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I. Introduction and Motivation

Goals:
e Goals of the book: To explain the statement of the modularity theorem.

— The book introduces many things: modular forms, elliptic curves, modular curves. These are
all relevant to modern mathematics, and so are their generalizations, that is: automorphic
forms/representations, abelian varieties, Shimura varieties.

— The first is the SL2(R) version, and the rest are the general G versions.

e Our Goal: Be able to think about these things both in specific and in general.

II. The Basics

II.1. Modular Forms
Definition II1.1.1

The modular group is SLo(Z) = { (

a

b
d) |ad—bc:1,a7b,c,d€Z}.

C

Exercise I1.1.1

This group is generated by

()G )

We'll also think often of the upper half-plane (A: which is the set {a +bi | b > 0}.

We know SLo(R) acts on C via
((1, b) ar +b
T = .
c d cT+d
Definition I1.1.2

Let k € Z. A meromorphic function f : H — C is called weaklymodular of weight k provided that
for all v € SLo(Z)

Then H = SLy(R)/SO5(R).

FOy(1)) = (er + d)* f(7)
where v = (g Z).
Example I1.1.2

If in weight zero, this is SLy(Z)-invariant. Then f : (SLa(R)/SO2(R))/SL2(Z) — Z.

Example I1.1.3
Consider d7. Then for f(7)dr to be invariant we need f to be weight two, as d(y(7)) = (c+dr)~2dr.

Definition II1.1.3
A modular form f:C — C of weight k is

e weakly modular of weight k.
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e holomorphic on H.
e holomorphic at cc.

Let D be the complex unit disk, D’ = D\ {0}. Then 7+ e>™" takes H — D’ and is Z-periodic. Because
f(7) = f(7+1) for any weakly modular form, we know f factors through the map # — D’ as some g : D’ — C.
Saying f is holomorphic at oo is equivalent to saying that it extends holomorphically to D.

We reserve the letter ¢ = e2™". We know g(q) = > nez @nq" for ¢ € D'. Holomorphic at co can also be

understood as a, = 0 for n < 0. Thus we have a Fourier expansion

= Z an(f)q
n=0

Set M}, (SL2(Z)) to be the weight & modular forms, then
Exercise I1.1.4
Try this:

[(SLy( @ M;,(SLy

Actual Example: “Weight k Eisenstein series” for k > 2 even.

!

1
Gr(T) = Z o+ dF

(¢,d)

/
where ) means
(c,d)

D

(e,d)€Z2\{(0,0)}

Exercise I1.1.5
Gy, is weakly modular of weight k.

Strategy: Write it out and then use that SIo(Z) acts transitively on the index set.

For holomorphicity use the fact that

1
ZT+d = mcot(nT) :Wi—Qwiqu

deZ m>0

differentiating £ — 1 times gives

1
(;Z(T—‘rd)k k: 'Zm

m>1

Then we have

z/:(chrd de+22<z (et +d)* )

(c,d) d>0 dez

mi)F —
= 2¢(k) + 2(33_)1)! Z or—1(n)q"

n=1
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Remark I1.1.1
There are no odd weight modular forms over SLy(Z). Namely, —I € SLo(Z) gives f(7) = f(1)(=1),

thus £ must be even.

Last time we used the example of the Eisenstein series G (1) for k > 2 even. The g-expansion is

i)k
Gr(1) = 2¢ (k) + 2152_ 1))! z_:lak,l(n)qﬂ.

(

Definition I1.1.4
A modular form f: H — C is called a cuspform if ag(f) =0 1in > a,(f)g™. We collect these as

S(SLa(Z)) = @ Sk(SL2(Z)).
k

Example I1.1.6
(60G4)3 — 27(140G6)? = A € S12(SL2(Z)) is a cuspform (using that we're a graded ring). In fact, it

is nonzero! Check the degree 1 term of the g-expansion.

11.2. Congruence subgroups

Definition I1.2.1
Define

[(N) = {(‘; Z) € SLy(Z) | (‘Z Z) = <(1) 2) mod N} = ker(SLa(Z) — SLo(Z/NZ)).

In fact I'(N) has finite index in SLy(Z). We say I' C SLy(Z) is a congruence subgroup if there exists
I'(N)CT.

Example I1.2.1

We will often consider the congruence subgroups

Exercise 11.2.2
[C1(N) : T(N)] = N and [['g(N) : T'1 (V)] = ¢(V), using the first isomorphism theorem to translate
into SLo(Z/N7Z).

Notation: For I" € SLy(Z), f : H — C, we define

Ve : f = flk
(fFIVk)(7) = (em +d) * f(4(7)).

For f : H — C we want to factor it through a map H — D’.
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Note that I'(N) C T' for some N, so (§4) € I'If h € Z~( be the minimal so that (} %) . This implies
that f(r+ h) = f(7).

Now define H — D’ : 7+ €2™7/" 50 that f factors through H. We get g : D’ — C. This allows us to
define f being holomorphic at co.

Pick o € SLia(Z), s € Q, a(00). Given f, I'-weakly modular, f is holomorphic at s if f[a]x is holomorphic at
oo. Crunching the numbers gives that f[a]s is weakly a~!T'a-modular (which is also a congruence subgroup)

to make this work.
Definition I1.2.2

We call f: H — C modular of weight k£ with level I
(1) f is holomorphic on H.
(2) f is weight k, T-invariant, so f[y]y = f for vy € T
(3) fla] is holomorphic at oo, for all « € SLy(Z) (suffices to take finitely many « because [SLy(Z) : T
is finite, the g-series changes by a root of unity).
(4) f is called a cuspform if ag = 0 for fla]y for all & € SLy(Z).

11.3. Elliptic Curves as Complex Tori
Definition II.3.1

I' = wiZ + weZ C C such that wy,ws are a basis of C over R.

We can assume 7, /wy € H.
Exercise I1.3.1

Lattices A = A’ if and only if there exist matrices [‘(I i” such that

W] ~|a b |wi
wh ¢ d| |wa|

A complex torus is C/A as a complex manifold. The complex structure depends on A. There is an

Definition I1.3.2

inherited group structure via addition.

Observation: If f: C/A — C/A’ is non-constant and holomorphic, then it is surjective.
ae
Proof. Look at im f, which is closed (compactness),connected, and open (by the open mapping theorem). @

Definition II1.3.3

An isogeny is a holomorphic homomorphism f : C/A — C/A’ which is nonconstant.

Example I1.3.2
[N]:C/A — C/A, where z — Nz.

Exercise I1.3.3
C/A = E, and E[N] = ker[N]. Describe E[N] as a group.
It is fairly clear that E[N] = (Z/NZ)?, by subdividing the lattice points in A = (wy,ws).

Fact: Any isogeny C/A — C/A’ is of the form z + A — mz + A’, m € C\ {0}.
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Proposition I1.3.1

Isogeny is an equivalence relation on complex tori.

Proof. The only nontrivial portion is showing symmetry. Take an isogeny ¢ : C/A — C/A’, take p(z + A) =
mz + A’. This implies mA C A’. There exist naturals ny,ny such that {njw], now)} is a basis of mA, where
w], wh is a basis of A’

Then ningA’ € mA. Thus ning/mA C A.

We then define ¢ : C/A’ — C/A by p(z + A') = ningz/m + A.

Also P o p = [n1ny] = [deg ¢]. Note deg[N] = N2. <

Consider the self-isogenies, we know that Z C Isog(FE, E).
Complex Multiplication curves are those such that Z C Isog(F, E), and in this case we will have that

Isog(FE, E) C Ok, where K is a quadratic imaginary number field.

I1.4. Modular Curves

These are Moduli spaces of elliptic curves.
Definition I1.4.1
If I' C SLy(Z), then Y(I') = H/T", which we call the modular curve for T

Exercise I1.4.1
For I' = SLy(Z), then elliptic curves up to isomorphism are in bijection with Y (T').

Namely 7 € H — C/(TZ + Z)

Example 11.4.2
To(N),T'1(N),T(N) are congruence subgroups, and

Yo(N) = {(E,C) | E is an elliptic curve,C C E[N], E cyclic of order N}/ ~
Yi(N) = {(E.Q) | Q is a point of order N}/ ~ .Y (N) ~ ((F,(P,Q)) | P,Q generate E[N], (P,Q)

where (P, Q) is the Weil pairing (see book/homework). There are of course maps Y1(N) — Yo(N) —
Y(N) — Y (SLs(Z)).

We have a map A : H — C called the modular discriminant defined by A = g5 — 27¢3, g2 = 60G4, g3 =
140G¢. We also may consider

j:H—=C

17283
N

which is weight zero and holomorphic on H but not at co. We can actually think of j as j : {E}/ ~— C

which is an invariant on elliptic curves, called the j-invariant. The modularity theorem will concern
e Elliptic curves E where j(E) € Q
e CM elliptic curves imply j(E) is algebraic.
As some examples, j(i) = 1728, j(u3) = 0, py = e2™/N. We also can consider moonshine theory-concerning

the coefficients of j and the monster group.
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Modular curves can be viewed as Riemann surfaces
e Give Y () a manifold structure
e Compactify Y(I') C X (I").
We have a map 7 : H — Y(I'), and we give Y (") the quotient topology. How do we show Y (T') is Hausdorft?
Proposition I1.4.1
If 71, 72 € H, then there exists neighborhoods U; containing 7; such that for all v € SLy(Z), v(Uy) N
Us # 0 implies v(11) = To.

Proof. Choose any U;, U} containing 71, 72 with compact closure. First we need a claim.
Claim
~(U7) NUS # O for finitely many v € SLa(Z).

Well we know H = SLz(R)/SO2(R). Take a section S : x + yi %[g 7]. Then

e1,e0 € H,y(e1) = ez <= v € S(e1)SO2(R)S(ex) 1.
If we let e1, es range over Uy, Us, then v lies in a compact subset of SLo(R)

Thus the number of such - is finite since SLo(Z) is discrete. F' is the finite set of such ~, for each vy € F,

choose disjoint Uj -, Us  containing y(71), 72 respectively. Then

Uy =00y (Ury) Uy =Uj N[\ Uasy
vy ol

¢

Corollary I1.4.2
Y (') is Hausdorff

We now want to construct charts, tha tis for each () € Y(I'), we want U C Y (I'), a homeomorphism
Y U—V CContoV open, and we want holomorphic transition maps.
The Y(T') are in fact “ramified covers.” If 7 is only fided by I' N {£I} then take a small neighborhood U
of 7, then 7 : U — Uis a homeomorphism.
Definition I1.4.2
Let I" be a congruence subgroup. We say 7 is elliptic in I" if Stabp(7) 2 {£I}.
Fact: For each 7, I'; is finite cyclic (of order 1,2,3,4,6).
Definition 11.4.3
he = [0 /(T N {+£1})]

We may then choose U C H such that v(U) N U # @ implies v € T'.. We also know elliptic points are

h

discrete. Then U =22 € where p(z) = 2", and

1 —
5:zi—>[ T}z
1 -7

where 6(7) = 0,(7) = co. This will induce a map ¢ : 7(U) — C giving us a chart.
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Look at Elliptic points. Suppose v € SLo(Z) fixes 7 € H and ¢ # 0, this implies
e’ +(d—a)T—b=0

and ad — bc = 1, so this implies (d — a)? + 4bc < 0, so (d + a)? < 4 which holds if and only if |a + d| < 2.
Thus

char(y) =2? —(a+d)z+1=a*+1ora? £z +1.

Thus if v # £+ and + fixes some 7 then one of

ord(v) =3 ord(y) =4 ord(y) = 6.
In these cases respectively we have

0 1 0 1 0 -1
77171 710 711

In the case ord(7y) = 6, we can take the action of Z[y] on Z? making it into a Z[y]-module. We see that Z[]
is a PID, so

+1 +1 +1

2? = (Zh)" & @Pzhl/1
I

But there’s no torsion, and Z[y] has Z-dimension two, since v is a 6-th root of unity, and so its minimal
polynomial has degree two, and Z[y] & Z[X]/minpoly. This gives a map ¢ : Z[y] — Z? which is an
isomorphism. Call u = p(1),v = @(¥).

Then

Yl v] = [, —ut v = [u, 0] E) ﬂ

-1

One of [u,v] or [v,u] has determinant one, and move it over.
Proposition 11.4.3

0 -1 0 -1 . . o
L 0 ] el L ) ] € I',, and nothing else. That is the elliptic points Y (1) = Y (SLy(Z)) are

{m(i),m(u3)} where pg is a third root of unity.

Corollary 11.4.4
Elliptic points of Y (T") are T-orbits in SLo(Z)i, SLa(Z)us3.

II.5. Cusps

Fact: Stabo, = £[{ 7], for m € Z.
Define H* = HUQ U {oo}. We'll define X (T') = H*/T.
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Exercise 11.5.1

There are finitely many images of Q U {oco}. There is only one orbit for SLy(Z), as the action is
a blm am+bn
c dl n cm + dn
But then [SLy(Z) : T'] < oo, and so we can only split this orbit into finitely many pieces.

Definition II.5.1
We call the finitely points in X (T") \ Y(T') the cusps

We can take a topology on H* coming from the Riemann sphere, but then all of our cusps will be close
together!!! This is awful! Instead, take a topology generated by
e Opens in H
o N, U{oo} where N,,, = {7 € H | im(7) > m}.
o All SLy(Z) orbits of Ny, U {oc}.
We then give X (T") the quotient topology
Proposition I1.5.1

X(I") is Hausdorff, compact, and connected.

Proof. For Hausdorff, there’s three cases, two points in A, a cusp and a point in H, and then two cusps. For
the first case, it’s a simple proof using the properties of the action of SLs(Z) on H. For s,7 a cusp and a
point, prove Im(y(7)) < max(Im(7),Im(1/7)).

Consider s, s and a;(c0) = s;. Then U; = a;(No U {oo}). If m(Uy) N (Us) # 0, then

yai(r) = az(72).

This will imply a5 17011 : 71 — 19. Claim: 71,7 are translates of each other. This follows since they lie in
the same SLy(Z) orbit and they have “large” imaginary part. A messy computation yields that

I (m + b) _ Im(7)

cr+d (d+ cRe(1))2 + c2(Im(1))?

which is clearly less than 2 if ¢ # 0, since ¢ € Z. Thus 7, 75 are translates.
This will show o 'yay fixes infinity, showing s; ~ so in X(T).

To show compactness it suffices to show this for a fundamental domain of SLy(Z). Namely

D*=DUx D={reH| |Rr| <1/2,|7| > 1}
as X (') will be a finite union of these with some gluings. Well if we have an open cover, we can assume one
contains one of the Ny, U {co}, but then D \ N, is clearly compact. <

It turns out that X (I') is a compact manifold. We must understand charts of the cusps. We now consider
hsr = |SLa(Z)s /{£I}T5| < o0

Choose §(s) = 00,8 € SLy(Z) We then define U, = 61 (Ny U {o0}), % : po§ where p : z = €27%/Ps. One
must check that the map v factors through the projection Uy, = 7(U).

10
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Recall that X (T") is a compact manifold
Theorem I1.5.2 (Modularity)
For E an elliptic curve such that j(F) € Q there exists an N and a surjective map Xo(N) — FE of

compact Riemann surfaces.

Goal: Compute the genus of X(T'). Recall from the theory of compact riemann surfaces that

o If f: X — Y is a nonconstant map of compact riemann surfaces, then it is surjective.

e Forall y € Y, f~*({y}) is discrete, which implies | f~*(y)| < oo.

e Away from finitely many points of Y, | f *1(y)| = d is constant and we call this constant d the degree
of f. We call those points where |f_1(y)‘ # d the ramification points. Consider z — 2™ as an
example.

e For all x € X, there exists some number e, such that Zzef,l(y) e, = d, and we should think of e,
as the multiplicity or ramification number.

Important formula in this setting
Theorem I1.5.3 (Riemann-Hurwitz Formula)
If f: X — Y is a nonconstant map of compact connected Riemann surfaces then
2x —2=4d(29y —2)+ > (ea — 1)
zeX

where d is the degree of f, gx,gy are the genuses of X,Y, and e, ramification number at z € X.

Proof Idea. Triangulate Y and generically you have d triangles in X for each triangle you start with, but we
o

have to accoutn for ramification points. v

In our case, we have f : X(T') — X(1), and X (1) is a sphere, and so it is zero. Thus our formula simplifies
to
29—2=-2d+ ) (e, —1).
zEX
The ramification points will be elliptic points and cusps.
Elliptic Points: If (y) = SLo(Z), fixing 7, then |(y)| = 4,6 and we have to worry about 4, u3 = €27/3,
Then

hy = [{£1\Dp : {£1}] € {2,3).

