
Faye Jackson November 3rd, 2022 MATH 678 - .1

Recall .0.1

If k is a field of characteristic zero then the elliptic curve E ⊆ k
2
is the solutions to

E(x, y) = y2 − 4x3 + g2x+ g3,

where ∆ = g32 − 27g23 ̸= 0 (aka the curve is nonsingular, aka not all formal partial derivatives vanish at

some P ).

Why do we require that if (x, y) ∈ E with D1E(x, y) = 0, D2E(x, y) = 0. D2E(x, y) = 2y, so if this is zero

y = 0.

Factor y2 = 4(x− x1)(x− x2)(x− x3). Then E(x, y) = 0 when x = x1, x2, x3 since y = 0, but then this

gives that D1E(x, y) vanishing implies there is a non-distinct root, so then ∆ = 0. The converse is similar.

Note: from our discussion last time, if a tangent line through P goes through ∞, then P is a 2-torsion

point since P + P + ∞ = ∞, P = −P . If the coefficients lie in some field k then we can write down the

equation of the addition in this group structure as rational functions with coefficients in k.

Remark .0.1

We can think of an ellitpic curve E[x, y] = E as a functor from k-algebras to groups

E : R 7→ E(R) ⊆ R×R.

Torsion! We will have that E[N ] := E(k)[N ] ∼= (Z/NZ)2, where E(L)[N ] = {x ∈ E(L) | Nx = ∞}. Last time,

we saw that if L/K is Galois then Gal(L/k) acts on E(L), and this gives an action on N -torsion as Gal(L/k)

acting on E(L)[N ]:

ρ : Gal(L/k) → GL2(Z/NZ).

To see that E[N ] ∼= (Z/NZ)2

.1. Algebraic Curves and Function Fields

Let I = ⟨φ1, . . . , φr⟩ ⊆ k[x1, . . . , xn]. Now consider

V := {p ∈ k
n | φ(p) = 0 for all φ ∈ I},

We then know that I is prime, so the coordinate ring k[V ] = k[x1, . . . , xn]/I is an integral domain, and we

can consider its field of fractions k(V ). If k(V ) is a finite dimensional extension of k(t), then we say V is an

affine algebraic curve.

If [Djφi(p)] is rank n− 1 for each p ∈ V , then we say that V is nonsingular. This is nice, but we really

want to homogenize. Say if φ1 was x1 + x2
2 we would take it to x0x1 + x2

2. Under this replacement if V ′ is

the corresponding subset of k
n+1

then x ∈ V ′ implies λx ∈ V ′ for any λ ∈ k.

We would then define Pr(k) to be the quotient of k
r+1

by the action of scaling by an element of k. This

is projective r-space over k. We can then consider

Ihom = ⟨φi,hom⟩ ⊆ k[x0, . . . , xr]

Vhom = {[p0 : · · · : pr︸ ︷︷ ︸
p

] ∈ Pr(k) | φ(p) = 0 for all φ ∈ Ihom}.
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This will make Vhom compact which will be nice! Vhom is then called a projective algebraic curve.

Definition .1.1

We’ll define the tangent space Tp(C) (C is an affine algebraic curve) to be

Tp(C) := {v ∈ k
n | [Djφi(p)]v = 0}.

We’ll also consider mp ⊆ k[C], which is the maximal ideal at p, to be

mp := {f ∈ k[C] | f(p) = 0}.

Then mp/m
2
p is called the cotangent space at p.

Lemma .1.1

mp/m
2
p is naturally dual to TpC as a vector space.

Proof. We must construct a perfect pairing

mp/m
2
p × TpC → k.

This will take (f, v) 7→ ∇f(p) · v.
We must check this is well-defined. If f ∈ m2

p then f =
∑

gihi, where gi(p), hi(p) = 0, then

∇f(p) =
∑

gi(p) · ∇hi(p) +∇gi(p) · hi(p) = 0.

Furthermore, this is the coordinate ring, so if φ ∈ I, we see

∇φ · v = 0,

since ∇φi · v = 0 for all φi. Linearity is clear. To show this is a perfect pairing, suppose v ∈ TpC and

(f, v) = 0 for all f . Then ∇xi(p) · V = 0, so v = 0.

To see the other direction, if ∇f · v = 0 then all the first-order partials vanish at p, and we can write f

as. . .

Local Rings. Consider the localization k[C]p := {f/g ∈ k(C) | g(p) ̸= 0}, then Mp = mpk[C]p is the

unique maximal ideal, and

Mp/M
2
p
∼= mp/m

2
p,

Theorem .1.2

k[C]p is a discrete valuation ring

Proof. First we show Mp is principal. Take t ∈ Mp generating Mp/M
2
p . Now consider N = ⟨t⟩. We want to

show Mt/N is zero. Thus by Nakayama’s Lemma we can show Mp ·Mp/N = Mp/N . We see that

Mp ·
Mp

N
=

M2
p +N

N
=

Mp

N
.

Can write any f ∈ k[C]p as tev, then we define the valuation as vp(f) = e. We also let vp(0) = ∞.
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More generally, for f/g ∈ k(C) we let

vp(f/g) = vp(f)− vp(g)

This gives vp : k(C) → Z ∪ {∞}.
Note: Each f/g ∈ k(C) gives a map

C → P1(k)

p 7→


0 if vp(f/g) > 0

∞ if vp(f/g) < 0
f(p)
g(p) if vp(f/g) = 0

.

Exercise .1.1

Let E(x, y) : y2 = 4x3 − 4x. We want to compute v(0,0)

(
x
y

)
.
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