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Announcements

• Solutions for HW 3 posted

• HW 4 due tomorrow

• HW 5 will be posted.

Corollary .0.1 (Tonelli’s for series and integrals)

For gn ≥ 0 and all measurable, then ∫ ∞∑
n=1

gn =

∞∑
n=1

∫
gn.

Proof. Let fN =
∑N

n=1 gn. Then because gn ≥ 0 we have 0 ≤ f1 ≤ f2 ≤ · · · . Furthermore

lim
N→∞

fN (x) =

∞∑
n=1

gn(x).

Thus ?? implies that

lim
N→∞

∫ N∑
n=1

gn =

∫ ∞∑
n=1

gn

lim
N→∞

N∑
n=1

∫
gn =

∫ ∞∑
n=1

gn

∞∑
n=1

∫
gn =

∫ ∞∑
n=1

gn

Theorem .0.2 (Fatou’s Lemma)

Suppose fn ≥ 0 are measurable functions. Then∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn

Recall .0.1

lim inf obeys the following

lim inf
n→∞

fn := lim
k→∞

inf
n≥k

fn

= sup
k∈N

inf
n≥k

fn.

Furhtermore we have that

lim
n→∞

an exists ⇐⇒ lim sup
n→∞

an = lim inf
n→∞

an

Proof. Let gk = infn≥k fn. Then each gk is measurable and 0 ≤ g1 ≤ g2 ≤ · · · .
Therefore by ?? we have∫

lim inf
n→∞

fn =

∫
lim
k→∞

gk = lim
k→∞

∫
gk = lim

k→∞

∫
inf
n≥k

fn.
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(a) Escape to Horizontal ∞ (b) Escape to Width ∞

(c) Escape to Vertical ∞

We now know that infn≥k fn ≤ fm for all m ≥ k. Therefore by monotonicity∫
inf
n≥k

fn ≤
∫

fm (∀ m ≥ k)∫
inf
n≥k

fn ≤ inf
m≥k

∫
fm.

Therefore ∫
lim inf
n→∞

fn = lim
k→∞

∫
inf
n≥k

fn ≤ lim
k→∞

inf
m≥k

∫
fm = lim inf

m→∞

∫
fm

This is exactly the result we wish to show!

Example .0.2

We’ll use (R,L,m).

(a) Escape to horizontal infinity: Take fn = 1(n,n+1). Then
∫
fn = 1 for all n, but fn → 0 pointwise.

Thus Fatou’s Lemma give us a strict inequality

0 =

∫
lim inf
n→∞

fn < lim inf
n→∞

∫
fn = 1.

See Figure 1a.

(b) Escape to width infinity: Take fn = 1/n · 1(0,n). Then
∫
fn = 1 for all n, but fn → 0 pointwise

as well. See Figure 1b

(c) Escape to vertical infinity: Take fn = n1(0,1/n). Then
∫
fn = 1 for all n, but fn → 0 pointwise.

See Figure 1c

Lemma .0.3 (Markov’s Inequality)

Let f ≥ 0 be measurable. Then for all c ∈ [0,∞] we have that

µ({x | f(x) ≥ c}︸ ︷︷ ︸
E

) ≤ 1

c

∫
f.

Proof. We have that f(x) ≥ c1E(x), and so by monotonicity∫
f ≥ c

∫
1E = cµ(E).
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Proposition .0.4

If f ≥ 0 is measurable, then ∫
f = 0 ⇐⇒ f = 0 almost everywhere.

Namely if we let A = {x | f(x) > 0} then∫
f dµ = 0 ⇐⇒ µ(A) = 0.

Recall that ∫
f = sup

{∫
ϕ | 0 ≤ ϕ ≤ f, ϕ simple

}

Proof. We do this in steps

(1) Assume f = ϕ is a simple function. We may write

ϕ =

N∑
i=1

ci1Ei

where Ei are disjoint and c ∈ (0,∞]. Then saying that∫
ϕ =

N∑
i=1

ciµ(Ei) = 0

if and only ifµ(Ei) = 0 for all i. Then this holds if and only if µ(A) = 0 because A =
⋃N

i=1 Ei.

(2) For general f ≥ 0, we have

(a) Assume µ(A) = 0. That is f = 0 almost everywhere. Now let 0 ≤ ϕ ≤ f for ϕ simple. Then for

all x ∈ Ac we have ϕ(x) = 0. Thus ϕ = 0 almost everywhere, and
∫
ϕ = 0.

Thus
∫
f = 0 by the definition of

∫
f .

(b) Now assume
∫
f = 0. Let An = f−1([−1/n,∞]). Then A1 ⊆ A2 ⊆ · · · . We then know that

∞⋃
n=1

An = f−1

( ∞⋃
n=1

[
1

n
,∞
])

= f−1((0,∞)) = A.

By continuity of the measure we know that

µ(A) = lim
n→∞

µ(An).

By Lemma .0.3, we see that

0 ≤ µ(An) ≤ n

∫
f = 0.

Great! This shows that µ(A) = 0.

Corollary .0.5

If f, g ≥ 0 are measurable, and f = g almost everywhere, then∫
f =

∫
g.
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Proof. Let A = {x | f(x) ̸= g(x)}. By assumption, µ(A) = 0. Then∫
f =

∫
f1A +

∫
f1Ac = 0 +

∫
g1Ac

=

∫
g1A +

∫
g1Ac =

∫
g.

Note: Almost all the theorems we’ve proved can be replaced by theorems dealing with almost everywhere

conditions ,
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