Let 7 € U C H which is a coordinate chart and 7 : H* — X (1), 7p : H* — X(I"). Then we’re looking at

v—4Y ypu

.
7/
/ Tr l‘n’
/
/

AN
N
\
\
) e
I
|

1
_Q
il
3
=N
S
2
3

11
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We know h/hr € {1,2,3}. The interesting case is when 7 is elliptic for SLo(Z) but NOT I'. Then this
determines the ramification number.
Cusps: We have z — €272/t where hr = |SLy(Z)wo| / [{£I}Ts|. Then the ramificatio number is

_ hr

= hr.
h r

Cx

Say T is elliptic, and consider F, = f~1(7), and &, is the number of elliptic points in F, for ', and n is

the number of other points. Then

|Er| =& +n d:Zex:hn—i—Sh.
zeF,
We then see that
h—1
Z ex—lz(h—l)nzT(d—Sh).
zelF;

For cusps, notice that

d e —1=d—Ex.

r€F
Therefore
1 2
29—2: —2d+d—goo+i(d—gl)+§(d—(€#3)
1 1 2
= Ed— Eoo — 56}- — gc‘/‘%
d o & Euy

g=1+4 -2

Generally this computation is hard. Why is it important?
Idea:

Modular forms of weight k& -~~~ meromorphic I-invariant differentials on H, H®(X (), Q%F).

The right hand side is computable using the Riemann-Roch theorem if you have seen it.
Definition I1.5.2

A function f:H — C is an automorphic function of weight k& and level T if

(1) f is meromorphic on H.
(2) fis weight k, [-invariant
(3) fla]k is meromorphic at co for all o € SLo(Z).

This is not an automorphic form if you have heard of that! We call these Ax(T), and we note that Ay (T)
consists of the meromorphic functions on X(T'), as the function must descend. Let C(X) denote the
meromorphic functions to C from X.

Definition I1.5.3

For X a compact riemann surface, f € C(X),

div f = Z nglx].
X

12
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We define the degree of D € Div(X) = ZX as

deg D = deg Z nglx] = Z Ny
X X

Fact: If X if a compact Riemann surface then

o If f: X — C is holomorphic on X, then f is constant.

o C(C)=C(t).

e For f on the Riemann sphere, degdiv f = 0.
Proposition 11.5.4

Ao(SL2(Z)) = C(j).

~ 3
Recall that j : H — C is given by j = 7292

Proof. Suppose f € Ap(SL2(Z)). Then f has zeroes z1, ..., z, and poles p1, ..., Py, in a fundamnetal domain
for H (which we can think of as X (1) \ {o0}). We can define
sy = i) =3).
[1;5(7) = i(pi)
Then g has the same zeroes and poles as f in H, because j is holomorphic on H with a pole at co. This
implies f/g is holomorphic on H, so it must be holomorphic on X (1) as it will have the same behavior at co.

7 Y
Thus it will be constant! v

Exercise 11.5.2

If Ax (") is nonempty containing some f, then
A (') = C(X(I)) /f.

Furthermore j' € A3 (T"), hence Ag(T") for k even is nonempty.

Goal: Define div(f) for f € Ai(T"). We'll do this in cases
e Suppose T € H with 7(7) € X(I') is not a cusp. Note that 7 — (c7 + d)* has no 0s or poles on H and
foyr) = j(,7) f(7).
——
(cr+d)k
The local coordinates at 7 are of the form ¢ = (¢t — 7)" fr some h.
For f(t) = am(t — 7)™, then define vy(-y(f) = m/h. In particular v, (f) € $Z U $Z. When
k =0, we have that f is an actual function on X (I') so m/h € Z.
Suppose 7(7) is a cusp. We can focus on 7 = co because it’s similar elsewhere (transform to co)

2miT/h

Local coordinates are g5, = e , where h is defined as the smallest positive integer satisfying

{1} ={£I}{(5 1))

To define “f meromorphic at co,” we leveraged periodicity of f, we have f(7 + h) = (£1)* f(7). When it’s
f(r+ h) = f(r) we call the cusp regular, and otherwise it’s irregular. Define h = h in the first case and

h = 2h in the second case (aka the period).

13
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Example I1.5.3
1/2 is irregular for I' = T’y (4), which is the only example for T'o(N), 'y (N),T'(N).

Let b’ = 2h, then f is h/-periodic, and f(7) = g(qn/) close to co. We define

m
Uﬂ'(oo)(f) - 5
where
glan) = angi.
n=m
In the regular case, V(o) (f) = voo(f) and in the irregular case vx(oo)(f) = U°°2(f).

III. Differentials

Intuition: If f is weight k T-invariant, k is even, then f(7)(d7)*/2 is honest to god I'-invariant. Thus we

should think of f as sort of differentials on the modular curve.
The Next Goal: Define these differentials appropriately
Definition II1.0.1

For V' C C open we define

Q9"(V) == {f(q)(dg)™ | f is meromorphic on V'}
with (dg)" ™™ = (dq)"(dg)™. Then

Qv) = a®(v)

neNg

is a graded ring of differentials

Suppose we have a holomorphic map ¢ : V3 — V5, then we define the pullback
©* QP (Va) — Q%" (1)
©"(f(a2)(dg2)") = f((q1))(¢'(q1))" (dg1)".

Exercise I11.0.1
(@)™t = ()"

Definition I11.0.2

Namely, we have w € Q¥"(U) is a (w;) € [, Q®"V; such that for
Vik = ¢;(U; N Uk) Pik=pro9; : Vik = Vi

)

such that

wj|V_7uk =ik (w|Vk,j> ’

It is fairly simple then to define pullback everywhere.

14

For U C X open, where X is a Riemann Surface, Q¥ (U) is defined via the charts ¢, : U; — V; C C.
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We then have 7 : H — X (T') then 7* : Q®"(X(T")) — Q®"(H).
But wait! The differential that is pulled back must then be I' invariant. This will give us

m'w = f(T)(d7)" =" (f(T)(d7)")
= f(yr)(G(y, 7)) 72 (dr)™.
Thus f(77) = j(7,7)2"f(7), S0 f € Az (T). This gives us an honest to god map
Q¥(X(T)) — Azn (D).

Theorem III.0.1

This is a bijection.

Proof. Map in the other direction is an absolute shitshow. Take f € As,(T"), and call &k = 2n. Work locally to
construct w(f) € Q¥ (X(T')). We'll do this for the non-cusp points, but we won’t check the gluing condition.
Oops!
For 7 € U C H we constructed a map ¢ : U p—ms> V, and we showed this factors through as ¢ : 7(U) — V.
We'll instead construct “w(f)” in V so that it pulls back to the right thing in U, and then we’ll pull it
back to w(U) via ¢. We have § € GLa(C), v := 6~1. So the first step is to take A :== o*(f(7)(d7)™).

We define an extension of the f[v]; formula as

flafi = (det @)*2j(a, 7) " f(a(r)).

We in fact have o/(7) = (jzioftf;)Q. One may then check that

A= (fladi)(2)(dz)".

In contrast, p is not invertible, so the same trick does not work. Instead, we just have to think hard...If
we have a non-elliptic point though, p = Id and we’re done. Otherwise we should consider that A is
07§~ -invariant.

Lets defdine py, : z — pnz where p, = e>™/". We have that pr(A) = X by invariance. But then this

implies
pr 2" (flede) (unz) = 2" (fladk)(2).

Then 2" f[a];(z) is invariant under rotation by h, so it is equal to g(z"). We may then consider

_ 9(g)(dg)”
(hdg)™

¢

In fact p*(w) = A as desired.

The map Ag—2,(I') — Q®"(X(T)) gives us a way to define the order of vanishing of a differential
w € Q% (X(T)). On a cusp we write this as

o= (05

15
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where 2" fa]2,(2) = g;(2"). This is precisely

=5 (1-7)

If we're at a cusp, we have a different type of function g; with

; k
vo(wj) = vo % ZUw(p)(f)—§-
h

Unlike the order of vanishing of f (which can be non-integral), the order of vanishing of w; is always integer
(as it’s just the order of vanishing of some function.
Exercise I11.0.2
Show that

Sa(T) 4 Qi (X (D).

ITII.1. Computing Dimensions

What we want from this is the dimensions of M_(T'), Sk(I') C Ax(T"). We will use the Riemann-Roch

formula.
Recall I11.1.1

For X a compact Riemann surface we defined

Div(X) = {Z nelz] | ne = 0, all but finitely many x,n, € Z}
reX

and
deg(D) = Z Ny D>D' n,>nl.
We also define Div®(X) = deg™'({0}). Then we have a map
div : C(X) — Div¥(X) C Div(X),
whose image is called the principal divisors. Abel’s Theorem says that
Div’(X)/div(C(X)) = CI/T,
We also have
L(D)={feC(X)|f=0or div(f)+ D > 0}.

And here we have
e L(D) is a vector space.
e dim L(D) =: ¢(D).
e div: Q(X) — Div(X) is given by w + vo(f;) where locally at =, w = f.(q)(dg)™.

o If A € Q'(X), then div()\) is a canonical divisor, since everything in Q!(X) is equivalent up to

principal divisors.

16
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Theorem III.1.1 (Riemann-Roch)
Let X be a compact Riemann surface, then
D) =degD — g+ 1+ £(div(\) — D)
where A is the canonical divisor.

Corollary I11.1.2
We have that

(1) £(div(X)) = g.

(2) deg(div(N)) =29 — 2.

(3) deg(D) < 0 implies ¢(D) = 0.

(4) deg(D) > 2g — 2 implies (D) = deg(D) — g + 1.

We know that

Q'(X(I)) = C(X (')A
Qo (X () = L(X)
foA = fo

as the left and right hand sides both correspond to div(fy) + div(\) > 0. the upshot of this by the corollary
above is dim S2(T") = g.

Now we’ll derive dimensions for k£ even. Our orders of vanishing for forms have rationals in them, and we
can get around this with flooring and previous work. . .

Namely, recall that for f € Ag(T'), f # 0, we know Ag(I') = C(X(T")) f. Then we see that
ML) ={fof [ fof =0or div(fof) > 0} = L(|div(f)]).

We should now study |div(f)]. Well, f corresponds to some w(f) € Q®¥/2(X(T')). Well we know that
k

(29-2)5 =

degw(f):div()\).ﬁz .

5 k(g —1).

We may then compute that

k k
di =di i 5 i 5 Ti
where 2 ;, x3; are elliptic points and z; are cusps. We then know that deg |div(f)| > 2¢g —2 for k > 2. Thus

for k > 2 we see that

dim(My (D) = (k- 1)(g— 1) + m £ + m £t b b

For cusp forms we have a similar argument yielding for £ > 4 that

Su(T) = L Qdiwf) - ZJ)

dim Sj(I) = dim(My(T)) — Ene.

17
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We also know from previous work that
dim S3(T") = g.

We know that My(I') = C, and Sp(I") = 0. The book shows My (T") =0 for k < 0.

Proof Idea. Tf f € My(T"), then we'd have L7 € So(I). .. <
Application: For I' = SLy(Z), let k be even, then
M (SLa(Z)) = {0} M}, (SLa(Z)) = 5,(SLy(Z)) @& CEy, (k < 4)
k11 ifk=2 d1)2
dim Sy, (SLa(Z)) = Ll}jj ' (mod 1)
Lﬁj otherwise

In fact this implies that M(SLg(C)) = C[Ey, Eg] and S(SL2(Z)) = A - C[Ey, Es).
How should we run this for £ odd? When —I ¢ T, it is in fact still true that

dim(M,(T)) = £([div(f)])

since this doesn’t use differentials (since there will still be a nonzero f, need to check). There exists an
w € QF(X(T)) that pulls back to f(7)?(dr)*. In fact we can compute |div(f)| in terms of w, to give the

formula

KLav(D)) = (k=g - 1+ ||+ Gz + S ter (k> 3)

IV. Eisenstein Series

For now, define & (T") .= M (T")/Sk(T") as the eisenstein space, eventually we’ll make & (T") as a subspace
of M (T), but that comes later.

Goal is to study E(T'(N)), Ex(T1(N)), Ek(To(N)).

Recall IV.0.1 /

For k > 4 even we defined G (1) = >

1 - 1.0 \ Gr(T)
=2 We then define Fy(7) = = (yg .

Then

1 1
B =3 2 e

(c,d)ez?
ged(e,d)=1

Pl |t M nezl csm@.
0 1

Recall the structure of SLo given as

The book defines

18
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We will also have
1 ) _
Br-1 Y it
yEP4\ SL2(Z)
Exercise IV.0.2
Check the abovel!

The adeles A are H; Qp x R where for almost all p we have the p-coordinate lies in Z, (what [T’ means).

Modular forms will later be related to automorphic representations SLq(A).

We have by combining our earlier dimension formulas for My, (T'(N)) and Sk (T'(N)).

Eso if Kk > 4 even
e ifk>30dd —I1¢T
E(v) =% Ex—1 ifk=2
grea/2 ifk=1,-I¢T1 if k=0
0 ifk<0,k>00dd — T €T.

Consider T € (Z/NZ)? of order N. Let

a b
0= ( ) € SLy(Z)
Cy dy

where (¢y,d,) =7, then ey =1/2 if N =1,2 and 1 otherwise. Then we can consider

Ei(r) =en > g7

YE(PLNL(N)\L(N)S

Proposition IV.0.1
For all v € SLy(Z) we have E}[alx(r) = EJ ()

Corollary IV.0.2

E}(7) is weight k I'(N) invariant, since then we essentially have v = v7.

Proof. Ignore ey for convenience

Efk(r) = 307, 7) 7 S50 () -,

,Y/

Recall that j(v,7)j(v',7(7)) = j(v'7,7). Then

E{k(r) =Y (Y1) = > iy ) = EJ (7).

Y E€(PLNT(N)\T(N)éy
<
One can prove holomorphicity of these things. But doing so is painful.
FACT: E}(7) is weight k, I'(N) modular form for & > 3. We may also define for I'(N) C I the form

Eir(m)= Y Ellyl(r) € My(T).

75 EL(N\T

19
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For N > 2 and k even, one may calculate that Ejv is nonvanishing at —d, /¢, and vanishes at all other cusps.
Hence if we pick v which represents each cusp of I'(N), then {E}} are linearly independent. The size of

this is exactly the number of cusps E,!!! Wait this means it’s a basis.

IV.1. Dirichlet Characters
Definition IV.1.1
A dirichlet character is a group homomorphism y : Gy = (Z/NZ)* — C*.

The dirichlet characters themselves form a group xixz2(m) = x1(m)xz2(m). We'll call this Gn. Then
G ~N = Gy in a non-canonical way.
We have

/Ny = ] (z/v*z)"
N

and the right hand side is cyclic for p # 2, and
(Z)2%7)% = 727 x (2.)27.)* 2.

Lifting: If d | N, then there is a map G — Gq, and so there is a map Gy — C/?\N.
Definition IV.1.2
We define the conductor of y € G ~ to be the smallest d so that y comes from @d. We denote this by
Cond(y). If Cond(x) = N, then y is called primitive.
Given x € éN, we may extend to x : Z/NZ — C by sending everything not in (Z/NZ)* to zero. Likewise
we get a map x : Z — C by sending Z — Z/NZ.
Something that shows up a lot is a sum of the form g(x) = Nz_gx(n),u"N where py = €™V, One can

thinkof this as a Fourier transform if we squint our eyes a bit (sum_s to integrals and such).

Application: We remember how I'; (N) lies in I'o(N) as

1 =* o
0 1 0 =
mod N mod N

and so T'o(N)/T'1(N) is in fact (Z/NZ)*. We define

Mg(N,x) = {f € Mp(T1(N)) | f[7]x = x(dy) f,7 € To(N)}.

We call these modular forms of weight k of level N with Nebentypus character x. Then My(N,1) =
Mpg(Lo(N)).
Fact:

My (T1(N)) = D Mi(N, x).

Why? Finite dimensional representation theory! Look at the action of T'g(N)/T1(N) = (Z/NZ)* on the

left hand side, which is a finite dimensional complex vector space. The irreducible representations are those
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things acting by x, and so we take the “eigenspaces” of these to get the break up. Note the eigenspaces will
often have multiplicity and not be irreducible themselves.

Recall orthogonality from representation theory as well, that is for fixed y we have
$(N) ifx=1

> x(n) = .

neCN 0 otherwise

where ¢ is Euler’s totient function, and for fixed n we have

5 X(n):{ H(N) ifn=1

= 0 otherwise
xX€GN
This is the general fact from group theory that

ﬁ S xa(m)xa(n) =
neGy

1 if x1 = xe
0 otherwise

We may also consider that, via the decomposition introduced before, we have
Ex(T1(N)) = P &N, x).
X

Also, we may consider the unnormalized Eistenstein series with ¥ € (Z/NZ)? of order N, for k > 3,

— 1
Gil(r) = Z (et +d)*F”

(e,d)=v
Idea: G € & (To(N)), so we can get something in & (I'1(N)) by averaging over a finite set of coset
representatives. This may be zero, you have to be careful! But thankfully it’s not super hard to compute
the Fourier expansions with some effort.
Take u,v with uwv = N, ¢ € éu, p € év, with ¢ primitive and pi(—1) = (—1)*. Then we may define

u—lv—1u—1

G =333 w(@e@G T (7).

c=0 d=0 e=0

For v € T'1(IV) we have
GYP e = vipld, ) GLP.
Thus G¥% € My(N, ).
We can normalize this to E;W(T). The idea then is to define for ¢t € N

EP®t = E¥?(tr).

