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I. Introduction and Motivation

Goals:

• Goals of the book: To explain the statement of the modularity theorem.

– The book introduces many things: modular forms, elliptic curves, modular curves. These are

all relevant to modern mathematics, and so are their generalizations, that is: automorphic

forms/representations, abelian varieties, Shimura varieties.

– The first is the SL2(R) version, and the rest are the general G versions.

• Our Goal: Be able to think about these things both in specific and in general.

II. The Basics

II.1. Modular Forms

Definition II.1.1

The modular group is SL2(Z) =

{(
a b

c d

)
| ad− bc = 1, a, b, c, d ∈ Z

}
.

Exercise II.1.1

This group is generated by 〈(
1 1

0 1

)
,

(
0 −1
1 0

)〉

We’ll also think often of the upper half-plane H ⊆ Ĉ, which is the set {a+ bi | b > 0}.
We know SL2(R) acts on Ĉ via (

a b

c d

)
τ 7→ aτ + b

cτ + d
.

Then H = SL2(R)/ SO2(R).

Definition II.1.2

Let k ∈ Z. A meromorphic function f : H → C is called weaklymodular of weight k provided that

for all γ ∈ SL2(Z)
f(γ(τ)) = (cτ + d)kf(τ)

where γ =
(
a b
c d

)
.

Example II.1.2

If in weight zero, this is SL2(Z)-invariant. Then f : (SL2(R)/ SO2(R))/ SL2(Z)→ Z.

Example II.1.3

Consider dτ . Then for f(τ) dτ to be invariant we need f to be weight two, as d(γ(τ)) = (c+dτ)−2 dτ .

Definition II.1.3

A modular form f : C → C of weight k is

• weakly modular of weight k.

3



Faye Jackson September 1st, 2022 MATH 678 - II.1

• holomorphic on H.
• holomorphic at ∞.

Let D be the complex unit disk, D′ = D \ {0}. Then τ 7→ e2πiτ takes H → D′ and is Z-periodic. Because
f(τ) = f(τ+1) for any weakly modular form, we know f factors through the mapH → D′ as some g : D′ → C.
Saying f is holomorphic at ∞ is equivalent to saying that it extends holomorphically to D.

We reserve the letter q = e2πiτ . We know g(q) =
∑
n∈Z anq

n for q ∈ D′. Holomorphic at ∞ can also be

understood as an = 0 for n < 0. Thus we have a Fourier expansion

f(τ) =

∞∑
n=0

an(f)q
n.

Set Mk(SL2(Z)) to be the weight k modular forms, then

Exercise II.1.4

Try this:

M(SL2(Z)) =
⊕
k

Mk(SL2(Z)).

Actual Example: “Weight k Eisenstein series” for k > 2 even.

Gk(τ) =

′∑
(c,d)

1

(cτ + d)k
.

where
′∑

(c,d)

means ∑
(c,d)∈Z2\{(0,0)}

.

Exercise II.1.5

Gk is weakly modular of weight k.

Strategy: Write it out and then use that SL2(Z) acts transitively on the index set.

For holomorphicity use the fact that∑
d∈Z

1

τ + d
= π cot(πτ) = πi− 2πi

∑
m≥0

qm.

differentiating k − 1 times gives

∑
d∈Z

1

(τ + d)k
=

(−2πi)k

(k − 1)!

∑
m≥1

mk−1qm.

Then we have

′∑
(c,d)

1

(cτ + d)k
=
∑
d>0

1

dk
+ 2

∞∑
c=1

(∑
d∈Z

1

(cτ + d)k

)

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)q
n

4
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Remark II.1.1

There are no odd weight modular forms over SL2(Z). Namely, −I ∈ SL2(Z) gives f(τ) = f(τ)(−1)k,
thus k must be even.

Last time we used the example of the Eisenstein series Gk(τ) for k > 2 even. The q-expansion is

Gk(τ) = 2ζ(k) +
2(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)q
n.

Definition II.1.4

A modular form f : H → C is called a cuspform if a0(f) = 0 in
∑
an(f)q

n. We collect these as

S(SL2(Z)) =
⊕
k

Sk(SL2(Z)).

Example II.1.6

(60G4)
3 − 27(140G6)

2 =: ∆ ∈ S12(SL2(Z)) is a cuspform (using that we’re a graded ring). In fact, it

is nonzero! Check the degree 1 term of the q-expansion.

II.2. Congruence subgroups

Definition II.2.1

Define

Γ(N) :=

{(
a b

c d

)
∈ SL2(Z) |

(
a b

c d

)
≡

(
1 0

0 1

)
mod N

}
= ker(SL2(Z)→ SL2(Z/NZ)).

In fact Γ(N) has finite index in SL2(Z). We say Γ ⊆ SL2(Z) is a congruence subgroup if there exists

Γ(N) ⊆ Γ.

Example II.2.1

We will often consider the congruence subgroups

Γ0(N) :=

{(
a b

c d

)
≡

(
∗ ∗
0 ∗

)
mod N

}

Γ0(N) :=

{(
a b

c d

)
≡

(
∗ ∗
0 ∗

)
mod N

}

Exercise II.2.2

[Γ1(N) : Γ(N)] = N and [Γ0(N) : Γ1(N)] = φ(N), using the first isomorphism theorem to translate

into SL2(Z/NZ).

Notation: For Γ ∈ SL2(Z), f : H → C, we define

[γ]k : f 7→ f [γ]k

via

(f [γ]k)(τ) := (cτ + d)−kf(γ(τ)).

For f : H → C we want to factor it through a map H → D′.

5
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Note that Γ(N) ⊆ Γ for some N , so ( 1 N0 1 ) ∈ Γ.If h ∈ Z>0 be the minimal so that ( 1 h0 1 ) . This implies

that f(τ + h) = f(τ).

Now define H → D′ : τ 7→ e2πiτ/h, so that f factors through H. We get g : D′ → C. This allows us to

define f being holomorphic at ∞.

Pick α ∈ SL2(Z), s ∈ Q, α(∞). Given f , Γ-weakly modular, f is holomorphic at s if f [α]k is holomorphic at

∞. Crunching the numbers gives that f [α]k is weakly α−1Γα-modular (which is also a congruence subgroup)

to make this work.

Definition II.2.2

We call f : H → C modular of weight k with level Γ

(1) f is holomorphic on H.
(2) f is weight k, Γ-invariant, so f [γ]k = f for γ ∈ Γ.

(3) f [α]k is holomorphic at∞, for all α ∈ SL2(Z) (suffices to take finitely many α because [SL2(Z) : Γ]
is finite, the q-series changes by a root of unity).

(4) f is called a cuspform if a0 = 0 for f [α]k for all α ∈ SL2(Z).

II.3. Elliptic Curves as Complex Tori

Definition II.3.1

Γ = ω1Z+ ω2Z ⊆ C such that ω1, ω2 are a basis of C over R.
We can assume γ1/ω2 ∈ H.

Exercise II.3.1

Lattices Λ = Λ′ if and only if there exist matrices
[
a b
c d

]
such that[

ω′1

ω′2

]
=

[
a b

c d

][
ω1

ω2

]
.

Definition II.3.2

A complex torus is C/Λ as a complex manifold. The complex structure depends on Λ. There is an

inherited group structure via addition.

Observation: If f : C/Λ→ C/Λ′ is non-constant and holomorphic, then it is surjective.

Proof. Look at im f , which is closed (compactness),connected, and open (by the open mapping theorem).

Definition II.3.3

An isogeny is a holomorphic homomorphism f : C/Λ→ C/Λ′ which is nonconstant.

Example II.3.2

[N ] : C/Λ→ C/Λ, where z 7→ Nz.

Exercise II.3.3

C/Λ =: E, and E[N ] := ker[N ]. Describe E[N ] as a group.

It is fairly clear that E[N ] ∼= (Z/NZ)2, by subdividing the lattice points in Λ = ⟨ω1, ω2⟩.

Fact: Any isogeny C/Λ→ C/Λ′ is of the form z + Λ 7→ mz + Λ′, m ∈ C \ {0}.

6
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Proposition II.3.1

Isogeny is an equivalence relation on complex tori.

Proof. The only nontrivial portion is showing symmetry. Take an isogeny φ : C/Λ→ C/Λ′, take φ(z +Λ) =

mz + Λ′. This implies mΛ ⊆ Λ′. There exist naturals n1, n2 such that {n1ω′1, n2ω′2} is a basis of mΛ, where

ω′1, ω
′
2 is a basis of Λ′.

Then n1n2Λ
′ ⊆ mΛ. Thus n1n2/mΛ′ ⊆ Λ.

We then define φ̂ : C/Λ′ → C/Λ by φ̂(z + Λ′) = n1n2z/m+ Λ.

Also φ̂ ◦ φ = [n1n2] = [degφ]. Note deg[N ] = N2.

Consider the self-isogenies, we know that Z ⊆ Isog(E,E).

Complex Multiplication curves are those such that Z ⊊ Isog(E,E), and in this case we will have that

Isog(E,E) ⊆ OK , where K is a quadratic imaginary number field.

II.4. Modular Curves

These are Moduli spaces of elliptic curves.

Definition II.4.1

If Γ ⊆ SL2(Z), then Y (Γ) = H/Γ, which we call the modular curve for Γ.

Exercise II.4.1

For Γ = SL2(Z), then elliptic curves up to isomorphism are in bijection with Y (Γ).

Namely τ ∈ H 7→ C/(τZ+ Z)

Example II.4.2

Γ0(N),Γ1(N),Γ(N) are congruence subgroups, and

Y0(N) ∼= {(E,C) | E is an elliptic curve, C ⊆ E[N ], E cyclic of order N}/ ∼

Y1(N) ∼= {(E,Q) | Q is a point of order N}/ ∼ .Y (N) ∼= {(E, (P,Q)) | P,Q generate E[N ], ⟨P,Q⟩ = e2τi/N}/ ∼

where ⟨P,Q⟩ is the Weil pairing (see book/homework). There are of course maps Y1(N) → Y0(N) →
Y (N)→ Y (SL2(Z)).

We have a map ∆ : H → C called the modular discriminant defined by ∆ = g32 − 27g33 , g2 = 60G4, g3 =

140G6. We also may consider

j : H → C

j =
1728g32

∆

which is weight zero and holomorphic on H but not at ∞. We can actually think of j as j : {E}/ ∼→ C
which is an invariant on elliptic curves, called the j-invariant. The modularity theorem will concern

• Elliptic curves E where j(E) ∈ Q
• CM elliptic curves imply j(E) is algebraic.

As some examples, j(i) = 1728, j(µ3) = 0, µN := e2πi/N . We also can consider moonshine theory–concerning

the coefficients of j and the monster group.
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Modular curves can be viewed as Riemann surfaces

• Give Y (γ) a manifold structure

• Compactify Y (Γ) ⊆ X(Γ).

We have a map π : H → Y (Γ), and we give Y (Γ) the quotient topology. How do we show Y (Γ) is Hausdorff?

Proposition II.4.1

If τ1, τ2 ∈ H, then there exists neighborhoods Ui containing τi such that for all γ ∈ SL2(Z), γ(U1) ∩
U2 ̸= ∅ implies γ(τ1) = τ2.

Proof. Choose any U ′1, U
′
2 containing τ1, τ2 with compact closure. First we need a claim.

Claim

γ(U ′1) ∩ U ′2 ̸= ∅ for finitely many γ ∈ SL2(Z).

Well we know H = SL2(R)/SO2(R). Take a section S : x+ yi 7→ 1√
y [
y x
0 1 ]. Then

e1, e2 ∈ H, γ(e1) = e2 ⇐⇒ γ ∈ S(e1) SO2(R)S(e2)−1.

If we let e1, e2 range over U1, U2, then γ lies in a compact subset of SL2(R)
Thus the number of such γ is finite since SL2(Z) is discrete. F is the finite set of such γ, for each γ ∈ F ,

choose disjoint U1,γ , U2,γ containing γ(τ1), τ2 respectively. Then

U1 = U ′1 ∩
⋂
γ

γ−1(U1,γ) U2 = U ′2 ∩
⋂
γ

U2,γ

Corollary II.4.2

Y (Γ) is Hausdorff

We now want to construct charts, tha tis for each π(τ) ∈ Y (Γ), we want Ũ ⊆ Y (Γ), a homeomorphism

φ : Ũ → V ⊆ C onto V open, and we want holomorphic transition maps.

The Y (Γ) are in fact “ramified covers.” If τ is only fided by Γ ∩ {±I} then take a small neighborhood U

of τ , then π : U → Ũ is a homeomorphism.

Definition II.4.2

Let Γ be a congruence subgroup. We say τ is elliptic in Γ if StabΓ(τ) ⊋ {±I}.

Fact: For each τ , Γτ is finite cyclic (of order 1,2,3,4,6).

Definition II.4.3

hτ = |Γτ/(Γ ∩ {±I})|

We may then choose U ⊆ H such that γ(U) ∩ U ̸= ∅ implies γ ∈ Γτ . We also know elliptic points are

discrete. Then U
ψ=ρ◦δ−−−−→ Ĉ where ρ(z) = zhτ , and

δ : z 7→

[
1 −τ
1 −τ

]
z

where δ(τ) = 0, δ(τ) =∞. This will induce a map φ : π(U)→ Ĉ giving us a chart.

8
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Look at Elliptic points. Suppose γ ∈ SL2(Z) fixes τ ∈ H and c ̸= 0, this implies

cτ2 + (d− a)τ − b = 0

and ad − bc = 1, so this implies (d − a)2 + 4bc < 0, so (d + a)2 < 4 which holds if and only if |a+ d| < 2.

Thus

char(γ) = x2 − (a+ d)x+ 1 = x2 + 1 or x2 ± x+ 1.

Thus if γ ̸= ±I and γ fixes some τ then one of

ord(γ) = 3 ord(γ) = 4 ord(γ) = 6.

In these cases respectively we have

γ ∼

[
0 1

−1 −1

]±1
γ ∼

[
0 1

1 0

]±1
γ ∼

[
0 −1
1 1

]±1
.

In the case ord(γ) = 6, we can take the action of Z[γ] on Z2 making it into a Z[γ]-module. We see that Z[γ]
is a PID, so

Z2 = (Z[γ])r ⊕
⊕
I

Z[γ]/I

But there’s no torsion, and Z[γ] has Z-dimension two, since γ is a 6-th root of unity, and so its minimal

polynomial has degree two, and Z[γ] ∼= Z[X]/minpoly. This gives a map φ : Z[γ] → Z2 which is an

isomorphism. Call u = φ(1), v = φ(γ).

Then

γ[u, v] = [v,−u+ v] = [u, v]

[
0 −1
1 1

]

γ[v, u] = [v, u]

[
0 −1
1 1

]−1
One of [u, v] or [v, u] has determinant one, and move it over.

Proposition II.4.3[
0 −1
1 0

]
∈ Γi,

[
0 −1
1 1

]
∈ Γµ3

and nothing else. That is the elliptic points Y (1) = Y (SL2(Z)) are

{π(i), π(µ3)} where µ3 is a third root of unity.

Corollary II.4.4

Elliptic points of Y (Γ) are Γ-orbits in SL2(Z)i, SL2(Z)µ3.

II.5. Cusps

Fact: Stab∞ = ±[ 1 m0 1 ], for m ∈ Z.
Define H⋆ = H ∪Q ∪ {∞}. We’ll define X(Γ) = H⋆/Γ.

9
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Exercise II.5.1

There are finitely many images of Q ∪ {∞}. There is only one orbit for SL2(Z), as the action is[
a b

c d

]
m

n
=
am+ bn

cm+ dn
.

But then [SL2(Z) : Γ] <∞, and so we can only split this orbit into finitely many pieces.

Definition II.5.1

We call the finitely points in X(Γ) \ Y (Γ) the cusps

We can take a topology on H⋆ coming from the Riemann sphere, but then all of our cusps will be close

together!!! This is awful! Instead, take a topology generated by

• Opens in H
• Nm ∪ {∞} where Nm = {τ ∈ H | im(τ) > m}.
• All SL2(Z) orbits of Nm ∪ {∞}.

We then give X(Γ) the quotient topology

Proposition II.5.1

X(Γ) is Hausdorff, compact, and connected.

Proof. For Hausdorff, there’s three cases, two points in H, a cusp and a point in H, and then two cusps. For

the first case, it’s a simple proof using the properties of the action of SL2(Z) on H. For s, τ a cusp and a

point, prove Im(γ(τ)) ≤ max(Im(τ), Im(1/τ)).

Consider s1, s2 and αi(∞) = si. Then Ui = αi(N2 ∪ {∞}). If π(U1) ∩ π(U2) ̸= ∅, then

γα1(τ1) = α2(τ2).

This will imply α−12 γα1 : τ1 7→ τ2. Claim: τ1, τ2 are translates of each other. This follows since they lie in

the same SL2(Z) orbit and they have “large” imaginary part. A messy computation yields that

Im

(
aτ + b

cτ + d

)
=

Im(τ)

(d+ cRe(τ))2 + c2(Im(τ))2

which is clearly less than 2 if c ̸= 0, since c ∈ Z. Thus τ1, τ2 are translates.

This will show α−12 γα1 fixes infinity, showing s1 ∼ s2 in X(Γ).

To show compactness it suffices to show this for a fundamental domain of SL2(Z). Namely

D⋆ = D ∪∞ D = {τ ∈ H | |ℜτ | ≤ 1/2, |τ | ≥ 1}

as X(Γ) will be a finite union of these with some gluings. Well if we have an open cover, we can assume one

contains one of the Nm ∪ {∞}, but then D \Nm is clearly compact.

It turns out that X(Γ) is a compact manifold. We must understand charts of the cusps. We now consider

hs,Γ = |SL2(Z)s/{±I}Γs| <∞

Choose δ(s) = ∞, δ ∈ SL2(Z) We then define Us = δ−1(N2 ∪ {∞}), ψ : ρ ◦ δ where ρ : z 7→ e2πiz/hs . One

must check that the map ψ factors through the projection Us
π−→ π(Us).

10
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Recall that X(Γ) is a compact manifold

Theorem II.5.2 (Modularity)

For E an elliptic curve such that j(E) ∈ Q there exists an N and a surjective map X0(N) ↠ E of

compact Riemann surfaces.

Goal: Compute the genus of X(Γ). Recall from the theory of compact riemann surfaces that

• If f : X → Y is a nonconstant map of compact riemann surfaces, then it is surjective.

• For all y ∈ Y , f−1({y}) is discrete, which implies
∣∣f−1(y)∣∣ <∞.

• Away from finitely many points of Y ,
∣∣f−1(y)∣∣ = d is constant and we call this constant d the degree

of f . We call those points where
∣∣f−1(y)∣∣ ≠ d the ramification points. Consider z 7→ zn as an

example.

• For all x ∈ X, there exists some number ex such that
∑
x∈f−1(y) ex = d, and we should think of ex

as the multiplicity or ramification number.

Important formula in this setting

Theorem II.5.3 (Riemann-Hurwitz Formula)

If f : X → Y is a nonconstant map of compact connected Riemann surfaces then

2gX − 2 = d(2gY − 2) +
∑
x∈X

(ex − 1)

where d is the degree of f , gX , gY are the genuses of X,Y , and ex ramification number at x ∈ X.

Proof Idea. Triangulate Y and generically you have d triangles in X for each triangle you start with, but we

have to accoutn for ramification points.

In our case, we have f : X(Γ)→ X(1), and X(1) is a sphere, and so it is zero. Thus our formula simplifies

to

2g − 2 = −2d+
∑
x∈X

(ex − 1).

The ramification points will be elliptic points and cusps.

Elliptic Points: If ⟨γ⟩ = SL2(Z)τ fixing τ , then |⟨γ⟩| = 4, 6 and we have to worry about i, µ3 = e2πi/3.

Then

hτ = [{±I}ΓT : {±I}] ∈ {2, 3}.

Let τ ∈ U ⊆ H which is a coordinate chart and π : H⋆ → X(1), πΓ : H⋆ → X(Γ). Then we’re looking at

U U

πΓ(U) π(U)

VΓ V

q qh/hΓ

q 7→qhΓ

πΓ

Id

π

q 7→qh

φΓ

f

φ

floc

11
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We know h/hΓ ∈ {1, 2, 3}. The interesting case is when τ is elliptic for SL2(Z) but NOT Γ. Then this

determines the ramification number.

