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Recall ??, specifically the statement that every space X is m-equivalent to a CW-complex Zm of dimension

≤ m, and weakly equivalent to a CW-complex Z. Zm is sometimes called a formal m-skeleton of X.

Remark .0.1

If f : X → Y is a weak equivalence (X,Y are any spaces) then f induces an ∼= in singular homology.

Hnf : HnX → HnY .

Proof Sketch. Express singular homology in terms of maps from CW-complexes. Consider a singular cycle

c =
∑
k akσk, σk : ∆m → X. We can construct a CW-complex Z by taking

∐
K ∆m/ ∼, which is the minimal

equivalence relation making it into a cycle (identify (m−1)-faces on which σk, σ` restrict to the same singular

(m− 1)-simplex).

c lifts to a singular cycle on Z. To show Hnf is onto, let c ∈ CmY be a cycle representing a class in HmY .

We constructed a CW-complex (of dimension m) Z, Z → Y so that c′ 7→ c.

We can then lift Z → Y up to homotopy to a map Z → X using Whitehead’s theorem. Thus we

constructed a lift of [c] ∈ HmY to HmX under f .

The argument for boundaries to show injectivity is analogous.

We add an axiom to generalized cohomology: Emf (resp. Emf) is an isomorphism when f is a weak

equivalence.

From the point of view of representing generalized cohomology by homotopy classes of maps into some

based spaces: We need a sequence of based spaces Zm with a based weak equivalence Zm → ΩZm+1.

For a CW-complex X, Em(X) = [X,Zm] (unbased).

For a general space X, find a weak equivalence γ : X ′ → X and define Em(X) := [X ′, Zm]. Then Emf is

an isomoprhism when f is a weak equivalence.

How to prove the approximation statement from ?? from the first statement?

Proof. We do this by induction. The base case is to take Z0 → X, where Z0 is the discrete set of path-

components of X. This is of course onto in π0.

Suppose we have an n-dimensional CW-complex Zn and an n-equivalence γm : Zm → X. This is an

isomorphism on πi, i < n, and onto on πn. γn may not be ∼= on πn. There may be classes αi : Sn → Zn so

that γn ◦ αi ' ∗.
We can just glue disks along each of these to fix the issue. Also γn may not be onto on πn+1. To fix this

if βj : Sn+1 → X is not represneted then

Zn+1 = Zn t
∐
i

Dn+1 t
∐
j

Sn+1/ ∼

Where ∼ attaches Dn+1 via αi and Sn+1 via their base point in Z0.

By definition we get a map γn+1 : Zn+1 → X. This satisfies the inductive step because

• ∼= in πi for i < n comes from cellular approximation of maps, because we can approximate Sn → Zn+1

via maps Sn → Zn.

• For the same reason, it is onto on πn. It is then injective on πn by the gluings made above, as we

killed all the relations.

• It is onto on πn+1 by construction.

We’re done! For the infinite case set Z =
⋃
i Zi.
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Notice: Say X is path-connected. Say πi(X) = 0 for i < m (we say X is (m− 1)-connected). 1-connected

means π1(X) = 0, that is X is simply connected.

Then we can set Zm−1 = ∗. Furthermore, Zm is a bouquet of spheres over generators of πmX. Zm+1 is

a bouqeut of spheres over generators of πmX, and πm+1X, and then we attach m-disks along relations in

πmX.

Definition .0.1 (Hurewicz Homomorphism)

πkX → Hk(X;Z). This is given by taking some α : Sk → X and mapping

Hk(Sk;Z)
Hkα−−−→ Hk(X;Z)

1 7→ h(α)

Computing cell homology, we get

Theorem .0.1 (The Hurewicz Theorem)

If X is (m− 1)-connected, then the Hurewicz homomorphism h : πmX → Hm(X;Z) is the abelian-

ization if m = 1, and an isomorphism if m > 1.

Proof. Our construction of Zm+1 above makes this clear.

Homework # 8

(1) Compute π2(S1 ∨ S2). Use universal cover and Hurewicz theorem.

It is also easy to construct by the methods above, a Cw-complex K(Π,m), Π a group (abelian if m > 1)

such that

πiK(Π,m) =

{
Π if i = m

0 otherwise
.

We can construct Zm+1 by the above method (generators and defining relations of π). Then just keep

attaching cells to kill all higher homotopy groups.

Same method implies that any two such CW-complexes K(Π,m) are homotopy equivalent (use Whitehead

Theorem).

We even get a weak equivalence K(Π,m−1)
∼−→ ΩK(Π,m). This way we can construct singular cohomology

out of the Whitehead theorem. Namely this gives [X,K(Π,m)]→ Hm(X; Π).

How do we do this for homology? Duality! We’ll get there soon.
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