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Consider the self-isogenies, we know that Z ⊆ Isog(E,E).

Complex Multiplication curves are those such that Z ⊊ Isog(E,E), and in this case we will have that

Isog(E,E) ⊆ OK , where K is a quadratic imaginary number field.

.1. Modular Curves

These are Moduli spaces of elliptic curves.

Definition .1.1

If Γ ⊆ SL2(Z), then Y (Γ) = H/Γ, which we call the modular curve for Γ.

Exercise .1.1

For Γ = SL2(Z), then elliptic curves up to isomorphism are in bijection with Y (Γ).

Namely τ ∈ H 7→ C/(τZ+ Z)

Example .1.2

Γ0(N),Γ1(N),Γ(N) are congruence subgroups, and

Y0(N) ∼= {(E,C) | E is an elliptic curve, C ⊆ E[N ], E cyclic of order N}/ ∼

Y1(N) ∼= {(E,Q) | Q is a point of order N}/ ∼ .Y (N) ∼= {(E, (P,Q)) | P,Q generate E[N ], ⟨P,Q⟩ = e2τi/N}/ ∼

where ⟨P,Q⟩ is the Weil pairing (see book/homework). There are of course maps Y1(N) → Y0(N) →
Y (N) → Y (SL2(Z)).

We have a map ∆ : H → C called the modular discriminant defined by ∆ = g32 − 27g33 , g2 = 60G4, g3 =

140G6. We also may consider

j : H → C

j =
1728g32

∆

which is weight zero and holomorphic on H but not at ∞. We can actually think of j as j : {E}/ ∼→ C
which is an invariant on elliptic curves, called the j-invariant. The modularity theorem will concern

• Elliptic curves E where j(E) ∈ Q
• CM elliptic curves imply j(E) is algebraic.

As some examples, j(i) = 1728, j(µ3) = 0, µN := e2πi/N . We also can consider moonshine theory–concerning

the coefficients of j and the monster group.

Modular curves can be viewed as Riemann surfaces

• Give Y (γ) a manifold structure

• Compactify Y (Γ) ⊆ X(Γ).

We have a map π : H → Y (Γ), and we give Y (Γ) the quotient topology. How do we show Y (Γ) is Hausdorff?

Proposition .1.1

If τ1, τ2 ∈ H, then there exists neighborhoods Ui containing τi such that for all γ ∈ SL2(Z), γ(U1) ∩
U2 ̸= ∅ implies γ(τ1) = τ2.

Proof. Choose any U ′
1, U

′
2 containing τ1, τ2 with compact closure. First we need a claim.
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Claim

γ(U ′
1) ∩ U ′

2 ̸= ∅ for finitely many γ ∈ SL2(Z).

Well we know H = SL2(R)/SO2(R). Take a section S : x+ yi 7→ 1√
y [
y x
0 1 ]. Then

e1, e2 ∈ H, γ(e1) = e2 ⇐⇒ γ ∈ S(e1) SO2(R)S(e2)−1.

If we let e1, e2 range over U1, U2, then γ lies in a compact subset of SL2(R)
Thus the number of such γ is finite since SL2(Z) is discrete. F is the finite set of such γ, for each γ ∈ F ,

choose disjoint U1,γ , U2,γ containing γ(τ1), τ2 respectively. Then

U1 = U ′
1 ∩

⋂
γ

γ−1(U1,γ) U2 = U ′
2 ∩

⋂
γ

U2,γ

Corollary .1.2

Y (Γ) is Hausdorff

We now want to construct charts, tha tis for each π(τ) ∈ Y (Γ), we want Ũ ⊆ Y (Γ), a homeomorphism

φ : Ũ → V ⊆ C onto V open, and we want holomorphic transition maps.

The Y (Γ) are in fact “ramified covers.” If τ is only fided by Γ ∩ {±I} then take a small neighborhood U

of τ , then π : U → Ũ is a homeomorphism.

Definition .1.2

Let Γ be a congruence subgroup. We say τ is elliptic in Γ if StabΓ(τ) ⊋ {±I}.

Fact: For each τ , Γτ is finite cyclic (of order 1,2,3,4,6).

Definition .1.3

hτ = |Γτ/(Γ ∩ {±I})|

We may then choose U ⊆ H such that γ(U) ∩ U ̸= ∅ implies γ ∈ Γτ . We also know elliptic points are

discrete. Then U
ψ=ρ◦δ−−−−→ Ĉ where ρ(z) = zhτ , and

δ : z 7→

[
1 −τ

1 −τ

]
z

where δ(τ) = 0, δ(τ) = ∞. This will induce a map φ : π(U) → Ĉ giving us a chart.
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