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I. Introduction to the Class

Logistical Announcements

• Homework

– Gradescope Invitation Code: ERGX7Y.

– HW due on Mondays 8PM (except when said otherwise. Next week HW due. Tuesday 9/7

8PM).

– HW assigned in class.

– Homework is less stringent. More about understanding concepts and a way of thinking. This

does not mean the class is any easier.

• Notes on Professor Kriz’s web page.

http://www.math.lsa.umich.edu/ ikriz/math2021695.html

• Office Hours: MWF: 11-12pm.

• A nice reference is [11]

Goals and Philosophy

First version of 695: Homology with coefficients, cohomology, products, and duality. From today’s point

of view, this is not nearly enough. This fits the original goal of algebraic topology, which is telling spaces

apart.

Today: Focus is more on the method than the original goal. Why?

• There aren’t enough examples.

• Constructing interesting spaces is as fundamental as telling them apart.

• Information is not contained just in algebra.

II. Singular (co)homology

II.1. The Basic Definitions

Definition II.1.1

The standard simplex is ∆n := {(t0, . . . , tn) ∈ Rn+1 |
∑n
i=0 ti = 0, ti ≥ 0}. Thi sis sometimes

written [t0, . . . , tn].

Definition II.1.2

One may define the free group with coefficients in A generated by a set S as

AS := {a : S → A | ∃F ⊆ S finite a(s) = 0 when s 6∈ F} =
⊕
s∈S

A

The free group is ZS. Note that AS = ZS ⊗A. Because we have that(⊕
i∈I

Ai

)
⊗B ∼=

⊕
i∈I

(Ai ⊗B)

Definition II.1.3

An n-simplex in a space X is a continuous (default assumption) map σ : ∆n → X.

Let SmX be the set of all n-simplices in X. We then define CmX = ZSmX to be the free abelian

group on SmX, and this is the group of n-chains in X

3
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Definition II.1.4

If A is an abelian group then Cm(X;A) = ASmX is the group of singular n-chains with coefficients

in A.

Definition II.1.5

If A is an abelian group, then Cm(X;A) := Hom(CmX,A). Equivalently this is the set of all functions

Sm(X)→ A, which we denote Map(Sm(X), A).

Notice that AS ( Map(S,A), with the finiteness condition of AS being the key difference.

To define (co)homology we need some standard maps between standard simplices.

Definition II.1.6

The j-th face map ∂j | ∆m−1 → ∆m is defined by taking the tuple (t0, . . . , tm−1) and inserting a zero

into the j-th place:

(t0, . . . , tm−1) 7→ (t0, . . . , tj−1, 0, tj , . . . , tm−1)

If 0 ≤ i ≤ j ≤ m, then we have that ∂i∂j = ∂j+1∂i.

We define d : CmX → Cm−1X. It suffices to define d
∣∣
SmX

. Let σ : ∆m → X. Then

dσ =

m∑
i=0

(−1)i(σ ◦ ∂i)

This corresponds to restricting to the boundary simplices and with signs corresponding to a sense of

orientation.

Lemma II.1.1

The key point is that d2 = 0. This follows via a calculation

d2σ = d

(
m∑
i=0

(−1)iσ ◦ ∂i

)

=

m−1∑
j=0

m∑
i=0

(−1)i+jσ ◦ ∂j ◦ ∂i

This follows by dividing up to when j ≤ i, and using the crucial formula ∂j∂i = ∂i+1∂j .

Definition II.1.7

The chain complex C•X is defined to be

· · · // CmX
dm
// Cm−1X

dm−1
// Cm−2X // · · ·

Using the fact that dm−1 ◦ dm = 0, this is a chain complex as in algebra.

Definition II.1.8

If C is a chain complex, define the m-th homology group:

HmC = ker(dm)/ im(dm+1)

We call the elements of ker(dm) the m-cycles and im(dm+1) the m-boundaries

4
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Homework 2021-08-30

(1) Show that ZS ⊗A ∼= AS. Try to recall and use the universal property of ⊗.

(2) Compute Z/nZ⊗ Z/mZ for n,m ∈ Z.

Now we take a digression to quickly review some category theory which will help us in our definitions. For

a reference see Category Theory in Context by Emily Riehl [13].

Definition II.1.9

A category C has a class of objects Ob C and of morphisms Mor C . There are maps S, T : Mor C →
Ob C which stand for source and target as well as Id : Ob C → Mor C , and notably S ◦ Id, T ◦ Id are

both the identity on objects.

We call HomC (X,Y ) the class of all f ∈ Mor C such that S(f) = X and T (f) = Y . This is sometimes

also denoted by C (X,Y ), and we usually assume that this is a set. We also sometimes write f : X → Y

to mean that f ∈ HomC (X,Y ) when the ambient category is clear.

Furthermore if f : X → Y and g : Y → Z then we define g ◦ f : X → Z. This is associative when

defined and for f : X → Y :

IdY ◦f = f = f ◦ IdX

Example II.1.1

There are a variety of examples:

Name Objects Morphisms

Set sets functions

Grp groups homomorphisms

Ab abelian groups homomorphisms

Top spaces continuous maps

Also given any category C there is a category C op which has the same objects as C and the morphisms

point in the opposite direction with composition also reversed.

Definition II.1.10

A functor F : C → D is a map of objects and of morphisms which preserves Id, S, T , and composition.

One can of course compose functors.

Why are we concerned about this? Well we have functors in algebraic topology

Cm : Top→ Ab

C : Top→ Chain

This category Chain has objects chain complexes, and the maps are collections of group homomorphisms

fn : An → Bn satisfying the commutative diagram below

An
dA
n
//

fn

��

An−1

fn−1

��

Bn
dB
n
// Bn−1

Furthermore Hm : Chain → Ab is a functor, and so we may define the composition Hm : Top → Ab,

overloading notation.

5
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Even better, ?⊗? : Ab×Ab→ Ab is a functor, where the product of categories is appropriately defined.

For a specified abelian group A, ?⊗A : Ab→ Ab is a functor, which is defined on morphisms as

(f ⊗A)(x⊗ a) = f(x)⊗ a

This will allow us to construct a homology with coefficients functor via “abstract nonsense.” Namely, if C is

a chain complex then C ⊗A is a chain complex given below:

· · · // Cm ⊗A
dm⊗A

// Cm−1 ⊗A
dm−1⊗A

//// · · ·

Perfect! Thus with A an abelian group, ?⊗A : Chain→ Chain is a functor. We then know that C(X;A) :−
(CX)⊗A, and this will be a functor.

Therefore Hm(X;A) := HmC(X;A) is a functor as well.

At first, this seems strange, as homology with coefficients is determined by homology, and so it cannot

contain new information. However, it contains some new and interesting information.

For cohomology, recall that we defined Cm(X;A) = Hom(CmX,A). Notice that Hom(?, A) : Ab→ Abop

is a functor. It is defined on objects via pointwise addition, and it is defined on morphisms as follows.

Let f : B → D be a morphism of abelian groups. Then we define Hom(f,A) : Hom(D,A)→ Hom(B,A)

as foloows. If we have a morphism h : D → A then:

D
h

// A

B

f

OO

Hom(f,A)(h)=h◦f

KK

Definition II.1.11

A functor F : Cop → D is called a contravariant functor from C to D. A “normal” functor is called

covariant. Hom is covariant in the first coordinate, aka if A is fixed then Hom(A, ?) is a covariant functor

from Ab→ Ab.

Now say we have a chain complex

· · · // Cm
dm
// Cm−1

dm−1
// · · ·

Then we may apply Hom(?, A) everywhere, and we get a chain complex in the “reverse” direction:

· · · Hom(Cm, A)oo Hom(Cm−1, A)
Hom(dm,A)
oo · · ·

Hom(dm−1,A)
oo

We say that Cochain the category of such “reversed” chains. If C∗ is a cochain complex, then of course

defining the chain complex Cm := C−m gives us an equivalence Chain ∼= Cochain. We may also define

cohomology of a cochain complex as Hm(C) = ker dm/ im dm−1.

Great! This means we may define C∗(X;A) = Hom(CX,A) as a cochain complex and then:

Hm(X;A) = H−m(C∗(X;A)) = H−m(Hom(CX,A))

Functoriality of cohomology then just follows by composing functors:

Top
C

// Chain
Hom(?,A)

// Cochainop H∗
// Ab

6
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So cohomology is a contravariant functor. Why do we care about cohomology?

• We encounter it in geometry (de Rham)

• Cohomology has additional structure. if R is a commutative ring, then H∗(?;R) is a functor from

spaces into commutative rings.

Homework due 2021-09-07

(3a) Write down the differential in C(X;A), C∗(X;A) in elements.

(3b) Say in a few words why dm needs (and preserves) the finiteness condition and why dm does not.

Definition II.1.12

Lets introduce a new category Pairs whose objects are pairs of spaces (X,Y ) where Y is a subspace

of X. A morphism (X1, Y1)→ (X2, Y2) is a continuous map such that f(Y1) ⊆ Y2.

If A is an abelian group, there are functors Hm(?;A) : Pairs→ Ab and Hm(?;A)→ Pairsop → Ab.

To do this we define C(X,Y ) := C(X)/C(Y ). That is Cm(X,Y ) := Cm(X)/Cm(Y ), and this will also be

a chain complex of free abelian groups by some basic homological algebra. This follows by the principal that

if T ⊆ S then ZS/ZT ∼= Z(S \ T ).

From this point we cna just define C(X,Y ;A) := C(X,Y ) ⊗ A and C∗(X,Y ;A) := Hom(C(X,Y ), A).

Taking homology of the chain complex gives homologies Hm(X,Y ;A) and Hm(X,Y ;A).

There is a short exact sequence

0 // C(Y ) // C(X) // C(X,Y ) // 0

Note here that an exact sequence is a chain complex with homology zero (although we stop the convention

that if it stops we fill in with zeros, so there is no condition on the first/last maps).

We also have short exact sequences

0 // C(Y ;A) // C(X;A) // C(X,Y ;A) // 0

0 // C∗(X,Y ;A) // C∗(X;A) // C∗(Y ;A) // 0

Note! ?⊗A and Hom(?, A) are not exact. That is they do not preserve exact sequences. However, they do

behave well with direct products, as (⊕
i

Bi

)
⊗ ∼=

⊕
i

(Bi ⊗A)

Hom

(⊕
i

Bi, A

)
∼=
∏
i

Hom(Bi, A)

So ?⊗A and Hom(?, A) preserve split exact sequences. For completeness we recall this definition

Definition II.1.13

A split exact sequence has the form

0 // A
i
// B

j
// C //

s

^^
0

This exhibits (i, s) : A⊕ C
∼=−→ B, and so Hom(?, A) and ?⊗A preserves this.

7
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A short exact sequence at the level of the chain complexes induces a long exact sequence in homology. I.E.

if C1, C2, C3 are chain complexes with a short exact sequence:

0 // C1 // C2 // C3 // 0

Then there is a long exact sequence in homology

· · · // Hn(C1
∗) // Hn(C2

∗) // Hn(C3
∗)

∂
// Hn−1(C1

∗) // · · ·

Where the morphisms between n-th homology are the induced maps and the ∂ morphism is complicated (see

[3])

Definition II.1.14

Let F,G : C → D be functors. A natural transformation η : F ⇒ G consists of a collection of

maps ηX : F (X)→ G(X) for every object X in C so that for any map f : X → Y the diagram below

commutes

F (X)
ηX
//

F (f)

��

G(X)

G(f)

��

F (Y )
ηY
// G(Y )

Great!

Definition II.1.15

Two categories C,D are equivalent when there are functors F : C → D and G : D → C such that

F ◦G ∼= IdD and G ◦ F ∼= IdC . Here ∼= denotes a natural isomorphism.

A long exact sequence in homology of a space (X,Y ) with coefficinets in A is given below

· · · // Hm(Y ;A) // Hm(X;A) // Hm(X,Y ;A)
∂
// Hm−1(Y ;A) // · · ·

And in cohomology we have

· · · // Hm(X,Y ;A) // Hm(X;A) // Hm(Y ;A)
δ
// Hm+1(X,Y ;A) // · · ·

Both ∂, δ are natural.

II.2. Eilenberg-Steenrod Axioms

We now list the Eilenberg-Steenrod axioms for homology (cohomology). First Hn(?;A) and Hm(?;A) are

covariant/contravariant functors respectively from Top or Pairs into Ab.

Homotopy Axiom

We also require that homotopic maps in Top or Pairs induce the same map in (co)homology.

We can define categories hTop and hPairs whose objects are the same as Top and Pairs and whose

morphisms are equivalence classes of maps up to homotopy.

Then the above condition is the same as requiring that Hm(?;A) and Hm(?;A) are covariant/contravariant

functors from hTop or hPairs into Ab.

The key idea to providng this axiom is something called a chain homotopy.

Definition II.2.1

Let f, g : C → D be chain maps. A chain homotopy is a sequence of homomorphisms of abelian

8
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groups hm : Cm → Dm+1 satisfying

dh+ hd = f − g

One can then define hChain, whose objects are chain complexes and whose morphisms are chain-

homotopy classes of chain maps.

Excision Axiom

Let Z ⊆ Y ⊆ X where ClosureX(Z) ⊆ InteriorX(Y ).

Then there is a map of pairs (X \Z, Y \Z) ⊆ (X,Y ) given by the inclusion. This induces an isomorphism

on Hm(?;A), Hm(?;A).

Limit Axioms

Take a collection os spaces Xi. Then the inclusions Xi ↪→
∐
iXi induces isomorphisms:

⊕
i

Hm(Xi;A)→ Hm

(∐
i

Xi;A

)

Hm

(∐
i

Xi;A

)
→
∏
i

Hm(Xi;A)

More generally we have something nice that holds for homology and not for cohomology if you know about

limits of diagrams F : J → Pairs.

Hm(limF ;A) ∼= limHm(F ;A)

Exactness Axiom

Each pair (X,A) induces a long exact sequence via the inclusions as above in (co)homology

· · · // Hm(Y ;A) // Hm(X;A) // Hm(X,Y ;A)
∂
// Hm−1(Y ;A) // · · ·

And in cohomology we have

· · · // Hm(X,Y ;A) // Hm(X;A) // Hm(Y ;A)
δ
// Hm+1(X,Y ;A) // · · ·

At this point if we replace Hm by Em and Hm by Em we obtain what are called generalized (co)homology

theories.

Dimension Axiom

To get ordinary (co)homology, we require that Hm(∗) = Hm(∗) = 0 for m 6= 0.

Homework 2021-09-07

Define Em(X) = Em(X, ∅) and Ẽm(X) := Em(X, ∗) where ∗ is a basepoint.

(4a) Using the long exact sequence, prove that for any generalized (co)homology and a based space X

Em(X) = Ẽm(X)⊕ Em(∗)

Em(X) = Ẽm(X)⊕ Ẽm(∗).

9
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Using reduced (co)homology, we can simplify to talking about based spaces instead of about pairs. However,

Em(X,A) 6∼= Ẽm(X/A), where X/A is the quotient space (even made into a Hausdorff space). Although this

holds for special classes of pairs (X,A), we cannot use it to reduce.

We can get rid of this problem by defining some new constructions.

Definition II.2.2

The mapping cone CY of a space Y is definde to be

CY := (Y × [0, 1])/(Y × {1})

The mapping cone Cf of a map f : Y → X is defined to be

Cf := (X
∐

CY )/(y, 0) ∼ f(y)

The quotient topology here is universal. That is a map Cf → Z is in a natural bijection with maps

g : X → Z such that g ◦ f is nullhomotopic.

Definition II.2.3

Given a space Y , its suspension SY is defined by

SY = (Y × [0, 1])/(y, 0) ∼ (y′, 0), (y, 1) ∼ (y′, 1)

The upshot of mapping cones?

Proposition II.2.1

For an inclusion f : Y → X, Ẽm(Cf) ∼= Em(X,Y ), and likewise Ẽm(Cf) ∼= Em(X,Y ).

Proof. This is just some simple arguments from the Ellenberg-Steenrod axioms

Ẽm(Cf) ∼= Em(Cf, ∗) ∼= Em(Cf,CY )

∼= Em(C−f, C−Y ) ∼= Em(X,Y )

Where we define:

C−Y := Y × [0, 1/2]

C−f := (X
∐

C−Y )/(y, 0) ∼ f(y)

The third isomorphism above follows by excision on CY \ C−Y ⊆ CY ⊆ Cf , and the others follow by

homotopy equivalences between pairs (Cf, ∗) ' (Cf,CY ) and (C−f, C−Y ) ' (X,Y ).

Similarly for cohomology.

We always have an inclusion X
ι−→ Cf . We can then ask what is Ci? Well

Ci ∼= (CX
∐

CY )/(y, 0) ∼ (f(y), 0)

This then allows us to see that Ci ' SY , where SY is the suspension (see Definition II.2.3). This is visualized

by Figure 1 Why is this? Well there are maps SY → Cι→ SY = Cι/CX which give a homotopy equivalence.

Explicitly for SY → Cι, we map

(y, t) 7→ (f(y), 1− 2t) (0 ≤ t ≤ 1/2)

(y, t) 7→ (y, 2t− 1) (1/2 ≤ t ≤ 1)

10
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Figure 1. Cι for the inclusion ι : X → Cf

This suggests that Ẽm(X) ∼= Ẽm+1(SX) (which will be on homework).

It also suggests an alternative formulation of the Ellenberg-Steenrod axioms.

Definition II.2.4

Functors Ẽm : hBased→ Ab are called a generalized based homology theory provided that:

(1) We have an exact sequence for every map of spaces f : Y → X:

Ẽm(Y )
Ẽm(f)−−−−→ Ẽm(X)

Ẽm(ι)−−−−→ Ẽm(Cf)

where ι : X ↪→ Cf is the inclusion.

(2) There is a natural isomorphism

Ẽm(X) ∼= Ẽm+1(SX)

for all m ∈ Z.

Similarly for cohomology. The product axiom involves the wedge sum.

Definition II.2.5

Given based spaces Xi we define their wedge sum by:∨
i∈I

Xi :=
∐
i

Xi/∗i ∼ ∗j

Definition II.2.6

We call a generalized based homology theory Ẽm additive provided that the inclusions provide an

isomorphism ⊕
i∈I

ẼmXi → Ẽm

(∨
i∈I

Xi

)
Likewise, a generalized based cohomology theory Ẽm is called additive provided that the inclusions

induce an isomorphism ∏
i∈I

ẼmXi ← Ẽm

(∨
i∈I

Xi

)

THe based and unbased sets of axioms are equivalence. Why? Well given an unbased theory Em we may

define Ẽm(X) := Em(X, ∗) and prove the suspension axiom as well as exactness.

Likewise, given a based theory Ẽm we may define Em(X) := Ẽm(X+) where X+ := X
∐
{∗}. For

f : Y ↪→ X we define Em(X,Y ) := Ẽm(Cf).

We then can prove a long exact sequnece from Cι ' SY for ι : X → Cf and the suspension axiom.

11
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Similarly for cohomology

II.3. Computing ordinary (co)homology

How do we actually compute it? Well we need a nice category of spaces. The CW-complexes.

Definition II.3.1

Let X =
⋃
i≥−1Xi, where

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · ·

are given the subspace topology, and Z ⊆ X is closed if and only if Z ∩Xi is closed in Xi for each i. We

say X is a CW-complex.

We mandate that Xm is built from Xm−1 by adjoining m-cells along their boundaries to Xm−1. For

clarity recall the definitions of an m-cell Dm and its boundary Sm−1 = ∂Dm.

Dm = {(x1, . . . , xm) ∈ Rm |
∑

x2
i ≤ 1}Sm−1 = {(x1, . . . , xm) ∈ Rm | x2

i = 1}

More formally, we are given a set Im of m-cells, and there is a map fm : Im × Sm−1 → Xm−1 called the

attaching map so that the following is a pushout diagram

Im × Sm−1 Xm−1

Im ×Dm Xm

fm

This gives a formula for Xm as follows:

Xm = (Xm−1

∐
(Im ×Dm))/(i, y) ∼ fm(i, y)

Often Xm is called the m-skeleton.

Definition II.3.2

A CW-pair is defined the same way except X−1 = Z instead of ∅.

Homework #2

(1) There is a long exact sequence in reduced homology for any based inclusion i : Y → X

· · · // Ẽm(Y ) // Ẽm(X) // Em(X,Y ) // Ẽm−1(Y ) // · · ·

Hint: a long exact sequence is a chain complex with homology 0. Consider the LES of the inclusion

∗ → ∗ and map it into the unbased LES of i. Then consider the “quotient chain complex”

(2) Show that Ẽm(X) ∼= Ẽm+1(SX).

This essentially follows by the following, letting

S+X := X × [1/2, 1]/(x, 1) ∼ (x′, 1) ∼= CX ' ∗

S0X := X × [1/2, 3/4]

S−X := X × [0, 3/4]/(x, 0) ∼ (x′, 0) ∼= CX ' ∗

Apply the long exact sequence of a pair to show

Em+1(S−X,S0X) ∼= Ẽm(S0X) ∼= Ẽm(X).

12
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Then apply excision and homotopy equivalence to show that

Em+1(SX, ∗) ∼= Em+1(SX,S+X) ∼= Em+1(S−X,S0X).

Definition II.3.3

A cell map (cellular map, CW-map) between CW-pairs f : (X,Z) → (Y, T ) is a continuous map

which preserves skeleta. That is f(Xn) ⊆ Yn.

Theorem II.3.1

Every (continuous) map between CW-pairs is homotopic to a cell map.

Proof in Hatcher (Theorem 4.8 [3]). An elaboration of the proof. Why is every map f : Sk → Sm for k < m

homotopic to the constant map. It’s clear if images misses a point Sm \ {∗} ' ∗. But f ' smooth map,

which always misses a point.

Proposition II.3.2

If (X,Z) is a CW-pair, then X/Z ' Cι where ι : Z ↪→ X. As a consequence

Em(X,Z) ∼= Ẽm(Cι) ∼= Ẽm(X/Z)

This works more generally when Z ↪→ X has the homotopy extension property (HEP), which holds for

CW-pairs)

Definition II.3.4

The mapping cylinder Mf of a map f : Y → X is given as

Mf : ((Y × [0, 1])
∐

X)/(y, 0) ∼ f(y)

Definition II.3.5

A map f : Z → X is a cofibration (satisfies HEP) if there is a left inverse r : X × [0, 1] → Mf of

the map

f : Mf → X × [0, 1]

(y, t) 7→ (f(y), t)

x 7→ (x, 0)

A more explicit definition is given by the commuting diagram below, which means that if we have g0

and gt commuting then there must exist a g̃t.

Z

f

��

ι0
// Z × I

gt

||
f×Id

��

Y

X

g0

>>

ι0
// X × I

g̃t

bb

See [6] Chapter 6 for details.

13
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A CW-pair is a cofibration. Only need to observe that Sm−1 ⊆ Dm is a cofibration, because cofibrations

do well with pushouts. This means we need a retract of

Sm−1 × [0, 1] ∪Dm × {0} ↪→ Dm × [0, 1]

But this is homeomorphic to

Dm × {0} ↪→ Dm × [0, 1]

And this has a retract given by taking every (x, t) to (x, 0)..

