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.1. Riemann Integrability

Definition .1.1 (Riemann Integral)

Let f be a bounded function f : [a, b] → R. Now fix some partition P = {a = t0 < t1 < · · · < tk = b}.
We define the upper and lower Riemann sums

L(f, P ) =

k∑
i=1

(ti − ti−1) · inf
[ti−1,ti]

f

U(f, P ) =

k∑
i=1

(ti − ti−1) · sup
[ti−1,ti]

f.

Then note that if P ′ is a refinement of P then

L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P ).

And if P,Q are any partitions with common refinement P ∪Q then

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

Thus we can define the lower/upper Riemann integrals as

I(f) = sup
P
L(f, P ) I(f) = inf

P
U(f, P ).

We say that f is Riemann integrable provided that

I(f) = I(f).

and we call this common value
∫ b

a
f(x) dx the Riemann integral.

Theorem .1.1

Let f : [a, b] → R be a bounded function. Then we see that

(a) If f is Riemann integrable, then f is Lebesgue measurable (and so Lebesgue integrable because

f is bounded). Furthermore the two integrals agree∫ b

a

f(x) dx =

∫
[a,b]

f dm

(b) f is Riemann integrable if and only if f is continuous almost everywhere.

Proof. Pick partitions Pn such that L(f, Pn) converges to I upwards and U(f, Pn) converges to I downwards

(taking refinements if needed).

Define functions for Pn = {a = t0 < · · · < tk} by

ϕn =
∑
i=1

(
inf

[ti−1,ti]
f

)
1(ti−1,ti]

ψn =
∑
i=1

(
inf

[ti−1,ti]
f

)
1(ti−1,ti]

ϕ = sup
n
ϕn
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ψ = inf
n
ψn.

THen ϕ, ψ are Lebesgue (Borel) measurable functions. Note there exists M > 0 such that |f | < M1[a,b] and

so |ϕn| , |ψn| ≤M1[a,b]. Then∫
ϕn dm = L(f, Pn)

∫
ψn dm = U(f, Pn).

Now by the dominated convergence theorem

I = lim
n→∞

∫
ϕn dm =

∫
ϕdm

I = lim
n→∞

∫
ψn dm =

∫
ψ dm.

Thus f is Riemann integrable if and only if
∫
ψ =

∫
ψ which holds if and only if

∫
(ψ − ϕ) = 0 which holds if

and only if ψ = ϕ Lebesgue almost everywhere.

Recall that ϕ ≤ f ≤ ψ, so this holds if and only if f = ϕ almost everywhere (which implies f is Lebesgue

measurable because the Lebesgue measure is complete).

This proves part (a). Part (b) follows by similar arguments.

.2. Mode of Convergence

Definition .2.1

Say that fn, f : X → C and S ⊆ X. We can say that

• fn → f pointwise on S provided that for all x ∈ S, and for every ε > 0 there exists an N ∈ N
such that for all n ≥ N we have |fn(x)− f(x)| < ε.

• fn → f uniformly on S provided that for every ε > 0 there exists an N ∈ N such that for all

n ≥ N and for all x ∈ S we have |fn(x)− f(x)| < ε.

Note: We can change for every ε > 0 to for every k ∈ N we have |fn(x)− f(x)| < 1/k by the Archimedean

principle.

Lemma .2.1

Let Bn,k = {x ∈ X | |fn(x)− f(x)| < 1/k}. Then we have that

(a) fn → f pointwise on S if and only if

S ⊆
∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

Bn,k

(b) fn → f uniformly on S if and only if there exist integers N1, N2, . . . ∈ N such that

S ⊆
∞⋂
k=1

∞⋂
n=Nk

Bn,k

Definition .2.2

Let (X,A, µ) be a measure space

(a) fn → f almost everywhere provided that there is a null set E such that fn → f pointwise on

Ec.
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(b) fn → f in L1 provided that

lim
n→∞

∥fn − f∥ = lim
n→∞

∫
|fn − f | = 0.

Example .2.1

Consider (R,L,m), we’ll have f = 0.

(1) fn = 1(n,n+1).

(2) fn = 1/n · 1(0,n).
(3) fn = n1(0,1/n)

(4) the typewriter functions. We define f1 supported on [0, 1], f2 supporterd on [0, 1/2], f3 supported

on [1/2, 1], f4 supported on [0, 1/4], f5 supported on [1/4, 1/2], f5 supported on [1/2, 3/4]. . .

Then (1)-(3) we have fn → f pointwise, fn ̸→ f in L1.

For (4) we have fn → f in L1, but fn ̸→ f almost everywhere. Note that (4) has a convergent

subsequence to f almost everywhere.
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