — Y. e; ® ep—; (the
dual to H*(Z/2,7/2) being polynomial).
We can think of these as axioms

(1) Sq™(x) =2

(2) S¢°(x) ==
(3) Sq™(zy) = X1, Sq'(x)Sq™ " (y)

Homework #10

(3) Calculate Sq™z* with respect to H*(RP>;Z/2) = Z/2[z] with the degree of = being one. Use the
axioms above.
There are compositions Sq'Sq’ = ? called Adam Relations. They’re not deep but require prowess in
combinatorics.
For p > 2 being the characteristic, we run into the fact that Z/p C 3, (the symmetric group). So we
really need to talk about H,.(X,;?). Also because of signs, we can encounter either the trivial Z/p-module
or the sign representation.

We do have maps from functoriality.

transfer

Ho(Z/p:?) T8 H(3,7)
This maps H,(X,;Z/p) into direct summands of H.(Z/p;Z/p).
With this we’ll get maps

pl i H"X — H™H20-Dx 850 . HmX — gmt2le-D+lx
[ is the Bochstein from the short exact sequence in coefficients
0—=Z/p—Z/p* = Z/p—0
which gives a long exact sequence in homology with connecting map
H™(XZ/p) & H™(X; Z/p)

For p =2, B = Sq'.
Example VII.O0.1
H*(BZ/p; Z) = Z[y]/(py) where degy = 2.
And also H*(BZ/p;Z/p) = Z/ply] ® \[x] where degax = 1. There is also the integral Bochstein,

which is the connecting map of

0—-Z—Z—2Z/p—0
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Which will give H™(BZ/p; Z/p) LR H™(BZ/p;Z). For m = 1 you can derive from exactness that the
integral bochstein is an isomorphism.
To get the mod p Bochstein, just compose with the map induced by Z — Z/p — 0.

We also have that Sq’, 3, p’ commute with the isomorphism
H™(X) - H™(ZX)

Once we get to stable homotopy theory we can use what’s called the Adams Spectral Sequence, which takes

these as data, to compute stable homotopy groups

VIII. Operads
Definition VIII.0.1

A symmetric monoidal category C has a functor

®:CxC—=C

along with a unit 1 € Ob(C. We wish for this to be commutative, associative, and unital. We need this

in the 2-categorical sense. Namely we need natural isomorphisms

A®B=,,,BoA
A@(B®C) Zq,pe (A®B)®C
A, A®I1.

T HA

We also need some axioms. These are called coherence diagrams. Consider a word in the operator an

units in a commutative monoid such as
((a-b)-¢c)-d—=(a-b)-(y-d) —a-(b-(c-d))
But we can also do it in a different way
((a-b)-¢)-d—=(a-(b-¢))-d—a-((b-¢c)-d) —a-(b-(c-d))

Any time I can do this in two different ways, I get a coherence diagram for symmetric monoidal categories.
This example is known as the pentagram diagram.

The actual coherence diagrams may be found on wikipedia.

Definition VIII.0.2
A closed symmetric monoidal category is one where for every object X, X®7 : C — C has a right
adjoint Hom(X, 7).

Example VIII.O0.1
Set, x; compactly generated spaces, x; R-Mod, ®; R-Chain, ®.

Definition VIII.0.3
In a symmetric monoidal category one can define an operad. This is a collection of objects D(m) for
m € Ny satisfying the same formal properties as Hom(X®™, X) for some object X.

What structure maps do we have?

(1) 15 D(1)
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(2) ¥, acts on X®™ by permutation. Thus we require 3, acts on D(m).
(3) There is a map Hom(X®™, X) ® @/, Hom(X®*, X) — Hom(X®2:* X). Thus we require
amap D(m) @ Q" D(k;) L D(ky + -+ + k).
Axioms: Associativity, permutations, two unitalities.
Recommend the book by May. Geometry of Iterated Loop Spaces. [7].
There is an obvious notion of homomorphism of operads D; — Do given by maps Di(m) — Da(m)
preserving the above operations.

The operad Hom(X®™, X)) is called the endomorphism operad End(X).

Definition VIII.0.4
An object X is called a D-algebra (for an operad D) if we are given a homomorphism of operads

D — End(X). Equivalently in terms of maps D(m) @ X®™ — X satisfying some diagrams.

Back to cochains (with coefficients in F,). There is an operad £ in Fp-chain such that

(1) &(m) ~TF, by chain homotopy (chain contractible).
(2) €(m) is a chain complex of free F,(%,,)-modules. This is the same thing as a linear action of the
group.
Such an operad is called an FE.-operad. An algebra of such an operad is called an FE-algebra. Running
these through a colocalization game, we get a unique derived category of F, algebras.
Theorem VIII.0.1 (Hinich-Schectman)
For a space X, C*(X;F,) has a natural structure of an F.,-algebra.

(Proof: a souped up version of Eilenberg-Zilber theorem).

Example VIII.0.2

Another example of an operad on F,-chain given by N(m) = F,. Then an N-algebra is the same
thing as a graded commutative DGA.

The structure maps are F, ® X ® --- ® X — X. The [F, is a unit so it gets killed, and the signs of a

graded commutative DGA come from the signs in the chain complex tensor product.

Remark VIII.O0.1
Just as we defined Steenrod operations, we can define operations in the homology of an E.-F,-algebra.
Caution: This time, S¢° = 1 and Sq* = 0 for i < 0 do not hold.

A convention in the context of F.-algebras is to put Q° = Sq~*. These are called Dyer-Landof operations.
Homework #11

(1) Write down the axiom diagrams for an operad (Ok to use reference, but adapt it exactly to the
concept covered in class).
Note: We have not constructed any example of an E-operad yet!
One method is to construct an E.,-operad in spaces, and apply chains.
FE.-operad in Top would satisfy
(1) E(m) = +
(2) &€(m) has the homotopy type of a CW-complex with ¥,, acting freely on cells.
Note: This requires constructing a map Cy(X) ® C.(Y) 2 C.(X x Y) which is commutative, associative,

and unital strictly (on the nose).
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There is such a map (not in the opposite direction becuase of Steenrod operations being nonzer) called
the shuffle map (standard transformation of a product of two standard simplices).
F-algebras in spaces were in fact discovered first, and have a very close conection with generalized

cohomology. This is called Infinite Loop Space Theory.

VIIL.1. Constructing E., Operads

An FE, operad in spaces consists of the following
(1) C(m) ~ CW-complex, ¥,,-equivariantly, and %, acts freely on the cells (when G acts on the sets of
cells of a CW-complex we call this a G-CW-complex).
(2) C(m) ~ * (non-equivariantly).
Start with any operad M satisfying (1). For example M(m) = 3,,. Then a M-algebra is a monoid (an
associative, unital).
Cech resolution If X is an object of a category G (with product), then this builds a simplicial object FX
in the same category G, that is a functor A°P? — G.
Then we set EX,,, = X X --- x X. Labeling these coordinates 0, ..., m then the i-th face map {0,...,m—
NNl

m~+1 times

1} — {0,...,m} gets mapped to the projection away from the i-th coordinate.

The degeneracies are given by applying the diagonal X 2, X x X in the appropriate coordinate given by
{0,...,m+1} = {0,...,m}. Namely this sends 4,7+ 1 to ¢, so apply the diagonal to the i-th coordinate. In
some sense we have “£X = X2” or as a right Kan Extension along A — *.