If ι : Z ↪→ X is a cofibration then Cι ' X/Z. We know that Mι
j

⊆ X × [0, 1] has a left inverse. We can

perform Mι/(Z × {1}), and this gives Cι
j′

⊆ X × [0, 1]/Z × {1} has a left inverse r′.

Restrict r′ to X/Z ∼= X × {1}/Z × {1} `−→ Cι.

We claim that ` is a homotopy inverse to c : Cι→ X/Z. The details of this will be on the homework

Calculating (Co)homology of CW-pairs

First we’ll look at Ordinary homology with coefficients in Z. Make a chain complex Ccell(X,Z). Namely,

look at the homology

Hk(Xm, Xm−1) ∼= H̃k(Xm/Xm−1) ∼= H̃k

(∨
Im

Sm

)
=
⊕
Im

H̃k(Sm) =

{
0 if k 6= m

ZIm if k = m

We can calculate H̃k(Sm) by noting it is the m-fold suspension of S0 = {∗, ∗′}.
That is Hm(Xm, Xm−1) = ZIm is the free abelian group on the set of m-cells. We then have from the

long exact sequence of a pair the map ∂m below, which we can combine with the inclusion jm−1:

Hm(Xm, Xm−1)
∂m
// Hm−1(Xm−1)

jm−1
// Hm−1(Xm−1, Xm−2)

We can set dcell
m = jm−1 ◦ ∂m. Some calculations with long exact sequences of pairs shows that this gives a

chain complex.

This allows us to define Ccell(X) as

· · · // ZIm
dcell

// ZIm // · · ·

And we can of course define

Ccell(X;A) = Ccell(X)⊗A

Ccell(X;A) = Hom(Ccell(X), A)

Theorem II.3.3

We in fact have

Hm(X;A) = Hm(Ccell(X;A))

Hm(X;A) = Hm(Ccell(X;A))

The proof will be later.

Next time: How to calculate dcell.

14
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Homework #2

(3) Prove that if Z
ι
↪−→ X is a cofibration then X/Z ' Cι. (detailed hint in lecture).

Last time, we defined for a CW-complexX [more generally a CW-pair (X,Z)], a chain complexCcell
m (X,Z) :=

Z[Im], where Im is the set of m-cells.

We also observed that Z[Im] = H̃m(Xm/Xm−1) = Hm(Xm, Xm−1).

This allows us to build a chain complex with coefficients or a cochain cell complex via ?⊗A and Hom(?, A).

Furthermore, the differential dcell
m : Z[Im]→ Z[Im−1] is obtained as a connecting map composed with an

inclusion:

Hm(Xm, Xm−1)
∂
// Hm−1(Xm−1) // Hm−1(Xm−1, Xm−2)

This can be shown to give a chain complex as desired (see 592 Notes).

How do we actually compute dcell
m ? Well it’s 0 if m = 0. Then if m = 1, the 1-cells are oriented line

segments, and:

dcell
1 (e) = beginning point − end point

Now for e ∈ Im with m > 1 we compute dcell
m (e) differently. Namely we have a map fm : Sm−1× Im → Xm−1.

We can then write:

Sm−1

f
∣∣∣
Sm−1×{e}

// Xm−1 Xm−1/Xm−2 =
∨
Im−1

Sm−1

We take this map in homology (apply Hm−1(?;Z)). It gives a map:

Z→ Z[Im−1]1 7→ dcell
m (e)

We are using the fact that:

H̃m−1

 ∨
Im−1

Sm−1

 ∼= ⊕
i∈Im−1

H̃m−1(Sm−1).

However, we could also just project this map down, sending every cell except c to the basepoint and mapping

c by the identity: ∨
Im−1

Sm−1 → Sm−1

And then take homology.

We are then given another problem! Given a continuous map f : Sk → Sk for k = m− 1 ≥ 1, what does

it induce in homology?

Hk(Sk) // Hk(Sk)

Z // Z

1 � // deg(f)
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We may homotope f to a smooth map, so let us assume x ∈ Sk and there exists an open neighborhood U of

x so that:

f−1(U) =
∐̀
i=1

Vi

Such that f : Vi → U is a diffeomorphism (C1), and we let f : yi ∈ Vi 7→ x.

Theorem II.3.4

deg(f) =
∑`
i=1 σi, where σi = 1 if f

∣∣
Vi

preserves orientation and σi = −1 if f
∣∣
Vi

reverses orientation.

A good book for this material is Milnor’s Topology from a differential viewpoint [9].

Example II.3.1

Consider RPm, which is the space of all lines through the origin in Rm+1, or Sm/x ∼ −x.

This has a CW-complex structure. We

R1 ⊆ R2 ⊆ · · · ⊆ Rm+1

RP0 ⊆ RP1 ⊆ · · · ⊆ RPm

This is a CW-filtration, and RPm is an m-dimensional CW-complex (meaning it only has cells up to

dimension m).

For RP2 we have the 2-cell v0 as the top hemisphere, in general the m-cell is {(x0, . . . , xm) ∈ Sm | xm ≥
0}. the boundary is exactly when xm = 0, whihc is Sm−1. The attaching map is then the quotient

Sm−1 → RPm−1.

So then we have that:

Ccell(RPm) Z // Z // · · · // Z // Z

degrees m m− 1 · · · 1 0

The attaching map Sm−1 → Sm−1
+ /Sm−2 sends the northern hemisphere to a point and the southern

hemisphere to its antipode. After some work one works out that these maps are zero or two in homology:

Ccell(RPm) Z
1+(−1)m

// Z
1+(−1)m−1

// · · · 2
// Z 0

// Z

degrees m m− 1 · · · 1 0

We can then compute that if m is even:

Hk(RPm)


Z if k = 0

Z/2Z if 0 < k < m odd

0 otherwise

And if m is odd we have:

Hk(RPm)


Z if k = 0,m

Z/2Z if 0 < k < m odd

0 otherwise
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The cellular chain complex Ccell is not functorial in continuous maps, but it is functorial in cell maps

f : X → Y where f(Xk) ⊆ Yk. Because then there is an induced map Xk/Xk−1 → Yk/Yk−1. Then we can

just take reduced homology to get wedges of spheres:

Xk/Xk−1 → Yk/Yk−1∨
IXk

Sk = H̃k(Xk/Xk−1)→ H̃k(Yk/Yk−1 =
∨
IYk

Sk

This can again be computed using the degree of maps Sk → Sk.

Homework #3

1a) Calculate Hk(RPm;Z/2Z) by definition using cellular homology. You may use Ccell(RPm) from class.

1b) Prove that the quotient ϕ : RPm → RPm/RPm−1 (embedded as in class) is not homotopic to a

constant map (use homology with suitable coefficients Hm(ϕ;Z/2Z)).

1c) For which values of m > 0 is Hm(ϕ;Z) non-zero?

1d) Construct an m-dimensional CW-complex X with only one m-cell such that the projection ϕ : X →
X/Xm−1 is homotopic to a constant map. [Think simple].

These are 5pts each and due next Monday (9/20).

Example II.3.2

We can also look at CPm, which is the space of all lines through the origin in Cm+1. That is, it is:{
(z0, . . . , zm) ∈ Cm+1 |

∑
|zj |2 = 1

}
/ (z ∼ z′ ⇐⇒ |z| = |z′|)

We also have a CW-filtration:

CP0 ⊆ CP1 ⊆ · · · ⊆ CPm

We have a 2m-cell given by
{

(z0, . . . , zm) |
∑
|zj |2 , zm ∈ R, zm ≥ 0

}
. We have a pushout:

S2m−1 // CPm−1

D2m // P // CPm

To know the induced pushout map is a homeomorphism, one uses that it is bijective, P is compact, and

CPm is Hausdorff.

We can also compute Ccell(CPm):

Ccell(CPm) Z // 0 // Z // · · · // 0 // Z

degrees 2m 2m− 1 2m− 2 · · · 1 0

So every map is the zero map. This allows us to say that:

Hk(CPm) =

{
Z if 0 ≤ k ≤ m, even

0 otherwise
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II.4. The Generalized Homology of CW-complexes

Let us try to define Ccell(X) for a generalized homology theory E and see what goes wrong. We let

Em := Em(∗) be the coefficients E∗.

We know that:

Ẽm(S0) = Em

Ẽm+k(Sk) = Ẽm(S0) = Em

For a CW-complex X, we have that:

Ẽp+q(Xp/Xp−1) = Eq[Ip]

Ep+q(Xp, Xp−1) = Eq[Ip]

We do get a differential:

d : Ep+q(Xp, Xp−1)
∂−→ Ep+q−1(Xp−1)→ Ep+q−1(Xp−1, Xp−2)

However, we now have a chain complex for each choice of q ∈ Z. We draw this for p increasing to the right

and q increasing on the upper side:

q = 2 E2[I0] E2[I1]oo E2[I2]oo · · ·oo

q = 1 E1[I0] E1[I1]oo E1[I2]oo · · ·oo

q = 0 E0[I0] E0[I1]oo E0[I2]oo · · ·oo

q = −1 E−1[I0] E−1[I1]oo E−1[I2]oo · · ·oo

p = 0 p = 1 p = 2 · · ·

18
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We have a “total dimension” p+ q. This is called the E1-page of a spectral sequence. And this is in fact the

Atiyah-Hirzebruch spectral sequence. In general we can have:

q = 2 E1
0,2 E1

1,2
oo E1

2,2
oo · · ·oo

q = 1 E1
0,1 E1

1,1
oo E1

2,1
oo · · ·oo

q = 0 E1
0,0 E1

1,0
oo E1

2,0
oo · · ·oo

q = −1 E1
0,−1 E1

1,−1
oo E1

2,−1
oo · · ·oo

p = 0 p = 1 p = 2 · · ·

The homology of each sequence is called the E2-page.

q = 2 E1
0,2 E1

1,2
oo E1

2,2
oo · · ·oo

q = 1 E1
0,1 E1

1,1
oo E1

2,1
oo · · ·oo

q = 0 E1
0,0 E1

1,0
oo E1

2,0
oo · · ·oo

q = −1 E1
0,−1 E1

1,−1
oo E1

2,−1
oo · · ·oo

p = 0 p = 1 p = 2 · · ·

We get a differential d2 : E2
p,q → E2

p−1,q+1:

E1
0,2 E1

1,2 E1
2,2 · · ·

E1
0,1 E1

1,1

cc

E1
2,1

cc

· · ·

aa

E1
0,0 E1

1,0

cc

E1
2,0

cc

· · ·

aa

E1
0,−1 E1

1,−1

cc

E1
2,−1

cc

· · ·

aa

In general we get a differential on the r-th page dr : Erp,q → Erp−r,q+r−1.
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And we take algebraic homology:

Er+1
p,q = H(Erp,q)

We can then define:

E∞p,q = colimr E
r
p,q2

Still a whole plane full of groups. Have we calculated Ep+q(X)? Well we can consider:

FpEp+qX := =(Ep+qXp → Ep+qX)

Then F−1 = 0 ⊆ F0 ⊆ F1 ⊆ · · · . This is an increasing filtration (complete), and we have:⋃
FpEp+qX = Ep+qX

Which follows by the limit axiom of homology:

Theorem II.4.1 (Atiyah-Hirzebruch)

E∞p,q = FpEp+qX/Fp−1Ep+qX. This is called the associated graded object.

We have E2
p,q = Hp(X,Eq).

For an abelian group A, a complete filtration on A is:

0 = F−1A ⊆ F0A ⊆ F1A ⊆ · · ·

Where A =
⋃
i FiA. Then the associated graded object is:

E0Ai = (FiA/Fi−1A)i≥0

Example II.4.1

Suppose that (FiA) is a complete filtration of an abelian group A and suppose (FiA/Fi−1A) ∼= Z[Si].

Then:

A =
⊕
i

Z[Si] = Z

[∐
i

Si

]

Proof. There is a short exact sequence:

0 // Fi−1A // FiA // FiA/Fi−1A // 0

A free abelian group is projective so this splits. For splitting just lifts the free generators ∈ Si to FiA and

extends by the universal property.

We can conclude FiA ∼= Fi−1A⊕ FiA/Fi−1A. Induction finishes the proof.

This is called an extension in a spectral sequence. What good is a spectral sequence (for example the

AHSS, Atiyah-Hirzebruch spectral sequence) when we only know E2
p,q and not the higher differentials?

The simplest scenario: sometimes they are ruled out.

Example II.4.2

When E = H(?;A) is the ordinary homology. In that case AHSS looks like the following on the first

20



Faye Jackson September 17th, 2021 MATH 695 - II.4

page:

q = 1 0 0 0 · · ·

q = 0 A[I0] A[I1]oo A[I2]oo · · · q = −1oo 0 0 0 · · ·

Thus no higher differentials are possible, and no extensions are possible because the associated graded

object only has one term.

So if we prove that the AHSS works, it implies the theorem about Hcell = Hsingular.

Someitmes the differential can also be ruled out in a more subtle way. For example when E2
p,q = 0 for

p+ q odd (any higher differential will decrease the total dimension by one). In this case, we can still have

extensions.

Homework #3

(2) Suppose a generalized homology theory K has coefficients K2n = Z, K2m−1 = 0, m ∈ Z. Calculate

K`CPm for all ` ∈ Z. Use AHSS, and put together the information mentioned in class.

Remark II.4.1

In most (homological) spectral sequences, the pages are denoted by Erpq. This has nothing to do with

the generalized homology theory E in last class. On Homework, generalized homology theory is called

K, the spectral sequence terms should still be denoted by Erpq.

Today we show that the groups Hm(X,Y ;A), Hm(X,Y ;A) are completely determined (algebraically) by

Hm(X,Y ) = Hm(X,Y ;Z) and Hm(X,Y ) = Hm(X,Y ;Z).

However, the way they are determined is not completely functorial. The key point: C(X,Y ) (singular

chain complex) are chain complexes of free abelian groups (terms are free abelian groups).

Theorem II.4.2

Any chain complex of free abelian groups can be written as follows:

C ∼=
⊕
m∈Z

Hm[m]

The brackets denote a “shift” of a chain complex by m, and Hm is a complex of the form:

· · · // 0 // Bm // Zm // 0 // · · ·

· · · 2 1 0 −1 · · ·

Where the map Bm → Zm is injective and H0Hm = Hm(C) (note that HkHm = 0 for k 6= 0).

Proof. C : · · · → Cm+1 → Cm → Cm−1 → · · · . We let Zm := ker dm and Bm := im dm+1. Then

H0Hm = HmC := Zm/Bm.

Note that we have a short exact sequence:

0 // Zm
⊆
// Cm // Bm−1

// 0

Now Bm−1 ⊆ Zm−1 ⊆ Cm−1. Cm−1 is free abelian, so Bm−1 is free abelian as well (see [5] for the algebra).
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Thus this splits (say by sm−1), and we have that:

· · · // Cm+1
// Cm // Cm−1

// Cm−2
// · · ·

· · · // Zm+1 ⊕Bm

⊆⊕sm

OO

// Zm ⊕Bm−1

⊆⊕sm−1

OO

// Zm−1 ⊕Bm−2

⊆⊕sm−2

OO

// Zm−2 ⊕Bm−3

⊆⊕sm−3

OO

// · · ·

Given the simple complex H : B ⊆ Z, we haveH0H = H. What isH∗(H ⊗A)? WellH0(H ⊗A) = H⊗A.

Why? Well ⊗ is right exact so:

0 // B // Z // H // 0

B ⊗A // Z ⊗A // H ⊗A // 0

And then we set TorZ1 (H,A) := H1(H ⊗ A). Is this well-defined? For this to be well-defined, the answer

needs to depend only on H, not on H . We’ll postpone this for now, and we’ll prove it later in greater

generality.

Similarly, what is the cohomology of Hom(H , A)? Well we have left exactness so:

0 // B // Z // H // 0

Hom(B,A) Hom(Z,A)oo Hom(H,A)oo 0oo

Then H0 Hom(X,A) = Hom(H,A). We then set Ext1
Z(H,A) := H1 Hom(X,A).

Example II.4.3

Let H = Z/2Z and A = Z. Then H : Z 2−→ Z. Homming into Z we have:

Hom(H , A) : Z 2←− Z

Then Hom(Z/2Z,Z) = 0 = Ext0
Z(Z/2Z,Z). And Ext1

Z(Z/2Z,Z) = Z/2Z.

From the structure theorem of chain complexes of free abelian groups, commutation of homology with

shifts, and direct sum, we get the following wonderful result

Theorem II.4.3 (The Universal Coefficient Theorem)

We have that

Hm(X,Y ;A) ∼= (Hm(X,Y )⊗A)⊕ TorZ1 (Hm−1(X,Y ), A)

Hm(X,Y ;A) ∼= Hom(Hm(X,Y ), A)⊕ Ext1
Z(Hm−1(X,Y ), A)

Thus we’ve reduced the problem to figuring out how to calculate TorZ1 and Ext1
Z.

A slight catch: This is not completely functorial, namely the splittings are not natural transformations.

Functorially, we only have short exact sequences:

0 // Hm(X,Y )⊗A // Hm(X,Y ;A) // TorZ1 (Hm−1(X,Y ), A) // 0

0 // Ext1
Z(Hm−1(X,Y ), A) // Hm(X,Y ;A) // Hom(Hm(X,Y ), A) // 0

22



Faye Jackson September 20th, 2021 MATH 695 - II.4

These split, but not naturally.

This actually works for any chain complex of free abelian groups.

Homework #3

3a) Calculate TorZ1 (Z/mZ,Z/nZ), where m,n ∈ Z.

3b) Calculate Ext1
Z(Z/mZ,Z/nZ) where m,n ∈ Z.

The cases where one of them is 0 may need special care.

A headstart on next class–the general theory of all this. Namely, resolutions.

Definition II.4.1

Let R be any commutative ring, and let M be an R-module. A free R-resolution of M is a chain

complex of free R-modules

C · · · // C2
// C1

// C0

Then H0C = M , HkC = 0 for k 6= 0.

Now let N be any other R-module. We define:

TorRm(M,N) := Hm(C ⊗R N)

ExtmR (M,N) := Hm HomR(C , N)

It is still true that:

TorR0 (M,N) = M ⊗R N

Ext0
R(M,N) = HomR(M,N)

Before we defined the R-modules ExtmR ,TorRm for a commutative ring R. If R is not commutative, then

ExtmR (M,N) is defined if M , N are both left R-modules. In general, then, ExtmR (M,N) is just an abelian

group. Then TormR is defined when M is a right R-module and N is a left R-module, and it is only an abelian

group.

Example II.4.4

Let G be a group. The group ring Z[G] is the free abelian group on G wiht multiplication given by

the multiplication in G (and extended by distributivity).

For example, if G = Z/2Z. Then we can consider Z[Z/2Z]. Let G = {1, α} be the particular

representative, with α · α = 1. Then:

(k + `α)(n+mα) = (kn+ `m) + (km+ `n)α

Bad habit (in general G): A Z[G] module is called a “G-module.” This clashes with other terminology.

This really means that G acts on M by linear maps. And of course a left G-action and a right action

are equivalent by gm↔ mg−1.

Definition II.4.2

Let M be a G-module. We define the homology and cohomology of G with coefficients in M by:

Hm(G;M) := TorZ[G]
m (Z,M)

Hm(G;M) := ExtmZ[G](Z,M)
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Back to topology.

Definition II.4.3

Let G be a group, A G-CW-complex is a G-equivariant space (space with a G-action) X where

X =
⋃
n∈N0

where X−1 = ∅ (indeed we can take X−1 to be a G-space to get a G-CW-pair).

Im (the set of m-cells) is a G-set (set with a G-action). Furthermore, fm : Im × Sm−1 → Xm−1 is a

G-equivariant map (when tking the G-action to be trivial on the sphere). Then Xm is a pushout:

In × Sn−1 Xm−1

In ×Dn−1 Xm

fn

Suppose we have a G-space X which is both free (all the Im are free G-sets, aka gx = x =⇒ g = 1) and

X ' ∗ non-equivariantly..

Then CcellX is a free Z[G]-resolution of Z. Why? Well because ZIm is a free Z[G]-module, and we have

an exact sequence (because X ' ∗) given by:

· · · // ZIm // ZIm−1
// · · · // ZI0 // Z

So we have that X/G is CW-complex (with set of m-cells Im/G). Furthermore Ccell(X/G) = Ccell(X)⊗Z[G]Z.

More generally, using that Im is G-free:

Z[Im]⊗Z[G] Z = Z[Im/G]

Likewise,

Ccell(X/G) = HomZ[G](C
cell(X),Z)

HomZ[G](ZIm,Z) = Hom(Z[Im/G],Z)

We can conclude that:

Hm(G;Z) = Hm(X/G)

Hm(G;Z) = Hm(X/G)

We sometimes write BG = X/G, where X∗ ' (non-equivariantly) is a free G-CW-complex. This is also

sometimes called the classifying space of G.

We call X = EG, and it is the universal cover of BG via the quotient map. Therefore π1(BG) = G and

πk(EG) = πk(BG) = 0 for k > 1. We will come back to this in more detail.

Example II.4.5

Let G = {1, α} ∼= Z/2Z. Consider RP∞ :=
⋃
n RPn (a CW-complex with the union topology). Then

RP∞ is ain fact a BG. Why?

Well the universal cover of RP∞ is S∞, which we know to be contractible (and will be a EG). To

see this think of a homotopy:

ht(x0, x1, . . .) =
t(x0, x1, . . .) + (1− t)(0, x0, 0, x1, 0, x2, . . .)

‖t(x0, x1, . . .) + (1− t)(0, x0, 0, x1, 0, x2, . . .)‖

Thus the identity is homotopic to (x0, x1, . . .) 7→ (0, x0, 0, x, 0, x2, . . .). Then we can use the straight line

homotopy to (1, 0, 0, . . .). This gives a homotopy from the identity to the constant map.
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The map S∞ → RP∞ is the quotient map identifying antipodal points. Thus letting α act on S∞ by

the antipodal map we have the desired structure. We then see that:

Hk(Z/2Z;Z) = HkRP∞ =


Z if k = 0

Z/2Z if k > 0 odd

0 otherwise

Hk(Z/2Z;Z) = HkRP∞ =


Z if k = 0

Z/2Z if k > 0 even

0 otherwise

Homework #4

1a) Prove that the following is a free Z[Z/kZ]-resolution of Z (with the trivial action), where k ∈ Z \ {0}:

· · · // Z[Z/kZ]
T
// Z[Z/kZ]

N
// Z[Z/kZ]

T
// Z[Z/kZ]

Let Z/kZ = {1, α, α2, . . . , αk−1} with αk = 1. Then we can set T (1) = 1 − α, Then N(1) =

1 + α+ α2 + · · ·+ αk−1.

1b) Calculate Hn(Z/kZ;Z) and Hn(Z/kZ;Z) when k 6= 0.

Note: S∞ can be considered as the unit sphere in C, namely

{(z0, z1, . . .) | zm ∈ C,finitely many nonzero,
∑
|zm|2 = 1}.

Then Z/kZ ↪→ S1 via the k-th roots of unity. One can then make S∞ a Z/kZ-CW-complex via a bit of

work. Then BZ/kZ = S∞/(Z/kZ). This is sometimes known as an infinite lens space.

One can make it in such a way that CcellEZ/kZ can be chosen to be precisely the resolution given in

Homework #4 1a.

Next time: Correctness of definition of Tor, Ext.