Cusps: We have z 7→ e2πiz/hΓ where hΓ = |SL2(Z)∞| / |{±I}Γs|. Then the ramificatio number is

ex =
hΓ
h

= hΓ.

Say τ is elliptic, and consider Fτ = f−1(τ), and Eh is the number of elliptic points in Fτ for Γ, and n is

the number of other points. Then

|Fτ | = Eh + n d =
∑
x∈Fτ

ex = hn+ Eh.

We then see that ∑
x∈Fτ

ex − 1 = (h− 1)n =
h− 1

h
(d− Eh).

For cusps, notice that ∑
x∈F∞

ex − 1 = d− E∞.

Therefore

2g − 2 = −2d+ d− E∞ +
1

2
(d− Ei) +

2

3
(d− Eµ3

)

=
1

6
d− E∞ −

1

2
Ei −

2

3
Eµ3

g = 1 +
d

12
− E∞

2
− Ei

4
− Eµ3

6
.

Generally this computation is hard. Why is it important?

Idea:

Modular forms of weight k meromorphic Γ-invariant differentials on H, H0(X(Γ),Ω⊗k).

The right hand side is computable using the Riemann-Roch theorem if you have seen it.

Definition II.5.2

A function f : H → Ĉ is an automorphic function of weight k and level Γ if

(1) f is meromorphic on H.
(2) f is weight k, Γ-invariant

(3) f [α]k is meromorphic at ∞ for all α ∈ SL2(Z).

This is not an automorphic form if you have heard of that! We call these Ak(Γ), and we note that A0(Γ)

consists of the meromorphic functions on X(Γ), as the function must descend. Let C(X) denote the

meromorphic functions to C from X.

Definition II.5.3

For X a compact riemann surface, f ∈ C(X),

div f =
∑
X

nx[x].

12
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We define the degree of D ∈ Div(X) = ZX as

degD = deg
∑
X

nx[x] =
∑
X

nx.

Fact: If X if a compact Riemann surface then

• If f : X → C is holomorphic on X, then f is constant.

• C(Ĉ) = C(t).
• For f on the Riemann sphere, deg div f = 0.

Proposition II.5.4

A0(SL2(Z)) = C(j).

Recall that j : H → Ĉ is given by j :=
1728g32

∆

Proof. Suppose f ∈ A0(SL2(Z)). Then f has zeroes z1, . . . , zn and poles p1, . . . , pm in a fundamnetal domain

for H (which we can think of as X(1) \ {∞}). We can define

g(τ) =

∏
i j(τ)− j(zi)∏
j j(τ)− j(pi)

.

Then g has the same zeroes and poles as f in H, because j is holomorphic on H with a pole at ∞. This

implies f/g is holomorphic on H, so it must be holomorphic on X(1) as it will have the same behavior at ∞.

Thus it will be constant!

Exercise II.5.2

If Ak(Γ) is nonempty containing some f , then

Ak(Γ) = C(X(Γ))f.

Furthermore j′ ∈ A2(Γ), hence Ak(Γ) for k even is nonempty.

Goal: Define div(f) for f ∈ Ak(Γ). We’ll do this in cases

• Suppose τ ∈ H with π(τ) ∈ X(Γ) is not a cusp. Note that τ 7→ (cτ +d)k has no 0s or poles on H and

f(γτ) = j(γ, τ)︸ ︷︷ ︸
(cτ+d)k

f(τ).

The local coordinates at τ are of the form q = (t− τ)h fr some h.

For f(t) = am(t − τ)m, then define vπ(τ)(f) = m/h. In particular vπ(τ)(f) ∈ 1
3Z ∪

1
2Z. When

k = 0, we have that f is an actual function on X(Γ) so m/h ∈ Z.

Suppose π(τ) is a cusp. We can focus on τ =∞ because it’s similar elsewhere (transform to ∞)

Local coordinates are qh = e2πiτ/h, where h is defined as the smallest positive integer satisfying

{±I}Γ∞ = {±I}⟨( 1 h0 1 )⟩

To define “f meromorphic at ∞,” we leveraged periodicity of f , we have f(τ + h) = (±1)kf(τ). When it’s

f(τ + h) = f(τ) we call the cusp regular, and otherwise it’s irregular. Define ℏ = h in the first case and

ℏ = 2h in the second case (aka the period).

13



Faye Jackson September 15th, 2022 MATH 678 - III.0

Example II.5.3

1/2 is irregular for Γ = Γ1(4), which is the only example for Γ0(N),Γ1(N),Γ(N).

Let h′ = 2h, then f is h′-periodic, and f(τ) = g(qh′) close to ∞. We define

vπ(∞)(f) =
m

2

where

g(qh′) =

∞∑
n=m

anq
n
h′ .

In the regular case, vπ(∞)(f) = v∞(f) and in the irregular case vπ(∞)(f) =
v∞(f)

2 .

III. Differentials

Intuition: If f is weight k Γ-invariant, k is even, then f(τ)(dτ)k/2 is honest to god Γ-invariant. Thus we

should think of f as sort of differentials on the modular curve.

The Next Goal: Define these differentials appropriately

Definition III.0.1

For V ⊆ C open we define

Ω⊗n(V ) := {f(q)(dq)n | f is meromorphic on V }

with (dq)n+m := (dq)n(dq)m. Then

Ω(V ) :=
⊕
n∈N0

Ω⊗n(V )

is a graded ring of differentials

Suppose we have a holomorphic map φ : V1 → V2, then we define the pullback

φ∗ : Ω⊗n(V2)→ Ω⊗n(V1)

φ∗(f(q2)(dq2)
n) := f(φ(q1))(φ

′(q1))
n(dq1)

n.

Exercise III.0.1

(φ∗)−1 = (φ−1)∗.

Definition III.0.2

For U ⊆ X open, where X is a Riemann Surface, Ω⊗(U) is defined via the charts φj : Uj → Vj ⊆ C.
Namely, we have ω ∈ Ω⊗n(U) is a (ωj) ∈

∏
J Ω
⊗nVj such that for

Vj,k := φj(Uj ∩ Uk) φj,k = φk ◦ φ−1j : Vj,k → Vk,j

such that

ωj
∣∣
Vj,k

= φ∗j,k

(
ω
∣∣
Vk,j

)
.

It is fairly simple then to define pullback everywhere.

14
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We then have π : H → X(Γ) then π∗ : Ω⊗n(X(Γ))→ Ω⊗n(H).
But wait! The differential that is pulled back must then be Γ invariant. This will give us

π∗ω = f(τ)(dτ)n = γ∗(f(τ)(dτ)n)

= f(γτ)(j(γ, τ))−2n(dτ)n.

Thus f(γτ) = j(γ, τ)2nf(τ), so f ∈ A2n(Γ). This gives us an honest to god map

Ω⊗n(X(Γ))→ A2n(Γ).

Theorem III.0.1

This is a bijection.

Proof. Map in the other direction is an absolute shitshow. Take f ∈ A2n(Γ), and call k = 2n. Work locally to

construct ω(f) ∈ Ω⊗n(X(Γ)). We’ll do this for the non-cusp points, but we won’t check the gluing condition.

Oops!

For τ ∈ U ⊆ H we constructed a map ψ : U
ρ◦δ−−→ V , and we showed this factors through as φ : π(U)→ V .

We’ll instead construct “ω(f)” in V so that it pulls back to the right thing in U , and then we’ll pull it

back to π(U) via φ. We have δ ∈ GL2(C), α := δ−1. So the first step is to take λ := α∗(f(τ)(dτ)n).

We define an extension of the f [γ]k formula as

f [α]k = (detα)k/2j(α, τ)−kf(α(τ)).

We in fact have α′(τ) = detα
(j(α,τ))2 . One may then check that

λ = (f [α]k)(z)(dz)
n.

In contrast, ρ is not invertible, so the same trick does not work. Instead, we just have to think hard. . . If

we have a non-elliptic point though, ρ = Id and we’re done. Otherwise we should consider that λ is

δΓδ−1-invariant.

Lets defdine ρh : z 7→ µhz where µh = e2πi/h. We have that ρ∗h(λ) = λ by invariance. But then this

implies

µnhz
n(f [α]k)(µhz) = zn(f [α]k)(z).

Then znf [α]k(z) is invariant under rotation by h, so it is equal to g(zh). We may then consider

ω =
g(q)(dq)n

(hdq)n
.

In fact ρ∗(ω) = λ as desired.

The map Ak=2n(Γ) → Ω⊗n(X(Γ)) gives us a way to define the order of vanishing of a differential

ω ∈ Ω⊗n(X(Γ)). On a cusp we write this as

v0(ωj) = v0

(
gj(q)

(hq)k/2

)

15
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where znf [α]2n(z) = gj(z
h). This is precisely

vπ(τ)(f)−
k

2

(
1− 1

h

)
.

If we’re at a cusp, we have a different type of function gj with

v0(ωj) = v0

 gj(q)(
2πiq
h

)k/2
 = vπ(ρ)(f)−

k

2
.

Unlike the order of vanishing of f (which can be non-integral), the order of vanishing of ωj is always integer

(as it’s just the order of vanishing of some function.

Exercise III.0.2

Show that

S2(Γ)↔ Ω⊗1hol(X(Γ)).

III.1. Computing Dimensions

What we want from this is the dimensions ofM−k(Γ), Sk(Γ) ⊆ Ak(Γ). We will use the Riemann-Roch

formula.

Recall III.1.1

For X a compact Riemann surface we defined

Div(X) = {
∑
x∈X

nx[x] | nx = 0, all but finitely many x, nx ∈ Z}

and

deg(D) =
∑

nx D ≥ D′, nx ≥ n′x.

We also define Div0(X) = deg−1({0}). Then we have a map

div : C(X)→ Div0(X) ⊆ Div(X),

whose image is called the principal divisors. Abel’s Theorem says that

Div0(X)/ div(C(X)) ∼= Cg/Γg

We also have

L(D) = {f ∈ C(X) | f = 0 or div(f) +D ≥ 0}.

And here we have

• L(D) is a vector space.

• dimL(D) =: ℓ(D).

• div : Ω(X)→ Div(X) is given by ω 7→ v0(fx) where locally at x, ω = fx(q)(dq)
n.

• If λ ∈ Ω1(X), then div(λ) is a canonical divisor, since everything in Ω1(X) is equivalent up to

principal divisors.
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Theorem III.1.1 (Riemann-Roch)

Let X be a compact Riemann surface, then

ℓ(D) = degD − g + 1 + ℓ(div(λ)−D)

where λ is the canonical divisor.

Corollary III.1.2

We have that

(1) ℓ(div(λ)) = g.

(2) deg(div(λ)) = 2g − 2.

(3) deg(D) < 0 implies ℓ(D) = 0.

(4) deg(D) > 2g − 2 implies ℓ(D) = deg(D)− g + 1.

We know that

Ω1(X(Γ)) ∼= C(X(Γ))λ

Ω1
hol(X(Γ))→ L(λ)

f0λ 7→ f0

as the left and right hand sides both correspond to div(f0) + div(λ) ≥ 0. the upshot of this by the corollary

above is dimS2(Γ) = g.

Now we’ll derive dimensions for k even. Our orders of vanishing for forms have rationals in them, and we

can get around this with flooring and previous work. . .

Namely, recall that for f ∈ Ak(Γ), f ̸= 0, we know Ak(Γ) = C (X(Γ)) f . Then we see that

Mk(Γ) = {f0f | f0f = 0 or div(f0f) ≥ 0} ∼= L(⌊div(f)⌋).

We should now study ⌊div(f)⌋. Well, f corresponds to some ω(f) ∈ Ω⊗k/2(X(Γ)). Well we know that

degω(f) = div(λ) · k
2
= (2g − 2)

k

2
= k(g − 1).

We may then compute that

⌊div(f)⌋ = div(ω) +
∑
i

⌊
k

4

⌋
x2,i +

∑
i

⌊
k

3

⌋
x3,i +

∑
i

k

2
xi,

where x2,i, x3,i are elliptic points and xi are cusps. We then know that deg ⌊div(f)⌋ > 2g− 2 for k ≥ 2. Thus

for k ≥ 2 we see that

dim(Mk(Γ)) = (k − 1)(g − 1) +

⌊
k

4

⌋
E2 +

⌊
k

3

⌋
E3 +

k

2
· E∞.

For cusp forms we have a similar argument yielding for k ≥ 4 that

Sk(Γ) = L

(⌊
div(f)−

∑
i

xi

⌋)
dimSk(Γ) = dim(Mk(Γ))− E∞.
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We also know from previous work that

dimS2(Γ) = g.

We know thatM0(Γ) = C, and S0(Γ) = 0. The book showsMk(Γ) = 0 for k < 0.

Proof Idea. If f ∈Mk(Γ), then we’d have f12

∆k ∈ S0(Γ). . .

Application: For Γ = SL2(Z), let k be even, then

Mk(SL2(Z)) = {0}Mk(SL2(Z)) = Sk(SL2(Z))⊕ CEk (k < 4)

dimSk(SL2(Z)) =

{ ⌊
k
12

⌋
− 1 if k ≡ 2 (mod 1)2⌊

k
12

⌋
otherwise

.

In fact this implies thatM(SL2(C)) = C[E4, E6] and S(SL2(Z)) = ∆ · C[E4, E6].

How should we run this for k odd? When −I ̸∈ Γ, it is in fact still true that

dim(Mk(Γ)) = ℓ(⌊div(f)⌋)

since this doesn’t use differentials (since there will still be a nonzero f , need to check). There exists an

ω ∈ Ωk(X(Γ)) that pulls back to f(τ)2(dτ)k. In fact we can compute ⌊div(f)⌋ in terms of ω, to give the

formula

ℓ(⌊div(f)⌋) = (k − 1)(g − 1) +

⌊
k

3

⌋
E3+ +

k

2
Ereg∞ +

k − 1

2
E irr∞ . (k ≥ 3)

IV. Eisenstein Series

For now, define Ek(Γ) :=Mk(Γ)/Sk(Γ) as the eisenstein space, eventually we’ll make Ek(Γ) as a subspace

ofMk(Γ), but that comes later.

Goal is to study Ek(Γ(N)), Ek(Γ1(N)), Ek(Γ0(N)).

Recall IV.0.1

For k ≥ 4 even we defined Gk(τ) =
′∑

(c,d)∈Z2

1
(cτ+d)k

. We then define Ek(τ) =
Gk(τ)
2ζ(k) .

Then

Ek(τ) =
1

2

∑
(c,d)∈Z2

gcd(c,d)=1

1

(cτ + d)k
.

The book defines

P+ :=

{[
1 n

0 1

]
| n ∈ Z

}
⊆ SL2(Z).

Recall the structure of SL2 given as

B =

(
∗ ∗
0 ∗

)
T =

(
∗ 0

0 ∗

)
U =

(
1 ∗
0 1

)
.
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We will also have

Ek(τ) =
1

2

∑
γ∈P+\ SL2(Z)

j(γ, τ)−k.

Exercise IV.0.2

Check the above!

The adeles A are
∏′
pQp × R where for almost all p we have the p-coordinate lies in Zp (what

∏′
means).

Modular forms will later be related to automorphic representations SL2(A).
We have by combining our earlier dimension formulas for Mk(Γ(N)) and Sk(Γ(N)).

Ek(γ) =



E∞ if k ≥ 4 even

Ereg∞ if k ≥ 3 odd − I ̸∈ Γ

E∞ − 1 if k = 2

Ereg∞ /2 if k = 1,−I ̸∈ Γ1 if k = 0

0 if k < 0, k > 0 odd − I ∈ Γ.

Consider v ∈ (Z/NZ)2 of order N . Let

δ =

(
a b

cv dv

)
∈ SL2(Z)

where (cv, dv) = v, then ϵN = 1/2 if N = 1, 2 and 1 otherwise. Then we can consider

Evk(τ) = ϵN
∑

γ∈(P+∩Γ(N))\Γ(N)δ

j(γ, τ)−k

Proposition IV.0.1

For all γ ∈ SL2(Z) we have Evk [α]k(τ) = Evγk (τ)

Corollary IV.0.2

Evk(τ) is weight k Γ(N) invariant, since then we essentially have v = vγ.

Proof. Ignore ϵN for convenience

Evk [γ]k(τ) = j(γ, τ)−k
∑
γ′

j(γ′, γ(τ))−k.

Recall that j(γ, τ)j(γ′, γ(τ)) = j(γ′γ, τ). Then

Evk [γ]k(τ) =
∑
γ′

j(γ′γ, τ) =
∑

γ′′∈(P+∩Γ(N))\Γ(N)δγ

j(γ′′, τ) = Evγk (τ).

One can prove holomorphicity of these things. But doing so is painful.

FACT: Evk(τ) is weight k, Γ(N) modular form for k ≥ 3. We may also define for Γ(N) ⊆ Γ the form

Evk,Γ(τ) =
∑

γj∈Γ(N)\Γ

Evk [γj ](τ) ∈Mk(Γ).
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For N > 2 and k even, one may calculate that Ekv is nonvanishing at −dv/cv and vanishes at all other cusps.

Hence if we pick v which represents each cusp of Γ(N), then {Evk} are linearly independent. The size of

this is exactly the number of cusps E∞!!! Wait this means it’s a basis.

IV.1. Dirichlet Characters

Definition IV.1.1

A dirichlet character is a group homomorphism χ : GN := (Z/NZ)× → C×.

The dirichlet characters themselves form a group χ1χ2(m) = χ1(m)χ2(m). We’ll call this ĜN . Then

ĜN ∼= GN in a non-canonical way.

We have

(Z/NZ)× ∼=
∏
pk|N
pk+1∤N

(
Z/pkZ

)×

and the right hand side is cyclic for p ̸= 2, and

(Z/2kZ)× = Z/2Z× (Z/2Z)k−2 .

Lifting: If d | N , then there is a map GN ↠ Gd, and so there is a map Ĝd ↪→ ĜN .

Definition IV.1.2

We define the conductor of χ ∈ ĜN to be the smallest d so that χ comes from Ĝd. We denote this by

Cond(χ). If Cond(χ) = N , then χ is called primitive.

Given χ ∈ ĜN , we may extend to χ : Z/NZ→ C by sending everything not in (Z/NZ)× to zero. Likewise

we get a map χ : Z→ C by sending Z→ Z/NZ.

Something that shows up a lot is a sum of the form g(χ) =
N−1∑
n=0

χ(n)µnN where µN = e2πiN . One can

thinkof this as a Fourier transform if we squint our eyes a bit (sums to integrals and such).

Application: We remember how Γ1(N) lies in Γ0(N) as(
1 ∗
0 1

)
mod N

(
∗ ∗
0 ∗

)
mod N

and so Γ0(N)/Γ1(N) is in fact (Z/NZ)×. We define

Mk(N,χ) := {f ∈Mk(Γ1(N)) | f [γ]k = χ(dγ)f, γ ∈ Γ0(N)}.

We call these modular forms of weight k of level N with Nebentypus character χ. Then Mk(N, 1) =

Mk(Γ0(N)).

Fact:

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ).

Why? Finite dimensional representation theory! Look at the action of Γ0(N)/Γ1(N) ∼= (Z/NZ)× on the

left hand side, which is a finite dimensional complex vector space. The irreducible representations are those
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things acting by χ, and so we take the “eigenspaces” of these to get the break up. Note the eigenspaces will

often have multiplicity and not be irreducible themselves.

Recall orthogonality from representation theory as well, that is for fixed χ we have

∑
n∈GN

χ(n) =

{
ϕ(N) if χ = 1

0 otherwise

where ϕ is Euler’s totient function, and for fixed n we have

∑
χ∈ĜN

χ(n) =

{
ϕ(N) if n = 1

0 otherwise
.

This is the general fact from group theory that

1

ϕ(N)

∑
n∈GN

χ1(n)χ2(n) =

{
1 if χ1 = χ2

0 otherwise
.

We may also consider that, via the decomposition introduced before, we have

Ek(Γ1(N)) =
⊕
χ

Ek(N,χ).

Also, we may consider the unnormalized Eistenstein series with v ∈ (Z/NZ)2 of order N , for k ≥ 3,

Gvk(τ) =

′∑
(c,d)≡v

1

(cτ + d)k
.

