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Lemma .0.1 (Best approximation)

Let ey, ...,en be orthonormal. For x € V| let o; = (x,¢;), then

N N
L= E Qi€ T = E Biei
i=1 i=1

<

also think of it as an orthogonal projection

Proof. Let z = x — Zf\;l e, W = Zi]\il(ai — Bi)e;.
Note that for all n = 1,..., N we have

(z,en) = (z,e,) — ay = 0.
Thus (z,w) = 0. So by the Pythagorean theorem
Iz +wl® = 121 + [lw]|* > ||2]
proving the result!

Lemma .0.2

Let {e;}5° be an orthonormal set. For € V, let a; = (z, e;). Then,

(1) We have that

Il =

2 N
+ D ol
i=1

N
Xr — E ;€5
i=1

for all N € N.
(2) >, la;|? < ||#||2, referred to as Bessel’s inequality.

These actually hold even for an uncountable collection.

Proof. (2) follows from (1), for (1), we see that

N 2
x— Zaiei = ||z]|* - 2Re <x, Z aiei> +
i=1

i=1N

2

N
D e
i=1
N N
= ll2]* = 2" Reawie,e:) + Y lal
=1 i=1
N N
=l = 23 leul* + 3 o
=1 i=1
N
2
= llel* = 3" feul?
i=1

Great!

for all 8y,...,8n € C. Aka this is the best approximation to x within the span of eq, ...,

en. We can

¢

¢



Faye Jackson April 13th, 2022 MATH 597 - .0

Definition .0.1

An orthonormal set {e;} is said to be an orthonormal basis of V' provided that W =V, where

is the subspace of finite linear combinations. In other words, for all x € V and for every € > 0, there

exists w € W such that ||z —w| <e.

Example .0.1
For C%, the orthonormal basis is ¢; = (0,...,0,1,0,...,0) fori =1,...,d
For % the orthonormal basis is the countably many e; = (0,...,0,1,0,...) for i € N.

Definition .0.2 (Hilbert Space)

A Hilbert space is a complete inner product space (a Banach space with an inner product).

Example .0.2

R C? L?(X, A, ), % are Hilbert spaces.

C([0,1]) C L*(X, A, i) is not a Hilbert space (it is not complete). Take a function f,, so that f, is
zero from 0 to 1/2 and 1 from 1/2 + 1/n to 1, connected continuously line.

Then f,, is Cauchy, but its natural limit is discontinuous.

Theorem .0.3
Ket H be a Hilbert space. Let {e;}52; be an orthonormal set. The following are equivalent
(1) {e;}$2, is an orthonormal basis.
(2) If x € H and (x,e;) =0 for all 4, then z = 0.
(3) If x € H, then sy = Zfil aje; — x strongly where a; = (2, ;).
(4) If z € H, then ||z]|? = > 2, la;|* (Plancherel identity).

Proof. Let’s go!
(3) = (4) We have by Lemma .0.2 that

N
lzl® = llz = sn I+ Y el
i=1

Taking N — oo and noting sy — x strongly gives

N 0o

. 2 2

ol = Jim > fol? = 3 foul?.
i=1 i=1

(4) = (1) Using the same equality
N
2
2] = lle = s l® + )l
i=1

and taking N — oo yields ||z — sy||? — 0 so ||z — sn|| — 0. Therefore sy — z strongly, yielding
that x can be approximated by finite linear combinations as desired.
(1) = (2) Fix x € H, and fix £ > 0. Then by (1), there exists a y = Zle Bie; such that ||z — y|| < e.
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By the best approximation lemma (see Lemma .0.1), ||z — sg|| < ||z — y|| < e. If {z,e;) = 0 for all
i, then s =0, so ||z| < e.
Taking € — 0 would yield ||z|| = 0, implying = = 0.
(2) = (3) Bessel’s inequality gives > -, la;|* < ||z]|2 < co. We now see that for N > M

N 2 N
sy —sull>=| Y aieil| = > Jeul* >0
i=M+1 i=M+1

as N > M — oo, by convergence of the series. This implies that {sy}3_, is a Cauchy sequence in
H.
Since H is complete, there is a vector y such that sy — y strongly. Question is, is y = =7

Fix i € N, consider (y — z, ¢;). We see that
(y —x,e;) = (y— sn,ei) + (sy — x,e;).
We can compute that for N > i that
(sN —x,e;) = a; — (z,e;) = 0.

Therefore (y — z,e;) = (y — S, €;). Because strong convergence implies weak convergence, taking
N — oo yields that (y — z,e;) =0 for all ¢ € N.
Therefore by the assumption of (2) y —x = 0, so z = y and we’re done.
Note that for everything except (2) = (3) we did not use the Hilbert space property. When H is replaced

by any inner product space V we only have

B) = (@) = 1) = (2

¢

Definition .0.3

A metric space is called separable if there exists a countable dense subset.

Example .0.3
R? D Q% ¢P, 1 < p < o0, but not p = 0co. To do this consider sequences of rational numbers.
LP(R,m) is separable for 1 < p < co. Take step functions with rational heights and rational endpoints

to intervals.

Theorem .0.4

Every separable Hilbert space has a countable orthonormal basis.

Proof. Gram-Schmidst. v

Note: The cardinality of an orthonormal basis is determined by the space, and we can call this the

dimension of the Hilbert space.



