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[. The Land of Algebraic Geometry

I1.1. Complex Tori as Elliptic Curves
Recall 1.1.1
A complex torus is C/A where A is a lattice with A = w1Z @ wyZ. Goal is to relate this to a cubic
curve.

A meromorphic function is a holomorphic map f : C/A — C. Put another way, this is a meromorphic

A-periodic map C — C (or holomorphic C — @)

The Weierstrass o, function is given by

, where z € C\ A and 3" means to exclude 1.

The summand is ~ %, which can be used to show @, (z) converges absolutely and uniformly on all compact
subsets away from A. Thus p, is holomorphic at all points C\ A.

We can of course compute for z € C\ A that

Ph(z) = -2 Z ﬁ

It is clear that @/, (2) is in fact A-periodic.
Exercise 1.1.2 (1.4.2)

Show that pa(z) must in fact be periodic.

Fact: The field of all meromorphic functions on C/A is given by C(pa, ¢y) (that is rational expressions in

PN L)
Recall 1.1.3

We have the Eisenstein series

/ 1
Gi(T) = Z m

c,deZ

which is sum of reciprocals of k-th powers over a lattice A, = 77 @ Z.

This can generalize to a function of a lattice

/1
Ge(A) =) —
weA

Usually we will take k > 2 to guarantee good convergence properties. Also if k is odd Gi(A) = 0, so we’ll
restrict to k even.

There is then an identity for every m € C*,

Gr(mA) = m=FGy(A).
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Theorem 1.1.1 (1.4.1)

oo

oA = 5+ Y (et DGaa(h)"
n=2

n even

Furthermore, we have the following relation

(94(2))* = 4(pa(2))? — g2(M)pa(2) — gs(A),

where go(A) := 60G4(A) and g3(A) == 140Gg(A).

Proof. For the first piece, recall

We see that
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since z/w < 1 for z sufficiently small and w € A nonzero (here using that A is discrete).

simplifying, we see that

—_ 2
(z—w)? w —
‘We now have that
1 ’ s Ak
)= 5+ D (n+ o
weA n=1
1 p1 N
_22+Z z{:x T (n+1)z s
n=1 \wé€

which is exactly what we want.

For the second part, we write

1
pa(z) = = + 3G4(A)z2 + 5G6(A)z4 + O(z6)

2
o (2) = ——5 T6Ga(A)z + 20Gs(N) 2> + O(25).

Both (p/y (2))? and 4(pa(2))® — g2(A)pa(2) — g3(A) look like

4 24G4(N)

The Laurent expansion of pp at z =0 (i.e., on a tiny punctured disk about z = 0) is given by

In fact, upon

Thus the difference of these two is a holomorphic function with value 0 at 0. Furthermore it is A-periodic, so

by complex analysis (i.e., Liousville’s theorem) it must be constant.

o
v
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Proposition 1.1.2

The cubic equation
42° — go(A)x — g3(A)

has distinct roots. This is equivalent to go(A)3 — 27g3(A)? # 0 (the discriminant), and equivalently this

means the curve y? = 423 — go(A)x — g3(A) is nonsingular.

o
Proof. In 1.4.1, not difficult to prove (just compute with an explicit lattice). v

This is a cubic equation coming from a lattice on C. This is our relation to elliptic curves! It gives us a

map
C\A— {(:my) €C? | y? =42® — go(N)z —gg(A)}
z = (pa(2), P (2)).

If we mod out by the lattice, this is a bijection (this is a simple computation). How does this compare to

the torus C/A? Well we're missing a point! By mapping A/A to some point at oo, we get a bijection
C/A — an “elliptic curve” Ej.

We should see how the group law on the torus translates to Ea! We'll say zero is the point at oo as Og, .
Then in fact “colinear points sum to zero” (this is not obvious but it is a computation). Namely if
z1, 22,23 € Ej lie on the same line then z1 + 2o + 23 = O. When z; = z5, we should take a line tangent to
z1! It turns out that P = (z,y) gives —P = (z, —y).
We actually have every elliptic curve y? = 423 — asz — az where a3 — 27a2 # 0 comes from a lattice. One
can actually very explicitly write it down!

How should we consider isomorphisms of elliptic curves? Well consider m € C*, then
(z,y) = (m~2z,m™%y)
maps
{y? = 42® — asx — a3} = {y? = 42® — m *asx — m Sasz}.

This map comes from an isomorphism of tori, namely z + A — mz + mA.
Corollary 1.1.3

The discriminant function A : H — C, which we recall is

A(7) = (92(7))° = 27(g2(7))?

is in fact never zero.

Proof. Up to some multiple, A(7) is in fact the discriminant of an elliptic curve E,_ (which is nonsingular).

PN
v
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1.2. Elliptic curves as algebraic curves

This is section 7.1 in the book. Let k be a field of characteristic 0 and let k be the algebraic closure.
Definition 1.2.1

A Weierstrass equation over k is
y? = 4a® — axx — as

for ag,az € k. The discriminant is A = a3 — 27a3 € k. If A # 0, then we define the j-invariant to be

5 3
= 172%% ¢ k. We call

E(z,y) = y* — 42® + agx + a3.

Definition 1.2.2

If we have a Weierstrass equation with A # 0, we say E is nonsingular and we call
—2
E={(z,y) €k | E(z,y) = 0} U {oc},

an elliptic curve over k, which we can think of as a variety which is a subset of the projective plane
P2(k).
If L/k is any extension we write £(L) for £ NP?(L?).

Let L/k be Galois and £/k to be an elliptic curve over k. Furthermore let o € Gal(L/k), and for x € L

write 27 := o(x). Then since E(z,y) € k[z,y] we have
E(2?,y7) = E(x,y)7

for x,y € L. Thus there is a group action Gal(L/k) on E(L).

This actually can give you representations of a Galois group for certain curves/points on those curves.
There is a group law on & where P+ Q + R = O¢ if and only if P,@Q, R € £ are colinear (over k). This also
gives a group structure on £(L) for any k C L C k. Namely we can just write down an equation for the point
P + @ and it’s an equation over k.

Thus Gal(L/k) is acting on a group! It acts in a nice way, o € Gal(L/k) gives a group homomorphism
E(L) — &(L), since the equation for P + @ is an equation over k (and hence is carried over nicely by o).

Theorem I.2.1 (Bezout’s Theorem)

If C1,Cy are two curves in z,y of degree dy,d> then they meet in d;dy points in P2 (E), where we
count with multiplicity.

Suppose k = Q, so £/Q is an elliptic curve. What can we say about the structure of £(Q). This is an
abelian group. But what is it? It turns out £(Q) is finitely generated, and this result is called Mordell’s
Theorem. It is quite difficult to prove

Author’s Note: I may include notes about the Mordell-Weil Theorem as an appendix from a UVA (Ono’s)
REU mini-course

The rank of £(Q) is often called the rank of an elliptic curve.
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