Today we start the proof that the definitions of Tor and Ext are correct. For simplicity, we assume R is a

commutatative rign.

We start with a key lemma.

Lemma II.4.4

Let C• and D• be free R-resolutions of R-modules M,N , respectively. Let ϕ : M → N be a

homomorphism of R-modules. Then there exists a, unique up to chain homotopy, R-chain map ϕ̃ : C• →
D• such that H0ϕ̃ = ϕ.

Comments: Recall H0C = M , H0D = N , HkC = HkD = 0 for k > 0.

Definition II.4.4

Let f, g : C• → D• be chain maps. a chain homotopy h : f ' g has

dh+ hd = f − g

Notice that h : Cn → Dn+1
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Proof of Existence. Let M1 = im dC1 = C1/ ker dC1 and N1 = im dD1 = C1/ ker dD1 . We have short exact

sequences, and because C0, D0 are free we can lift in the generators:

0 // M1

��

// C0

ϕ̃0

��

// M

ϕ

��

// 0

0 // N1
// D0

// N // 0

Homological algebra then guarantees a map M1 → N1. Note that · · · → C1 and · · · → D1 are free resolutions

of M1, N1, because ker dC1 = im dC2 and ker dD1 = im dD2 . Thus we can construct ϕ̃k inductively from the map

M1 → N1.

Proof of Uniqueness. Suppose ϕ̃1, ϕ̃2 : C• → D• both induce ϕ in H0. Then ϕ̃1 − ϕ̃2 induces 0. Thus it

suffices to show that if ϕ̃ induces zero, then it is chain homotopic to zero.

Consider the augmented resolutions Cm → · · · → C1 → C0 → M → 0 and likewise for D. We construct

h0 by noting that for x ∈ C0 we have d0ϕ̃(x) = ϕ(d0(x)) = 0. Thus ϕ̃(x) = d1y for some y ∈ D1. We can

then lift on free generators.

Now suppose we have constructed the homotopy h : ϕ̃ ' 0 in degrees < m.

Then we know that:

dm(ϕ̃m − hdm) = dmϕ̃m − dmhdm

= ϕ̃m−1 dm − dhd

= hd d + dhd− dhd = 0

Thus by exactness (ϕ̃m− h dm)(x) = dy for free generators x ∈ Cm, and so we can lift on the free generators.

Corollary II.4.5

Free resolution is a functor R -Mod→ h-R -Chain.

Both Hom(?, N) and ? ⊗R N preserve chain homotopy, and chain homotopy preserves homology. Thus

Tor and Ext are well-defined.

Recipe: If F is any additive functor R -Mod→ C to an additive category which preserves chain homotopy

(aka extends to a functor on the homotopy category of R-chains), then we can define left derived functors

LmF by applying F to a free resolution and then taking Hm.

Instead of a free resolution, it suffices to require that Cm be projective (projective resolution).

Definition II.4.5

P is projective if for every g : M � N and f : P → N there exists a f : P →M such that gf = f .

M

g
��

P

f >>

f
// N

��

0
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We turn around the arrows and say Q is injcetive if for every g : N ↪→M and f : N → Q there exists a

f : M → Q such that fg = f .

0

��

N

g
��

f
// Q

M
f

>>

We also have injective resolutions, where we have Q0 → Q1 → Q2 → · · · with H0Q = M and HmQ = 0

for m > 0.

Lemma II.4.6

Injective resolutions ar ea functor R -Mod to h-R -Chain.

Existence of “enough injectives”. In Ab, injective is exactly being divisible, that is for all x ∈ G there exists

m ∈ N such that there exists y ∈ G with my = x.

Injective R-modules are given as HomZ(R,G) with G a divisible abelian group. This will give that injective

resolutions exist. The rest of the proof is the same as for projectives.

Right derived functors RmF are then defined by applying F to an injective resolution and taking m-th

cohomology.

The case of Tor and Ext is:

TorRm(?, N) = Lm(?⊗R N)

TorRm(M, ?) = Lm(M⊗R?)

ExtmR (?, N) = Lm(HomR(?, N))

ExtmR (M, ?) = Rm(HomR(M, ?))

Note if F is right exact then L0F = F and if F is left exact then R0F = F .

Next Time: Abelian Categories.

Homework #4

(2) Prove that if P, T are projective resolutions of R-modules M,N and ϕ : M → N is a homomorphism

of R-modules then there exists a (unique up to R-chain homotopy) ϕ̃ : P → T such that H0ϕ̃ = ϕ.

II.5. Abelian Categories

We take a quick digression to define limits/colimits in a category.

Definition II.5.1

A diagram is a functor D : I → C .

Definition II.5.2

A cone over a diagram D : I → C is an object X in C so that for each i ∈ I there is a map
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ηi : X → D(i). Furthermore for every map i
f−→ j in I we have the following commuting triangle:

X

ηi
}}

ηj

!!

D(i)
D(f)

// D(j)

Example II.5.1

Product is the limit of a diagram with index category I = {∗1, ∗2}. Pullback is also a limit over a

diagram • → • ← •. Equalizers are also limits.

Definition II.5.3

A limit limD over a diagram D : I → C is a “universal cone”

That is limD is a cone over D, with maps ηi : limD → D(i) such that for any other cone T over D

with maps µi : T → D(i) we have that there is a unique arrow f : T → limD such that the following

diagram commutes for all i:

T

µi

!!

f

��

limD

ηi

��

D(i)

Dually wqe have the notion of a colimit.

Example II.5.2

The coproduct, pushouts, and coequalizers are all colimits.

Definition II.5.4

colim ∅ is called an initial object, as there is a unique arrow colim ∅ → T for every T lying in C .

Likewise lim ∅ is called a terminal object, as there is a unique arrow T → lim ∅ for every T lying in C

Note: Limits and colimits are only defined up to isomorphism (given by the universal property). However

there is only one such isomorphism at the level of cones (i.e. respecting the limiting cones over the diagram).

Definition II.5.5

A functor is called right exact when it preserves finite colimits. It is called left exact when it preserves

finite limits.

Now we’ll think a bit about abelian categories.

Definition II.5.6

A category with zero has an initial object and a final object such that the unique morphism I → T

from the initial object to the terminal object is an isomorphism.

In such a category for any X,Y we have an arrow 0 : X → Y given by the unique composition

X → 0→ Y .

Example II.5.3

Ab, R -Mod,BasedSpaces,BasedSets.
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In a category with zero, we can define kernels and cokernels.

Definition II.5.7

In a category with zero, ker f is the equalizer of f : X → Y and 0. That is we take the limit over the

diagram:

X Y
0

f

Likewise a cokernel coker f is the coequalizer of f : X → Y and 0 (that is the colimit of the above

diagram.

Definition II.5.8

In any category, f : X → Y is a monomorphism when for any g, h : Z → X such that fg = fh we

have g = h.

Likewise f : X → Y is an epimorphism when for any u, v : Y → Z such that uf = vf we have u = v.

Definition II.5.9

An abelian category is an Ab-enriched category with zero and with finite limits and colimits such

that every epimorphism is a cokernel and every monomorphism is a kernel.

You can prove a lot of nice properties about abelian categories. Including all the additive properties of

abelian groups.

• X ⊕ Y ∼= X
∏
Y ∼= X

∐
Y .

• MorC (X,Y ) is an abelian group and composition is bilinear.

Definition II.5.10

Enough projectives in an abelian category C provided that for all X in C there exists a projective P

and an epimorphism P � X.

This gives us projective resolutions and left derived functors. If you have enough injectives (that is for

every object X you have a monomorphism X ↪→ Q into an injective) that gives you injective resolutions and

right derived functors.

We have enough projectives and injectives in R -Mod. You also have enough injectives in abelian sheaves.

II.6. Commutativity of Tor

We want to show that TorRm(M,N) ∼= TorRm(N,M), and that this isomorphism is canonical.

Idea: Resolve both M,N . Call C a free resolution of M and D a free resolution of N . Redefine

TorRm(M,N) = Hm(C ⊗R D). We need to define C ⊗R D, and prove that we get the same thing.

Given two chain complexes C and D, we must define their tensor product C ⊗R D.

If D is just an R-module N , then we want C⊗RN . It’s certainly then incorrect to take the componentwise

tensor product.
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We can take a two-dimensional grid of tensor products:

...

��

...

��

· · · // Cm ⊗Dm
// Cm−1 ⊗Dm

// · · ·

· · · // Cm ⊗Dm−1
// Cm−1 ⊗Dm−1

// · · ·

...

OO

...

OO

Definition II.6.1

This is a double chain complex An,m. We have two differentials ∂ : An,m → An−1,m and δ : An,m →
An,m−1 such that:

∂∂ = 0 δδ = 0 ∂δ = δ∂

Definition II.6.2

We define (C ⊗R D)n,m = Cn ⊗R Dm, the tensor product of two chain complexes, to be the double

chain complex with differentials given by dC ⊗ IdD and IdC ⊗dD.

Definition II.6.3

Given a double chain complex A, the totalization |A| is a chain complex given by

|A|m =
⊕

k+`=m

Ak,`

dx = ∂x+ (−1)kδx

Reversing roles of k, ` gives an isomorphic chain complex. Apply the sign (−1)k` to x ∈ Ak,`.

We can then redefine TorRm(M,N) = Hm(|C ⊗R D|) where C,D are projective resolutions of M,N .

Nobody writes the totalization, so Hm(|C ⊗R D|) = Hm(C ⊗R D).

Homework #4

(3) Suppose we have a double chain complex C such that

• Hm(Ck,∗, ∂) = 0

• Ck,` = 0 if ` < 0 (equiv. ` < N fixed)

So cut off in the bottom, rows exact. Then Hm(|C|) = 0. (Hint: First prove it when there exists a L

such that for all k Ck,` = 0 if ` > L. Can induct on L using short exact sequences of chain complexes,

which leads to a long exact sequence in homology. Then express C as a colimit of such sequences

with L increasing, use commutation of homology with colimits of sequences).

Using this, it’s fairly easy to prove that Tor is commutative using the program outlined below. You

consider the augmented resolution C̃ of M given by · · · → Cm → Cm−1 → · · · → C0 → M → 0 for a free

resolution C of M . This is exact, and there is actually a short exact sequence 0 → M [−1] → C̃ → C → 0.
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By the homework H∗(C̃ ⊗R D) = 0. By long exact sequence, we then have that:

Hm(C̃ ⊗R D) = 0 // Hm(C ⊗R D) // Hm−1(M [−1]⊗R D) // Hm−1(C̃ ⊗R D) = 0

If C and D are free R-resolutions of R-modules M,N (for R a commutative ring) then

Hm(C ⊗R D) = Hm(C ⊗R N) = TorRm(M,N)

Therefore TorRm(M,N) ∼= TorRm(N,M), because C ⊗R D ∼= D ⊗R C.

Let R = Z. A corollary is

Corollary II.6.1 (Kunneth Theorem)

Let C,D be chain complexes of free abelian groups. Then

Hm(C ⊗D) ∼=
⊕

k+`=m

Hk(C)⊗H`(D)⊕
⊕

k+`=m−1

TorZ1 (Hk(C), H`(D))

naturally we have a exact sequence

0
⊕

k+`=mHk(C)⊗H`(D) Hm(C ⊗D)
⊕

k+`=m−1 TorZ1 (Hk(C), H`(D)) 0

but the splitting is not natural.

Proof. Although C and D are not free resolutions, recall that they are direct sums of shifted free resolutions

C =
⊕
m∈Z

Hm[m]

where Hm is a Z-free resolution of HmC. Similarly for D.

What about an arbitrary commutative ring R, C and D are chain complexes of free R-modules?

We have a Kunneth spectral sequence:

E2
pq =

⊕
k+`=q

TorRp (HkC,H`D)⇒ Hp+q(C ⊗R D)

For R = Z (more generally a principal ideal domain) we only have TorR0 = ⊗R, TorR1 , E2
pq = 0 for p > 1.

No room for dr for r > 1, so E2 = E∞, and the spectral sequence collapses.

Comment: If R is a field, every module is free. Thus

Hm(M ⊗R N) =
⊕

k+`=m

Hk(M)⊗R H`(N)

Comment: For any commutatative ring R, we have a natural homomorphism of R-modules

Hk(C)⊗R H`(D)→ Hk+`(C ⊗R D)[c]⊗ [c′] 7→ [c⊗ c′]

if c = da then c⊗ c′ = d(a⊗ c′).
Can this be used to calculate Hm(X × Y ) for X,Y spaces? Well we’re looking at C(X × Y ) versus

C(X)⊗ C(Y ). That is maps ∆m → X × Y versus (∆k → X)⊗ (∆` → Y ).

This is different except in degree zero, because

C0(X × Y ) ∼= C0(X)⊗ C0(Y )

Z[X × Y ]ZX ⊗ ZY
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Theorem II.6.2 (Eilenberg-Zilber)

There exist natural chain maps

ϕ : C(X)⊗ C(Y )→ C(X × Y )

ψ : C(X × Y )→ C(X)⊗ C(Y )

which are Id in degree zero and moreover ϕψ is naturally homotopic to Id and ψϕ is naturally homotopic

to Id.

In other words: C(X × Y ) is naturally homotopic to C(X)⊗X(Y ).

Note: Also similarly for coefficients in a commutative ring R. Especially useful when R is a field via

the Kunneth Theorems.

Over Z this gives a kunneth theorme for spaces

Hm(X × Y ) ∼=
⊕

k+`=m

Hk(X)⊗H`(Y )⊕
⊕

k+`=m−1

TorZ1 (Hk(X), H`(Y ))

In Eilenberg-Zilbur theorem, natural homotopy h means each hm is natural.

Strategy for proving Eileberg-Zilbur theorem. We are trying to construct natural homomorphisms

Cm(X × Y )→ Φ

Ck(X)⊗ C`(Y )→ Φ

where Φ : Top×Top → Ab. Because Cm(X × Y ) = Z[Sm(X × Y )] and Ck(X) ⊗ C`(Y ) = Z(SkX × S`Y ),

our problem is equivalent to constructing a natural map of sets

Sm(X × Y )→ Φ

Sk(X)× S`(Y )→ Φ

Lemma II.6.3 (Yoneda Lemma)

Natural transformations MorC(T, ?)→ Ψ where Ψ : C → Set are in bijection with elements of Ψ(T ).

To prove the Eilenberg-Zilbur theorem, proceed by induction on m (resp. k + `).

Suppose there is a natural transformation CkX ⊗ C`Y → Ck+`X × Y is constructed for k + ` < m. Let

k + ` = m.

We need to construct a natural transformation

ϕ : CkX ⊗ C`Y → Ck+`X × Y

By Yoneda lemma, we only need to construct

ϕ((Id : ∆k → ∆k)⊗ (Id : ∆` → ∆`)︸ ︷︷ ︸
z

) = u ∈ Ck+`(∆
k ×∆`)

We must have that du = ϕ(dz), but we already know ϕ(dz) by inductive hypothesis. Butthen

dϕ(dz) = ϕ(d dz) = 0
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ϕ(dz) is then a cycle, so it is a boundary

Hm−1(∆k ×∆`) = 0

(m = 1 needs a special case). Thus ϕ(dz) = du for some u. We then just can lift on these free generators.

Other direction ψ : Cm(X × Y )→
⊕

k+`=m Ck(X)⊗ C`(Y ).

We need to map this on the identity ∆m → ∆m, we special case m = 1. For m > 1 by Kunneth theorem

Hm(C∆m ⊗ C∆m) = 0.

Homework #5

(1) Prove that for EZ maps ϕ,ψ we have ψϕ ' IdCX⊗CY naturally.

Use induction. For k + ` = m we need to construct a natural map

h : CkX ⊗ C`Y →
⊕

p+q=m+1

CpX ⊗ CqY

where both sides are considered as functors Top×Top→ Ab.

The funtor CkX ⊗ C`Y is again the free abelian group on SkX × S`Y .

By Yoneda lemma, we need to construct h(z) ∈ (C(∆k)⊗ C(∆`))m+1 where

z = (Id∆k , Id∆`) ∈ Sk(∆k)× S`(∆`).

We want that

dh(z) + hdz = ψϕ(z)− z

Thus

dh(z) = ψϕ(z)− z − hdz

We verify that d(ψϕ(z)− z − hdz) = 0. Then the target has zero homology in degree m ≥ 1.

In Yoneda Lemma:

MorC(Y, Y ) Y

∗ MorC(Y,X) X

G(f) fconst(IdY )

const(f)

A functor is representable when G(X) = MorC(Y,X) for some Y .

This is, more generally, called a universal element

Definition II.6.4

Let G : C → D be a functor and let X ∈ D. A universal element for X,G is a D-morphism

µ : X → G(Y ) for some Y ∈ C with

X G(Y ) Y

G(Z) Z

µ

h
G(q) ∃!g

such that for every D-morphism h : X → G(Z) there exists a unique C-morphism g : Y → Z such that

h = G(g) ◦ µ.
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Example II.6.1

∗ → Id is a universal element for the representable functor G : C → Set Where G(Z) = MorC(Y,Z).

This is the statement of the Yoneda Lemma

The universal element for X,G if it exists, is unique up to isomorphism.

If the universal element exists for every object x ∈ D for a fucntor G : C → D, then Yx is functorial in X.

We have a functor F : D → C where F (x) is universal for x,G.

Then we have

MorD(X,G(Z)) ∼= MorC(F (X), Z)

naturally. In this case we say that F : D → C is left adjoint to G.

η : X → GF (X) is given by universality, and is called the unit of the adjunction. Symmetrically, we have

a natural transformation ε : FG(Y )→ y called the counit.

One can prove that F is left adjoint to G if and only if we have natural transformations η : Id→ GF and

ε : FG→ Id such that

F

Id

77

Fη
// FGF

εF
// F G

Id

77

ηG
// GFG

Gε
// G

commute. These are called the triangle identities.

Example II.6.2

Let R be a commutative ring. Then M⊗R? is left adjoin to HomR(M, ?).

Duals: M∗ : HomR(M,R).

This also extends to R -Chain. There is a notion of a closed tensor category, an abelian category with ⊗
satisfying the “obvious axioms.”

III. Products in (co)homology

Natural product in H∗(X;R) where X is a space and R is a commutative ring. Start with ∆ : X → X×X.

This gives

CX → C(X ×X)→ CX ⊗ CX

via the Eilenberg-Zilber theorem. Tensoring by R gives

C(X;R)→ C(X;R)⊗R C(X;R)

:wq Dualize the above example to get

C∗(X;R)⊗R C∗(X;R)
µ−→ C∗(X;R)

H∗(C∗(X;R))⊗R H∗(C∗(X;R))
µ−→ H∗(C∗(X;R))

This is called the cup product ^.

Properties, it is associative, unital, and graded-commutative. Aka for x ∈ Hk(X;R) and y ∈ H`(X;R)

we have

x ^ y = (−1)k`(y ^ x)

We actually get good rings (e.g. polynomial rings).
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Homework #5

(2) Consider the functor F : Grp→ Ring given by G 7→ Z[G].

Prove that the right adjoint to F is the group of units

R→ {g ∈ R | ∃k, gk = 1}

(use universality).

Lets deal with examples of the cup product. That is when R is a commutative ring we have a map

^ : H∗(X;R)⊗H∗(X;R)→ H∗(X;R)

which is given by the Eilenberg-Zilbur theorem from ∆ : X → X ×X, and gives H∗(X;R) the structure of

a graded commutative ring.

Lets cover the case when X = BG, for G a discrete group. π1X = G and the universal cover X̃ of X is

contractible.

Then

H∗(X;R) = H∗(G;R) = Ext∗Z[G](Z;R).

Translating the sotry to algebra: Let C be a Z[G]-free resolution of Z. Then C⊗ZC is a Z[G]⊗Z[G] = Z[G×G]-

free resolution of Z (by the Kunneth theorem)

We have the diagonal homomorphism g 7→ (g, g). Via the diagonal morphism, C ⊗Z C is also a Z[G]-free

resolution of Z. This is free because G-action on G×G is a free action. By the functoriality of resolutions,

there exists some map of Z[G]-module chain complexes

C → C ⊗Z C

which induces 1 : Z→ Z on H0 (unique up to chain homotopy). Once we have this, we obtain a map

Hom(C,R)⊗R Hom(C,R)→ Hom(C ⊗Z C,R)→ Hom(C,R)

Example III.0.1

Lets go with G = {1, α} with α2 = 1. Then the free Z[G]-resolution of Z is

C : · · · 1−α−−−→ Z[G]
1+α−−−→ Z[G]

1−α−−−→ Z[G]

Then G×G = {1, α, β, γ} with α2 = β2 = γ2 = 1 and αβ = γ. The double chain complex is

...
...

· · · Z[G×G] Z[G×G]

· · · Z[G×G] Z[G×G]

1−β

1−α

1−β

1+α 1−α

Now lets look at C → C ⊗Z C, thinking of C with the maps γ. On each term, where do I send 1.

α

1 1− γ = 1− α+ α(1− β) 1

And then we do this again
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1

α α+ β = α− 1 + 1− β

1 1 + γ = 1 + α+ α(β − 1)

Homework #5

(3) Denoting by en the 1 ∈ Z[{1, γ}] ∈ C, prove that

en 7→
∑
` even
k+`=n

ek ⊗ e` + α
∑
` odd
k+`=n

ek ⊗ e`

Prove that this gives a (Z{1, γ}-equivariant) chain map C → C ⊗Z C.

Every Z/2 in bidegree k, ` goes to Z/2 in bidegree k + `. This tells us that

Hm(Z/2;Z/2) = Hm(RP∞;Z/2) = Z/2

That is the cup product

^ : Hk(RP∞;Z/2)⊗Z/2 H
`(RP∞,Z/2)→ Hk+`(RP∞;Z/2)

is an isomorphism, since the left and right hand sides are both Z/2. We conclude thatH∗(RP∞;Z/2) = Z/2[x].

REcall that Hn(RP∞;Z) is Z when n = 0, Z/2 in even degrees, and zero in odd degrees.

The cup product is functorial in the ring. Thus

H∗(RP∞;Z)→ H∗(RP∞;Z/2)

This is given as

...
... 0 Z/2

b2,Z/2 a4,Z/2

0 Z/2

b,Z/2 a2,Z/2

0 Z/2

1,Z a0,Z/2

Thus H∗(RP∞;Z) = Z[b]/(2b). If ` is any number then H∗(Z/`;Z) = Z[b]/(`b), where b is in degree 2. Note

that if p and a ∈ Z/p = H1(Z/p,Z/p) in degree one then

a ^ a = (−1)1·1a ^ a = −a ^ a

a ^ a = 0
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Thus H∗(Z/p;Z/p) = Z/p[b]⊗Z/p ∧Z/p[a]

Back to topology. The unit sphere S∞ in C∞ =
⊕
∞ C. Then S1 acts on S∞ by multiplying in every

coordinate.

Thus Z/` < S1 acts on S∞. BZ/` = S∞/Z/`.Also CP∞ = S∞/S1, which one can call BS1, but S1 is a

topological group (not discrete).

H∗(CP∞;Z) H∗(BZ/`;Z)

Z Z/`

0 0

Z Z/`

0 0

Z Z
One can deduce that H∗(CP∞;Z) = Z[b] (in degree 2). Functoriality gives H∗(CPm;Z) = Z[b]/(bm+1).

