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Last time: function fields of modular curves. Now, how can we make sense of isogenies E → E′ algebraically

and of Hecke operators?

For Hecke operators we already have [Γ1αΓ2] : Div(X2)→ Div(X1). For Γ1(N) ⊆ SL2(Z) with (E,Q) an

elliptic curve and Q its n-torsion we have

Tp : Div(X1)→ Div(X1)

Tp[E,Q] =
∑
C

[E/C,Q+ C]

where C is a subgroup of order p and C ∩ ⟨Q⟩ = {0}.
Now for elliptic curves over arbitrary fields

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

One cannot do a standard change of variables in arbitrary characteristic (namely 2, 3). But one can define

∆, j. For j ̸= 0, 1728 we can look at the curve

y2 + xy = x3 −
(

36

j − 1728

)
x− 1

j − 1728
.

It is still true that E ↪→ P2(k) and this forms an abelain group. The Group equations are defined over

kprime({ai}), where kprime is Fp,Q depending on the characteristic of k.

Theorem .0.1

The N -torsion for N =
∏

p p
ep can be described as

E[N ] =
∏
p

E[pep ],

Furthermore

• E[pe] ∼= (Z/peZ)2 if char(k) ̸= p.

• E[pe] ∼= Z/peZ for every e, or E[pe] ∼= 0 for every e provided that char(k) = p. The first is called

the ordinary case and the second is called the supersingular case.

The point, E[pe] is a finite affine scheme over k. Thus this is still Spec(A) for some k-algebra A, where

dimk A = p2e. The problem is how many points we have on the scheme.

Consider µp, well this is Spec (k[x]/(x
p − 1)). In characteristic p this is k[x]/(x− 1)p. So then there’s only

one point on µp, this spectrum. This is exactly the sort of thing that is happening in general.

In the ordinary case, we have

E[p] ∼= µp × Z/pZ

as a scheme.

We also need to study singular Weierstrass curves. That is when ∆ = 0. Suppose P is singular. We can

change coordinates so that P = (0, 0). We then get

C(x, y) = y2 + a1xy − x3 − a2x
2.
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If char(k) ̸= 2, this can be simplfied to

C(x, y) = y2 − x3 − a′2x
2.

Check from these equations that (0, 0) is the only singular point.

Then write E(x, y) = (y −m1x)(y −m2x)− x3. There are two cases

• If m1 ≠ m2, then there are two tangent directions and this is called a nodal singularity. In this case

we can get a group structure on the points where you’re nonsingular and this is isomorphic to k
×
.

Thus this is often called the multiplicative case.

• If m1 = m2, then we call this a cusp and the group is k additively, and this is called the additive

case.

Now we’ll look at more algebraic properties of curves in arbitrary characteristic.

Question: Finite fields, Galois groups?

Recall .0.1

For every pn, there is a unique field Fpn , which is a degree n extension of Fp with Galois group Z/nZ.
Furthermore it is generated by the Frobenius map x 7→ xp.

We have Fpn embeds in Fpm if and only if n | m. Also Gal(Fp/Fp) = Ẑ, the inverse limit of all the

Z/nZ.

We get σp : Pn(Fp)→ Pn(Fp) given by

[x0 : · · · : xn] = [xp
0 : · · · : xp

n].

Suppose we have a curve C with an embedding C ↪→ Pn(Fp) cut out by equations φ1, . . . , φk. We can then

define

Cσp : φ
σp

1 , . . . , φ
σp

k ,

where φ
σp

i tells us to act on the coefficients of φi via σp. Then σp gives a map C → Cσp , since 0 is fixed by

σp and σp is a Galois automorphism. Essentially for any field map φσ(σ(x)) = σ(φ(x)).

This should then induce a map of function fields!

Example .0.2

Conisder

σp : P1(Fp)→ P1(Fp)

This then gives us

Fp(t)← Fp(t)

tp ←[ t,

and we can consider Fp(t
p) = Fp(s). Then tp = s, and the minimal polynomial is xp−s = xp−tp = (x−t)p.

Furthermore, this map above is a bijection, but we really should not think of it as an isomorphism.

Then Fp(t)/Fp(s) is an inseperable extension (separable extension is when the minimal polynomial

has no repeated roots).
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For any algebraic extension k ⊆ K, we can factor this as

k ↪→ ksep → K,

where the first is separable, and the second is purely inseperable. Thus if we have h : C → C ′, we get a

factoring as follows

C ↪→ Csep → C ′,

where the first is inseparable and looks like σe
p, and the second is separable. Thus we get a factorization

h = hsep ◦ σe
p.

Then deg(h) = deg[K(C) : K(C ′)]. Then deg(h) = deg(h)sep deg(h)inseparable. It is still true that∑
P∈h−1(Q)

eP (h) = deg h,

where the ramification inseparable piece is ramified everywhere which is quite strange. In particular one

thing that will be true is if φ : E → E′, then

deg(φ)sep = |kerφ| .

Example .0.3

The isogeny [p] : E → E. The kernel is the p-torsion. Fact: deg[p] = p2 always. But the p-torsion

may be smaller than p2! This is because the inseperable piece is taking over.

We’ll have deg[p]sep = p in the ordinary case and deg[p]sep = 1 in the supersingular case.

Why do we care about this? Well if we have an elliptic curve with coefficients over Z, we can reduce all the

coefficents modulo p to get a curve over Fp. This is called the reduction at p of this elliptic curve.

It turns out, sometimes when you reduce a nonsingular elliptic curve E over Z then sometimes it can

become singular in the reduction. Here we’ll fix E/Q and define

vp(E) = min(vp(∆(E)) : E′ ∼ E),

where E′ has integral coefficients via a change of coordinates from E. We also define

∆(E)min =
∏
p

pvp(E).

Fact: ∆(E)min can be achieved via a change of coordinates with a Weierstrass curve. We call such an integral

curve achieving the minimal discriminant a “minimal Weierstrass model.” From now on assume E is given

in this form.

We then may reduce E to Ep. There are two reduction types

1) Good reduction, we get a nonsingular elliptic curve

a) Ordinary |Ep[p]| = p.

b) Supersingular |Ep[p]| = 1.

2) Bad reduction, there are many subtypes

a) Multiplicative, m1 ̸= m2.

i) Split, m1,m2 ∈ Fp
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ii) Nonsplit, m1,m2 ̸∈ Fp, in fact m1,m2 ∈ Fp2 .

b) Additive, m1 = m2.

HW: find an example of each reduction type, due next Tuesday.

Algebraic Conductor. This will be NE =
∏

p p
fp where

fp =


0 if E has good reduction at p

1 if multiplicative reduction

2 if additive reduction p ̸= 2, 3

2 + δp if additive reduction p ∈ {2, 3}

.

δp is something we’ll look at later. We can be assured from the book that δp is no more than 6. Recall in

the modularity theorem we wanted a map X0(N)→ E. It turns out the N we need is NE .
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