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Recall .0.1
Tonelli’s theorem for series. If a;; € [0, c0] then
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Read [Tao11], specifically Thm 0.0.2.

Proof of 7?7: Countable subadditivity. Let Ay, As,... C X. We wish to show that

w (U An> <30 A,

n=1
If one of the p*(A,) = oo, the result holds. Thus it suffices to consider the case when all p*(A,) < co.

We will instead prove that for every € > 0 we have that

s (U An> < w4 +e.

n=1

We can call this trick

For each n € N, there exists Ey, 1, Ep 2,... € £ such that
> * - * €
k=1 k=1

Useful because ;1*(4,,) < co. Here we have used the

Then
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Here we have used Tonelli’s theorem, because each p(E,, \) satisfies 0 < p(E, ) < co. Perfect! This proves
the result by taking e — 0. :

Definition .0.1
[Carathéodory measurable] Let u* be an outer measure on X. We say that A C X is Carathéodory

measurable (abbrev. C-measurable) with respect to u* provided that for every E C X,

W (E) = 1" (E\ A) + " (E N A)
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Lemma .0.1
Let p* be an outer measure on X. Suppose B, ..., By are disjoint C-measurable sets. Then for all
ECX,

N N

This also implies that p* is finitely additive on C-measurable sets by setting £ = X.

Proof. We see that

¢ (#0(Un)) =wenm e (£0(Un)) = Swwnm
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