IV. Homotopy Theory of Based

We will be doing homotopy theory in Based because it is a category with zero, which means we can talk

about kernels and cokernels!!!

Definition IV.0.1

A homotopy ft : X × [0, 1] → Y is called based provided that ft preserves the basepoint for all

t ∈ [0, 1].

In other words it’s a based map of ft : X ∧ [0, 1]+ → Y where X ∧ [0, 1]+ = (X × [0, 1])/(∗ × [0, 1]).

Definition IV.0.2

The based mapping cone Cbasedf associated to a given based map f : Y → X is given by

Cbased = Cf/(∗ × [0, 1]) = (X
∐

(Y × [0, 1]))/(∗, t) ∼ ∗, (y, 1) ∼ ∗, (y, 0) ∼ f(y)

This is sometimes denoted by Cf despite the conflicting notation.

The based suspension ΣY = Y ∧ S1 = Cbased(Y → ∗) is a special case.

If Y,X are CW complexes and f is a cellular map,

Cbasedf ' Cf

(same proof as for the suspension).

Denote by [X,Y ] = MorhBased(X,Y ) (based homotopy classes of based maps X → Y ).

Proposition IV.0.1

Let f : Y → X be a based map. Let Z be a based space. Then the induced sequence of

Y X Cf
f i

given by applying [−, Z]
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[Y, Z] [X,Z] [Cf,Z]
[f,Z] [i,Z]

is exact. That is

ker[f, Z] = =[i, Z]

Proof. To prove that im[i, Z] ⊆ ker[f, Z]. This follows if if ' 0. But the mapping cone is almost rigged this

way

ht(y) = (y, t)

then h0 = if and h1 = 0.

Now we need to prove that ker[f, Z] ⊆ im[i, Z]. Well let g ∈ ker[f, Z] this means that we have a diagram

Y X Cf

Z

f

0

i

g

Note that we have the following

Y X Cf Ci ' ΣX
f i j

Theorem IV.0.2

Let f : Y → X be a based map. Let Z be a based space. Then we hve a long exact sequence

· · ·

[Σ2Cf,Z] [Σ2X,Z] [Σ2Y,Z]

[ΣCf,Z] [ΣX,Z] [ΣY,Z]

[Cf,Z] [X,Z [Y, Z]

[−Σf,Z]

[i,Z] [f,Z]

(and

Observation: [ΣX,Y ] is a group, [Σ2X,Y ] is an abelian group (as is [ΣmX,Y ]) (same proof as for πn).

Dualizing, Ω is right adjoint to Σ : Based→ oBased. And this also works in hBased.

The mapping cone also has a dual construction.

Definition IV.0.3

Let f : X → Y be a map of based spaces. The homotopy fiber Ff is defined by

Ff := {(x, ω) | x ∈ X,ω : [0, 1]→ Y, ω(0) = f(x), ω(1) = ∗}

with the compact-open topology. And there’s a canonical projection Ff
p−→ X.

Lemma IV.0.3

Let Z be a based space and let f : X → Y be a based map. Then the sequence

[Z,Ff ] [Z,X] [Z, Y ]
[Z,p] [Z,f ]

is exact.
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Homework #6

(2) Prove Lemma IV.0.3.

Notice also that

ΩX ' Fq ΩY ' Fp Ff X Y
−Ωf q p f

A great reference for this is [6] (it’s the best part of the book!).

Theorem IV.0.4

Let f : X → Y be a based map and let Z be a based space. Then we have a long exact sequence

· · ·

[Z,Ω2Ff ] [Z,Ω2X] [Z,Ω2Y ]

[Z,ΩFf ] [Z,ΩX] [Z,ΩY ]

[Z,Ff ] [Z,X] [Z, Y ]

[Z,−Ωf ]

[Z,p] [Z,f ]

Again [Z,ΩnX] ∼= [ΣnZ,X] are groups for n ≥ 1 and abelian groups for n ≥ 2.

If we take Z = S0 = {∗,∞} then because ΣnS0 = Sn

[S0,ΩnX] ∼= [Sn, X] = πn(x).

Thus there is a long exact sequence in homotopy groups:

· · ·

π2(Ff) π2(X) π2(Y )

π1(Ff) π1(X) π1(Y )

π0(Ff) π0(X) π0(Y )

If A
i
↪−→ X is an inclusion, this suggests defining

πm(X,A) := πm−1(Fi)

Let f : X → Y be a based map. We would like to understand the actual fiber F := f−1(∗) in terms of

our understanding of the homotopy fiber Ff .

Definition IV.0.4

The map f : X → Y is called a fibration provided that it satisfies the homotopy lifting property.

Namely if Z is some space and we have a commutative diagram

Z X

Z × [0, 1] Y

ι0 f

h

h̃

Given a map g : Z → X and a homotopy h : Z × [0, 1]→ Y so that h(z, 0) = fg(z) then there exists a

homotopy h̃ : Z × [0, 1]→ X such that H(z, 0) = g(z) and fH(z, t) = h(z, t).
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Proposition IV.0.5

If f : X → Y is a based fibration then F (f) ' f−1(∗).

Homework # 6

(3) Prove Proposition IV.0.5. For hints, consider that

f−1(∗) α−→ F (f)

x 7→ (x, const∗).

If f is a fibration, how do we go F (f)→ f−1(∗). Well consider that we have a commutative diagram

F (f) X

F (f)× [0, 1] Y

((x, ω), t) ω(t)

p

ι0 f
h̃

h

Thus there is a lift h̃ : F (f)× [0, 1]→ X. Take γ := h̃1.

To show αγ ': F (f)→ F (f), use the path only part of the way.

For γα ' Id we need a map f−1(∗) → f−1(∗). h̃ will preserve the const∗ downstairs. . . should

allow us to construct the homotopy.

Definition IV.0.5

A map f : X → Y is called a fiber bundle provided that for all y ∈ Y there is some open neighborhood

U of y such that there is a diagram

f−1(U) U × F

U U

f

∼=

Id

Definition IV.0.6

Let Y be a space. A refinement of an open cover {Ui}i∈I is another open cover {Vj}j∈J such that for

allj there exists and i with Vj ⊆ Ui.
An open cover {Ui}i∈I is called locally finite if for all x ∈ Y there is an open neighborhood W of x

and a finite set F ⊆ I such that if i ∈ I \ F then Ui ∩W = ∅.
A space is paracompact if every open cover has a locally finite refinement.

Example IV.0.1

Almost all nice spaces are paracompact

• All manifolds are paracompact.

• All CW-complexes are paracompact.

Theorem IV.0.6

If f : X → Y is a fiber bundle and Y is paracompact then f is a fibration.

See May’s book for a proof [6].
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Example IV.0.2

A covering is a fiber bundle whose fiber F is discrete. This implies that it satisfies the homotopy

lifting property with uniqueness.

Let f : X → Y be a based covering with Y paracompact. Then F (f) ' f−1(∗)︸ ︷︷ ︸
discrete

. Thus πmf
−1(∗ = 0

for m > 0.

Now the long exact sequence gives us that for m ≥ 2

0 = πm(F ) πm(X) πm(Y ) πm−1(F ) = 0
∼=

Therefore πmf is an isomorphism for m ≥ 2.

This shows that πm(S1) = 0 for m ≥ 2 because the universal cover of S1 is R→ S1 and R ' ∗. Thus

S1 ' BZ.

More generally, if the universal covering of a nice space X is contractible, then πm(X) = 0 for m ≥ 2.

We would then call X “hyperbolic” in the most general sense.

All surfaces are hyperbolic except S2,RP2. Caution: geometers would not consider the torus hy-

perbolic, but it does satisfy this property. This implies that all surfaces except S2,RP2 have that

X ' Bπ1X.

We also know that πm(RP∞) = 0 for m > 1 because the universal cover of RP∞ is S∞ ' ∗. This

shows that RP∞ is a BZ/2.

Definition IV.0.7

Notice that S1 → S2n+1 f−→ CPn is an action, where we view S1 as the unit sphere in C acting by

multiplication on the unit sphere in Cm+1

λ · (z0, . . . , zm) = (λz0, . . . , λzm).

Thus this is a fiber bundle, and hence a fibration.

The most striking case is m = 1, because then CP1 ∼= S2. as then we have S1 → S3 f−→ S2, which is

called the Hopf fibration

Proposition IV.0.7

πm(S3) ∼= πm(S2) for m ≥ 3.

Proof. We have the following long exact sequence for m > 2 from the Hopf fibration

0 = πm(S1) πm(S3) πm(S2) πm−1(S1) = 0
∼=

And so we’re done.

This is most striking when m = 3, because then π3(S3) ∼= Z, so π3(S2) = Z.

Actually, π4m−1S
2m is infinite, πmS

m = Z, and all other homotopy groups of spheres are finite.

This really clues us in to how complex homotopy groups are, as πm(Sn) can be nonzero even when m > n.

Now lets think about how to construct generalized cohomology theories. In the based version this is given

by the axioms

X Y Cf

ẼmCf ẼmY ẼmX
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is exact. And also Ẽm+1ΣX ∼= ẼmX naturally. We could also require the axiom that

Ẽm
∨
i

Xi
∼=
∏
i∈I

ẼmXi

Suppose I give you based spaces Zm, m ∈ Z, such that Zm ' ΩZm+1. Then we can define ẼmX = [X,Zm].

Then of course

Ẽm+1ΣX = [ΣX,Zm+1] = [X,ΩZm+1] = [X,Zm] = ẼmX.

We already proved exactness, and the product formula also holds. It turns out that every generalized

cohomology theory is obtained this way.

Definition IV.0.8

The mapping cocylinder of a map f : X → Y is

Nf := {(x, ω) | x ∈ X, ω : [0, 1]→ Y, ω(0) = f(x)}

The projection (x, ω) 7→ x is a homotopy equivalence N(f) ' X. Furthermore (x, ω) 7→ ω(1) is a

fibration. This leads to a way to replace maps by fibrations

Cf Nf Y

X Y

' Id

f

The dual version with f : Y → X and the mapping cylinder Mf = (Y × [0, 1])
∐
X/(y, 0) ∼ f(y) we

have y 7→ (y, 1) is a cofibration.

Y Mf Cf

Y X

Id '

f

Theorem IV.0.8 (Serre Spectral Sequence)

Let F → X
f−→ Y be a fibration with π0Y, π1Y = 0. Then there is a spectral sequence

E2
pq = Hp(Y,Hq(F ;A))⇒ Hp+q(X;A)

(Y general also works. Have to use homology with local coefficients).

Recall that

dr : Erpq → Erp−r,q+r−1E
r+1 = H(Er,dr)

E∞pq = colimErpq

There is an exhaustive filtration F−1 = 0, FpHm(X;A) with
⋃
FpHm(X;A) = Hm(X;A).

We don’t have to worry about convergence because the serre spectral sequence exists entirely in the

first quadrant. Recall also that

FpHp+qX/Fp−1Hp+q(X) = E∞pq

Also there is a cohomological spectral sequence:

Epq2 = Hp(Y ;Hq(F ;A))⇒ Hp+q(X;A)
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In this case we have

dr : Epqr → Ep+r,q−r+1
r

Er+1 = H(Er,dr)

F0H
m(X;A) = Hm(X;A)

F0 ⊇ F1 ⊇ · · ·

And for N � 0 we have FNH
m(X;A) = 0. We then also have

Epq∞ = colimEpqr = F pHp+q(X;A)/F p+1Hp+q(X;A).

If A is a commutative ring, then Er is a spectral sequence of rings. That is Er are bigraded rings,

graded-commutative with respect to the total degree p+ q and dr satisfies

dr(xy) = (drx) · y + (−1)|x|x · dr(y)

Where |x| is the total degree of x.

This is in Serre’s thesis (paraphrased less rigorously in Spanier’s book).

Homework #7

(1) Calculate completely the homological and cohomological Serre spectral sequence of the Hopf fibration

S1 → S3 → S2 with coefficients in Z. (Note this is unreduced, so we have to worry about degree

zero).

. . . back to generalized cohomology. In the based version for X
f−→ i−→ Cf we have

(1) ẼmCf
i∗−→ ẼmY

f∗−→ ẼmX is exact

(2) ẼmX ∼= Ẽm+1ΣX.

∗ Ẽm
∨
iXi
∼=
∏
i Ẽ

m(Xi)

If I have a sequence of based spaces Zm, m ∈ Z and Zm
'−→ Ω then I can put ẼmX := [X,Zm]. It turns out

(in a proper setting) to be an if and only if, every generalized cohomology (satisfying 3∗) is given like this.

. . . Something is being swept under the rug. Namely Cbasedf may not be homotopy equivalent to Cunbasedf

and ΣX ' SX might not hold. We should require that ∗ ↪→ X,Y are cofibrations for the unbased and based

constructions to agree.

Example IV.0.3

“Ordinary” cohomology = singular cohomology with coefficients in A (abelian group). What are the

spaces Zm? Well test it for X = Sk. Then

πkZm = [Sk, Zm] = H̃m(Sk;A) =

{
A if k = m

0 otherwise

This is called an Eilenberg-MacLane space, K(A,m) has πm(K(A,m)) = A and πn(K(A,m)) whenever

n 6= m. (for m = 1, K(A, 1) ' BA)

There are loose ends to tie up

(1) Are the spaces K(A,m) unique up to homotopy equivalence?

(2) Do we automatically have K(A,m− 1) ' ΩK(A,m)?

(3) For what (based) spaces X is H̃m(X;A) determined just by the fact that Zm = K(A,m)?
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An answer: For X a CW-complex H̃m(X;A) is determined. Namely Xm/Xm−1 =
∨
Im
Sm, and we know

the cohomology of this. Functoriality hands us C∗cell(X;A), telling us Hm
cell(X;A) = Hm(X;A).

The moral of the story:

• Develop a notion of “equivalence of spaces” using homotopy groups.

• Approximate spaces by CW-complexes with respect to this equivalence

• An equivalence of CW-complexes is a homotopy equivalence.

Next time: Another (first “nontrivial”) example of generalized cohomology, K-theory. Based on

U(m) = m× n complex matrices whose columns form an orthonormal basis of Cm.

Then U(m) ⊆ U(m+ 1) with

A 7→

(
A 0

0 1

)
Then U :=

⋃
m U(m) with the union topology.

Theorem IV.0.9 (Bott)

Bott periodicity tells us that Ω2U ' U .

The corresponding generalized cohomology theory for Z2m+1 := U , Z2m := ΩU is called (topological complex)

K-theory.

V. Bott Periodicity

Let M be a Riemannian manifold, that is a smooth manifold M equipped with an inner product TMx for

each x ∈M which is smoothly varying in x.

Variational problem in a Riemannian manifold: Find the shortest path connecting two points (length of a

path
∫

ds)

Local Solution: second order differential equation = the geodesic equation. The solutions are called

geodesics.

They are straight lines in Rm, great circles on Sm (embedded as a unit sphere in Rm+1).

Note: a geodesic may not actually be the shortest path between two points. For example walking around

the “bad” portion of a great circle is still a geodesic.

Definition V.0.1

A (compact) symmetric space is a compact connected Riemannian manifold such that for each P ∈M
there exists an isometry ιP : M →M such that ιP (P ) = P and DιP is −1 on TMp.

Example V.0.1

Sm is a symmetric space. Take (1, 0, . . . , 0) ∈ Sm then map

(x0, x1, . . . , xm) 7→ (x0,−x1, . . . ,−xm)

It turns out that this implies isometries act transitively on M and so M is a homogeneous space G/H

(for G a compact Lie group and H a closed subgroup). And in fact, H is the fixed points for a certain kind

of involution (Cartan involutions).

In fact a connected compact Lie group is a symmetric space. ι1 = (g 7→ g−1).

This is classified by Cartan
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Definition V.0.2

Let M be a compact connected Riemannian manifold. Let P,Q ∈M and h be a homotopy class of

paths between P,Q (rel boundary). Call ν = (P,Q, h).

The space of all paths from P to Q homotopic to h is homotopy equivalent to (ΩM)0 (a connected

component of ΩM).

Consider Mν ⊆ (ΩM)0 be the subspace of the shortest geodesics (parameterized by scaled arc length).

Theorem V.0.1 (Bott [2])

If M is a symmetric space and ν = (P,Q, h), then Mν is also a compact connected space. Furthermore

Mν ↪→ (ΩM)0 induces an isomorphism in πi for 0 ≤ i < α, an onto map on πα, where α is a certain

number called the index.

The index α is defined as follows. If I have a geodesic h connecting P,Q then we can slightly deform

this geodesic into a “nearby geodesic” satisfying the Jacobi equations. These can then cross at some

point along h. We then say

αh =
∑

R∈(P,Q)

dim(space of nearby geodesics crossing at R)

α = min
h
αh

For more information about this geometry see [4].

This implies

Theorem V.0.2 (Freudenthal Suspension)

Sm−1 ↪→ ΩSm for m > 1 induces an isomorphism in homotopy groups πk for k ≤ 2m − 2 and it is

onto in degree k = 2m− 1.

This shows that πkS
m → πk+1S

m+1 → πk+2S
m+2 → · · · , then eventually these are isomorphisms.

These are stable homotopy groups of spheres. Namely this is πk+mS
m for m� 0 and k fixed.

Homework #7

(2) Prove that for m ≥ 1, π1(U(m)) ∼= Z. Recall that U(m) is unitary (can think of as complex linear

maps which are also isometries) m×m (complex) matrices. Note that U(m) acts on the unit sphere

S2m−1 in Cm transitively.

The isotropy group is U(m− 1). Therefore we have a fibration sequence

U(m− 1)→ U(m)→ S2m−1.

use LES in homotopy groups for induction. U(1) = S1, so we know the statement for that case.

VI. Whitehead’s Theorem and CW approximation

Definition VI.0.1

A map f : X → Y is called an m-equivalence if π0f : π0X → π0Y is onto and for all x ∈ X,

πkf : πk(X,x)→ πk(Y, f(x)) is

(a) An isomorphism for k < m

(b) Onto for k = m.

A weak equivalence (or equivalence) is a map f : X → Y which is an m-equivalence for all m.
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From now on [Z,X] = MorhTop(Z,X) (unbased).

Theorem VI.0.1 (Whitehead’s Theorem)

This is a two-parter!

(1) Let f : X → Y be an m-equivalence (resp. weak equivalence). Then [Z, f ] : [Z,X]→ [Z, Y ] is a

bijection when Z is a CW-complex with dimension < m and onto when Z is a CW-complex of

dimension m (resp. bijective for every CW-complex Z).

(2) For every space X there exists an m-equivalence γmX : Zm → X where Zm is a CW-complex of

dimension ≤ m (resp. a weak equivalence γ : Z → X where Z is a CW complex).

Back to Bott’s Theorem

Let M be a compact Riemannian manifold (connected). P,Q ∈ M points, h a homotopy class of paths

from P to Q, ν = (P,Q, h).

Mν = {all shortest (by arc length) geodesics from P to Q path-homotopic to h}

The index α: The minimum index αk of geodesics path-homotopic to h where αk > 0.

The index of a geodesic αk is the sum over points R interior to h of the dimension of the space of nearby

geodesics beginning at the same starting point and also coinciding in R.

Mν includes into the space of paths from P to Q in M , which is homotopy equivalent to (ΩM)0.

Theorem VI.0.2 (Bott)

If M is a compact symmetric space and ν = (P,Q, h) as above then Mν is a compact symmetric

space and

ιν : Mν → (ΩM)0

is an (α− 1)-equivalence.

Example VI.0.1

M = Sn, then Mν ' Sn−1 as the shortest geodesics are the meridians. Then αk = 2(m− 1). Thus

Sm−1 → ΩSm is a [2(m− 1)− 1]-equivalence.

General principle of compact symmetric spaces M (contains connected compact Lie groups). Take a closed

geodesic at P . Then M = G/H where G is the group of isometries and H = Iso(P ). Then Mν = H/ Iso(P,Q),

where Q is the opposite point along the geodesic.

Example VI.0.2

Complex Bott periodicity. Take M = U(2m) , P to be the identity, and Q = −P . Then take h to be

eix along the diagonal. Then

Mν = U(2m)/(U(m)× U(m))

Index is 2m+ 2→∞.

Thus U/(U × U)→ (ΩU)0 is a weak equivalence.

U → U/(U × {e})→ U/(U × U) is a fibration sequence. Therefore U ' Ω(U/(U × U)).

We can write BU := U/(U × U). Bott’s theorems say BU
∼−→ (ΩU)0.

Likewise BU × Z ∼−→ ΩU . This means that Ω(BU × Z) ' U .

Thus Ω2U ' U .
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Complex K-theory is then

Km(X) = [X,Zm]

Where Zm is defined by

Zm :=

{
BU × Z if m even

U if m odd

What happens if we replace U(m) by O(m)? Well then it becomes a mit more complicated. Let BO =

O/(O×O), and note that U(m) ⊆ O(2m), and also that if Sp(m) is the m×m unitary quaternion matrices

then Sp(m) ⊆ U(2m).

n Ωn(BO × Z) Z−

8m BO × Z Z8m

8m+ 1 O Z8m−1

8m+ 2 O/U Z8m−2

8m+ 3 U/ Sp Z8m−3

8m+ 4 B Sp×Z Z8m−4

8m+ 5 Sp Z8m−5

8m+ 6 Sp /U Z8m−6

8m+ 7 U/O Z8m−7

8(m+ 1) BO × Z Z8(m−1).

For X a CW-comples, KOmX := [X,Zm].

Homework #7

(3) Calculate KOm(∗), πm(BO × Z), m ∈ Z.

Use that

• O(m) has two path-connected components

• U(m),Sp(m) are path-connected

• O(m− 1)→ O(m)→ Sm−1 is an action (fibration sequence) in Rm.

• Sp(m− 1)→ Sp(m)→ S4m−1 is an action (fibration sequence) in Hm.

(4) Prove that if f : X → Y is a weak equivalence and X,Y are CW-complexes then f is a homotopy

equivalence. (use Whitehead’s Theorem)

Homework due Wednesday October 20th at 8PM.

Recall Theorem VI.0.1, specifically the statement that every space X is m-equivalent to a CW-complex Zm

of dimension ≤ m, and weakly equivalent to a CW-complex Z. Zm is sometimes called a formal m-skeleton

of X.

Remark VI.0.1

If f : X → Y is a weak equivalence (X,Y are any spaces) then f induces an ∼= in singular homology.

Hnf : HnX → HnY .

Proof Sketch. Express singular homology in terms of maps from CW-complexes. Consider a singular cycle

c =
∑
k akσk, σk : ∆m → X. We can construct a CW-complex Z by taking

∐
K ∆m/ ∼, which is the minimal

equivalence relation making it into a cycle (identify (m−1)-faces on which σk, σ` restrict to the same singular

(m− 1)-simplex).
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c lifts to a singular cycle on Z. To show Hnf is onto, let c ∈ CmY be a cycle representing a class in HmY .

We constructed a CW-complex (of dimension m) Z, Z → Y so that c′ 7→ c.

We can then lift Z → Y up to homotopy to a map Z → X using Whitehead’s theorem. Thus we

constructed a lift of [c] ∈ HmY to HmX under f .

The argument for boundaries to show injectivity is analogous.

We add an axiom to generalized cohomology: Emf (resp. Emf) is an isomorphism when f is a weak

equivalence.

