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Theorem .0.1

Let (X,A) be a measurable space and let f : X → [0,∞]. Then the following are equivalent

(a) f is A-measurable.

(b) There exists simple functions 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f such that

lim
n→∞

ϕn(x) = f(x)

for all x ∈ X. I.e., f is a pointwise convergence upward limit of simple functions.

Proof. (b) =⇒ (a) is easy because f(x) = supn∈N ϕn(x), and so f is a supremum of measurable functions.

Now assume f is A-measurable. Now fix n ∈ N. Let Fn = f−1([2n,∞]). For every 0 ≤ k ≤ 22n − 1 let

En,k = f−1([k/2n, (k + 1)/2n)).

Let

ϕn :=
22n−1∑
k=0

k1En,k

2n
+ 2n1Fn

.

This implies 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · f . Now for all x ∈ X \ Fn we have that

0 ≤ f(x)− ϕn(x) ≤
1

2n

Then F1 ⊇ F2 ⊇ · · · , and
⋂∞

n=1 Fn = f−1(∞). This shows that for x ∈ f−1([0,∞)) = X \
⋂

n Fn. Thus

limn→∞ ϕn(x) = f(x).

Then for x ∈ f−1({∞}) =
⋂

n Fn, which implies ϕn(x) ≥ 2n. Thus limn→∞ ϕn(x) = ∞ = f(x).

Corollary .0.2

If f is bounded on a set A ⊆ R, then ϕn → f uniformly on A.

Corollary .0.3

f : X → C is a measurable function if and only if there exist simple functions ϕn : X → C such that

0 ≤ |ϕ1| ≤ |ϕ2| ≤ · · · |f | such that ϕn converges pointwise to f (if f is bounded the convergence can be

made uniform).

.1. Integration of nonnegative functions

Definition .1.1

Let (X,A, µ) be a measure space. Then let

ϕ =

N∑
i=1

ci1Ei
: X → [0,∞]

be a simple function with each ci ∈ [0,∞). We define∫
ϕ :=

∫
ϕdµ :=

∫
X

ϕ dµ :=

N∑
i=1

ciµ(Ei).

This is called the integral of ϕ

1



Faye Jackson January 31st, 2022 MATH 597 - .1

For A ∈ A we define the notation ∫
A

ϕ :=

∫
A

ϕdµ :=

∫
ϕ1A dµ

Proposition .1.1

Let ϕ, ψ ≥ 0 be simple functions. Then,

• This definition is well-defined.

•
∫
cϕ = c

∫
ϕ for c ∈ [0,∞).

•
∫
ϕ+ ψ =

∫
ϕ+

∫
ψ.

• ϕ(x) ≥ ψ(x) for all x implies
∫
ϕ ≥

∫
ψ.

• ν(A) =
∫
A
ϕ dµ is a measure on (X,A).

Proof. DIY.

Definition .1.2

Let (X,A, µ) be a measure space and let f : X → [0,∞] be a measurable function. Then we define∫
f :=

∫
f dµ :== sup

{∫
ϕ | 0 ≤ ϕ ≤ f, ϕ simple

}
.

We have a few properties

• If f is a simple function, then the two definitions of
∫
f agree

•
∫
cf = c

∫
f for all c ∈ [0,∞).

• If f ≥ g ≥ 0 then
∫
f ≥

∫
g.

• But
∫
f + g

?
=

∫
f +

∫
g. This really uses that f, g are measurable.

Theorem .1.2 (Monotone Convergence Theorem)

Let (X,A, µ) be a measure space. Then let fn : X → [0,∞] be monotonically increasing measurable

functions (i.e., 0 ≤ f1 ≤ f2 ≤ · · · ).
Let f(x) := supn fn(x) = limn→∞ fn(x). Then∫

f = lim
n→∞

∫
fn.

Proof. Note that limn→∞ fn(x) converges and limn→∞ fn converges because they are both monotone.

We know fn ≤ f , and so ∫
fn ≤

∫
f =⇒ lim

n→∞

∫
fn ≤

∫
f.

Now fix a simple function 0 ≤ ϕ ≤ f . It is enough to show that

lim
n→∞

∫
fn ≥

∫
ϕ.

Fix α ∈ (0, 1). It is enough to prove that

lim
n→∞

∫
fn ≥ α

∫
ϕ.
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Then we can take the supremum over α, and then take a supremum over ϕ! Now we know that αϕ < f . Let

An = {x | fn(x) ≥ αϕ(x)}.
We know An ∈ A (using measurability). Furthermore A1 ⊆ A2 ⊆ · · · . We see that

⋃
nAn = X (check!).

Therefore ∫
fn ≥

∫
fn1An

≥
∫
αϕ1An

= αν(An) :=

∫
An

ϕ.

We know ν is a measure, and so using continuity

lim
n→∞

∫
fn ≥ α lim

n→∞
ν(An) = αν(X) = α

∫
ϕ.

Corollary .1.3

Let f, g ≥ 0 be measurable. Then
∫
f + g =

∫
f +

∫
g.

Proof. There exist simple functions 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · for ϕn → f pointwise, and likewise 0 ≤ ψ1 ≤ ψ2 ≤ · · ·
for ψn → g pointwise. Then by Theorem .1.2 we have∫

f + g = lim
n→∞

∫
(ϕn + ψn) = lim

n→∞

∫
ϕn +

∫
ψn =

∫
f +

∫
g.
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