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Proposition .0.1

Suppose µ(X) < ∞, then for every 0 < p < q ≤ ∞, Lq ⊆ Lp.

Proof. You should check the q = ∞ case.

Suppose q < ∞. We see that∫
|f |p =

∫
|f |p · 1 ≤

(∫
(|f |p)q/p

)p/q (∫
1q/(q−p)

)1−p/q

=

(∫
|f |q

)p/q

µ(X)1−p/q < ∞.

Using Hölder’s inequality with q/p > 1. Thus

∥f∥p ≤ ∥f∥qµ(X)1/p−1/q < ∞.

Proposition .0.2

If 0 < p < q ≤ ∞ then ℓp ⊆ ℓq.

Proof. When q = ∞ we have

∥a∥p∞ =

(
sup
i

|ai|
)p

= sup
i

|ai|p ≤
∞∑
i=1

|ai|p .

Thus ∥a∥∞ ≤ ∥a∥p.
When q < ∞, we see that

∞∑
i=1

|ai|q =
∑
i

|ai|p · |ai|q−p

≤ ∥a∥q−p
∞

∑
i

|ai|p

j ≤ ∥a∥q−p
p ∥a∥pp = ∥a∥qp.

Therefore

∥a∥q ≤ ∥a∥p.

Proposition .0.3

For all 0 < p < q < r ≤ ∞ we have Lp ∩ Lr ⊆ Lq.

Proof. DIY.

.1. Banach Spaces
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Definition .1.1

Let (Y, ρ) be a metric space. We call xn a Cauchy sequence provided that for every ε > 0 there exists

an N ∈ N so that for n,m ≥ N we have ρ(xn, xm) < ε.

Easy check: convergent sequences are Cauchy.

Definition .1.2

A metric space (Y, ρ) is called complete if every Cauchy sequence in Y converges.

Example .1.1

Q with |x− y| is not complete, but R with the same metric is complete.

C([0, 1]), with ρ(f, g) = ∥f − g∥∞ is complete, but with ρ(f, g) =
∫
|f − g| it is not complete.

Definition .1.3 (Banach Space)

A Banach Space is a complete normed vector space (i.e, a vector space equipped with a norm whose

metric induced by the norm is complete).

Theorem .1.1

Let (V, ∥ · ∥) be a normed space. Then,

V is complete ⇐⇒ every absolutely convergent series is convergent

i.e., if
∑∞

i=1 ∥vi∥ < ∞ then {
∑N

i=1 vi}N∈N converges to some s ∈ V .

Theorem .1.2 (Riesz-Fisher)

For every 1 ≤ p ≤ ∞, Lp(X,A, µ) is complete (hence a Banach space).

Proof. Lets go in pieces

(1) We handle the case where 1 ≤ p < ∞ first. Suppose fn ∈ Lp and
∑∞

n=1 ∥fn∥p < ∞.

We need to show that there is an F ∈ Lp such that ∥
∑N

n=1 fn − F∥p → 0 as N → ∞. We must

show that

(i)
∑∞

n=1 fn(x) is convergent almost everywhere. In fact we can show
∫ ∑∞

n=1 |fn(x)| < ∞.

(ii) F ∈ Lp, where F (x) :=
∑∞

n=1 fn(x) almost everywhere and say is zero elsewhere.

(iii) ∥
∑N

n=1 fn − F∥p → 0 as N → ∞.

Lets go!

(i) Let G(x) =
∑∞

n=1 |fn(x)| = supN
∑N

n=1 |fn(x)|, G : X → [0,∞].

Let GN (x) =
∑N

n=1 |fn(x)|. Then 0 ≤ G1 ≤ G2 ≤ · · · ≤ G, GN → G. Furthermore 0 ≤ Gp
1 ≤

Gp
2 ≤ · · · ≤ Gp, Gp

N → Gp.

Therefore by the Monotone Convergence Theorem (??)∫
Gp = lim

N→∞

∫
Gp

N .

Now, by Minkowski

∥GN∥p ≤
N∑

n=1

∥fn∥p ≤
∞∑

n=1

∥fn∥p := B < ∞.
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Thus ∫
G(x)p = lim

N→∞

∫
Gp

N = lim
N→∞

∥GN∥pp ≤ Bp < ∞.

Therefore G is finite almost everywhere as desired. This implies that
∑∞

n=1 |fn(x)| < ∞ almost

everywhere so
∑∞

n=1 fn(x) converges almost everywhere.

Let F (x) :=
∑∞

n=1 fn(x) if it converges, and otherwise F (x) = 0.

(ii) Now we see that

|F (x)| ≤ G(x)∫
|F |p ≤

∫
Gp < ∞.

So F ∈ Lp.

(iii) Now we see that∣∣∣∣∣
N∑

n=1

fn(x)− F (x)

∣∣∣∣∣
p

≤

( ∞∑
n=1

|fn(x)|+ |F (x)|

)p

≤ (2G(x))p.

Well 2G ∈ Lp, so 2Gp ∈ L1. Thus by the Dominated Convergence Theorem

lim
N→∞

∫ ∣∣∣∑n = 1Nfn(x)− F (x)
∣∣∣p dx = 0.

And thus ∥
∑N

n=1 fn − F∥p → 0 as N → ∞.
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