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Given a small symmetric monoidal category C we can build BC an E∞-space, and then ΩB(BC ) is an

infinite loop space (being a group completion). This then is a spectrum

Example .0.1

Let C be the category of finite sets with bijections (symmetric monoidal operation is
∐

), permutatively

we have C =
∐

m≥0 Σm. Then we have that

B

∐
m≥0

Σm

 =
∐
m≥0

BΣm

is an E∞-space. What spectrum corresponds to the group completion?

ΩB

∐
m≥0

BΣm

 ' BΣ+
∞ × Z.

We also have

ΩB

∐
m≥0

BΣm

 = colimm→∞ΩmSm.

The map ΩmSm → Ωm+1Sm+1 can come from a map Sm → ΩSm+1 adjoint to ΣSm
∼=−→ Sm+1.

This spectrum is the spectrification of the pre-spectrum Dm = Sm via ΣSm
∼=−→ Sm+1 giving a map

Dm → ΩDm+1. This is a special case of a general construction. Let X be a based space. Let

Dm = ΣmX ΣΣmX
∼=−→ Σm+1X Σm ⊆−→ ΩΣm+1X.

(Dm) is then an inclusion spectrum and Σ∞X is the spectrification of this.

Definition .0.1

Σ∞X is called the suspension spectrum of X.

So then we have a situation like

(Finite sets,∼=) Σ∞S0∞ loop space machine

In some sense the suspension spectrum if free. Then we have

Spectra→ Spaces

E = (Zm) 7→ Ω∞E := Z0.

The left adjoint of Ω∞ is Σ∞ (the suspension spectrum). The verification is quick.

The category of finite sets is a “free symmetric monoidal category on one point” so plugging it into our

infinite loop space machine and getting back a free infinite loop space on “one point” is good.

That is if (C ,⊕) is a symmetric monoidal category and X ∈ Ob(C), then ∗ → X necessarily requires that

S 7→
⊕
S

X

If D is an operad and X is a space, the free D-algebra on X is

DX =
∐
m≥0

D(m)×Σm
Xm. (×Σm

= space of orbits)

(left adjoint to the forgetful functor).
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If D is an E∞-operad, X = ∗ then

DX '
∐
m≥0

EΣm ×Σm
∗ =

∐
m≥0

BΣm.

If D = EM then these are all equalities.

You can then ask if the category (finite sets,∼=,
∐

) is symmetric monoidal equivalent to a strictly commu-

tative associative unital category. It is not

Proof Sketch. If so, then
∐

m≥0BΣm as an E∞-space would be equivalent to a topological commutative

monoid. We can then look at the chains

C∗

∐
m≥0

BΣm;F2


is an E∞-algebra in Fp-chain. But it is not quasiisomorphic to a graded-commutative DGA because of

Dyer-Lashof operations.

For example, α ∈ H0BΣ1, the Dyer-Lashof operations (which we defined) on α are the basis of H∗BΣp.

That’s how they were defined!

For p = 2 we have Hi(BΣ2;F2) = Hi(BZ/2;F2) = Z/2. The generator is then equal by definition to

Qiα.

Spectra: Σ∞S0 is a spectrum, and so it gives a generalized cohomology theory. But here we see a

generalized homology theory more naturally. This is called stable homotopy groups. Say X is a based

CW-complex,

(Σ∞X)0 = colim ΩmΣmX

πk(Σ∞X)0 = πk colim ΩmΣmX

= colimπkΩmΣmX

= colimπk+mΣmX

This is called πstable
k X.

Maybe every spectrum gives rise to a generalized homology theory. Maybe we could do homotopy theory

of spectra?

For a spectrum E and a based space (compactly generated, weakly Hausdorff) X, and notationally

E = (Zm) with structure maps ρm : Zm → ΩZm+1.

F (X,E) = Tm Tm = F (X,Zm) (based maps)

We can also define X ∧ E. Remember for based spaces this is

X ∧ Y = (X × Y )/((X × ∗) ∪ (∗ × Y )).

Then X ∧ E = L(Um) (spectrification) where Um := X ∧ Zm.

Homotopy of spectra p, q : E → F is h : [0, 1]+ ∧ E → F which is f on {0}+ ∧ E and g on {1}+ ∧ E = g.

To define homotopy groups, I need to define spheres Sm,m ∈ Z. For m ≥ 0 just take Sm := Σ∞Sm.

Spectra have a shift functor

[k] : Spectra→ Spectra

E = (Zm) 7→ E[k] = (Zm+k).
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To get negative spheres, take S`−k = (Σ∞S`)[−k]. It turns out that this only depends on `− k and not both

variables, as we should hope.

Homework #12

(2) Prove that Σ∞(ΣX)[−1] = Σ∞X. (realize that spectrification only depends on tail of prespectrum).
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