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.1. Constructing F,, Operads

An E, operad in spaces consists of the following
(1) C(m) ~ CW-complex, ¥,,-equivariantly, and %,, acts freely on the cells (when G acts on the sets of
cells of a CW-complex we call this a G-CW-complex).
(2) C(m) ~ * (non-equivariantly).
Start with any operad M satisfying (1). For example M(m) = 3,,. Then a M-algebra is a monoid (an
associative, unital).
Cech resolution If X is an object of a category G (with product), then this builds a simplicial object EX
in the same category G, that is a functor A°P — G.
Then we set EX,,, = X X --- x X. Labeling these coordinates 0, ..., m then the i-th face map {0,...,m—
N

m-+1 times

1} = {0,...,m} gets mapped to the projection away from the i-th coordinate.

The degeneracies are given by applying the diagonal X 2, X x X in the appropriate coordinate given by
{0,...,m+1} = {0,...,m}. Namely this sends 4,7+ 1 to ¢, so apply the diagonal to the i-th coordinate. In
some sense we have “EX = X2, or as a right Kan Extension along A — *.

In Set, Top (compactly generated weakly Hausdorff spaces see [may]). Here we have the geometric

realization. If Y, is a simplicial space (simplicial object in Top, then
|Ye| = HYmmmAm/(y,at) ~ (Yo(a)y,t) (a € Mor(A))

It suffices to just take faces and degeneracies (the generators).

Proposition .1.1
If X # 0, then |[EX| ~ .

Proof sketch. We have some basepoint * € X. Then we have that

m>0
We have a map hg : |[EX| — |EX]| given by
hs((Zoy -y ®m), [tos- s tm]) = ((Toy -« oy T,y %), [(1 = )ty - oy (1 — 8)tm, 8])-
Y
v
Homemwork #11
(2) Verify that this definition is compatible with face and degeneracy identification, proving that for a
non-empty space X, |[EX| ~ x.
If s =0, then hg = Id, and if s = 1j then h; is constant at (x,1) by face/degeneracy identifications.
Geometric realization preserves products (triangulation of A™ x A™ by shuffles). If D is a simplicial
operad in spaces, then |D,| is also an operad. This shows us by definition then that |[EM]| is an E, operad.

Definition .1.1

An F-space is an algebra over an E,-operad in spaces.

We can play the game to show that D-algebras have colocalization, giving a derived category.
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Theorem .1.2

The derived category does not depend on the particular E.-operad chosen.

Proof sketch. If D, & are E..-operads then there is a diagram
D x ¢

proj. V \p:oi T2
D 3

For a homomorphism of operads f : £ — D we have a pullback functor f* : D-algebra — &-algebra, one
proves that 7}, 75 induce equivalence of derived categories of algebra.s

[mayGeometrylterated] does this more concretely without derived categories. v
.2. Infinite Loop Space Theory

Recall that a generalized cohomology theory is determined by some based spaces Z,, where n € Z equipped
with weak equivalences
Zn =5 Q0041 (%)
In fact Ny would do. GivenZy, define Z_,,, = Q™ Z,.

The spaces Z,, of (x) are called infinite loops spaces. Peter May notices that infinite loop spaces (up to

~) are E.-spaces, and connected E.-spacesm are infinite loop spaces.

Application: Construction of generalized cohomology theories. For example, we can consider alegbraic
K-theory.

Why are infinite loop spaces F.-spaces. Consider that F,-spaec are commutative monoids up to homotopy
and all reaonsonable higher homotopies.

What does this have to do with loops: 7, is commutative for m > 2. Consider a space of the form Q* X,
X is a based space, and Q™ X is Hom(([0, 1]™, 9]0, 1]™), (X, *)).

Peter May invented an operad so that m-loop spaces are E, algebras over this operad &,,.

The litte n-cubes operad &,,(k) is merely a configuration of k cubes in [0, 1] with disjoint images.

It is obvious then that Q™X (as defined above) is a C,,-aglgebra (same as our proof of commutativity of
).

Inclusions of operads
81 (—>€2 —
Take a little cubes x0, 1] Then

Coo = JCn-

May tells us that Cy, is a C'o-algebra, that is an F-operad algebra.