From the point of view of representing generalized cohomology by homotopy classes of maps into some

based spaces: We need a sequence of based spaces Zm with a based weak equivalence Zm → ΩZm+1.

For a CW-complex X, Em(X) = [X,Zm] (unbased).

For a general space X, find a weak equivalence γ : X ′ → X and define Em(X) := [X ′, Zm]. Then Emf is

an isomoprhism when f is a weak equivalence.

How to prove the approximation statement from Theorem VI.0.1 from the first statement?

Proof. We do this by induction. The base case is to take Z0 → X, where Z0 is the discrete set of path-

components of X. This is of course onto in π0.

Suppose we have an n-dimensional CW-complex Zn and an n-equivalence γm : Zm → X. This is an

isomorphism on πi, i < n, and onto on πn. γn may not be ∼= on πn. There may be classes αi : Sn → Zn so

that γn ◦ αi ' ∗.
We can just glue disks along each of these to fix the issue. Also γn may not be onto on πn+1. To fix this

if βj : Sn+1 → X is not represneted then

Zn+1 = Zn t
∐
i

Dn+1 t
∐
j

Sn+1/ ∼

Where ∼ attaches Dn+1 via αi and Sn+1 via their base point in Z0.

By definition we get a map γn+1 : Zn+1 → X. This satisfies the inductive step because

• ∼= in πi for i < n comes from cellular approximation of maps, because we can approximate Sn → Zn+1

via maps Sn → Zn.

• For the same reason, it is onto on πn. It is then injective on πn by the gluings made above, as we

killed all the relations.

• It is onto on πn+1 by construction.

We’re done! For the infinite case set Z =
⋃
i Zi.

Notice: Say X is path-connected. Say πi(X) = 0 for i < m (we say X is (m− 1)-connected). 1-connected

means π1(X) = 0, that is X is simply connected.

Then we can set Zm−1 = ∗. Furthermore, Zm is a bouquet of spheres over generators of πmX. Zm+1 is

a bouqeut of spheres over generators of πmX, and πm+1X, and then we attach m-disks along relations in

πmX.

Definition VI.0.2 (Hurewicz Homomorphism)

πkX → Hk(X;Z). This is given by taking some α : Sk → X and mapping

Hk(Sk;Z)
Hkα−−−→ Hk(X;Z)

1 7→ h(α)

Computing cell homology, we get
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Theorem VI.0.3 (The Hurewicz Theorem)

If X is (m− 1)-connected, then the Hurewicz homomorphism h : πmX → Hm(X;Z) is the abelian-

ization if m = 1, and an isomorphism if m > 1.

Proof. Our construction of Zm+1 above makes this clear.

Homework # 8

(1) Compute π2(S1 ∨ S2). Use universal cover and Hurewicz theorem.

It is also easy to construct by the methods above, a Cw-complex K(Π,m), Π a group (abelian if m > 1)

such that

πiK(Π,m) =

{
Π if i = m

0 otherwise
.

We can construct Zm+1 by the above method (generators and defining relations of π). Then just keep

attaching cells to kill all higher homotopy groups.

Same method implies that any two such CW-complexes K(Π,m) are homotopy equivalent (use Whitehead

Theorem).

We even get a weak equivalence K(Π,m−1)
∼−→ ΩK(Π,m). This way we can construct singular cohomology

out of the Whitehead theorem. Namely this gives [X,K(Π,m)]→ Hm(X; Π).

How do we do this for homology? Duality! We’ll get there soon.

Homework #8

(2) The Quillen + construction. Let X be a connected CW-complex. Let π1(X,x) = G, x ∈ X0. Let

H ⊆ G be a subgroup such that [H,H] = H, that is Hab = 0.

Attach a 2-cell ek to each element h ∈ H to form a CW-complex Y . Note (Y,X) is a CW-pair,

and Y is connected. Let p : Ỹ → Y be the universal cover. Let X̃ = p−1(X). Choose a lift ẽk of

each cell ek.

Then ẽk represents a class of αh ∈ H2(Ỹ , X̃).

(a) Prove that αh lifts to a class αh ∈ H2(Ỹ ) (use the fact that the abelianization of H is zero, the

long exact sequence in homology, and Hurewicz).

(b) Observe that αh is in the image by the Hurewicz map of an element uh ∈ π2(Ỹ , x̃) where x̃ ∈ X̃.

Form a CW-complex X+ by attaching a 3-cell to Y along each p ◦ uh : S2 → Y .

(c) Prove that the inclusion X → X+ induces an isomorphism in homology (use cellular homology,

the additional attached cells cancel out).

(d) π1(X+, x) = G/H where H is generated by all g−1hg, g ∈ G, h ∈ H (aka the smallest normal

subgroup of G containing H).

Example VI.0.3

Say G = H = An for n ≥ 5. Then [An, An] = An so we can form the plus construction.

Then BAn
i−→ BA+

n , and by this HkBAn
i∗−→ HkBA

+
n . Then π1BA

+
n = 0.

Thus homology is not an adequate measure of equivalence of spaces (does not imply weak equivalence).

The reason Quillen invented this was to define higher algebraic K-theory of commutative rings. If R is a

commutative ring, put GL∞R =
⋃
n≥0 GLnR. The analogy with K-theory (imperfect), note U(m) ⊆ GLm C

is a homotopy equivalence by the Gram-Schmidt process. Then GL∞ C ' U .
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But we’re cheating, GL∞ C has topology from C. For R general it is considered discrete. If we consider

H = [GL∞R,GL∞R] ⊆ GL∞R = G then

Theorem VI.0.4 (Steinberg)

[H,H] = H.

Quillen: Take KmR = πm(BGL∞R+) (with respect to H), for m > 0. Then set K0R to be the

Grothendieck group of isomorphism classes of finitely generated projective R-modules. People knew earlier

that K1R = GL∞R/[GL∞R,GL∞R], and there was a natural geometry to this. But people could not do it

purely algebraically, and instead were able to do it with homotopy groups.

Definition VI.0.3

HELP (Homotopy Extension and Lifting Property). A map f : X → Y satisfies HELP with respect

to a pair (Z,A) if the following diagram completes

A A× [0, 1] A

Y X

Z Z × [0, 1] Z

0

h

0

g

e

0

f

h̃

1

g̃

Include garbage can intuition

Lemma VI.0.5 (The HELP Lemma)

If πm−1(e) is injective and πm(e) is onto, then e satisfies HELP for the pair (Z,A) = (Dm, Sm−1).

Proof Sketch. Put a lid on first (injectivity property). If the garbage can does not fill, move the lid (onto

property). Be careful when m = 1. More detail is in [6].

Lemma VI.0.6 (The HELP Lemma 2)

If e : X → Y is an m-equivalence (resp. weak equivalence), then it satisfies HELP with respect to

CW-pairs of dimension ≤ n (resp. all CW-pairs)

(Induction on cells).

Proof of Whitehead’s Theorem. We now prove Theorem VI.0.1. We will use HELP. Let e : X → Y (changed

notation, permuted) be an m-equivalence (or weak equivalence). We wish to study the map [Z, e] : [Z,X]→
[Z, Y ] for a CW-complex Z.

For surjectivity, apply HELP to the pair (Z, ∅). For injectivity apply HELP to (Z× [0, 1], Z×{0, 1}).

Next Time: This applies in more general settings than spaces. In particular, we can use it on chain

complexes for derived functors and derived categories. We also really want to use it for spectra, which will

allow us to understand duality.

VI.1. Derived Categories

Definition VI.1.1

Setup: C is a category E ⊆ C is a subcategory (we call the morphisms of E equivalences and write

f : X
∼−→ Y ). We assume “2 out of three property” that for f : X → Y , g : Y → Z that if two out of

f, g, gf are equivalences then so is the third. Also we assume that all isomorphisms belong to E.
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A derived category (if one exists) with respect to this data is a category DC together with a functor

Φ : C → DC which is universal among functors F : C → Q which take all morphisms in E into

isomorphisms.

Strict version: Φ(e) is an isomoprhism for all e ∈ Mor(E). For all F : C → Q satisfying F (e) is an

isomoprhism for all e ∈ Mor(E) there exists a uique G : DC → Q with GΦ = F .

Lax version: For all e ∈ Mor(E), Φ(e) is an isomorphism. For all F : C → Q satisfying this same

property there exists a G : DC → Q togehter with a natural isomorphism κ : G ◦ Φ → F . For any

other functor H : DC → Q together with a natural isomorphism λ : H ◦ Φ → F there exists a unique

µ : H → G with λ = κ ◦ (µΦ).

C Q

DC

Φ

F

κ
G

C Q

DC

Φ

F

κ λ G

H

µ

Observation: The two definitions are equivalent if Φ : C → DC is bijective on objects.

Concrete construction of derived categories:

where we have an analog of the Whitehead Theorem (or its dual) (given above definition)

An object Z ∈ Ob(C) is called co-local if for every e : X
∼−→ Y we have

MorC(Z,X) MorC(Z, Y )
MorC(Z,e)

∼=

is a bijection. For example, CW-complexes are co-local. We say that we have co-localization if for every

X ∈ Ob(C) there exists X ′ which is co-local and an equivalence X ′
∼−→ X. If always we have X ′ ∈ B for

some B ⊆ Ob(C) (with every object of B colocal), we say this is colocalization by B.

This situation is exactly the content of Whitehead’s theorem in hTop.

Theorem VI.1.1

If C,E are as above and we have a colocalization by B ⊆ Ob(C) then the derived category DC exists

and it is equivalence to the full subcategory of C on B.

Proof. Φ : C → DC given by X 7→ X ′. This is functorial because for f : X → Y we can use colocality of X ′

to get a unique map X ′ → Y ′.

The other checks are similarly trivial.

Definition VI.1.2

A cell complex is a space X =
⋃
X(m)

∅ = X(−1) ⊆ X(0) ⊆ · · · .
X(m) is obtained fromX(m−1) by attaching cell in any dimension Jm, dn : Jm → N0 with

fm :
∐
j∈Jm

Sdj−1 → X(m)−1

X(m) is the pushout ∐
j∈Jm Sdj−1 X(m−1)

∐
j∈Jm Ddj X(m)

p

fm

Observe that cell complexes also satisfy the Whitehead Theorem.

51



Faye Jackson October 27th, 2021 MATH 695 - VI.2

Homework #9

(1) Prove that every cell complex is homotopically equivalent to a CW-complex.

Let A be an abelian category with coproducts and enough projectives

For all X ∈ Ob(A) there exists a projective P and an epimorphism P � X.

We can look at h -A-Chain. We can define a cell chain complex

0 = X(−1) ⊆ X(0) ⊆ · · ·

We say P(m) is a projective chain complex with zero differentials.

We then can take

CP(m) P(m) P(m)k ⊕ P(m)(k−1) P(m)(k−1) ⊕ P(m)(k−2) · · ·

H∗CP(m) = 0.

We require X(m) is a pushout

P(m) X(m−1)

CP(m) X(m)

p

fm

One can prove the Whitehead Theorem precisely analogously

The equivalences are quasiisomprhisms (chain maps which induce isomorphisms in homology),

Theorem VI.1.2

Cell chain complexes are colocal in h -A-Chain with respect to quasiisomorphisms and one has colo-

calization by cell chain complexes.

We define

DA := Dh -A-Chain

called the “derived category of the abelian category A.”

If A is an abelian category, we denote

DA ' Dh -A-Chain

Equivalences are quasiisomorphisms (induce isomorphisms in homology).

Cell chain complexes are colocal and we have colocalization when there are coproducts and enough

projectives. For objects X,Y ∈ A we have

ExtmA (X,Y ) = MorDA(X,Y [m])

Proof. If C is a projective resolution in degree 0, then C is cell (individual degrees = cells).

Then by definition

ExtmA (X,Y ) := Morh -A-Chain(C, Y [m]) = Hm(Hom(X,Y )) = MorDA(X,Y [m]).

because C is colocal.

What about Tor (not in every abelian category, must have ⊗ first).
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VI.2. Derived Functors

The most general notion does not even involve derived categories, but instead just involves a functor

Φ : C → D.

Given a functor F : C → Q, may not factor through Φ. But is there a “universal” functor D → Q with

respect to this data. Two ways

C Q

D

Φ

F

F ′

η

such that for every G : D → Q provided with a κ : GΦ⇒ F we have a unique µ : G→ F ′ with

κ = η ◦ µΦ

that is

C Q

D

Φ

F
η

G

µ

This is called a right Kan extension, aka a left derived functor. Denoted by LF .

Example VI.2.1

Suppose Φ : C → DC, with γX : X ′
∼−→ X a colocalization. Then if F : C → Q then the (total) left

derived functor exists and is defined by

LF (X) = F (X ′)

We have the morphism F (X ′) → F (X) via F (γX). If G : DC → Q and GΦ ⇒ F then the map

G(X ′)→ F (X ′) is handed to us because G(X ′) ∼= G(X).

If I have a functor ?⊗N then

TorRm(?, N) = L(Hm(?⊗N)).

That is

TorRm(M,N) = Hm(C ⊗R N)

where C is a projective resolution of M (colocal).

What about localization

Theorem VI.2.1

If an abelian category A has enough injectives and products then h -A-Chain has localization with

respect to co-cell chain complexes. Turn around arrows in the definition of cell chain complexes, replace

projective by injective.

Technical Issue: H∗ does not commute with inverse limits of sequences. Say we have the following chain

complexes

· · · → X2 → X1 → X0

then Hm limkXk is not in general isomorphic to limkHm(Xk).

The symmetric statement for colimits holds. In general lim of a sequence has one right derived functor

lim1. However, lim1 = 0 if we have the Mitag-Leffler condition in each
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· · · X1 X0

· · · HmX1 HmX0

The Mitag-Leffler condition (in an abelian category) says that the composed images at each stage eventually

become constant.

Important notes

• There are abelian categories which have enough injectives but not enough projectives

• If we have localization, we have right derived functors (defined symmetrically to left derived functors,

instead a left Kan extension) e.g. (sheaf cohomology is to apply right derived functors to global

sections).

Homework #9

(2) Prove that if f : X → Y induces an isomorphism in homology (coefficients in Z) and X,Y are simply

connected, then f is a weak equivalence.

(Consider the Serre spectral sequence in homology of the fiber sequence Ff → X → Y ).

E2
pq := Hp(Y,Hq(Ff))⇒ Hp+q(X).

We have an increasing filtration Fp on Hp+q(X), and E∞pq = FpHp+q(X)/Fp−1Hp+q(X).

If you think of this

Hp(X) = FpHp(X) E∞p,0 E2
p,0 = Hp(Y )

Hpf

called the edge map. Deduce that HpFf = 0 for all p > 0. Then observe that π1(Ff) is abelian

(long exact sequence on homotopy groups). Finally, deduce that πm(Ff) = 0 for all m, and conclude

that that f must be a weak equivalence via the long exact sequence on homotopy groups.

VI.3. Localization in Topology

There is an alternative approach to deriving hTop. Essentially we mimic the formal structure on the

singular set SmX = {∆m → X}. These formal structures will be called simplicial sets.

To do this, we must determine what distinguished maps are there between the standard simplices ∆m?

Well, we have faces

∂i : ∆m → ∆m+1

[t0, . . . , tm] 7→ [t0, . . . , ti−1, 0, ti, . . . , tm].

We can realize that this corresponds to

{0, . . . ,m} → {0, . . . ,m+ 1}

j 7→ j (j < i)

j 7→ j + 1. (j ≥ i)
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Compositions correspond to order-preserving injections. There is also a map in the other direction.

∆m → ∆m−1

[t0, . . . , tm] 7→ [t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tm]

This corresponds to the map

{0, . . . ,m} → {0, . . . ,m− 1}

j 7→ j (j ≤ i)

j 7→ j − 1. (j > i)

These are called degeneracies, and are order-preserving surjections. Triangulation of objects with simplicial

sets can be used to verify the homotopy axiom of homology.

Definition VI.3.1

We call ∆ the simplicial category. The objects are N0, and we write m = {0, . . . ,m}. The morphisms

are non-strictly order preserving maps.

Definition VI.3.2

If C is a category, the category of simplicial objects in C (∆op − C) is the category of functors

∆op → C and natural transformations.

We will talk about simplicial sets. Consider that ∆(m) := ∆m is a functor ∆→ Top, called the topological

realization.

The topological realization of a simplicial set S : ∆op → Set is left adjoint to the singular set functor.

|S| =
∐
m∈N0

Sm ×∆n/(s, fx) ∼ (Sf(s), x) (f : m→∆ n)

Triangulation of prism says that

(S × T )m = Sm × Tm

|S × T | ∼= |S| × |S|

Simplicial sets generalize simplicial complexes, “are” CW-complexes (after calculation).

∆n : k ∈ Ob(∆)→ Mor∆(k, n) is a simplicial model of ∆n. We then have that

∆0 ∆1
∂0

∂1

is a model for the unit interval.

Definition VI.3.3

A simplicial homotopy is a natural transformation ∆1 × S → T .

We call two morphisms f, g : S → T simplicially homotopic if they are equivalent in the smallest

equivalence relation containing simplicial homotopy.

Then we have h −∆op -Set with objects simplcial sets and morphisms simplicial homotopy classes of ∆op-

morphisms.

This category has localization with respect to Kan complexes
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Definition VI.3.4

A Kan complex S is a simplicial set satisfying the Kan condition. To phrase this, consider V nk in ∆n,

which is obtained by ommitting the open n-simplex and the k-th face.

In terms of simplicial sets this is

V nk : j 7→ {f ∈ Hom∆(j,m) | {0, . . . , k − 1, k + 1, . . . ,m} * im f}.

We have a natural injection V mk ↪→ ∆n.

Then S satisfies the Kan condition provided that every morphism f : V nk → S extends to a morphism

f : ∆n → S

V nk S

∆n

f

f

We say that S is a minimal Kan complex if the extension f is unique.

Definition VI.3.5

An equivalence of simplicial sets is a morphism f : S → T such that |f | : |S| → |T | is a weak

equivalence (homotopy equivalence since these are CW complexes).

Theorem VI.3.1

The simplicial realization induces an equivalence of categories

D −∆op -Set = Dh−∆op -Set
'−→ DhTop = DTop .

The = above comes from the fact that inverting equvalences identifies homotopic maps.

Addendum: Every Kan complex is simplicial homotopy equivalent to a unique (up to isomorphism) minimal

Kan complex.

We conclude that

MINIMAL KAN COMPLEXES (up to ∼=) ARE IN BIJECTION

WITH WEAK HOMOTOPY TYPES

where a weak homotopy type are homotopy classes of CW-complexes. Unfortunately, this is not a practical

solution because minimal Kan complexes are extremely difficult to write down (try doing it for S1, RP∞,

these are easier because they are K(G, 1)s).

Homework #9

(3) Prove that for every space X, the singular set S•X satisfies the Kan condition.

Another topic is localization within DTop. If E is some genrealized homology theory (preserving weak

equivalence), then we can say that f : X → Y is an E-equivalence if E∗f is an isomorphism.

Example VI.3.1

E = HZ. Then

• HZ-equivalence is not in general a weak equivalence.

• HZ-equivalence is a weak equivalence if X,Y are simply connected.

Theorem VI.3.2 (Bousfield)

DTop has localization with respect to E-equivalence for any chosen generalized homology E.
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Even if E is an ordinary homology theory, of interest is E = HQ localization is called rationalization.

HZ/p is called p-completion, and HZ(p) is called p-localization, where Z(p) = {k−1 | p - k}Z.

Say for simply connected spaces, this is fairly well understood. Lets consider HQ.

Theorem VI.3.3

If f : X → Y induces an isomorphism in HQ, and X,Y are simply connected. Then f induces an

isomorphism πmX ⊗Q ∼= πmY ⊗Q.

Serre in 1953 provied this in the case π2f is onto (Annals of Math). He then wrote

“Nous insisterons par la-desrus” ↔ “We shall not insist on it”

Definition VI.3.6

A simplicial set X which satisfies the inner Kan condition, which says any

V nk X

∆n

for 0 < k < m, then X is called a quasicategory.

Lurie uses quasicategory interchangeably with ∞-category, which is a vague term meaning many different

but roughly equivalent things.

The homotopical information in an ∞-category is the same as a category where the sets of morphisms are

given a topology and composition is continuous (topological category).

Back to Serre and Hurewicz!

Definition VI.3.7

X is a simple space provided that X is path-connected which means that π1(X) is abelian and π1(X)

acts trivially on every πm(X).

Past homework showed that S1 ∨ S2 is not simple.

Theorem VI.3.4 (The Relative Hurewicz Theorem)

If X is a simple space, then if πi(X)⊗Q = 0 for i < m, then the Hurewicz map πm(X)→ Hm(X;Z)

becomes an isomorphism upon tensoring with Q to get πm(X)⊗QtoHm(X;Q).

Proof Sketch. By induction, using the Serre spectral sequence of the fiber sequence ΩX → ∗ → X.

Theorem VI.3.5

If f : X → Y induces an isomorphism in H∗(?,Q) = H∗(?,Z) ⊗ Q and X,Y are simply connected,

then f induces and isomorphism in π∗(?)⊗Q.

Proof sketch. Following the method of homework, we get that H∗(F (f))⊗Q = 0.

We would like to deduce π∗F (f)⊗Q = 0, which one does through the Relative Hurewicz Theorem

Remark VI.3.1

Let X be a path-connected space. Create a map X
fm−−→ Xm which induces an isomorphism on πi for

i ≤ m. Then take πj(Xm) = 0 for j > m (attach cells to X to kill π>m).

Then we have Xm := F (fm)→ X
fm−−→ Xm.

We get a tower Xm → Xm−1 → · · · → X0. We then get a fiber sequence
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K(πm+1X,m+ 1)→ Xm+1 → Xm. If X is a simple space, then this fiber sequence extends by 1 to

the right

K(πm+1X,m+ 1) Xm+1 Xm K(πm+1X,m+ 2)

This is called a Postnikov tower.

Rational homotopy theory: Localization of the full subcategory of DTop on simply connected (simple)

spaces of finite type at equivalences being those maps inducing ∼= in H∗(?;Q) (that is on π∗(?)⊗Q).

For a space X, there exists a model of C∗(X;Q) which is a graded-commutative differential graded

algebra.

Definition VI.3.8

A is a graded commutative DGA provided that if x ∈ An, y ∈ Am then

xy = (−1)nmyx

and the differential satisfies

d(xy) = dx · y + (−1)mx · dy

For a simplex ∆n, take differential forms on the affine envelope of ∆n. Algebraically

Q[x0, . . . , xn]/(x0 + · · ·+ xn = 1)⊗
∧

[dx0, . . . ,dxm]/(dx0 + · · ·+ dxn = 0)

If X is a simplicial complex (or a simplicial set), take the limit of these DGAs over its simplices. There’s a

paper by Sullivan in 1979 which is relevant.

For a space X, we construct in this way a graded commutative DGA over Q. There is an appropriate

notion of chain homotopy of graded commutative DGAs. Then this homotopy category satisfies colocalization

with respect to cell DGAs.

A cell DGA is defined as A(m) ⊆ A(m+1) ⊆ · · · with A =
⋃
mA(m) where

A(m+1) = A(m) ⊗ F (xi | i ∈ Im)

where F is the free graded commutative algebra and xi are homogeneous generators with dxi ∈ A(m). Recall

that the free graded commutative algebra is F (x) = Q[x] for x in even degree and
∧

[x] = Q[x]/x2 if x is in

odd degree. Take the tensor product for more than one generator.

