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Definition .0.1

Lets introduce a new category Pairs whose objects are pairs of spaces (X,Y ) where Y is a subspace

of X. A morphism (X1, Y1)→ (X2, Y2) is a continuous map such that f(Y1) ⊆ Y2.

If A is an abelian group, there are functors Hm(?;A) : Pairs→ Ab and Hm(?;A)→ Pairsop → Ab.

To do this we define C(X,Y ) := C(X)/C(Y ). That is Cm(X,Y ) := Cm(X)/Cm(Y ), and this will also be

a chain complex of free abelian groups by some basic homological algebra. This follows by the principal that

if T ⊆ S then ZS/ZT ∼= Z(S \ T ).

From this point we cna just define C(X,Y ;A) := C(X,Y ) ⊗ A and C∗(X,Y ;A) := Hom(C(X,Y ), A).

Taking homology of the chain complex gives homologies Hm(X,Y ;A) and Hm(X,Y ;A).

There is a short exact sequence

0 // C(Y ) // C(X) // C(X,Y ) // 0

Note here that an exact sequence is a chain complex with homology zero (although we stop the convention

that if it stops we fill in with zeros, so there is no condition on the first/last maps).

We also have short exact sequences

0 // C(Y ;A) // C(X;A) // C(X,Y ;A) // 0

0 // C∗(X,Y ;A) // C∗(X;A) // C∗(Y ;A) // 0

Note! ?⊗A and Hom(?, A) are not exact. That is they do not preserve exact sequences. However, they do

behave well with direct products, as (⊕
i

Bi

)
⊗ ∼=

⊕
i

(Bi ⊗A)

Hom

(⊕
i

Bi, A

)
∼=
∏
i

Hom(Bi, A)

So ?⊗A and Hom(?, A) preserve split exact sequences. For completeness we recall this definition

Definition .0.2

A split exact sequence has the form

0 // A
i
// B

j
// C //

s

^^
0

This exhibits (i, s) : A⊕ C
∼=−→ B, and so Hom(?, A) and ?⊗A preserves this.

A short exact sequence at the level of the chain complexes induces a long exact sequence in homology. I.E.

if C1, C2, C3 are chain complexes with a short exact sequence:

0 // C1 // C2 // C3 // 0

Then there is a long exact sequence in homology

· · · // Hn(C1
∗) // Hn(C2

∗) // Hn(C3
∗)

∂
// Hn−1(C1

∗) // · · ·

Where the morphisms between n-th homology are the induced maps and the ∂ morphism is complicated (see

[1])

1



Faye Jackson September 3rd, 2021 MATH 695 - .1

Definition .0.3

Let F,G : C → D be functors. A natural transformation η : F ⇒ G consists of a collection of

maps ηX : F (X)→ G(X) for every object X in C so that for any map f : X → Y the diagram below

commutes

F (X)
ηX
//

F (f)

��

G(X)

G(f)

��

F (Y )
ηY
// G(Y )

Great!

Definition .0.4

Two categories C,D are equivalent when there are functors F : C → D and G : D → C such that

F ◦G ∼= IdD and G ◦ F ∼= IdC . Here ∼= denotes a natural isomorphism.

A long exact sequence in homology of a space (X,Y ) with coefficinets in A is given below

· · · // Hm(Y ;A) // Hm(X;A) // Hm(X,Y ;A)
∂
// Hm−1(Y ;A) // · · ·

And in cohomology we have

· · · // Hm(X,Y ;A) // Hm(X;A) // Hm(Y ;A)
δ
// Hm+1(X,Y ;A) // · · ·

Both ∂, δ are natural.

.1. Eilenberg-Steenrod Axioms

We now list the Eilenberg-Steenrod axioms for homology (cohomology). First Hn(?;A) and Hm(?;A) are

covariant/contravariant functors respectively from Top or Pairs into Ab.

Homotopy Axiom

We also require that homotopic maps in Top or Pairs induce the same map in (co)homology.

We can define categories hTop and hPairs whose objects are the same as Top and Pairs and whose

morphisms are equivalence classes of maps up to homotopy.

Then the above condition is the same as requiring that Hm(?;A) and Hm(?;A) are covariant/contravariant

functors from hTop or hPairs into Ab.

The key idea to providng this axiom is something called a chain homotopy.

Definition .1.1

Let f, g : C → D be chain maps. A chain homotopy is a sequence of homomorphisms of abelian

groups hm : Cm → Dm+1 satisfying

dh+ hd = f − g

One can then define hChain, whose objects are chain complexes and whose morphisms are chain-

homotopy classes of chain maps.

Excision Axiom

Let Z ⊆ Y ⊆ X where ClosureX(Z) ⊆ InteriorX(Y ).

Then there is a map of pairs (X \Z, Y \Z) ⊆ (X,Y ) given by the inclusion. This induces an isomorphism

on Hm(?;A), Hm(?;A).
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Limit Axioms

Take a collection os spaces Xi. Then the inclusions Xi ↪→
∐
iXi induces isomorphisms:

⊕
i

Hm(Xi;A)→ Hm

(∐
i

Xi;A

)

Hm

(∐
i

Xi;A

)
→
∏
i

Hm(Xi;A)

More generally we have something nice that holds for homology and not for cohomology if you know about

limits of diagrams F : J → Pairs.

Hm(limF ;A) ∼= limHm(F ;A)

Exactness Axiom

Each pair (X,A) induces a long exact sequence via the inclusions as above in (co)homology

· · · // Hm(Y ;A) // Hm(X;A) // Hm(X,Y ;A)
∂
// Hm−1(Y ;A) // · · ·

And in cohomology we have

· · · // Hm(X,Y ;A) // Hm(X;A) // Hm(Y ;A)
δ
// Hm+1(X,Y ;A) // · · ·

At this point if we replace Hm by Em and Hm by Em we obtain what are called generalized (co)homology

theories.

Dimension Axiom

To get ordinary (co)homology, we require that Hm(∗) = Hm(∗) = 0 for m 6= 0.

Homework 2021-09-07

Define Em(X) = Em(X, ∅) and Ẽm(X) := Em(X, ∗) where ∗ is a basepoint.

(4a) Using the long exact sequence, prove that for any generalized (co)homology and a based space X

Em(X) = Ẽm(X)⊕ Em(∗)

Em(X) = Ẽm(X)⊕ Ẽm(∗).
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