Idea: Gvk ∈ Ek(Γ0(N)), so we can get something in Ek(Γ1(N)) by averaging over a finite set of coset

representatives. This may be zero, you have to be careful! But thankfully it’s not super hard to compute

the Fourier expansions with some effort.

Take u, v with uv = N , ψ ∈ Ĝu, φ ∈ Ĝv, with φ primitive and φψ(−1) = (−1)k. Then we may define

Gψφk (τ) :=

u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(d)φ(d)G
(cv,d+ev)
k (τ).

For γ ∈ Γ1(N) we have

Gψφk [γ]k = ψφ(dγ)G
ψφ
k .

Thus Gψφk ∈Mk(N,ψφ).

We can normalize this to Eψφk (τ). The idea then is to define for t ∈ N

Eψ,φ,tk := Eψφk (tτ).

This won’t always yield a modular form, but if tuv | N then it is.

Theorem IV.1.1

{Eψ,φ,tk } is a basis for Ek(Γ1(N)). If we impose ψφ = χ, then this is a basis for Ek(N,χ).

The steps to proving something like this

• Prove everything converges (not much harder than standard Eisenstein series)

• Prove everything transforms properly (by construction essentially)
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• Prove things are holomorphic (get weird zeta functions when writing down Fourier Expansion Hard!)

• Prove things are linearly independent by looking at Fourier series.

Suppose N > 0, v as before, k is any integer, ϵN = 1/2 if N = 1, 2 and 1 otherwise, then

Evk(τ, s) = ϵN

′∑
(c,d)≡v

gcd(c,d)=1

Im(τ)s

(cτ + d)k |cτ + d|2s
.

Fact, this converges absolutely and uniformly for

{s | Re(k + 2s) > 2}.

If k ≥ 3, this converges for s = 0. We can check this has the right transformation properties, and then there

is at most one meromorphic continuation to the complex plane!!! One can find it, and s = 0 is not a pole for

N = 1, 2.

IV.2. Interlude on L-functions/ζ-functions

Definition IV.2.1

We say f(s) =
∞∑
n=1

an
ns lies in the Selberg-class of functions if it converges absolutely for Re(s) > 1 and

(1) Analyticity: there is a meromorphic continuation, and the only possible pole is at s = 1.

(2) Ramanujan: a1 = 1, an ≪ε n
ε for all ε > 0.

(3) Functional Equation: There should be a γ factor so that if Φ(s) := γ(s)f(s) then

Φ(s) = Φ(1− s).

(4) Euler Product: We should be able to write f as

f(s) =
∏

p prime

fp(s)

where fp(s) = exp
(∑∞

n=1
bpn

pns

)
The primary example is the Riemann ζ-function. Here we have

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

1

1− p−s

and

Φ(s) = π−s/2Γ(s/2)ζ(s).

Natural Constructions:

Galois Reps L-functions Automorphic Forms

Algebraic Varieties

22



Faye Jackson September 27th, 2022 MATH 678 - IV.2

For modular forms–namely eigenforms in a later sense–we have for f =
∞∑
n=0

anq
n then

L(s, f) =

∞∑
n=1

an
ns

will lie in the Selberg class.

Another important example is Artin L-functions. Take ρ ∈ Rep(Gal(K/Q)) where K/Q is a finite Galois

extension. Then there is an L-function

L(ρ, s) = ramified primes×
∏
p

(
char(ρ(Frob(p)))(N(p)−1)

)−1
,

where char is the characteristic polynomial, and N(p) is the norm.

If L = Q and ρ is trivial, then this is just the Riemann zeta function. Then for ρreg the canonical

representation for K/Q we have

L(ρreg, s) =
∏
p

1

1−NK/Q(p)−s
.

For K = Q(µN ) with µN = e2πi/N , we have Gal(K/Q) = (Z/NZ)×, and the Galois representations ar e

Dirichlet characters χ, and it turns out you get

L(χ, s) =

∞∑
n=1

χ(n)

ns
.

These are called Dirichlet L-functions.

Conjecture IV.2.1 (Artin)

L(ρ, s) is analytic if ρ ̸= 1.

The abelian case is ok. If the group is solvable it’s also ok.

For going from algebraic varieties to L-functions, it has to do with counting the number of points of a

variety X over Fp.
Meromorphic Continuation and the Functional Equation

Warmup: The Γ function is defined as

Γ(s) :=

∫ ∞
t=0

e−tts
dt

t

for s ∈ C, Re(s) > 0. One may check that Γ(s + 1) = sΓ(s). This allows us to extend Γ to Re(s) ≤ 0.

Because

Γ(s) =
Γ(s+ 1)

s
,

so this is defined for Re(s) > −1 besides when s = 0, and then keep playing the game.

There is a generalization of this idea

Definition IV.2.2

Let f : R+ → C. We define the Mellin transform of f to be

Mf(s) =

∫ ∞
t=0

f(t)ts
dt

t
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Then if f(t) = e−t we have Mf(s) = Γ(s). We can define

Θ(it) :=
∑
n∈Z

e−πn
2t

∞∑
n=1

e−πn
2t =

1

2
(Θ(it)− 1).

Taking the Mellin transform ∫ ∞
t=0

∞∑
n=1

e−πn
2tts

dt

t
=

1

2

∫ ∞
t=0

(θ(it)− 1)ts
dt

t
.

The left hand side has excellent convergence properties, so we may exchange the integral and the sum, which

gives us for Mf on the left hand side

Mf(s) =

∞∑
n=1

(πn2)−sΓ(s) = π−sΓ(s)ζ(2s).

Then we may define Mf(s/2) =: Φ(s) = π−s/2Γ(s/2)ζ(s). Splitting off the 0, 1 portion of this

1

2

∫ 1

t=0

(Θ(it)− 1)ts/2
dt

t
=

1

2

∫ 1

0

Θ(it)ts/2
dt

t
.

We also have a formula Θ(i/t) = t1/2Θ(it). Thus via a change of variables[
1

2

∫ ∞
t=1

Θ(i/t)t−s/2
dt

t

]
− 1

s

=

[
1

2

∫ ∞
t=1

Θ(it)t1−s/2
dt

t

]
− 1

s

=

[
1

2

∫ 0

t=1

(Θ(it)− 1)t1−s/2
dt

t

]
− 1

s
− 1

1− s
.

One should then recombine things and show things are invariant under s 7→ 1− s.

V. Hecke Operators

V.1. Definitions and Computations

Call GL2(Q)+ ⊆ GL2(Q) the subgroup of positive determinant matrices. If we have Γ1,Γ2 ∈ SL2(Z), α ∈
GL2(Q)+ we’ll define an operator

[Γ1αΓ2]k :Mk(Γ1)→Mk(Γ2).

Reminder: Double cosets are a little weird.

Exercise V.1.1

Suppose G is finite, H1, H2 are subgroups. Compute |H1αH2| in temrs of cardinalities of subgroups

of G. We have

|H1αH2| =
|H1| · |H2|

|H1 ∩ αH2α−1|
.
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For β ∈ GL2(Q)+ we define

f [β]k(τ) := (detβ)k−1j(β, τ)−kf(β(τ)).

Now we see that

Γ1αΓ2 =
∐
j

Γ1βj

for some βj ∈ αΓ2, and we then define

f [Γ1αΓ2]k =
∑
j

f [βj ]k.

We need to know: there are finitely many βj , this doesn’t depend on βj , and this actually takes modular

forms of weight k level Γ1 to weight k level Γ2 forms.

Fact: α−1Γα ∩ SL2(Z) is a congruence subgroup.

Lemma V.1.1

We have that

α−1Γ1α ∩ Γ2\Γ2 → Γ1\Γ1αΓ2,

and the left hand side is finite, so we only need finitely many βj .

To show this gives a map as claimed, first check it’s well-defined (does not depend on choice of βj), then

we take

f [Γ1αΓ2]k[γ2]k =
∑
j

f [βj ]k[γ2]k =
∑
j

f [β′j ]k = f [Γ1αΓ2]k.

None of this effects holomorphicity on H, but we need to check holomorphicity at the cusps. Recall this was

f [γ]k is holomorphic at ∞ for all γ ∈ SL2(Z). The necessary lemma is

Lemma V.1.2

If α ∈ GL2(Q)+ and αγ = γ′ then

α = r

[
a b

0 d

]

for r ∈ Q+. And this will not change holomorphicity at ∞.

This same proof will also show that if f is a cuspform then f [Γ1αΓ2]k is a cuspform.

Example V.1.2

If Γ1 ⊇ Γ2 and α = 1 then we get the embedding Mk(Γ1) ↪→Mk(Γ2).

If α−1Γ1α = Γ2 then

f [Γ1αΓ2]k = f [α]k

and gives an isomorphismMk(Γ1)→Mk(Γ2).
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If Γ1 ⊆ Γ2, {γ2,j} represents Γ1\Γ3

f [Γ1αΓ2]k =
∑
j

f [γ2,j ]k

Then

Γ3 = α−1Γ1α ∩ Γ2

Γ′3 = Γ1 ∩ αΓ2α
−1

gives

Γ3 Γ′3

Γ2 Γ1

∼

Then as moduli spaces

X3 X ′3

X2 X1

∼

Then we have

[Γ1αΓ2]k : Div(X2)→ Div(X1)

given by

x 7→
∑

y∈π−1
2 (x)

eyy 7→ eyαyα
−1

7→
∑
y

eyπ1(αyα
−1).

Special Cases: Γ0(N),Γ1(N), that is(
∗ ∗
0 ∗

) (
1 ∗
0 ∗

)
mod N

Given d ∈ (Z/NZ)×, we have a Diamond operator

⟨d⟩ = [Γ1(N)αΓ1(N)]k

where

α 7→

(
∗ ∗
0 d

)

where 7→ here is the reduction mod N . In particular since Γ1(N) is a normal subgroup of Γ1(N) we have

⟨d⟩f = f [α]k

and in fact

Mk(N,χ) = {f ∈Mk(Γ1(N)) | ⟨d⟩f = χ(d)f for all d}.

26



Faye Jackson October 4th, 2022 MATH 678 - V.1

The next is α =
[
1 0
0 p

]
where p is prime with

Tp := [Γ1(N)αΓ1(N)]k.

Exercise V.1.3

Tp, ⟨d⟩ commute.

Proof. Note first that

α−1Γ1

[
1 0

0 p

]
Γ1α = Γ1α

−1

[
1 0

0 p

]
αΓ1

= Γ1

[
1 0

0 p

]
Γ1.

The second equality above requires a check. Then we know this is

α−1
∐
j

Γ1βjα =
∐
j

Γ1α
−1βjα =:

∐
j

Γ1β
′
j .

Then we can compute

Tp⟨d⟩f =
∑
j

f [α]k[βj ]k =
∑
j

f [β′j ]k[α]k = ⟨d⟩Tpf.

Last time we defined the Hecke operators ⟨d⟩, Tp. For convenience let N be fixed and write Γ1 for Γ1(N).

Proposition V.1.3

For f ∈ Mk(Γ1), write the Fourier expansion as f(τ) =
∑
an(f)q

n where q = e2πiτ . Then we may

write the Fourier expansion of Tpf explicitly

(Tpf)(τ) = anp(f)q
n + 1N (p)pk−1an(⟨p⟩f)qnp.

where 1N is the trivial character of N evaluated at p. In particular if f ∈Mk(N,χ) we have

(Tpf)(τ) = anp(f)q
n + 1N (p)pk−1χ(f)an(f)q

np.

Proof. A group theory exercise yields if p ∤ N then

Γ1

(
1 0

0 p

)
Γ1 =

p−1∐
j=0

Γ1

(
1 j

0 p

)

and if p | N then

Γ1

(
1 0

0 p

)
Γ1 = Γ1

(
m n

N p

)(
p 0

0 1

)∐ p−1∐
j=0

Γ1

(
1 j

0 p

)
,

where mp− nN = 1.
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We’ll only do the p | N cosets first. Here we have

(Tpf)(τ) =

p−1∑
j=0

f

[(
1 j

0 p

)]
k

=

p−1∑
j=0

pk−1p−kf

(
τ + j

p

)

=

p−1∑
j=0

∞∑
n=0

an(f)

p
e2πin(τ+j)/p

=

p−1∑
j=0

∞∑
n=0

an(f)

p
µnjp q

n
p

where µp = e2πi/p, qp = e2πiτ/p. We have that

p−1∑
j=0

µnjp =

{
p if p | n
0 if p ∤ n

.

Thus this becomes

(Tpf)(τ) =
∑
n

apnq
n.

For the p ∤ N case we take

f

[(
m n

N p

)(
p 1

0 1

)]
k

= (⟨p⟩f)

[
p 0

0 1

]
k

(τ).

This is ∑
n

pk−1an(⟨p⟩f)e2πinpτ =
∑
n

pk−1an(⟨p⟩f)qnp.

Proposition V.1.4

If d, r ∈ (Z/NZ)× and p, q are prime the

• ⟨d⟩Tp = Tp⟨d⟩.
• ⟨d⟩⟨r⟩ = ⟨r⟩⟨d⟩.
• TpTq = TqTp.

Now we may define ⟨n⟩, Tn by

⟨n⟩ =

{
⟨n⟩ if (n,N) = 1

0 if (n,N) ̸= 1

Tn =
∑
ad=n
a|d

⟨a⟩

[
Γ1

(
a 0

0 d

)
Γ1

]
k

Tp2 =

[
Γ1

(
1 0

0 p2

)
Γ1

]
k

+ ⟨p⟩T1.
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One may check this satisfies the recursion

Tpr = TpT
r−1
p − pk−1⟨p⟩Tpr−2 .

Then we can define Tn =
∏
i Tprii

where n =
∏
prii . Then

(Tnf)(τ) =
∑
n

am(Tnf)q
m

am(Tnf) =
∑

d|(m,n)

dk−1amn/d2(⟨d⟩f).

V.2. Peterson Inner Product

Let τ = x+ iy, and write dν = dx dy
y2 , which is the “hyperbolic measure” on H. One can prove that dν is

actually GL+
2 (R)-invariant. This lets us integrate over H∗.

Recall we have the fundamental domain

D∗ = {τ ∈ H | |Re(τ)| ≤ 1/2, |τ | ≥ 1} ∪ {∞}.

We want to integrate on D∗. One may check that if φ : H → C is bounded and continuous then∫
D∗

φ(α(τ)) dν(τ)

converges, where α ∈ SL2(Z).
Take Γ ⊆ SL2(Z) and write SL2(Z) =

∐
j{±I}Γαj . If φ is Γ-invariant then the following will not depend

on the choice of αj , ∑
j

∫
D∗

φ(αj(τ)) dν(τ) =:

∫
X(Γ)

φ(τ) dν(τ).

We may then define

VΓ :=

∫
X(Γ)

dν(τ)

Definition V.2.1

We define the Peterson inner product of f, g ∈ Sk(Γ) to be

⟨f, g⟩ := 1

VΓ

∫
X(Γ)

f(τ)g(τ) Im(τ)k dν(τ).

We normalize by the volume so that the inner product remains the same over Γ1 ⊆ Γ2. It takes some work

but we must check φ(τ) := f(τ)g(τ) Im(τ)k is Γ-invariant.

Remark V.2.1

We only need 1 of f, g ∈ Sk(Γ) to be bounded.

Exercise V.2.1

We can see that

Im(γτ) =
Im(τ)

j(γ, τ)j(γ, τ)
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φ(γ(τ)) = f(γ(τ))g(γ(τ)) Im(γ(τ))k Im(γ(τ))k

= f [γ]kj(γ, τ)
kg[γ]kj(γ, τ)

k
Im(γ(τ))k

= f(τ)g(τ) Im(τ)k = φ(τ).

Want: Mk(Γ1(N)) has an orthonormal basis of eigenvectors under {Tn, ⟨n⟩ | (n,N) = 1}. We want to

apply the spectral theorem, and we need Tn, ⟨n⟩ are normal.

Recall V.2.2

The adjoint is defined by ⟨Tf, g⟩ = ⟨f, T ∗g⟩ we take T is normal provided that TT ∗ = T ∗T .

One can get a simultaneous orthonormal basis of eigenvectors using that these operators commute and some

linear algebra.

Here’s a fact: For any Γ, let α′ = det(α)α−1. Then

⟨f [ΓαΓ]k, g⟩ = ⟨f, g[Γα′Γ]k⟩.

This implies that

⟨p⟩∗ = ⟨p−1⟩.

As the relevant matrix is represented as ( n s
N 0 p ) of determinant 1 and its inverse can be represented by a

similar matrix with p−1 in the bottom right. Then for T ∗p w ehave

α =

(
1 0

0 p

)

α′ = p

(
1 0

0p−1

)
=

(
p 0

0 1

)

=

(
1 n

N mp

)−1(
1 0

0 p

)(
p n

N m

)
.

The left hand side is in Γ1(m) and the right hand side is in Γ0. Thus we have something like

Γ1

(
1 0

0 p

)
Γ1

(
p n

N m

)
.

Thus T ∗p = ⟨p⟩−1Tp.

V.3. Oldforms and Newforms

Last time we defined the Peterson inner product on Sk(Γ). We then showed Sk(Γ1(N)) has an orthonormal

eigenbasis under {Tn, ⟨n⟩ | (n,N) = 1}.
We’ll work on the non-coprime case as well! We want to talk about modular forms “coming from lower

level.”

• If M | N we have a trivial inclusion Sk(Γ1(M)) ↪→ Sk(Γ1(N)) because Γ1(M) ⊇ Γ1(N).

• Now suppose d | N/M , and let αd = [ d 0
0 1 ] (the action is αdτ = dτ). Then if f ∈ Sk(Γ1(M)) then

f [αd]k ∈ Sk(Γ1(dM)) ⊆ Sk(Γ1(N)).
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Proof. Fix γ ∈ Γ1(δM). Then we compute that(
δ 0

0 1

)(
a b

c d

)(
δ−1 0

0 1

)
=

(
a bδ

cδ−1 d

)
.

Thus since c contains a factor of δ we have this conjugate lies in Γ1(M).

Thus for each d | N we may define

ιd : Sk(Γ1(Nd
−1))2 → Sk(Γ1(N))

(f, g) 7→ f + g[αd]k.

Definition V.3.1

We call the oldforms

Sk(Γ1(N))old := span(im(ιp) : p | N prime).

We define the newforms Sk(Γ1(N))old as the orthogonal complement of the oldforms under the Peterson

inner product.

Proposition V.3.1

For all n ∈ Z>0, these spaces are stable under {Tn, ⟨n⟩}.

Proof. Let p | N . Case 1 is to take (d,N) = 1. Let T = ⟨d⟩ or T = Tp′ for p
′ ̸= p. Then we can consider the

diagram

Sk(Γ1(Np
−1))2 Sk(Γ1(Np

−1))2

Sk(Γ1(N)) Sk(Γ1(N))

[T 0
0 T ]

ιp ιp

T

Showing this commutes is shows that the oldforms remain oldforms. For T = ⟨d⟩N , we can show ⟨d⟩N =

⟨d⟩Np−1 = [αp]⟨d⟩N [αp]−1. For the other case one must check Tp′,Np−1 = Tp′,N . Checking the compatibility

with [αp] is frankly awful. We check Dirichlet character by Dirichlet character. That is we check for

g ∈ Sk(Np−1, χ) that we have

(Tp′,Np−1g)[αp] = Tp′,N (g[αp]).

We can check this at the level of Fourier series.

The one thing we haven’t checked is Tp, as all other operators are zero or combinations of these via

multiplication (and recursion for say Tp2 . We do the same thing with a different matrix. Namely

Sk(Γ1(Np
−1))2 Sk(Γ1(Np

−1))2

Sk(Γ1(N)) Sk(Γ1(N))

[
Tp pk−1

⟨p⟩ 0

]
I

ιp ιp

Tp
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Proof for newforms is to show oldforms are invariant under ⟨n⟩∗, T ∗n . The only interesting case is Tn, (n,N) >

1¿ THen we have T ∗n = ωTnω
−1, where ω =

[
0 1
−N 0

]
k
.

We then need to suffer through the computation that

ιp ◦

[
0 pk−2ω

ω 0

]
= ω ◦ ιp.