In Set, Top (compactly generated weakly Hausdorff spaces see [6]). Here we have the geometric realization.

If Y, is a simplicial space (simplicial object in Top, then
Ye| = [[ YmzzA™/(y, at) ~ (Yo(@)y, 1) (o € Mor(A))

It suffices to just take faces and degeneracies (the generators).
Proposition VIII.1.1
If X # 0, then |[EX| ~ .

Proof sketch. We have some basepoint * € X. Then we have that

m>0

We have a map hg : |[EX| — |EX]| given by

hs((Zoy -y @m), [tos- s tm]) = ((Toy -« oy T,y %), [(1 = )ty - o, (1 — 8)Em, 8])-

¢

Homemwork #11

(2) Verify that this definition is compatible with face and degeneracy identification, proving that for a
non-empty space X, |[EX| ~ x.
If s = 0, then hg = Id, and if s = 1j then h; is constant at (x,1) by face/degeneracy identifications.
Geometric realization preserves products (triangulation of A™ x A™ by shuffles). If D is a simplicial

operad in spaces, then |D,| is also an operad. This shows us by definition then that |[EM| is an E., operad.
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Definition VIII.1.1

An F-space is an algebra over an E,-operad in spaces.

We can play the game to show that D-algebras have colocalization, giving a derived category.
Theorem VIII.1.2

The derived category does not depend on the particular E..-operad chosen.

Proof sketch. If D, £ are E-operads then there is a diagram
D x €&

proj. 7 Y‘oj‘ o
D 3

For a homomorphism of operads f : £ — D we have a pullback functor f* : D-algebra — £-algebra, one
proves that 7}, 75 induce equivalence of derived categories of algebra.s

[7] does this more concretely without derived categories. <
VIII.2. Infinite Loop Space Theory

Recall that a generalized cohomology theory is determined by some based spaces Z,, where n € Z equipped
with weak equivalences
Zn l> QZn+1. (*)
In fact Ny would do. GivenZ, define Z_,,, = Q™ Z,.

The spaces Z,, of () are called infinite loops spaces. Peter May notices that infinite loop spaces (up to

~) are E-spaces, and connected E-spacesm are infinite loop spaces.

Application: Construction of generalized cohomology theories. For example, we can consider alegbraic
K-theory.

Why are infinite loop spaces FE.-spaces. Consider that F.-spaec are commutative monoids up to homotopy
and all reaonsonable higher homotopies.

What does this have to do with loops: 7, is commutative for m > 2. Consider a space of the form Q* X,
X is a based space, and Q™ X is Hom(([0, 1]™, 9]0, 1]™), (X, %)).

Peter May invented an operad so that m-loop spaces are F., algebras over this operad &,,.

The litte n-cubes operad &,,(k) is merely a configuration of k cubes in [0, 1] with disjoint images.

It is obvious then that Q™X (as defined above) is a C,-aglgebra (same as our proof of commutativity of
T,).

Inclusions of operads
51 ;)52 —
Take a little cubes x[0, 1] Then

Coo = JCn-

May tells us that Cy is a Co-algebra, that is an E-operad algebra.
Cy is the little m-cubes operad. It acts on the loop space Q"X so that it is a C,,-algebra.
We can then take Coo = ,,, Crn We wish to see that C acts on an infinite loop space Z,, S VY
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Definition VIII.2.1

A collection of based spaces (Z,,), m C Ny together with based homeomorphisms p,, : Z,, = QZ 1
is called a (May) spectrum.

A morphism of spectra (Z,,,) — (T},,) is a collection of based maps f, : Z,, — T}, with commutative
diagrams

fm
Z m Tm

| |

QZm+1 T} QTm+1
Lfm+

Therefore if (Z,,) is a May spectrum, then obviously C, acts on each Z,, (i.e. each Z,, is an E..-space).
Can we make a spectrum out of Z,,, — QZ,,—; that would give the same generalized cohomology theory
on CW-complexes?
Definition VIII.2.2
A prespectrum is defined the same way as a spectrum, except no condition is given on the continuous

map p,, (besides being a based continous map)

Thus there is a forgetful functor Spectra — Prespectra. One can prove that there is a left adjoint (i.e., a
free functor) L : Prespectra — Spectra, which we call spectrification. This was proved by Freyd-Kelly in a
transfinite argument.

For the moment we should not we’re working with the following convenient category of spaces (see [6]).

o Weakly Hausdorff, compactly generated spaces

e Closed symmetric monoidal category under x.

L(D,,) can be described explicitly if (D,,) is an inclusion prespectrum which means that p,, : D,, = QDj41.
Then we have that

(L(Dy))x = colim Q™ Dy, = colim(D,,, = QD11 < Q% (Do) < -+).

The issue with non-inclusions: €2 commutes past colimit of a sequence of inclusions, but not an arbitrary
sequence.
Then for general Z,,, — QZ,,,1, we replace them by inclusions by looking at the based mapping cylinder
¥ Zy — Zm+1 recursively.
Theorem VIIL.2.1 (May)
A connected Eo-space (~ CW-complex) is ~ to an infinite loop space (Z; for some spectrum (Z,,)).
7]

Note: since it doesn’t matter which E.,-operad we are using. We may as well use EM where M (k) = X.
By construction then we have a map of operads M — EM. An M-algebra is a topological monoid. Thus
an EM-space (Foo-space) is a topological monoid.

Since EM|, ~ x, this topological monoid is commutative up to homotopy (and higher homotopies). In
particular, my for such a space is a commutative monoid. If X was an infinite loop space, mgX would be
forced to be an abelian group (associated generalized cohomology theory gives E has E°(x) = mX).

One can construct a “group completion” of X, say X — X which satisfies

e On 7 is the K-groupification (the universal abelian group on this commutative monoid, KmyX).
o H.(X;Z) = [moX]| 'H.(X;Z). Where H,(X;Z), homology of a commutative monoid is a graded
commutative ring, using the product p: X x X — X and chain-approximation CX ® CX — CX.

67



Faye Jackson November 15th, 2021 MATH 695 - VIIL.2

VIII.2.1. Homework #11

(3a) Prove that a path-connected topological monoid X is a simple space. Namely 71 X is commutative
and acts trivially on 7, X for m > 1.
Recall VIII.2.1
We should recall how 7 X acts on 7, X. 2
(3b) Prove that S? v S is not homotopy equivalent to a topological monoid. (Consider how 71 acts on
m2).
Let first G be a (discrete) group. Recall the Cech resolution EG = |EG|, where EG, is the simplicial set
EG,, = GlO-m).
G acts on EG as g(go,---,9m) = (990, ---,99m), and it acts freely, properly discontinuously, and all the
nice things.
We then call BG := EG/G. Thus we have G — EG — BG as a fibration (where EG — BG@) is a universal
covering. This shows another construction of BG because 71 BG = G and 7,,, BG = 0 for m > 1.

Another description of BG which can be generalized. Again we have BG = |BG,|. And we define
BG,, =G" ={(h1,...,hm)}.
Then

(907917"'79771) — (hlwuvhm)

Where we put h; = g;_ 11 gi- This is called dehomogenization (and is an isomorphism).

