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Theorem .0.1

There’s an equivalence of categories between projective nonsingular curves with non-constant maps

and finite extensions of k(t).

This is given by C ↔ k(C), and is contravariant.

Proof Sketch. There is an equivalence

varieties/k ↔ K/k

where the left hand side is dominant rational maps (dense image defined on an open).

This can be upgraded to curves/k with finite extensions K of k(t) by de-singularizing and compactitying

(nontrivial, but reasonable).

For divisors, we can look at h : C → C ′ over k, then h : k(C ′) → k(C). Then deg h = [k(C) : k(C ′)].

We then have for Q ∈ C ′ that ∑
p∈h−1(Q)

ep(h) = deg h

where ep(h) = vp(t
′ ◦ h), where t′ is a uniformizer at h(p).

We can define Div,Div0,Divℓ,Pic0 as before, and we get for each h : C → C ′ a pushforward and pullback

h∗ : Pic0(C) → Pic0(C ′)h∗ : Pic0(C ′) → Pic0(C)

We have h∗ sends [p] to [h(p)] and h∗ sends [Q] to
∑

p∈h−1(Q) ep(h)[p]. Then h∗ ◦ h∗ = [deg h].

Theorem .0.2

If E is an elliptic curve, then the map Div(E) → E induces an isomorphism

Pic0(E) ∼−→ E .

Proof. Map is a homomorphism, and restriction to Div0(E) si surjective as [p]− [0] 7→ p.

We want to show the kernel is Divℓ. The Lemma is

Lemma .0.3 (1) p ̸= q if and only if [p]− [q] is not principal.

(2) [p]− [0] + [Q]− [0] ≡ [P +Q]− [0] modulo Divℓ.

Suppose [p] − [q] is principal, that is [p] − [q] = div(f). Then f : E ↠ P1(k) with p being sent to 0, q

being sent to ∞.

The genus tells us this is a big problem, becasue P1(k) has genus zero, and E has genus one. For the

second part write f(x, y) = ax+ by + c in k(E). Then

div(f) = [P ] + [Q] + [R]− 3[0].

Likewise the line through R,−R has divisor [R]− [0] + [−R]− [0]. Thus

[P ] + [Q]− 3[0] + 2[0]− [−R] ∈ Divℓ .
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Then we have

[P ] + [Q]− [P +Q]− [0] ∈ Divℓ .

Then [P ] + [Q] ≡ [P +Q] + [0], which is equvialent to what we wanted.

Now suppose we have
∑

p[np]p = 0 (that is the divisor
∑

p np[p] goes to 0). By (1) this is true if and only if(∑
p np[p]

)
− [0] is principial.

By (2) this is if and only if
(∑

p np([p]− [0])
)
is principal. By (1) this becomes

∑
np[p] ∈ Divℓ. This is

what we wanted!

Corollary .0.4∑
np[p] is principal if and only if

∑
np = 0 and

∑
[np]p = 0.

Weil Pairing! We’ll look at

µN = {x ∈ k | xN = 1},

while this might look like Z/NZ, it carries a nontrivial Galois action to keep track of. The Weil pairing is a

map

eN : E [N ]× E [N ] → µN .

Let P,Q ∈ E [N ] Then N [Q]−N [0] ∈ Divℓ from our corollary. Say this is div(f). We now want to compute

div(f ◦ [N ]), which is ∑
R:[N ]R=Q

N [R]−
∑

S:[N ]S=0

N [S].

We then fix Q′ ∈ E [N2] such that [N ]Q′ = Q. Then

div(f ◦ [N ]) = N
∑

S∈E[N ]

[Q′ + S]− [S],

which we’re supposed to see is principal, without the N ! This is because E [N ] has N2 points. We then have

this as div(g) and div(f ◦ [N ]) = div(gN ).

For all x ∈ E, we have

g(x+ p)N = f([N ]x+ [N ]P ) = f([N ]x) = g(x)N ,

Hence g(x+P )
g(x) ∈ µN and is constant. Thus we define

en(P,Q) =
g(x+ P )

g(x)
.

Theorem .0.5

This map is bilinear in a multiplicative sense, i.e.

eN (aP, cQ) = eN (P,Q)ac.
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It’s also alternating eN (Q,Q) = 1. This implies that it’s skew-symmetric.

Furthermore it’s non-degenerate. Even more incredibly it is Galois equivariant eN (P,Q)σ = eN (Pσ, Qσ).

Finally, it is isomorphism invariant.

A lot of these are not that hard to check.

Corollary .0.6

We have en(P
′, Q′) = en(P,Q)det γ if [

P ′

Q′

]
= γ

[
P

Q

]
.

Now we’re going to look at function fields of modular curves. Recall that C(X(1)) = C(j). We would like to

compute C(X(N)),C(X1(N)),C(X0(N)).

Take v ∈ Z2 with v ∈ (Z/NZ)2 nonzero. We write

fv
0 (τ) =

g2(τ)

g3(τ)
℘

(
cvτ + dv

N

)
,

and one can check this is weight 0 and Γ(N)-invariant, and it is meromorphic on the upper half plane and

the cusps.

We define

f0 :=

N−1∑
d=0

f
(0,d)
0

f1 := f
(0,1)
0

f(1,0) := f
(1,0)
0

jN (τ) := j(Nτ).

Then we have the following proposition

Proposition .0.7

We have

C(X(N)) = C(j, f1,0, f1)

C(X1(N)) = C(j, f1)

C(X0(N)) = C(j, f0) = C(j, jN ).

Moreover, C(X(N))/C(X(1)) is galois with group SL2(Z/NZ)/{±I}

We’ll talk about this more next time. Of course we get a tower of Galois extensions of all of these.
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