In fact, A is called minimal if it is cell and dxi is decomposable (sum of monomials and generators, each

of which has monomial degree at least two).

Theorem VI.3.6

There exists a unique (up to DGA-isomorphism) minimal graded commutative DGA in each isomor-

phism class in the derived category.

The upshot: There is a unique model of a simple space of finite type up to H∗(?;Q)-equivalence by a

minimal DGA (minimal model).

Homework #10

(1) Consider the commutative DGA

A = Q[x]⊗Q
∧
Q

∧
[dx]

with deg(x) even. This is the tensor algebra, modulo (dx)2 = 0.
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Prove that HiA = Q if i = 0 and 0 if i > 0.

[Hint: Write down a basis of A

Remark VI.3.2

If we know that H∗Q[x]⊗
∧

[dx] = Q in degree zero for x of even degree then

H∗Q[x1, . . . , xn]⊗
∧

[dx1, . . . ,dxn] =
⊗
i

H∗(Q[xi]⊗
∧

[dxi]) = Q

in degree zero. By the Kunneth Theorem

VI.4. Rational Homotopy Theory

If X is a simply connected CW complex of finite type (finitely many cells in each dimension). Equivalently

(homotopically) the realization of a simplicial set with finitely many non-degenerate simplices in every

dimension.

We calculate Ω∗X by taking limit over non-degenerate simplices. Use the fact that

Ω∗∆m = Q[x0, . . . , xm]/
∑

xi = 1⊗
∧

[dx0, . . . ,dxm]/
∑

dxi = 0

where the degree of xi is zero and the degree of dxi is 1.

Then ΩX is a graded commutative DGA. We can of course talk about

Definition VI.4.1

A cell graded-commutative DGA is a DGA Q expressible as

Q = A(0) ⊆ A(1) ⊆ · · · A =
⋃
A(m)

where we have that

A(m+1) = A(m) ⊗ F [smi | i ∈ Im]⊗
∧

(odd degree generators)⊗Q[even degree generators].

Where F (s1, . . . , sm) is the free graded commutative algebra on s1, . . . , sm. We say it has generators in

degrees dmi (even or odd).

Forces: cochain degrees ≥ 2. Furthermore we require dsmi ⊆ A(m). As an algebra A(m) = F (Qm).

We have an augmentation ideal Jm = {q | q ∈ Qm} of A(m).

We say A is minimal if dsi ∈ J2
m (the decomposable elements).

“Whitehead Theorem”: Equivalences = quasiismorphisms = morphisms of graded-commutative DGAs

inducing ∼= in cochain cohomology.

Theorem VI.4.1

There exists a derived category D of graded commutative DGAs, with respect to quasiisomorphism.

Each isomorphism class in D contains a unique minimal DGA up to DGA isomorphism (this is called a

minimal model).

Therefore we have for compact generated CW-complexes of finite type, a unique minimal model A→ Ω∗X.

Moreover A = F [S] where QS is the dual of rational homotopy groups of X.

If Sm ⊆ S is the subset of generators of degree m then

πmX ⊗Q ∼= Hom(QSm,Q) = Map(Sm,Q)
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Example VI.4.1

Take X = CPm. How is Ω∗CPm represented?

Well H∗(CPm;Q) = Q[x]/(xm+1) with the cochain degree of x is 2.

Then we have a map of DGAs

Q[u]→ Ω∗CPm

u 7→ u, [u] = x

Impose the relation xm+1 = 0, so um+1 = dv. This gives a map

Q[u]⊗
∧

[v]→ Ω∗CPm

Where we have dv = um+1, so the degree of v is 2m+ 1. This is a quasiisomorphism with a bit of work.

Therefore

πiCPm ⊗Q =

{
Q if i = 2, 2m+ 1

0 otherwise

Homework #10

(2) Find the rational minimal model of Sm (m > 1) and use it to calculate πkS
m ⊗Q for all k.

Deligne-Morgan: A simply connected CW complex of finite type X is called formal if Ω∗X is quasiisomor-

phic to H∗(X;Q) with zero differential

Theorem VI.4.2

Every simply connected smooth projective variety over C is formal.

Griffiths-Harris: Principles of Algebraic Geometry.

What does an alegbraic topologist make of this? “πm ⊗Q are not interesting”

Or, perhaps, better point: The torsion is more interesting to algebraic topology.

Another thing worth mentioning: What if we replace Q with another field?

characteristic 0 → same story

characteristic > 0→ doesn’t work.

By complicated, we mean we get stuck on the first step. We are not able to make a model of C∗(X;Fp) which

would be a graded-commutative DGA. (if you do HW problem 1, it does not work in characteristic > 0).

The fact that this fails in characteristic > 0 is related to something known as Steenrod operations.

VII. Steenrod Operations

For X a CW complex of finite type then with the actions of swapping from Z/2

C∗(X)⊗ C∗(X)
'−→ C∗(X ×X)

C∗∆−−−→ C∗(X)

but this cannot be done Z/2-equivariantly. The steenrod operations measure how much this fails using group

homology.

There is no natural map filling the diagram below (commuting up to homotopy)
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C(X) C(X)⊗ C(X)

C(X ×X)

C(∆)

?

'

where C(X) = C(X;Z/2) which is Z/2-equivariant, using the action x⊗ y 7→ y ⊗ x.

This would bean that the chains in the image would be Z/2-fixed. This turns out to be impossible!

What is posible? Consider a Z[Z/2]-free resolution of Z, e.g.

· · · Z[Z/2] Z[Z/2] Z[Z/2] Z[Z/2]
1−α 1+α 1−α

which we call R. It is possible to construct a Z/2 equivariant

R⊗ C(X) C(X)⊗ C(X)

C(X ×X)

R⊗C(∆)

?

'

R makes it a free F2[Z/2]-modules. Universal element Id : ∆m → ∆m (like in the Eilenberg-Zilber element),

but we can ⊗ it with a free generator in R (R⊗ C(X;Z/2))k is also representable.

Like in the cup product tratement. Dualize to cohomology

R⊗ C∗(X)⊗ C∗(X)→ C∗(X).

R remains homologically graded. So C∗(X) is put in homological degree −.

We can also write

R⊗Z[Z/2] (C∗(X)⊗ C∗(X))→ C∗(X).

Z/2 acts on H∗(X)⊗H∗(X) by a permutation representation. We know H∗(X) has basis αi, i ∈ I and so

we can map αi ⊗ αj → αj ⊗ αi.
We then get a non-canonical map

R⊗Z[Z/2] (H∗(X)⊗H∗(X))→ R⊗Z[Z/2] (C∗(X)⊗ C∗(X))→ C∗(X).

However we do get a canonical map

H∗(Z/2;H∗(X)⊗H∗(X))→ H∗(X)

with coefficients in Z/2. If we order I then

H∗(X)⊗H∗(X) =
⊕
i<j

F2[Z/2] · αi ⊗ αj ⊕
⊕
i=j

F2 · αi ⊗ αi.

We know that Hk(Z/2;Z/2) = Hk(RP∞,Z/2) = Z/2 for all k ≥ 0. Call this generator ek.

If αi ∈ HmX (m depending on i), then

H∗(Z/2;H∗(X)⊗H∗(X))→ H∗(X)

ek ⊗ αi ⊗ αi
Dk7−−→ ? ∈ H2m−kX

We may then define a Steenrod Operation

Sqi = Dk : HmX → Hm+iX

by taking k = m− i.
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Facts: Sq>m : HmX →? (undefined, sometimes set to zero). The map Sqm : HmX → H2mX sends x to

x2. And then Sq0(x) = x, which is very nontrivial from this point of view.

Also Sq<0(x) = 0, which is also nontrivial. The operations between 0 and m are completely mysterious.

We also have that

Sqm(xy) =

m∑
i=0

Sqi(x)Sqm−i(y)

where juxtaposition denotes the cup product. The coproduct in H∗(Z/2,Z/2) is em 7→
∑
ei ⊗ em−i (the

dual to H∗(Z/2,Z/2) being polynomial).

We can think of these as axioms

(1) Sqm(x) = x2

(2) Sq0(x) = x

(3) Sqm(xy) =
∑m
i=0 Sq

i(x)Sqm−i(y)

Homework #10

(3) Calculate Sqmxk with respect to H∗(RP∞;Z/2) = Z/2[x] with the degree of x being one. Use the

axioms above.

There are compositions SqiSqj = ? called Adam Relations. They’re not deep but require prowess in

combinatorics.

For p > 2 being the characteristic, we run into the fact that Z/p ( Σp (the symmetric group). So we

really need to talk about H∗(Σp; ?). Also because of signs, we can encounter either the trivial Z/p-module

or the sign representation.

We do have maps from functoriality.

H∗(Z/p; ?) H∗(Σp; ?)
transfer

res

This maps H∗(Σp;Z/p) into direct summands of H∗(Z/p;Z/p).
With this we’ll get maps

pi : HmX → Hm+2i(p−1)Xβpi : HmX → Hm+2i(p−1)+1X

β is the Bochstein from the short exact sequence in coefficients

0→ Z/p→ Z/p2 → Z/p→ 0

which gives a long exact sequence in homology with connecting map

Hm(X;Z/p) β−→ Hm+1(X;Z/p)

For p = 2, β = Sq1.

Example VII.0.1

H∗(BZ/p;Z) = Z[y]/(py) where deg y = 2.

And also H∗(BZ/p;Z/p) = Z/p[y] ⊗
∧

[x] where deg x = 1. There is also the integral Bochstein,

which is the connecting map of

0→ Z→ Z→ Z/p→ 0
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Which will give Hm(BZ/p;Z/p) β−→ Hm+1(BZ/p;Z). For m = 1 you can derive from exactness that the

integral bochstein is an isomorphism.

To get the mod p Bochstein, just compose with the map induced by Z→ Z/p→ 0.

We also have that Sqi, β, pi commute with the isomorphism

Hm(X)→ Hm+1(ΣX)

Once we get to stable homotopy theory we can use what’s called the Adams Spectral Sequence, which takes

these as data, to compute stable homotopy groups

VIII. Operads

Definition VIII.0.1

A symmetric monoidal category C has a functor

⊗ : C × C → C

along with a unit 1 ∈ Ob C. We wish for this to be commutative, associative, and unital. We need this

in the 2-categorical sense. Namely we need natural isomorphisms

A⊗B ∼=ιAB
B ⊗A

A⊗ (B ⊗ C) ∼=αABC
(A⊗B)⊗ C

A ∼=µA
A⊗ 1.

We also need some axioms. These are called coherence diagrams. Consider a word in the operator an

units in a commutative monoid such as

((a · b) · c) · d→ (a · b) · (γ · d)→ a · (b · (c · d))

But we can also do it in a different way

((a · b) · c) · d→ (a · (b · c)) · d→ a · ((b · c) · d)→ a · (b · (c · d))

Any time I can do this in two different ways, I get a coherence diagram for symmetric monoidal categories.

This example is known as the pentagram diagram.

The actual coherence diagrams may be found on wikipedia.

Definition VIII.0.2

A closed symmetric monoidal category is one where for every object X, X⊗? : C → C has a right

adjoint Hom(X, ?).

Example VIII.0.1

Set, ×; compactly generated spaces, ×; R -Mod, ⊗; R -Chain, ⊗.

Definition VIII.0.3

In a symmetric monoidal category one can define an operad. This is a collection of objects D(m) for

m ∈ N0 satisfying the same formal properties as Hom(X⊗m, X) for some object X.

What structure maps do we have?

(1) 1
ι−→ D(1)
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(2) Σm acts on X⊗m by permutation. Thus we require Σm acts on D(m).

(3) There is a map Hom(X⊗m, X)⊗
⊗m

i=1 Hom(X⊗ki , X) → Hom(X⊗
∑

i ki , X). Thus we require

a map D(m)⊗
⊗m

i=1D(ki)
γ−→ D(k1 + · · ·+ km).

Axioms: Associativity, permutations, two unitalities.

Recommend the book by May. Geometry of Iterated Loop Spaces. [7].

There is an obvious notion of homomorphism of operads D1 → D2 given by maps D1(m) → D2(m)

preserving the above operations.

The operad Hom(X⊗m, X) is called the endomorphism operad End(X).

Definition VIII.0.4

An object X is called a D-algebra (for an operad D) if we are given a homomorphism of operads

D → End(X). Equivalently in terms of maps D(m)⊗X⊗m → X satisfying some diagrams.

Back to cochains (with coefficients in Fp). There is an operad E in Fp-chain such that

(1) E(m) ' Fp by chain homotopy (chain contractible).

(2) E(m) is a chain complex of free Fp(Σm)-modules. This is the same thing as a linear action of the

group.

Such an operad is called an E∞-operad. An algebra of such an operad is called an E∞-algebra. Running

these through a colocalization game, we get a unique derived category of E∞ algebras.

Theorem VIII.0.1 (Hinich-Schectman)

For a space X, C∗(X;Fp) has a natural structure of an E∞-algebra.

(Proof: a souped up version of Eilenberg-Zilber theorem).

Example VIII.0.2

Another example of an operad on Fp-chain given by N (m) = Fp. Then an N -algebra is the same

thing as a graded commutative DGA.

The structure maps are Fp ⊗X ⊗ · · · ⊗X → X. The Fp is a unit so it gets killed, and the signs of a

graded commutative DGA come from the signs in the chain complex tensor product.

Remark VIII.0.1

Just as we defined Steenrod operations, we can define operations in the homology of an E∞-Fp-algebra.

Caution: This time, Sq0 = 1 and Sqi = 0 for i < 0 do not hold.

A convention in the context of E∞-algebras is to put Qi = Sq−i. These are called Dyer-Landof operations.

Homework #11

(1) Write down the axiom diagrams for an operad (Ok to use reference, but adapt it exactly to the

concept covered in class).

Note: We have not constructed any example of an E∞-operad yet!

One method is to construct an E∞-operad in spaces, and apply chains.

E∞-operad in Top would satisfy

(1) E(m) ' ∗
(2) E(m) has the homotopy type of a CW-complex with Σm acting freely on cells.

Note: This requires constructing a map C∗(X)⊗C∗(Y )
ϕ−→ C∗(X × Y ) which is commutative, associative,

and unital strictly (on the nose).
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There is such a map (not in the opposite direction becuase of Steenrod operations being nonzer) called

the shuffle map (standard transformation of a product of two standard simplices).

E∞-algebras in spaces were in fact discovered first, and have a very close conection with generalized

cohomology. This is called Infinite Loop Space Theory.

VIII.1. Constructing E∞ Operads

An E∞ operad in spaces consists of the following

(1) C(m) ' CW-complex, Σm-equivariantly, and Σm acts freely on the cells (when G acts on the sets of

cells of a CW-complex we call this a G-CW-complex).

(2) C(m) ' ∗ (non-equivariantly).

Start with any operad M satisfying (1). For example M(m) = Σm. Then a M-algebra is a monoid (an

associative, unital).

Čech resolution If X is an object of a category G (with product), then this builds a simplicial object EX

in the same category G, that is a functor ∆op → G.

Then we set EXm = X × · · · ×X︸ ︷︷ ︸
m+1 times

. Labeling these coordinates 0, . . . ,m then the i-th face map {0, . . . ,m−

1} → {0, . . . ,m} gets mapped to the projection away from the i-th coordinate.

The degeneracies are given by applying the diagonal X
∆−→ X ×X in the appropriate coordinate given by

{0, . . . ,m+ 1} → {0, . . . ,m}. Namely this sends i, i+ 1 to i, so apply the diagonal to the i-th coordinate. In

some sense we have “EX = X∆,” or as a right Kan Extension along ∆→ ∗.
In Set,Top (compactly generated weakly Hausdorff spaces see [6]). Here we have the geometric realization.

If Y• is a simplicial space (simplicial object in Top, then

|Y•| =
∐

Ymxx∆m/(y, αt) ∼ (Y•(α)y, t) (α ∈ Mor(∆))

It suffices to just take faces and degeneracies (the generators).

Proposition VIII.1.1

If X 6= ∅, then |EX| ' ∗.

Proof sketch. We have some basepoint ∗ ∈ X. Then we have that

|EX| =
∐
m≥0

X{0,...,m} ×∆m/(y, αt) ∼ (EX(α)y, t).

We have a map hs : |EX| → |EX| given by

hs((x0, . . . , xm), [t0, . . . , tm]) = ((x0, . . . , xm, ∗), [(1− s)t0, . . . , (1− s)tm, s]).

Homemwork #11

(2) Verify that this definition is compatible with face and degeneracy identification, proving that for a

non-empty space X, |EX| ' ∗.

If s = 0, then h0 = Id, and if s = 1¡ then h1 is constant at (∗, 1) by face/degeneracy identifications.

Geometric realization preserves products (triangulation of ∆m × ∆n by shuffles). If D is a simplicial

operad in spaces, then |D•| is also an operad. This shows us by definition then that |EM| is an E∞ operad.
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Definition VIII.1.1

An E∞-space is an algebra over an E∞-operad in spaces.

We can play the game to show that D-algebras have colocalization, giving a derived category.

Theorem VIII.1.2

The derived category does not depend on the particular E∞-operad chosen.

Proof sketch. If D, ξ are E∞-operads then there is a diagram

D × ξ

D ξ

proj. π1 proj. π2

For a homomorphism of operads f : ξ → D we have a pullback functor f∗ : D-algebra → ξ-algebra, one

proves that π∗1 , π
∗
2 induce equivalence of derived categories of algebra.s

[7] does this more concretely without derived categories.

VIII.2. Infinite Loop Space Theory

Recall that a generalized cohomology theory is determined by some based spaces Zn where n ∈ Z equipped

with weak equivalences

Zn
∼−→ ΩZn+1. (?)

In fact N0 would do. GivenZ0, define Z−m = ΩmZ0.

The spaces Zm of (∗) are called infinite loops spaces. Peter May notices that infinite loop spaces (up to

') are E∞-spaces, and connected E∞-spacesm are infinite loop spaces.

Application: Construction of generalized cohomology theories. For example, we can consider alegbraic

K-theory.

Why are infinite loop spaces E∞-spaces. Consider thatE∞-spaec are commutative monoids up to homotopy

and all reaonsonable higher homotopies.

What does this have to do with loops: πm is commutative for m ≥ 2. Consider a space of the form Ω∗X,

X is a based space, and ΩmX is Hom(([0, 1]m, ∂[0, 1]m), (X, ∗)).
Peter May invented an operad so that m-loop spaces are E∞ algebras over this operad ξm.

The litte n-cubes operad Em(k) is merely a configuration of k cubes in [0, 1]m with disjoint images.

It is obvious then that ΩmX (as defined above) is a Cm-aglgebra (same as our proof of commutativity of

π,).

Inclusions of operads

E1 ↪→E2 ↪→ · · · .

Take a little cubes ×[0, 1] Then

C∞ =
⋃
Cn.

May tells us that C∞ is a C∞-algebra, that is an E∞-operad algebra.

Cm is the little m-cubes operad. It acts on the loop space ΩmX so that it is a Cm-algebra.

We can then take C∞ =
⋃
m Cm We wish to see that C∞ acts on an infinite loop space Zm

∼−→ ΩZm+1.
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Definition VIII.2.1

A collection of based spaces (Zm), m ⊆ N0 together with based homeomorphisms ρm : Zm
∼=−→ ΩZm+1

is called a (May) spectrum.

A morphism of spectra (Zm)→ (Tm) is a collection of based maps fm : Zm → Tm with commutative

diagrams

Zm Tm

ΩZm+1 ΩTm+1

fm

Ωfm+1

Therefore if (Zm) is a May spectrum, then obviously C∞ acts on each Zm (i.e. each Zm is an E∞-space).

Can we make a spectrum out of Zm
∼−→ ΩZm=1 that would give the same generalized cohomology theory

on CW-complexes?

Definition VIII.2.2

A prespectrum is defined the same way as a spectrum, except no condition is given on the continuous

map ρm (besides being a based continous map)

Thus there is a forgetful functor Spectra→ Prespectra. One can prove that there is a left adjoint (i.e., a

free functor) L : Prespectra→ Spectra, which we call spectrification. This was proved by Freyd-Kelly in a

transfinite argument.

For the moment we should not we’re working with the following convenient category of spaces (see [6]).

• Weakly Hausdorff, compactly generated spaces

• Closed symmetric monoidal category under ×.

L(Dn)k can be described explicitly if (Dn) is an inclusion prespectrum which means that ρn : Dn → ΩDn+1.

Then we have that

(L(Dn))k = colim ΩmDk+m = colim(Dm ↪→ ΩDm+1 ↪→ Ω2(Dm+2) ↪→ · · · ).

The issue with non-inclusions: Ω commutes past colimit of a sequence of inclusions, but not an arbitrary

sequence.

Then for general Zm
∼−→ ΩZm+1, we replace them by inclusions by looking at the based mapping cylinder

ΣZm → Zm+1 recursively.

Theorem VIII.2.1 (May)

A connected E∞-space (' CW-complex) is ' to an infinite loop space (Z0 for some spectrum (Zm)).

[7]

Note: since it doesn’t matter which E∞-operad we are using. We may as well use EM whereM(k) = Σk.

By construction then we have a map of operads M→ EM. An M-algebra is a topological monoid. Thus

an EM-space (E∞-space) is a topological monoid.

Since EMk ' ∗, this topological monoid is commutative up to homotopy (and higher homotopies). In

particular, π0 for such a space is a commutative monoid. If X was an infinite loop space, π0X would be

forced to be an abelian group (associated generalized cohomology theory gives E has E0(∗) = π0X).

One can construct a “group completion” of X, say X → X which satisfies

• On π0 is the K-groupification (the universal abelian group on this commutative monoid, Kπ0X).

• H∗(X;Z) = [π0X]−1H∗(X;Z). Where H∗(X;Z), homology of a commutative monoid is a graded

commutative ring, using the product µ : X ×X → X and chain-approximation CX ⊗ CX → CX.
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VIII.2.1. Homework #11

(3a) Prove that a path-connected topological monoid X is a simple space. Namely π1X is commutative

and acts trivially on πmX for m > 1.

Recall VIII.2.1

We should recall how π1X acts on πmX. 2

(3b) Prove that S2 ∨ S1 is not homotopy equivalent to a topological monoid. (Consider how π1 acts on

π2).

Let first G be a (discrete) group. Recall the Čech resolution EG = |EG|, where EG• is the simplicial set

EGm = G{0,...,m}.

G acts on EG as g(g0, . . . , gm) = (gg0, . . . , ggm), and it acts freely, properly discontinuously, and all the

nice things.

We then call BG := EG/G. Thus we have G→ EG→ BG as a fibration (where EG→ BG) is a universal

covering. This shows another construction of BG because π1BG = G and πmBG = 0 for m > 1.

Another description of BG which can be generalized. Again we have BG = |BG•|. And we define

BGm = Gm = {(h1, . . . , hm)}.

Then

(g0, g1, . . . , gm) 7→ (h1, . . . , hm)

Where we put hi = g−1
i−1gi. This is called dehomogenization (and is an isomorphism).

g−1
0 g1 = (gg0)−1(gg1).

We wish to describe the faces and degeneracies directly in terms of (h1, . . . , hm).

