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.1. Riemann Integrability

Definition .1.1 (Riemann Integral)
Let f be a bounded function f : [a,b] — R. Now fix some partition P = {a =tg < t; < --- <t} = b}.

We define the upper and lower Riemann sums

k

L(f-,P):Z(ti—ti—ﬂ' inf f

im1 ti1,tq)

U(f,P)=> (t;—ti-1)- sup f.

i—1 [ti—1,t:]
Then note that if P’ is a refinement of P then
L(f,P) < L(f,P') <U(f,P') <U(f,P).
And if P, Q are any partitions with common refinement P U @ then
L(f,P) < L(f,PUQ)<U(f,PUQ) =U(f,Q).
Thus we can define the lower/upper Riemann integrals as
L(f) = sup L(f, P) I(f) = inf U(f, P).

We say that f is Riemann integrable provided that

I(f) = I(f).

and we call this common value [’ Ib f(z)dz the Riemann integral.

Theorem .1.1
Let f :[a,b] — R be a bounded function. Then we see that

(a) If f is Riemann integrable, then f is Lebesgue measurable (and so Lebesgue integrable because

f is bounded). Furthermore the two integrals agree

b
/ flx)de = fdm
a [a,b]

(b) f is Riemann integrable if and only if f is continuous almost everywhere.

Proof. Pick partitions P, such that L(f, P,) converges to I upwards and U(f, P,) converges to I downwards

(taking refinements if needed).
Define functions for P, = {a =1ty < -+ < tx} by

g Z (Hilfi,ti]f) (ti—1,ti]

i=1

= 3 f 1 . .

o ; <[tini,ti] f> (ti—1,ti]
¢ = sup ¢,
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¥ = inf,.

THen ¢,1) are Lebesgue (Borel) measurable functions. Note there exists M > 0 such that |f| < M1, and
S0 |¢n| ) W}n| S Ml[a,b]- Then

[ ondm=rir.P.) [ ndm=v(s.p.)

Now by the dominated convergence theorem
I = lim gi)ndm:/gbdm

I = lim ¢ndm:/wdm.

n—oo

Thus f is Riemann integrable if and only if [ = [+ which holds if and only if [(¢) — ¢) = 0 which holds if
and only if ¢ = ¢ Lebesgue almost everywhere.

Recall that ¢ < f <, so this holds if and only if f = ¢ almost everywhere (which implies f is Lebesgue
measurable because the Lebesgue measure is complete).

e
This proves part (a). Part (b) follows by similar arguments. v

.2. Mode of Convergence

Definition .2.1
Say that f,,f: X — Cand S C X. We can say that
e f, — f pointwise on S provided that for all x € S, and for every € > 0 there exists an N € N
such that for all n > N we have |f,(z) — f(x)] < e.
e f, — f uniformly on S provided that for every ¢ > 0 there exists an N € N such that for all
n > N and for all x € S we have |f,(z) — f(x)| <e.

Note: We can change for every € > 0 to for every k € N we have |f, () — f(x)| < 1/k by the Archimedean

principle.
Lemma .2.1
Let By x ={z € X | |fu(z) — f(z)] < 1/k}. Then we have that

(a) fn — f pointwise on S if and only if

sc U N Bk
k=1 N=1n=N

(b) fn — f uniformly on S if and only if there exist integers Ny, Na, ... € N such that

sc
k=1

o0

Bn,k
=Ny,
Definition .2.2
Let (X, A, 1) be a measure space
(a) fn — [ almost everywhere provided that there is a null set E such that f,, — f pointwise on

E-.
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(b) fn — f in L' provided that
lim [|f, — f|| = lim /‘fn_f‘ =0.
n—o0 n— 00

Example .2.1
Consider (R, £,m), we'll have f = 0.
(1) fo=1tmnt1)-
(2) fo=1/n"10n)-
(3) fn=nl1/m)
(4) the typewriter functions. We define f; supported on [0, 1], f2 supporterd on [0,1/2], f3 supported
on [1/2,1], fa supported on [0,1/4], f5 supported on [1/4,1/2], f5 supported on [1/2,3/4]...
Then (1)-(3) we have f,, — f pointwise, f,, /4 f in Ll.
For (4) we have f, — f in L', but f, 4 f almost everywhere. Note that (4) has a convergent

subsequence to f almost everywhere.
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