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I. The Land of Algebraic Geometry

I.1. Complex Tori as Elliptic Curves

Recall I.1.1

A complex torus is C/Λ where Λ is a lattice with Λ = ω1Z⊕ ω2Z. Goal is to relate this to a cubic

curve.

A meromorphic function is a holomorphic map f : C/Λ → Ĉ. Put another way, this is a meromorphic

Λ-periodic map C → C (or holomorphic C → Ĉ).

The Weierstrass ℘Λ function is given by

℘Λ(z) :=
1

z2
+
∑
ω∈Λ

′ 1

(z − ω)2
− 1

ω2

, where z ∈ C \ Λ and
∑′

means to exclude 1
0 .

The summand is ∼ z
ω3 , which can be used to show ℘Λ(z) converges absolutely and uniformly on all compact

subsets away from Λ. Thus ℘Λ is holomorphic at all points C \ Λ.
We can of course compute for z ∈ C \ Λ that

℘′
Λ(z) = −2

∑
ω∈Λ

1

(z − w)3
.

It is clear that ℘′
Λ(z) is in fact Λ-periodic.

Exercise I.1.2 (1.4.2)

Show that ℘Λ(z) must in fact be periodic.

Fact: The field of all meromorphic functions on C/Λ is given by C(℘Λ, ℘
′
Λ) (that is rational expressions in

℘Λ, ℘
′
Λ).

Recall I.1.3

We have the Eisenstein series

Gk(τ) :=
∑
c,d∈Z

′ 1

(cτ + d)k
,

which is sum of reciprocals of k-th powers over a lattice Λτ = τZ⊕ Z.

This can generalize to a function of a lattice

Gk(Λ) :=
∑
ω∈Λ

′ 1

ωk
.

Usually we will take k > 2 to guarantee good convergence properties. Also if k is odd Gk(Λ) ≡ 0, so we’ll

restrict to k even.

There is then an identity for every m ∈ C×,

Gk(mΛ) = m−kGk(Λ).
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Theorem I.1.1 (1.4.1)

The Laurent expansion of ℘Λ at z = 0 (i.e., on a tiny punctured disk about z = 0) is given by

℘Λ(z) =
1

z2
+

∞∑
n=2

n even

(n+ 1)Gn+2(Λ)z
n.

Furthermore, we have the following relation

(℘′
Λ(z))

2 = 4(℘Λ(z))
3 − g2(Λ)℘Λ(z)− g3(Λ),

where g2(Λ) := 60G4(Λ) and g3(Λ) := 140G6(Λ).

Proof. For the first piece, recall

℘Λ(z) =
1

z2
+

′∑
ω∈Λ

1

(z − ω)2
− 1

ω2
.

We see that

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1

(1− z/ω)2
− 1

)
=

1

ω2

((
1 +

z

ω
+

z2

ω2
+ · · ·

)2

− 1

)
,

since z/ω < 1 for z sufficiently small and ω ∈ Λ nonzero (here using that Λ is discrete). In fact, upon

simplifying, we see that

1

(z − ω)2
− 1

ω2
=

1

ω2

∞∑
n=1

(n+ 1)
zn

ωn
.

We now have that

℘Λ(z) =
1

z2
+
∑
ω∈Λ

′
∞∑

n=1

(n+ 1)
zn

ωn+2
.

=
1

z2
+

∞∑
n=1

(∑
ω∈Λ

′ 1

ωn+2

)
(n+ 1)zn,

which is exactly what we want.

For the second part, we write

℘Λ(z) =
1

z2
+ 3G4(Λ)z

2 + 5G6(Λ)z
4 +O(z6)

℘′
Λ(z) = − 2

z3
+ 6G4(Λ)z + 20G6(Λ)z

3 +O(z5).

Both (℘′
Λ(z))

2 and 4(℘Λ(z))
3 − g2(Λ)℘Λ(z)− g3(Λ) look like

4

z6
− 24G4(Λ)

z2
− 80G6(Λ) +O(z2).

Thus the difference of these two is a holomorphic function with value 0 at 0. Furthermore it is Λ-periodic, so

by complex analysis (i.e., Liousville’s theorem) it must be constant.
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Proposition I.1.2

The cubic equation

4x3 − g2(Λ)x− g3(Λ)

has distinct roots. This is equivalent to g2(Λ)
3 − 27g3(Λ)

2 ̸= 0 (the discriminant), and equivalently this

means the curve y2 = 4x3 − g2(Λ)x− g3(Λ) is nonsingular.

