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Announcements

• Get to know you Video

• HW1 Due Thursday 9pm

• Office Hours (not today)

– M 12:30-1:30, T 1:30-2:30 in-person EH5838

– Thursday 1-2, online

Recall: ??

Note: For A,B ∈ A, A ⊆ B, then

µ(B \A) + µ(A) = µ(B).

And thus µ(A) ≤ µ(B) and µ(B \A) = µ(B)− µ(A) if µ(A) < ∞. We must always be careful with ∞ when

we subtract, because ∞−∞ is not well-defined.

Theorem .0.1

Let (X,A, µ) be a measure space. Then we have the following properties

(1) Monotonicity: A ⊆ B ∈ A =⇒ µ(A) ≤ µ(B).

(2) Countable subadditivity: If A1, A2, . . . ∈ A then

µ

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ(Ai).

(3) Continuity from below / Montone Convergence Theorem (MCT) for sets: Given A1, A2, . . . ∈ A
satisfying A1 ⊆ A2 ⊆ · · · then

µ

( ∞⋃
i=1

Ai

)
= lim

n→∞
µ(An)

(4) Continuity from above: Given A1, A2, . . . ∈ Asatisfying A1 ⊇ A2 ⊇ · · · and µ(A1) < ∞ then

µ

( ∞⋂
i=1

Ai

)
= lim

n→∞
µ(An)

Proof. (1) and (2) DIY.

For part (3), let B1 = A1 and Bi = Ai \Ai−1 for i ≥ 2. Then we know that

∞⋃
i=1

Ai =

∞⊔
i=1

Bi

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Bi) = lim
n→∞

n∑
i=1

µ(Bi)

= lim
n→∞

µ

(
n⊔

i=1

Bi

)
= lim

n→∞
µ(An).

For part (4), let Ei = A1 \Ai. Then E1 ⊆ E2 ⊆ · · · . Then
∞⋃
i=1

Ei =

∞⋃
i=1

A1 \Ai = A1 \

( ∞⋂
i=1

Ai

)
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Now note that

µ

( ∞⋃
i=1

Ei

)
≤ µ(A1) < ∞.

Therefore we have that

∞⋂
i=1

Ai = A1 \

( ∞⋃
i=1

Ei

)

µ

( ∞⋂
i=1

Ai

)
= µ(A1)− µ

( ∞⋃
i=1

Ei

)
= µ(A1)− lim

n→∞
µ(En)

= µ(A1)− lim
n→∞

µ(A1)− µ(An)

= lim
n→∞

µ(An).

Example .0.1

TAke N,P(N) with the counting measure. Then let An = {n, n + 1, n + 2, . . .}. Then note that

A1 ⊇ A2 ⊇ · · · and

∞⋂
i=1

Ai = ∅ =⇒ µ

( ∞⋂
i=1

Ai

)
= 0

But µ(An) = ∞ for each n. This shows that finiteness is necessary for part (4).

Definition .0.1

Let (X,A, µ) be a measure space. Then

• A ⊆ X is a µ-null set if A ∈ A and µ(A) = 0.

• A ⊆ X is a µ-subnull set if there exists a µ-null set B with A ⊆ B. Note: A is not necessarily

A-measurable.

• (X,A, µ) is a complete measure space if every µ-subnull set is A-measurable.

Definition .0.2 (Almost everywhere)

A statement P (x) quantified over x ∈ X, holds µ-a.e. (almost everywhere) if the set {x ∈ X | P (x) does not hold}
is µ-null.

Definition .0.3

Let (X,A, µ) be a measure space. Then

• µ is a finite measure if µ(X) < ∞.

• µ is a σ-finite measure if X =
⋃∞

n=1 Xn with Xn ∈ A and µ(Xn) < ∞.

HW: Every measure space can be “completed” by expanding the relevant σ-algebra and expanding the

definition of the measure.

.1. Building Measures
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Definition .1.1 (Outer measure)

An outer measure on X is µ∗ : P (X) → [0,∞] such that

• µ∗(∅) = 0

• Monotonicity: If A ⊆ B then µ∗(A) ≤ µ∗(B).

• Countable subadditivity: That is

µ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ∗(Ai).

For every A1, A2, . . . ⊆ X.

Example .1.1

For A ⊆ R,

µ∗(A) = inf

{ ∞∑
i=1

(bi − ai) |
∞⋃
i=1

(ai, bi) ⊇ A

}
is an outer measure due to Proposition .1.1 by taking E = {(a, b) | −∞ ≤ a ≤ b ≤ ∞} and ρ((a, b)) = b−a.

This is called the Lebesgue outer measure on R.

Proposition .1.1

Let E ⊆ P (X) such that ∅, X ∈ E . Then let ρ : E → [0,∞] such that ρ(∅) = 0.

Then

µ∗(A) = inf

{ ∞∑
i=1

ρ(Ei) | Ei ∈ E ,
∞⋃
i=1

Ei ⊇ A

}
is an outer measure on X. Note! It may fail that µ∗ may not be ρ when restricted to E . We need more

conditions to guarantee that!

The proof of this proposition will introduce two very important tricks that we will use over and over.

Proof of Proposition .1.1: The easy parts. We will not have time to do the proof today, but we will sketch

out the easy steps

(1) µ∗ is well-defined: This is easy, since inf is taken over a non-empty set bounded below by zero.

(2) µ∗(∅) = 0. Just take all the Ei = ∅ to get a minimum

(3) A ⊆ B implies µ∗(A) ≤ µ∗(B) because every cover of B by elements of E also covers A.

Next class: we will prove countable subadditivity.
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