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Using reduced (co)homology, we can simplify to talking about based spaces instead of about pairs. However,

Em(X,A) 6∼= Ẽm(X/A), where X/A is the quotient space (even made into a Hausdorff space). Although this

holds for special classes of pairs (X,A), we cannot use it to reduce.

We can get rid of this problem by defining some new constructions.

Definition .0.1

The mapping cone CY of a space Y is definde to be

CY := (Y × [0, 1])/(Y × {1})

The mapping cone Cf of a map f : Y → X is defined to be

Cf := (X
∐

CY )/(y, 0) ∼ f(y)

The quotient topology here is universal. That is a map Cf → Z is in a natural bijection with maps

g : X → Z such that g ◦ f is nullhomotopic.

Definition .0.2

Given a space Y , its suspension SY is defined by

SY = (Y × [0, 1])/(y, 0) ∼ (y′, 0), (y, 1) ∼ (y′, 1)

The upshot of mapping cones?

Proposition .0.1

For an inclusion f : Y → X, Ẽm(Cf) ∼= Em(X,Y ), and likewise Ẽm(Cf) ∼= Em(X,Y ).

Proof. This is just some simple arguments from the Ellenberg-Steenrod axioms

Ẽm(Cf) ∼= Em(Cf, ∗) ∼= Em(Cf,CY )

∼= Em(C−f, C−Y ) ∼= Em(X,Y )

Where we define:

C−Y := Y × [0, 1/2]

C−f := (X
∐

C−Y )/(y, 0) ∼ f(y)

The third isomorphism above follows by excision on CY \ C−Y ⊆ CY ⊆ Cf , and the others follow by

homotopy equivalences between pairs (Cf, ∗) ' (Cf,CY ) and (C−f, C−Y ) ' (X,Y ).

Similarly for cohomology.

We always have an inclusion X
ι−→ Cf . We can then ask what is Ci? Well

Ci ∼= (CX
∐

CY )/(y, 0) ∼ (f(y), 0)

This then allows us to see that Ci ' SY , where SY is the suspension (see Definition .0.2). This is visualized

by Figure 1 Why is this? Well there are maps SY → Cι→ SY = Cι/CX which give a homotopy equivalence.

Explicitly for SY → Cι, we map

(y, t) 7→ (f(y), 1− 2t) (0 ≤ t ≤ 1/2)

(y, t) 7→ (y, 2t− 1) (1/2 ≤ t ≤ 1)
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Figure 1. Cι for the inclusion ι : X → Cf

This suggests that Ẽm(X) ∼= Ẽm+1(SX) (which will be on homework).

It also suggests an alternative formulation of the Ellenberg-Steenrod axioms.

Definition .0.3

Functors Ẽm : hBased→ Ab are called a generalized based homology theory provided that:

(1) We have an exact sequence for every map of spaces f : Y → X:

Ẽm(Y )
Ẽm(f)−−−−→ Ẽm(X)

Ẽm(ι)−−−−→ Ẽm(Cf)

where ι : X ↪→ Cf is the inclusion.

(2) There is a natural isomorphism

Ẽm(X) ∼= Ẽm+1(SX)

for all m ∈ Z.

Similarly for cohomology. The product axiom involves the wedge sum.

Definition .0.4

Given based spaces Xi we define their wedge sum by:∨
i∈I

Xi :=
∐
i

Xi/∗i ∼ ∗j

Definition .0.5

We call a generalized based homology theory Ẽm additive provided that the inclusions provide an

isomorphism ⊕
i∈I

ẼmXi → Ẽm

(∨
i∈I

Xi

)
Likewise, a generalized based cohomology theory Ẽm is called additive provided that the inclusions

induce an isomorphism ∏
i∈I

ẼmXi ← Ẽm

(∨
i∈I

Xi

)

THe based and unbased sets of axioms are equivalence. Why? Well given an unbased theory Em we may

define Ẽm(X) := Em(X, ∗) and prove the suspension axiom as well as exactness.

Likewise, given a based theory Ẽm we may define Em(X) := Ẽm(X+) where X+ := X
∐
{∗}. For

f : Y ↪→ X we define Em(X,Y ) := Ẽm(Cf).

We then can prove a long exact sequnece from Cι ' SY for ι : X → Cf and the suspension axiom.
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Similarly for cohomology

.1. Computing ordinary (co)homology

How do we actually compute it? Well we need a nice category of spaces. The CW-complexes.

Definition .1.1

Let X =
⋃
i≥−1Xi, where

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · ·

are given the subspace topology, and Z ⊆ X is closed if and only if Z ∩Xi is closed in Xi for each i. We

say X is a CW-complex.

We mandate that Xm is built from Xm−1 by adjoining m-cells along their boundaries to Xm−1. For

clarity recall the definitions of an m-cell Dm and its boundary Sm−1 = ∂Dm.

Dm = {(x1, . . . , xm) ∈ Rm |
∑

x2i ≤ 1}Sm−1 = {(x1, . . . , xm) ∈ Rm | x2i = 1}

More formally, we are given a set Im of m-cells, and there is a map fm : Im × Sm−1 → Xm−1 called the

attaching map so that the following is a pushout diagram

Im × Sm−1 Xm−1

Im ×Dm Xm

fm

This gives a formula for Xm as follows:

Xm = (Xm−1
∐

(Im ×Dm))/(i, y) ∼ fm(i, y)

Often Xm is called the m-skeleton.

Definition .1.2

A CW-pair is defined the same way except X−1 = Z instead of ∅.

Homework #2

(1) There is a long exact sequence in reduced homology for any based inclusion i : Y → X

· · · // Ẽm(Y ) // Ẽm(X) // Em(X,Y ) // Ẽm−1(Y ) // · · ·

Hint: a long exact sequence is a chain complex with homology 0. Consider the LES of the inclusion

∗ → ∗ and map it into the unbased LES of i. Then consider the “quotient chain complex”

(2) Show that Ẽm(X) ∼= Ẽm+1(SX).

This essentially follows by the following, letting

S+X := X × [1/2, 1]/(x, 1) ∼ (x′, 1) ∼= CX ' ∗

S0X := X × [1/2, 3/4]

S−X := X × [0, 3/4]/(x, 0) ∼ (x′, 0) ∼= CX ' ∗

Apply the long exact sequence of a pair to show

Em+1(S−X,S0X) ∼= Ẽm(S0X) ∼= Ẽm(X).
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Then apply excision and homotopy equivalence to show that

Em+1(SX, ∗) ∼= Em+1(SX,S+X) ∼= Em+1(S−X,S0X).
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