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Where we we?
Recall .0.1

We had an elliptic curve E/Q with ordinary reduction at , Q € E a point of order N, and Cy =

ker(E[p| — E[p]), with p{ N.

Lemma .0.1
If C C E, |E| =p, then
— E°», Q% if O = C
[E/C,Q+C]= [~—1Q . L ’
(E7 ., [plQ7 ) i C#Cy

where o), is the Frobenius map.

We did the proof when C' = Cy last time! The proof for C' # Cj is similar.
Fact: E[p] has p + 1 subgroups of order p (this is (Z/pZ)?, which we can view as a vector space). We had
the reduction of the diamond operator, which when (d, N) =1 had the form

—_—~

(dy : S1(N) = 51(N)
[£,Q] — [E,[d]Q)].

We should have something like

C
T,IE.Q1 =Y [E/C,Q +C]
C

= (0p + (P, IE, Q).

This is all in the case of ordinary reduction. In the supersingular case, we can take the same setup as before.

This ends up showing that
[E/C7Q + C] = [Eap’@ap] = [EU’: ) [P]@U; ]

This implies the same formula is true, but there’s some collapsing so it is less interesting in some sense.

In general we have that

L Div(Sy(N).,.,)

Sl (N)/good good

l l

P P ey
S1(N) ———— Div(S1(N) ).
) e D))
We define a map o = g, + (7)o}, from Pic’(X}) to itself.
It turns out Divo(gi) to this picard group is surjective.
Theorem .0.2 (Eichler-Shimura)

We have a commutative diagram
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Pic® (X1 (N)) —2 Pic®(X, (N))

| |

Pic” (m);pmag’ico(m ))

There is also an Xo(N) version.

Pic®(Xo(N)) —2 Pic®(Xo(N))

| |

—~—

Pic’(Xo(N)) ——. Pic’(Xo(IV))

Op,t+o,

Definition .0.1
We let a,(E) = p+1— ‘E(FP)

when F has good reduction at p.

There is in fact a Lefschetz formula
E(Fy) =) (=1)" tr(Frob(H, (E, Qp)).
This gives a good reason to care about a,(E). In H 0 we’ll have a contribution of 1, and in H? we’ll have a
contribution of p. In H' we’ll have what’s called a Tate Module, and we’re computing the trace of frobenius
on this Galois representation.
Theorem .0.3
Supposing E has good reduction, a,(E) = 0 if and only if E has supersingular reduction at p.

Supposing F has bad reduction, we define,
1 if E split
ap(E) =4 —1 if E nonsplit ,
0 if F additive

and this will fit into the general theory.
Proposition .0.4
E/Q has good reduction at p, then

lap(E)] = op, ‘7;

on Pic’(E).

We know E[IFP] =ker(o, — Id), h, o h* = deg(h), and so
|EIF,)| = deglop — 1) = (o = Daloy — 1"
If we FOIL this we get
0p, 0 + 11" = (0p, +0,).

The modularity theorem can now be restated as
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Theorem .0.5 (Modularity)

If £/Q is an elliptic curve and the conductor is Ng. Then there exists a newform f € Sy(T'g(Ng))
such that a,(f) = ap(E) for each prime p.

(Before: Xo(Ng) — E).

Theorem .0.6
Let E/Q be a curve, with Ng a conductor, « : Xo(N) — E.
Then in fact there is an f € S3(To(Mp)) with Mp | N so that a,(f) = a,(E) for all pt NgN.

Proof. Recall that S3(I'o(IV)) has a basis U, U,y U, f7(n7) where f is a newform.

This told us we had an isogeny
Pic’(Xo(N)) - €D A} ¢,
fn

and we can consider the dual isogeny, and then write down

Hf,n ap(f)—ap(E)
Sy c = Dl

Pic’(Xo(N), %)TWE)PEO (Xo(N),C) -2 Pic’(Eg).

We now have some facts

e If ay(f) # ap(E) then the top map &, A’ ¢ (should be believable, it’s nonzero)

e The square commutes.

e The composition of bottom maps is 0.
If for some p, a,(f) # a,(E), then the image of @n(A’f)C lies in ker a,. Now suppose for each f, there is a p
such that a,(f) # ap(E). This implies that the image of ©y, A% ¢ C ker(au).

But this is bad because the map above @y, A%}« — Pic’(X((N),C) is surjective. This would imply

Pic’(E¢) is trivial!!!

But this isn’t true, so there is a p with a,(f) # a,(E). v



