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Lemma .0.1 (Best approximation)

Let e1, . . . , eN be orthonormal. For x ∈ V , let αi = ⟨x, ei⟩, then∥∥∥∥∥x−
N∑
i=1

αiei

∥∥∥∥∥ ≤

∥∥∥∥∥x−
N∑
i=1

βiei

∥∥∥∥∥
for all β1, . . . , βN ∈ C. Aka this is the best approximation to x within the span of e1, . . . , eN . We can

also think of it as an orthogonal projection

Proof. Let z = x−
∑N

i=1 αiei, w =
∑N

i=1(αi − βi)ei.

Note that for all n = 1, . . . , N we have

⟨z, en⟩ = ⟨x, en⟩ − αn = 0.

Thus ⟨z, w⟩ = 0. So by the Pythagorean theorem

∥z + w∥2 = ∥z∥2 + ∥w∥2 ≥ ∥z∥

proving the result!

Lemma .0.2

Let {ei}∞1 be an orthonormal set. For x ∈ V , let αi = ⟨x, ei⟩. Then,

(1) We have that

∥x∥2 =

∥∥∥∥∥x−
N∑
i=1

αiei

∥∥∥∥∥
2

+

N∑
i=1

|αi|2

for all N ∈ N.
(2)

∑∞
i=1 |αi|2 ≤ ∥x∥2, referred to as Bessel’s inequality.

These actually hold even for an uncountable collection.

Proof. (2) follows from (1), for (1), we see that∥∥∥∥∥x−
N∑
i=1

αiei

∥∥∥∥∥
2

= ∥x∥2 − 2Re

〈
x,

∑
i=1N

αiei

〉
+

∥∥∥∥∥
N∑
i=1

αiei

∥∥∥∥∥
2

= ∥x∥2 − 2

N∑
i=1

Reαi⟨x, ei⟩+
N∑
i=1

|αi|2

= ∥x∥2 − 2

N∑
i=1

|αi|2 +
N∑
i=1

|αi|2

= ∥x∥2 −
N∑
i=1

|αi|2 .

Great!
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Definition .0.1

An orthonormal set {ei} is said to be an orthonormal basis of V provided that W = V , where

W =

{
N∑
i=1

βiei | N ∈ N, β1, . . . , βN ∈ C

}
is the subspace of finite linear combinations. In other words, for all x ∈ V and for every ε > 0, there

exists w ∈ W such that ∥x− w∥ < ε.

Example .0.1

For Cd, the orthonormal basis is ei = (0, . . . , 0, 1, 0, . . . , 0) for i = 1, . . . , d

For ℓ2 the orthonormal basis is the countably many ei = (0, . . . , 0, 1, 0, . . .) for i ∈ N.

Definition .0.2 (Hilbert Space)

A Hilbert space is a complete inner product space (a Banach space with an inner product).

Example .0.2

Rd,Cd, L2(X,A, µ), ℓ2 are Hilbert spaces.

C([0, 1]) ⊆ L2(X,A, µ) is not a Hilbert space (it is not complete). Take a function fn so that fn is

zero from 0 to 1/2 and 1 from 1/2 + 1/n to 1, connected continuously line.

Then fn is Cauchy, but its natural limit is discontinuous.

Theorem .0.3

Ket H be a Hilbert space. Let {ei}∞i=1 be an orthonormal set. The following are equivalent

(1) {ei}∞i=1 is an orthonormal basis.

(2) If x ∈ H and ⟨x, ei⟩ = 0 for all i, then x = 0.

(3) If x ∈ H, then sN :=
∑N

i=1 αiei → x strongly where αi = ⟨x, ei⟩.
(4) If x ∈ H, then ∥x∥2 =

∑∞
i=1 |αi|2 (Plancherel identity).

Proof. Let’s go!

(3) =⇒ (4) We have by Lemma .0.2 that

∥x∥2 = ∥x− sN∥2 +
N∑
i=1

|αi|2 .

Taking N → ∞ and noting sN → x strongly gives

∥x∥2 = lim
N→∞

N∑
i=1

|αi|2 =

∞∑
i=1

|αi|2 .

(4) =⇒ (1) Using the same equality

∥x∥2 = ∥x− sN∥2 +
N∑
i=1

|αi|2 .

and taking N → ∞ yields ∥x − sN∥2 → 0 so ∥x − sN∥ → 0. Therefore sN → x strongly, yielding

that x can be approximated by finite linear combinations as desired.

(1) =⇒ (2) Fix x ∈ H, and fix ε > 0. Then by (1), there exists a y =
∑k

i=1 βiei such that ∥x− y∥ < ε.
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By the best approximation lemma (see Lemma .0.1), ∥x− sk∥ ≤ ∥x− y∥ < ε. If ⟨x, ei⟩ = 0 for all

i, then sk = 0, so ∥x∥ < ε.

Taking ε → 0 would yield ∥x∥ = 0, implying x = 0.

(2) =⇒ (3) Bessel’s inequality gives
∑∞

i=1 |αi|2 ≤ ∥x∥2 < ∞. We now see that for N > M

∥sN − sM∥2 =

∥∥∥∥∥
N∑

i=M+1

αiei

∥∥∥∥∥
2

=

N∑
i=M+1

|αi|2 → 0

as N > M → ∞, by convergence of the series. This implies that {sN}∞N=1 is a Cauchy sequence in

H.

Since H is complete, there is a vector y such that sN → y strongly. Question is, is y = x?

Fix i ∈ N, consider ⟨y − x, ei⟩. We see that

⟨y − x, ei⟩ = ⟨y − sN , ei⟩+ ⟨sN − x, ei⟩.

We can compute that for N > i that

⟨sN − x, ei⟩ = αi − ⟨x, ei⟩ = 0.

Therefore ⟨y − x, ei⟩ = ⟨y − sN , ei⟩. Because strong convergence implies weak convergence, taking

N → ∞ yields that ⟨y − x, ei⟩ = 0 for all i ∈ N.
Therefore by the assumption of (2) y − x = 0, so x = y and we’re done.

Note that for everything except (2) =⇒ (3) we did not use the Hilbert space property. When H is replaced

by any inner product space V we only have

(3) =⇒ (4) =⇒ (1) =⇒ (2).

Definition .0.3

A metric space is called separable if there exists a countable dense subset.

Example .0.3

Rd ⊇ Qd, ℓp, 1 ≤ p < ∞, but not p = ∞. To do this consider sequences of rational numbers.

Lp(R,m) is separable for 1 ≤ p < ∞. Take step functions with rational heights and rational endpoints

to intervals.

Theorem .0.4

Every separable Hilbert space has a countable orthonormal basis.

Proof. Gram-Schmidt.

Note: The cardinality of an orthonormal basis is determined by the space, and we can call this the

dimension of the Hilbert space.
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