90 91 = (990) " (991).

We wish to describe the faces and degeneracies directly in terms of (hy, ..., hy).

e For the O-face, drop hy to get (ho, ..., hy)

e For the i-th face for 1 <i <m —1 we get (hy,...,hi—1, hilir1, hiva, .oy han)

e For the m-th face, drop Ay, to get (h1,..., m—1).

e For degeneracies, insert a unit. (hy,...,hi—1,1, k... hy).
This is BG (Bar construction = classifying space = nerve). We can already see that we can do this for a
monoid, getting us BM for a monoid M.

Now we see that an F..-space X is a topological monoid. The group completion is constructed by
X =QBX

Let C be a small category. Similarly as for monoids, we can generalize the Bar construction (aka the nerve).

We have a simplicial set BCo where
BC,, = {composable n — tuples}

BCy=0bC

The faces are compose 7;, v;+1, and the degeneracies insert a unit.
Theorem VIII.2.2

If C is a small symmetric monoidal category then BC is an E..-space.

)

Proof Sketch. The Street Construction: C is equivalent to a “permutative category’
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Definition VIII.2.3
A permutative category has an operation ® which is strictly unital and associative. We have o :

X®Y — Y ® X such that 02 = Id and also

XQo

XoYez X®ZeY
\ /(gy
ZQRQXRY

Then the operad M defined by M(n) = %,, acts on C in the sense that we have
Mmn)xCx---xC—C
and this is given by
9, X1, Xn— g ' X1® - ® X9

EM, acts on BCo. We then take simplicial realization and EM acts on BC. v

Comments:

(1) If a category C has an initial object (or terminal object) in particualr, or if it as zero, then BC ~ x
(same proof as EX ~ ).
Often, what does give interesting examples is to take the subcategory of isomorphisms in some
category.
(2) Let R be a commutative ring. Take ObC = Ny, and Mor(m,n) = 0 for m # n and Mor(m,m) =
GL,.(R).
The symmetric monoidal structure is just the block sum of matrices. This is a permutative category,

and it’s fairly clear that

BC =[] BGL. R
m>0
This is an E.-space. Then moBC = Ny. Thus we must apply the group completion BC = QB(BC)
by viewing BC as a topological monoid.
This is an infinite loop space Z,, giving a cohomology theory KR = Zy x KoR (the algebraic
K-theory, KoR is discrete).

Theorem VIII.2.3 (Quillen)
The group completion QB (HmZO BGL,, R) ~ BGLy Rt x Z, where + denotes the Quillen plus

construction.

Proof Sketch. First construct a map

BGLoRY - X = | QB[ [[ BGL. R
m>0
= 0
using the fact that X is an E-space, thus a topological monoid, and so m X is abelian. Also H, X =

H.B GL4, R because

H,X = [m]X~ ' | H. [[ BGLm R | = H.BGLoo|t, 7]

m2>0
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where ¢t = (1). Thus by the universal property of the plus construction there is the desired map. This map is
both an isomorphism in 7; and an isomorphism in homology.

To finish the proof, one needs to show that B GL., RT is a simple space (to get weak equivalence). That
is we need to show that mp acts trivially on m, for n > 1 (we already know 7 is abelian). A key step of this
is in homework.

G=GLxR,E=[GLy R,GLy R] and [E,E] = E.

The universal coer of BG' is BET by construction. Why does 7 BGT = G/FE act trivially on 7, BE™T.
It is not true that the action of g € G on E by h € E + ghg~! is by conjugation of an element of E.

However, for any m elements hq, ..., h,, we can find an element ¢ € F such that

1 1

ghig™" = qhiq”".
An element of m,, BE only meets finitely many simplices, and therefore finitely many h;.

The whitehead lemma says that {g 991} €E. —

Homework #12

(1) Let G be a (discrete) group, g € G. Then g acts on G by conjugation. Therefore g acts on BG by
conjugation. Prove that the map v, : BG — BG is homotopic to the identity.
Better to think of BG = EG/G, where EG is the Cech resolution on which G acts on the left.
Then find a G-equivariant map
EG —— EG

]

BG —— BG
You may use the fact that EG is a free G-CW-complex (non-degenerate simplices are the cells). Then
prove that any two self-maps of a contractible free G-CW-complex are G-equivariantly homotopic.
Recall that a G-CW-complex has the cells as G-sets and the attaching maps are G-equivariant. A

free G-set is the same as a disjoint union of copies of G.

Given a small symmetric monoidal category ¢ we can build B% an E-space, and then QB(B%) is an

infinite loop space (being a group completion). This then is a spectrum
Example VIII.2.2
Let € be the category of finite sets with bijections (symmetric monoidal operation is ] [), permutatively
we have ¢ = [],,~0 Xm. Then we have that

B Hzm :HBEm

m>0 m>0

is an F-space. What spectrum corresponds to the group completion?

OB H BY,, | ~ B x Z.

m>0
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We also have

OB ]_[ BY,, | = colim,,_,oc Q™S™.

m>0

The map Q™S™ — Qm+1§m+1 can come from a map S™ — Q8™+ adjoint to L™ =5 §m+1,

This spectrum is the spectrification of the pre-spectrum D, = S™ via X5™ =, gmtt giving a map

D,, — QD,,+1. This is a special case of a general construction. Let X be a based space. Let
Dy =YX TEmX S By £ S QEmtly,

(D) is then an inclusion spectrum and X*°X is the spectrification of this.
Definition VIII.2.4

3¢ X is called the suspension spectrum of X.

So then we have a situation like

oo loop space machine

(Finite sets, =) e g0

In some sense the suspension spectrum if free. Then we have

Spectra — Spaces
E=(Z,)— QFE = Z,.

The left adjoint of 2°° is 3°° (the suspension spectrum). The verification is quick.

The category of finite sets is a “free symmetric monoidal category on one point” so plugging it into our
infinite loop space machine and getting back a free infinite loop space on “one point” is good.

That is if (¢, ®) is a symmetric monoidal category and X € Ob(C), then * — X necessarily requires that

S — @X
s
If Z is an operad and X is a space, the free Z-algebra on X is
92X = H 2(m) xs, X™. (xx, = space of orbits)
m>0

(left adjoint to the forgetful functor).
If  is an E-operad, X = % then

72X ~ [ ESm sz, *= [ BSm.
m>0 m>0
If 2 = EM then these are all equalities.

You can then ask if the category (finite sets, 2 J]) is symmetric monoidal equivalent to a strictly commu-

tative associative unital category. It is not

Proof Sketch. If so, then [[, -, BX, as an E-space would be equivalent to a topological commutative

monoid. We can then look at the chains

C* H BZ?n ; ]FQ

m>0
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is an E-algebra in Fp-chain. But it is not quasiisomorphic to a graded-commutative DGA because of
Dyer-Lashof operations.

For example, o € HyBY, the Dyer-Lashof operations (which we defined) on « are the basis of H,BY,,.
That’s how they were defined!

For p = 2 we have H;(BXy;Fo) = H;(BZ/2;F2) = Z/2. The generator is then equal by definition to
Q'a. .v‘

Spectra: ¥°°SY is a spectrum, and so it gives a generalized cohomology theory. But here we see a

generalized homology theory more naturally. This is called stable homotopy groups. Say X is a based

CW-complex,
(3*°X)o = colim Q"™ X
(X X)g = 7 colim QYT X
= colim 7, QM"Y X
= colim g4, X" X

This is called thableX .

