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Definition .0.1

Consider the Hecke algebra over Z is defined as

TZ = Z[{Tn, ⟨n⟩ | n ∈ Z+}],

as operators on S2(Γ1(N)) (so there will be relations, ex. Tp3 is related to Tp2 , Tp).

There is an evaluation map (and it is a homomorphism) for each normalized eigenform f ∈ S2(Γ1(N))

given by

λf : TZ → C

Tf = λf (T )f.

Call H1 = H1(X(Γ),Z), which is a finitely generated Z-module. Then End(H1) is a finitely generated

Z-module, and we know

TZ ↪→ End(H1)

from last time.

Likewise im(λf ) = Z[{an(f)}] ⊆ C. We may define Kf = Q({an(f)}). THen

|Hom(Kf ,C)| = [Kf : Q].

If we have σ ∈ Hom(Kf ,C) then we can take f to fσ by mapping each coefficient in the Fourier series. Why

the hell is this still a modular form?

Theorem .0.1

If f ∈ S2(N,χ) and σ ∈ Hom(Kf ,C), then f ∈ S2(N,χ
σ). Furthermore, if f is a newform, then so is

fσ.

The rest of the class will be spent on proving this.

Recall .0.1 (Nakayama’s Lemma, Commutative Algebra)

Suppose A is a commutative ring, J ⊆ A is an ideal contained in all maximal ideals, and M is a

finitely generated A-module. Then, if M = JM , we have that M = {0}.

Fix a basis φ1, . . . , φ2g of H1(X1(N),Z) over Z. Let V = H1(X1(N),Z)C. Now TZ acts on V , which

is a complex vector space by its action on the basis (i.e., formally weirdly enough). Suppose v ∈ V is a

λ-eigenvector of TZ, where λ : TZ → C is a homomorphism. Then if σ ∈ Aut(C) then vσ is a λσ-eigenvector.

To proceed, we need to show the space of eigenvalues for V is the same as the space of eigenvalues for S2.

We’ll construct a complement of S∗
2 ⊆ V . We’ll call the complement S∗

2 , and we’ll study the eigenvalues of

each piece of V = S∗
2 ⊕ S∗

2 .

Recall .0.2

Consider the operator WN =
[

0 1
−N 0

]
2
, and recall that WNT = T ∗WN for any Hecke operator T

(where T ∗ is the adjoint for the Peterson inner product).

Define for each g ∈ S2 a map

ψg : S2 → C

1



Faye Jackson October 25th, 2022 MATH 678 - .0

h 7→ ⟨WNg, h⟩.

If we collect these into {ψg} =: S∗
2 , then S

∗
2 is a vector space and g 7→ ψg provides an isomorphism of vector

spaces S2 → S∗
2 .

We actually need that they’re isomorphic as a TZ-module. This is fairly easy, and comes from the WN

factor.

Exercise .0.3

Verify that S2
∼−→ S∗

2 as TZ-modules.

Claim

TZ-eigenvalues on S2 and S∗
2 are the same.

Proof. Let f be a normalized eigenform. Then take λf : TZ → C, and let Jf := ker(λf ). We will show

JfS2 ≠ S2 using Nakayama. We know that Jf is a prime ideal (being a kernel), but we don’t know Jf is

contained in every maximal ideal. The idea is to localize TZ at Jf , and then show we didn’t kill everything

by localizing.

Now we can look at

S∗
2 [Jf ] := {φ ∈ S∗

2 | φ ◦ T = 0,∀T ∈ Jf}.

Then we have a short exact sequence

0 JfS2 S2 S2/JfS2 0,

which upon dualizing gives

0 (JfS2)
∗ S∗

2 (S2/JfS2)
∗ 0,

This implies that

S∗
2 ⊇ (S2/JfS2)

∗ ∼= S∗
2 [Jf ].

We should show that the eigenvalue on the right hand side coming from f is the same as that on S2.

Let T ∈ TZ. Then for φ ∈ S∗
2 [Jf ] we have

T · φ = φ · T = φ ◦ [T − λf (T ) Id] + λf (T )φ.

The left hand side lies in Jf , so this becomes T ·φ = λf (T )φ. Perfect! This shows that if λf is an eigenvalue

of S2 then it is also an eigenvalue of S∗
2 (and dualizing yields the converse).

Thus S2 and S∗
2 ⊕S∗

2 have the same eigenvalues. Now we want to show that V and S∗
2 ⊕S∗

2 are isomorphic

as TZ-modules via

(z1φ1, . . . , z2gφ2g) 7→

∑
j

zjφj ,
∑
j

zjφj

 .

There is a short claim that this is well-defined, i.e. that the RHS lies in S∗
2 . . . this is an exercise.
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It’s injective as if
∑

j zjφj = 0 and
∑

j zjφj = 0, then conjugating we get
∑

j zjφj = 0. This allows us to

say
∑

Re(zj)φj = 0,
∑

Im(zj)φj = 0. But wait! As a real vector space the φj are all linearly independent,

so Re(zj) = 0, Im(zj) = 0. Perfect! Then the zj = 0.

Then they’re complex vector spaces of the same dimension so they are isomorphic.

Why does this matter? Well take some f ∈ S2 which is a normalized eigenform. So λf : TZ → C is an

eigenvalue for S2, so it is for V , and then λσf is an eigenvalue for V , but then it is an eigenvalue for S2 by

the above. So there is a g ∈ S2 with eigenvalue λσf . Normalizing, we see the Fourier coefficients of g must be

σ(af (n)) as Hecke operators can extract the Fourier coefficients.

This can similarly show f ∈ S2(N,χ) maps to fσ ∈ S2(N,χ
σ), since diamond operators give the eigenvalue

depending on χ for these. Showing fσ is a newform if f is. . . should not be too hard

Corollary .0.2

S2(Γ1) has a basis with Q Fourier coefficients.

Proof. Suppose f is a newform of level m | N with field K. Let {α1, . . . , αd} be a basis of OK as a Z-module.

Let σ1, . . . , σd be embeddings Kf ↪→ C. Then consider the matrix A =
(
α
σj

i

)
. Now we can look at

F =


fσ1

...

fσd


g = Af

gi =
∑
j

α
σj

i f
σj

Notice thenthat gσi = gi for any σ. Then we need A is invertible (fact from algebraic number theory). Then

span(gi) = span(fσi).

The proof then proceeds by some basic induction, working newform by newform.
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