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The map Ag—2,(T') — Q®*(X(T')) gives us a way to define the order of vanishing of a differential
w € Q®"(X(T)). On a cusp we write this as

- 348

where 2" f[a]2,(2) = gj(2"). This is precisely

=5 (1-7)

If we're at a cusp, we have a different type of function g; with

; k
w0(w;) = vo % = v ()~ 5.
h

Unlike the order of vanishing of f (which can be non-integral), the order of vanishing of w; is always integer
(as it’s just the order of vanishing of some function.
Exercise .0.1

Show that

S2(T) +» Qi (X(I)).

.1. Computing Dimensions

What we want from this is the dimensions of M_g(T"), Si(T") C Ag(T"). We will use the Riemann-Roch

formula.
Recall .1.1

For X a compact Riemann surface we defined

Div(X) = {Z ng[x] | n, = 0, all but finitely many z,n, € Z}
zeX

and
deg(D) = Z Ng D> D' n,>nl.
We also define Div®(X) = deg™'({0}). Then we have a map
div : C(X) — Div?(X) C Div(X),
whose image is called the principal divisors. Abel’s Theorem says that
Div®(X)/ div(C(X)) = CI/T,
We also have
L(D)={feC(X)|f=0or div(f)+ D > 0}.

And here we have

e [(D) is a vector space.
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e dim L(D) = {(D).
e div: Q(X) — Div(X) is given by w > vg(f,) where locally at z, w = f.(q)(dg)™.
o If A € Q'(X), then div()\) is a canonical divisor, since everything in Q!(X) is equivalent up to

principal divisors.
Theorem .1.1 (Riemann-Roch)
Let X be a compact Riemann surface, then
¢D) =degD — g+ 1+ £(div(\) — D)
where A is the canonical divisor.

Corollary .1.2
We have that

(1) €(div() = g.

(2) deg(div(N)) =29 — 2.

(3) deg(D) < 0 implies ¢(D) = 0.

(4) deg(D) > 2g — 2 implies (D) = deg(D) — g+ 1.

We know that

QN (X(I)) = C(X(T)A
Qo (X (D)) = L(V)
foA = fo

as the left and right hand sides both correspond to div(fy) + div(\) > 0. the upshot of this by the corollary
above is dim S3(T") = g.

Now we’ll derive dimensions for k even. Our orders of vanishing for forms have rationals in them, and we

can get around this with flooring and previous work. ..

Namely, recall that for f € Ax(T'), f # 0, we know Ag(I') = C(X(I")) f. Then we see that
Mi(T) = {fof | fof =0 or div(fof) = 0} = L([div(f)])-

We should now study |div(f)]. Well, f corresponds to some w(f) € Q®*/2(X(T)). Well we know that

dego(f) = div(A) - & = (29 ~2)% = k(g 1),

We may then compute that

|div(f)] = div(w Z { J Toi+ Z m T3+ Z gx

where 2 ;, x3; are elliptic points and z; are cusps. We then know that deg |div(f)| > 2¢g —2 for k > 2. Thus
for k > 2 we see that

dim(M(T)) = (k—1)(g — 1) + m &+ V;J Es + g Ene.
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For cusp forms we have a similar argument yielding for k£ > 4 that
Sk(F) =L (\‘dlv(f) — leJ)
i
dim Si(T") = dim(M(T)) — €.
We also know from previous work that
dim S3(T') = g.
We know that My(T") = C, and Sy(T") = 0. The book shows M (T') =0 for k& < 0.
Proof Idea. If f € My(T), then we’d have J;—l,f € So(I)... —
Application: For I' = SLy(Z), let k be even, then
My (SLa(Z)) = {0} M(SLa(Z)) = S;(SL2(Z)) @ CE}, (k<4
-1 ifk=2 d1)2
dim Sy, (SL(Z)) = iel ' (mod 1)
L%J otherwise

In fact this implies that M(SLa(C)) = C[Ey4, Eg] and S(SLa(Z)) = A - C[Ey, Fg).
How should we run this for £ odd? When —I ¢ T', it is in fact still true that

dim(M,(I')) = £([div(f)])

since this doesn’t use differentials (since there will still be a nonzero f, need to check). There exists an

w € Q¥(X(T)) that pulls back to f(7)2(dr)*. In fact we can compute |div(f)| in terms of w, to give the

formula

((ldiv(f)]) = (k= 1)(g— 1)+ m I

2

(k=3)
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