Corollary V.3.2

Sk(Γ1(N))old,new each have an orthonormal basis under {Tn, ⟨n⟩ | (n,N) = 1}.

Consider Ld : d
1−k[αd]k. Then on Fourier series this acts very simply

∞∑
n=1

anq
n 7→

∞∑
n=1

anq
dn.

Thus if f ∈ Ld, then an(f) = 0 for d ∤ n. Then to have f ∈ span(imLp | p | N) we must have an(f) = 0 for

all (n,N) = 1.

Theorem V.3.3 (Main lemma, Atkin-Lehmer)

The converse is true. That is if an(f) = 0 for all (n,N) = 1 then f ∈ span(imLp | p | N).

Proof of 1st Reduction. Define

Γ1(N) =

{(
a b

c d

)
≡

(
1 0

∗ 1

)
mod N

}

Fact: αNΓ1(N)α−1N = Γ1(N).

We can consider a map

LM =Mk−1[α−1M ] : Sk(Γ1(M))→ Sk(Γ
1(N))

which sends
∑
anq

n to
∑
anq

n
m where qM = e2πiτ/M . Then in fact the following diagram commutes where

N = dM ,

Sk(Γ1(M)) Sk(Γ1(N))

Sk(Γ
1(M)) Sk(Γ

1(N))

Ld

Incl

by computing via Fourier series ∑
anq

n
∑
anq

dn

∑
anq

n/M
∑
anq

n/M =
∑
anq

dn/N .

Ld

Incl
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Thus the main lemma amounts to saying that if f ∈ Sk(Γ1(N)), f =
∑
n an(f)q

n
N with an(f) = 0 for all

(n,N) = 1 then

f ∈
∑
p

Sk(Γ
1(Np−1)) ⊆ Sk(Γ1(N)).

Proof of Second Reduction, projections. We work in Γ(N). For d | N define

Γd = Γ1(N) ∩ Γ0(Nd−1).

Fact: Γ(N)\Γd has representatives {(
1 bN/d

0 1

)
| 0 ≤ b ≤ d

}
.

We’ll define the following

πd : Sk(Γ(N))→ Sk(Γd) ⊆ Sk(Γ(N))

f 7→ 1

d

d−1∑
b=0

f
[
1 bN/d
0 1

]
k

∞∑
n=1

anq
n
N 7→

∑
n,d|n

anq
n
N .

We then can define

π =
∏
p|N

(Id−πp).

This kills everything that’s not coprime to N . Thus the condition for the Main Lemma is that f ∈
Sk(Γ

1(N)) ∩ ker(π). We can then apply some linear algebra

kerπ = ker

∏
p|N

(Id−πp)

 =
∑
p|N

ker(Id−πp) =
∑
p|N

im(πp).

But wait we know that im(πp) = Sk(Γp). Thus for our reduction we need to show that

Sk(Γ
1(N)) ∩

∑
p|N

Sk(Γ1(N)) ∩ Γ0(Np−1) =
∑
p|N

Sk(Γ
1(Np−1)).

The ⊇ inclusion is true from previous discussion.

Proof. We know G = SL2(Z/NZ) acts on Sk(Γ(N)). We want to think of the spaces above as various fixed

points of G. Write G =
∏
iGi =

∏
i SL2(Z/peii ) where N =

∏
i p
ei
i . We then define Hi as

Hi := Γ1(peii )/Γ(p
ei
i )

and H =
∏
Hi. Define

Ki =
Γ1(p

ei
i ) ∩ Γ0(pei−1i )

Γ(peii
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Fact:

⟨Γ1(pe),Γ1(p
e) ∩ Γ0(pe−1)⟩ = Γ1(pe−1).

The third reduction becomes

Sk(Γ(N)) ∩
n∑
i=1

Sk(Γ(N))Ki =

n∑
i=1

Sk(Γ(N)).

Now were looking at G acting on Sk(Γ(N)), we know that

Definition V.3.2

We say f ∈Mk(Γ1(N)) is an eigenform if it is an eigenvector for all ⟨n⟩, Tn.
We say it is normalized if a1(f). A newform is an eigenform in Sk(Γ1(N))new.

The eigenvalues for diamond operators ⟨n⟩ will just be χ(n) where f ∈ Mk(N,χ). What about for Tn?

Recall the formula is

am(Tnf) =
∑

d|(m,n)

χ(d)dk−1amn/d2(f).

Setting m = 1 yields

a1(Tnf) = χ(1)an(f) = an(f).

thus the eigenvalue is an(f)/a1(f).

Proposition V.3.4

For f ∈ Sk(Γ1(N))new, an eigenvector for {⟨n⟩, Tn | (n,N) = 1} is an eigenform.

Proof. All we have to check are the Tn.

Claim

For f ∈ Sk(Γ1(N))new, we have a1(f) ̸= 0.

If not, then we know for (n,N) = 1, we have

an(f) = a1(Tnf) = cna1(f) = 0.

The main lemma then would tell us f ∈ Sk(Γ1(N))old because an(f) ̸= 0 whenever f is a newform and

(n,N) = 1.

Without loss of generality, assume a1(f) = 1. Let m ∈ Z+, and consider gm = Tmf − am(f)f . Then gm is

still an eigenform away from N (that is for Tn, (n,N) = 1). Furthermore a1(gm) = 0. Thus gm is an oldform

and a newform. Thus gm = 0, so Tmf = am(f)f .

Corollary V.3.5 (Multiplicity 1)

If f, f ′ have the same Tm eigenvalues then f ′ = cf .

Proof. The eigenvalues are the coefficients upon normalization!
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Theorem V.3.6

We have

Bk(N) := {f(nτ) | f is a newform of level M,nM | N}

is a basis for Sk(Γ1(N)).

Proof. We look at

Sk (Γ1(N)) = Sk(Γ1)
new ⊕

∑
p|N

ιp(Sk(Γ1(Np
−1)))2.

Spanning happens via induction.

Linear independence. Choose minimal linear combination∑
i,j

ci,jfi(ni,jτ) = 0

where fi ∈ Sk(Mi, χj). We can in fact require that all the χi lift to the same χ. Namely we can do this by

applying ⟨d⟩ − χ̃i(d) for some d with χ̃i(d) ̸= χ̃j(d) to get a nontrivial relation with fewer terms.

By applying Tp − ap(fi) we can require all fourier coefficients away from N to agree, as otherwise we’d

have a nontrivial relation with fewer terms.

Strong Multiplicity One implies the fi must be the same, and then we’re actually done.

Proposition V.3.7

Let f ∈Mk(N,χ). Then f is a normalized eigenform if and only if the Fourier coefficients satisfy

(1) a1(f) = 1

(2) apr (f) = ap(f)apr−1(f)− χ(p)pk−1apr−2(f).

(3) amn(f) = am(f)an(f) for m,n coprime.

Proof. The forward direction is a bunch of computation. For the converse, we need to show

am(Tpf) = ap(f)am(f)

for all p,m. If p ∤M then

am(Tpf) = apm(f) = ap(f)am(f).

If p | m, write m = prm′ for p ∤ m′, then

am(Tpf) = apr+1m′(f) + χ(p)pk−1am′pr−1(f)

via the formula. Then

am(Tpf) = am′(f)
[
apr+1(f) + χ(p)pk−1apr−1(f)

]
= am′(f)ap(f)apr (f).

= ap(f)am(f).
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Fact: Eψ,φk satisfy this. You just write down the Fourier coefficients. . .

V.4. Connection with L-functions

Let f ∈Mk(Γ1(N)). We may define for a complex variable s ∈ C

L(s, f) =

∞∑
n=1

an(f)

ns
.

The convergence of L(s, f) in a half place will be given by estimating the Fourier coefficients. Namely it

converges if Re(s) > k, and if it is a cuspform then it converges if Re(s) > k
2 + 1.

Theorem V.4.1

The following are equivalent

• f is a normalized eigenform

• We have a product as

L(s, f) =
∏
p

(
1− app−s + χ(p)pk−1−2s

)−1
.

Proof. Being a normalized eigenform is equivalent to conditions (1),(2),(3) from before.

Exercise V.4.1

Let

X =

∞∑
r=0

apr

prs
,

then X is the p-part of the Euler product.

Idea: Plug in condition (2) for r ≥ 2, and find an equation X must satisfy. Doing this in reverse shows

relation (2) if we have the Euler product.

Taking s→ +∞ yields L(s, f) = 1 if and only if a1(f) = 1.

Fact: Let g be a function on prime powers. Then∏
p

∑
r=0

g(pr) =

∞∑
n=1

∏
pr||n

g(pr).

Assuming (1),(2),(3) We then write

L(s, f) =

∞∑
n=1

an
ns

=

∞∑
n=1

 ∏
pr|apn

n−s


=

∞∑
n=1

∏
pr|n

apr

prs

=
∏
p

∞∑
r=0

apr

prs

=
∏
p

(1− app−s + χ(p)pk−1−2s)−1.

Running the equalities backwards gives essentially the converse.
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Now we’ll look at functional equations. Let f =
∑
anq

n ∈ Sk(Γ1(N)). Recall that the Mellin transform

of some function ϕ is defined to be

ψ(s) =

∫ ∞
t=0

ϕ(it)ts
dt

t
.

Proposition V.4.2

The Mellin transform of f =
∑
anq

n is 1
(2π)sΓ(s)L(s, f).

Well we see that

g(s) =

∫ ∞
t=0

∑
n

ane
−2πntts

dt

t

=
∑
n

an

∫ ∞
t=0

e−2πntts
dt

t

=
∑
n

an
(2π)sns

Γ(s)

=
1

(2π)s
Γ(s)L(s, f).

via change of variables.

Definition V.4.1

Let ΓN = Ns/2

(2π)sΓ(s)L(s, f). Then define the operator WN as

f 7→ ikN1−k/2f
[

0 −1
N 0

]
k
.

This is in fact an involution and so has eigenvalues ±1.

Theorem V.4.3

If f ∈ Sk(Γ1(N))± (eigenspaces for WN ) then ΓN (s) = ±ΓN (k − s).

This implies that L(s, f) has an analytic continuation just as for the Riemann zeta function.

VI. Jacobians and Abelian Varieties

Let X be a Compact Riemann Surface

If the genus g = 1 (warmup), then X = C/Λ for some lattice Λ. Pick a differential dx on X. Then we can

look at

X → {path integrals on X starting at 0}/{integrals over loops}

z + Λ 7→
∫ z+Λ

0

dx/integrals over loops.

Any loop will be a combination of the two fundamental loops 0→ ω1 and 0→ ω2, where Λ = Z⟨ω1, ω2⟩.
This is an isomorphism of groups so long as the differential is translation invariant. We want to generalize

this to g > 1.

Let γ : [0, 1]→ X be some path. Fix ω ∈ Ω1
hol(X), that is a 1-form on charts which agrees on intersections.

We can check
∫
γ
ω makes sense.
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Let γ, γ′ have the same endpoints. Then
∫
γ
ω and

∫
γ′ ω differ by an integral over a loop. If X is genus g

then it looks like a sphere with g-many handles coming off of it.

Let A1, . . . , Ag be the longitudinal loops at 0 and B1, . . . , Bg be the latitudinal loops about these g handles.

Fact: for any loop α at 0, there exists unique integers mi, ni so that∫
α

ω =
∑
i

(
mi

∫
Ai

ω + ni

∫
Bi

ω

)
.

Definition VI.0.1

Let H1(X,Z) be the Z-linear combinations of Ai, Bi (this is the integral homology of X. This gives

us a map

H1(X,Z) ↪→ Ω1
hol(X)∗ = HomC(Ω

1
hol(X),C).

Fact: Ω1
hol(X)∗ ∼= H1(X,Z)⊗ R =: H1(X,R).

We define

Definition VI.0.2

The Jacobian of X, denoted Jac(X) is

Ω1
hol(X)/H1(X,Z).

There is a map X ↪→ Jac(X).

VI.1. Connection to Divisors

Now we’re gonna look at the connection to divisors

Div0(X) =

{∑
x∈X

nx[x] | nx = 0 for almost all x,
∑
x

nx = 0

}
Divℓ(X) =

{
δ ∈ Div0(X) | δ = div(f), f ∈ C(X)

}
.

Definition VI.1.1

We call the Picard group of X

Pic0(X) = Div0(X)/Divℓ(X).

In genus g = 0, we have Pic0(X) = {0}, because we can just manufacture a rational function for any

divisor.

If g > 0, fix a basepoint x0. The map

X ↪→ Pic0(X)

x 7→ [x]− [x0].

This is in fact an embedding!

Theorem VI.1.1 (Abel)

We have that Pic0(X)
∼−→ Jac(X), the map here is given by

∑
x nx[x] =

∑
x nx

∫ x
x0
.

38



Faye Jackson October 13th, 2022 MATH 678 - VI.1

Theorem VI.1.2 (Modularity)

Let E be a complex elliptic curve with j(E) ∈ Q. Then there exists an N such that there is a map

J0(N) ↠ E,

which is a holomorphic group homomorphism of complex tori, where J0(N) := Jac(X0(N)).

This automatically gives a map X0(N)→ E, and one can argue it is still surjective. This version of

Modularity turns out to be equivalent to the old one.

We also have a nice description of Ω1
hol(X(Γ)), namely

Ω1
hol(X(Γ)) = S2(Γ).

We want to look at maps of Jacobians. Namely given X,Y compact riemann surfaces and a map h : X → Y

we want to produce maps

hJ : Jac(X)→ Jac(Y )

hJ : Jac(X)← Jac(Y )

We obviously have a map

h∗ : C(Y )→ C(X)

g 7→ g ◦ h.

Then in fact vx(h
∗g) = exvh(x)g where ex is the ramification number of h at x.

Recall that ω ∈ Ω1
hol(Y ). Then in charts this is ω = (ωi), where ωi = fi(q) dq. This induces a pushforward

map as we know how to act on fi(q) ∈ C(Y ).

h∗ : Ω1
hol(Y )→ Ω1

hol(X)

h∗ : Ω
1
hol(X)∗ → Ω1

hol(Y )∗

Let γ be a path in X, then h(γ) is a path in Y , and it turns out for λ ∈ Ω1
hol(Y ) we have∫

γ

h∗λ =

∫
h◦γ

λ,

which is just a change of variables.

This then induces a map

hJ : Jac(X)→ Jac(Y ).

Explicitly, we have

hJ

(∑
x

nx

∫ x

x0

)
• =

∑
x

nx

∫ h(x)

h(x0)

• =
∑
x

nx

∫ x

x0

h∗(•).
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where • ∈ Ω1
hol(Y ). We now turn to the Picard group. We can define a norm map

normh : C(X)→ C(Y )

(normh f)(y) =
∏

x∈h−1(y)

f(x)ex .

Then we have

vy(normh f) =
∑

x∈h−1(y)

vx(f).

Then we can look at

div(normh f) =
∑
y

∑
x∈h−1(y)

vx(f)[y] =
∑
x

vx(f)[h(x)].

This lets us predict that

hD : Div(X)→ Div(Y )

hD

(∑
x

nx[x]

)
7→
∑
x

nx[h(x)]

so then

hD(div(f)) = div(normh f).

We then get a map

hP : Pic0(X)→ Pic0(Y )

hP ([d]) = [hD(d)].

There is then a diagram of the form

Pic0(X) Pic0(Y )

Jac(X) Jac(Y ).

hP

∼ ∼

hJ

Recall VI.1.1

We have that

Jac(X) = Ω1
hol(X)∗/H1(X,Z)

Pic0(X) = Div0(X)/Divℓ(X).

and a theorem of Abel says that

Pic0(X)
∼−→ Jac(X)∑

nxx 7→
∑
x

nx

∫ x

x0

.
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We had defined pushforwards

hP : Pic0(X)→ Pic0(Y )

hJ : Jac(X)→ Jac(Y )

where h : X → Y is a map of compact Riemann Surfaces. The first was a norm map, and the second

was pullback of differentials.

We now want the pullbacks. Let h : X → Y , and let X ′ = X − E , Y ′ = Y − h(E) where we’ve cut out the

ramified points (those with multiplicity). Then h : X ′ → Y ′ is a d-fold cover for some d.

To define the pullbacks we define the pushforwards of differentials

trh : Ω1
hol(X)→ Ω1

hol(Y ).

Let y ∈ Y ′. Take a small y ∈ U ⊆ Y ′ so that h−1i : U → Ui is defined (since this is a covering map). Then

we define for ω ∈ Ω1
hol(X) to be

(trh ω)
∣∣
U
=

d∑
i=1

(h−1i )∗(ω
∣∣
U
).

One must check this is well-defined on Y ′ and that it extends holomorphically to Y .

Dually, we get

tr∗h : Ω1
hol(Y )∗ → Ω1

hol(X)∗.

We need to pullback loops as well. Given a path δ in Y ′ and a basepoint x ∈ h−1(δ(0)) ⊆ X ′, there is a

unique path γ lying in X ′ which lifts δ and satisfies γ(0) = x. This gives d lifts total.

What if δ is in Y but only endpoints can be in h(E)? Then for each x, there are ex many lifts γ which

begin at x. There are then d lifts total.

If δ is a loop in Y ′, then γ(1) ∈ h−1(δ(0)) for any lift γ. Thus we can take the concatenation of all the

lifts of δ. This will give us some collection of loops in cycles!

In other words, fixing y0 ∈ Y ′, then π1(y0, Y ′) acts on h−1(y0), and this is called the monodromy action.

Reverse change of variables ∫
δ∈Y ′

(h−1)∗ω =

∫
h−1◦δ

ω

for ω ∈ Ω1
hol(X). Hence ∫

δ

trh ω =
∑

all lifts γ

∫
γ

ω,

for δ lying in Y ′. One can extend this formula to δ in Y , not just Y ′.

Thus tr∗h descends to

hJ : Jac(Y )→ Jac(X).

In fact, for λ ∈ Ωhol(Y ) we have

(trh ◦h∗)(λ) = deg(h)λ.

41



Faye Jackson October 20th, 2022 MATH 678 - VI.2

As a consequence we have the fact that

hJ ◦ hJ = [deg h].

This is similar to the fact that we had for elliptic curves and isogenies!

Corollary VI.1.3

We have that

h∗(H1(X,Z)) ⊆ H1(Y,Z)

is of finite index.

What about for Picard Groups? For h : X → Y , we have

h∗ : C(Y )→ C(X)

and

div(h∗g) =
∑
x

exvh(x)(g)[x] =
∑
y

vy(g)
∑

x∈h−1(y)

ex[x].

This suggests we should define

hD

(∑
y

ny[y]

)
=
∑
y

ny
∑

x∈h−1(y)

ex[x].

This in fact gives you

hP : Pic0(Y )→ Pic0(X).

These maps actually commute with the Abel-Jacobi isomorphism Pic0(−)→ Jac(−)!

VI.2. Jacobians and Hecke Operators

Suppose Γ1,Γ2 ⊆ SL2(Z) are congruence subgroups. Then suppose α ∈ GL+
2 (Q). Then we can define

Γ3 = α−1Γ1α ∩ Γ2 Γ′3 = Γ1 ∩ αΓ2α
−1.

Then for the modular curves, we have a picture

X3 X ′3

X2 X1.

α∼

π2 π1

We’ll then define

[Γ1αΓ2]2 : Div(X2)→ Div(X1)

which is given by (π1)D ◦αD ◦ (π2)D. Now let γ2,j be representatives of the quotient Γ3\Γ2. Then recall that

with βj := αγ2,j we have

Γ1αΓ2 =
⊔
j

Γ1βj .
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Upshot:

[Γ1αΓ2]
2 : Pic0(X2)→ Pic0(X1).

We can compute for Γ2τ ∈ X2, that we get

{Γ3γ2,jτ} {Γ′3βjτ}

Γ2τ {Γ1βjτ}.

α

π1π−1
2

Explicitly, then the map is given by

[Γ1αΓ2]
2

(∑
τ

nτΓ2τ

)
=
∑
τ

nτ
∑
j

Γ1βjτ.

Remember that we had an isomorphism

w : S2(Γ)
∼−→ Ω1

hol(X(Γ)).

Then we must have

Jac(X(Γ)) = S2(Γ)
∗/H1(X(Γ),Z).

We have defined a double coset operator

[Γ1αΓ2]2 : S2(Γ1)→ S2(Γ2),

which induces a map

[Γ1αΓ2]
∗
2 : S2(Γ2)

∗ → S2(Γ1)
∗.