Proof. In 1.4.1, not difficult to prove (just compute with an explicit lattice).

This is a cubic equation coming from a lattice on C. This is our relation to elliptic curves! It gives us a

map

C \ Λ →
{
(x, y) ∈ C2 | y2 = 4x3 − g2(Λ)x− g3(Λ)

}
z 7→ (℘Λ(z), ℘

′
Λ(z)).

If we mod out by the lattice, this is a bijection (this is a simple computation). How does this compare to

the torus C/Λ? Well we’re missing a point! By mapping Λ/Λ to some point at ∞, we get a bijection

C/Λ → an “elliptic curve” EΛ.

We should see how the group law on the torus translates to EΛ! We’ll say zero is the point at ∞ as OEΛ .

Then in fact “colinear points sum to zero” (this is not obvious but it is a computation). Namely if

z1, z2, z3 ∈ EΛ lie on the same line then z1 + z2 + z3 = O. When z1 = z2, we should take a line tangent to

z1! It turns out that P = (x, y) gives −P = (x,−y).

We actually have every elliptic curve y2 = 4x3 − a2x− a3 where a32 − 27a23 ̸= 0 comes from a lattice. One

can actually very explicitly write it down!

How should we consider isomorphisms of elliptic curves? Well consider m ∈ C×, then

(x, y) 7→ (m−2x,m−3y)

maps

{y2 = 4x3 − a2x− a3}
∼−→ {y2 = 4x3 −m−4a2x−m−6a3}.

This map comes from an isomorphism of tori, namely z + Λ 7→ mz +mΛ.

Corollary I.1.3

The discriminant function ∆ : H → C, which we recall is

∆(τ) = (g2(τ))
3 − 27(g2(τ))

2

is in fact never zero.

Proof. Up to some multiple, ∆(τ) is in fact the discriminant of an elliptic curve EΛτ
(which is nonsingular).
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I.2. Elliptic curves as algebraic curves

This is section 7.1 in the book. Let k be a field of characteristic 0 and let k be the algebraic closure.

Definition I.2.1

A Weierstrass equation over k is

y2 = 4x3 − a2x− a3

for a2, a3 ∈ k. The discriminant is ∆ = a32 − 27a23 ∈ k. If ∆ ̸= 0, then we define the j-invariant to be

j =
1728a3

2

∆ ∈ k. We call

E(x, y) = y2 − 4x3 + a2x+ a3.

Definition I.2.2

If we have a Weierstrass equation with ∆ ̸= 0, we say E is nonsingular and we call

E = {(x, y) ∈ k
2 | E(x, y) = 0} ∪ {∞},

an elliptic curve over k, which we can think of as a variety which is a subset of the projective plane

P2(k).

If L/k is any extension we write E(L) for E ∩ P2(L2).

Let L/k be Galois and E/k to be an elliptic curve over k. Furthermore let σ ∈ Gal(L/k), and for x ∈ L

write xσ := σ(x). Then since E(x, y) ∈ k[x, y] we have

E(xσ, yσ) = E(x, y)σ

for x, y ∈ L. Thus there is a group action Gal(L/k) on E(L).
This actually can give you representations of a Galois group for certain curves/points on those curves.

There is a group law on E where P +Q+R = OE if and only if P,Q,R ∈ E are colinear (over k). This also

gives a group structure on E(L) for any k ⊆ L ⊆ k. Namely we can just write down an equation for the point

P +Q and it’s an equation over k.

Thus Gal(L/k) is acting on a group! It acts in a nice way, σ ∈ Gal(L/k) gives a group homomorphism

E(L) → E(L), since the equation for P +Q is an equation over k (and hence is carried over nicely by σ).

Theorem I.2.1 (Bezout’s Theorem)

If C1, C2 are two curves in x, y of degree d1, d2 then they meet in d1d2 points in P2(k), where we

count with multiplicity.

Suppose k = Q, so E/Q is an elliptic curve. What can we say about the structure of E(Q). This is an

abelian group. But what is it? It turns out E(Q) is finitely generated, and this result is called Mordell’s

Theorem. It is quite difficult to prove

Author’s Note: I may include notes about the Mordell-Weil Theorem as an appendix from a UVA (Ono’s)

REU mini-course

The rank of E(Q) is often called the rank of an elliptic curve.
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