This won’t always yield a modular form, but if tuv | N then it is.
Theorem IV.1.1
{E}*#"} is a basis for &(T'1(N)). If we impose g = x, then this is a basis for & (N, x).
The steps to proving something like this

e Prove everything converges (not much harder than standard Eisenstein series)

e Prove everything transforms properly (by construction essentially)
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e Prove things are holomorphic (get weird zeta functions when writing down Fourier Expansion Hard!)

e Prove things are linearly independent by looking at Fourier series.

Suppose N > 0, T as before, k is any integer, ey = 1/2 if N = 1,2 and 1 otherwise, then

/

E}(1,5) = en Z
(e, d)=v
ged(c,d)=1

Im(7)*®
(et + d)¥ |er + d|23 -

Fact, this converges absolutely and uniformly for
{s| Re(k + 2s) > 2}.

If k > 3, this converges for s = 0. We can check this has the right transformation properties, and then there
is at most one meromorphic continuation to the complex plane!!! One can find it, and s = 0 is not a pole for
N =1,2.

IV.2. Interlude on L-functions/{-functions

Definition IV.2.1

We say f(s) = > %= lies in the Selberg-class of functions if it converges absolutely for Re(s) > 1 and

n=1

(1) Analyticity: there is a meromorphic continuation, and the only possible pole is at s = 1.
(2) Ramanujan: a1 = 1, a,, < n® for all ¢ > 0.

(3) Functional Equation: There should be a v factor so that if ®(s) := v(s)f(s) then
O(s) =P(1—75).
(4) Euler Product: We should be able to write f as

&) ="1I

p prime

where f,(s) = exp (Enle Z’;:)

The primary example is the Riemann (-function. Here we have

SOEDSE | =

1—p—s
and
B(s) = 7 %/?D(s/2)C(s).

Natural Constructions:

Galois Reps ———— L-functions «——— Automorphic Forms

|

Algebraic Varieties

22
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o0
For modular forms—namely eigenforms in a later sense-we have for f = > a,q¢™ then
n=0
> a
L(s,f)=) —
n=1

will lie in the Selberg class.

Another important example is Artin L-functions. Take p € Rep(Gal(K/Q)) where K/Q is a finite Galois

extension. Then there is an L-function

L(p, s) = ramified primes X H (cham(p(Frob(p)))(N(p)*l))_1 ,
p

where char is the characteristic polynomial, and N(p) is the norm.
If L = Q and p is trivial, then this is just the Riemann zeta function. Then for p., the canonical
representation for K/Q we have

L(pregas) = H !

. 1 — Ngjop)—'

For K = Q(uy) with py = €2™/N | we have Gal(K/Q) = (Z/NZ)*, and the Galois representations ar e

Dirichlet characters y, and it turns out you get

Lios) =3 X

ns

n=1
These are called Dirichlet L-functions.

Conjecture IV.2.1 (Artin)

L(p, s) is analytic if p # 1.

The abelian case is ok. If the group is solvable it’s also ok.
For going from algebraic varieties to L-functions, it has to do with counting the number of points of a
variety X over ).

Meromorphic Continuation and the Functional Equation

> dt
I(s) = / e s —
t=0 t

for s € C, Re(s) > 0. One may check that I'(s + 1) = sI'(s). This allows us to extend I' to Re(s) < 0.

Because

Warmup: The I' function is defined as

T(s) = T(s+ 1)7
s
so this is defined for Re(s) > —1 besides when s = 0, and then keep playing the game.
There is a generalization of this idea
Definition IV.2.2

Let f:R*T — C. We define the Mellin transform of f to be

()= [ e
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Then if f(t) = e~* we have Mf(s) = I'(s). We can define
O(it) = Z e~

ne”Z
— —mn?t 1 -
Ze " 25(6(275)—1).
n=1

Taking the Mellin transform

oo 0 2 1 [e’e)
/ S ety dt 1 / @ity — e
e t 2, ¢

=0
The left hand side has excellent convergence properties, so we may exchange the integral and the sum, which

gives us for M f on the left hand side
Mf(s) = Z(FHQ)_SF(S) =71 °T'(s)¢(29).
n=1

Then we may define Mf(s/2) = ®(s) = 7 /2I'(s/2)¢(s). Splitting off the 0,1 portion of this

1/t dt 1 [t dt
- it) — 1 s/2%Y — - . 5/27.
2/t:0(@(zt) )t ; 2/0 O(it)t ;

We also have a formula ©(i/t) = t'/20(it). Thus via a change of variables

B /: @(i/t)t‘s/zit] -2

1 [ at] 1
== Oit)t /2= | - =
{2 o) t] s

1 /0 dt] 1 1
— = it) — 1 1—s/22% )
[2 /t:1(@(zt) )t t ] s 1-s

One should then recombine things and show things are invariant under s — 1 — s.

V. Hecke Operators

V.1. Definitions and Computations

Call GL2(Q)* C GL2(Q) the subgroup of positive determinant matrices. If we have I'1, 'y € SLa(Z), a0 €
GL32(Q)™ we'll define an operator

[Flafg]k : Mk(Fl) — Mk(rg)

Reminder: Double cosets are a little weird.
Exercise V.1.1
Suppose G is finite, Hy, Hy are subgroups. Compute |HiaHs| in temrs of cardinalities of subgroups
of G. We have
[ H| - [Ho|

‘H[()HQ‘ =
|Hy N aHya |
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For 8 € GL2(Q)" we define

FIBl(7) = (det B)*~15(8,7) " F(B(7)).

Now we see that
Fl CVFQ = H Flﬁj
J
for some 3; € al'y, and we then define

fllials]y = Z T8k

We need to know: there are finitely many 3;, this doesn’t depend on j;, and this actually takes modular
forms of weight k level I'; to weight k level I's forms.
Fact: a~!Ta N SLy(Z) is a congruence subgroup.
Lemma V.1.1
We have that

a_lI‘la n FQ\PQ — Fl\Flafg,

and the left hand side is finite, so we only need finitely many §;.

To show this gives a map as claimed, first check it’s well-defined (does not depend on choice of 5;), then

we take
fIPials]k[y2le = Zf[ﬁj]k[w]k = Zf[ﬁé]k = fll1al'2].

None of this effects holomorphicity on #H, but we need to check holomorphicity at the cusps. Recall this was
f[¥]k is holomorphic at oo for all 4 € SLa(Z). The necessary lemma is

Lemma V.1.2
If @ € GL2(Q)" and oy =4/ then
a b
a=r
0 d
for r € Q. And this will not change holomorphicity at co.
This same proof will also show that if f is a cuspform then f[I';als]y is a cuspform.
Example V.1.2
If 'y DTy and @ = 1 then we get the embedding My (T'1) — M (T').
If o 'T'ya =Ty then
flhials]y = flalk

and gives an isomorphism My (T';) — My (T2).
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If I'y €T, {72} represents I'1\I's

fIC10la)e =) flvalk

J

Then
I's = a TanTD,
I, =T Nala™?
gives
Iy — T}
L
Iy <----- Iy

Then as moduli spaces

Then we have
[Flafg]k : DIV(XQ) — DlV(Xl)
given by

—1
T E eyy — eyaya
yer; '(z)

— Z eymi(aya™t).

y

Special Cases: T'g(N),T'1(N), that is

o)

Given d € (Z/NZ)*, we have a Diamond operator

(d) = [[1(N)aT'1 (N)]x

x %
o
0 d

where — here is the reduction mod N. In particular since I';(N) is a normal subgroup of I'; (V) we have

where

(d)f = flalk
and in fact

M (N, x) = {f € Mg(T1(N)) [ (d)f = x(d) [ for all d}.
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The next is a = [(1) 2] where p is prime with

Tp = [Fl(N)aI‘l(N)]k

Exercise V.1.3

Ty, (d) commute.

Proof. Note first that

.10 |1 o
(0% Fl Floz:Floz OéFl
0 p 0 p

10
=T .
0 p

The second equality above requires a check. Then we know this is
0171 Hflﬂja = HFloflﬁja = Hflﬁ;
J J J
Then we can compute

J

Tpld) f = Zf[a]k[ﬂj]k = fIBjlklalk = ()T, f.

¢

Last time we defined the Hecke operators (d), T,,. For convenience let N be fixed and write 'y for I'1 (V).

Proposition V.1.3
For f € My(T'1), write the Fourier expansion as f(7) = Y a,(f)¢" where ¢ = ¢*™7. Then we may

write the Fourier expansion of T}, f explicitly
(Tp/)(7) = anp(f)a" + 1n ()P an((p) g
where 1 is the trivial character of N evaluated at p. In particular if f € My (N, x) we have

(To)(7) = anp(f)a" + In(p)P" "X (Fan (g™

Proof. A group theory exercise yields if p { N then

and if p | N then

where mp — nN = 1.
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We'll only do the p | N cosets first. Here we have

_ Z i an(f) e27rin(‘r+j)/p

where p, = e /P, qp = e?™7/PWe have that
p—1 .
j_ { p ifpln .

Thus this becomes

For the pt N case we take

This is

¢

Proposition V.1.4
If d,r € (Z/NZ)* and p, q are prime the
o ()T, =Ty(d).
o (d)(r) = (r){d).
o T,T, =T,T,.

Now we may define (n),T,, by
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One may check this satisfies the recursion

Ty =TT~  — pF " (p) Ty

P
Then we can define 75, = [, T~ where n = [[p;’". Then
(T f)(1) = Z am(Tnf)q™
am(Tnf) = Z dk_lamn/d2(<d>f>'
d|(m,n)

V.2. Peterson Inner Product

Let 7 = x + iy, and write dv = d”;;iy, which is the “hyperbolic measure” on H. One can prove that dv is

actually GLF (R)-invariant. This lets us integrate over H*.

Recall we have the fundamental domain
D*={reH| Re(r)| <1/2,|7] > 1} U {o0}.
We want to integrate on D*. One may check that if ¢ : H — C is bounded and continuous then

| elatmavn)

converges, where a € SLo(Z).
Take I' € SLo(Z) and write SLo(Z) = [[;{+/}l'a;. If ¢ is I-invariant then the following will not depend

on the choice of a;,

> [ plesnan) = [ ptmyanie),

We may then define

Definition V.2.1
We define the Peterson inner product of f, g € Si(T') to be

(f,g) = Vir )‘c(r) f(T)m IIII(T)k dv(7).

We normalize by the volume so that the inner product remains the same over I'y C I's. It takes some work
but we must check ¢(7) := f(7)g(7) Im(7)* is T-invariant.
Remark V.2.1
We only need 1 of f,g € Sk(T') to be bounded.

Exercise V.2.1

We can see that
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)) Im(y(7))* Im(5(7))"*
= fPei () g TR (o) Im(y(7))¥
— f(7)g(r) Im(r)* = (7).
Want: M (I'1(N)) has an orthonormal basis of eigenvectors under {T,,, (n) | (n, N) = 1}. We want to

S
N
>
N
=
—
=
~
—~

)
—
\]
N
N
e
N
5}
N
=

apply the spectral theorem, and we need T, (n) are normal.
Recall V.2.2
The adjoint is defined by (T'f, g) = (f,T*g) we take T is normal provided that TT* = T*T.

One can get a simultaneous orthonormal basis of eigenvectors using that these operators commute and some
linear algebra.

Here’s a fact: For any T, let o’ = det(a)a~!. Then
(f[Callk, g) = (f, g[La'T]x).
This implies that
)=

As the relevant matrix is represented as (N ( ,) of determinant 1 and its inverse can be represented by a

similar matrix with p~! in the bottom right. Then for T w ehave

L) (oG

The left hand side is in T';(m) and the right hand side is in I'y. Thus we have something like

1 0 p n
r, I, .
0 p N m
Thus T,y = (p)~'Tp.
V.3. Oldforms and Newforms
Last time we defined the Peterson inner product on Sy (I"). We then showed Sk (I'; (IV)) has an orthonormal
eigenbasis under {1, (n) | (n, N) = 1}.
We’ll work on the non-coprime case as welll We want to talk about modular forms “coming from lower

level.”

e If M | N we have a trivial inclusion Si(T'1(M)) < Sk(T'1(IV)) because I'; (M) 2D T'y(N).
e Now suppose d | N/M, and let ag = [d 9] (the action is ag7 = dr). Then if f € Sp(I'1(M)) then
flaalk € Sk (dM)) € Sp(T'1(N)).
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Proof. Fix v € I'1(0M). Then we compute that

COC 0 D (n)

Thus since ¢ contains a factor of § we have this conjugate lies in T'y (M).

¢

Thus for each d | N we may define
Ld : Sk(Fl(Nd_l))Q — Sk(Fl(N))

(f:9) = [+ gloalk.

Definition V.3.1
We call the oldforms

Si(T1(N))°' := span(im(s,) : p | N prime).

We define the newforms Sy (I'y(N))°!d as the orthogonal complement of the oldforms under the Peterson

inner product.

Proposition V.3.1

For all n € Z~¢, these spaces are stable under {T,,, (n)}.

Proof. Let p | N. Case 1 is to take (d, N) = 1. Let T = (d) or T = T}, for p’ # p. Then we can consider the
diagram
—1})2 [ 7] —1y)2
Sk(L1(Np™))* —— Se(T(Np™))

Sp(T1(N)) ———— Se(I'(N))

Showing this commutes is shows that the oldforms remain oldforms. For T' = (d)x, we can show {(d)y =
(d) np-1 = [op)(d) n[op]) 1. For the other case one must check T}, n,-1 = T,y . Checking the compatibility
with [a,] is frankly awful. We check Dirichlet character by Dirichlet character. That is we check for
g € Sk(Np~!, x) that we have

(Ty Np-19)ap] = T N (glap]).

‘We can check this at the level of Fourier series.
The one thing we haven’t checked is T}, as all other operators are zero or combinations of these via

multiplication (and recursion for say T),2. We do the same thing with a different matrix. Namely

Sk(Fl(Np1))2[M15k(F1(Np1))2

Sp(T1(N)) ——— Sk(T1(N))

31



Faye Jackson October 6th, 2022 MATH 678 - V.3

Proof for newforms is to show oldforms are invariant under (n)*,T;*. The only interesting case is T, (n, N) >
1; THen we have Ty = wT,w™!, where w = [ % 5],

We then need to suffer through the computation that

0 pF2w
Lp O = WO L.
w 0

¢

Corollary V.3.2
Si(T1(N))°eldmew oach have an orthonormal basis under {T,,, (n) | (n, N) = 1}.

Consider Ly : d'~*[ag]r. Then on Fourier series this acts very simply

0 0
>_and" =+ ) ang™
n=1 n=1

Thus if f € Lg, then a,(f) =0 for d{n. Then to have f € span(im L,, | p | V) we must have a,(f) = 0 for
all (n, N) = 1.
Theorem V.3.3 (Main lemma, Atkin-Lehmer)
The converse is true. That is if a,(f) =0 for all (n, N) =1 then f € span(im L, | p | N).

(1) )

Proof of 1st Reduction. Define

—
o
=2
I
——
R
o Q
[SUENS ]
~_
I

Fact: anx['1(N)ay' =T(N).

We can consider a map
LM = M*Hag,/]: Sp(T1(M)) — Sk(THN))

which sends 3 anq™ to 3 ang?, where gy = €2™7/M . Then in fact the following diagram commutes where
N = dM,

Sp(T1(M)) =22 S, (T1(N))

(T (M)) > S(T(N))
by computing via Fourier series

L
Y ang" —————— Y anq™"

Zanqn/M . — Eanqn/M _ Eanqdn/N.
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Thus the main lemma amounts to saying that if f € Si(T'(N)), f = >, an(f)g% with a,(f) = 0 for all
(n,N) =1 then

ersk —1)) C Sp(TH(N)).

]

Proof of Second Reduction, projections. We work in T'(N). For d | N define
Iy =T1(N)NTYNd™).

Fact: I'(N)\I'y has representatives

We’ll define the following

‘We then can define
T = H(Id —Tp).
p|N

This kills everything that’s not coprime to N. Thus the condition for the Main Lemma is that f €
Sk(TYH(N)) Nker(m). We can then apply some linear algebra

ker m = ker H (Id —mp) Zker (Id —mp) Zim(ﬂ'p).

p|N p|N p|N

But wait we know that im(m,) = Sk(I',). Thus for our reduction we need to show that

)N D SkT(N) NIO(WNp™) = Y Se(TH(Np™H)).
p|N p|N
The D inclusion is true from previous discussion. f

Proof. We know G = SLy(Z/NZ) acts on S(I'(N)). We want to think of the spaces above as various fixed
points of G. Write G =[], G; =[], SL2(Z/p5*) where N =[], pi*. We then define H; as

H; =T (p")/T(p}")
and H = [[ H;. Define

Ty(pf) NTO(ps )

K; = =
F(pil
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Fact:

(T'(p©), T1(p*) NTO(p°~ 1)) =T (p ).

