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The map Ak=2n(Γ) → Ω⊗n(X(Γ)) gives us a way to define the order of vanishing of a differential

ω ∈ Ω⊗n(X(Γ)). On a cusp we write this as

v0(ωj) = v0

(
gj(q)

(hq)k/2

)
where znf [α]2n(z) = gj(z

h). This is precisely

vπ(τ)(f)−
k

2

(
1− 1

h

)
.

If we’re at a cusp, we have a different type of function gj with

v0(ωj) = v0

 gj(q)(
2πiq
h

)k/2
 = vπ(ρ)(f)−

k

2
.

Unlike the order of vanishing of f (which can be non-integral), the order of vanishing of ωj is always integer

(as it’s just the order of vanishing of some function.

Exercise .0.1

Show that

S2(Γ) ↔ Ω⊗1
hol(X(Γ)).

.1. Computing Dimensions

What we want from this is the dimensions of M−k(Γ), Sk(Γ) ⊆ Ak(Γ). We will use the Riemann-Roch

formula.

Recall .1.1

For X a compact Riemann surface we defined

Div(X) = {
∑
x∈X

nx[x] | nx = 0, all but finitely many x, nx ∈ Z}

and

deg(D) =
∑

nx D ≥ D′, nx ≥ n′
x.

We also define Div0(X) = deg−1({0}). Then we have a map

div : C(X) → Div0(X) ⊆ Div(X),

whose image is called the principal divisors. Abel’s Theorem says that

Div0(X)/ div(C(X)) ∼= Cg/Γg

We also have

L(D) = {f ∈ C(X) | f = 0 or div(f) +D ≥ 0}.

And here we have

• L(D) is a vector space.
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• dimL(D) =: ℓ(D).

• div : Ω(X) → Div(X) is given by ω 7→ v0(fx) where locally at x, ω = fx(q)(dq)
n.

• If λ ∈ Ω1(X), then div(λ) is a canonical divisor, since everything in Ω1(X) is equivalent up to

principal divisors.

Theorem .1.1 (Riemann-Roch)

Let X be a compact Riemann surface, then

ℓ(D) = degD − g + 1 + ℓ(div(λ)−D)

where λ is the canonical divisor.

Corollary .1.2

We have that

(1) ℓ(div(λ)) = g.

(2) deg(div(λ)) = 2g − 2.

(3) deg(D) < 0 implies ℓ(D) = 0.

(4) deg(D) > 2g − 2 implies ℓ(D) = deg(D)− g + 1.

We know that

Ω1(X(Γ)) ∼= C(X(Γ))λ

Ω1
hol(X(Γ)) → L(λ)

f0λ 7→ f0

as the left and right hand sides both correspond to div(f0) + div(λ) ≥ 0. the upshot of this by the corollary

above is dimS2(Γ) = g.

Now we’ll derive dimensions for k even. Our orders of vanishing for forms have rationals in them, and we

can get around this with flooring and previous work. . .

Namely, recall that for f ∈ Ak(Γ), f ̸= 0, we know Ak(Γ) = C (X(Γ)) f . Then we see that

Mk(Γ) = {f0f | f0f = 0 or div(f0f) ≥ 0} ∼= L(⌊div(f)⌋).

We should now study ⌊div(f)⌋. Well, f corresponds to some ω(f) ∈ Ω⊗k/2(X(Γ)). Well we know that

degω(f) = div(λ) · k
2
= (2g − 2)

k

2
= k(g − 1).

We may then compute that

⌊div(f)⌋ = div(ω) +
∑
i

⌊
k

4

⌋
x2,i +

∑
i

⌊
k

3

⌋
x3,i +

∑
i

k

2
xi,

where x2,i, x3,i are elliptic points and xi are cusps. We then know that deg ⌊div(f)⌋ > 2g− 2 for k ≥ 2. Thus

for k ≥ 2 we see that

dim(Mk(Γ)) = (k − 1)(g − 1) +

⌊
k

4

⌋
E2 +

⌊
k

3

⌋
E3 +

k

2
· E∞.
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For cusp forms we have a similar argument yielding for k ≥ 4 that

Sk(Γ) = L

(⌊
div(f)−

∑
i

xi

⌋)
dimSk(Γ) = dim(Mk(Γ))− E∞.

We also know from previous work that

dimS2(Γ) = g.

We know that M0(Γ) = C, and S0(Γ) = 0. The book shows Mk(Γ) = 0 for k < 0.

Proof Idea. If f ∈ Mk(Γ), then we’d have f12

∆k ∈ S0(Γ). . .

Application: For Γ = SL2(Z), let k be even, then

Mk(SL2(Z)) = {0}Mk(SL2(Z)) = Sk(SL2(Z))⊕ CEk (k < 4)

dimSk(SL2(Z)) =

{ ⌊
k
12

⌋
− 1 if k ≡ 2 (mod 1)2⌊

k
12

⌋
otherwise

.

In fact this implies that M(SL2(C)) = C[E4, E6] and S(SL2(Z)) = ∆ · C[E4, E6].

How should we run this for k odd? When −I ̸∈ Γ, it is in fact still true that

dim(Mk(Γ)) = ℓ(⌊div(f)⌋)

since this doesn’t use differentials (since there will still be a nonzero f , need to check). There exists an

ω ∈ Ωk(X(Γ)) that pulls back to f(τ)2(dτ)k. In fact we can compute ⌊div(f)⌋ in terms of ω, to give the

formula

ℓ(⌊div(f)⌋) = (k − 1)(g − 1) +

⌊
k

3

⌋
E3+ +

k

2
Ereg
∞ +

k − 1

2
E irr
∞ . (k ≥ 3)
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