A priori this is not the same as [Γ1αΓ2]
2. But in fact these maps are the same!!!

Claim

Maps are the same. Essentially trπ2
is defined on local patches which will be given by γ2,j . . .

Looking at J1(N) = Jac(X(Γ1(N))),

Proposition VI.2.1

Let T = Tp, ⟨d⟩. Then T acts on J1(N) by definition.

Easy consequenceTp : S2(Γ1(N))∗ → S2(Γ1(N))∗ descends to J1(N), and hence acts on H1(X1,Z).
Then if f = charTp has integer coefficients, then f(Tp) = 0 on H1(X1,Z). Then f(Tp) = 0 on S2(Γ1(N))∗

hence S2(Γ1(N)).

Therefore the eigenvalues of Tp are algebraic integers. Then ap(f) are algebraic integers, so an(f) is

algebraic integer.

Definition VI.2.1

Consider the Hecke algebra over Z is defined as

TZ = Z[{Tn, ⟨n⟩ | n ∈ Z+}],

as operators on S2(Γ1(N)) (so there will be relations, ex. Tp3 is related to Tp2 , Tp).
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There is an evaluation map (and it is a homomorphism) for each normalized eigenform f ∈ S2(Γ1(N))

given by

λf : TZ → C

Tf = λf (T )f.

Call H1 = H1(X(Γ),Z), which is a finitely generated Z-module. Then End(H1) is a finitely generated

Z-module, and we know

TZ ↪→ End(H1)

from last time.

Likewise im(λf ) = Z[{an(f)}] ⊆ C. We may define Kf = Q({an(f)}). THen

|Hom(Kf ,C)| = [Kf : Q].

If we have σ ∈ Hom(Kf ,C) then we can take f to fσ by mapping each coefficient in the Fourier series. Why

the hell is this still a modular form?

Theorem VI.2.2

If f ∈ S2(N,χ) and σ ∈ Hom(Kf ,C), then f ∈ S2(N,χ
σ). Furthermore, if f is a newform, then so is

fσ.

The rest of the class will be spent on proving this.

Recall VI.2.1 (Nakayama’s Lemma, Commutative Algebra)

Suppose A is a commutative ring, J ⊆ A is an ideal contained in all maximal ideals, and M is a

finitely generated A-module. Then, if M = JM , we have that M = {0}.

Fix a basis φ1, . . . , φ2g of H1(X1(N),Z) over Z. Let V = H1(X1(N),Z)C. Now TZ acts on V , which

is a complex vector space by its action on the basis (i.e., formally weirdly enough). Suppose v ∈ V is a

λ-eigenvector of TZ, where λ : TZ → C is a homomorphism. Then if σ ∈ Aut(C) then vσ is a λσ-eigenvector.

To proceed, we need to show the space of eigenvalues for V is the same as the space of eigenvalues for S2.

We’ll construct a complement of S∗2 ⊆ V . We’ll call the complement S∗2 , and we’ll study the eigenvalues of

each piece of V = S∗2 ⊕ S∗2 .
Recall VI.2.2

Consider the operator WN =
[

0 1
−N 0

]
2
, and recall that WNT = T ∗WN for any Hecke operator T

(where T ∗ is the adjoint for the Peterson inner product).

Define for each g ∈ S2 a map

ψg : S2 → C

h 7→ ⟨WNg, h⟩.

If we collect these into {ψg} =: S∗2 , then S∗2 is a vector space and g 7→ ψg provides an isomorphism of vector

spaces S2 → S∗2 .

We actually need that they’re isomorphic as a TZ-module. This is fairly easy, and comes from the WN

factor.
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Exercise VI.2.3

Verify that S2
∼−→ S∗2 as TZ-modules.

Claim

TZ-eigenvalues on S2 and S∗2 are the same.

Proof. Let f be a normalized eigenform. Then take λf : TZ → C, and let Jf := ker(λf ). We will show

JfS2 ≠ S2 using Nakayama. We know that Jf is a prime ideal (being a kernel), but we don’t know Jf is

contained in every maximal ideal. The idea is to localize TZ at Jf , and then show we didn’t kill everything

by localizing.

Now we can look at

S∗2 [Jf ] := {φ ∈ S∗2 | φ ◦ T = 0,∀T ∈ Jf}.

Then we have a short exact sequence

0 JfS2 S2 S2/JfS2 0,

which upon dualizing gives

0 (JfS2)
∗ S∗2 (S2/JfS2)

∗ 0,

This implies that

S∗2 ⊇ (S2/JfS2)
∗ ∼= S∗2 [Jf ].

We should show that the eigenvalue on the right hand side coming from f is the same as that on S2.

Let T ∈ TZ. Then for φ ∈ S∗2 [Jf ] we have

T · φ = φ · T = φ ◦ [T − λf (T ) Id] + λf (T )φ.

The left hand side lies in Jf , so this becomes T ·φ = λf (T )φ. Perfect! This shows that if λf is an eigenvalue

of S2 then it is also an eigenvalue of S∗2 (and dualizing yields the converse).

Thus S2 and S∗2 ⊕S∗2 have the same eigenvalues. Now we want to show that V and S∗2 ⊕S∗2 are isomorphic

as TZ-modules via

(z1φ1, . . . , z2gφ2g) 7→

∑
j

zjφj ,
∑
j

zjφj

 .

There is a short claim that this is well-defined, i.e. that the RHS lies in S∗2 . . . this is an exercise.

It’s injective as if
∑
j zjφj = 0 and

∑
j zjφj = 0, then conjugating we get

∑
j zjφj = 0. This allows us to

say
∑

Re(zj)φj = 0,
∑

Im(zj)φj = 0. But wait! As a real vector space the φj are all linearly independent,

so Re(zj) = 0, Im(zj) = 0. Perfect! Then the zj = 0.

Then they’re complex vector spaces of the same dimension so they are isomorphic.

Why does this matter? Well take some f ∈ S2 which is a normalized eigenform. So λf : TZ → C is an

eigenvalue for S2, so it is for V , and then λσf is an eigenvalue for V , but then it is an eigenvalue for S2 by

the above. So there is a g ∈ S2 with eigenvalue λσf . Normalizing, we see the Fourier coefficients of g must be

σ(af (n)) as Hecke operators can extract the Fourier coefficients.
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This can similarly show f ∈ S2(N,χ) maps to fσ ∈ S2(N,χ
σ), since diamond operators give the eigenvalue

depending on χ for these. Showing fσ is a newform if f is. . . should not be too hard

Corollary VI.2.3

S2(Γ1) has a basis with Q Fourier coefficients.

Proof. Suppose f is a newform of level m | N with field K. Let {α1, . . . , αd} be a basis of OK as a Z-module.

Let σ1, . . . , σd be embeddings Kf ↪→ C. Then consider the matrix A =
(
α
σj

i

)
. Now we can look at

F =


fσ1

...

fσd


g = Af

gi =
∑
j

α
σj

i f
σj

Notice thenthat gσi = gi for any σ. Then we need A is invertible (fact from algebraic number theory). Then

span(gi) = span(fσi).

The proof then proceeds by some basic induction, working newform by newform.

VI.3. Abelian Varieties and Modularity

Fix f ∈ S2(Γ1(N)) a newform of level N , then λf : TZ → C was defined last time as an evaluation map

(for the eigenvalue), If = kerλf , and we now define

Af := J1(N)/IfJ1(N).

Note If , Af only depend on the Galois orbit of f (in the sense discussed last time).

Well we know TZ/If acts on Af , and we can look at this as a diagram

J1(N) J1(N)

Af Af .

Tp

ap

Namely we have that

(ap · φ)(fσ) = φ(ap(f
σ)fσ)

for φ ∈ Af , and ap(fσ) is the p-th Fourier coefficient of fσ. We wish to study Af . We say f1 ∼ f2 if there is

a Galois action σ for which f1 = fσ2 . The equivalence class of f is denoted [f ]. We now define

Vf := span({g ∈ [f ]}) ⊆ S2(N).

We have since the galois orbits are linearly independent (easy check) that

dimVf = [Kf : Q].
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Now define

Λf = H1(X(N),Z)
∣∣
Vf
⊆ V ∗f .

Proposition VI.3.1

Af ∼= V ∗f /Λf . Furthermore, this right hand side is a complex torus of dimension [Kf : C].

Proof. Condense notation as S2 = S2(Γ1(N)), H1 = H1(X1(N),Z). Then by definition

Af =
J1(N)

IfJ1(N)
=

S∗2/H1

If (S∗2/H1)

∼=
S∗2

IfS∗2 +H1

∼=
S∗2/IfS

∗
2

image of H1 in S∗2/IfS
∗
2

.

Last time we had that this (on top) is the dual of the annihilator, S2[If ]
∗

Af ∼=
S2[If ]

∗

H1

∣∣
S2[If ]

.

We will show that Vf = S2[If ], and then the result follows. We will also show Λf is actually a lattice.

(1) We know Vf ⊆ S2[If ]. We need to know this is an equality. The strategy is just to compute the

dimension of S2[If ]. Well

dim(S2[If ]) = dim(S2[If ]
∗) = dim(S∗2/IfS

∗
2 ).

Then we have a pairing

TC × S2 → C

(T, g) 7→ a1(Tg).

Then we get TC → S∗2 . We claim the pairing is bilinear, non-degenerate.

• Bilinearity is easy.

• If g ∈ S2, and (T, g) = 0 for all TC, then (Tn, g) = a1(Tng) = an(g), so g = 0.

• If T ∈ TC and (T, g) = 0 for all g ∈ S2. But then we see that

an(Tg) = a1(TnTg) = a1(TTng) = 0.

Thus Tg = 0 for all g, so T = 0.

This shows an isomorphism TC → S∗2 . Thus

dim(S2[If ]) = dim(S∗2/IfS
∗
2 ) = dim(TC/IfTC).

And in fact, since TZ ⊗ C surjects onto TC we have

dim(TC/IfTC) ≤ dim

(
TZ ⊗ C
If ⊗ C

)
= dim

(
TZ

If
⊗ C

)
= rank(TZ/If )

The second to last equality follows because C is free over Z, and Z is a PID, so tensor product by C
is exact. We finally claim

rank(TZ/If ) = [Kf : Q].
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because λf : TZ → C provides an isomorphism of TZ/If with the Z-module generated by the

coefficients of f in C.
This in fact gives equality of the dimensions so Vf = S2[If ]. Further we get a nice fact that

TZ ⊗ C
If ⊗ C

→ TC

IfTC

is an isomorphism!

(2) Showing that Λf is a lattice is a big computation like this that we will not do.

Clarification for people

TZ = Z{Tn, ⟨n⟩} ⊆ End(S2(Γ1(N)))

TC = C{Tn, ⟨n⟩} ⊆ End(S2(Γ1(N))),

but in fact TZ ⊗ C ̸= TC. Not actually true. . . but one can imagine T2 scales by 3, and T3 scales by
√
2 and

everything else is zero. Then we would have TZ ⊗ C ∼= Z2 ⊗ C = C2, and TC ∼= C.
We do have a surjection

TZ ⊗ C ↠ TC

as mentioned in the proof above.

Then J1(N)/IfJ1(N) = Af ∼= V ∗f /Λf is a torus as desired.

Theorem VI.3.2

There is an isogeny (surjective homomorphism with finite kernel)

J1(N)→
⊕

f, level Nf

A
mf

f

where mf is the number of divisors of N/Nf .

Proof. Must use the basis for S2(Γ1(N)). These were f(nτ) were f is a newform of some level and n | N/Nf .
We rewrite the basis of S2(Γ1(N)) as

B2(N) =
∐
[f ]

∐
n|N/Nf

∐
σ

{fσ(nτ)}

We then define a map

Ψf,n : S2(Γ1(N))∗ → V ∗f

φ 7→ ψ

such that

ψ

 d∑
j=1

zjf
σj (τ)

 =

d∑
j=1

zjnφ(f
σj (nτ)).

We then claim that
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Claim

Ψf,n takes H1(X1(N),Z) to Λf = H1(X1(Nf ),Z)
∣∣
Vf
.

Let φ =
∫
α
, where α is a loop. Then

ψ(fσ(τ)) = n

∫
α

fσ(nτ) dτ =

∫
α̃

fσ(τ) dτ.

where α̃ = nα. One can show that α̃ is a lift of a loop in X1(Nf ).

We then obtain

Ψ =
∏
f,n

ψf,n : S2(Γ1(N))∗ →
⊕
f,n

V ∗f =
⊕
f

(V ∗f )
mf .

By the claim, this descends to a map

Ψ : J1(N)→
⊕
f

A
mf

f .

We now must show ψ is an isogeny. We’ll start with surjectivity. If φ is the dual vector of fσ(nτ) then

ψf,n(φ) sends f
σ(τ) to n and everything else to 0, and ψg,n(φ) is zero.

This makes up the basis that we’d like to have! To prove the finite kernel property, we need to show the

image of H1 in Λf under ψf,n has the same rank as Λf .

This is a computation that is not too difficult.

This will allow us to state the modularity theorem in better terms, namely the surjection J1(N) ↠ E of

the modularity theorem will be a specific map AF↠E for a specific newform!

Note: We’ve done everything for Γ1(N), we could do everything for Γ0(N). Note X1(N) surjects onto

X0(N), and so indeed what we’ve done is precisely stronger. If we define

A′f = J0(Nf )/IfJ0(Nf ) ∼= (V ′f )
∗/Λ′f ,

and we get a map

J0(N)→
⊕
f

(A′f )
mf .

The modularity theorem is then stated as

Theorem VI.3.3 (Modularity Theorem)

If E is an elliptic curve with j(E) ∈ Q then there exists an N and f ∈ S2(Γ0(N)) with a surjection

A′f ↠ E.

VII. The Land of Algebraic Geometry

VII.1. Complex Tori as Elliptic Curves

Recall VII.1.1

A complex torus is C/Λ where Λ is a lattice with Λ = ω1Z⊕ ω2Z. Goal is to relate this to a cubic

curve.
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A meromorphic function is a holomorphic map f : C/Λ→ Ĉ. Put another way, this is a meromorphic

Λ-periodic map C→ C (or holomorphic C→ Ĉ).
The Weierstrass ℘Λ function is given by

℘Λ(z) :=
1

z2
+
∑
ω∈Λ

′ 1

(z − ω)2
− 1

ω2

, where z ∈ C \ Λ and
∑′

means to exclude 1
0 .

The summand is ∼ z
ω3 , which can be used to show ℘Λ(z) converges absolutely and uniformly on all compact

subsets away from Λ. Thus ℘Λ is holomorphic at all points C \ Λ.
We can of course compute for z ∈ C \ Λ that

℘′Λ(z) = −2
∑
ω∈Λ

1

(z − w)3
.

It is clear that ℘′Λ(z) is in fact Λ-periodic.

Exercise VII.1.2 (1.4.2)

Show that ℘Λ(z) must in fact be periodic.

Fact: The field of all meromorphic functions on C/Λ is given by C(℘Λ, ℘
′
Λ) (that is rational expressions in

℘Λ, ℘
′
Λ).

Recall VII.1.3

We have the Eisenstein series

Gk(τ) :=
∑
c,d∈Z

′ 1

(cτ + d)k
,

which is sum of reciprocals of k-th powers over a lattice Λτ = τZ⊕ Z.

This can generalize to a function of a lattice

Gk(Λ) :=
∑
ω∈Λ

′ 1

ωk
.

Usually we will take k > 2 to guarantee good convergence properties. Also if k is odd Gk(Λ) ≡ 0, so we’ll

restrict to k even.

There is then an identity for every m ∈ C×,

Gk(mΛ) = m−kGk(Λ).

Theorem VII.1.1 (1.4.1)

The Laurent expansion of ℘Λ at z = 0 (i.e., on a tiny punctured disk about z = 0) is given by

℘Λ(z) =
1

z2
+

∞∑
n=2
n even

(n+ 1)Gn+2(Λ)z
n.
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Furthermore, we have the following relation

(℘′Λ(z))
2 = 4(℘Λ(z))

3 − g2(Λ)℘Λ(z)− g3(Λ),

where g2(Λ) := 60G4(Λ) and g3(Λ) := 140G6(Λ).

Proof. For the first piece, recall

℘Λ(z) =
1

z2
+

′∑
ω∈Λ

1

(z − ω)2
− 1

ω2
.

We see that

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1

(1− z/ω)2
− 1

)
=

1

ω2

((
1 +

z

ω
+
z2

ω2
+ · · ·

)2

− 1

)
,

since z/ω < 1 for z sufficiently small and ω ∈ Λ nonzero (here using that Λ is discrete). In fact, upon

simplifying, we see that

1

(z − ω)2
− 1

ω2
=

1

ω2

∞∑
n=1

(n+ 1)
zn

ωn
.

We now have that

℘Λ(z) =
1

z2
+
∑
ω∈Λ

′
∞∑
n=1

(n+ 1)
zn

ωn+2
.

=
1

z2
+

∞∑
n=1

(∑
ω∈Λ

′ 1

ωn+2

)
(n+ 1)zn,

which is exactly what we want.

For the second part, we write

℘Λ(z) =
1

z2
+ 3G4(Λ)z

2 + 5G6(Λ)z
4 +O(z6)

℘′Λ(z) = −
2

z3
+ 6G4(Λ)z + 20G6(Λ)z

3 +O(z5).

Both (℘′Λ(z))
2 and 4(℘Λ(z))

3 − g2(Λ)℘Λ(z)− g3(Λ) look like

4

z6
− 24G4(Λ)

z2
− 80G6(Λ) +O(z2).

Thus the difference of these two is a holomorphic function with value 0 at 0. Furthermore it is Λ-periodic, so

by complex analysis (i.e., Liousville’s theorem) it must be constant.

Proposition VII.1.2

The cubic equation

4x3 − g2(Λ)x− g3(Λ)
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has distinct roots. This is equivalent to g2(Λ)
3 − 27g3(Λ)

2 ̸= 0 (the discriminant), and equivalently this

means the curve y2 = 4x3 − g2(Λ)x− g3(Λ) is nonsingular.

Proof. In 1.4.1, not difficult to prove (just compute with an explicit lattice).

This is a cubic equation coming from a lattice on C. This is our relation to elliptic curves! It gives us a

map

C \ Λ→
{
(x, y) ∈ C2 | y2 = 4x3 − g2(Λ)x− g3(Λ)

}
z 7→ (℘Λ(z), ℘

′
Λ(z)).

If we mod out by the lattice, this is a bijection (this is a simple computation). How does this compare to

the torus C/Λ? Well we’re missing a point! By mapping Λ/Λ to some point at ∞, we get a bijection

C/Λ→ an “elliptic curve” EΛ.

We should see how the group law on the torus translates to EΛ! We’ll say zero is the point at ∞ as OEΛ
.

Then in fact “colinear points sum to zero” (this is not obvious but it is a computation). Namely if

z1, z2, z3 ∈ EΛ lie on the same line then z1 + z2 + z3 = O. When z1 = z2, we should take a line tangent to

z1! It turns out that P = (x, y) gives −P = (x,−y).
We actually have every elliptic curve y2 = 4x3 − a2x− a3 where a32 − 27a23 ̸= 0 comes from a lattice. One

can actually very explicitly write it down!

How should we consider isomorphisms of elliptic curves? Well consider m ∈ C×, then

(x, y) 7→ (m−2x,m−3y)

maps

{y2 = 4x3 − a2x− a3}
∼−→ {y2 = 4x3 −m−4a2x−m−6a3}.

This map comes from an isomorphism of tori, namely z + Λ 7→ mz +mΛ.

Corollary VII.1.3

The discriminant function ∆ : H → C, which we recall is

∆(τ) = (g2(τ))
3 − 27(g2(τ))

2

is in fact never zero.

Proof. Up to some multiple, ∆(τ) is in fact the discriminant of an elliptic curve EΛτ (which is nonsingular).

VII.2. Elliptic curves as algebraic curves

This is section 7.1 in the book. Let k be a field of characteristic 0 and let k be the algebraic closure.
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Definition VII.2.1

A Weierstrass equation over k is

y2 = 4x3 − a2x− a3

for a2, a3 ∈ k. The discriminant is ∆ = a32 − 27a23 ∈ k. If ∆ ̸= 0, then we define the j-invariant to be

j =
1728a32

∆ ∈ k. We call

E(x, y) = y2 − 4x3 + a2x+ a3.