The third reduction becomes

Sk(T(N)) N> Sp(T(N) =" Si(T(N)).

¢

Now were looking at G acting on Si(T'(N)), we know that

Definition V.3.2
We say f € Mp(T'1(N)) is an eigenform if it is an eigenvector for all (n),T),.
We say it is normalized if a;(f). A newform is an eigenform in Sy (T'y (IV))"eV.
The eigenvalues for diamond operators (n) will just be x(n) where f € My (N, x). What about for T,,?

Recall the formula is
am(Tnf) = Z X(d)dk_la/rnn/d2 (f)
d|(m,n)

Setting m = 1 yields

ar(Tnf) = x(Wan(f) = an(f)-

thus the eigenvalue is a,,(f)/a1(f).
Proposition V.3.4
For f € Sk(I'1(IN))"*V, an eigenvector for {(n),T, | (n, N) = 1} is an eigenform.

Proof. All we have to check are the T),.
Claim
For f € Sk(T'1(N))™V, we have ay(f) # 0.

If not, then we know for (n, N) = 1, we have

an(f) = al(Tnf) = Cnal(f) =0.

The main lemma then would tell us f € Sk(T'1(N))°d because a,(f) # 0 whenever f is a newform and
(n,N)=1.

Without loss of generality, assume a;(f) = 1. Let m € Z*, and consider g,, = Tp,.f — am(f)f. Then g,, is
still an eigenform away from N (that is for T,,, (n, N) = 1). Furthermore a;(gm) = 0. Thus g, is an oldform

and a newform. Thus ¢,, =0, so T, f = an(f)f. —

Corollary V.3.5 (Multiplicity 1)

If f, f' have the same T}, eigenvalues then f’ = cf.

¢

Proof. The eigenvalues are the coefficients upon normalization!
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Theorem V.3.6
We have

Bi(N) = {f(n7) | f is a newform of level M,nM | N}

is a basis for Si(T'1(N)).
Proof. We look at
Sy (C1(N)) = Sk(T1)™™ @ Y 4p(Sk(T1(Np~1))>%.
pIN

Spanning happens via induction.

Linear independence. Choose minimal linear combination
> cijfi(niym) =0
L)

where f; € Sp(M;, x;). We can in fact require that all the x; lift to the same x. Namely we can do this by
applying (d) — Xi(d) for some d with x;(d) # X;(d) to get a nontrivial relation with fewer terms.

By applying T}, — a,(f;) we can require all fourier coefficients away from N to agree, as otherwise we’d
have a nontrivial relation with fewer terms.

o
Strong Multiplicity One implies the f; must be the same, and then we’re actually done. 4

Proposition V.3.7
Let f € Mg(N,x). Then f is a normalized eigenform if and only if the Fourier coefficients satisfy

(1) ar(f) =1
(2) apr(f) = ap(fapr—1 (f) = x(0)p* " apr—2(f)-
(3) amn(f) = am(f)an(f) for m,n coprime.

Proof. The forward direction is a bunch of computation. For the converse, we need to show
am(Tpf) = ap(f)am(f)
for all p,m. If p4 M then
am(Tpf) = apm(f) = ap(f)am(f)-
If p | m, write m = p"m/ for ptm’, then
am(Tpf) = aprsim (f) + X" aprpr-1(f)
via the formula. Then
am(Tpf) = am (£) [apres () + x(p)P* ™ apr-1(f)]
= am: (fap(f)ap(f)-
= ap(fam(f)-

¢
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Fact: E;f’“a satisfy this. You just write down the Fourier coefficients. . .

V.4. Connection with L-functions

Let f € My(I'1(N)). We may define for a complex variable s € C

Lis, /)= “"(Sf).

n

The convergence of L(s, f) in a half place will be given by estimating the Fourier coefficients. Namely it
converges if Re(s) > k, and if it is a cuspform then it converges if Re(s) > & + 1.
Theorem V.4.1

The following are equivalent

e f is a normalized eigenform
e We have a product as

Lis, ) = [T (1 = app™ + x@)p" %) .

Proof. Being a normalized eigenform is equivalent to conditions (1),(2),(3) from before.
Exercise V.4.1
Let

then X is the p-part of the Euler product.

Idea: Plug in condition (2) for r > 2, and find an equation X must satisfy. Doing this in reverse shows
relation (2) if we have the Euler product.
Taking s — +oo yields L(s, f) = 1 if and only if a1 (f) = 1.

Fact: Let g be a function on prime powers. Then

[IDNAE i I 9.

p r=0 n=1p7||n

Assuming (1),(2),(3) We then write

¢

Running the equalities backwards gives essentially the converse.
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Now we’ll look at functional equations. Let f =Y anq™ € Sk(I'1(N)). Recall that the Mellin transform
of some function ¢ is defined to be

o) = [ spdd

t=0

Proposition V.4.2
The Mellin transform of f = 3" a,¢™ is (271r)51"(s)L(s7 -
Well we see that

i dit
g(s) :/ anef27rnttsi
— Zan /OO e—27rnttsg
— =0 t
Qn
= r
Xn: Gyl )

= G T OLG. ).

via change of variables.

Definition V.4.1
Let 'y = %F(S)L(S, f). Then define the operator Wy as

EaTl—k/2 ¢ 0 —1
fr=@tN flnole
This is in fact an involution and so has eigenvalues +1.

Theorem V.4.3
If f € Sp(I'1(N))* (eigenspaces for W) then T'n(s) = T n(k — s).

This implies that L(s, f) has an analytic continuation just as for the Riemann zeta function.

VI. Jacobians and Abelian Varieties

Let X be a Compact Riemann Surface
If the genus g = 1 (warmup), then X = C/A for some lattice A. Pick a differential dz on X. Then we can
look at

X — {path integrals on X starting at 0}/{integrals over loops}
z+A
z+ A~ / dz/integrals over loops.
0

Any loop will be a combination of the two fundamental loops 0 — w; and 0 — wy, where A = Z{wy,ws).
This is an isomorphism of groups so long as the differential is translation invariant. We want to generalize
this to g > 1.
Let v : [0,1] — X be some path. Fix w € Q[ (X), that is a 1-form on charts which agrees on intersections.

‘We can check fA/ w makes sense.
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Let 7,v" have the same endpoints. Then f7 w and fn/, w differ by an integral over a loop. If X is genus g
then it looks like a sphere with g-many handles coming off of it.
Let Ay, ..., Ag be the longitudinal loops at 0 and By, ..., By be the latitudinal loops about these g handles.

Fact: for any loop « at 0, there exists unique integers m;, n; so that

w = m; w + ni/ w) .
fem (o eene],
Definition VI.0.1

Let H1(X,Z) be the Z-linear combinations of A;, B; (this is the integral homology of X. This gives

us a map

Hl (X/ Z) — Q}le(X)* = HOInC(Q}lml(X)T (C)

Fact: Qf |(X)* = H1(X,Z) ® R = H(X,R).
We define
Definition VI.0.2

The Jacobian of X, denoted Jac(X) is

Qo (X)/Hy (X, Z).

There is a map X — Jac(X).
VI.1. Connection to Divisors

Now we’re gonna look at the connection to divisors

Div’(X) = {Z ng[z] | ny = 0 for almost all z, an = 0}

rzeX
Div!(X) = {§ € Div’(X) | § = div(f), f € C(X)} .

Definition VI.1.1
We call the Picard group of X
Pic’(X) = Div?(X)/ Div(X).
In genus g = 0, we have Pic’(X) = {0}, because we can just manufacture a rational function for any

divisor.

If g > 0, fix a basepoint xy. The map
X — Pic’(X)
x — [x] — [0]-
This is in fact an embedding!

Theorem VI.1.1 (Abel)
We have that Pic”(X) = Jac(X), the map here is given by > n.[z] = >, n, [

zo "

x
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Theorem VI1.1.2 (Modularity)
Let E be a complex elliptic curve with j(E) € Q. Then there exists an N such that there is a map

Jo(N) — E,

which is a holomorphic group homomorphism of complex tori, where Jo(N) = Jac(Xo(NV)).
This automatically gives a map Xo(IN) — E, and one can argue it is still surjective. This version of

Modularity turns out to be equivalent to the old one.

We also have a nice description of Q} (X (T')), namely
Qo (X (1)) = Sa(1).

We want to look at maps of Jacobians. Namely given X, Y compact riemann surfaces and amap h: X - Y

we want to produce maps

hy: Jac(X) — Jac(Y)
h’ : Jac(X) < Jac(Y)

We obviously have a map
h*:CY)— C(X)
g—goh.

Then in fact v, (h*g) = e,Vp(2)g Where e, is the ramification number of h at .
Recall that w € Q} (V). Then in charts this is w = (w;), where w; = fi(g) dg. This induces a pushforward
map as we know how to act on f;(¢) € C(Y).

h*: Qlllol(y) - Q%IOI(X)
Bt Qot(X)* = Qo (V)
Let v be a path in X, then h(y) is a path in Y, and it turns out for A € Q} (Y we have

/h*)\:/ A,
v hovy

which is just a change of variables.

This then induces a map
hy: Jac(X) — Jac(Y).

Explicitly, we have

hy (g:ngc/q:>.:zz:nx/h::)).:;nx/x:h*(.)
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where o € Q}IOI(Y). We now turn to the Picard group. We can define a norm map
normy, : C(X) — C(Y)
(ormy f)(y) = [ fla)=.

z€h~=1(y)

Then we have

vy(normy, f) = Z v (f).

z€h=1(y)

Then we can look at

div(normy, f) = Z Z v (f)ly] = sz(f)[h(x)]

Yy xzeh~1(y)

This lets us predict that

hp : Div(X) — Div(Y)

hp (Z nz[m]> > an[h(m)}

so then
hp(div(f)) = div(normy, f).
We then get a map
hp : Pic’(X) — Pic’(Y)
hp([d]) = [hp(d)]-

There is then a diagram of the form

Pic®(X) 2 Pic(Y)

Recall VI.1.1
We have that

Jac(X) = Q (X)*/H(X,Z)
Pic’(X) = Div’(X)/ Div¥(X).
and a theorem of Abel says that

Pic’(X) = Jac(X)

T
E Ny T > E 71_,;/ .
x Y Zo

X
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We had defined pushforwards
hp : Pic?(X) — Pic’(Y)
hy:Jac(X) — Jac(Y)

where h : X — Y is a map of compact Riemann Surfaces. The first was a norm map, and the second

was pullback of differentials.

We now want the pullbacks. Let h: X — Y, andlet X' = X — &, Y’ =Y — h(€) where we’ve cut out the
ramified points (those with multiplicity). Then h : X’ — Y” is a d-fold cover for some d.

To define the pullbacks we define the pushforwards of differentials

tI‘h : Q%lOI(X) - Q%IOI(Y)'

Let y € Y'. Take a small y € U C Y’ so that h; ' : U — U; is defined (since this is a covering map). Then
we define for w € QL ,(X) to be

d

(trn )|y = D (A )" (wl))-

i=1
One must check this is well-defined on Y’ and that it extends holomorphically to Y.
Dually, we get

1}t Lot (V)" = Lot (X)*

We need to pullback loops as well. Given a path § in Y’ and a basepoint € h=1(§(0)) C X', there is a
unique path v lying in X’ which lifts § and satisfies v(0) = z. This gives d lifts total.

What if 0 is in Y but only endpoints can be in hA(E€)? Then for each z, there are e, many lifts v which
begin at x. There are then d lifts total.

If 6 is a loop in Y’, then (1) € h=1(5(0)) for any lift v. Thus we can take the concatenation of all the
lifts of §. This will give us some collection of loops in cycles!

In other words, fixing yo € Y’, then 7 (yo,Y”) acts on h™1(yo), and this is called the monodromy action.

/ (hYY*w = / w

seY”’ h=1o06

e
~

for 4 lying in Y’. One can extend this formula to d in Y, not just Y.

Reverse change of variables

for w € Q) ;(X). Hence

e

all lifts

Thus tr} descends to
R’ : Jac(Y) — Jac(X).
In fact, for A € Q01(Y) we have

(trp, oh™)(A) = deg(h)A.
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As a consequence we have the fact that
hjoh’ = [degh].

This is similar to the fact that we had for elliptic curves and isogenies!
Corollary VI.1.3
We have that
ho(Hy(X, 7)) € Hy(Y, )

is of finite index.

What about for Picard Groups? For h : X — Y, we have
h*:C(Y)— C(X)
and

div(h'g) = 3 esvn @l = Yv9) S eulel:

z€h~1(y)

This suggests we should define

hP (Zny[m)—zny o elal

z€h~1(y)

This in fact gives you
hP : Pic®(Y) — Pic®(X).
These maps actually commute with the Abel-Jacobi isomorphism Pic’(—) — Jac(—)!
VI.2. Jacobians and Hecke Operators
Suppose I'1,I'y C SLy(Z) are congruence subgroups. Then suppose @ € GLJ (Q). Then we can define
I's =a 'TianTy I, =T Nalat.

Then for the modular curves, we have a picture

’% /
X5 —> X}

“{ |

X, X;.
We’ll then define

[FlaFg]g : DIV(XQ) — DlV(Xl)

which is given by (m)p oap o (m)P. Now let 7v2,; be representatives of the quotient I's\I'y. Then recall that

with 3; = ay2; we have

FlozFQ = |_|F1ﬂj.
J
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Upshot:
[T1als)? : Pic®(Xy) — Pic®(X,).

We can compute for I'o7 € X5, that we get
{T37y2,;7} —— {I48;7}

mt 1
2
I 2T {l 1/3]'7'}.
Explicitly, then the map is given by

[[1al)? (Z ’rLTFgT) => n, Yy TiB.

Remember that we had an isomorphism
w: S5(T) = Qo (X(T)).
Then we must have
Jac(X(T)) = S2(I)*/Hy(X(L), Z).
We have defined a double coset operator
[[1als]s : S2(Ty) — S2(T),
which induces a map
[T1als); : So(Ty)* — Sa(Tq)™.

A priori this is not the same as [[';al'z]2. But in fact these maps are the samel!!!
Claim

Maps are the same. Essentially try, is defined on local patches which will be given by vz ;...
Looking at J; (V) = Jac(X (T'1(N))),
Proposition VI.2.1

Let T =T, (d). Then T acts on J;(IN) by definition.

Easy consequenceT), : Sa(I'1(N))* — S2(I'1(N))* descends to J1(N), and hence acts on Hy(X1,Z).

Then if f = char T}, has integer coefficients, then f(T},) =0 on H;(X1,Z). Then f(T},) =0 on Sa(I'1(N))*
hence S3(T'1(N)).

Therefore the eigenvalues of T}, are algebraic integers. Then a,(f) are algebraic integers, so a,(f) is
algebraic integer.

Definition VI.2.1

Consider the Hecke algebra over Z is defined as
Tz = Z[{Ty, (n) | n € Z}],

as operators on S(I'1(V)) (so there will be relations, ex. T} is related to Tp2,T),).
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There is an evaluation map (and it is a homomorphism) for each normalized eigenform f € So(I'1(V))

given by
)\f : TZ —C
Tf=X(T)f.

Call Hy = Hy(X(T'),Z), which is a finitely generated Z-module. Then End(H;) is a finitely generated

Z-module, and we know
Ty — End(Hl)

from last time.

Likewise im(Af) = Z[{a,(f)}] € C. We may define Ky = Q({a,(f)}). THen
[Hom(Ky, C)| = [Ky : Q].

If we have 0 € Hom(K, C) then we can take f to f” by mapping each coefficient in the Fourier series. Why

the hell is this still a modular form?
Theorem VI.2.2

If feSy(N,x) and 0 € Hom(Ky,C), then f € So(N, x?). Furthermore, if f is a newform, then so is
fe.
The rest of the class will be spent on proving this.
Recall VI.2.1 (Nakayama’s Lemma, Commutative Algebra)

Suppose A is a commutative ring, J C A is an ideal contained in all maximal ideals, and M is a

finitely generated A-module. Then, if M = JM, we have that M = {0}.

Fix a basis ¢1,..., 924 of Hi(X1(N),Z) over Z. Let V = H1(X:(N),Z)c. Now Tz acts on V, which
is a complex vector space by its action on the basis (i.e., formally weirdly enough). Suppose v € V is a
M-eigenvector of Tz, where A : Tz — C is a homomorphism. Then if o € Aut(C) then v is a A\7-eigenvector.

To proceed, we need to show the space of eigenvalues for V' is the same as the space of eigenvalues for Ss.
We'll construct a complement of S5 C V. We'll call the complement S, and we’ll study the eigenvalues of
each piece of V = S5 & 5.

Recall VI.2.2

Consider the operator Wy = [f\v HQ. and recall that WxT = T*Wy for any Hecke operator T

(where T is the adjoint for the Peterson inner product).
Define for each g € Sy a map
g 1S9 = C
h— (Wng,h).
If we collect these into {1y} = S5, then S is a vector space and g 14 provides an isomorphism of vector
spaces Sy — S5.

