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Recall .0.1

=2 . .
If £k is a field of characteristic zero then the elliptic curve £ C &k~ is the solutions to
E(z,y) = y* — 42° + g2 + g3,

where A = g3 — 27g% # 0 (aka the curve is nonsingular, aka not all formal partial derivatives vanish at

some P).

Why do we require that if (z,y) € € with D1E(x,y) =0, DoE(x,y) = 0. D2E(x,y) = 2y, so if this is zero
y=0.

Factor y? = 4(x — z1)(z — x2)(z — 23). Then E(z,y) = 0 when = = z1, 72, 23 since y = 0, but then this
gives that D1 E(x,y) vanishing implies there is a non-distinct root, so then A = 0. The converse is similar.

Note: from our discussion last time, if a tangent line through P goes through oo, then P is a 2-torsion
point since P + P 4+ oo = oo, P = —P. If the coefficients lie in some field k then we can write down the
equation of the addition in this group structure as rational functions with coefficients in k.

Remark .0.1

We can think of an ellitpic curve E[z,y] = £ as a functor from k-algebras to groups
E:R— ER)CRXR.

Torsion! We will have that E[N] := £(k)[N] = (Z/NZ)?, where £(L)[N] = {z € £(L) | Nz = co}. Last time,
we saw that if L/K is Galois then Gal(L/k) acts on £(L), and this gives an action on N-torsion as Gal(L/k)
acting on E(L)[N]:

p: Gal(L/k) — GL2(Z/NZ).
To see that E[N] = (Z/NZ)?
.1. Algebraic Curves and Function Fields
Let I = (p1,...,0.) Ckl[z1,...,2,]. Now consider
Vi={pek |p(p) =0 forall pel},

We then know that I is prime, so the coordinate ring k[V] = k[x1,...,x,]/I is an integral domain, and we
can consider its field of fractions k(V). If k(V) is a finite dimensional extension of k(t), then we say V is an

affine algebraic curve.

If [D;pi(p)] is rank n — 1 for each p € V, then we say that V is nonsingular. This is nice, but we really
want to homogenize. Say if ¢1 was z1 + x% we would take it to zgxy + x% Under this replacement if V' is
the corresponding subset of 7 then z € V' implies Az € V' for any \ € k.

— ET+

We would then define P"(k) to be the quotient of ! by the action of scaling by an element of k. This

is projective r-space over k. We can then consider

Ihom = <90i,h0m> - E[xO; s 7‘/1:7‘]
Viom = {[po : -+ : 0] €P"(E) | ¢(p) =0 for all ¢ € om}-
————
p
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This will make Vjo;m compact which will be nice! Viom is then called a projective algebraic curve.

Definition .1.1

We'll define the tangent space T,(C) (C' is an affine algebraic curve) to be
T,(C) = {v € B | [Dyoi(p)lo = 0}.
We'll also consider m, C k[C], which is the maximal ideal at p, to be

my, = {f € K[C] | f(p) = 0}.

Then m,, /mf) is called the cotangent space at p.
Lemma .1.1

m,,/m?2 is naturally dual to 7,,C as a vector space.

Proof. We must construct a perfect pairing
m,/m> x T,C — k.
This will take (f,v) — Vf(p) - v.

We must check this is well-defined. If f € mf, then f = > g;h;, where g;(p), hi(p) = 0, then
VIp) = gip) - Vhi(p) + Vgi(p) - hi(p) = 0.
Furthermore, this is the coordinate ring, so if ¢ € I, we see
Vep-v=0,

since Vy; - v = 0 for all ;. Linearity is clear. To show this is a perfect pairing, suppose v € T,C' and
(f,v) =0 for all f. Then Vz;(p)-V =0, so v =0.

To see the other direction, if Vf - v = 0 then all the first-order partials vanish at p, and we can write f

as. .. v

Local Rings. Consider the localization k[C], = {f/g € k(C) | g(p) # 0}, then M, = m,k[C], is the

unique maximal ideal, and
2~ 2
M, /My = m, /m,

Theorem .1.2

k[C], is a discrete valuation ring

Proof. First we show M, is principal. Take ¢t € M, generating M, /Mg Now consider N = (t). We want to
show M;/N is zero. Thus by Nakayama’s Lemma we can show M, - M,,/N = M,/N. We see that

M, Mj+N _ M,

MPN N N~

Can write any f € k[C], as t°v, then we define the valuation as v,(f) = e. We also let v,(0) = cc. <
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More generally, for f/g € k(C) we let

vp(f/9) = vp(f) — vp(9)

This gives vy, : k(C') = Z U {oo}.
Note: Each f/g € k(C) gives a map

C — P'(k)

0 if v,(f/g) >0
p—q oo ifu,(f/g) <0
a() if vp(f/g) =0

Exercise .1.1

Let E(z,y) : y? = 42® — 42. We want to compute V(0,0) (;L,)
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