Maybe every spectrum gives rise to a generalized homology theory. Maybe we could do homotopy theory

of spectra?
For a spectrum E and a based space (compactly generated, weakly Hausdorff) X, and notationally

E = (Z,,) with structure maps pp, : Zm — QZm41-
F(X,E)="T, Tm = F(X,Zp) (based maps)
We can also define X A E. Remember for based spaces this is
XANY =(XxY)/((X xx)U(xxY)).

Then X A E = L(U,,) (spectrification) where U, := X A Z,,.

Homotopy of spectra p,q: E — Fis h:[0,1]+ AE — F whichis f on {0} AE and gon {1} A E =g.

To define homotopy groups, I need to define spheres S™, m € Z. For m > 0 just take S := X>°5™.

Spectra have a shift functor

[k] : Spectra — Spectra
E = (Zn) = Ek] = (Zn+k)-

To get negative spheres, take S‘=% = (3°°5%)[—k]. It turns out that this only depends on ¢ — k and not both
variables, as we should hope.

Homework #12

(2) Prove that ¥°°(XX)[—1] = ¥*°X. (realize that spectrification only depends on tail of prespectrum).
For a spectrum E, XE = S A E. Also, the category of spectra (Spectra) has all limits and colimits.

Take limits “space-wise,” colimits are done space-wise to obtain a prespectrum, so then spectrify.
S™ := ¥>°8*[m — k]. Per homework this does not depend on the choice of k > 0. We also have that

SP(2X) = D(2°X) = ST ATPX.
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We can define hSpectra by using smash products to define homotopies. [X, Y] denotes the set of homotopy

classes of morphisms between X,Y. We can then of course define homotopy groups of a spectrum FE via
mmE =[S, E]. (meZ)

These are always abelian groups because S™ = %2S™~2, the proof is the same as for based spaces.

We can also define the mapping cone (homotopy cofibre) of a morphism of spectra f : E — F

E—— F

Cf:=colim | EAl0,1],

Ff:=colim| EAl0

E—— «

Note: 2 F is not the same as E[1] for a general spectrum. On adjoints, equivalently, QF = F(S!, E) is

not the same as E[—1].
If B = (Zpn)men, with structure map pp, : Zp, — QZp41. Then (QF),, = QZ,,, with structure maps
ot Q. — Q07,11 We need a switch of coordinates T : Q27,11 — Q27,41 then

p'lrn =T o Qpy,.

Pm—1

Proposed isomorphism of spectra E[—1] — QF given by Z,,_1 —— QZ,,. But when trying to check the
compatibility we see
/AN o Y/
lpmfl lTonm
QZm TP Q07 1

Does not commute! This is wrong!
Definition VIII.2.5

A spectrum FE is called a cell spectrum provided that £ = colim E(,,) with

d; fm
\/ S% = E(m).
1€1L,

We should have that C'f,,, = E;,41.

Theorem VIII.2.4 (May,Lewis)

hSpectra has colocalization with respect to cell spectra and the class E of weak equivalences.

A weak equivalence is of course a morphism of spectra f : E — F which induces an isomorphism in all 7,
for all k € Z.
The derived category D Spectra = D hSpectra with respect to weak equivalences is called the stable

homotopy category
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Theorem VIIIL.2.5 (May,Lewis)
On D Spectra, 2 and LY are inverse equivalences of categories isomorphic to [—1] and [1] respectively

(where L denotes the left derived functor, aka cell approximate first).

Proposition VIII.2.6
If f: E — F is a morphism of spectra then F'f ~ LC f[—1] weakly.

L symbol is usually omitted because mathematicians are lazy.

Proof Sketch. We have analogously to based spaces for a map f : E — F a long exact sequence
W, QE] —— [W,QF] —— [W,Ff] —— [W,E] —— [W, F].
We can prove in fact for F, F' cell that
W, E] —— [W,F] —— [W,C/f]

is also exact. The idea being that

E F Ccf YFE XF
2 QT hT ol e
W d W * EW —4Id> EW

¢

using the theorem multiple times and then use the 5-lemma to show Cf[—1] = Ff.

It follows that finite products are isomorphic to finite coproducts in D Spectra.
It turns out that the stable homotopy category is triangulated, and has a lot of structure.

D Spectra, DA (for A an abelian category) has products / coproducts.
Homework #12

(3) In D Ab the map Z 2, Z does not have a kernel (i.e. there is no equalizer between 2 and 0).
This is set up with cell chain complexes and chain homotopy classes of maps. Shifts Z[k] are cell

complexes. If [?,?] = Morp ap. Then
[Z]k], C] = H(C).
We also can see that for abelian groups A, B (considered as chain complexes in degree zero)

[A[~K], B] = [4, B[K]] = Ext"(4, B)

Lemma VIIIL.2.7
Ab — D Ab sending A to A is an inclusion of a full subcategory. This is sometimes called

the heart of the derived category with respect to chain homology. Also sometimes called the

t-structure.
To see this, note that free resolutions are cell approximations. We proved in class that morphisms
between free resolutions are the same as morphisms between the abelian groups.
The proof then becomes
(a) If K = ker(2 : Z — Z) exists in D Ab, then H;K = 0 for ¢ # 0. Non-zero would violate
uniqueness of the limit. Therefore K € Ab.
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(b) But then K =ker(2:Z — Z) in Ab. But there exists a nonzero morphism C L, Z in DAb so
that 2f = 0.
Hint, use that [A[—k], B] = [A, B[k]] = Ext*(4, B).
Given a spectrum F and a CW-complex X, we can define the generalized homology and cohomology

theory on X corresponding to E by

EpX =mp(EAX) (%)
E"X = 7_,F(X,E) = nF(X, E[m)]) (1)
= [X, En]. (2)

The first is motivated by the sphere spectrum S = $°°59 (the corresponding generalized homology theory is
75X = 1% X = 7 (X AS)). It turns out that for a CW-complex X, ? A X : Spectra — Spectra preserves
weak equivalences.
Comment: With the (co)limit axioms on generalized homology and cohomology, and preservation by weak
equivalence axiom, every generalized homology and cohomology theory is represented by some spectrum.
Example VIII.2.3
K-theory cohomology comes from geometry (discuss later). There is still no known geometric inter-

pretation of K-theory homology.

VIII.3. Spectral Sequences: Revisited
Definition VIII.3.1

An exact couple is a long exact sequence of the form

D—" D

N

Philosophy: from information about F, can we gain mfo about D.

We should want D, E to be Z-graded, with ¢, j having degree 0 and k having degree —1.

Massey: Observed that d; = jk is a differential on E. We can then define £’ = H(FE,d;). We can also
define D’ = im(i : D — D). There is a derived exact couple

N 5
Intuitively, ¢ induced by 4, &’ induced by k, j' induced by j o i~!. But this is not immediately seen to be

well-defined.

