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Last time: Reduction of E/Q. The groups one gets in each case

• Good reduction: an elliptic curve

• Multiplicative split: Gm : R 7→ Gm(R) = R×

• Multiplicative non-split, U(1), the 1-units in Fp2 with xp+1 = 1. What would the points of a general

R be for R an algebra over Fp2 .

• Additive case, Ga : R 7→ R+ (viewed as an additive group).

We want to understand reductions over Q (the algebraic closure of Q). Let Z be the algebraic integers.

If we have a maximal ideal ⊆ Z then ∩ Z = pZ for some p prime.

We can think of

Q =
⋃

K/Q finite alg

K.

For each K we have OK the ring of integers of K, and play this same game (here Z ∩K = OK).

We can consider what pOK is for p a prime. Then

pOK =

gK∏
j=1

ej
K,j ,

where K,j are prime ideals in OK and ei ∈ N. These will be maximal, so OK/K,j is a field (a finite extension

of Fp). It is customary to say

fi = [OK/K,j : Fp].

Then we actually have

[K : Q] =

gK∑
j=1

ejfj .

An alternate way to view this, we have a map Z → OK and so a map SpecOK → SpecZ, and this is counting

the degree at pZ in two different ways (degree defined appropriately)

Remark .0.1

Neukirch “Algebraic Number Theory” and also Cassels and Frohlich are good references for algebraic

number theory.

If we have then ⊆ Z then we can write it as

=
⋃
K/Q

K

such that for K ′/K we have pK′ ∩ OK = K . Then in fact

Z(p) = {x/y | y ̸∈ p}

Z(p)/p = Z/p = Fp.

Lemma .0.1

If we have ⊆ Z a maximal ideal and α ∈ Q then α or 1/α lies in Z().
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Proof. Fix α. Then α ∈ K/Q for some finite extension K/Q. Thus it suffices to show α or 1/α lies in OK(K )
.

This is in fact easy since OK(K )
is a discrete valuation ring.

For the unitiated (including the current writer of the notes, check back with the future writer),this is a

valuation map from the ring to Z ∪ {∞}. Then v
K
= −v

K
(1/α). Furthermore v−1

K
(Z≥0) = OK(K )

, so one of

these lies in the set.

Example .0.1

K = Q,OK = Z and p a prime. Then we write

vp

(a
b

)
= vp

(
a′pk

b′pj

)
= k − j,

where a = a′pk, b = b′pj where p ∤ a′, b′. The points in Z(p) are exactly those points with nonnegative

valuation.

Suppose we have an elliptic curve E/Q. Transform the Weierstrass equation so that we have something

Z-integral. We know Z ⊆ Z. So we can assume the coefficients of E lie in Z().

Reduce via map Z() → Fp to get Weierstrass equation. We can then make sense of ordinary, supersingular,

multiplicative, and additive cases.

Potentially: Isomorphism classes of elliptic curves over Q are much bigger than those over Q. In fact this

happens. Thus when we think about reduction, the situation is slightly different.

Fact: So long as p ̸= 2 we can change coordinates to the form

E : y2 = x(x− 1)(x− λ)

where λ ̸∈ {0, 1} and λ ∈ Z(). Then one can check that additive reduction is not possible for an equation of

this type. The same is true for p = 2, but this is not quite the right form.

Definition .0.1

A -minimal Weierstrass equation is one with only good or multiplicative reduction over .

Proposition .0.2

Reduction type is well defined on Q-isomorphism classes. That is the reduction type cannot move

between good and multiplcative for minimal models like the above.

Proof. There is the number ∆, and there’s another number c4, associated to the elliptic curves. We in fact

have

additive reduction ⇐⇒ ∆ = 0, c4 = 0 mod

If we do a change of variables, then u12∆′ = ∆ and u4c′4 = c4 for some u (in terms of the change of

coordinates).

The case we’re frightened of–∆′ ∈ Z×
() but ∆ ∈ Z.