• For the 0-face, drop h1 to get (h2, . . . , hm)

• For the i-th face for 1 ≤ i ≤ m− 1 we get (h1, . . . , hi−1, hihi+1, hi+2, . . . , hm)

• For the m-th face, drop hm to get (h1, . . . , hm−1).

• For degeneracies, insert a unit. (h1, . . . , hi−1, 1, hi, . . . , hn).

This is BG (Bar construction = classifying space = nerve). We can already see that we can do this for a

monoid, getting us BM for a monoid M .

Now we see that an E∞-space X is a topological monoid. The group completion is constructed by

X = ΩBX

Let C be a small category. Similarly as for monoids, we can generalize the Bar construction (aka the nerve).

We have a simplicial set BC• where

BCn = {composable n− tuples}

BC0 = ObC

The faces are compose γi, γi+1, and the degeneracies insert a unit.

Theorem VIII.2.2

If C is a small symmetric monoidal category then BC is an E∞-space.

Proof Sketch. The Street Construction: C is equivalent to a “permutative category”
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Definition VIII.2.3

A permutative category has an operation ⊗ which is strictly unital and associative. We have σ :

X ⊗ Y → Y ⊗X such that σ2 = Id and also

X ⊗ Y ⊗ Z X ⊗ Z ⊗ Y

Z ⊗X ⊗ Y

X⊗σ

σ σ⊗Y

Then the operad M defined by M(n) = Σn acts on C in the sense that we have

M(n)× C × · · · × C → C

and this is given by

g,X1, . . . , Xn 7→ g−1X1 ⊗ · · · ⊗Xng

EM• acts on BC•. We then take simplicial realization and EM acts on BC.

Comments:

(1) If a category C has an initial object (or terminal object) in particualr, or if it as zero, then BC ' ∗
(same proof as EX ' ∗).

Often, what does give interesting examples is to take the subcategory of isomorphisms in some

category.

(2) Let R be a commutative ring. Take Ob C = N0, and Mor(m,n) = 0 for m 6= n and Mor(m,m) =

GLm(R).

The symmetric monoidal structure is just the block sum of matrices. This is a permutative category,

and it’s fairly clear that

BC =
∐
m≥0

BGLmR.

This is an E∞-space. Then π0BC = N0. Thus we must apply the group completion BC = ΩB(BC)
by viewing BC as a topological monoid.

This is an infinite loop space Zm giving a cohomology theory KR = Z0 × K0R (the algebraic

K-theory, K0R is discrete).

Theorem VIII.2.3 (Quillen)

The group completion ΩB
(∐

m≥0BGLmR
)
' BGL∞R+ × Z, where + denotes the Quillen plus

construction.

Proof Sketch. First construct a map

BGL∞R+ → X :=

ΩB

∐
m≥0

BGLmR


0

using the fact that X is an E∞-space, thus a topological monoid, and so π1X is abelian. Also H∗X =

H∗BGL∞R because

H∗X = [π0]X−1

H∗ ∐
m≥0

BGLmR

 = H∗BGL∞[t, t−1]
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where t = (1). Thus by the universal property of the plus construction there is the desired map. This map is

both an isomorphism in π1 and an isomorphism in homology.

To finish the proof, one needs to show that BGL∞R+ is a simple space (to get weak equivalence). That

is we need to show that π1 acts trivially on πn for n > 1 (we already know π1 is abelian). A key step of this

is in homework.

G = GL∞R,E = [GL∞R,GL∞R] and [E,E] = E.

The universal coer of BG+ is BE+ by construction. Why does π1BG
+ = G/E act trivially on πnBE

+.

It is not true that the action of g ∈ G on E by h ∈ E 7→ ghg−1 is by conjugation of an element of E.

However, for any m elements h1, . . . , hm we can find an element q ∈ E such that

ghig
−1 = qhiq

−1.

An element of πmBE only meets finitely many simplices, and therefore finitely many hi.

The whitehead lemma says that
[
g 0

0 g−1

]
∈ E.

Homework #12

(1) Let G be a (discrete) group, g ∈ G. Then g acts on G by conjugation. Therefore g acts on BG by

conjugation. Prove that the map γg : BG→ BG is homotopic to the identity.

Better to think of BG ∼= EG/G, where EG is the Čech resolution on which G acts on the left.

Then find a G-equivariant map

EG EG

BG BG

ϕ

γg

You may use the fact that EG is a free G-CW-complex (non-degenerate simplices are the cells). Then

prove that any two self-maps of a contractible free G-CW-complex are G-equivariantly homotopic.

Recall that a G-CW-complex has the cells as G-sets and the attaching maps are G-equivariant. A

free G-set is the same as a disjoint union of copies of G.

Given a small symmetric monoidal category C we can build BC an E∞-space, and then ΩB(BC ) is an

infinite loop space (being a group completion). This then is a spectrum

Example VIII.2.2

Let C be the category of finite sets with bijections (symmetric monoidal operation is
∐

), permutatively

we have C =
∐
m≥0 Σm. Then we have that

B

∐
m≥0

Σm

 =
∐
m≥0

BΣm

is an E∞-space. What spectrum corresponds to the group completion?

ΩB

∐
m≥0

BΣm

 ' BΣ+
∞ × Z.
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We also have

ΩB

∐
m≥0

BΣm

 = colimm→∞ΩmSm.

The map ΩmSm → Ωm+1Sm+1 can come from a map Sm → ΩSm+1 adjoint to ΣSm
∼=−→ Sm+1.

This spectrum is the spectrification of the pre-spectrum Dm = Sm via ΣSm
∼=−→ Sm+1 giving a map

Dm → ΩDm+1. This is a special case of a general construction. Let X be a based space. Let

Dm = ΣmX ΣΣmX
∼=−→ Σm+1X Σm

⊆−→ ΩΣm+1X.

(Dm) is then an inclusion spectrum and Σ∞X is the spectrification of this.

Definition VIII.2.4

Σ∞X is called the suspension spectrum of X.

So then we have a situation like

(Finite sets,∼=) Σ∞S0∞ loop space machine

In some sense the suspension spectrum if free. Then we have

Spectra→ Spaces

E = (Zm) 7→ Ω∞E := Z0.

The left adjoint of Ω∞ is Σ∞ (the suspension spectrum). The verification is quick.

The category of finite sets is a “free symmetric monoidal category on one point” so plugging it into our

infinite loop space machine and getting back a free infinite loop space on “one point” is good.

That is if (C ,⊕) is a symmetric monoidal category and X ∈ Ob(C), then ∗ → X necessarily requires that

S 7→
⊕
S

X

If D is an operad and X is a space, the free D-algebra on X is

DX =
∐
m≥0

D(m)×Σm Xm. (×Σm = space of orbits)

(left adjoint to the forgetful functor).

If D is an E∞-operad, X = ∗ then

DX '
∐
m≥0

EΣm ×Σm ∗ =
∐
m≥0

BΣm.

If D = EM then these are all equalities.

You can then ask if the category (finite sets,∼=,
∐

) is symmetric monoidal equivalent to a strictly commu-

tative associative unital category. It is not

Proof Sketch. If so, then
∐
m≥0BΣm as an E∞-space would be equivalent to a topological commutative

monoid. We can then look at the chains

C∗

∐
m≥0

BΣm;F2


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is an E∞-algebra in Fp-chain. But it is not quasiisomorphic to a graded-commutative DGA because of

Dyer-Lashof operations.

For example, α ∈ H0BΣ1, the Dyer-Lashof operations (which we defined) on α are the basis of H∗BΣp.

That’s how they were defined!

For p = 2 we have Hi(BΣ2;F2) = Hi(BZ/2;F2) = Z/2. The generator is then equal by definition to

Qiα.

Spectra: Σ∞S0 is a spectrum, and so it gives a generalized cohomology theory. But here we see a

generalized homology theory more naturally. This is called stable homotopy groups. Say X is a based

CW-complex,

(Σ∞X)0 = colim ΩmΣmX

πk(Σ∞X)0 = πk colim ΩmΣmX

= colimπkΩmΣmX

= colimπk+mΣmX

This is called πstable
k X.

Maybe every spectrum gives rise to a generalized homology theory. Maybe we could do homotopy theory

of spectra?

For a spectrum E and a based space (compactly generated, weakly Hausdorff) X, and notationally

E = (Zm) with structure maps ρm : Zm → ΩZm+1.

F (X,E) = Tm Tm = F (X,Zm) (based maps)

We can also define X ∧ E. Remember for based spaces this is

X ∧ Y = (X × Y )/((X × ∗) ∪ (∗ × Y )).

Then X ∧ E = L(Um) (spectrification) where Um := X ∧ Zm.

Homotopy of spectra p, q : E → F is h : [0, 1]+ ∧ E → F which is f on {0}+ ∧ E and g on {1}+ ∧ E = g.

To define homotopy groups, I need to define spheres Sm,m ∈ Z. For m ≥ 0 just take Sm := Σ∞Sm.

Spectra have a shift functor

[k] : Spectra→ Spectra

E = (Zm) 7→ E[k] = (Zm+k).

To get negative spheres, take S`−k = (Σ∞S`)[−k]. It turns out that this only depends on `− k and not both

variables, as we should hope.

Homework #12

(2) Prove that Σ∞(ΣX)[−1] = Σ∞X. (realize that spectrification only depends on tail of prespectrum).

For a spectrum E, ΣE = S1 ∧ E. Also, the category of spectra (Spectra) has all limits and colimits.

Take limits “space-wise,” colimits are done space-wise to obtain a prespectrum, so then spectrify.

Sm := Σ∞Sk[m− k]. Per homework this does not depend on the choice of k ≥ 0. We also have that

Σ∞(ΣX) = Σ(Σ∞X) = S1 ∧ Σ∞X.
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We can define hSpectra by using smash products to define homotopies. [X,Y ] denotes the set of homotopy

classes of morphisms between X,Y . We can then of course define homotopy groups of a spectrum E via

πmE = [Sm, E]. (m ∈ Z)

These are always abelian groups because Sm = Σ2Sm−2, the proof is the same as for based spaces.

We can also define the mapping cone (homotopy cofibre) of a morphism of spectra f : E → F

Cf := colim



E F

E ∧ [0, 1]+

E ∗

0

f

1



Ff := colim



E F

E ∧ [0, 1]+

E ∗

0

f

1


Note: ΣE is not the same as E[1] for a general spectrum. On adjoints, equivalently, ΩE = F (S1, E) is

not the same as E[−1].

If E = (Zm)m∈N0
with structure map ρm : Zm → ΩZm+1. Then (ΩE)m = ΩZm, with structure maps

ρ′m : ΩZm → ΩΩZm+1. We need a switch of coordinates T : Ω2Zm+1 → Ω2Zm+1 then

ρ′m = T ◦ Ωρm.

Proposed isomorphism of spectra E[−1] → ΩE given by Zm−1
ρm−1−−−→ ΩZm. But when trying to check the

compatibility we see

Zm−1 ΩZm

ΩZm ΩΩZm+1

ρm−1

ρm−1 T◦Ωρm

Ωρm

Does not commute! This is wrong!

Definition VIII.2.5

A spectrum E is called a cell spectrum provided that E = colimE(m) with∨
i∈Im

Sdi fm−−→ E(m).

We should have that Cfm = Em+1.

Theorem VIII.2.4 (May,Lewis)

hSpectra has colocalization with respect to cell spectra and the class E of weak equivalences.

A weak equivalence is of course a morphism of spectra f : E → F which induces an isomorphism in all πk

for all k ∈ Z.

The derived category D Spectra = D hSpectra with respect to weak equivalences is called the stable

homotopy category
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Theorem VIII.2.5 (May,Lewis)

On D Spectra, Ω and LΣ are inverse equivalences of categories isomorphic to [−1] and [1] respectively

(where L denotes the left derived functor, aka cell approximate first).

Proposition VIII.2.6

If f : E → F is a morphism of spectra then Ff ∼ LCf [−1] weakly.

L symbol is usually omitted because mathematicians are lazy.

Proof Sketch. We have analogously to based spaces for a map f : E → F a long exact sequence

[W,ΩE] [W,ΩF ] [W,Ff ] [W,E] [W,F ].

We can prove in fact for E,F cell that

[W,E] [W,F ] [W,Cf ]

is also exact. The idea being that

E F Cf ΣE ΣF

W W ∗ ΣW ΣW

−Σf

Id

` g
h

− Id

k Σ`

using the theorem multiple times and then use the 5-lemma to show Cf [−1]
∼−→ Ff .

It follows that finite products are isomorphic to finite coproducts in D Spectra.

It turns out that the stable homotopy category is triangulated, and has a lot of structure.

D Spectra, DA (for A an abelian category) has products / coproducts.

Homework #12

(3) In DAb the map Z 2−→ Z does not have a kernel (i.e. there is no equalizer between 2 and 0).

This is set up with cell chain complexes and chain homotopy classes of maps. Shifts Z[k] are cell

complexes. If [?, ?] = MorDAb. Then

[Z[k], C] = Hk(C).

We also can see that for abelian groups A,B (considered as chain complexes in degree zero)

[A[−k], B] = [A,B[k]] = Extk(A,B)

Lemma VIII.2.7

Ab → DAb sending A to A is an inclusion of a full subcategory. This is sometimes called

the heart of the derived category with respect to chain homology. Also sometimes called the

t-structure.

To see this, note that free resolutions are cell approximations. We proved in class that morphisms

between free resolutions are the same as morphisms between the abelian groups.

The proof then becomes

(a) If K = ker(2 : Z → Z) exists in DAb, then HiK = 0 for i 6= 0. Non-zero would violate

uniqueness of the limit. Therefore K ∈ Ab.
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(b) But then K = ker(2 : Z→ Z) in Ab. But there exists a nonzero morphism C
f−→ Z in DAb so

that 2f = 0.

Hint, use that [A[−k], B] = [A,B[k]] = Extk(A,B).

Given a spectrum E and a CW-complex X, we can define the generalized homology and cohomology

theory on X corresponding to E by

ẼmX = πm(E ∧X) (?)

ẼmX = π−mF (X,E) = π0F (X,E[m]) (1)

= [X,Em]. (2)

The first is motivated by the sphere spectrum S = Σ∞S0 (the corresponding generalized homology theory is

πSmX = πmΣ∞X = πm(X ∧S)). It turns out that for a CW-complex X, ?∧X : Spectra→ Spectra preserves

weak equivalences.

Comment: With the (co)limit axioms on generalized homology and cohomology, and preservation by weak

equivalence axiom, every generalized homology and cohomology theory is represented by some spectrum.

Example VIII.2.3

K-theory cohomology comes from geometry (discuss later). There is still no known geometric inter-

pretation of K-theory homology.

VIII.3. Spectral Sequences: Revisited

Definition VIII.3.1

An exact couple is a long exact sequence of the form

D D

E

i

jk

Philosophy: from information about E, can we gain info about D.

We should want D,E to be Z-graded, with i, j having degree 0 and k having degree −1.

Massey: Observed that d1 = jk is a differential on E. We can then define E′ = H(E,d1). We can also

define D′ = im(i : D → D). There is a derived exact couple

D′ D′

E′

i′

j′k′

Intuitively, i′ induced by i, k′ induced by k, j′ induced by j ◦ i−1. But this is not immediately seen to be

well-defined.

We need another characterization of E′

E′ =
ker jk

im jk
=
k−1 ker j

j im k
=
k−1 im i

j ker i

Homework #13, Due: Monday Nov 29th

(1) Prove that

(a) ker i′ = im k′

(b) ker j′ = im i′
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(c) ker k′ = im j′.

The spectral sequence arises by iterating this process.

Lemma VIII.3.1

D(m) = im(im)

E(m) = k−1(im im)/j(ker im)

Often, we have an additional grading, making D,E bigraded. Then we understand Dp,q, Ep,q are in total

degree n = p+ q. The traditional bidegrees are then

D D

E

i

(1,−1)

j

(0,0)

k

(−1,0)

Then we have in the derived case

Dr Dr

Er

i

(1,−1)

j

(1−r,r−1)

k

(−1,0)

We then see dr has degree (−r, r − 1) as usual.

A cohomological spectral sequence is the same, just reverse signs of p, q.

Example VIII.3.1

AHSS (Atiyah-Hirzebruch Spectral Sequence) for a generalized homology theory L.

Here we have Dp,q = Lp+q(Xp) where X is a CW complex and Ep,q = Lp+q(Xp, Xp−1).

The exact couple is

Lp+q(Xp−1) Lp+q(Xp) Lp+q(Xp, Xp−1) Lp+q−1(Xp−1)

Dp−1,q+1 Dp,q Ep,q Dp−1,q
i j k

If r � 0 implies 0 = dr : Erp,q → · · · .
Define then E∞p,q = colimr E

r
p,q. This happens here because ir−1 is the inclusion of a lower dimensional

cell, and so its image is eventually zero. This then gives

E∞p,q =
ker(Lp+q(Xp, Xp−1)→ Lp+q−1(Xp−1))

j(kerLp+q(Xp)→ Lp+q(X))

=
im(Lp+q(Xp)→ Lp+q)(Xp, Xp−1)

im(ker(Lp+q(Xp)→ Lp+q(X))→ Lp+q(Xp, Xp−1))

= Lp+q(Xp)/(imLp+q(Xp−1) + ker(Lp+q(Xp)→ Lp+qX).

Then

FpLp+qX := imLp+qXp → Lp+qX).

Then E∞p,q = FpLp+qX/Fp−1Lp+qX

Note: Cohomological AHSS similarly converges to Lp+qX with

F pLp+qX = ker(Lp+qX → Lp+qXp−1).
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VIII.4. Back to Spectra

In Equation (?), we would really like X to also be a spectrum. Then we have

EmX = Lπm(X ∧ E)

EmX = π−mF (X,E).

What do these mean? Well defining X ∧ E by spectrifying Xm ∧ Em is wrong. A good way to see this is it

doesn’t satisfy Σ∞Z ∧ E ∼ Z ∧ E even for E cell.

Select two non-decreasing sequences αm, βm in N0 such that αm+βm = m. With αm, βm →∞ as m→∞.

Then

E ∧ F = LD Dm = Eαm
∧ Fβm

.

Then F (Z, ?) is right adjoint to Z∧?.

This gives a closed symmetric monoidal structure on D Spectra. But not on Spectra because of the choice

of (αm, βm).

But you might want that structure on spectra! (rigid rings, modules in Spectra!)

Next Semester: Math 697 (introduction to current methods).

The derived cateogry D Spectra is a closed symmetric monoidal category with ∧ and F (−,−).

Definition VIII.4.1

In a symmetric monoidal category C (operation ⊗). A strong dual of an object X is an object Y

together with morphisms

µ : 1→ Y ⊗X ε : X ⊗ Y → 1

such that the following diagrams commute

X X ⊗ Y ⊗X X
Id⊗µ

Id

ε⊗Id

Y Y ⊗X ⊗ Y X
µ⊗Id

Id

Id⊗ε

If this holds, we call X (and symmetrically Y ) strongly dualizable and write Y = DX

Comments: We have the following

(1) If Y = DX is a strong dual of X, then DX⊗? is both right and left adjoint to X⊗? (use definition

of adjunction via triangle identities).

(2) If C is closed, F (X, ?) is the right adjoint to X⊗?, and adjoints are unique, so if X is strongly

dualizable then

DX ⊗ Y ∼= F (X,Y )

DX ∼= F (X, 1)

(3) If X is strongly dualizable, then

X ⊗ F (Z, T ) ∼= F (Z,X ⊗ T )
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(4) DDX ∼= X.

Example VIII.4.1

If F is a field, then in F−Vect the category of vector spaces over F, then with ⊗ the tensor product

we have the usual duals.

Definition VIII.4.2

E is a ring-spectrum if we have

µ : E ∧ E → E ε : S→ E

and we have the following commutative diagram in DSpectra

E ∧ E ∧ E E ∧ E

E ∧ E E

Id∧µ

µ∧Id µ

µ

and similarly an identity axiom

Example VIII.4.2

If C = D Spectra, ⊗ = ∧.

For a space X and a commutative ring spectrum E, E∗X is a graded commutative ring (working in DTop).

Why? Well consider

E∗X ⊗ E∗X = F (X+, E)∗ ⊗ F (X+, E)∗ → F (X+ ∧X+, E ∧ E)∗

↪→ F (X ×X+, E ∧ E)∗
∆∗◦F (−,µ)−−−−−−−→ F (X+, E)∗ = E∗X

we can define morphisms of R-module spectra by commutativity with the operation. For R-modules

M → N

R ∧M M

R ∧N N

But the mapping cone Cf is not in general an R-module.

Back to strong duality. Which objects are strongly dualizable in D Spectra and what are their strong

duals?

Answer (Spanier): The best source is Adams stable homotopy + generalized cohomology [1]. Namely

these are Σ∞X[m] (m ∈ Z) where X is a finite cell spectrum.

Note: In D Spectra, we define for spectra E,X

EmX = πm(X ∧ E) EmX = π−m(F (X,E))

If X is strongly dualizable, then

EmX = πm(X ∧ E) ∼= πm(F (DX,E)) = E−m(DX)

Spanier gave a geometric model of strong duality in D Spectra before all of this was understood. The model

is entirely in spaces. Select some N > 0, and suppose K,L ⊆ SN with K ∩ L = ∅. (The case (?) we are

interested in: K,L are simplicial subcomplexes of some triangulation of SN . Further L is a deformation

retract of SN −K and likewise K is a deformation retract of SN − L). Then Σ∞K ' DL[N − 1]
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The way to construct the relevant maps is to select points a ∈ K, b ∈ L and a simple path ω in SN

from a to b. Furthermore, require ω(t) 6∈ K,L if t 6= 0, 1. Select the basepoint ∞ to be ω(1/2). Then

SN \ {∞} = RN . Thus we may define

µ′ : K × L→ SN−1

(x, y) 7→ x− y
‖x− y‖

We then have that K × {b} ' const and likewise for L. This gives us a deformed map µ : K ∧ L → SN−1.

Taking suspension spectra

Σ∞µ : Σ∞K ∧ Σ∞L→ SN−1

Σ∞K ∧ Σ∞L[1−N ]→ S0

when K = SN \ L we can also get ε and verify triangular identities on space level by hand.

This is called Spanier-Whitehead Duality

In notation, we quite often identify a CW-complex X with the spectrum Σ∞X.

Spanier-Whitehead Duality: For X ⊆ SN (say a simplicial subcomplex, then DΣ∞X = Σ∞(SN \X)[−N+

1].

Recall VIII.4.3

when Z in DSpectra is strongly dualizable

DZ = F (Z, S0)

What about X+? Well we have a cofiber sequence

X+ → S0 → ΣX

And after applying Σ∞ we have

DS0 → DX+ → DS0.

That is

SN \X[−N ]→ SN [−N ] = S0 → DX+ → SN \X[1−N ] = DX.

last term is the mapping cone.