We need another characterization of E’

B ker jk k= lkerj _ E~lims

imjk  jimk  jkeri
Homework #13, Due: Monday Nov 29th

(1) Prove that
(a) keré =im#k’
(b) kerj =imi’

(6]
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(c) ker k' =imj’.
The spectral sequence arises by iterating this process.
Lemma VIIIL.3.1

D™ — im(i™)
EM™) = = (imi™)/j(ker i™)

Often, we have an additional grading, making D, E bigraded. Then we understand D,, 4, E, , are in total
degree n = p + q. The traditional bidegrees are then

p—%Y .p
kg

(—12))\ Am
E

Then we have in the derived case
1,-1)

pr—! D
(—1,0) (1—r,r—1)

We then see d, has degree (—r,r — 1) as usual.

i
E
A cohomological spectral sequence is the same, just reverse signs of p, q.

Example VIII.3.1
AHSS (Atiyah-Hirzebruch Spectral Sequence) for a generalized homology theory L.
Here we have D, ;, = L, 1,(X,,) where X is a CW complex and E,, ; = Ly14(X,p, Xp—1)-
The exact couple is

Lptg(Xp—1) — Lp+q(Xp) — Lp4q(Xp, Xp—1) — Lptq—1(Xp-1)

i J k
D,_ — D E D,_
p—1,g+1 P.q P,q p—1,q

)

Ifr>>Oimplie50:dT:E;’q_>
Define then E3° = colim, EJ . This happens here because i"~! is the inclusion of a lower dimensional

cell, and so its image is eventually zero. This then gives
ker(Lp4q(Xp, Xp—1) = Lptq-1(Xp-1))
j(ker Lp1q(Xp) = Lptq(X))
o im(Lp+q(Xp) — L;v+q)(Xp’ Xp—l)
—im(ker(Lptq(Xp) = Lpiq(X)) = Lpiq(Xp, Xp-1))
= Lp1q(Xp)/(im Ly yq(Xp—1) + ker(Lpiq(Xp) = LpyqX).

oo _
Epyq -

Then
Fpr+qX ‘= im Lp+qXp — Lp+qX).

Then EJS, = FyLp g X/Fp 1Ly X
Note: Cohomological AHSS similarly converges to LPT9X with

FPLPYIX = ker(LPTIX — LPTIXP™T).
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VIII.4. Back to Spectra
In Equation (%), we would really like X to also be a spectrum. Then we have
EnX = Lr, (X NE)
E"X =7n_,F(X,E).

What do these mean? Well defining X A E by spectrifying X,,, A E,, is wrong. A good way to see this is it
doesn’t satisfy X*°Z A E ~ Z N E even for E cell.

Select two non-decreasing sequences «,,, 8y, in Ny such that a,, + 8, = m. With a,,, 8, — 0o as m — oc.

Then
EANF=LD Dy, = E,, NFg,.

Then F(Z,7?) is right adjoint to ZA?.

This gives a closed symmetric monoidal structure on D Spectra. But not on Spectra because of the choice
of (m, Brm)-

But you might want that structure on spectra! (rigid rings, modules in Spectral)

Next Semester: Math 697 (introduction to current methods).

The derived cateogry D Spectra is a closed symmetric monoidal category with A and F(—, —).

Definition VIII.4.1
In a symmetric monoidal category % (operation ®). A strong dual of an object X is an object Y’

together with morphisms

p:l—=Y®X e: XY =1

such that the following diagrams commute

X Id®u X@Y@X e®Id X

Id

% p®Id VoX®Y Id ®e X

1d
If this holds, we call X (and symmetrically Y') strongly dualizable and write Y = DX

Comments: We have the following
(1) If Y = DX is a strong dual of X, then DX®? is both right and left adjoint to X®? (use definition

of adjunction via triangle identities).
(2) If € is closed, F(X,?) is the right adjoint to X®?, and adjoints are unique, so if X is strongly

dualizable then
DXQ®Y 2 F(X,Y)
DX 2 F(X,1)
(3) If X is strongly dualizable, then
XQF(ZT)=2F(Z,X®T)
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(4) DDX = X.
Example VIII.4.1
If F is a field, then in F — Vect the category of vector spaces over F, then with ® the tensor product

we have the usual duals.

Definition VIII.4.2

F is a ring-spectrum if we have
w:ENE—FE e:S—F

and we have the following commutative diagram in DSpectra

ENEANE 2 BEAE

QA le lu

"
ENE —F—— F
and similarly an identity axiom

Example VIII.4.2
If € = D Spectra, @ = A.

For a space X and a commutative ring spectrum E, E*X is a graded commutative ring (working in D Top).
Why? Well consider

E*X® E*X = F(X,E), ® F(X,,E), - F(X; AX,,ENE),

A"oF(— )
B

< F(X x X4, EANE), F(X,,E), = E*X

we can define morphisms of R-module spectra by commutativity with the operation. For R-modules
M — N
RANM — M

| |

RAN —— N
But the mapping cone C'f is not in general an R-module.

Back to strong duality. Which objects are strongly dualizable in D Spectra and what are their strong
duals?

Answer (Spanier): The best source is Adams stable homotopy + generalized cohomology [1]. Namely
these are XX [m] (m € Z) where X is a finite cell spectrum.

Note: In D Spectra, we define for spectra E, X

EpX = (X AE) E™X =r_n(F(X, E))

)

If X is strongly dualizable, then
E, X =mn(XANE) 27, (F(DX,E)) = ET™(DX)

Spanier gave a geometric model of strong duality in D Spectra before all of this was understood. The model
is entirely in spaces. Select some N > 0, and suppose K, L C S with K N L = (). (The case (x) we are
interested in: K, L are simplicial subcomplexes of some triangulation of S¥. Further L is a deformation
retract of SV — K and likewise K is a deformation retract of S — L). Then $*°K ~ DL[N — 1]
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The way to construct the relevant maps is to select points a € K,b € L and a simple path w in SV
from a to b. Furthermore, require w(t) ¢ K,L if t # 0,1. Select the basepoint co to be w(1/2). Then
SN\ {00} = R¥. Thus we may define

WK x L— SN-1
r—y
(2, y) = T
= yll
We then have that K x {b} ~ const and likewise for L. This gives us a deformed map pu: K A L — SN=1,

Taking suspension spectra
NOuU : BPK AN®L — SN
YK AS®L[1 - N] — S°
when K = SV \ L we can also get ¢ and verify triangular identities on space level by hand.
This is called Spanier-Whitehead Duality
In notation, we quite often identify a CW-complex X with the spectrum »*°X.
Spanier-Whitehead Duality: For X C S™ (say a simplicial subcomplex, then DX*°X = %°(SN\ X)[-N +
1].
Recall VII1.4.3

when Z in DSpectra is strongly dualizable

DZ = F(Z,8°)
What about X7 Well we have a cofiber sequence
X, -8 ¥x
And after applying 3> we have
DS° - DX, — DS°.
That is
SN\ X[-N] = S¥[-N]=8° - DX, - SV \ X[1 - N] = DX.

last term is the mapping cone.