Definition VII.2.2

If we have a Weierstrass equation with ∆ ̸= 0, we say E is nonsingular and we call

E = {(x, y) ∈ k2 | E(x, y) = 0} ∪ {∞},

an elliptic curve over k, which we can think of as a variety which is a subset of the projective plane

P2(k).

If L/k is any extension we write E(L) for E ∩ P2(L2).

Let L/k be Galois and E/k to be an elliptic curve over k. Furthermore let σ ∈ Gal(L/k), and for x ∈ L
write xσ := σ(x). Then since E(x, y) ∈ k[x, y] we have

E(xσ, yσ) = E(x, y)σ

for x, y ∈ L. Thus there is a group action Gal(L/k) on E(L).
This actually can give you representations of a Galois group for certain curves/points on those curves.

There is a group law on E where P +Q+R = OE if and only if P,Q,R ∈ E are colinear (over k). This also

gives a group structure on E(L) for any k ⊆ L ⊆ k. Namely we can just write down an equation for the point

P +Q and it’s an equation over k.

Thus Gal(L/k) is acting on a group! It acts in a nice way, σ ∈ Gal(L/k) gives a group homomorphism

E(L)→ E(L), since the equation for P +Q is an equation over k (and hence is carried over nicely by σ).

Theorem VII.2.1 (Bezout’s Theorem)

If C1, C2 are two curves in x, y of degree d1, d2 then they meet in d1d2 points in P2(k), where we

count with multiplicity.

Suppose k = Q, so E/Q is an elliptic curve. What can we say about the structure of E(Q). This is an

abelian group. But what is it? It turns out E(Q) is finitely generated, and this result is called Mordell’s

Theorem. It is quite difficult to prove

Author’s Note: I may include notes about the Mordell-Weil Theorem as an appendix from a UVA (Ono’s)

REU mini-course

The rank of E(Q) is often called the rank of an elliptic curve.

Recall VII.2.1

If k is a field of characteristic zero then the elliptic curve E ⊆ k2 is the solutions to

E(x, y) = y2 − 4x3 + g2x+ g3,
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where ∆ = g32 − 27g23 ̸= 0 (aka the curve is nonsingular, aka not all formal partial derivatives vanish at

some P ).

Why do we require that if (x, y) ∈ E with D1E(x, y) = 0, D2E(x, y) = 0. D2E(x, y) = 2y, so if this is zero

y = 0.

Factor y2 = 4(x− x1)(x− x2)(x− x3). Then E(x, y) = 0 when x = x1, x2, x3 since y = 0, but then this

gives that D1E(x, y) vanishing implies there is a non-distinct root, so then ∆ = 0. The converse is similar.

Note: from our discussion last time, if a tangent line through P goes through ∞, then P is a 2-torsion

point since P + P +∞ = ∞, P = −P . If the coefficients lie in some field k then we can write down the

equation of the addition in this group structure as rational functions with coefficients in k.

Remark VII.2.1

We can think of an ellitpic curve E[x, y] = E as a functor from k-algebras to groups

E : R 7→ E(R) ⊆ R×R.

Torsion! We will have that E[N ] := E(k)[N ] ∼= (Z/NZ)2, where E(L)[N ] = {x ∈ E(L) | Nx =∞}. Last time,

we saw that if L/K is Galois then Gal(L/k) acts on E(L), and this gives an action on N -torsion as Gal(L/k)

acting on E(L)[N ]:

ρ : Gal(L/k)→ GL2(Z/NZ).

To see that E[N ] ∼= (Z/NZ)2

VII.3. Algebraic Curves and Function Fields

Let I = ⟨φ1, . . . , φr⟩ ⊆ k[x1, . . . , xn]. Now consider

V := {p ∈ kn | φ(p) = 0 for all φ ∈ I},

We then know that I is prime, so the coordinate ring k[V ] = k[x1, . . . , xn]/I is an integral domain, and we

can consider its field of fractions k(V ). If k(V ) is a finite dimensional extension of k(t), then we say V is an

affine algebraic curve.

If [Djφi(p)] is rank n− 1 for each p ∈ V , then we say that V is nonsingular. This is nice, but we really

want to homogenize. Say if φ1 was x1 + x22 we would take it to x0x1 + x22. Under this replacement if V ′ is

the corresponding subset of k
n+1

then x ∈ V ′ implies λx ∈ V ′ for any λ ∈ k.
We would then define Pr(k) to be the quotient of k

r+1
by the action of scaling by an element of k. This

is projective r-space over k. We can then consider

Ihom = ⟨φi,hom⟩ ⊆ k[x0, . . . , xr]

Vhom = {[p0 : · · · : pr︸ ︷︷ ︸
p

] ∈ Pr(k) | φ(p) = 0 for all φ ∈ Ihom}.

This will make Vhom compact which will be nice! Vhom is then called a projective algebraic curve.
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Definition VII.3.1

We’ll define the tangent space Tp(C) (C is an affine algebraic curve) to be

Tp(C) := {v ∈ k
n | [Djφi(p)]v = 0}.

We’ll also consider mp ⊆ k[C], which is the maximal ideal at p, to be

mp := {f ∈ k[C] | f(p) = 0}.

Then mp/m
2
p is called the cotangent space at p.

Lemma VII.3.1

mp/m
2
p is naturally dual to TpC as a vector space.

Proof. We must construct a perfect pairing

mp/m
2
p × TpC → k.

This will take (f, v) 7→ ∇f(p) · v.
We must check this is well-defined. If f ∈ m2

p then f =
∑
gihi, where gi(p), hi(p) = 0, then

∇f(p) =
∑

gi(p) · ∇hi(p) +∇gi(p) · hi(p) = 0.

Furthermore, this is the coordinate ring, so if φ ∈ I, we see

∇φ · v = 0,

since ∇φi · v = 0 for all φi. Linearity is clear. To show this is a perfect pairing, suppose v ∈ TpC and

(f, v) = 0 for all f . Then ∇xi(p) · V = 0, so v = 0.

To see the other direction, if ∇f · v = 0 then all the first-order partials vanish at p, and we can write f

as. . .

Local Rings. Consider the localization k[C]p := {f/g ∈ k(C) | g(p) ̸= 0}, then Mp = mpk[C]p is the

unique maximal ideal, and

Mp/M
2
p
∼= mp/m

2
p,

Theorem VII.3.2

k[C]p is a discrete valuation ring

Proof. First we show Mp is principal. Take t ∈Mp generating Mp/M
2
p . Now consider N = ⟨t⟩. We want to

show Mt/N is zero. Thus by Nakayama’s Lemma we can show Mp ·Mp/N =Mp/N . We see that

Mp ·
Mp

N
=
M2
p +N

N
=
Mp

N
.

Can write any f ∈ k[C]p as tev, then we define the valuation as vp(f) = e. We also let vp(0) =∞.
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More generally, for f/g ∈ k(C) we let

vp(f/g) = vp(f)− vp(g)

This gives vp : k(C)→ Z ∪ {∞}.
Note: Each f/g ∈ k(C) gives a map

C → P1(k)

p 7→


0 if vp(f/g) > 0

∞ if vp(f/g) < 0
f(p)
g(p) if vp(f/g) = 0

.

Exercise VII.3.1

Let E(x, y) : y2 = 4x3 − 4x. We want to compute v(0,0)

(
x
y

)
.

Theorem VII.3.3

There’s an equivalence of categories between projective nonsingular curves with non-constant maps

and finite extensions of k(t).

This is given by C ↔ k(C), and is contravariant.

Proof Sketch. There is an equivalence

varieties/k ↔ K/k

where the left hand side is dominant rational maps (dense image defined on an open).

This can be upgraded to curves/k with finite extensions K of k(t) by de-singularizing and compactitying

(nontrivial, but reasonable).

For divisors, we can look at h : C → C ′ over k, then h : k(C ′)→ k(C). Then deg h = [k(C) : k(C ′)].

We then have for Q ∈ C ′ that ∑
p∈h−1(Q)

ep(h) = deg h

where ep(h) = vp(t
′ ◦ h), where t′ is a uniformizer at h(p).

We can define Div,Div0,Divℓ,Pic0 as before, and we get for each h : C → C ′ a pushforward and pullback

h∗ : Pic
0(C)→ Pic0(C ′)h∗ : Pic0(C ′) → Pic0(C)

We have h∗ sends [p] to [h(p)] and h∗ sends [Q] to
∑
p∈h−1(Q) ep(h)[p]. Then h∗ ◦ h∗ = [deg h].

Theorem VII.3.4

If E is an elliptic curve, then the map Div(E)→ E induces an isomorphism

Pic0(E) ∼−→ E .

Proof. Map is a homomorphism, and restriction to Div0(E) si surjective as [p]− [0] 7→ p.

We want to show the kernel is Divℓ. The Lemma is
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Lemma VII.3.5 (1) p ̸= q if and only if [p]− [q] is not principal.

(2) [p]− [0] + [Q]− [0] ≡ [P +Q]− [0] modulo Divℓ.

Suppose [p] − [q] is principal, that is [p] − [q] = div(f). Then f : E ↠ P1(k) with p being sent to 0, q

being sent to ∞.

The genus tells us this is a big problem, becasue P1(k) has genus zero, and E has genus one. For the

second part write f(x, y) = ax+ by + c in k(E). Then

div(f) = [P ] + [Q] + [R]− 3[0].

Likewise the line through R,−R has divisor [R]− [0] + [−R]− [0]. Thus

[P ] + [Q]− 3[0] + 2[0]− [−R] ∈ Divℓ .

Then we have

[P ] + [Q]− [P +Q]− [0] ∈ Divℓ .

Then [P ] + [Q] ≡ [P +Q] + [0], which is equvialent to what we wanted.

Now suppose we have
∑
p[np]p = 0 (that is the divisor

∑
p np[p] goes to 0). By (1) this is true if and only if(∑

p np[p]
)
− [0] is principial.

By (2) this is if and only if
(∑

p np([p]− [0])
)
is principal. By (1) this becomes

∑
np[p] ∈ Divℓ. This is

what we wanted!

Corollary VII.3.6∑
np[p] is principal if and only if

∑
np = 0 and

∑
[np]p = 0.

Weil Pairing! We’ll look at

µN = {x ∈ k | xN = 1},

while this might look like Z/NZ, it carries a nontrivial Galois action to keep track of. The Weil pairing is a

map

eN : E [N ]× E [N ]→ µN .

Let P,Q ∈ E [N ] Then N [Q]−N [0] ∈ Divℓ from our corollary. Say this is div(f). We now want to compute

div(f ◦ [N ]), which is ∑
R:[N ]R=Q

N [R]−
∑

S:[N ]S=0

N [S].

We then fix Q′ ∈ E [N2] such that [N ]Q′ = Q. Then

div(f ◦ [N ]) = N
∑

S∈E[N ]

[Q′ + S]− [S],

which we’re supposed to see is principal, without the N ! This is because E [N ] has N2 points. We then have

this as div(g) and div(f ◦ [N ]) = div(gN ).
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For all x ∈ E, we have

g(x+ p)N = f([N ]x+ [N ]P ) = f([N ]x) = g(x)N ,

Hence g(x+P )
g(x) ∈ µN and is constant. Thus we define

en(P,Q) =
g(x+ P )

g(x)
.

Theorem VII.3.7

This map is bilinear in a multiplicative sense, i.e.

eN (aP, cQ) = eN (P,Q)ac.

It’s also alternating eN (Q,Q) = 1. This implies that it’s skew-symmetric.

Furthermore it’s non-degenerate. Even more incredibly it is Galois equivariant eN (P,Q)σ = eN (Pσ, Qσ).

Finally, it is isomorphism invariant.

A lot of these are not that hard to check.

Corollary VII.3.8

We have en(P
′, Q′) = en(P,Q)det γ if [

P ′

Q′

]
= γ

[
P

Q

]
.

Now we’re going to look at function fields of modular curves. Recall that C(X(1)) = C(j). We would like to

compute C(X(N)),C(X1(N)),C(X0(N)).

Take v ∈ Z2 with v ∈ (Z/NZ)2 nonzero. We write

fv0 (τ) =
g2(τ)

g3(τ)
℘

(
cvτ + dv

N

)
,

and one can check this is weight 0 and Γ(N)-invariant, and it is meromorphic on the upper half plane and

the cusps.

We define

f0 :=

N−1∑
d=0

f
(0,d)
0

f1 := f
(0,1)
0

f(1,0) := f
(1,0)
0

jN (τ) := j(Nτ).

Then we have the following proposition

Proposition VII.3.9

We have

C(X(N)) = C(j, f1,0, f1)
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C(X1(N)) = C(j, f1)

C(X0(N)) = C(j, f0) = C(j, jN ).

Moreover, C(X(N))/C(X(1)) is galois with group SL2(Z/NZ)/{±I}
We’ll talk about this more next time. Of course we get a tower of Galois extensions of all of these.

Recall VII.3.2

C(X(N))/C(X(1)) is Galois with group SL2(Z/NZ)/± I.
How to check? We have a map θ : SL2(Z) → Aut(C(X(N))) via SL2(Z) acting via conjugation on

Γ(N) (giving us SL2(Z) acting on functions). This is our hammer, and we’ve used it before (recall f [α]).

It is easy to check that ker θ = ±I · Γ(N). Then ker θ = ±IΓ(N). Then θ(SL2(Z)) in fact fixes

C(X(1)). Thus this gives a map into the Automorphism group. By Galois Theory, the fixed field will

be some field extension, and it is not hard to show the fixed field is in fact C(X(1)), which tells us

everything we need.

Unrelated Note: If you want to know something about Weil groups, there’s stuff from Tate from the Corvallis

Conference with a nice note called Number Theory Background.

Recall that for Λτ given as Z · 1⊕ τZ, we have a map

C/Λτ → Eτ

z 7→ (℘τ (z), ℘
′
τ (z)),

and the Elliptic Curve is as

Eτ : y2 = 4x3 − g2(τ)x− g3(τ).

Recall that fv0 = g2(τ)
g3(τ)

℘τ
(
cvτ+dv
N

)
. One should think of this is the X-coordinate of some N -torsion

Suppose j(τ) ̸∈ {0, 1728}. This implies that g2(τ), g3(τ). We then define

C/Λτ → C2 ∪ {∞}

z 7→

(
g2(τ)

g3(τ)
℘τ ,

(
g2(τ)

g3(τ)

)3/2

ρ′τ

)
this takes the torus to another elliptic curve Ej(τ) with equation

Ej(τ) : y2 = 4x3 − (g2(τ))
3

(g3(τ))2
x− (g2(τ))

3

(g3(τ))2
.

This is an admissible change of variables from Eτ . Now fv0 are x-coordinates of Ej(τ)[N ]. Moreover, if we

let v = (1, 0), (0, 1), this gives points Pτ , Qτ which are a basis for the N -torsion.

We can rewrite the equations as

Ej : y
2 = 4x3 −

(
27j

j − 1728

)
x−

(
27j

j − 1728

)
.

We’ll call this a “universal elliptic curve” over X(1). There are two ways to think about this. We could say

it’s an ellitpic curve over C(X(1)) = C(j), or we can think of it as
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Ec Ej

SpecC X(1)algc

where we view X(1)alg as the algebraic curve with function field C(X(1)). We can enhance this elliptic curve

as (Ej , Pτ , Qτ ), and this will live over X(N).

Digression: There will be some functorM : Schemes→ Sets which is called a “moduli functor.” In some

sense this is

S 7→ {“objects” over S},

where the objects could be interesting (say elliptic curves over S). The functor is called “representable” by

some scheme M if

M(S) ≃ Hom(S,M),

with naturality in S. If this is true there’s an incredible trick one can do. What if you let S =M . Then

M(M) = Hom(M,M).

This has a canonical element IdM , which gives a canonical object over M . We’ll call this Muniv → M .

Messing with the Yoneda lemma tells us for any S →M we have

S ×M Muniv Muniv

S M.

This is what is called a “fine moduli space.” It turns out X(1)alg is NOT a “fine moduli space.” There’s some

issue with it really being a compactification of Y (1).

But even worse, we’ve thrown out 0, 1728, which are the elliptic points. So our universal elliptic curve is

just a close approximation of this.

Then C(X(N)) = C(j,X(Ej [N ])) over C(j). We can also adjoin the y-coordinates(
g2(τ)

g3(τ)

)3/2

℘′τ

(
cvτ + dv

N

)
.

One can show the Galois group ofC(j, Ej [N ]) overC(j) is SL2(Z/NZ), making it an extension ofC(j,X(Ej [N ]).

Now lets look at this over Q. The coefficients of Ej live in Q(j). Hence we get something like

Q(j) ⊆ Q(j, Ej [N ]),

and this is still Galois. But the Galois group will be larger. The key is the roots of unity

µN = {z ∈ Q | zN = 1}.

We set

HQ = Gal(Q(µN , j, Ej [N ])/Q(j)).

We have a mapHQ → GL2(Z/NZ). Where does it come from? WellHQ acts on Ej [N ] ∼= (Z/NZ)2 ⊆ Q(j).
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Lemma VII.3.10

Take σ ∈ HQ, then for µ ∈ µN we have

σ(µ) = µdet(ρ(σ)).

Proof. Use results from last time, since the Weil pairing is surjective we win.

Now if σ ∈ HQ fixes Ej [N ] then σ ∈ ker(ρ), so σ ∈ ker(det(ρ)), so σ fixes µN . This implies µN ⊆
Q(j, Ej [N ]). Another way to do this is the Weil pairing has an algebraic formula with coefficients in Q(j)

and is surjective.

And also ρ⋆ = ρ
∣∣
HQ(µN )

: HQ(µN ) → SL2(Z/NZ), where HQ(µN ) ⊆ HQ fixes the roots of unity. The original

ρ is injective since if you fix Ej [N ] then you fix all of Q(µN , j, Ej [N ]) = Q(j, Ej [N ]).

But then ρ⋆ injects into SL2(Z/NZ). Well Galois Theory says we can take the situation over complex

numbers

C(j, Ej [N ]) Q(j, Ej [N ])

C(j) C(j) ∩Q(j, Ej [N ])

Q(j)

SL2(Z/NZ)

.

This implies SL2(Z/NZ) injects into HQ(µN ). Therefore HQ(µN )
∼= SL2(Z/NZ). Thus HQ ∼= GL2(Z/NZ),

via some basic group theory.

We can then look at Modular Curves as Algebraic Curves. In particular, we have all these function fields

Q(j, Ej [N ]) X(N)alg

Q(j, F1) X1(N)alg

Q(j, F0) X0(N)alg

Q(j) X(1)alg

where Q(j, Ej [N ]) is Galois over Q(j),Q(j, F0),Q(j, F1). Thus these correspond to projective nonsingular

curves. This is what we define as the algebraic version on the right hand side.

This allows us to formula algebraic versions of modularity. X0(N)alg → E and J0(N)alg → E which is a

homomorphism.

And as discussed previously if f ∈ S2(Γ0(N)) then we want to look at a homomorphism A′f,alg → E.

Last time: function fields of modular curves. Now, how can we make sense of isogenies E → E′ algebraically

and of Hecke operators?
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For Hecke operators we already have [Γ1αΓ2] : Div(X2)→ Div(X1). For Γ1(N) ⊆ SL2(Z) with (E,Q) an

elliptic curve and Q its n-torsion we have

Tp : Div(X1)→ Div(X1)

Tp[E,Q] =
∑
C

[E/C,Q+ C]

where C is a subgroup of order p and C ∩ ⟨Q⟩ = {0}.
Now for elliptic curves over arbitrary fields

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

One cannot do a standard change of variables in arbitrary characteristic (namely 2, 3). But one can define

∆, j. For j ̸= 0, 1728 we can look at the curve

y2 + xy = x3 −
(

36

j − 1728

)
x− 1

j − 1728
.

It is still true that E ↪→ P2(k) and this forms an abelain group. The Group equations are defined over

kprime({ai}), where kprime is Fp,Q depending on the characteristic of k.

Theorem VII.3.11

The N -torsion for N =
∏
p p

ep can be described as

E[N ] =
∏
p

E[pep ],

Furthermore

• E[pe] ∼= (Z/peZ)2 if char(k) ̸= p.

