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Announcements

• HW7 due Thursday

• Avg/Median of Exam will move to an A-

.1. Lebesgue Differentiation Theorem

We should compare the Hardy-Littlewood inequality (??) to Markov’s inequality (??). Namely there

exists Cd > 0 (can take 3d) such that for all f ∈ L1(Rd), α > 0 we have

m({x | (Hf)(x) > α}) ≤ Cd

α

∫
|f |

m({x | |f(x)| > α}) ≤ 1

α

∫
|f |

Theorem .1.1

Let f ∈ L1. Then

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dy = 0

for almost every x.

Proof. The result holds for f ∈ Cc(Rd), continuous with compact support (check). Why? Well then for any

ε > 0 if r is small |f(y)− f(x)| < ε, so then the quantity

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dy < ε.

Great!

Now let f ∈ L1(Rd). Fix ε > 0. By density there exists g ∈ Cc(Rd) with ∥f − g∥1 < ε. We have∫
B(x,r)

|f(y)− f(x)|dy ≤
∫
B(x,r)

|f(y)− g(y)|dy +
∫
B(x,r)

|g(y)− g(x)|dy +
∫
B(x,r)

|g(x)− f(x)|dy

Dividing all of these by m(B(x, r)), and taking lim sup as r → 0, we need to understand the error terms

1

m(B(x, r))

∫
B(x,r)

|f(x)− g(x)|dy = |g(x)− f(x)|

1

m(B(x, r))

∫
B(x,r)

|f(y)− g(y)|dy ≤ (H(f − g))(x).

Define

Q(x) = lim sup
r→0

1

m(B(x, r))

∫
B(x, r) |f(y)− f(x)|dy.

We want to show m({x | Q(x) > 0}) = 0. Let Eα = {x | Q(x) > α}. It is enough to show m(Eα) = 0 for all

α > 0, because {x | Q(x) > 0} =
⋃

n E1/n. We know by the above that

Q(x) ≤ (H(f − g))(x) + 0 + |g(x)− f(x)| .

Therefore

Eα ⊆ {x | (H(f − g))(x) > α/2} ∪ {x | |g(x)− f(x)| > α/2}.
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By the Hardy-Littlewood maximal inequality and Markov

m({x | (H(f − g))(x) > α/2}) ≤ 2Cd

α

∫
|f − g|

m({x | |g(x)− f(x)| > α/2}) ≤ 2

α

∫
|f − g|

Thus

0 ≤ m(Eα) ≤
2Cd

α
∥f − g∥1 +

2

α
∥f − g∥1 ≤ 2(Cd + 1)

α
ε

Taking ε → 0, m(Eα) does not depend on ε, g so m(Eα) = 0.

Corollary .1.2

This also holds for f ∈ L1
loc(Rd)

Proof. DIY, partition Rd into countably many compact sets Ki then apply the theorem to f1Ki for each

i.

Corollary .1.3

For f ∈ L1
loc for almost every x, we have

lim
r→0

1

m(B(x, r))

∫
B(x,r)

f(y) dy = f(x)

Proof. DIY, use that f(x) = 1
m(B(x,r))

∫
B(x,r)

f(x) dy and the triangle inequality.

Definition .1.1

Let f ∈ L1
loc(Rd). The point x ∈ Rd is called a Lebesgue point of f if

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)|dy = 0

Corollary .1.2 tells us that almost all points in Rd are Lebesgue points for f .

Definition .1.2

We say measurable sets {Er}r>0 shrink nicely to x as r → 0 if and only if Er ⊆ B(x, r) and there

exists c > 0 such that c ·m(B(x, r) ≤ m(Er).

Corollary .1.4 (Lebesgue Differentiation Theorem)

Suppose Er shrink nicely to 0, f ∈ L1
loc(Rd), x a Lebesgue point of f . Then

lim
r→0

1

m(Er)

∫
Er+x

|f(y)− f(x)|dy = 0

lim
r→0

1

m(Er)

∫
Er+x

f(y) dy = f(x)

Corollary .1.5

If f ∈ L1
loc(R) then F (x) =

∫ x

0
f(y) dy is differentiable and F ′(x) = f(x) almost everywhere.

The rest of Chapter 3 of [Fol99] we will cover later (in 2-3 weeks).
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I. Normed Vector Spaces

Folland sections 5.1,6.1,6.2 [Fol99].

I.1. Metric Spaces and Normed Spaces

Definition I.1.1

Let Y be a set, a function ρ : Y × Y → [0,∞) is a metric on Y provided that

(1) ρ(x, y) = ρ(y, x)

(2) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

(3) ρ(x, y) = 0 if and only if x = y.

The following make sense in a metric space

• Open/closed balls.

• Open/closed sets.

• Convergence sequences (xn → x with respect to ρ if and only if limx→∞ ρ(xn, x) = 0).

• Continuous functions.

Example I.1.1

We have the following metric spaces

(1) Q, ρ(x, y) = |x− y|.
(2) R, ρ(x, y) = |x− y|.
(3) R+, ρ(x, y), |ln(y/x)|.
(4) Rd, with

dp(x, y) =

(
d∑

i=1

|xi − yi|p
)1/p

d∞(x, y) = max
1≤i≤d

|xi − yi| .

These all give the same open sets (topologically equivalent)

(5) C([0, 1]), with

dp(f, g) =

(∫ 1

0

|f − g|p
)1/p

d∞(f, g) = max
x∈[0,1]

|f(x)− g(x)|

(6) Let (X,A, µ) be a measure space with µ(X) < ∞. Let Y be the set of measurable functions on

X. Then

ρ(f, g) =

∫
min(|f(x)− g(x)| , 1) dµ(x)

is a metric and fn → f in ρ if and only if fn → f in measure.
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