We actually need that they’re isomorphic as a Tz-module. This is fairly easy, and comes from the Wy

factor.
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Exercise VI1.2.3

Verify that So — S as Tyz-modules.

Claim

Tz-eigenvalues on So and S5 are the same.

Proof. Let f be a normalized eigenform. Then take Ay : Tz — C, and let Jy := ker(Ay). We will show
J¢ Sy # Sy using Nakayama. We know that Jy is a prime ideal (being a kernel), but we don’t know J; is
contained in every maximal ideal. The idea is to localize Tz at Jf, and then show we didn’t kill everything
by localizing.

Now we can look at

SslJfl ={p€ S5 |poT =0,YT € Js}.

Then we have a short exact sequence

0 J5So So Sa/J§Ss —— 0,
which upon dualizing gives
0 —— (JpS2)* «—— S5 «—— (S2/J;S2)* +— 0,
This implies that
S5 2 (S2/JpS2)" = S3[Jyl.

We should show that the eigenvalue on the right hand side coming from f is the same as that on S5.

Let T' € Tz. Then for ¢ € S5[J;] we have
T-p=p T=po[l=A(T)Id] + As(T)ep.

The left hand side lies in J¢, so this becomes T' - ¢ = A¢(T")¢. Perfect! This shows that if A; is an eigenvalue

of Sy then it is also an eigenvalue of S5 (and dualizing yields the converse). L 4

Thus Sy and S @ S5 have the same eigenvalues. Now we want to show that V and S ¢ S5 are isomorphic

as Tyz-modules via
(2101, -+ -5 22g4P29) > Z AZE Z 2jP;
J J

There is a short claim that this is well-defined, i.e. that the RHS lies in Sj. .. this is an exercise.

It’s injective as if Zj zjp; = 0 and Zj zjp; = 0, then conjugating we get Zj Zjp; = 0. This allows us to
say > Re(zj)p; = 0,> Im(z;)p,; = 0. But wait! As a real vector space the ¢, are all linearly independent,
so Re(z;) = 0,Im(z;) = 0. Perfect! Then the z; = 0.

Then they’re complex vector spaces of the same dimension so they are isomorphic.

Why does this matter? Well take some f € S; which is a normalized eigenform. So Ay : Tz — C is an
eigenvalue for Sy, so it is for V', and then A% is an eigenvalue for V, but then it is an eigenvalue for Sy by
the above. So there is a g € S with eigenvalue A%. Normalizing, we see the Fourier coefficients of g must be

o(ag(n)) as Hecke operators can extract the Fourier coefficients.
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This can similarly show f € Sa2(N, x) maps to f7 € S3(N, x7), since diamond operators give the eigenvalue
depending on y for these. Showing f7 is a newform if f is...should not be too hard
Corollary VI.2.3
S5(T'1) has a basis with Q Fourier coefficients.

Proof. Suppose f is a newform of level m | N with field K. Let {a1,...,aq} be a basis of Ok as a Z-module.

Let 01,...,04 be embeddings Ky < C. Then consider the matrix A = (a ) Now we can look at

fo
F =

foe
g=Af

gi=Y al'f”
J

Notice thenthat g7 = g¢; for any o. Then we need A is invertible (fact from algebraic number theory). Then
span(g;) = span(f”").
The proof then proceeds by some basic induction, working newform by newform. v

VI.3. Abelian Varieties and Modularity

Fix f € So(I'1(N)) a newform of level N, then As : Tz — C was defined last time as an evaluation map

(for the eigenvalue), Iy = ker Ay, and we now define

Note Iy, Af only depend on the Galois orbit of f (in the sense discussed last time).

Well we know Tyz/I; acts on Ay, and we can look at this as a diagram

Ji(N) —2 Jy(N)

| l

Af T) Af.

Namely we have that
(ap - ©)(f7) = @(ap(f7)f7)

for ¢ € Ay, and a,(f7) is the p-th Fourier coefficient of f7. We wish to study Ay. We say fi ~ fo if there is

a Galois action o for which f; = f§. The equivalence class of f is denoted [f]. We now define

Vi :=span({g € [f]}) € S2(N).
We have since the galois orbits are linearly independent (easy check) that

dime = [Kf : Q}
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Now define

A= Hi(X(N),Z)|,, € V}.

Proposition VI.3.1
Ay 2 V7 /As. Furthermore, this right hand side is a complex torus of dimension [K : C].

Proof. Condense notation as Sy = S2(I'1(N)), H1 = H1(X1(N),Z). Then by definition

A, W) S5/
T I (N) ~ Ip(S5/Hy)
LS S3/1;S;

T I;5;+H, image of Hy in S5/1;55"
Last time we had that this (on top) is the dual of the annihilator, So[I]*
Sally]”

Ay .
H1|s2[1f]

1%

We will show that Vy = Sy[I], and then the result follows. We will also show Ay is actually a lattice.

(1) We know Vy C Sy[If]. We need to know this is an equality. The strategy is just to compute the
dimension of Sa[Iy]. Well

dim(S2[If]) = dim(S2[Lf]*) = dim(S5/I;55).
Then we have a pairing
Te x 52 —C

(T,g) = a1(Tg).

Then we get Tc — S5. We claim the pairing is bilinear, non-degenerate.
e Bilinearity is easy.
e If g€ S5, and (T, g) =0 for all T¢, then (T}, 9) = a1(Thg) = an(g), so g = 0.
o If T € T¢ and (T,g) =0 for all g € S. But then we see that

an(Tg) = a1 (TnTg) = al(TTng) =0.

Thus T'g = 0 for all g, so T'= 0.

This shows an isomorphism T¢ — S5. Thus
dim(Ss[1]) = dim(S5/1;55) = dim(Te /I Te).

And in fact, since Tz ® C surjects onto T¢ we have

dim(Te/I;T¢) < dim (TZ © C) — dim (TZ ® c) = rank(Tz/I;)
If ®C If

The second to last equality follows because C is free over Z, and Z is a PID, so tensor product by C

is exact. We finally claim

rank(TZ/If) = [Kf : Q]
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because Ay : Tz — C provides an isomorphism of Tz/I; with the Z-module generated by the
coefficients of f in C.

This in fact gives equality of the dimensions so Vy = Ss[I;]. Further we get a nice fact that

']I‘Z®(C_> Tc
I;®C  I;Tc

is an isomorphism!

(2) Showing that Ay is a lattice is a big computation like this that we will not do.

¢

Clarification for people
Tz = Z{T, (n)} € End(S(T1 (V)
Te = C{Ty, (n)} S End(S2(T'1(N))),
but in fact Ty ® C # T¢. Not actually true. ..but one can imagine T scales by 3, and T3 scales by v/2 and

everything else is zero. Then we would have Tz ® C = Z? @ C = C?, and T¢ = C.

We do have a surjection
Tz @ C —» T¢
as mentioned in the proof above.
Then Ji(N)/IfJi(N) = Ay 2 Vi /Ay is a torus as desired.

Theorem VI1.3.2

There is an isogeny (surjective homomorphism with finite kernel)

L(N)— @ A}

f, level Ny

where m is the number of divisors of N/Ny.

Proof. Must use the basis for Sz(I'1 (IV)). These were f(n7) were f is a newform of some level and n | N/Ny.
We rewrite the basis of S3(I'1(N)) as

B(N)=1] [I TI{romm

[f] n|N/N¢ &
We then define a map
Uin:S2(T1(N))" — V§
=

such that

d

Y Do mfr) | = Zne(f7 (nr)).

j=1 j=1

We then claim that
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Claim
U, takes Hq(X1(N),Z) to Ay = Hy(X1(Ny), Z)|Vf.

Let ¢ = fa, where « is a loop. Then

Do (r —n/fffm dT—/fff

where & = na. One can show that & is a lift of a loop in X (Ny).

‘We then obtain

U =[] vrn: ST(N) = P Vi =Pi)m.
fin fin

f

By the claim, this descends to a map
(N) — @ A
f

We now must show v is an isogeny. We'll start with surjectivity. If ¢ is the dual vector of f7(n7) then
Ysn(p) sends f7(7) to n and everything else to 0, and 14, () is zero.

This makes up the basis that we’d like to have! To prove the finite kernel property, we need to show the
image of H; in Ay under 9, has the same rank as Ay.

r " Y
This is a computation that is not too difficult. v

This will allow us to state the modularity theorem in better terms, namely the surjection J;(N) — F of
the modularity theorem will be a specific map AF_, E for a specific newform!
Note: We've done everything for I'y (N), we could do everything for I'o(N). Note X;(NN) surjects onto

Xo(N), and so indeed what we’ve done is precisely stronger. If we define
A’ = Jo(Ng)/IsJo(Ny) = (V)" /AL,
and we get a map
N) — @(A’f)mf
f
The modularity theorem is then stated as
Theorem VI1.3.3 (Modularity Theorem)

If E is an elliptic curve with j(F) € Q then there exists an N and f € S2(I'g(V)) with a surjection
A} —- E.

VII. The Land of Algebraic Geometry

VII.1. Complex Tori as Elliptic Curves
Recall VII.1.1

A complex torus is C/A where A is a lattice with A = w1Z @ woZ. Goal is to relate this to a cubic
P

curve.
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A meromorphic function is a holomorphic map f : C/A — C. Put another way, this is a meromorphic
A-periodic map C — C (or holomorphic C — C).

The Weierstrass g, function is given by

, where z € C\ A and Y~ means to exclude 2.
The summand is ~ =%, which can be used to show px (2) converges absolutely and uniformly on all compact
subsets away from A. Thus g, is holomorphic at all points C\ A.

We can of course compute for z € C\ A that
1
/ —
pp(z) = =2 E m

It is clear that @/, (2) is in fact A-periodic.
Exercise VII.1.2 (1.4.2)

Show that pa(z) must in fact be periodic.

Fact: The field of all meromorphic functions on C/A is given by C(pa, ¢y) (that is rational expressions in

DA, 90
Recall VII.1.3
We have the Eisenstein series
Y / 1
T T .: N )
k(™) Z (e + d)F
c,deZ
which is sum of reciprocals of k-th powers over a lattice A, = 7Z & Z.

This can generalize to a function of a lattice

i1
weA

Usually we will take k > 2 to guarantee good convergence properties. Also if k is odd Gi(A) = 0, so we’ll
restrict to k even.

There is then an identity for every m € C*,
Gr(mA) = m=FGL(A).

Theorem VII.1.1 (1.4.1)

The Laurent expansion of g at z =0 (i.e., on a tiny punctured disk about z = 0) is given by

1 oo
pa(z) = 5+ D (- 1)Gya(d)2",
n=2
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Furthermore, we have the following relation

(9h(2))* = 4(pa(2))” = g2(M)pa(2) — g3 (),
where g2(A) == 60G4(A) and g3(A) == 140Gs(A).

Proof. For the first piece, recall

We see that

(23@2;;(@1)

1 2 2
_2<(1+Z+22+~-> 1),
w w w

since z/w < 1 for z sufficiently small and w € A nonzero (here using that A is discrete). In fact, upon

simplifying, we see that

‘We now have that

oA (2)

| Il
Rl = Nw"—'
+ ¥
RN
~ -
M I
~ 3
- 2
N——— 3
ER
+
—_
=

which is exactly what we want.
For the second part, we write
1
pa(z) = ) +3G4(A)2? 4+ 5Gs(A)z* + O(2%)
2
oh(z) = —= 6G4(A)z 4+ 20Gs(A)2% + O(2°).

Both (¢4 (2))? and 4(pa(2))® — g2(A)pa(z) — g3(A) look like

4 24G4(A
o % — 80Gs(A) + O(22).

Thus the difference of these two is a holomorphic function with value 0 at 0. Furthermore it is A-periodic, so
Y

by complex analysis (i.e., Liousville’s theorem) it must be constant. v

Proposition VII.1.2

The cubic equation

42° — go(AN)x — g3(A)
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has distinct roots. This is equivalent to ga(A)? — 27g3(A)? # 0 (the discriminant), and equivalently this

means the curve y? = 423 — go(A)x — g3(A) is nonsingular.

o
Proof. In 1.4.1, not difficult to prove (just compute with an explicit lattice). v

This is a cubic equation coming from a lattice on C. This is our relation to elliptic curves! It gives us a

map
C\A— {(x,y) €C?|y? =42® — g2(M)z *gg(A)}
z = (pa(2), Pa(2))-

If we mod out by the lattice, this is a bijection (this is a simple computation). How does this compare to

the torus C/A? Well we’re missing a point! By mapping A/A to some point at co, we get a bijection
C/A — an “elliptic curve” Fy.

We should see how the group law on the torus translates to Ez! We'll say zero is the point at co as Op, .
Then in fact “colinear points sum to zero” (this is not obvious but it is a computation). Namely if
21, 29, 23 € Ep lie on the same line then z1 + zo + 23 = O. When z; = 25, we should take a line tangent to
z1! It turns out that P = (z,y) gives —P = (z, —y).
We actually have every elliptic curve y? = 42® — asz — a3 where a3 — 27a3 # 0 comes from a lattice. One
can actually very explicitly write it down!

How should we consider isomorphisms of elliptic curves? Well consider m € C*, then

2

(z,y) = (m~*z,m™>y)

maps

4

{y? = 42® — apx — az} = {y? = 42® — mtasx — m Sas}.

This map comes from an isomorphism of tori, namely z + A — mz + mA.
Corollary VII.1.3

The discriminant function A : H — C, which we recall is

A(1) = (g2(7))* = 27(g2(7))?

is in fact never zero.
Proof. Up to some multiple, A(7) is in fact the discriminant of an elliptic curve E,_ (which is nonsingular).
o
v
VIIL.2. Elliptic curves as algebraic curves

This is section 7.1 in the book. Let k be a field of characteristic 0 and let k be the algebraic closure.

52



Faye Jackson November 3rd, 2022 MATH 678 - VII.2

Definition VII.2.1

A Weierstrass equation over k is
y? = 42® — asx — as

for ag,as € k. The discriminant is A = a3 — 27a3 € k. If A # 0, then we define the j-invariant to be

3
j=12% € k. We call

E(z,y) = y* — 42® + agx + a3.

Definition VII.2.2

If we have a Weierstrass equation with A # 0, we say E is nonsingular and we call
—2
E={(z,y) €k | E(z,y) =0} U{oo},

an elliptic curve over k, which we can think of as a variety which is a subset of the projective plane
P2(k).
If L/k is any extension we write £(L) for £ NP?(L?).

Let L/k be Galois and €/k to be an elliptic curve over k. Furthermore let o € Gal(L/k), and for x € L

write 27 := o(x). Then since E(z,y) € k[z,y] we have
BE(x?,y7) = E(x,y)7

for x,y € L. Thus there is a group action Gal(L/k) on E(L).

This actually can give you representations of a Galois group for certain curves/points on those curves.
There is a group law on & where P+ Q + R = O¢ if and only if P,Q, R € &£ are colinear (over k). This also
gives a group structure on £(L) for any k C L C k. Namely we can just write down an equation for the point
P + @ and it’s an equation over k.

Thus Gal(L/k) is acting on a group! It acts in a nice way, o € Gal(L/k) gives a group homomorphism
E(L) — &(L), since the equation for P + @ is an equation over k (and hence is carried over nicely by o).

Theorem VII.2.1 (Bezout’s Theorem)

If Cy,Cy are two curves in z,y of degree dy,ds then they meet in dydy points in P2(k), where we

count with multiplicity.

Suppose k = Q, so £/Q is an elliptic curve. What can we say about the structure of £(Q). This is an
abelian group. But what is it? It turns out £(Q) is finitely generated, and this result is called Mordell’s
Theorem. It is quite difficult to prove

Author’s Note: I may include notes about the Mordell-Weil Theorem as an appendix from a UVA (Ono’s)

REU mini-course

The rank of £(Q) is often called the rank of an elliptic curve.
Recall VII.2.1

N . . .. .. -2 . .
If k is a field of characteristic zero then the elliptic curve £ C k£ is the solutions to

E(x,y) = y* — 42° + gox + g3,
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where A = g3 — 27g3 # 0 (aka the curve is nonsingular, aka not all formal partial derivatives vanish at

some P).
Why do we require that if (z,y) € € with D1 E(x,y) =0, D2 E(z,y) = 0. DoE(z,y) = 2y, so if this is zero
y=0.

Factor y? = 4(z — x1)(x — 22)(z — x3). Then E(z,y) = 0 when x = x1, T2, x3 since y = 0, but then this
gives that Dy E(x,y) vanishing implies there is a non-distinct root, so then A = 0. The converse is similar.

Note: from our discussion last time, if a tangent line through P goes through oo, then P is a 2-torsion
point since P + P + 0o = oo, P = —P. If the coefficients lie in some field k then we can write down the
equation of the addition in this group structure as rational functions with coefficients in k.

