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Recall .0.1

C(X(N))/C(X (1)) is Galois with group SLo(Z/NZ)/ + 1.

How to check? We have a map 6 : SLo(Z) — Aut(C(X(N))) via SLo(Z) acting via conjugation on
I'(N) (giving us SLo(Z) acting on functions). This is our hammer, and we’ve used it before (recall f[«]).

It is easy to check that ker = £ -T'(N). Then kerf = £IT'(N). Then (SLy(Z)) in fact fixes
C(X(1)). Thus this gives a map into the Automorphism group. By Galois Theory, the fixed field will
be some field extension, and it is not hard to show the fixed field is in fact C(X (1)), which tells us

everything we need.

Unrelated Note: If you want to know something about Weil groups, there’s stuff from Tate from the Corvallis
Conference with a nice note called Number Theory Background.

Recall that for A, given as Z -1 & 7Z, we have a map
C/A; — E.
2 (pr(2), 97(2)),

and the Elliptic Curve is as
E, 9y =423 — go(7)z — g3(7).

Recall that fJ = g;—g:;@ (W) One should think of this is the X-coordinate of some N-torsion
Suppose j(7) ¢ {0,1728}. This implies that g2(7), g3(7). We then define

C/A, — C2U {00}

g2(r)  (e@\?
ZH(QS(T)pT’ <93(7)> pT)

this takes the torus to another elliptic curve Ej(7) with equation

Ej(r) y2 — 43 (92(7))3x - (92(7—))3

(g3(m))*"  (gs(1))*
This is an admissible change of variables from E;. Now f§ are z-coordinates of E;(;[N]. Moreover, if we

let v = (1,0), (0, 1), this gives points P;, @, which are a basis for the N-torsion.

We can rewrite the equations as

274 274
j 1728 j 1728

We'll call this a “universal elliptic curve” over X (1). There are two ways to think about this. We could say
it’s an ellitpic curve over C(X (1)) = C(j), or we can think of it as
E,— Fj
|
SpecC —— X(%alg
where we view X (1)a1s as the algebraic curve with function field C(X(1)). We can enhance this elliptic curve
as (Ej, Pr,Q.), and this will live over X (V).



Faye Jackson November 10th, 2022 MATH 678 - .0

Digression: There will be some functor M : Schemes — Sets which is called a “moduli functor.” In some
sense this is

S +— {“objects” over S},

where the objects could be interesting (say elliptic curves over S). The functor is called “representable” by

some scheme M if
M(S) ~ Hom(S, M),
with naturality in S. If this is true there’s an incredible trick one can do. What if you let S = M. Then
M(M) =Hom(M, M).

This has a canonical element Id,;, which gives a canonical object over M. We’ll call this Myuw — M.
Messing with the Yoneda lemma tells us for any S — M we have
S XM Muniv — Muniv

| |

S —— M.
This is what is called a “fine moduli space.” It turns out X (1), is NOT a “fine moduli space.” There’s some

issue with it really being a compactification of Y'(1).

But even worse, we’ve thrown out 0, 1728, which are the elliptic points. So our universal elliptic curve is
just a close approximation of this.

Then C(X(N)) = C(j, X(E;[N])) over C(j). We can also adjoin the y-coordinates

e\, (er+d,
() o (*5%)
One can show the Galois group of C(j, E;[N]) over C(j) is SLo(Z/NZ), making it an extension of C(j, X (E;[N]).
Now lets look at this over Q. The coefficients of E; live in Q(j). Hence we get something like

Q) € QU E;[N]),
and this is still Galois. But the Galois group will be larger. The key is the roots of unity
un ={2€Q| N =1}
We set
Hg = Gal(Q(un, j, E;[N])/Q(j)).

We have a map Hg — GLo(Z/NZ). Where does it come from? Well Hg acts on E;[N] = (Z/NZ)* C Q(j).
Lemma .0.1

Take o € Hg, then for p € iy we have

a(u) _ Mdet(p(a)).

¢

Proof. Use results from last time, since the Weil pairing is surjective we win.
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Now if 0 € Hg fixes Ej[N] then o € ker(p), so o € ker(det(p)), so o fixes pn. This implies pn C
Q(j, E;[N]). Another way to do this is the Weil pairing has an algebraic formula with coefficients in Q(j)
and is surjective.

And also p, = p’HQ(um : Ho(uy) — SL2(Z/NZ), where Hg, ) € Hq fixes the roots of unity. The original
p is injective since if you fix E;[N] then you fix all of Q(un, j, E;[N]) = Q(j, E;[N]).

But then p, injects into SLo(Z/NZ). Well Galois Theory says we can take the situation over complex

numbers
SL2(Z/NZ) ‘
C() C(j) NQ(j, E;[N]) -
Q)

This implies SLo(Z/NZ) injects into Hgy

via some basic group theory.

Therefore He,y) = SLa(Z/NZ). Thus Hg = GLo(Z/NZ),

BN)*

We can then look at Modular Curves as Algebraic Curves. In particular, we have all these function fields

Q(]a E][N]) X(N)alg
Q(j, F1) X1(N)ag
Q(L FO) XO(N)alg

|
Q(j) X(l)alg
where Q(j, E;[N]) is Galois over Q(5), Q(4, Fo), Q(j, F1). Thus these correspond to projective nonsingular
curves. This is what we define as the algebraic version on the right hand side.
This allows us to formula algebraic versions of modularity. Xo(NV)ag — E and Jo(N)ag — E which is a
homomorphism.

And as discussed previously if f € S2(I'o(/V)) then we want to look at a homomorphism A% ,;, — E.