Answer:

D(E®X,) = D(X4) = O(SN \ X = S)[=N]
if U is an open neighborhood of X in S, this is the same as
C(U\X — U)[-N]
A particularly interesting case is X = M being a compact smooth N-manifold. Then we can embed

M CRY € SN =RV U {0}

IX. Vector Bundles

General structure: A family of finite-dimensional vector spaces indexed by X.
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Form a category of space over X, whose objects are continuous maps Y — X and whose morphisms are
diagrams

Definition IX.0.1 (Vector Bundle)

A topological vector space over X can then be defined in this category. Explicitly for a total space F

with a map p: ' — X there are addition, multiplication, negation, and zero maps as below. For A € R,

ExXE—> L F E—2" ,E

N N

X —2 L E FE—F
Id\ / K %
X
satisfying the obvious commutative dlagrams.

which is locally isomorphic to a product with R™. That is there exists an open cover U; of X such

that bulling back to each U;, p~1(U;) — Uj is isomorphic, as a vector space over U;, to U; x R™ — U,.

Example IX.0.1
Mobius Band — S*.

Tubular Neighborhood Theorem: If M C M’ is a smooth embedding of compact manifolds, then there

exists an open neighborhood U of M in M’ which is homeomorphic to the total space of a vector bundle
(with M embedded as the 0-section).

The normal bundle of M in M’ for example.

For M C RN C SN we have

DM, = C(SN\ M — SY)[-N]
=C(U\M — U)[-N]
=C(E\M — E)[-N]

where U is a tubular neighborhood with bundle E, and E\ M — FE is the inclusion by embedding M into FE
via the O-section. Call Ey := E\ M. We also have E = v3; SV where v3;S" is the normal bundle of M in
gN
For a vector bundle E, what does C(Ey — E) look like?
Say, the bundle E % X over X has X compact.
Claim
C(Ey — E) is homootpy equivalent to the l-point compactification of E, which is equivalent to
D(E)/S(F) (the 1-point compactification of the open disk bundle)
Where S(E) — D(E) is the inclusion of the unit sphere bundle into the unit disk bundle.

The 1-point compactification of E (where p: E — X is a vector bundle, X compact) is called the Thom
space of F, someitmes denoted by X% or T(E).
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If X is not compact, D(E)/S(E) does not compactify F, so we need to define the Thom space by

XE ‘= colim ZCX ZE
compact

The conclusion: If M is a connected compact m-manifold embedded in RY then
DM, = M [ N]
What can we say about vy;RY. Well
vuRYN @ T(M) =N

where @ = xjs is the whitney sum, T'(M) is the tangent bundle of M, and N is the trivial bundle of
dimension N.

One can prove that (since M is compact), if N > 0 then the Whitney sum component of a bundle £ in N
(a bundle u such that £ ® p = N) is uniquely determined after isomorphism.

So in fact, selecting N > 0, vpyR¥ is determined (we say: the normal bundle is stably determined).

Next: E-orientability for a commutative ring spectrum E (commutative monoid in DSpectra), leading us
to E-Poincaré duality.

For a compact connected smoothly embedded m-manifold M C R we have by Spanier-Whitehead duality
that

DM, = MR [—N],
Recall that the Thom space of a vector bundle £ — X for X compact is
X¢ = 1-point compactification of &
For general X, we have
X¢ =colim zcx Z°.
compact
Recall: If F' is a spectrum and X is strongly dualizable, then
ExX =E*DX.
We know X>°M, for a compact smooth connected manifold is strongly dualizable, so
E M = EN—kMuMRN

We also see that vyRY has dimension N —m. We can think of M¢ as a “twisted suspension” of M by the
dimension of the bundle. Indeed if £ = ¢ was a trivial bundle, then M¢ = X¢M, .

Under what circumstances can we “untwist the Thom space to the eyes of the spectrum E”?

Suppose E is a commutative ring spectrum (a commutative monoid in DSpectra).

Thom realized that if £ is an m-bundle on X, then there is a natural map
0: X5 = XSAX,

y € & (y,projy)

o0 = 00

It is an exercise to check continuity at oo.

81



Faye Jackson December 3rd, 2021 MATH 695 - 1X.0

If X is a CW-complex
E*(0): B*(X¢ A Xy) = E*(XS)
and using that it is a ring theory, we have a map
E*(X) ® EY(X) — EF(X¢ A Xy) — EMY(XY).

The m-bundle ¢ is called E-orientable if there exists a class u € E™(X¢) (called the Thom class) which for
each point x € X restricts to a unit.
That is

E™(X) = E™({«}%) = E™(S™) = Eo(#).

If E is a ring spectrum then Ey(x) is a commutative ring, and so we can just trace u through this map and
see if it becomes a unit.

Thom Isomorphism Theorem:

If an m-bundle ¢ is F-orientable with Thom class u, then
Z: E™(X%) ® BY(X) — EmH(XE)
restricts to an isomorphism
2(u®?) : BY(X) — EmH(XE)

Proof sketch. Take open cover {U;}icr of X where £ ‘U_ is trivial for each 7. Then use the Meyer-Vietoris
sequence and the five lemma.

If I is infinite, a limit argument is needed. .v.
Note that in fact
EYX)=E™(xmX,).

Thus if € is E-orientable, then X¢ “untwists” to the eyes of E.
Definition IX.0.2 (First Version)
A compact connected m-manifold is E-orientable for a commutative ring spectrum E when the normal

bundle vy;RY is E-orientable.
Then we can conclude that
Ek—(M) g EN*k'MVMRN g EN*]C*N“:’TI’L(M) — Emfk(M)

because dim vy RN = N —m.

This is called F-Poincare duality.

How can we make the definition of orientability more elegant? The Thom class of vj/RY (if there is one)
is in

EN-m AR o~ B (M)

Definition IX.0.3 (Final version)

An FE-orientation of a compacted connected smooth m-manifold M is a class [M] € E,,(M) (sometimes

82



Faye Jackson December 6th, 2021 MATH 695 - X.0

called the “fundamental class”) such that the embedding of pairs (M, 0) % (M, M \ {x}), for every
x € M sends [M] to a unit.

That is we see that
E,.(M)— E,,(M,M\{z}) = E'm(CLw) = En(U,U\{z}) = E,,(S™) = Eo(*)

where x € U 2 R™ is open. Again Fy(*) is a ring and we can define this correctly.

Theorem IX.0.1 (Poincaré duality)
If M is an E-orientable compact connected m-manifold then Spanier-Whitehead duality, using the

Thom class corresponding to the fundamental class [M], define an isomorphism

EyM = E™FM

Remark IX.0.1

For E = HZ/2 (ordinary cohomology with coefficients Z/2) every (compact smooth connected)
manifold is HZ/2-orientable.

Note that HZ/2o(*) = Z/2 has a unique non-zero element.

HZ-orientability is equivalent to HR-orientability which (at least for compact, smooth, connected mani-
folds) is equivalent to the existence of a nowhere vanishing differential m-form.

This is related to the statement that Z only has two units.
X. A Plethora of Examples

For the last week, we will talk about Examples of Spectra, that is of generalized homology/cohomology.

Example X.0.1 (Universal)
BO(m) = {m-dimensional real vector subspaces of R>}. That is EO(m)/O(m).

If we then consider
w ={V,z) |V CR*®,dimV =m,z € V}.

Then there’s a map yg* — BO(m).
Similarly for C, with BU(m) and & — BU(m).

