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Lemma .0.1

Let ν be a signed measure on (X,A). Then

(1) If E is positive, G ⊆ E is measurable, then G is positive.

(2) If E is negative, G ⊆ E is measurable, then G is negative.

(3) If E is null, G ⊆ E is measurable, then G is positive.

(4) E1, E2, . . . positive sets then
⋃∞

i=1 En positive

Proof. DIY.

Lemma .0.2

Suppose that ν is a signed measure with ν : A → [−∞,∞). Suppose E ∈ A and 0 < ν(E) < ∞.

Then there exists a measurable A ⊆ E such A is a positive set and ν(A) > 0.

Assuming this lemma we prove

Theorem .0.3 (Hahn Decomposition)

If ν is a signed measure on (X,A), then there exist P,N ∈ A such that

P ∩N = ∅

P ∪N = X.

P is positive for ν, N is negative for ν.

If P ′, N ′ are another such pair, then P△P ′ = N△N ′ is null for ν.

Proof of Uniqueness. We see that P \ P ′ ⊆ P, P \ P ′ ⊆ N ′. Thus P \ P ′ ⊆ P ∩ N ′ is both positive and

negative, hence P \ P ′ is null.

Similarly for P ′ \ P , and then their union P△P ′ is null as well.

Proof of Existence. Without loss of generality suppose ν : A → [−∞,∞). If not, consider −ν.

Let

s := sup{ν(E) | E ∈ A is a positive set}

which is a nonempty supremum because ∅ is positive. Then there exist P1, P2, . . . positive sets such that

limn→∞ ν(Pn) = S.

Then we have that P =
⋃

n Pn is positive by Lemma .0.1. Then ν(P ) ≤ S, and ν(P ) = ν(Pn)+ν(P \Pn) ≥
ν(Pn). Thus

ν(P ) ≥ lim
n→∞

ν(Pn) = s.

Hence ν(P ) = s and the supremum is in fact a max. We then know that s = ν(P ) < ∞ because ν does not

attain the value infinity.

Now let N = X \ P . We claim that N is negative. If not then there exists a measurable E ⊆ N with

ν(E) > 0. By assumption, ν(E) < ∞. Then 0 < ν(E) < ∞, so by Lemma .0.2 there exists a measurable

A ⊆ E such that A is positive and ν(A) > 0.
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But wait! We then know that

ν(P ∪A) = ν(P ) + ν(A) > ν(P )

which is a contradiction since P ∪A is a positive set, and ν(P ) is maximal.

Therefore N is negative, and the theorem holds.

Proof of Lemma .0.2. If E is positive, we’re done. Otherwise, there exist measurable subsets with negative

measure. Let n1 ∈ N be the least such n1 such that there exists E1 ⊆ E with ν(E1) < −1/n1.

If E \ E1 is positive, we’re done. Else we can inductively define n2, n3, . . . as well as E2, E3, . . ..

Explicitly, if E \
⋃k−1

i=1 Ei is not positive, let nk be the least such that there exists Ek ⊆ E \
⋃k−1

i=1 Ei with

ν(Ek) < −1/nk.

Note then that if nk ≥ 2, for all B ⊆ E \
⋃k−1

i=1 Ei we have that ν(B) ≥ − 1
nk−1 .

Now let A = E \
⋃∞

i=1 Ei. Since E = A ∪
⋃

i Ei we have by countable additivity that

0 < ν(E) = ν(A) +

∞∑
k=1

ν(Ek) < ν(A).

Furthermore, ν(E), ν(A) are both in (0,∞), and we see that

0 < ν(E) ≤ ν(A)−
∞∑
k=1

1

nk
.

Therefore the sum on the RHS must converge, meaning that 1/nk → 0 as k → ∞. That is limk→∞ nk = ∞.

Now if B ⊆ A, then B ⊆ E \
⋃∞

i=1 Ei. Therefore B ⊆ E \
⋃k−1

i=1 Ei. By the note above, for large enough k

such that nk ≥ 2 we have

ν(B) ≥ −1

nk − 1

taking k → ∞ we have ν(B) ≥ 0, and so A is a positive set as desired.

Definition .0.1

If µ, ν are signed measures on (X,A), then we say µ ⊥ ν (singular to each other) means there exists

E,F ∈ A such that E ∩ F = ∅, E ∪ F = X, F is null for µ, E is null for ν.

Example .0.1

Consider (R,B(R)) with

(1) The Lebesgue measure m

(2) The Cantor measure µC defined by the Cantor function.

(3) The discrete measure µD = δ1 + 2δ−1.

We can take E = R \ {−1, 1}, F = {1,−1} to see that m ⊥ µD.

We can take E = R \K and F = K where K is the cantor set to see that m ⊥ µC .

We can also see that µC ⊥ µD.

Theorem .0.4 (Jordan Decomposition Theorem)

Let ν be a signed measure on (X,A). Then there exists unique positive measures ν+, ν− on (X,A)
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such that for all E ∈ A we have

ν(E) = ν+(E)− ν−(E) ν+ ⊥ ν−.

Proof. For existence take ν+(E) := ν(E ∩ P ), ν−(E) := −ν(E ∩N). Uniqueness DIY.
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