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I. Hilbert Spaces
This is in [Fol99] section 5.5.

I.1. Inner Product Spaces
Definition I.1.1
Let V be a (complex) vector space. An inner product is a function (-,-) : V x V — C satisfying

(1) We have linearity in the first argument

(o + By, 2)

for all x,y,z €V, and o, 5 € C.
(2) We have that (z,y) = (y, x) for every z,y € V.
(3) (x,x) €0, 00).
(4) (x,x) =0 if and only if z = 0.

Note, we have conjugate linearity in the second argument
(z,ay + B2) = alz,y) + Bz, 2)
for any z,y,z € V and a, 8 € C.

Example 1.1.1
We have the following examples
R? with (z,y) =z -y = 2?21 Tl
C? with (z,y) = Z?Zl T3
L*(X, p) with (f,g) = [ fgdu. Note by Holder that

\ /X f?‘ < 173l < IFll2llgll2 < oo.

because 1/2 +1/2 = 1.

A special case is £, where we have

oo
<$, y> = Z xim
=1

Definition I.1.2
Given an inner product space V, let ||z|| = /(x, x). We claim this is a norm, called the norm induced

from the inner product.

We prove this is a norm below, after proving Theorem 1.1.1.

Note that

lz+yll> =(z+y,z+y) = (2,2) + (z,y) + (y,2) + (y, )
= [|z[|* + 2Re(z,y) + [ly]”
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Theorem 1.1.1 (Cauchy-Schwarz Inequality)
We have that |(z, y)| < ||z[|[|yl]

Proof. This is clear if (z,y) = 0. Assume (x,y) # 0. For every a € C, we know that
0 < [lax —y|* = |a|* |[]* - 2Re alz, y) + y||*.
Write (z,y) = [{z,y)| e, and take a = e~¥¢ for arbitrary ¢ € R. Then, the RHS gives
0 < flf*#2 — 2| {z, y)| ¢ + [ly]|*.

Note this is a real quadratic function of ¢, with at most one real root. Thus the discriminant is < 0. The

discriminant is in fact
2
4z, )" — 4llz)?[lylI* < 0
2
[z, ) ” < Nz )yl
[z, y)| < llzllllyll-
o
v
Proof that Definition 1.1.2 is a norm. We have that ||z]] = 0 <= 2 = 0 from the definition of an inner

product. We also have that

laz|| = Vaz, ax) = v/aa(e,z) = |al[|z].
The triangle inequality is less obvious, and comes from Theorem [.1.1. Namely

2+ ylI* = lll|* + 2 Re(x, y) + ||yl
<l + 2142, »)| + lyll?
< [l + 2l iyl + llyl*
= (l=ll + lly1)*
e+ yll < ll] + [lyll

¢

Perfect!

Theorem 1.1.2 (Parallelogram law)

Let V be a normed space. Then, || - | is induced by an inner product if and only if

lz + l” + Il — yl* = 2[l]* + 2[ly]I*.

for all z,y € V.

Proof. The forward direction follows from

lz £ yl* = [l £ 2Re(z, ) + [ly]1*.

| £ iy? = [|l2]|® + 2Im(z, y) + [ly||*.
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For the backwards direction, define
1 . . . .
(w.y) =7 (lz+ yll> = llz = yl? +illz +iyl* — ille —iyl?) -

as motivated by the above relationship.
o
Check this is an inner product inducing the desired norm. L 4

Example 1.1.2
Consider LP(R,m), f = 1(0,1), 9 = 1(1,2). We see the parallelogram law is satisfied only when p = 2.

Thus LP(R,m) is only an inner product space when p = 2.

Definition I.1.3 (Weak convergnece)
We say that x,, € V converges to € V' weakly provided that for any fixed y € V, (x,, — x,y) — 0.

Lemma I.1.3 (Strong convergence = Weak convergence)

Suppose V' is an inner product space. If x,, — x strongly (i.e. ||z, —z|| — 0), then x,, — x weakly in

the sense that for any fixed y € V', we have (z,, — z,y) — 0.

Proof. Using the Cauchy-Schwarz inequality
0<[{zn —z,9)| < flzn — 2| - [yl
F " Y
Since ||z, — x| — 0 and ||y|| is constant in n, we have by the squeeze theorem that (x, — z,y) — 0. v

Example 1.1.3
Consider ¢2, x,, = (0,...,0,1,0,...) and & = 0. Then z,, does not converge strongly to any vector.

But, if we fix y € ¢2, then
(Tn —2,y) =Yn
which goes to 0 as n — oo because lyn|? < 00. Therefore z,, — 0 weakly, but we see that
[#n — Ol = [Jan | = 1.
Thus x, # 0 strongly.

1.2. Orthonormal Bases

Definition 1.2.1
We say x,y are orthogonal if (z,y) = 0, denoted = L y.

Lemma 1.2.1 (Pythagorean Theorem)
Ifzy,...,2, €V, (x;,2;) = 0 for all I # j, then

lwy + -+ @l = o]+ 4 ] (1)

¢

Proof. Use that ||z + y|| = ||z]|* + 2 Re(z, y) + ||y||* and induct.
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Definition 1.2.2

We call {e;}ier an orthonormal set if

0 ifi#j
(ei,e5) = o
1 ifi=y
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