Theorem X.0.1
If X is paracompact, then

{= clsses of real vector m-bundles on X} = [X, BO(m)]
And also
{2 clsses of complex vector m-bundles on X} = [X, BU(m)]

The map is given by f: X — BO(m) to f*y¢" (the pullback), and likewise for complex vector bundles.
References: [8, 3]

This gives a geometric interpretation of K-theory (cohomology). A permutative category € with objects

Ny and morphisms m — m given by U(m).
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We then set

A0
0 B

So then

B¢ = [[ BU(m)

m>0

is an E.-space, and by group completion
QOB(B%¥)=BUY x7Z
where BU™ is the Quillen +-construction. Then
U=Juim)
So we have that
moU(m) =0 moBU(m) = 0mU(m) = Z mBU(m) =0

By the fibration sequence U(m) — EU(m) = * — BU(m). Thus BUT = BU.
Thus we have proved BU X Z is an infinite loop space without using Bott periodicity.
Note that

BU><|ZZcolim<H RLN H BU(m)%..)

meENg mENg

If X is compact Hausdorff, then
[X, U Zm} = colimm[X, Zum]

where ZO ng g
If X is compact then by definition

KX = [X,BU x 7]

is the group completion of {2 classes of complex vector bundles on X} which is a commutative monoid with

Whitney sum.

Grothendieck construction K is left adjoint to the forgetful functor Ab — commutative monoids.
For example K (Ny) = Z.

Elements of K°(X) are virtual bundles. Namely they look like

(& p)/~
Eu~E ) = v capovedopar
We think of the pair (£, u) as “6€ — p.” For X compact, any virtual bundle is of the form £ — N for N trivial,
should refer to Atiyah’s K-theory.
This definition of K°X as the group completion of isomorphism classes of vector bundles on X is not
invariant under weak equivalence. For X CW we have K°(X) = [X, BU x Z)].

Vector bundles also have a tensor product. This introduces a commutative ring structure on K°X. In

fact, K is a commutative ring spectrum(for now, commutative monoid in DSpectra w.r.t A).
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Can we say something more rigit (= coherent) in Spectra, where A is not a symmetric monoidal product.
Answer: yes. We will call this a multiplicative oo loop space.

Another example of a constructon of spectra:
X.1. Cobordism

The geometric problem of cobordism: compact smooth manifolds without boundy M of dimension m,
with equivalence defined by cobordism
Definition X.1.1

We say two compact manifolds M, N of dimension m are cobordant if there is a compact manifold
W of dimension m + 1so that OW = M [[ N with the normal data preserved.

That is

ug\" STw =N (trivial)
so that

T‘]\J:T]\,V[CDl TNZTN(Dl.

For refernece see [8]
to avoid the problems, we prescribe some requirement on the normal bundle V%N (well-defined if whatever
structure we require on V}I\EN for N > 0 must be preserved by enlarging N, aka it is “stable”).
Example X.1.1
There are many examples

e Ny structure, then unoriented MO.
e Oriented (w.r.t HZ), gives oritented M SO
e Complex gives complex MU.

e Trivial gives framed <.

Equivalence classes of each type of manifolds under cobordism are called cobordism groups M O,,,, M SO,,, MU,,.
Why groups? The group operation is [[, and the inverse is to add the trivial bundle, reverse sign of
1-dimensional subspace in the isomoprhism class.
What

Cobordism, compact smooth closed m-manifolds M with some normal data on V}I\EN which can be

e no data (unoriented)
e oriented
e complex

e trivial bundle (this is called framed cobordism)

modding out by cobordism, that is M; ~ My when
M, ]_[ My = OM

Where M has the same type of normal data, which restricts to M; (usually with signs).
This is a group, whose operation is [[. How is this related to spectra?
We’re now going to follow the Pontrjagin-Thom construction
Embed M as M C RN C SN. Then there is a tubular neighborhood U of M, which is homeomorphic to

rNV
V}\R}N via some ¢. This gives a map SN — M vir (which is the Thom space, or the 1-point compactification of
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vEY). How? Well

N
SN £y Mva

2 RN
U= vy

SN\ U > *

~

This still uses the manifold. But! We have classification of bundles: = classes of k-real bundles on M
via [M, BO(k)]. For oriented k-real bundles we have [M, BSO(k)] (where BSO(k) is the universal cover of
BO(k)). For complex k-bundles we have [M, BU(k)]. And there is only one trivial k-bundle [M, *] = x.

We apply this classification to the normal bundle VRA}N. We have £k = N — m expect in the complex case

N—m
5 -

The classification map, say in the unoriented real case:

where k =

M — BO(k) (k=N —m)

RN k
Vv R

RN k
MY — BO(k)*%.

From the data of V}%IN we get a map

SN = BO(N —m)% "
with N > 0. A cobordism, by an analogous construction, on the manifold representing the cobordism, gives
a homotopy. Thus by starting with a cobordism class we obtain a homotopy class

SN & BO(N —m)% "
In the oriented case, we have SV — BSO(N — m)'ﬂ]«v*m. And in complex case we have N —m = 2k and
SN — BU(k)*. In the trivial case we get SN — §N=m,

Thom observed that there is an inverse to this procedure. Say we have S ER BO(N — m)mﬁf ", Because
the Thom Space is locally nice, one can talk about transversality with respect to fibers. If f is transverse
to the 0-section embedding BO(N — m) in the Thom Space, then f~!(0-section) is an m-manifold. In the
cases with structure, it automatically gains the desired structure on V%IN.

Theorem X.1.1 (Thom)

These two procedures are inverse to each other. For details see [8, 10].
What about this V > 0?7 Well then we have
MO,, = colimy, 741 BO(k)*
MSO,, = colimy, T4, BSO (k)"
MU,, = colimy, T 420 BSO(k) ¢
5

: k
Mtramed(m) = colimy, Ty, 18" = T, S = 7).

The first three can be thought of as homotopy groups of twisted suspension spectra, which are now called
Thom spectra. This means cobordism is intricately linked with stable homotopy theory.

Consider the complex case. We have a prespectrum Dy, = BU (k:)”f . This is given by

2 Doy, — Dogio
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BU(k)¢®lc 5 BU(k+1)¢"

via the classsification of (k 4 1)-bundles. We could then just set Daj1 = 3 Do.
We spectrify to get MU (in the other csaes MO, M SO,S). This tells us that framed cobordism groups
are stable homotopy groups of spheres, and we can get the first few stable homotopy groups this way before

it becomes intractable.
Exercise X.1.2

Show that mS = Z/2 using this method.

Amazingly, in the other cases we listed, the cobordism groups (m, of the Thom spectra MO, M SO, MU)
can be completely calculated. This can be calculated by general methods of calculating homotopy groups of
spectra. Namely, this uses the Adams spectral sequence.

Strategy: Look at F(HZ/p, HZ/p). = A* (the Steenrod Algebra), these are stable operations (that is
natural transfromations) in mod p cohomology of spaces. We work modulo p because F), is a field. We have
that

F(HZ,HZ) = Z & (p-torsion, all p together).
The Adams Spectral Sequence:
Exta-(H*X,Z/p) = (7£ X))
That is 75X completed at p, where X is a CW-complex of finite type. This comes from
X —>XANHZ/p— X,
X1 > X1 ANHZ/p — X

all of these cofibration sequences (mapping cones then) working entirely in the category of spectra. This
leads to an exact couple, giving the adams spectral sequence. A great book for this is Ravenel’s Complex
Cobordism and Stable Homotopy Groups of Spheres [12]

Hard for S, but for MO, M SO, MU it is relatively easy. For example

. MO = Fyly; | i # 2% —1].
Furthermore
MO =\/S*HZ/2

This is just a sum of copies of HZ/2, sometimes called a (GEM, a Generalized Eilenberg-Maclane spectrum
aka nothing new).

