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I. Hilbert Spaces

This is in [Fol99] section 5.5.

I.1. Inner Product Spaces

Definition I.1.1

Let V be a (complex) vector space. An inner product is a function ⟨·, ·⟩ : V × V → C satisfying

(1) We have linearity in the first argument

⟨αx+ βy, z⟩

for all x, y, z ∈ V , and α, β ∈ C.
(2) We have that ⟨x, y⟩ = ⟨y, x⟩ for every x, y ∈ V .

(3) ⟨x, x⟩ ∈ [0,∞).

(4) ⟨x, x⟩ = 0 if and only if x = 0.

Note, we have conjugate linearity in the second argument

⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩

for any x, y, z ∈ V and α, β ∈ C.

Example I.1.1

We have the following examples

• Rd with ⟨x, y⟩ = x · y =
∑d

i=1 xiyi.

• Cd with ⟨x, y⟩ =
∑d

i=1 xiyi.

• L2(X,µ) with ⟨f, g⟩ =
∫
X
fg dµ. Note by Hölder that∣∣∣∣∫

X

fg

∣∣∣∣ ≤ ∥fg∥1 ≤ ∥f∥2∥g∥2 < ∞.

because 1/2 + 1/2 = 1.

• A special case is ℓ2, where we have

⟨x, y⟩ =
∞∑
i=1

xiyi

Definition I.1.2

Given an inner product space V , let ∥x∥ =
√
⟨x, x⟩. We claim this is a norm, called the norm induced

from the inner product.

We prove this is a norm below, after proving Theorem I.1.1.

Note that

∥x+ y∥2 = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩

= ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2
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Theorem I.1.1 (Cauchy-Schwarz Inequality)

We have that |⟨x, y⟩| ≤ ∥x∥∥y∥.

Proof. This is clear if ⟨x, y⟩ = 0. Assume ⟨x, y⟩ ≠ 0. For every α ∈ C, we know that

0 ≤ ∥αx− y∥2 = |α|2 ∥x∥2 − 2Reα⟨x, y⟩+ ∥y∥2.

Write ⟨x, y⟩ = |⟨x, y⟩| eiθ, and take α = e−iθt for arbitrary t ∈ R. Then, the RHS gives

0 ≤ ∥x∥2t2 − 2 |⟨x, y⟩| t+ ∥y∥2.

Note this is a real quadratic function of t, with at most one real root. Thus the discriminant is ≤ 0. The

discriminant is in fact

4 |⟨x, y⟩|2 − 4∥x∥2∥y∥2 ≤ 0

|⟨x, y⟩|2 ≤ ∥x∥2∥y∥2

|⟨x, y⟩| ≤ ∥x∥∥y∥.

Proof that Definition I.1.2 is a norm. We have that ∥x∥ = 0 ⇐⇒ x = 0 from the definition of an inner

product. We also have that

∥αx∥ =
√

⟨αx, αx⟩ =
√

αα⟨x, x⟩ = |α| ∥x∥.

The triangle inequality is less obvious, and comes from Theorem I.1.1. Namely

∥x+ y∥2 = ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2

≤ ∥x∥2 + 2 |⟨x, y⟩|+ ∥y∥2

≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2

= (∥x∥+ ∥y∥)2

∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Perfect!

Theorem I.1.2 (Parallelogram law)

Let V be a normed space. Then, ∥ · ∥ is induced by an inner product if and only if

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2.

for all x, y ∈ V .

Proof. The forward direction follows from

∥x± y∥2 = ∥x∥2 ± 2Re⟨x, y⟩+ ∥y∥2.

∥x± iy∥2 = ∥x∥2 ± 2 Im⟨x, y⟩+ ∥y∥2.
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For the backwards direction, define

⟨x, y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2

)
.

as motivated by the above relationship.

Check this is an inner product inducing the desired norm.

Example I.1.2

Consider Lp(R,m), f = 1(0,1), g = 1(1,2). We see the parallelogram law is satisfied only when p = 2.

Thus Lp(R,m) is only an inner product space when p = 2.

Definition I.1.3 (Weak convergnece)

We say that xn ∈ V converges to x ∈ V weakly provided that for any fixed y ∈ V , ⟨xn − x, y⟩ → 0.

Lemma I.1.3 (Strong convergence =⇒ Weak convergence)

Suppose V is an inner product space. If xn → x strongly (i.e. ∥xn − x∥ → 0), then xn → x weakly in

the sense that for any fixed y ∈ V , we have ⟨xn − x, y⟩ → 0.

Proof. Using the Cauchy-Schwarz inequality

0 ≤ |⟨xn − x, y⟩| ≤ ∥xn − x∥ · ∥y∥.

Since ∥xn − x∥ → 0 and ∥y∥ is constant in n, we have by the squeeze theorem that ⟨xn − x, y⟩ → 0.

Example I.1.3

Consider ℓ2, xn = (0, . . . , 0, 1, 0, . . .) and x = 0. Then xn does not converge strongly to any vector.

But, if we fix y ∈ ℓ2, then

⟨xn − x, y⟩ = yn

which goes to 0 as n → ∞ because
∑

n |yn|
2
< ∞. Therefore xn → 0 weakly, but we see that

∥xn − 0∥ = ∥xn∥ = 1.

Thus xn ̸→ 0 strongly.

I.2. Orthonormal Bases

Definition I.2.1

We say x, y are orthogonal if ⟨x, y⟩ = 0, denoted x ⊥ y.

Lemma I.2.1 (Pythagorean Theorem)

If x1, . . . , xn ∈ V , ⟨xi, xj⟩ = 0 for all I ̸= j, then

∥x1 + · · ·+ xn∥2 = ∥x1∥2 + · · ·+ ∥xn∥2 (1)

Proof. Use that ∥x+ y∥ = ∥x∥2 + 2Re⟨x, y⟩+ ∥y∥2 and induct.
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Definition I.2.2

We call {ei}i∈I an orthonormal set if

⟨ei, ej⟩ =

{
0 if i ̸= j

1 if i = j
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