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Announcements

o HW7 due Thursday

e Avg/Median of Exam will move to an A-

.1. Lebesgue Differentiation Theorem

We should compare the Hardy-Littlewood inequality (?7) to Markov’s inequality (??). Namely there
exists Cy > 0 (can take 3¢) such that for all f € L'(R%), a > 0 we have

m({x | (Hf)(z) > o}) <—/\f|
m({z | 1) > a}) < /m

Theorem .1.1
Let f € L'. Then
. 1
g s [ 1) - f(@)ldy =0
)) B(z,r)

r—0 m(B(x,r

for almost every .

Proof. The result holds for f € C.(R%), continuous with compact support (check). Why? Well then for any
e > 0if r is small |f(y) — f(z)| < &, so then the quantity

1
SEET) Jo,, MO~ @y <

Great!
Now let f € L'(R?). Fix e > 0. By density there exists g € C.(R?) with ||f — g||1 < e. We have

— f(z)|dy < — d —alz)d ) — ) d
[ e=s@las [ —swins [ o) sl [ o) - sl

Dividing all of these by m(B(x,r)), and taking lim sup as r — 0, we need to understand the error terms

1
m(B(z, 1)) /B(m [f(z) = g(2)|dy = |g(z) — f(2)|
1
(B, 1) /B(m [f(y) = 9(y)ldy < (H(f - 9)) ().

Define
. 1
Q) = timsup ——ss [ Bar) ) = (@) .

r—0

We want to show m({z | Q(z) > 0}) =0. Let E, = {x | Q(z) > a}. It is enough to show m(E,) = 0 for all
a > 0, because {z | Q(x) > 0} = UJ,, E1/,. We know by the above that

Qz) < (H(f — 9))(x) + 0+ [g(z) — f(2)].
Therefore

Eo CH{z | (H(f = 9))(z) > /2y U{z | |g(z) — f(z)] > a/2}.
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By the Hardy-Littlewood maximal inequality and Markov

mife | (H( = 9)a) > a/2)) < 2% [17 -

mi{e | lo(o) ~ F(@)] > a/2}) < / £l
Thus

2C Ci+1
0 <m(Ba) < 2941 — gl + 25 - gl < 2T,
e

Taking € — 0, m(E,) does not depend on &, g so m(E,) = 0. v

Corollary .1.2
This also holds for f € L{ (R?)

Proof. DIY, partition R? into countably many compact sets K; then apply the theorem to flg, for each
e

i.
Corollary .1.3

For f € L], for almost every z, we have

1
1. _— d =
im /B(I » fly)dy = f(x)

r=0m(B(z,r))

Proof. DIY, use that f(z) = m / Blan) | (z) dy and the triangle inequality.

Definition .1.1
Let f € LL _(R9). The point = € R? is called a Lebesgue point of f if

1

ti i | @ = f@ldy =0

Corollary .1.2 tells us that almost all points in R? are Lebesgue points for f.

Definition .1.2

exists ¢ > 0 such that ¢-m(B(z,r) < m(E,).

Corollary .1.4 (Lebesgue Differentiation Theorem)
Suppose E, shrink nicely to 0, f € LL (R?), 2 a Lebesgue point of f. Then

. 1
i s [,V - @l =o

1 i
hm(ET)[EHf(y)dy—f()

Corollary .1.5
If f € L (R) then F(xz) = [; f(y)dy is differentiable and F'(z) = f(z) almost everywhere.

The rest of Chapter 3 of [Fol99] we will cover later (in 2-3 weeks).

v

¢

We say measurable sets {E, },~o shrink nicely to z as » — 0 if and only if E, C B(xz,r) and there
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I. Normed Vector Spaces

Folland sections 5.1,6.1,6.2 [Fol99].

I1.1. Metric Spaces and Normed Spaces
Definition I.1.1
Let Y be a set, a function p: Y x Y — [0,00) is a metric on Y provided that
(1) pz,y) = ply, v)

(2) pla,2) < pla,y) + ply, 2).
(3) p(z,y) =0 if and only if z = y.

The following make sense in a metric space
e Open/closed balls.
e Open/closed sets.
e Convergence sequences (x, — © with respect to p if and only if limg, o p(z,,z) = 0).
e Continuous functions.
Example 1.1.1
We have the following metric spaces
(1) Q plz,y) =z —yl.
(2) R, p(x y) =lz—yl.
(3) Ry, p(z,y), [In(y/z)].
(4)

4 Rd with

d 1/p
dp(2,y) = (Z i — yip>

=1
doo(, y)—lrgggdlxz Yil -

These all give the same open sets (topologically equivalent)

(5) C([0,1]), with
= (/1|fg|p>1/p

doo(f,9) = max [f(z) —g(z)]

z€[0,1]

(6) Let (X, A, ) be a measure space with u(X) < co. Let Y be the set of measurable functions on
X. Then

_ / min(|f(z) — g(z)],1) dp(z)

is a metric and f,, — f in p if and only if f,, — f in measure.
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