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To summarize last class

• ∥f∥p =
(∫

|f |p
)1/p

is a norm if 1 ≤ p < ∞.

• Hölder’s Inequality (??) says that ∥fg∥1 ≤ ∥f∥p∥g∥q for 1/p+ 1/q = 1. That is∫
|fg| ≤

(∫
|f |p

)1/p(∫
|g|q
)1/q

• Minkowski’s Inequality (??) says that ∥f + g∥p ≤ ∥f∥p + ∥g∥p for 1 ≤ p < ∞.

Definition .0.1

For a measurable function f on (X,A, µ) we define

S = {α ≥ 0 | µ({x | |f(x)| > α}) = 0} = {α ≥ 0 | |f(x)| ≤ α almost everywhere}

Define the essential supremum of f to be ∥f∥∞ = inf S if S ̸= 0 and ∥f∥∞ = ∞ if S = ∅.
Let L∞(X,A, µ) = {f | ∥f∥∞ < ∞}, and ℓ∞ = L∞(N,P(N), ν) where ν is the counting measure.

Example .0.1

Consider (R,L,m). Then

f(x) =
1

x
1(0,∞)(x) ̸∈ L∞

g(x) = x1Q(x) +
1

1 + x2
∈ L∞.

If f is continuous on (R,L,m) then ∥f∥∞ = supx∈R |f(x)|.
For a ∈ ℓ∞ we have ∥a∥∞ = supi∈N |ai|, and sequences in ℓ∞ are exactly the bounded sequences.

Lemma .0.1

We have the following

(1) Suppose f ∈ L∞(X,A, µ). For α ≥ ∥f∥∞, we have µ({x | |f(x)| > α}) = 0.

For α < ∥f∥∞ we have µ({x | |f(x)| > α}) > 0.

(2) In particular, |f(x)| ≤ ∥f∥∞ almost everywhere.

(3) f ∈ L∞ if and only if there exists a bounded measurable function g such that f = g almost

everywhere.

Proof. DIY.

Theorem .0.2

We have that

(1) ∥fg∥1 ≤ ∥f∥1∥g∥∞ (motivation: 1/1 + 1/∞ = 1).

(2) ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞.

(3) fn → f in L∞ if and only if fn → f uniformly almost everywhere (i.e., there is a null set A such

that fn → f uniformly on Ac).

Proof. DIY. We’ll do (3) =⇒
Let An = {x | |fn(x)− f(x)| > ∥fn − f∥∞}. Then µ(An) = 0. Let A =

⋃
n An, we see that µ(A) = 0.
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For x ∈ Ac and for every n, we have |fn(x)− f(x)| ≤ ∥fn − f∥∞. Given ε > 0, there is an N so that

∥fn − f∥∞ < ε for all n ≥ N . But then for all x ∈ Ac, |fn(x)− f(x)| < ε as well.

Great! This proves the claim.

Proposition .0.3

We have that

(1) For 1 ≤ p < ∞, the collection of simple functions with finite measure support is dense in

Lp(X,A, µ).

(2) For 1 ≤ p < ∞, the collection of step functions with finite measure support is dense in Lp(R,L,m).

So is Cc(R).
(3) For p = ∞, the collection of simple functions is dense in L∞(X,A, µ).

Note: Cc(R) is not dense in L∞(R,L,m).

Proof. DIY.

.1. Embedding Properties of Lpspaces

Definition .1.1

Two norms ∥ · ∥, ∥ · ∥′ on V are equivalent if there exists c1, c2 > 0 such that

c1∥v∥ ≤ ∥v∥′ ≤ c2∥v∥

for all v ∈ V . Note that these norms give the same topological properties (open sets, closed sets,

convergence, etc.)

Note that this is an equivalence relation on norms.

Example .1.1

For Rd, we have the norms ∥·∥p for 1 ≤ p ≤ ∞. All of these are equivalent. We see that for 1 ≤ p < ∞

∥x∥p =

(
d∑

i=1

|xi|p
)1/p

≤ (d∥x∥p∞)1/p = d1/p∥x∥∞.

And also

∥x∥p =

(
d∑

i=1

|xi|p
)1/p

≥ (∥x∥p∞)1/p = ∥x∥∞.

Thus ∥ · ∥p is equivalent to ∥ · ∥∞ for every 1 ≤ p < ∞, transitivity gives that they are all equivalent.

Another way of thinking of this, by assuming v ̸= 0 and scaling by some t, we may assume v lies on

the unit circle in one of the norms. Then we are squeezing a unit circle in ∥ · ∥′ between two circles of

radius c1, c2 in ∥ · ∥.
In a picture we have to show that ∥ · ∥2, ∥ · ∥∞ are equivalent, we have
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x

y

Since ∥ · ∥∞ circles are squares.

Example .1.2

For 1 ≤ p, q ≤ ∞, We have Lp(R,m)-norm and Lq(R,m)-norm are not equivalent, even worse, we

have that

Lp(R,m) ⊈ L1(R,m)

Lp(R,m) ⊉ L1(R,m)
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