Answer:

D(Σ∞X+) = D(X+) = C(SN \X → SN )[−N ]

if U is an open neighborhood of X in SN , this is the same as

C(U \X → U)[−N ]

A particularly interesting case is X = M being a compact smooth N -manifold. Then we can embed

M ⊆ RN ⊆ SN = RN ∪ {∞}

IX. Vector Bundles

General structure: A family of finite-dimensional vector spaces indexed by X.
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Form a category of space over X, whose objects are continuous maps Y → X and whose morphisms are

diagrams

Y Y ′

X

Definition IX.0.1 (Vector Bundle)

A topological vector space over X can then be defined in this category. Explicitly for a total space E

with a map p : E → X there are addition, multiplication, negation, and zero maps as below. For λ ∈ R,

E × E E

X

+

p×p p

E E

X

λ·−

p p

X E

X

0

IdX
p

E E

X

−

p p

satisfying the obvious commutative diagrams.

which is locally isomorphic to a product with Rn. That is there exists an open cover Ui of X such

that bulling back to each Ui, p
−1(Ui)→ Ui is isomorphic, as a vector space over Ui, to Ui × Rn → Ui.

Example IX.0.1

Möbius Band → S1.

Tubular Neighborhood Theorem: If M ⊆ M ′ is a smooth embedding of compact manifolds, then there

exists an open neighborhood U of M in M ′ which is homeomorphic to the total space of a vector bundle

(with M embedded as the 0-section).

The normal bundle of M in M ′ for example.

For M ⊆ RN ⊆ SN we have

DM+ = C(SN \M → SN )[−N ]

= C(U \M → U)[−N ]

= C(E \M → E)[−N ]

where U is a tubular neighborhood with bundle E, and E \M → E is the inclusion by embedding M into E

via the 0-section. Call E0 := E \M . We also have E = νMS
N , where νMS

N is the normal bundle of M in

SN

For a vector bundle E, what does C(E0 → E) look like?

Say, the bundle E
p−→ X over X has X compact.

Claim

C(E0 → E) is homootpy equivalent to the 1-point compactification of E, which is equivalent to

D(E)/S(E) (the 1-point compactification of the open disk bundle)

Where S(E)→ D(E) is the inclusion of the unit sphere bundle into the unit disk bundle.

The 1-point compactification of E (where p : E → X is a vector bundle, X compact) is called the Thom

space of E, someitmes denoted by XE or T (E).
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If X is not compact, D(E)/S(E) does not compactify E, so we need to define the Thom space by

XE := colim Z⊆X
compact

ZE

The conclusion: If M is a connected compact m-manifold embedded in RN then

DM+ = MνMRN

[−N ]

What can we say about νMRN . Well

νMRN ⊕ T (M) = N

where ⊕ = ×M is the whitney sum, T (M) is the tangent bundle of M , and N is the trivial bundle of

dimension N .

One can prove that (since M is compact), if N � 0 then the Whitney sum component of a bundle ξ in N

(a bundle µ such that ξ ⊕ µ ∼= N) is uniquely determined after isomorphism.

So in fact, selecting N � 0, νMRN is determined (we say: the normal bundle is stably determined).

Next: E-orientability for a commutative ring spectrum E (commutative monoid in DSpectra), leading us

to E-Poincaré duality.

For a compact connected smoothly embedded m-manifold M ⊆ RN we have by Spanier-Whitehead duality

that

DM+ = MνMRN

[−N ].

Recall that the Thom space of a vector bundle ξ → X for X compact is

Xξ = 1-point compactification of ξ

For general X, we have

Xξ = colim Z⊆X
compact

Zξ.

Recall: If E is a spectrum and X is strongly dualizable, then

EkX = E−kDX.

We know Σ∞M+ for a compact smooth connected manifold is strongly dualizable, so

EkM = ẼN−kMνMRN

We also see that νMRN has dimension N −m. We can think of Mξ as a “twisted suspension” of M by the

dimension of the bundle. Indeed if ξ = ` was a trivial bundle, then Mξ = Σ`M+.

Under what circumstances can we “untwist the Thom space to the eyes of the spectrum E”?

Suppose E is a commutative ring spectrum (a commutative monoid in DSpectra).

Thom realized that if ξ is an m-bundle on X, then there is a natural map

θ : Xξ → Xξ ∧X+

y ∈ ξ 7→ (y,proj y)

∞ 7→ ∞

It is an exercise to check continuity at ∞.

81



Faye Jackson December 3rd, 2021 MATH 695 - IX.0

If X is a CW-complex

Ẽ∗(θ) : Ẽ∗(Xξ ∧X+)→ Ẽ∗(Xξ)

and using that it is a ring theory, we have a map

Ẽk(Xξ)⊗ E`(X)→ Ẽk`(Xξ ∧X+)→ Ẽk+`(Xξ).

The m-bundle ξ is called E-orientable if there exists a class u ∈ Ẽm(Xξ) (called the Thom class) which for

each point x ∈ X restricts to a unit.

That is

Ẽm(Xξ)→ Ẽm({x}ξ) = Ẽm(Sm) = E0(∗).

If E is a ring spectrum then E0(∗) is a commutative ring, and so we can just trace u through this map and

see if it becomes a unit.

Thom Isomorphism Theorem:

If an m-bundle ξ is E-orientable with Thom class u, then

Ξ : Ẽm(Xξ)⊗ E`(X)→ Ẽm+`(Xξ)

restricts to an isomorphism

Ξ(u⊗?) : E`(X)→ Ẽm+`(Xξ)

Proof sketch. Take open cover {Ui}i∈I of X where ξ
∣∣
Ui

is trivial for each i. Then use the Meyer-Vietoris

sequence and the five lemma.

If I is infinite, a limit argument is needed.

Note that in fact

E`(X) = Ẽm+`(ΣmX+).

Thus if ξ is E-orientable, then Xξ “untwists” to the eyes of E.

Definition IX.0.2 (First Version)

A compact connected m-manifold is E-orientable for a commutative ring spectrum E when the normal

bundle νMRN is E-orientable.

Then we can conclude that

Ek(M) ∼= ẼN−kMνMRN ∼= EN−k−N+m(M) = Em−k(M)

because dim νMRN = N −m.

This is called E-Poincare duality.

How can we make the definition of orientability more elegant? The Thom class of νMRN (if there is one)

is in

ẼN−mMνMRN ∼= Em(M)

Definition IX.0.3 (Final version)

An E-orientation of a compacted connected smoothm-manifoldM is a class [M ] ∈ Em(M) (sometimes
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called the “fundamental class”) such that the embedding of pairs (M, ∅) ιx−→ (M,M \ {x}), for every

x ∈M sends [M ] to a unit.

That is we see that

Em(M)→ Em(M,M \ {x}) = Ẽm(Cιx) ∼= Em(U,U \ {x}) ∼= Em(Sm) = E0(∗)

where x ∈ U ∼= Rm is open. Again E0(∗) is a ring and we can define this correctly.

Theorem IX.0.1 (Poincaré duality)

If M is an E-orientable compact connected m-manifold then Spanier-Whitehead duality, using the

Thom class corresponding to the fundamental class [M ], define an isomorphism

EkM ∼= Em−kM

Remark IX.0.1

For E = HZ/2 (ordinary cohomology with coefficients Z/2) every (compact smooth connected)

manifold is HZ/2-orientable.

Note that HZ/20(∗) = Z/2 has a unique non-zero element.

HZ-orientability is equivalent to HR-orientability which (at least for compact, smooth, connected mani-

folds) is equivalent to the existence of a nowhere vanishing differential m-form.

This is related to the statement that Z only has two units.

X. A Plethora of Examples

For the last week, we will talk about Examples of Spectra, that is of generalized homology/cohomology.

Example X.0.1 (Universal)

BO(m) = {m-dimensional real vector subspaces of R∞}. That is EO(m)/O(m).

If we then consider

γmR = {(V, x) | V ⊆ R∞,dimV = m,x ∈ V }.

Then there’s a map γmR → BO(m).

Similarly for C, with BU(m) and γmC → BU(m).

Theorem X.0.1

If X is paracompact, then

{∼= clsses of real vector m-bundles on X} ∼= [X,BO(m)]

And also

{∼= clsses of complex vector m-bundles on X} ∼= [X,BU(m)]

The map is given by f : X → BO(m) to f∗γmR (the pullback), and likewise for complex vector bundles.

References: [8, 3]

This gives a geometric interpretation of K-theory (cohomology). A permutative category C with objects

N0 and morphisms m→ m given by U(m).
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We then set

A⊕B =

[
A 0

0 B

]
So then

BC =
∐
m≥0

BU(m)

is an E∞-space, and by group completion

ΩB(BC ) = BU+ × Z

where BU+ is the Quillen +-construction. Then

U =
⋃
m

U(m)

So we have that

π0U(m) = 0 π0BU(m) = 0π1U(m) = Z π1BU(m) = 0

By the fibration sequence U(m)→ EU(m) = ∗ → BU(m). Thus BU+ = BU .

Thus we have proved BU × Z is an infinite loop space without using Bott periodicity.

Note that

BU × |ZZ = colim

( ∐
m∈N0

⊕1−−→
∐
m∈N0

BU(m)→ · · ·

)
If X is compact Hausdorff, then [

X,
⋃
Zm

]
= colimm[X,Zm]

where Z0 ⊆ Z1 ⊆ · · · .
If X is compact then by definition

K0X = [X,BU × Z]

is the group completion of {∼= classes of complex vector bundles on X} which is a commutative monoid with

Whitney sum.

Grothendieck construction K is left adjoint to the forgetful functor Ab→ commutative monoids.

For example K(N0) = Z.

Elements of K0(X) are virtual bundles. Namely they look like

(ξ, µ)/∼

(ξ, µ) ∼ (ξ′, µ′) ⇐⇒ ∃ν ξ ⊕ µ′ ⊕ ν ∼= ξ′ ⊕ µ⊕ ν

We think of the pair (ξ, µ) as “ξ − µ.” For X compact, any virtual bundle is of the form ξ −N for N trivial,

should refer to Atiyah’s K-theory.

This definition of K0X as the group completion of isomorphism classes of vector bundles on X is not

invariant under weak equivalence. For X CW we have K0(X) = [X,BU × Z].

Vector bundles also have a tensor product. This introduces a commutative ring structure on K0X. In

fact, K is a commutative ring spectrum(for now, commutative monoid in DSpectra w.r.t ∧).
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Can we say something more rigit (= coherent) in Spectra, where ∧ is not a symmetric monoidal product.

Answer: yes. We will call this a multiplicative ∞ loop space.

Another example of a constructon of spectra:

X.1. Cobordism

The geometric problem of cobordism: compact smooth manifolds without boundy M of dimension m,

with equivalence defined by cobordism

Definition X.1.1

We say two compact manifolds M,N of dimension m are cobordant if there is a compact manifold

W of dimension m+ 1so that ∂W = M
∐
N with the normal data preserved.

That is

νR
N

W ⊕ τW ∼= N (trivial)

so that

τ
∣∣
M

= τM ⊕ 1 τ
∣∣
N

= τN ⊕ 1.

For refernece see [8]

to avoid the problems, we prescribe some requirement on the normal bundle νR
N

M (well-defined if whatever

structure we require on νR
N

M for N � 0 must be preserved by enlarging N , aka it is “stable”).

Example X.1.1

There are many examples

• N0 structure, then unoriented MO.

• Oriented (w.r.t HZ), gives oritented MSO

• Complex gives complex MU .

• Trivial gives framed ≤.

Equivalence classes of each type of manifolds under cobordism are called cobordism groupsMOm,MSOm,MUm.

Why groups? The group operation is
∐

, and the inverse is to add the trivial bundle, reverse sign of

1-dimensional subspace in the isomoprhism class.

What

Cobordism, compact smooth closed m-manifolds M with some normal data on νR
N

M which can be

• no data (unoriented)

• oriented

• complex

• trivial bundle (this is called framed cobordism)

modding out by cobordism, that is M1 ∼M2 when

M1

∐
M2 = ∂M

Where M has the same type of normal data, which restricts to Mi (usually with signs).

This is a group, whose operation is
∐

. How is this related to spectra?

We’re now going to follow the Pontrjagin-Thom construction

Embed M as M ⊆ RN ⊆ SN . Then there is a tubular neighborhood U of M , which is homeomorphic to

νR
N

M via some ι. This gives a map SN →MνRN
M (which is the Thom space, or the 1-point compactification of
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νR
N

M ). How? Well

SN
ϕ−→MνRN

M

U
ι7−→ νR

N

M

SN \ U 7→ ∗

This still uses the manifold. But! We have classification of bundles: ∼= classes of k-real bundles on M

via [M,BO(k)]. For oriented k-real bundles we have [M,BSO(k)] (where BSO(k) is the universal cover of

BO(k)). For complex k-bundles we have [M,BU(k)]. And there is only one trivial k-bundle [M, ∗] = ∗.
We apply this classification to the normal bundle νR

N

M . We have k = N −m expect in the complex case

where k = N−m
2 .

The classification map, say in the unoriented real case:

M → BO(k) (k = N −m)

νR
N

M → γkR

MνRN
M → BO(k)γ

k
R .

From the data of νR
N

M we get a map

SN → BO(N −m)γ
N−m
R

with N � 0. A cobordism, by an analogous construction, on the manifold representing the cobordism, gives

a homotopy. Thus by starting with a cobordism class we obtain a homotopy class

SN → BO(N −m)γ
N−m
R

In the oriented case, we have SN → BSO(N −m)γ
N−m
R . And in complex case we have N −m = 2k and

SN → BU(k)γ
k
C . In the trivial case we get SN → SN−m.

Thom observed that there is an inverse to this procedure. Say we have SN
f−→ BO(N −m)γ

N−m
R . Because

the Thom Space is locally nice, one can talk about transversality with respect to fibers. If f is transverse

to the 0-section embedding BO(N −m) in the Thom Space, then f−1(0-section) is an m-manifold. In the

cases with structure, it automatically gains the desired structure on νR
N

M .

Theorem X.1.1 (Thom)

These two procedures are inverse to each other. For details see [8, 10].

What about this N � 0? Well then we have

MOm = colimk πm+kBO(k)γ
k
R

MSOm = colimk πm+kBSO(k)γ
k
R

MUm = colimk πm+2kBSO(k)γ
k
C

Mframed(m) = colimk πm+kS
k = πmS = πSm.

The first three can be thought of as homotopy groups of twisted suspension spectra, which are now called

Thom spectra. This means cobordism is intricately linked with stable homotopy theory.

Consider the complex case. We have a prespectrum D2k = BU(k)γ
k
C . This is given by

Σ2D2k → D2k+2
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BU(k)γ
k
C⊕1C → BU(k + 1)γ

k+1
C

via the classsification of (k + 1)-bundles. We could then just set D2k+1 = ΣD2k.

We spectrify to get MU (in the other csaes MO,MSO,S). This tells us that framed cobordism groups

are stable homotopy groups of spheres, and we can get the first few stable homotopy groups this way before

it becomes intractable.

Exercise X.1.2

Show that π1S = Z/2 using this method.

Amazingly, in the other cases we listed, the cobordism groups (π∗ of the Thom spectra MO,MSO,MU)

can be completely calculated. This can be calculated by general methods of calculating homotopy groups of

spectra. Namely, this uses the Adams spectral sequence.

Strategy: Look at F (HZ/p,HZ/p)∗ = A∗ (the Steenrod Algebra), these are stable operations (that is

natural transfromations) in mod p cohomology of spaces. We work modulo p because Fp is a field. We have

that

F (HZ, HZ) = Z⊕ (p-torsion, all p together).

The Adams Spectral Sequence:

ExtA∗(H
∗X,Z/p)⇒ (πS∗X)∧p

That is πS∗X completed at p, where X is a CW-complex of finite type. This comes from

X → X ∧HZ/p→ X1

X1 → X1 ∧HZ/p→ X2

all of these cofibration sequences (mapping cones then) working entirely in the category of spectra. This

leads to an exact couple, giving the adams spectral sequence. A great book for this is Ravenel’s Complex

Cobordism and Stable Homotopy Groups of Spheres [12]

Hard for S, but for MO,MSO,MU it is relatively easy. For example

π∗MO = F2[yi | i 6= 2k − 1].

Furthermore

MO =
∨

Σ2HZ/2

This is just a sum of copies of HZ/2, sometimes called a (GEM, a Generalized Eilenberg-Maclane spectrum

aka nothing new).

However π∗MU is more interesting

π∗MU = Z[x1, x2, x3, . . .]

where deg(xi) = 2i. This is an interesting new spectrum (not a GEM). HOW?

X.2. Complex Oriented Spectra

A commutative ring spectrum (commutative monoid in DSpectra) E is called complex-oriented when the

universal complex line bundle γ1
C on CP∞ = BU(1) is E-oriented.
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What does the Thom Space (CP∞)γ
1
C look like? For any bundle ξ on a space X, we have a cofiber sequence

S(ξ)+ → X+ → Xξ

where S(ξ) is the unit sphere bundle (given a Euclidean metric), equivalently S(ξ) ' ξ \ (0-section). We then

know that

S(γ1
C ' γ1

0 \ (0-section) = C∞ \ 0 ' ∗.

Therefore (CP∞)γ
1
C ' CP∞. This comes from a cofiber sequence

S0 → CP∞+ → (CP∞)γ
1
C

Next time: talk more about complex oriented theories and formal group laws, why you might care about

equivariant topology and structured / coherent topology.

If a cohomology theory is complex oriented and u is the Thom class, then

E∗CP∞ = E∗[[u]]

where we allow infinite sums which are homogeneous, with u having cohomological degree 2. One can compute

this with AHSS

Similarly E∗(CP∞ × · · · × CP∞) = E∗[[u1, . . . , um]].

Then CP∞ × · · · × CP∞ → BU(m). This then gives a map

E∗BU(m)→ E∗(CP∞ × · · · × CP∞) = E∗[[u1, . . . , um]]

But note CP∞ × · · · × CP∞ = B(S1 × · · · × S1), with an action Σm ⊆ U(m). On Homework, we proved

inner automorphisms of G induce ' Id on BG.

This means it factors through as

E∗BU(m)→ E∗[[u1, . . . , um]]Σm → E∗[[u1, . . . , um]]

If ci = σi(u1, . . . , um) is the elementary symmetric polynomial this is E∗[[c1, . . . , cm]].

AHSS injects on E2-terms so target collapses. Thus this is an isomorphism and

E∗BU(m) = E∗[[c1, . . . , cm]]

We can then induct BU(m − 1)+ → BU(m)+ → BU((m)γ
m
C to show γmC is E-oriented. Every complex

bundle is then E-oriented. The symmetric polynomials c1, . . . , cm are called Chern classes.

Let ξ be an m-bundle on X, then ci ∈ E2iX. What is the classification of CP∞ ×CP∞ → CP∞, the line

bundle γ1
C ⊗ γ1

C.

Also CP∞ = K(Z, 2), addition in H2(?;Z). Well this is a map

E∗[[u]]→ E∗[[u1, u2]]

u 7→ F (u1, u2) = u1 +F u2.

We get properties like

x+F 0 = x = 0 +F x

x+F y = y +F x

(u+F v) +F w = u+F (v +F w)
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a power series F ∈ R[[u, v] which satisfies these two properties is called a formal group law (FGL).

Example X.2.1

K-theory, K∗ = K∗(∗) = Z[β, β−1] where β is a Bott class in degree 2. If we omit β from the notation,

then

u = γ1
C − 1 ∈ K̃0CP∞

that is a virtual bundle of dimension zero. The tensor product of u+1, v+1 is (u+1)(v+1). Subtracting

1, the formal group law is

u+F v = u+ v + uv.

This is called a multiplicative FGL.

For HZ (ordinary cohomology) we have u+F v = u+ v. This is called an additive FGL.

Example X.2.2

E∗RP∞. We then have a cofiber sequence

RP∞+ → CP∞+
(γ1

C)2−−−→→ (CP∞)(γ1
C)2 .

If E is complex-oriented, then we have

E∗RP∞ E∗[[u]] E∗[[u]][2].
u+Fu

In principle this is a long exact sequence, but if the right map is injective, it’s a short exact sequence

and

E∗RP∞ = E∗[[u]]/(u+F u).

Example X.2.3

K-theory (ignore the Bott class. Then

[2]Fu = (1 + u)2 − 1 = 2u+ u2.

This is injective on Z[u]. Thus

K0RP∞ = Z[[u]]/(1 + u)2 − 1

K1RP∞ = 0

This is isomorphic for t = 1 + u to

(Z[t]/(t2 − 1))∧t−1 = Z2 ⊕ Z.

Where does this come from? Well t is essentially the tautological bundle. When restricted to Z/2,

Z[t]/(t2 − 1) is the complex representation ring of Z/2. That is

R(G) = K(comm. monoid of f.d. complex representations of G).

This is an example of the below theorem.

Theorem X.2.1 (Atiyah-Segal Completion)

If G is a compact Lie group (including finite groups) then K0BG = (R(G))∧I , where I is the augmen-

tation ideal (virtual representations of dimension zero) and K1BG = 0.
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They considered G-equivariant K-theory. For compact CW-complexes, you want to take G-equivariant

complex bunbldes. Then this comes from

K0
G(∗) = R(G) K1

G(∗) = 0.

This motivated the idea of equivariant generalized cohomology theory.

X.3. More Formal Group Laws

Can we classify Formal Group Laws? Well let

F (x, y) =
∑
i,j≥0

ai,jx
iyj

and consider the Lasard ring

L = Z[aij ]/(relations from requiring that F be an FGL).

For example

ai,j = aj,i aio = 0, i > 1 . . .

So now F is an FGL on L. Then we have that

{FGLs on R} = MorRing(L,R)

Theorem X.3.1 (Lasard’s)

We have that L = Z[x1, x2, . . .].

We now notice the complex cobordism spectrum MU is complex-oriented ((CP∞)γ
1

is a term in the prespec-

trum).

Theorem X.3.2 (Milnor-Novikov)

The FGL on MU∗[[u]] (from complex orientation) is the Lasard universal formal group law. This is

somehow familiar because (MU∗ = Z[x1, . . . , ])

Why are FGLs important? They come up in number theory. Natural question: can we make a complex-

oriented spectrum from MU say by “killing generators”, inverting others, and so on.

Answer: Not in the derived category! We need some coherence and some replacement for ∧ not being

strictly commutative, associative.

This becomes the general theory of

Brave new algebra, Spectral algebra, Higher algebra.

This subject is focused on how to introduce higher coherence.

How do FGLs come up in number theory. Well if K is a finite field extension of Q, that is called a number

field. We can describe Galois extensions of K ⊆ L with abelian Galois group by their number theoretical

properties. This area of mathematics is called class field theory.

Formal Group Laws cannot do Class Field Theory, but they can do it locally. The local question is to

instead consider Qp = fractions of Zp, where Zp = limZ/(pn). A finite field extension Qp ⊆ K is called a

local number field.

The finite exntesions of Fp are Fpn , with Gal(Fpn/Fp) = Z/n.

We can lift to Zp ⊆W . The field of fractions K (unramified degree in extension of Qp). Then W = OK .
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Theorem X.3.3 (Lubin-Tate)

if we have xpi1 + · · ·+ px = f(x) where the middle bit is divisible mod p, then there exists an FGL

such that [p]Fx = f(x) on OK .

Then

K[x]/f◦n(x)/f◦(n−1)(x)

this is a totally ramified (Eistenstein’s polynomial) extension of K, which is both abelian + Galois.

Furthermore F is an OK module Then [α]x makes sense for α ∈ Ok. Furthermore the Galois action is

α(x) 7→ [α]x.

Therefore we have that

Gal(L/K) = (OK/pmOK)×.
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