• E[pe] ∼= Z/peZ for every e, or E[pe] ∼= 0 for every e provided that char(k) = p. The first is called

the ordinary case and the second is called the supersingular case.

The point, E[pe] is a finite affine scheme over k. Thus this is still Spec(A) for some k-algebra A, where

dimk A = p2e. The problem is how many points we have on the scheme.

Consider µp, well this is Spec (k[x]/(x
p − 1)). In characteristic p this is k[x]/(x− 1)p. So then there’s only

one point on µp, this spectrum. This is exactly the sort of thing that is happening in general.

In the ordinary case, we have

E[p] ∼= µp × Z/pZ

as a scheme.

We also need to study singular Weierstrass curves. That is when ∆ = 0. Suppose P is singular. We can

change coordinates so that P = (0, 0). We then get

C(x, y) = y2 + a1xy − x3 − a2x2.

If char(k) ̸= 2, this can be simplfied to

C(x, y) = y2 − x3 − a′2x2.

Check from these equations that (0, 0) is the only singular point.
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Then write E(x, y) = (y −m1x)(y −m2x)− x3. There are two cases

• If m1 ≠ m2, then there are two tangent directions and this is called a nodal singularity. In this case

we can get a group structure on the points where you’re nonsingular and this is isomorphic to k
×
.

Thus this is often called the multiplicative case.

• If m1 = m2, then we call this a cusp and the group is k additively, and this is called the additive

case.

Now we’ll look at more algebraic properties of curves in arbitrary characteristic.

Question: Finite fields, Galois groups?

Recall VII.3.3

For every pn, there is a unique field Fpn , which is a degree n extension of Fp with Galois group Z/nZ.
Furthermore it is generated by the Frobenius map x 7→ xp.

We have Fpn embeds in Fpm if and only if n | m. Also Gal(Fp/Fp) = Ẑ, the inverse limit of all the

Z/nZ.

We get σp : Pn(Fp)→ Pn(Fp) given by

[x0 : · · · : xn] = [xp0 : · · · : xpn].

Suppose we have a curve C with an embedding C ↪→ Pn(Fp) cut out by equations φ1, . . . , φk. We can then

define

Cσp : φ
σp

1 , . . . , φ
σp

k ,

where φ
σp

i tells us to act on the coefficients of φi via σp. Then σp gives a map C → Cσp , since 0 is fixed by

σp and σp is a Galois automorphism. Essentially for any field map φσ(σ(x)) = σ(φ(x)).

This should then induce a map of function fields!

Example VII.3.4

Conisder

σp : P1(Fp)→ P1(Fp)

This then gives us

Fp(t)← Fp(t)

tp ←[ t,

and we can consider Fp(tp) = Fp(s). Then tp = s, and the minimal polynomial is xp−s = xp−tp = (x−t)p.
Furthermore, this map above is a bijection, but we really should not think of it as an isomorphism.

Then Fp(t)/Fp(s) is an inseperable extension (separable extension is when the minimal polynomial

has no repeated roots).

For any algebraic extension k ⊆ K, we can factor this as

k ↪→ ksep → K,
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where the first is separable, and the second is purely inseperable. Thus if we have h : C → C ′, we get a

factoring as follows

C ↪→ Csep → C ′,

where the first is inseparable and looks like σep, and the second is separable. Thus we get a factorization

h = hsep ◦ σep.
Then deg(h) = deg[K(C) : K(C ′)]. Then deg(h) = deg(h)sep deg(h)inseparable. It is still true that∑

P∈h−1(Q)

eP (h) = deg h,

where the ramification inseparable piece is ramified everywhere which is quite strange. In particular one

thing that will be true is if φ : E → E′, then

deg(φ)sep = |kerφ| .

Example VII.3.5

The isogeny [p] : E → E. The kernel is the p-torsion. Fact: deg[p] = p2 always. But the p-torsion

may be smaller than p2! This is because the inseperable piece is taking over.

We’ll have deg[p]sep = p in the ordinary case and deg[p]sep = 1 in the supersingular case.

Why do we care about this? Well if we have an elliptic curve with coefficients over Z, we can reduce all the

coefficents modulo p to get a curve over Fp. This is called the reduction at p of this elliptic curve.

It turns out, sometimes when you reduce a nonsingular elliptic curve E over Z then sometimes it can

become singular in the reduction. Here we’ll fix E/Q and define

vp(E) = min(vp(∆(E)) : E′ ∼ E),

where E′ has integral coefficients via a change of coordinates from E. We also define

∆(E)min =
∏
p

pvp(E).

Fact: ∆(E)min can be achieved via a change of coordinates with a Weierstrass curve. We call such an integral

curve achieving the minimal discriminant a “minimal Weierstrass model.” From now on assume E is given

in this form.

We then may reduce E to Ep. There are two reduction types

1) Good reduction, we get a nonsingular elliptic curve

a) Ordinary |Ep[p]| = p.

b) Supersingular |Ep[p]| = 1.

2) Bad reduction, there are many subtypes

a) Multiplicative, m1 ̸= m2.

i) Split, m1,m2 ∈ Fp
ii) Nonsplit, m1,m2 ̸∈ Fp, in fact m1,m2 ∈ Fp2 .

b) Additive, m1 = m2.
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HW: find an example of each reduction type, due next Tuesday.

Algebraic Conductor. This will be NE =
∏
p p

fp where

fp =


0 if E has good reduction at p

1 if multiplicative reduction

2 if additive reduction p ̸= 2, 3

2 + δp if additive reduction p ∈ {2, 3}

.

δp is something we’ll look at later. We can be assured from the book that δp is no more than 6. Recall in

the modularity theorem we wanted a map X0(N)→ E. It turns out the N we need is NE .

Last time: Reduction of E/Q. The groups one gets in each case

• Good reduction: an elliptic curve

• Multiplicative split: Gm : R 7→ Gm(R) = R×

• Multiplicative non-split, U(1), the 1-units in Fp2 with xp+1 = 1. What would the points of a general

R be for R an algebra over Fp2 .
• Additive case, Ga : R 7→ R+ (viewed as an additive group).

We want to understand reductions over Q (the algebraic closure of Q). Let Z be the algebraic integers.

If we have a maximal ideal ⊆ Z then ∩ Z = pZ for some p prime.

We can think of

Q =
⋃

K/Q finite alg

K.

For each K we have OK the ring of integers of K, and play this same game (here Z ∩K = OK).

We can consider what pOK is for p a prime. Then

pOK =

gK∏
j=1

ej
K,j ,

where K,j are prime ideals in OK and ei ∈ N. These will be maximal, so OK/K,j is a field (a finite extension

of Fp). It is customary to say

fi = [OK/K,j : Fp].

Then we actually have

[K : Q] =

gK∑
j=1

ejfj .

An alternate way to view this, we have a map Z→ OK and so a map SpecOK → SpecZ, and this is counting

the degree at pZ in two different ways (degree defined appropriately)

Remark VII.3.1

Neukirch “Algebraic Number Theory” and also Cassels and Frohlich are good references for algebraic

number theory.
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If we have then ⊆ Z then we can write it as

=
⋃
K/Q

K

such that for K ′/K we have pK′ ∩ OK = K . Then in fact

Z(p) = {x/y | y ̸∈ p}

Z(p)/p = Z/p = Fp.

Lemma VII.3.12

If we have ⊆ Z a maximal ideal and α ∈ Q then α or 1/α lies in Z().

Proof. Fix α. Then α ∈ K/Q for some finite extension K/Q. Thus it suffices to show α or 1/α lies in OK(K )
.

This is in fact easy since OK(K )
is a discrete valuation ring.

For the unitiated (including the current writer of the notes, check back with the future writer),this is a

valuation map from the ring to Z ∪ {∞}. Then v
K
= −v

K
(1/α). Furthermore v−1

K
(Z≥0) = OK(K )

, so one of

these lies in the set.

Example VII.3.6

K = Q,OK = Z and p a prime. Then we write

vp

(a
b

)
= vp

(
a′pk

b′pj

)
= k − j,

where a = a′pk, b = b′pj where p ∤ a′, b′. The points in Z(p) are exactly those points with nonnegative

valuation.

Suppose we have an elliptic curve E/Q. Transform the Weierstrass equation so that we have something

Z-integral. We know Z ⊆ Z. So we can assume the coefficients of E lie in Z().

Reduce via map Z() → Fp to get Weierstrass equation. We can then make sense of ordinary, supersingular,

multiplicative, and additive cases.

Potentially: Isomorphism classes of elliptic curves over Q are much bigger than those over Q. In fact this

happens. Thus when we think about reduction, the situation is slightly different.

Fact: So long as p ̸= 2 we can change coordinates to the form

E : y2 = x(x− 1)(x− λ)

where λ ̸∈ {0, 1} and λ ∈ Z(). Then one can check that additive reduction is not possible for an equation of

this type. The same is true for p = 2, but this is not quite the right form.

Definition VII.3.2

A -minimal Weierstrass equation is one with only good or multiplicative reduction over .

Proposition VII.3.13

Reduction type is well defined on Q-isomorphism classes. That is the reduction type cannot move

between good and multiplcative for minimal models like the above.
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Proof. There is the number ∆, and there’s another number c4, associated to the elliptic curves. We in fact

have

additive reduction ⇐⇒ ∆ = 0, c4 = 0 mod

If we do a change of variables, then u12∆′ = ∆ and u4c′4 = c4 for some u (in terms of the change of

coordinates).

The case we’re frightened of–∆′ ∈ Z×() but ∆ ∈ Z.
If this is the case then u12, u4 ∈ Z(). Then c4 will also lie this ideal, which will give us additive reduction

(which is impossible with minimal models).

Proposition VII.3.14

E/Q has good reduction at if and only if j[E] ∈ Z().

Proof. Remember that the j invariant is j = c34/∆.

Reducing Points. There is a reduction map

Pn(Q)→ Pn(Fp)

[x0, . . . , xn] 7→ [x̃1, . . . , x̃n].

Technical point, we have to scale x0, . . . , xn so that one of them does not lie in Z and all of them lie in Z().

Hence E ⊆ P2(Q) can be reduced on points. We want to understand reduction of E[N ].

Theorem VII.3.15

We get a map E[N ]→ Ẽ[N ] that is surjective.

Proof. Getting the map is clear–equations for N -torsion are algebraic and we can just reduce. When p ∤ 6N ,

then E[pn] = Z/pnZ or E[pn] = 0. The second obviously works and the first we’ll get an isomorphism if we

have injectivity. . . then we stare at the map.

Proposition VII.3.16

Say E/Q has good reduction at p. Say C ⊆ E is a cyclic subgroup of order p. Then

• E/C has good reduction

• E,E/C have the same reduction type, ordinary versus supersingular.

Proof of second piece. Say φ : E → E/C = E′ is the isogeny. Then ψ : E′ → E can be given as the dual

isogeny.

We know ψ ◦ φ = [p]E and φ ◦ ψ = [p]E′ . Then if we look at the reduced isogenies

φ̃ ◦ ψ̃ ◦ φ̃ = φ̃ ◦ [p]Ẽ′

= [p]Ẽ ◦ φ̃.

This in fact tells us that

degsep[p]Ẽ = degsep[p]Ẽ′ .
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Reduction for more general Curves. Specifically, we want modular curves.

Definition VII.3.3

Suppose C is a nonsingular affine curve over Q cut out by equations φ1, . . . , φm ∈ Z(p)[X1, . . . , Xn].

We’ll say C has good reduction at p provided that

(1) I = ⟨φ1, . . . , φm⟩ ⊆ Z(p)[X1, . . . , XN ] is prime

(2) Ĩ = ⟨φ̃1, . . . , φ̃m⟩ ⊆ Fp[X1, . . . , XN ] defines a nonsingular affine algebraic curve.

What is Condition 1 doing? Lets see what it rules out

Non-Example VII.3.7

Let I = ⟨p(py − 1), (y − x2)(py − 1)⟩. Inside Q we have IQ ⊆ Q[x, y] just defines the curve y = 1/p.

However this is not prime in Z(p)[x, y] since we cannot scale by 1/p.

The reduction is Ĩ ⊆ Fp[x, y] is y = x2.

For elliptic curves Condition 1 is automatic, as Weierstrass equations are very simple.

For projective curves we’ll homogenize the affine case.

Definition VII.3.4

Suppose we have some I(0) ⊆ Z(p)[X1, . . . , Xn] prime with homogenization I ⊆ Z(p)[X0, . . . , Xn].

Say this gives a projective curve Chom. We say Chom has good reduction at p if for all i either Ci

(unhomogenizing at xi) has good reduction at p or Ĩ(i) = Fp[X1, . . . , X̂i, . . . , XN ] (empty reduction).

We can let C̃hom be the reduced curve given by (Ĩ(0))hom.

Note: Some commutative algebra tells us that if I(0) is prime, I is prime, and this implies I(i) is prime.

Recalling that Pn(Q)→ Pn(Fp) gives us a map on points for reducing projective curves.

Theorem VII.3.17

If C is nonsingular, projective, of good reduction at p, then the reduction map C → C̃ is surjective.

Fact we won’t state: You can also reduce morphisms! The idea is to reduce the algebraic equations defining

the maps, which gives you something rational, and then extend by nonsingularity.

One would really like to have a commutative diagram

C C ′

C̃ C̃ ′

h

h̃

But in fact this only holds if g(C ′) > 0.

Theorem VII.3.18

If g(C ′) > 0 and h : C → C ′ over Q where these have good reduction then

C C ′

C̃ C̃ ′

h

h̃

and this h̃ is unique.
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Something that could go wrong when reducing maps. Look at

h : P1 → P1

[x : y] 7→ [px : y].

Then h̃ doesn’t quite make sense, as it maps [1 : 0] to [0 : 0] (which is not in P1
p

Corollary VII.3.19

Suppose C,C ′ are nonsingular and projective with good reduction at p and g(C ′) > 0.

(a) If h is surjective, then h̃ is surjective.

(b) If k : C ′ → C ′′ and g(C ′′) > 0 then k̃ ◦ h = k̃ ◦ h̃.
(c) h is an isomorphism implies h̃ is an isomorphism.

Theorem VII.3.20

The map Div0(C)→ Div0(C̃) where p 7→ p̃ is well-defined, and furthermore

Divℓ(C)→ Divℓ(̃(C)).

However, it is not necessasarily true that the reduction of the divisor of a function is the divisor of the

reduction of the function.

This then induces a map

Pic0(C)→ Pic0(C̃).

Theorem VII.3.21

Theorem VII.3.18 is true for E/Q, h an isogeny.

Fix ideals p ⊆ Z and p ⊆ Z, and p ∤ N .

Recall VII.3.8

E/Q has good reduction if and only if j(E) ∈ Z(p).

Definition VII.3.5

Consider the set

S1(N, )
′
good = {(E,Q) ∈ S1(N) | E has good reduction at and j(Ẽ) ̸= 0, 1728}.

We also define

S̃1(N) = {(E,Q) | E/Fp, Q ∈ E[N ]}

We also define

S̃1(N)′ = {(E,Q) ∈ S̃1(N) | j(E) ̸= 0, 1728}.

We also have a surjection S1(N)′good ↠ S̃1(N)′.
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Consider the modular curve X1(N). We had a universal elliptic curve Ej living over this. The function field

was x-coordinates of torsion on this curve. We can also consider Ẽj ,

Ẽj : y
2 + xy = x3 −

(
36

j − 1728

)
x− 1

j − 1728
.

Fix Q ∈ Ẽj [N ] of order N . Let φ1,N ∈ Fp(j)[X] be the minimal polynomial of x(Q).

We can then define

Definition VII.3.6

Kp1(N) = Fp(j)[X]/φ1,N (X).

This is our candidate function field. It is easy to show this is a function field. Thus there exists a nonsingular

projective curve corresponding to this, and we must ask if that is the same as X̃1(N) (which as of now we

don’t even know if that has good reduction!).

Theorem VII.3.22 (Igusa)

For the modular curve X1(N),

• X1(N) has good reduction at p.

• Fp(X̃1(N))
∼−→ Kp1(N).

• There is a commutative diagram

S1(N)′good X1(N)

S̃1(N)′ X̃1(N)

ψ

ψ̃

Corollary VII.3.23

There is a commutative diagram

Div0(S1(N)′good) Pic0(X1(N))

Div0(S̃1(N)′) Pic0(X̃1(N))

VII.4. Eichler-Shimura Relation

Idea: Compute T̃p : Pic
0(X̃1(N))→ Pic0(X̃1(N)).

Warmup: Consider the diamond operator ⟨d⟩, We have Γ1(N) is a normal subgroup of Γ0(N). The quotient

is (Z/NZ)× and we pick a d here. We pick a matrix[
a 0

c δ

]
∈ Γ0(N)

reducing to d. We can think of conjugation by this matrix acting on Γ0(N), and we can think of it as a

double coset operator as well. We then get a map

⟨d⟩ : X1(N)→ X1(N)

⟨d⟩∗ : Pic0(X1(N))→ Pic0(X1(N)).
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Since this comes from an actual honest to god map of curves, we’re actually fine.

General double coset operators. Let Γ1,Γ2 be congruence subgroups and

Γ3 = Γ1 ∩ g−1Γ2g

Γ′3 = gΓ1g
−1 ∩ Γ2.

There are then maps

X3 X ′3

X1 X2.

In the Tp case, Γ1,Γ2 = Γ1(N). Then

Γ1,0(N, p) = Γ1(N) ∩ Γ0(Np).

Then one gets maps

X1,0(N, p)

X1(N) X1(N)

The problem is X1,0(N, p) does not have good reduction at p. The reduction somehow looks like 2 copies of

X̃1(N) glued at the supersingular points.

The books says in fact we can sort of reduce this diagram, but we have to wrestle with X1,0(N, p) having

singular reduction.

Assuming T̃p is well-defined, we compute it.

Recall VII.4.1

Eigenvalues of Tp are coefficients of forms. We would like to do point counts for the reduced modular

curves.

We have ap(f) is the coefficent in the modular curve, and we’d like to relate that to ap(Ẽ) (a point

count of Fp
2
points on Ẽ).

We should also recall what the Hecke operator does on the moduli problem

Recall VII.4.2

We have that

Tp : Div0(S1(N))→ Div0(S1(N))

Tp[E,Q] =
∑
C

[E/C,Q+ C],

where the sum is over all C ⊆ E of order p with C ∩ ⟨Q⟩ = 0. In our case this second condition is

vacuous since p ∤ N , and Q has order N .

Also recall that if E has ordinary reduction at p, then so does E/C. Thus we can split this computation

into an ordinary and supersingular computation.

Let E/Q have ordinary reduction at , and let

C0 = ker(E[p] ↠ Ẽ[p]).

71



Faye Jackson November 29th, 2022 MATH 678 - VII.4

And of course |C0| = p.

Lemma VII.4.1

We need to know what the reduction looks like, well

[Ẽ/C, Q̃+ C] =

{
[Ẽσp , Q̃σp ] if C = C0

(Ẽσ
−1
p , [p]Q̃σ

−1
p ) if C ̸= C0

.

Proof when C = C0. Let E′ = E/C,Q′ = Q + C = φ(Q), where φ : E → E′. Let ψ : E′ → E be the dual

isogeny.

Consider the diagram

E′[p] E[p]

Ẽ′[p] Ẽ[p]

ψ

ψ̃

We know this commutes, so then we have the following steps

• ψ(E′[p]) ⊆ E[p] as order p.

• ψ(E′[p]) ⊆ C, and this implies ψ(E′[p]) = C.

• Ẽ′[p] ⊆ ker ψ̃.

• ker(ψ̃) = Ẽ′[p]

Upshot: compute the degrees of everything in sight.

deg[p]
Ẽ′ = p2 deg(φ̃) = p deg(ψ̃) = p.

Hence,

degsep[p]Ẽ′ = p deginsep[p]Ẽ′ = p

degsep ψ̃ = p deginsep ψ̃ = 1

degsep φ̃ = 1 deginsep φ̃ = p.

This implies that φ̃ = ι ◦ σp, where ι is an isomorphims and σp is the Frobenius map. With ι : Ẽσp → Ẽ.