If this is the case then u12, u4 ∈ Z(). Then c4 will also lie this ideal, which will give us additive reduction

(which is impossible with minimal models).
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Proposition .0.3

E/Q has good reduction at if and only if j[E] ∈ Z().

Proof. Remember that the j invariant is j = c34/∆.

Reducing Points. There is a reduction map

Pn(Q) → Pn(Fp)

[x0, . . . , xn] 7→ [x̃1, . . . , x̃n].

Technical point, we have to scale x0, . . . , xn so that one of them does not lie in Z and all of them lie in Z().

Hence E ⊆ P2(Q) can be reduced on points. We want to understand reduction of E[N ].

Theorem .0.4

We get a map E[N ] → Ẽ[N ] that is surjective.

Proof. Getting the map is clear–equations for N -torsion are algebraic and we can just reduce. When p ∤ 6N ,

then E[pn] = Z/pnZ or E[pn] = 0. The second obviously works and the first we’ll get an isomorphism if we

have injectivity. . . then we stare at the map.

Proposition .0.5

Say E/Q has good reduction at p. Say C ⊆ E is a cyclic subgroup of order p. Then

• E/C has good reduction

• E,E/C have the same reduction type, ordinary versus supersingular.

Proof of second piece. Say φ : E → E/C = E′ is the isogeny. Then ψ : E′ → E can be given as the dual

isogeny.

We know ψ ◦ φ = [p]E and φ ◦ ψ = [p]E′ . Then if we look at the reduced isogenies

φ̃ ◦ ψ̃ ◦ φ̃ = φ̃ ◦ [p]Ẽ′

= [p]Ẽ ◦ φ̃.

This in fact tells us that

degsep[p]Ẽ = degsep[p]Ẽ′ .

Reduction for more general Curves. Specifically, we want modular curves.

Definition .0.2

Suppose C is a nonsingular affine curve over Q cut out by equations φ1, . . . , φm ∈ Z(p)[X1, . . . , Xn].

We’ll say C has good reduction at p provided that

(1) I = ⟨φ1, . . . , φm⟩ ⊆ Z(p)[X1, . . . , XN ] is prime

(2) Ĩ = ⟨φ̃1, . . . , φ̃m⟩ ⊆ Fp[X1, . . . , XN ] defines a nonsingular affine algebraic curve.

What is Condition 1 doing? Lets see what it rules out
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Non-Example .0.2

Let I = ⟨p(py − 1), (y − x2)(py − 1)⟩. Inside Q we have IQ ⊆ Q[x, y] just defines the curve y = 1/p.

However this is not prime in Z(p)[x, y] since we cannot scale by 1/p.

The reduction is Ĩ ⊆ Fp[x, y] is y = x2.

For elliptic curves Condition 1 is automatic, as Weierstrass equations are very simple.

For projective curves we’ll homogenize the affine case.

Definition .0.3

Suppose we have some I(0) ⊆ Z(p)[X1, . . . , Xn] prime with homogenization I ⊆ Z(p)[X0, . . . , Xn].

Say this gives a projective curve Chom. We say Chom has good reduction at p if for all i either Ci

(unhomogenizing at xi) has good reduction at p or Ĩ(i) = Fp[X1, . . . , X̂i, . . . , XN ] (empty reduction).

We can let C̃hom be the reduced curve given by (Ĩ(0))hom.

Note: Some commutative algebra tells us that if I(0) is prime, I is prime, and this implies I(i) is prime.

Recalling that Pn(Q) → Pn(Fp) gives us a map on points for reducing projective curves.

Theorem .0.6

If C is nonsingular, projective, of good reduction at p, then the reduction map C → C̃ is surjective.

Fact we won’t state: You can also reduce morphisms! The idea is to reduce the algebraic equations defining

the maps, which gives you something rational, and then extend by nonsingularity.

One would really like to have a commutative diagram

C C ′

C̃ C̃ ′

h

h̃

But in fact this only holds if g(C ′) > 0.

Theorem .0.7

If g(C ′) > 0 and h : C → C ′ over Q where these have good reduction then

C C ′

C̃ C̃ ′

h

h̃

and this h̃ is unique.
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