However 7, MU is more interesting
MU =7z, x2, 23, .. ]
where deg(x;) = 2i. This is an interesting new spectrum (not a GEM). HOW?
X.2. Complex Oriented Spectra

A commutative ring spectrum (commutative monoid in DSpectra) E is called complex-oriented when the

universal complex line bundle 7 on CP> = BU(1) is E-oriented.
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What does the Thom Space (CP"O)Vé look like? For any bundle £ on a space X, we have a cofiber sequence
S(€)+ = Xy = X°

where S(§) is the unit sphere bundle (given a Euclidean metric), equivalently S(&) ~ £\ (0-section). We then
know that

S(v& =~ 73\ (O-section) = C* \ 0 =~ *.
Therefore ((CPOO)"‘é ~ CP*°. This comes from a cofiber sequence
5% — CPY — (CP>)e

Next time: talk more about complex oriented theories and formal group laws, why you might care about
equivariant topology and structured / coherent topology.

If a cohomology theory is complex oriented and u is the Thom class, then
E*CP*> = E,[[u]]

where we allow infinite sums which are homogeneous, with u having cohomological degree 2. One can compute
this with AHSS
Similarly E*(CP™ x --- x CP®) = E*[[uy, . .., um]]-
Then CP* X --- x CP* — BU(m). This then gives a map
E*BU(m) — E*(CP*® x --- x CP*™) = E,[[u1, ..., un]]

But note CP> x --- x CP>® = B(S! x --- x §1), with an action %,, C U(m). On Homework, we proved
inner automorphisms of G induce ~ Id on BG.

This means it factors through as
E*BU(m) — E*[[u1,...,un]]>™ = E*[[u, ..., un]]

If ¢; = oy (u1, . .., Uy is the elementary symmetric polynomial this is E*[[cy,. .., ¢m]]-

AHSS injects on Es-terms so target collapses. Thus this is an isomorphism and
E*BU(m) = E*[[c1,. .., ¢m]]

We can then induct BU(m — 1); — BU(m)y — BU((m)" to show 42 is E-oriented. Every complex
bundle is then F-oriented. The symmetric polynomials ¢y, ..., ¢, are called Chern classes.

Let ¢ be an m-bundle on X, then ¢; € E**X. What is the classification of CP>® x CP> — CP, the line
bundle ’y(l: ® 7(]5.

Also CP* = K(Z,2), addition in H?(?;Z). Well this is a map

E*[[u]] = E*[[us, uz]]
u > F(uy,ug) = uy +5 us.
We get properties like
T+rp0=2=0+fr=x
T+rY=yY+rT
(u+pv)+rpw=u+p (v+pw)
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a power series F' € R|[[u, v] which satisfies these two properties is called a formal group law (FGL).

Example X.2.1
K-theory, K, = K, (x) = Z[3, 37!] where 3 is a Bott class in degree 2. If we omit 3 from the notation,
then

U=~k —1e K'CP®

that is a virtual bundle of dimension zero. The tensor product of u+1,v+11is (u+1)(v+1). Subtracting

1, the formal group law is
U+rpv=u-+v+ uv.

This is called a multiplicative FGL.
For HZ (ordinary cohomology) we have u +p v = u + v. This is called an additive FGL.

Example X.2.2
E*RP*°. We then have a cofiber sequence
142
RP — CPr U2k, (cp)0)®,
If F is complex-oriented, then we have
E*RP>® +—— E*[[u]] &% E*[[u])[2).
In principle this is a long exact sequence, but if the right map is injective, it’s a short exact sequence

and
E*RP* = E*[[u]]/(u +F u).
Example X.2.3
K-theory (ignore the Bott class. Then
2lru = (1 +u)* — 1 =2u+u?.
This is injective on Z[u]. Thus
K°RP> = Z[[u]] /(1 +u)?* — 1
K'RP>® =0
This is isomorphic for t =1+ u to
(Z[8)/(# = 1)1y = Z2 B L.

Where does this come from? Well ¢ is essentially the tautological bundle. When restricted to Z/2,
Z[t]/(t* — 1) is the complex representation ring of Z/2. That is

R(G) = K(comm. monoid of f.d. complex representations of G).
This is an example of the below theorem.

Theorem X.2.1 (Atiyah-Segal Completion)
If G is a compact Lie group (including finite groups) then K°BG = (R(G))}, where I is the augmen-

tation ideal (virtual representations of dimension zero) and K'BG = 0.
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They considered G-equivariant K-theory. For compact CW-complexes, you want to take G-equivariant

complex bunbldes. Then this comes from

K2(x) = R(G) K&(x) = 0.
This motivated the idea of equivariant generalized cohomology theory.
X.3. More Formal Group Laws

Can we classify Formal Group Laws? Well let
F(x,y) = Z ai,jl’iyj
§,§>0
and consider the Lasard ring
L = Z[a;;]/(relations from requiring that F' be an FGL).
For example
Uij = Qji aio=0,i>1...

So now F'is an FGL on L. Then we have that

{FGLs on R} = Morging(L, R)

Theorem X.3.1 (Lasard’s)
We have that L = Z[z1, 2o, .. .].

We now notice the complex cobordism spectrum MU is complex-oriented (((CPOO)”Yl is a term in the prespec-
trum).
Theorem X.3.2 (Milnor-Novikov)
The FGL on MU*[[u]] (from complex orientation) is the Lasard universal formal group law. This is

somehow familiar because (MU, = Z[z1,...,])

Why are FGLs important? They come up in number theory. Natural question: can we make a complex-
oriented spectrum from MU say by “killing generators”, inverting others, and so on.

Answer: Not in the derived category! We need some coherence and some replacement for A not being
strictly commutative, associative.

This becomes the general theory of

Brave new algebra, Spectral algebra, Higher algebra.

This subject is focused on how to introduce higher coherence.

How do FGLs come up in number theory. Well if K is a finite field extension of Q, that is called a number
field. We can describe Galois extensions of K C L with abelian Galois group by their number theoretical

properties. This area of mathematics is called class field theory.

Formal Group Laws cannot do Class Field Theory, but they can do it locally. The local question is to
instead consider Q, = fractions of Z,, where Z, = limZ/(p™). A finite field extension Q, C K is called a
local number field.

The finite exntesions of F,, are F,n, with Gal(Fp» /F),) = Z/n.

We can lift to Z,, C W. The field of fractions K (unramified degree in extension of Q,). Then W = O.
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Theorem X.3.3 (Lubin-Tate)

if we have aPi1 + .- + pr = f(x) where the middle bit is divisible mod p, then there exists an FGL
such that [p]pz = f(x) on Ok.

Then

Kla)/fom(x)/ £V ()

this is a totally ramified (Eistenstein’s polynomial) extension of K, which is both abelian + Galois.

Furthermore F' is an Ok module Then [o]z makes sense for a € Oy. Furthermore the Galois action is
a(z) = [oz.
Therefore we have that

Gal(L/K) = (OK/meK)X.
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