Remark VII.2.1

We can think of an ellitpic curve E[z,y] = £ as a functor from k-algebras to groups
E:R— ER)CRXR.

Torsion! We will have that E[N] := £(k)[N] = (Z/NZ)?, where £(L)[N] = {z € £(L) | Nz = co}. Last time,
we saw that if L/K is Galois then Gal(L/k) acts on £(L), and this gives an action on N-torsion as Gal(L/k)
acting on £(L)[N]:

p: Gal(L/k) — GLy(Z/NZ).
To see that E[N] = (Z/NZ)*
VIIL.3. Algebraic Curves and Function Fields
Let I = (¢1,...,0.) C k[z1,...,7,]. Now consider
Vi={pek"|p(p) =0 forall eI},

We then know that I is prime, so the coordinate ring k[V] = k[x1,...,2,]/I is an integral domain, and we
can consider its field of fractions k(V'). If k(V) is a finite dimensional extension of k(t), then we say V is an

affine algebraic curve.

If [Djpi(p)] is rank n — 1 for each p € V, then we say that V' is nonsingular. This is nice, but we really
want to homogenize. Say if ¢; was 21 + 23 we would take it to zgz; + z3. Under this replacement if V' is
the corresponding subset of &' then o € V' implies Az € V" for any \ € k.

We would then define P"(k) to be the quotient of [ by the action of scaling by an element of k. This

is projective r-space over k. We can then consider

Ihom = <Qpi,h0m> C E[an o axT]
Vhom = {[po: -+ :pr] €P(K) | ¢(p) = 0 for all ¢ € Inom}-
————
P

This will make Vjo;n compact which will be nice! Viom is then called a projective algebraic curve.
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Definition VII.3.1
We'll define the tangent space T),(C) (C' is an affine algebraic curve) to be

T,(C) = {v € F" | [Dyps(w)]o = 0}.
We'll also consider m,, C k[C], which is the maximal ideal at p, to be

my, = {f € k[C] | f(p) = 0}.

Then m,, /mg is called the cotangent space at p.
Lemma VIIL.3.1

m,/ mf, is naturally dual to 7T},,C' as a vector space.

Proof. We must construct a perfect pairing
m,/m> x T,C — k.

This will take (f,v) — Vf(p) - v.
We must check this is well-defined. If f € m2 then f = 3" g;hs, where g;(p), hi(p) = 0, then

VIp) = gip) - Vhi(p) + Vgi(p) - hi(p) = 0.
Furthermore, this is the coordinate ring, so if ¢ € I, we see
Vep-v=0,

since V; - v = 0 for all ¢;. Linearity is clear. To show this is a perfect pairing, suppose v € T,C' and
(f,v) =0 for all f. Then Vz;(p)-V =0, sov =0.

To see the other direction, if Vf - v = 0 then all the first-order partials vanish at p, and we can write f
" Y
as. .. v

Local Rings. Consider the localization k[C], == {f/g € k(C) | g(p) # 0}, then M, = m,k[C], is the

unique maximal ideal, and
2~ 2
M, /My = my, /m,

Theorem VII.3.2

k[C], is a discrete valuation ring
Proof. First we show M, is principal. Take ¢ € M, generating M, /M. Now consider N = (t). We want to
show M;/N is zero. Thus by Nakayama’s Lemma we can show M, - M,,/N = M,/N. We see that

2
v, Mo My TN M,
PN N N

Can write any f € k[C], as t°v, then we define the valuation as v,(f) = e. We also let v,(0) = cc. <
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More generally, for f/g € k(C) we let

vp(f/9) = vp(f) — vp(9)

This gives vy, : k(C') = Z U {oo}.
Note: Each f/g € k(C) gives a map

C — PY(k)
if v,(f/g) >0

0
p—q oo ifu,(f/g) <0
 ifo(f/e)=0

Exercise VIIL.3.1
Let E(z,y) : y*> = 42% — 4x. We want to compute v o) (,L,)

Theorem VII.3.3
There’s an equivalence of categories between projective nonsingular curves with non-constant maps
and finite extensions of k(t).

This is given by C + k(C), and is contravariant.

Proof Sketch. There is an equivalence
varieties/k < K/k

where the left hand side is dominant rational maps (dense image defined on an open).

This can be upgraded to curves/k with finite extensions K of k(t) by de-singularizing and compactitying

. . as
(nontrivial, but reasonable). v

For divisors, we can look at h : C' — C’ over k, then h : k(C") — k(C). Then degh = [k(C) : k(C")].
We then have for Q € C” that

> ep(h) =degh
peh~1(Q)
where e, (h) = v,(t' o h), where t’ is a uniformizer at h(p).
We can define Div, Div®, Divz, Pic? as before, and we get for each h : C' — C” a pushforward and pullback
h, : Pic?(C) — Pic®(C")h* : Pic®(C") — Pic’(C)

We have h, sends [p] to [h(p)] and 2™ sends [Q] to }_ c)-1 () €p(R)[p]. Then h, o h* = [degh].
Theorem VII.3.4

If £ is an elliptic curve, then the map Div(€) — £ induces an isomorphism

Pic’ (&) &= €.

Proof. Map is a homomorphism, and restriction to Div®(&) si surjective as [p] — [0] — p.

We want to show the kernel is Div’. The Lemma is
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Lemma VII.3.5 (1) p # q if and only if [p] — [¢] is not principal.
(2) [p] = [0] + [Q] — [0] = [P + Q] — [0] modulo Div’.

Suppose [p] — [q] is principal, that is [p] — [¢] = div(f). Then f : & — P(k) with p being sent to 0, ¢
being sent to oo.
The genus tells us this is a big problem, becasue P!(k) has genus zero, and € has genus one. For the

second part write f(x,y) = ax + by + ¢ in k(E). Then
div(f) = [P] + [Q] + [R] — 3[0].
Likewise the line through R, —R has divisor [R] — [0] + [~ R] — [0]. Thus
[P] + [Q] — 3[0] + 2[0] — [~ R] € Div*.
Then we have

[P] +[Q] — [P + Q] — [0] € Div*.

Then [P] + [Q] = [P + Q] + [0], which is equvialent to what we wanted.

Now suppose we have }_ [n,]p = 0 (that is the divisor }_ n,[p| goes to 0). By (1) this is true if and only if
(Zp Ny [p]) — [0] is principial.
By (2) this is if and only if (Zp ny([p] — [O])) is principal. By (1) this becomes 3" n,[p] € Div’. This is
what we wanted! —
Corollary VII.3.6
> nyp[p] is principal if and only if Y n, =0 and > [n,|p = 0.
Weil Pairing! We’ll look at
pn = {x k| =1},

while this might look like Z/NZ, it carries a nontrivial Galois action to keep track of. The Weil pairing is a
map

EN S[N] X S[N} — UN-.

Let P,Q € £[N] Then N[Q] — N[0] € Div® from our corollary. Say this is div(f). We now want to compute
div(f o [N]), which is

> NR- > NSl
R:[N]R=Q S:[N]S=0
We then fix Q' € £[N?] such that [N]Q’ = Q. Then
div(fo[N) =N > [Q'+5]-[S].
Se€[N]

which we’re supposed to see is principal, without the N! This is because £[N] has N? points. We then have
this as div(g) and div(f o [N]) = div(g").
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For all z € E, we have

g9(z +p)" = f([N]z + [N]P) = f([N]z) = g(x)",

Hence % € pn and is constant. Thus we define

g(m—i—P).

R e

Theorem VII.3.7

This map is bilinear in a multiplicative sense, i.e.

en(aP,cQ) =en(P, Q).

It’s also alternating en(Q, Q) = 1. This implies that it’s skew-symmetric.
Furthermore it’s non-degenerate. Even more incredibly it is Galois equivariant ey (P, Q)% = en (P, Q7).
Finally, it is isomorphism invariant.
A lot of these are not that hard to check.
Corollary VII.3.8
We have e, (P, Q") = e, (P, Q)% if

P’ P
Q' Q
Now we’re going to look at function fields of modular curves. Recall that C(X (1)) = C(j). We would like to

compute C(X(N)), C(X; (), C(Xo(N)).
Take v € Z? with ¥ € (Z/NZ)? nonzero. We write

=7

f(r) = zzgg (CUT]:; dv) 7
and one can check this is weight 0 and I'(/V)-invariant, and it is meromorphic on the upper half plane and
the cusps.
We define

N-1

0,d

Jo = Z fé :
d=0

f1= 0(0’1)
fa,0) = él’o)

Jn(T) = §(NT).

Then we have the following proposition
Proposition VII.3.9
We have

(C(X(N)) = C(jv f1,0, fl)
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(C(Xl(N)) = C(jv fl)
C(Xo(N)) = C(4, fo) = C(4,4n)-

Moreover, C(X(N))/C(X (1)) is galois with group SLo(Z/NZ)/{£I}
We'll talk about this more next time. Of course we get a tower of Galois extensions of all of these.
Recall VIIL.3.2

C(X(N))/C(X(1)) is Galois with group SLo(Z/NZ)/ + 1.

How to check? We have a map 0 : SLy(Z) — Aut(C(X(N))) via SLy(Z) acting via conjugation on
['(N) (giving us SLy(Z) acting on functions). This is our hammer, and we’ve used it before (recall f[a]).

It is easy to check that kerf = 41 - T'(N). Then kerd = +£IT'(N). Then 6(SLy(Z)) in fact fixes
C(X(1)). Thus this gives a map into the Automorphism group. By Galois Theory, the fixed field will
be some field extension, and it is not hard to show the fixed field is in fact C(X (1)), which tells us

everything we need.

Unrelated Note: If you want to know something about Weil groups, there’s stuff from Tate from the Corvallis
Conference with a nice note called Number Theory Background.

Recall that for A, given as Z - 1 ® 7Z, we have a map
C/A; — E;
2 (pr(2), 97(2)),
and the Elliptic Curve is as
B, i y? = 42% — go(1)z — g3(7).

Recall that fJ = :328 ©r (%) One should think of this is the X-coordinate of some N-torsion

Suppose j(7) € {0,1728}. This implies that g2(7), g3(7). We then define

C/A, — C2U {00}

g2(r) (N,
o (93(7) o (93(T)> pT)

this takes the torus to another elliptic curve Ej(7) with equation

i BP9

x .
(g3(m))? (g3(7))?

This is an admissible change of variables from E.. Now f§ are z-coordinates of E;(,)[N]. Moreover, if we
let v = (1,0), (0, 1), this gives points Pr, @, which are a basis for the N-torsion.

Ej(r) :y* =

We can rewrite the equations as

27§ 275
. 2 = 3— —_— — _—
By =do (j—1728)x <j—1728>‘

We'll call this a “universal elliptic curve” over X (1). There are two ways to think about this. We could say

it’s an ellitpic curve over C(X (1)) = C(j), or we can think of it as
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E, — Ej
| |
SpecC —— X (1)aig
where we view X (1)aiz as the algebraic curve with function field C(X(1)). We can enhance this elliptic curve
as (Ej, Pr, @), and this will live over X (N).
Digression: There will be some functor M : Schemes — Sets which is called a “moduli functor.” In some
sense this is

S +— {“objects” over S},

where the objects could be interesting (say elliptic curves over S). The functor is called “representable” by

some scheme M if
M(S) ~ Hom(S, M),
with naturality in S. If this is true there’s an incredible trick one can do. What if you let S = M. Then
M(M) = Hom(M, M).

This has a canonical element Idy;, which gives a canonical object over M. We'll call this Myniy — M.
Messing with the Yoneda lemma tells us for any S — M we have
S XM Muniv — Muniv

| |

S —— M.
This is what is called a “fine moduli space.” It turns out X (1)ai, is NOT a “fine moduli space.” There’s some

issue with it really being a compactification of Y'(1).

But even worse, we’ve thrown out 0,1728, which are the elliptic points. So our universal elliptic curve is
just a close approximation of this.

Then C(X(N)) = C(j, X(E;[N])) over C(j). We can also adjoin the y-coordinates

a2(0\*? | (et +d,
(5m) o+ (5%)
One can show the Galois group of C(j, E;[N]) over C(j) is SL2(Z/NZ), making it an extension of C(j, X (E;[N]).
Now lets look at this over Q. The coefficients of E; live in Q(j). Hence we get something like

Q) € Q(, E5[N]),
and this is still Galois. But the Galois group will be larger. The key is the roots of unity
py ={2€Q|N =1}
We set
Hy = Gal(@(uw. 4, 5 [N))/Q().

We have a map Hg — GL2(Z/NZ). Where does it come from? Well Hg acts on E;[N| = (Z/NZ)?

N
=]

()
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Lemma VII.3.10
Take o € Hg, then for p € un we have

o(p) = Mdet(p(a)).

™ Y
Proof. Use results from last time, since the Weil pairing is surjective we win. \ 4

Now if 0 € Hg fixes Ej[N] then o € ker(p), so o € ker(det(p)), so o fixes pn. This implies pn C
Q(j, E;[N]). Another way to do this is the Weil pairing has an algebraic formula with coefficients in Q(j)
and is surjective.

And also p, = p’H@(um : Ho(uy) — SL2(Z/NZ), where Hg, ) € Hg fixes the roots of unity. The original
p is injective since if you fix E;[N] then you fix all of Q(un, j, E;[N]) = Q(j, E;[N]).

But then p, injects into SLo(Z/NZ). Well Galois Theory says we can take the situation over complex

numbers
SL2(Z/NZ) ‘
C() C(5) NQ(, E;[N]) -
Q@)

This implies SLo(Z/NZ) injects into Hgy

via some basic group theory.

Therefore Hy,y) = SLa(Z/NZ). Thus Hg = GLo(Z/NZ),

UN)*

We can then look at Modular Curves as Algebraic Curves. In particular, we have all these function fields

Q(]a EJ[N]) X(N)alg
Q(j, F1) X1(N)ag
Q(L FO) XO(N)alg

|
Q(j) X(l)alg

where Q(j, E;[N]) is Galois over Q(5), Q(4, Fo), Q(j, F1). Thus these correspond to projective nonsingular
curves. This is what we define as the algebraic version on the right hand side.

This allows us to formula algebraic versions of modularity. Xo(V)ag = E and Jo(N)ag — E which is a
homomorphism.

And as discussed previously if f € S2(I'o(/V)) then we want to look at a homomorphism A% ,;, — E.

Last time: function fields of modular curves. Now, how can we make sense of isogenies E — E’ algebraically

and of Hecke operators?
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For Hecke operators we already have [['yal's] : Div(X2) — Div(X;). For I'1(N) C SLy(Z) with (E, Q) an
elliptic curve and @ its n-torsion we have
T, : Div(X;) — Div(Xq)
LB, Q) = _[E/C,Q+C]

c
where C is a subgroup of order p and C N (Q) = {0}.

Now for elliptic curves over arbitrary fields
E:y® 4+ a1zy + asy = 2° + asz® + asz + ag.

One cannot do a standard change of variables in arbitrary characteristic (namely 2,3). But one can define

A, j. For j # 0,1728 we can look at the curve

36 1
y2+xy=x3—< )

Jo1m8 )T 1w

It is still true that £ < P?(k) and this forms an abelain group. The Group equations are defined over
kprime({a;}), where kpyime is I, Q depending on the characteristic of k.
Theorem VIIL.3.11
The N-torsion for N = [ p can be described as

E[N] =[] Elp™],

Furthermore
o E[p°] = (Z/p°Z)? if char(k) # p.
o E[p°] 2 Z/p°Z for every e, or E[p°] 2 0 for every e provided that char(k) = p. The first is called

the ordinary case and the second is called the supersingular case.

The point, E[p] is a finite affine scheme over k. Thus this is still Spec(A4) for some k-algebra A, where
dimy A = p?¢. The problem is how many points we have on the scheme.

Consider p,, well this is Spec (k[z]/(zP — 1)). In characteristic p this is k[z]/(x — 1)P. So then there’s only
one point on (i, this spectrum. This is exactly the sort of thing that is happening in general.

In the ordinary case, we have

Elp] = pp x Z/pZ

as a scheme.
We also need to study singular Weierstrass curves. That is when A = 0. Suppose P is singular. We can

change coordinates so that P = (0,0). We then get
C(z,y) = y* + arry — 2° — apa®.
If char(k) # 2, this can be simplfied to
3_ 1.2

C(z,y) =y* — 2> — aya?.

Check from these equations that (0,0) is the only singular point.
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Then write E(z,y) = (y — mix)(y — mox) — 2. There are two cases
e If my # my, then there are two tangent directions and this is called a nodal singularity. In this case
we can get a group structure on the points where you’re nonsingular and this is isomorphic to e
Thus this is often called the multiplicative case.
o If m; = mao, then we call this a cusp and the group is k additively, and this is called the additive
case.
Now we’ll look at more algebraic properties of curves in arbitrary characteristic.
Question: Finite fields, Galois groups?
Recall VIIL.3.3
For every p", there is a unique field Fp», which is a degree n extension of I, with Galois group Z/nZ.
Furthermore it is generated by the Frobenius map x + xP.
We have F,» embeds in F,m if and only if n | m. Also (}al(Fp/lf‘"l,) = ?A, the inverse limit of all the

Z/nZ.