This is a field extensions sort of argument (splitting into separable/inseparable). Then ι induces an

equivalence

ι : [Ẽ′, Q̃′]↔ [Ẽσp , Q̃σp ].

The other computation is similar.

Where we we?

Recall VII.4.3

We had an elliptic curve E/Q with ordinary reduction at , Q ∈ E a point of order N , and C0 =

ker(E[p]→ Ẽ[p]), with p ∤ N .
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Lemma VII.4.2

If C ⊆ E, |E| = p, then

[Ẽ/C, Q̃+ C] =

{
[Ẽσp , Q̃σp ] if C = C0

(Ẽσ
−1
p , [p]Q̃σ

−1
p ) if C ̸= C0

.

where σp is the Frobenius map.

We did the proof when C = C0 last time! The proof for C ̸= C0 is similar.

Fact: E[p] has p+ 1 subgroups of order p (this is (Z/pZ)2, which we can view as a vector space). We had

the reduction of the diamond operator, which when (d,N) = 1 had the form

⟨d̃⟩ : S̃1(N)→ S̃1(N)

[E,Q] 7→ [E, [d]Q].

We should have something like

Tp[E,Q] =
∑
C

[E/C,Q+ C]

T̃p[Ẽ, Q̃] =
∑
C

[Ẽ/C, Q̃+ C]

= (σp + p⟨p̃⟩σ−1p )[Ẽ, Q̃].

This is all in the case of ordinary reduction. In the supersingular case, we can take the same setup as before.

This ends up showing that

[Ẽ/C, Q̃+ C] = [Ẽσp , Q̃σp ] = [Ẽσ
−1
p , [p]Q̃σ

−1
p ].

This implies the same formula is true, but there’s some collapsing so it is less interesting in some sense.

In general we have that

S1(N)′good Div(S1(N)′good)

S̃1(N)
′

Div(S̃1(N)
′
).

Tp

σp+p⟨p̃⟩σ−1
p

We define a map σ = σp∗ + ⟨σ̃⟩σ∗p from Pic0(X̃1) to itself.

It turns out Div0(S̃′1) to this picard group is surjective.

Theorem VII.4.3 (Eichler-Shimura)

We have a commutative diagram

Pic0(X1(N)) Pic0(X1(N))

Pic0(X̃1(N)) Pic0(X̃1(N))

Tp

σp⋆+⟨p̃⟩∗σ
∗
p

There is also an X0(N) version.
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Pic0(X0(N)) Pic0(X0(N))

Pic0(X̃0(N)) Pic0(X̃0(N))

Tp

σp⋆+σ
∗
p

Definition VII.4.1

We let ap(E) = p+ 1−
∣∣∣Ẽ(Fp)

∣∣∣ when E has good reduction at p.

There is in fact a Lefschetz formula

Ẽ(Fp) =
∑
i

(−1)i tr(Frob(Hi
et(E,Qp)).

This gives a good reason to care about ap(E). In H0 we’ll have a contribution of 1, and in H2 we’ll have a

contribution of p. In H1 we’ll have what’s called a Tate Module, and we’re computing the trace of frobenius

on this Galois representation.

Theorem VII.4.4

Supposing E has good reduction, ap(E) = 0 if and only if E has supersingular reduction at p.

Supposing E has bad reduction, we define,

ap(E) =


1 if E split

−1 if E nonsplit

0 if E additive

,

and this will fit into the general theory.

Proposition VII.4.5

E/Q has good reduction at p, then

[ap(E)] = σp∗σ
∗
p

on Pic0(E).

We know Ẽ[Fp] = ker(σp − Id), h∗ ◦ h∗ = deg(h), and so∣∣∣Ẽ[Fp]
∣∣∣ = deg(σp − 1) = (σp − 1)∗(σp − 1)∗.

If we FOIL this we get

σp∗σ
∗
p + 1∗1

∗ − (σp∗ + σ∗p).

The modularity theorem can now be restated as

Theorem VII.4.6 (Modularity)

If E/Q is an elliptic curve and the conductor is NE . Then there exists a newform f ∈ S2(Γ0(NE))

such that ap(f) = ap(E) for each prime p.

(Before: X0(NE) ↠ E).
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Theorem VII.4.7

Let E/Q be a curve, with NE a conductor, α : X0(N) ↠ E.

Then in fact there is an f ∈ S2(Γ0(MF )) with MF | N so that ap(f) = ap(E) for all p ∤ NEN .

Proof. Recall that S2(Γ0(N)) has a basis
⋃
f

⋃
n|N

⋃
σ f

σ(nτ) where f is a newform.

This told us we had an isogeny

Pic0(X0(N)) ↠
⊕
f,n

A′f,C,

and we can consider the dual isogeny, and then write down

⊕f,nA′f,C ⊕f,nA′f,C

Pic0(X0(N),C ) Pic0(X0(N),C) Pic0(EC).

∏
f,n ap(f)−ap(E)

Tp−ap(E)

α∗

We now have some facts

• If ap(f) ̸= ap(E) then the top map ⊕nA′f,C (should be believable, it’s nonzero)

• The square commutes.

• The composition of bottom maps is 0.

If for some p, ap(f) ̸= ap(E), then the image of ⊕n(A′f )C lies in kerα∗. Now suppose for each f , there is a p

such that ap(f) ̸= ap(E). This implies that the image of ⊕f,nA′f,C ⊆ ker(α∗).

But this is bad because the map above ⊕f,nA′f,C → Pic0(X0(N),C) is surjective. This would imply

Pic0(EC) is trivial!!!

But this isn’t true, so there is a p with ap(f) ̸= ap(E).

Remark VII.4.1

If f is as in Theorem VII.4.7 then f/Q. Why? Well σ ∈ Gal(Q/Q). Then

ap(f
σ) = ap(f)

σ

for almost all primes ap(f) = ap(E) =∈ Z so ap(f) = ap(f
σ). Strong Multiplicity one would then imply

that f = fσ

How do we relate the versions of modularity. Well we look for a map

XQ-Mod→ ap − -Mod.

Well recall we had dimA′f = [Kf : Q] but since f/Q in the situation above, A′f is an elliptic curve (abelian

variety of dimension one).

Have: X0(N)→ Pic0(X0(N))→ A′f . Then we can apply Theorem VII.4.7 to this setup. Then there’s a g

with ap(g) = ap(A
′
f ) (except at divisions), and you end up with g = f in the proof. Why? Well the idea is

the ap(f)− ap(E) portion above, and applying strong multiplicity one.

Thus ap(f) = ap(A
′
f ) for almost all p, when f/Q.
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Theorem VII.4.8 (Carayol)

ap(f) = ap(A
′
f ) for all p.

We then have A′f ↠ E. Then it turns out A′f
∼= E and ap(f) = ap(A

′
f ) = ap(E) for all p.

VII.5. Some L-function stuff

Recall for a newform f we defined L(s, f) :=
∑∞
n=1 an(f)n

−s. We were able to show that

L(s, f) =
∏
p

(
1− ap(f)p−s + 1N (p)p1−2s

)−1
where 1N (p) detects if p | N where f has level N . We can also define

tpe = pe + 1−
∣∣∣Ẽ(Fpe)

∣∣∣
Then we can define a local zeta function

Zp(X,E) =

∞∏
e=1

exp

(
tpe(E)

e
xe
)
.

One can show

Zp(p
−s, E) = (1− ap(E)p−s + 1E(p)p

1−2s)−1,

where 1E is 1 if good reduction and 0 if bad reduction. This clearly depends on reduction type, and,

Zp(p
−s, E) =


(1− ap(E)p−s + p1−2s)−1 if good

(1− p−s)−1 if split

(1 + p−s)−1 if non-split

1 if additive

.

Define

L(s, E) =
∏
p

(1− ap(E)p−s + 1E(p)p
1−2s) =

∞∑
n=1

an(E)

ns
.

Formally defined,a1(E), Ap(E) = p+ 1− |E(Fp)|. Furthermore

ape(f) = ap(E)ape−1(E)− 1E(p)pape−2(E).

Furthermore if (m,n) = 1 then amn(E) = am(E)an(E).

Theorem VII.5.1 (Modularity)

L(s, f) = L(s, E). As a consequence L(s, E) has a functional equation and an analytic continuation.

Conjecture VII.5.2 (Birch-Swinnerton-Dyer)

ords=1 L(s, E) = rank(E/Q) = r which is determined by E(Q) = Zr ⊕ T .

Then L(s, E) converges when Re(s) > 2. The functional equation determines Re(s) < 0.

Definition VII.5.1

Let K/Q be an imaginary quadratic extension. An order O ⊆ OK , rankZ(O) = [K : Q] = 2.

In this simple case the orders are On = Z+ nOK where n ∈ Z≥1.
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Definition VII.5.2 (Heegner Point)

A Heegner point in X0(N) relative to K is a pair (E,C) such that E,E/C have complex multiplication

by the same order O.

Then these will look like

xn := (E = C/On, E′ = E/C = C/N−1n )

N ⊆ OK ,Nn = N ∩On.

with OK/N ∼= Z/NZ, where inverse is taken with respect to the notion of fractional ideal.

The Heegner Hypothesis is that each p | N splits in K, which implies there exist Heegner points in X0(N)

for all ON . It turns out xn ∈ X0(N)(Hn) where Hn is a ring class field of On.
This is a generalization of the Hilbertclass field, with Galois group (On/nOK)

×
/(Z/NZ)×.

Consider E/Q by modularity X0(N)
α−→ E. Then we can consider the image this Heegner point xn 7→

yn ∈ E(Hn). We can then consider

trn : E(Hnp)→ E(Hn)

z 7→
∑

σ∈Gal(Hnp/Hn)

σ(z).

Theorem VII.5.3

trn(ynp) = ap(E)yn.

Proof. We’ll use Eichler-Shimura. We’ll need the version where the composition

Pic0(X0(N)) Pic0(X0(N)) E
Tp−ap(E) α

is zero. We might as well work in the picard group then! So we can look at

trn(ynp) = tr(α(xnp)) = α(tr(xnp))

= α(Tp(xn) = ap(E)α(xn) = ap(E)yn.

Exercise VII.5.1

Why is tr(xnp) = Tp(xn)? Idea: look at what we did for Hecke operators and Galois actions in the

X1(N) moduli problem, and adapt a similar formula for X0(N).

Also probably understand Hn better than I do (can’t wait to learn class field theory one day).

Define

yK := trH1/K(y1) ∈ E(K).

We need to say something about its height.
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Definition VII.5.3

If p ∈ E(K), we define the naive height as

h(p) :=
1

[K : Q]

∑
v∈MK

[Kv,Qv] · logmax(|x|v , |y|v , |z|v),

where MK is all the places (absolute values in K)

We can also define the Neron-Tate Height

ĥn(p) = lim
n→∞

h([2n]p)

4n
.

This allows us to define a height pairing

⟨, ⟩ : E(K)× E(K)→ R

⟨P,Q⟩ := 1

2
ĥ(P +Q)− ĥ(P )− ĥ(Q).

It turns out that ⟨P, P ⟩ = 0 if and only if P is torsion.

Theorem VII.5.4 (Gross-Zagier)

If E/Q is an elliptic curve, K is an imaginary quadratic field satisfying the Heegner Hypothesis.

Then

L′(1, EK) = cE,K · ⟨yK , yK⟩,

for some special number cE,K which is not terrible to write down.

Now write the analytic rank as rkan = ords=1 L(s, E). The algebraic rank as rkalg = rk(E).

Corollary VII.5.5

rkan(EK) = 1 then rkalg(EK) ≥ 1.

Theorem VII.5.6 (Kolyvagin)

If ord(yk) =∞, then rkalg(EK) = 1.

This actually tells us that if rkan(EK) = 1 implies rkalg(EK) = 1.

VIII. Galois Representations

We skip 9.1, and check there fore definitions

Definition VIII.0.1

Let ℓ be a prime. The ring of ℓ-adic integers is

Zℓ := lim
←

Z/ℓnZ

along Z/ℓmZ→ Z/ℓnZ.
Explicitly, a ∈ Zℓ si a sequence a = (a1, a2, . . .) with an ∈ Z/ℓnZ and an+1 ≡ an (mod ℓ)n.

Note Zℓ is an integral domain and the natural map

Z→ Zℓ

a 7→ (a+ ℓZ, a+ ℓ2Z, . . .)
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is injective. This inclusion induces

Z/ℓnZ ∼= Zℓ/ℓnZℓ

for every n. Then Zℓ is profinite because Z/ℓnZ is finite for all n.

The group of units Z×ℓ is

Z×ℓ = {(a1, a2, . . .) | ai ∈ (Z/ℓiZ)×}

= (a1, a2, . . .) | a1 ̸≡ 0}.

Also Zℓ has a unique maximal ideal ℓZℓ. Furthermore, it comes equipped with a topology with basis given

by the sets

Ux(n) := x+ ℓnZℓ,

where n ∈ Z+.

Definition VIII.0.2

The field Qℓ is the fraction field of Zℓ.

Qℓ has a topology given in the same way. The basis is

Ux(n) = x+ ℓnZℓ

for x ∈ Qℓ, n ∈ Z+. For any d > 0, Qdℓ is a topological Qℓ-vector space with the product topology. The group

GLd(Qℓ) inherits the subspace topology from Qd2ℓ . Under this topology, matrix multiplication and inversion

are continuous (i.e. GLd(Qℓ) is a topological group).

Now let K be a number field (K ⊆ Q, [K : Q] <∞) with ring of integers OK . If λ is a prime in OK over

ℓ, then we can play the same game:

OK,λ = lim
←n

OK/λnOK ,

and similarly define Kλ = Frac(Ok,λ). Then we have

Qℓ ↪→,Zℓ ↪→ OK,λ,K ⊗Q Qℓ ∼=
∏
λ|ℓ

Kλ,

with the proof in the book.

Galois Representations:

• Let Q be the algebraic closure of Q.

• Define GQ = Aut(Q).

• We want to study representations of GQ on Qℓ-vector spaces.
• Recall that

Q =
⋃
K/Q

[K:Q]<∞
K Galois

K.
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Then for any σ ∈ GQ and any K/Q Galois of finite degree, we have σ
∣∣
K
∈ Gal(K/Q). This defines a

compatible system of surjections

GQ ↠ Gal(K/Q),

compatible in the sense that if K ′ ⊆ K we have a commutative diagram

GQ Gal(K/Q)

Gal(K ′/Q)

So really we have that

GQ = lim←
K/Q

fin. Galois

Gal(K/Q).

This has a natural topology

Definition VIII.0.3

The Krull topology on GQ has basis sets

Uσ(K) = {στ | τ
∣∣
K

= IdK}.

Let’s discuss some important elements of GQ. Fix a prime p, p ⊆ Z lying over p.

Definition VIII.0.4

The decomposition group of p is

Dp = {σ ∈ GQ | pσ = σ}.

We then have a surjective map Dp ↠ Gal(Fp/Fp) given by

σ 7→ (x+ p 7→ xσ + p).

Definition VIII.0.5

An absolute Frobenius over p is any preimage Frobp ∈ Dp of the Frobenius map σp ∈ GFp
, where

σp(x) = xp.

This is well-defined up to Ip := ker(Dp → GFp
) , which we call the inertia group of p.

Explicitly,

Ip := {σ ∈ Dp | xσ ≡ x (mod p), for all x ∈ Z}.

Theorem VIII.0.1

Fix a finite set of primes S ⊆ Z. For each prime p lying over p ̸∈ S, choose an absolute Frobenius

Frobp. Then the set

{Frobp | p ̸∈ S}

is dense for the Krull topology.

Proof. We use Tchebotarov Density Theorem (stated below) to prove this theorem.

take Uσ(K) for some σ ∈ GQ and K some number field. We want to show Frobp ∈ Uσ(K).
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Consider σ
∣∣
L
∈ Gal(K/Q). By Tchebotarov, σ is a Frobenius for some pK . Lift pK to p ⊆ Z.

Then Frobp ∈ Uσ(K).

Theorem VIII.0.2 (Tchebotarov Density Theorem 9.1.2 in [DS05])

Let K be a Galois number field. Then every element of Gal(K/Q) is a Frobenius for p for infinitely

many maximal ideals p of OK .

Here we mean xσ ≡ x (mod p) for all x ∈ OK .

Definition VIII.0.6

Let d > 0. A d-dimensional Galois representation is a continuous homomorphism

ρ : GQ → GLd(L)

for L a finite extension of Qℓ.

Remark VIII.0.1

L = Kλ for some λ,K works. If ρ, ρ′ are two Galois representations then we say ρ ∼ ρ′ if there exists

some g ∈ GLd(L) so that

ρ′(σ) = g−1ρ(σ)g

for all σ ∈ GQ. One can think of this as a commutative diagram.

Example VIII.0.1

Fix n > 0, let µℓn be a primitive ℓn-th root of unity (say e2πi/ℓ
n

). Then Q(µℓn) is a Galois number

field of degree ϕ(ℓn) over Q, and we have a canonical isomorphism

Gal(Q(µℓn)/Q)
∼−→ (Z/ℓnZ)×

(µℓn
σ7−→ µaℓn) 7→ a (mod ℓn).

If we define

Q(µℓ∞) =

∞⋃
n=1

Q(µℓn)

then

GQ,ℓ := Aut(Q(µℓ∞))
s−→ lim
←

(Z/ℓnZ)× = Z×ℓ .

The inclusion Q(µ∞ℓ ) ⊆ Q induces GQ ↠ GQ,ℓ by restriction.

Then we have a representaiton

GQ ↠ GQ,ℓ
∼−→ Z×ℓ ↪→ Q×ℓ = GL1(Qℓ).

This is a Galois representation (check continuity). This is called the ℓ-adic cyclotomic character χℓ.

Claim

χℓ is continuous.
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Proof. Since χℓ is a group homomorphism, it suffices to show that χ−1ℓ (U1(n)) is open (aka look at neighbor-

hoods of identity). Explicitly we see that

χ−1ℓ (U1(n)) = {σ | χℓ(σ) ∈ 1 + ℓnZℓ}

= {σ ∈ GQ | σ
∣∣
Q(µℓn )

= Id}.

But this is simply UId(Q(µℓn)) which is open.

Exercise VIII.0.2

Compute that χℓ(Frobp) = p. In [DS05] This is 9.3.6.

We want to think more generally about ρ(Frobp)

Problem: Frobp is only well-defined up to inertia.

Definition VIII.0.7

Let ρ be a Galois representaton and p a prime. Then ρ is unramified at p if Ip ⊆ ker ρ for any ρ ⊆ Z
lying over p.

Example VIII.0.3

χℓ is unramified at p since p is unramified in Q(µℓn), so Ip acts trivially on Q(µℓn).

We can give an equivalent definition of Galois representation

Definition VIII.0.8

Let d > 0. A d-dimensional Galois representation is a d-dimensional topological vector space V over

L, where [L : Qℓ] <∞ that is also a GQ-module such that the map

V ×GQ → V

(v, σ) 7→ vσ

is continuous.

Remark VIII.0.2

We say V ∼ V ′ if there exists a continuous GQ-module isomorphism V → V ′ of L-vector spaces.

We can realize χℓ in this way. Define

C = Spec(Q[x, y]/(xy − 1))

This is a curve, and for any Q-algebra R, the R-points of C are C(R) = {(a, b) ∈ R2 | ab = 1}. This is

isomorphic to R×.

Thus C has the structure of a “Q-group scheme.” For n ∈ Z+, define

C[ℓn] = {a ∈ C(Q) | aℓ
n

− 1 = 0} ⊆ Q×.

Then we have an isomorphism

C[ℓn]
∼−→ Z/ℓnZ

µaℓn 7→ a.
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Furthermore Aut(C[ℓn]) ∼= (Z/ℓnZ)× in the natural way.

Definition VIII.0.9

The ℓ-adic Tate module of C is

Tℓ(C) = lim←
n

C[ℓn].

We have an induced isomorphism ψ from Tℓ(C) to Zℓ. Tℓ(C) carries an action of GQ,ℓ because Aut(C[ℓn]) =

Gal(Q(µℓn)/Q) as C[ℓn] = Q(µℓn).

We can also define

Vℓ(C) := Tℓ(C)⊗Z Q.

We get

Vℓ(C)×GQ → Vℓ(C)

which is compatible with our previous construction.
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