We get o, : P*(F,) — P"(F,) given by

[wo -+ wp] = [ah oo 2l
Suppose we have a curve C' with an embedding C' — IP’”(E,) cut out by equations @1, ..., . We can then

define
Cgp : (p‘;p, e 790‘]?77

where ;" tells us to act on the coefficients of ¢; via o,. Then o, gives a map C' — C%, since 0 is fixed by
op and o0, is a Galois automorphism. Essentially for any field map ¢?(o(z)) = o(¢(z)).
This should then induce a map of function fields!
Example VII.3.4
Conisder

op : PH(E,) — PH(Fy)

This then gives us

Fp(t) < Fp(t)

tP it
and we can consider F,, (¢?) = F,(s). Then t? = s, and the minimal polynomial is zP —s = 2P —tP = (z—t)P.
Furthermore, this map above is a bijection, but we really should not think of it as an isomorphism.

Then F,(t)/F,(s) is an inseperable extension (separable extension is when the minimal polynomial

has no repeated roots).

For any algebraic extension k C K, we can factor this as

k— k*P - K,
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where the first is separable, and the second is purely inseperable. Thus if we have h : C — C’, we get a

factoring as follows

C < Csep — ',

€

where the first is inseparable and looks like o,

and the second is separable. Thus we get a factorization
h = hgep © 7).

Then deg(h) = deg[K(C') : K(C")]. Then deg(h) = deg(h)sep deg(h)inseparable- 1t is still true that

Z ep(h) = degh,

Peh=1(Q)
where the ramification inseparable piece is ramified everywhere which is quite strange. In particular one

thing that will be true is if ¢ : E — E’, then
deg(p)sep = [ker ¢ .

Example VII.3.5
The isogeny [p] : E — E. The kernel is the p-torsion. Fact: deg[p] = p? always. But the p-torsion
may be smaller than p?! This is because the inseperable piece is taking over.

We'll have deg[plsep = p in the ordinary case and deg[plsep = 1 in the supersingular case.

Why do we care about this? Well if we have an elliptic curve with coefficients over Z, we can reduce all the
coefficents modulo p to get a curve over F,,. This is called the reduction at p of this elliptic curve.
It turns out, sometimes when you reduce a nonsingular elliptic curve F over Z then sometimes it can

become singular in the reduction. Here we’ll fix F/Q and define
0p(E) = min(v,(A(E)) : E' ~ B),
where E’ has integral coefficients via a change of coordinates from E. We also define

A(Ej)min = Hp'up(E)
p

Fact: A(E)min can be achieved via a change of coordinates with a Weierstrass curve. We call such an integral
curve achieving the minimal discriminant a “minimal Weierstrass model.” From now on assume FE is given
in this form.

We then may reduce E to E,. There are two reduction types

1) Good reduction, we get a nonsingular elliptic curve
a) Ordinary |E,[p]| = p.
b) Supersingular |E,[p]| = 1.
2) Bad reduction, there are many subtypes
a) Multiplicative, my # ma.
i) Split, my,mq € F,
ii) Nonsplit, my,mo & Iy, in fact mi,my € Fppe.

b) Additive, m; = my.
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HW: find an example of each reduction type, due next Tuesday.
Algebraic Conductor. This will be Ng = Hp pf» where

0 if E has good reduction at p
f= 1 if multiplicative reduction
P 2 if additive reduction p # 2,3

2+, if additive reduction p € {2,3}

dp is something we’ll look at later. We can be assured from the book that §, is no more than 6. Recall in
the modularity theorem we wanted a map Xo(IN) — E. It turns out the N we need is Ng.
Last time: Reduction of E/Q. The groups one gets in each case
e Good reduction: an elliptic curve
e Multiplicative split: G, : R — G, (R) = R*
e Multiplicative non-split, U(1), the 1-units in Fp > with 2P+ = 1. What would the points of a general
R be for R an algebra over F.
e Additive case, G, : R — RT (viewed as an additive group).
We want to understand reductions over Q (the algebraic closure of Q). Let Z be the algebraic integers.
If we have a maximal ideal C Z then NZ = pZ for some p prime.
We can think of
Q= U x
K/Q finite alg
For each K we have Ok the ring of integers of K, and play this same game (here Z N K = Of).
We can consider what pOy is for p a prime. Then

9K

pOx = H %,j,

j=1
where g ; are prime ideals in Ok and e; € N. These will be maximal, so Ox/k ; is a field (a finite extension

of Fp). It is customary to say

fi =[Ok /K Fyl.

Then we actually have
9K
[K : @] = Zejfj.
j=1

An alternate way to view this, we have a map Z — Ok and so a map Spec Og — Spec Z, and this is counting
the degree at pZ in two different ways (degree defined appropriately)
Remark VII.3.1
Neukirch “Algebraic Number Theory” and also Cassels and Frohlich are good references for algebraic

number theory.
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If we have then C Z then we can write it as
K/Q

such that for K'/K we have pgr N O = . Then in fact

Ly ={z/y |y &b}
Zi)/P=1/p=TF,.

Lemma VII.3.12

If we have C Z a maximal ideal and o € Q then a or 1/« lies in Z().

Proof. Fix a. Then a € K/Q for some finite extension K/Q. Thus it suffices to show a or 1/a lies in Ok .
This is in fact easy since O K Isa discrete valuation ring.

For the unitiated (including the current writer of the notes, check back with the future writer),this is a

valuation map from the ring to Z U {oo}. Then v, = —v, (1/c). Furthermore v_'(Z>¢) = Ok ., so one of
e
these lies in the set. v

Example VII.3.6
K =Q,0 =Z and p a prime. Then we write

o (5) =0 () =43

where a = a’p*,b = b'p’ where pta’,t’. The points in Z(y) are exactly those points with nonnegative

valuation.

Suppose we have an elliptic curve E/Q. Transform the Weierstrass equation so that we have something
Z-integral. We know Z C Z. So we can assume the coefficients of F lie in Z().

Reduce via map Z() — F,, to get Weierstrass equation. We can then make sense of ordinary, supersingular,
multiplicative, and additive cases.

Potentially: Isomorphism classes of elliptic curves over Q are much bigger than those over Q. In fact this
happens. Thus when we think about reduction, the situation is slightly different.

Fact: So long as p # 2 we can change coordinates to the form
E:y?=z(x—1)(z—)\)

where A € {0,1} and X € Z(). Then one can check that additive reduction is not possible for an equation of
this type. The same is true for p = 2, but this is not quite the right form.
Definition VII.3.2

A -minimal Weierstrass equation is one with only good or multiplicative reduction over .

Proposition VII.3.13

Reduction type is well defined on Q-isomorphism classes. That is the reduction type cannot move

between good and multiplcative for minimal models like the above.
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Proof. There is the number A, and there’s another number ¢4, associated to the elliptic curves. We in fact

have
additive reduction <= A =0,c4, =0 mod

If we do a change of variables, then u'2A’ = A and u*c), = ¢4 for some u (in terms of the change of
coordinates).
The case we're frightened of-A’ € Z(X) but A € Z.

If this is the case then u'2,u* € Z(). Then ¢4 will also lie this ideal, which will give us additive reduction

(which is impossible with minimal models). <

Proposition VII.3.14

E/Q has good reduction at if and only if j[E] € Z.

Proof. Remember that the j invariant is j = ¢} /A. f

Reducing Points. There is a reduction map

P"(Q) - P'(F,)
[mo,...,xn] — [%1,...,&%].

Technical point, we have to scale g, ..., Z, so that one of them does not lie in Z and all of them lie in Z().

Hence E C P2(Q) can be reduced on points. We want to understand reduction of E[N].
Theorem VII.3.15
We get a map E[N] — E[N] that is surjective.

Proof. Getting the map is clear—equations for N-torsion are algebraic and we can just reduce. When p 1 6N,
then E[p"] = Z/p"Z or E[p"] = 0. The second obviously works and the first we’ll get an isomorphism if we
o

have injectivity. ..then we stare at the map. v

Proposition VII.3.16
Say E/Q has good reduction at p. Say C' C E is a cyclic subgroup of order p. Then

e E/C has good reduction

e E,E/C have the same reduction type, ordinary versus supersingular.

Proof of second piece. Say ¢ : E — E/C = E’ is the isogeny. Then ¢ : E/ — E can be given as the dual
isogeny.

We know 9 o ¢ = [p]g and ¢ o ¢ = [p]g/. Then if we look at the reduced isogenies
Fopog =50l
=[plgoe.
This in fact tells us that

degsep [p]E = degsep [p]E/ .
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7 Y
v
Reduction for more general Curves. Specifically, we want modular curves.

Definition VII.3.3

Suppose C'is a nonsingular affine curve over Q cut out by equations ¢1,..., ¢ € Z)[X1, ..., X,
We'll say C' has good reduction at p provided that

(1) I= <%017-~--,99m,> C Z(p)[Xl-,- - aXN] is prlme

., Xn] defines a nonsingular affine algebraic curve.
What is Condition 1 doing? Lets see what it rules out

Non-Example VII.3.7

Let I = (p(py — 1), (y — 2%)(py — 1)). Inside Q we have Iy C Q[z,y| just defines the curve y = 1/p.
However this is not prime in Z,)[z,y] since we cannot scale by 1/p.
The reduction is I C Fplz,y] is y = 22
For elliptic curves Condition 1 is automatic, as Weierstrass equations are very simple.
For projective curves we’ll homogenize the affine case.
Definition VII.3.4

Suppose we have some Iy C Z,)[X1, ..., X,] prime with homogenization I C Z,)[Xo, ..., Xy].

Say this gives a projective curve Chom. We say Chom has good reduction at p if for all i either C;
(unhomogenizing at x;) has good reduction at p or f(i) =TF,[X.,

L X , Xn] (empty reduction).
We can let éhom be the reduced curve given by (T(O))hom.

Note: Some commutative algebra tells us that if (o) is prime, I is prime, and this implies I(;) is prime.

Recalling that P"(Q) — P™(F,) gives us a map on points for reducing projective curves.
Theorem VIIL.3.17

If C is nonsingular, projective, of good reduction at p, then the reduction map C' — C is surjective.

Fact we won’t state: You can also reduce morphisms! The idea is to reduce the algebraic equations defining
the maps, which gives you something rational, and then extend by nonsingularity.
One would really like to have a commutative diagram

c s
C T> C’
But in fact this only holds if g(C”) > 0.
Theorem VII.3.18

If g(C') > 0 and h : C — C’ over Q where these have good reduction then

c Lo
l l and this & is unique.
o O

h
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Something that could go wrong when reducing maps. Look at
h:P' — P!
[z :y] = [pz 2 y].

Then h doesn’t quite make sense, as it maps [1 : 0] to [0 : 0] (which is not in P,

Corollary VII.3.19
Suppose C, C’ are nonsingular and projective with good reduction at p and g(C”) > 0.

(a) If h is surjective, then h is surjective.
(b) If k: C" = C” and g(C") > 0 then ko h = ko h.

(¢) h is an isomorphism implies h is an isomorphism.

Theorem VII.3.20
The map Div’(C) — Div’(C) where p — p is well-defined, and furthermore

Div/(C) — Div'((C)).

However, it is not necessasarily true that the reduction of the divisor of a function is the divisor of the
reduction of the function.

This then induces a map
Pic’(C) — Pic’(C).

Theorem VII.3.21
Theorem VII.3.18 is true for E/Q, h an isogeny.

Fix ideals p C Z and p C Z, and p{ N.
Recall VII.3.8
E/Q has good reduction if and only if j(E) € Z).

Definition VII.3.5

Consider the set
S1(N, )gooa = {(E,Q) € S1(N) | E has good reduction at and §(E) #0,1728}.
We also define
$1(N) = {(E,Q) | E[F,,Q € E[N]}
We also define
S1(NY = {(E,Q) € $(N) | j(E) # 0,1728}.

We also have a surjection S1(NV)go0q = Si(NY.
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Consider the modular curve X;(N). We had a universal elliptic curve E; living over this. The function field
was z-coordinates of torsion on this curve. We can also consider Ej,

~ 36 1
E. 2 I S . —
jry ey = (j—1728)x j— 1728

Fix Q € Ej [N] of order N. Let 1,5 € F,(5)[X] be the minimal polynomial of (Q).

We can then define
Definition VII.3.6

KY(V) = Fp () [X]/p1,n5 (X).
This is our candidate function field. It is easy to show this is a function field. Thus there exists a nonsingular
projective curve corresponding to this, and we must ask if that is the same as X, (N) (which as of now we
don’t even know if that has good reduction!).
Theorem VII.3.22 (Igusa)
For the modular curve X;(N),

e X;(N) has good reduction at p.
o F,(X1(N)) = KI(N).
e There is a commutative diagram

S1(N)

/
good

Corollary VII.3.23

There is a commutative diagram

DiVO(Sl(N)/good) — PiCO(Xl (N))

| |

—~—

Div(S;(N)) — Pic®(X1(N))

VII.4. Eichler-Shimura Relation

Idea: Compute T}, : Pic®(X,(N)) — Pic’ (X, (N)).
Warmup: Consider the diamond operator (d), We have I'; (V) is a normal subgroup of I'o(N). The quotient
is (Z/N7Z)* and we pick a d here. We pick a matrix

[Z gl € I'h(N)

reducing to d. We can think of conjugation by this matrix acting on T'g(IV), and we can think of it as a

double coset operator as well. We then get a map

(d), : Pic®(X1(N)) — Pic®(X{(N)).
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Since this comes from an actual honest to god map of curves, we're actually fine.

General double coset operators. Let I'1, 'y be congruence subgroups and

Fg = Fl N gil].—‘gg

I =glg ' NT.

There are then maps
X5 +— X}
X, Xo.
In the T, case, I'1,I's = I'1(N). Then

Lio(N,p) =T1(N) NTo(Np).

Then one gets maps
Xl,O(Na p)
X1(N) X1(N)
The problem is X7 o(N, p) does not have good reduction at p. The reduction somehow looks like 2 copies of

—_~—

X1(N) glued at the supersingular points.

The books says in fact we can sort of reduce this diagram, but we have to wrestle with X; ¢(JV, p) having
singular reduction.
Assuming Tp is well-defined, we compute it.
Recall VII.4.1

Eigenvalues of T;, are coefficients of forms. We would like to do point counts for the reduced modular
curves.

We have a,(f) is the coefficent in the modular curve, and we’d like to relate that to a,p(E) (a point

=2 =~
count of F,,” points on F).

We should also recall what the Hecke operator does on the moduli problem
Recall VII.4.2

We have that

T, : Div'(S1(N)) — Div’(S1(N))
T,[E,Q =) [E/C,Q+C),
c

where the sum is over all C' C E of order p with C' N (Q) = 0. In our case this second condition is
vacuous since p{ N, and @ has order N.

Also recall that if £ has ordinary reduction at p, then so does F//C'. Thus we can split this computation

into an ordinary and supersingular computation.

Let E/Q have ordinary reduction at , and let

Co = ker(E[p] - E[p]).
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And of course |Cy| = p.
Lemma VII.4.1
We need to know what the reduction looks like, well
[E°v, Q7] it C=Cy
1

E\E',/\_/CY: ~ ~ -1
[ / Q+ ] { (EUP ,[p]QUP ) ifc#co

Proof when C = Cy. Let E' = E/C,Q' = Q + C = ¢(Q), where ¢ : E — E’. Let ¢ : E/ — E be the dual

isogeny.

Consider the diagram
E'lp] = Elp]

L

ﬁ[ﬁ] 7’ E[p]

We know this commutes, so then we have the following steps
e (E’'[p]) C E[p] as order p.
e (E'[p]) C C, and this implies o(E'[p]) = C.
° E—’\[E] C ker QZ

~ —_

o ker(y) = E'[p]
Upshot: compute the degrees of everything in sight.

deg[pl = p* deg(@) =p deg(¥)) = p.
Hence,
degsep [p]ﬁ =D deginsep [p]ﬁ =D
degsep /(Z =D deginsep i[‘; =1
degsep (5 =1 deginsep (:5 =D

This implies that ¢ = ¢ 0 0}, where ¢ is an isomorphims and o, is the Frobenius map. With ¢ : E°» - E.

This is a field extensions sort of argument (splitting into separable/inseparable). Then ¢ induces an

equivalence

L [E, Q') < [E77, Q7).
The other computation is similar.

Where we we?
Recall VII.4.3

PN
v

We had an elliptic curve F/Q with ordinary reduction at , Q € E a point of order N, and Cy =

ker(E[p] — EM) with p{ N.
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Lemma VII.4.2
If C C E, |E| =p, then
[E7», Q7] if C=Cy

1

E/C,Q1C)={ "
Fieerd {(E%,[pm%) it C £ G

where o), is the Frobenius map.

We did the proof when C' = Cy last time! The proof for C' # Cj is similar.
Fact: E[p] has p + 1 subgroups of order p (this is (Z/pZ)?, which we can view as a vector space). We had
the reduction of the diamond operator, which when (d, N) =1 had the form

~ —_~— —_~—

(dy : S1(N) — S1(N)
[E,Q] = [E, [d]Q]-

We should have something like

C
T,IE.Q1 =Y [E/C,Q +C]
C

= (0p + (P, )IE, Q).

This is all in the case of ordinary reduction. In the supersingular case, we can take the same setup as before.

This ends up showing that
[E/C,Q+C) =B, Q7] = [E ,[p]Q" ].

This implies the same formula is true, but there’s some collapsing so it is less interesting in some sense.

In general we have that

S1NY,o0q —2= Div(S1(N)o0)

l |

—_—~/ —~/
S1(N) ———— Div(S1(N) ).
) e D))
We define a map o = g, + (7)o}, from Pic’(X1) to itself.
It turns out Divo(gi) to this picard group is surjective.
Theorem VII.4.3 (Eichler-Shimura)

We have a commutative diagram

Pic® (X1 (N)) —2 Pic®(X,(N))

| l

Pico(m)gpm Pic® (X1 (IV))

p

There is also an Xo(N) version.
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Pic®(Xo(N)) —2 Pic®(Xo(N))

| |

e~ e~

Pic?(Xo(N)) —, Pic’(Xo(N))

@
Op,t+o,

Definition VII.4.1
We let a,(E) =p+1— ‘E(Fp)

when F has good reduction at p.

There is in fact a Lefschetz formula

E(F,) = Y (~1)" tr(Frob(H}, (B, Qy)).

%

This gives a good reason to care about a,(E). In H 9 we’ll have a contribution of 1, and in H? we’ll have a

contribution of p. In H' we’ll have what’s called a Tate Module, and we’re computing the trace of frobenius

on this Galois representation.
Theorem VII.4.4

Supposing E has good reduction, a,(E) = 0 if and only if E has supersingular reduction at p.

Supposing F has bad reduction, we define,

1 if E split
ap(E) =4 —1 if E nonsplit ,
0 if £ additive
and this will fit into the general theory.
Proposition VII.4.5
E/Q has good reduction at p, then

lap(E)] = op, ‘7;

on Pic’(E).

We know E[IFP} =ker(o, — Id), h, o h* = deg(h), and so

|EIF,)| = deglop — 1) = (o = Daloy — 1"

If we FOIL this we get
0p, 0y + 11" — (0p, +0,).

The modularity theorem can now be restated as
Theorem VII.4.6 (Modularity)

If £/Q is an elliptic curve and the conductor is Ng. Then there exists a newform f € S2(I'g(Ng))

such that a,(f) = ap(E) for each prime p.
(Before: Xo(Ng) — E).
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Theorem VII.4.7
Let E/Q be a curve, with Ng a conductor, « : Xo(N) — E.
Then in fact there is an f € S3(To(Mp)) with Mp | N so that a,(f) = a,(E) for all pt NgN.

Proof. Recall that S3(I'o(IV)) has a basis U; U,y U, f7(n7) where f is a newform.

This told us we had an isogeny
Pic’(Xo(N)) — €D 4f e,
fin

and we can consider the dual isogeny, and then write down

[1f., ap(f)—ap(E)
®fnd}c n Drndlc

Pic’(Xo(N), %)TT(>E)P1CO (Xo(N),C) -2 Pic’(Ec).

We now have some facts
e If a,(f) # ay(E) then the top map ®, A’ ¢ (should be believable, it’s nonzero)
e The square commutes.
e The composition of bottom maps is 0.
If for some p, a,(f) # ap(E), then the image of EB”(A’f)C lies in ker a,. Now suppose for each f, there is a p
such that a,(f) # ap(E). This implies that the image of @y, A} ¢ C ker(a).
But this is bad because the map above @y, A%} ¢ — Pic’(Xo(N),C) is surjective. This would imply
Pic’(Eg) is trivial!!!

But this isn’t true, so there is a p with a,(f) # ap(E). v

Remark VII.4.1
If f is as in Theorem VIL.4.7 then f/Q. Why? Well o € Gal(Q/Q). Then

ap(]w) = ap(f)a

for almost all primes a,(f) = a,(E) =€ Z s0 a,(f) = ap(f?). Strong Multiplicity one would then imply
that f = f°

How do we relate the versions of modularity. Well we look for a map
Xo-Mod — a, — -Mod.

Well recall we had dim A, = [Ky : Q] but since f/Q in the situation above, A’ is an elliptic curve (abelian
variety of dimension one).

Have: Xo(N) — Pic?(Xo(N)) — A’;. Then we can apply Theorem VIL4.7 to this setup. Then there’s a g
with a,(g) = ap(A'f) (except at divisions), and you end up with g = f in the proof. Why? Well the idea is
the a,(f) — ap(E) portion above, and applying strong multiplicity one.

Thus a,(f) = a,(A%}) for almost all p, when f/Q.
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Theorem VII.4.8 (Carayol)
ay(f) = ap(A}) for all p.
We then have A} — E. Then it turns out A} = E and a,(f) = ap(A%) = a,(E) for all p.

VII.5. Some L-function stuff

Recall for a newform f we defined L(s, f) == >_°" | a,(f)n~*. We were able to show that

L(s, f) = H (1—ay(fHp~° + 1N(p>p1—25:)

where 1 (p) detects if p | N where f has level N. We can also define

-1

tpe =p°+1— ‘E(Fp )

Then we can define a local zeta function

a tye(E
:HeXp< P( )me>.
e
e=1
One can show
Zy(p~*, E) = (1= ap(E)p~* + 1p(p)p" )",

where 1g is 1 if good reduction and 0 if bad reduction. This clearly depends on reduction type, and,

(1= ap(E)p=* + p=2)~1  if good
2,0, B) — (1—p=5)~t if split

(1+p=5)7t if non-split

1 if additive

Define

L(s, B) = [[(1 — ap(B)p~ + 16" >) = > “"n(E .
p n=1

Formally defined,a:1(E), A,(E) =p+ 1 —|E(F,)|. Furthermore

ape (f) = ap(E)ape-1(E) — 1g(p)paye—2(E).

Furthermore if (m,n) = 1 then a;n(E) = am(E)an,(E).
Theorem VIL.5.1 (Modularity)

L(s, f) = L(s,E). As a consequence L(s, E') has a functional equation and an analytic continuation.

Conjecture VII.5.2 (Birch-Swinnerton-Dyer)
ords—1 L(s, E) = rank(E/Q) = r which is determined by E(Q) =Z" & T.

Then L(s, E) converges when Re(s) > 2. The functional equation determines Re(s) < 0.
Definition VII.5.1
Let K/Q be an imaginary quadratic extension. An order O C O, rankz(O) = [K : Q] = 2.

In this simple case the orders are O,, = Z + nOg where n € Z>;.
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Definition VII.5.2 (Heegner Point)
A Heegner point in X (V) relative to K is a pair (E, C) such that F, E/C have complex multiplication
by the same order O.

Then these will look like
&n = (E=C/Oy, B' = E/C =C/N;)
N COg,Ny =NNO,.
with Ok /N = Z/NZ, where inverse is taken with respect to the notion of fractional ideal.
The Heegner Hypothesis is that each p | N splits in K, which implies there exist Heegner points in Xy (V)
for all On. It turns out z,, € Xo(N)(H,) where H, is a ring class field of O,,.
This is a generalization of the Hilbertclass field, with Galois group (O, /nOx)™ /(Z/NZ)*.

Consider £/Q by modularity Xo(N) < E. Then we can consider the image this Heegner point z,,
yn € E(H,). We can then consider

try, « E(Hpp) — E(Hy)

z Z o(2).

o€Gal(Hpp/Hy)

Theorem VII.5.3
2 (Ynp) = ap(E)Yn.

Proof. We'll use Eichler-Shimura. We’ll need the version where the composition
Pic®(Xo(N)) " =28picd (X0 (N)) —2 E
is zero. We might as well work in the picard group then! So we can look at
by (Ynp) = tr(e(@np)) = a(tr(znp))
= a(Tp(zn) = ap(E)a(zy) = ap(E)yn.
e
v
Exercise VII.5.1

Why is tr(xy,) = Tp(x,)? Idea: look at what we did for Hecke operators and Galois actions in the

X7 (N) moduli problem, and adapt a similar formula for X(N).

Also probably understand H,, better than I do (can’t wait to learn class field theory one day).

Define
Yk = try, /(Y1) € E(K).

We need to say something about its height.
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Definition VIIL.5.3
If p € E(K), we define the naive height as
1

h(p) = K Q

Z [K’Uy @v] . 10g maX(‘lLJ ’ ‘Z/|,U ’ ‘Z|v)’

vEME
where M is all the places (absolute values in K)

We can also define the Neron-Tate Height

ﬁ,,,(p) = lim M

n— 00 4n

This allows us to define a height pairing
() BE(K)xE(K)—R
1~ ~ ~
(P,Q) = 5h(P+@Q) ~ h(P) - Q).

It turns out that (P, P) = 0 if and only if P is torsion.
Theorem VII.5.4 (Gross-Zagier)

If E/Q is an elliptic curve, K is an imaginary quadratic field satisfying the Heegner Hypothesis.
Then

L'(1,Ek) = cex - (YK, YK),

for some special number cg x which is not terrible to write down.

Now write the analytic rank as rkq, = ords—1 L(s, E). The algebraic rank as rkq;y, = rk(E).
Corollary VIIL.5.5
tkon (Ex) = 1 then rkqq(Ex) > 1.

Theorem VII.5.6 (Kolyvagin)
If ord(yx) = oo, then rkqy(Fx) = 1.
This actually tells us that if ke, (Ex) = 1 implies rtkqiq(Ex) = 1.

VIII. Galois Representations

We skip 9.1, and check there fore definitions
Definition VIII.O.1

Let £ be a prime. The ring of /-adic integers is
Zy :=1limZ/ "7
P

along Z /(™7 — 7./t 7.

Explicitly, a € Zy si a sequence a = (ay, as,...) with a,, € Z/{"Z and a,+1 = a,, (mod £)".

Note Z, is an integral domain and the natural map

Z—)Zz

a (a+0Z,a+ 0?7, ...)

78



Faye Jackson December 6th, 2022 MATH 678 - VIIIL.O

is injective. This inclusion induces
L)L =)0 Ly
for every n. Then Z, is profinite because Z/¢"Z is finite for all n.
The group of units Z, is
Z, ={(a1,a2,...) | a; € (Z/O'Z)*}
= (a1, as,...) | a1 £ 0}.

Also Z, has a unique maximal ideal ¢Z,. Furthermore, it comes equipped with a topology with basis given
by the sets

Uz(n) = a + "2y,

where n € Z+.
Definition VIII.0.2

The field Qy is the fraction field of Z,.

Q¢ has a topology given in the same way. The basis is
Us(n) =z + "%y

for x € Qg,m € Z*. For any d > 0, Q‘Z is a topological Qg-vector space with the product topology. The group
GL4(Qy) inherits the subspace topology from Q?Q. Under this topology, matrix multiplication and inversion
are continuous (i.e. GL4(Qy) is a topological group).

Now let K be a number field (K C Q, [K : Q] < co) with ring of integers O . If X is a prime in Ok over

£, then we can play the same game:
OK)\ = lim OK/)\HOK,
“—n
and similarly define K = Frac(Op »). Then we have

Qv =, Z = O 5, K @0 Qe = [[ K,
A€
with the proof in the book.

Galois Representations:

e Let Q be the algebraic closure of Q.

Define Gg = Aut(Q).
We want to study representations of Gg on Q,-vector spaces.
Recall that

o= | kK
K/Q

[K:Q]<oo
K Galois
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Then for any o € Gg and any K/Q Galois of finite degree, we have U{K € Gal(K/Q). This defines a

compatible system of surjections
Gg — Gal(K/Q),

compatible in the sense that if K/ C K we have a commutative diagram
Go — Gal(K/Q)
Gal(K'/Q)
So really we have that
Go= lim Gal(K/Q).
K/Q
fin. Galois

This has a natural topology
Definition VIII.0.3
The Krull topology on Gg has basis sets

Uy(K) ={oT | T!K =1Idg}.

Let’s discuss some important elements of Gg. Fix a prime p, p C Z lying over p.
Definition VIII.0.4

The decomposition group of p is

Dy ={o€Gqlp? =0}

We then have a surjective map D, — Gal(F,/F,) given by
o (x+p—a®+p).

Definition VIII.0.5

An absolute Frobenius over p is any preimage Frob, € D, of the Frobenius map o, € GF,, where

op(x) = aP.

This is well-defined up to I, = ker(D, — Gr,) , which we call the inertia group of p.
Explicitly,
I, ={c €Dy |2 =z (mod p), forall z € Z}.
Theorem VIIIL.O0.1

Fix a finite set of primes S C Z. For each prime p lying over p ¢ S, choose an absolute Frobenius
Frob,. Then the set

{Frob, |p & S}

is dense for the Krull topology.

Proof. We use Tchebotarov Density Theorem (stated below) to prove this theorem.
take U, (K) for some o € Gg and K some number field. We want to show Frob, € U, (K).
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Consider 0'|L € Gal(K/Q). By Tchebotarov, o is a Frobenius for some pr. Lift px to p C Z.
Then Frob, € U, (K). <

Theorem VIIIL.0.2 (Tchebotarov Density Theorem 9.1.2 in [DS05])
Let K be a Galois number field. Then every element of Gal(K/Q) is a Frobenius for p for infinitely
many maximal ideals p of Ok.

Here we mean z° =z (mod p) for all z € Ok.

Definition VIII.0.6

Let d > 0. A d-dimensional Galois representation is a continuous homomorphism

p: G@ — GLd(L)
for L a finite extension of Q.

Remark VIII.O0.1
L = K for some \, K works. If p, p’ are two Galois representations then we say p ~ p’ if there exists

some g € GLg4(L) so that

for all 0 € Gg. One can think of this as a commutative diagram.

Example VIII.O0.1
Fix n > 0, let pug» be a primitive £"-th root of unity (say e>™/*"). Then Q(u¢n) is a Galois number

field of degree ¢(£™) over Q, and we have a canonical isomorphism
Gal(Q(ue)/Q) = (Z/0"Z)*
(pen v pdn) = a  (mod £™).

If we define

Q=) = | Quaen)

n=1

then
Go.o = Aut(Q(up=)) = lim(Z/0"Z)* = Z;.

The inclusion Q(u$°) C Q induces Gg — Gg,¢ by restriction.

Then we have a representaiton
GQ —» Gng :—> ZZ — Q; = GLl(QZ).

This is a Galois representation (check continuity). This is called the ¢-adic cyclotomic character yg.

Claim

X¢ is continuous.
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Proof. Since xy is a group homomorphism, it suffices to show that Xgl(Ul(n)) is open (aka look at neighbor-
hoods of identity). Explicitly we see that

Xe_l(Ul(n)) ={o | xe(o) € 1+ "Z}

={o € Gy ai(@(wn) = Id}.

¢

But this is simply Urq(Q(pen)) which is open.

Exercise VIII.0.2
Compute that y(Frob,) = p. In [DS05] This is 9.3.6.
We want to think more generally about p(Frob,)
Problem: Frob, is only well-defined up to inertia.
Definition VIII.0.7
Let p be a Galois representaton and p a prime. Then p is unramified at p if I, C ker p for any p C Z

lying over p.
Example VIII.0.3
X¢ is unramified at p since p is unramified in Q(pen ), so I, acts trivially on Q(peen ).

We can give an equivalent definition of Galois representation
Definition VIII.0.8

Let d > 0. A d-dimensional Galois representation is a d-dimensional topological vector space V' over

L, where [L : Q] < oo that is also a Gg-module such that the map
V x G@ -V
(v,0) = v

is continuous.

Remark VIII.0.2

We say V ~ V' if there exists a continuous Gg-module isomorphism V' — V' of L-vector spaces.

We can realize x, in this way. Define

C = Spec(Q[z,y]/(zy — 1))

This is a curve, and for any Q-algebra R, the R-points of C are C(R) = {(a,b) € R* | ab = 1}. This is
isomorphic to R*.

Thus C has the structure of a “Q-group scheme.” For n € Z*, define
Ol ={aecC@a" —1=0}CQ".
Then we have an isomorphism
Cl™ = 7/i"7

Hgn > G.
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Furthermore Aut(C[¢"]) = (Z/¢"Z)* in the natural way.
Definition VIII.0.9
The /-adic Tate module of C' is

T(C) = lim C[¢").

We have an induced isomorphism ¢ from Ty(C) to Z,. T;(C) carries an action of Gg, because Aut(C[¢"]) =
Gal(Q(pen)/Q) as Cle"] = Q(pem).-

We can also define
Vi(C) =Ty(C) ®z Q.
We get
Vi(C) x Gg = V,(C)

which is compatible with our previous construction.
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