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Stuff:

Math Club Today 4-5pm, random graphs social networks and the internet.
Math S* 6:30-8pm
Super Saturdays!

e Popcorn Thursday!
e Career Fair tomorrow!
e Mass undergrad peer advising 7-9:30pm atrium Monday!
Last time, we had a lemma
Lemma .0.1
Suppose D C C is an open connected set, and f: D — f(D) C C is holomorphic and injective, then
f'(z) # 0 for all z € D.
Thus the inverse is holomorphic on f(D)!

Proof. Compare this with the proof that nonconstant holomorphic maps are open. Suppose f'(zg) = 0 for

some zg € D. Then near zy we have

f(2) = f(20) = (z = 20)"9(2)

where n > 2, g(z) is holomorphic at zg, and g(z9) # 0. Then we can find some analytic h(z) near zo such
that g(z) = (h(2))™. Then

f(2) = f(20) = ((z = 20)h(2))".

We know f(z) — f(20) will map a small open set around zy to a small open set about 0 injectively.
We know ((z — z0) - h(2))™ is not injective because (z — zg)h(z) maps to a small open set about 0 and

r " Y
n > 2. Thus these can’t be equal! L 4

Last time! Logarithmic Integrals! We were interested in the Argument Principle, 77. We restate it fully

here for convenience
Theorem .0.2

Suppose D C C is bounded, connected, open, and with piecewise smooth boundary and let f(z) be
meromorphic on D that extends to be analytic on dD.
Suppose further that f(z) # 0 for all z € 9D. Let Ny be the number of zeros of f in D, Ny, be the

number of poles in D counted with multiplicity. Then

1 /
—_ f—dz:No—Noo.
2w Jap f

We got the Argument Principle, which is that the increase in the argument of f(z) around the boundary
of D is

darg(f(2)) = 27(No — Nuc)-
oD

.1. Rouché’s Theorem
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Theorem .1.1
Let D C C be connected, open, and bounded with piecewise smooth boundary. Let f(z) and h(z) be
anlytic on DUOD. If |h(z)| < |f(z)| for all z € D then f(z) and f(z)+ h(z) have the same number of

zeros in D counting with multiplicity.

Example .1.1
An example from Kurt McMullin. Question: Where in C are the zeros of p(z) = 25 + 14z + 17 Let
f(z) = 2° h(z) = 14z + 1. We need to find a region D where for z € D we have

[h(2)| < [f(2)]
Lets try D as the ball of radius 2. Then when |z| = 2 we have
1F(2)] = 21° =32 > 29 > |14z + 1] = |h(2)].

Now Rouché tells us that f(z) and p(z) = f(z) + h(z) have the same number of zeros in D. Since
f(z) = 2° has five zeros in D, this shows p(z) attains all of its zeros in D.

Can we make the answer more precise? Now consider |z| = 3/2, and break up p(z) as h(z) =
2% + 1, f(2) = 142. Then we have

3 5
h(z)] < <2> +1<9< [14z]

when |z| = 3/2. Then since f(z) has one zero inside the disk of radius 3/2, so does p(z).

Thus p(z) has one zero in |z| < 3/2 and 4 zeros in the annulus 3/2 < |z]| < 2.

Proof. We know since |h(z)| < |f(2)| for all z € D, then this implies f(z) # 0 and f(z) + h(z) # 0 (reverse
triangle inequality) for all z € 9D.

This sets us up to consider their arguments! We can rewrite

f(z)+h(z) = f(2) [1 + ;LZ;] .

We then know that

=ar Z ar )
arg(f(2) + h(2)) = arg(f(2)) + arg (” f(z)>'
Ih(z) 2

Since {7y <1 on dD. Then the values w =1+ 74 lie in a disk of radius 1 about 1, so Re(w) > 0.

We can then use the argument principle. How does the argument of w = 1 + % change as z moves
around in closed loops? It can’t!!! The outputs lie in the right half-plane so d arg w is exact! In other words
we can’t wrap around 0 to pick up a change in argument.

Thus we have

]ngarg(f(z)-i-h(z)) = ngdargf(z)—i—darg(w) :j{ darg f(z).

oD

¢

The result then follows from the argument principle.
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It is clear from the proof that we can extend to f, h meromorphic on D, analytic on D U dD, and then
the number of poles/zeros in D.
Corollary .1.2
The Fundamental Theorem of Algebra. Find a large enough disk so that the leading term dominates,

just as in the example.

.2. Hurwitz’s Theorem

Recall HW7 #3, which will show up on HW 11. We talked about n — (f, : D — C) a sequence of
functions converging to f : D — C. What can we say about how the zeros of f, compare to zeros of f7
Theorem .2.1 (Hurwitz’s Theorem)

Suppose {fi(z)} is a sequence of analytic functions on a connected open set D. Suppose {fi(2)}
converges normally (on compact subsets/locally uniformly) to f : D — C. Further f has a zero of order
N at zg.

Then there exists a small p > 0 such that for k large, fr(z) has exactly N zeros on {|z — z| < p},

counting with multiplicity. And these zeros converge to zg as k — oo.

Proof. The hypothesis implies that f is not identically zero. So take p > 0 so that {|z — 29| < p} € D and
f(2) # 0 for all z on the punctured disk {0 < |z — 2| < p}.

Now choose § > 0 so that |f(z)| > & for all z on the boundary circle |z — 29| = p. Since {fx} converges
uniformly to f on our closed sets, we know there exists an M so that for all k > M we have |fy(2)| > 3 for
all z on |z — 29| = p.

Furthermore, the sequence of functions (J;’;)(/z()z ) converges uniformly to J;((ZZ)) on the boundary circle

|z — 20| = p...so...apply the logarithmic integrals!

1 G, 1 £(2)
klirrgo 9 j{_zo_p fi(2) dz = ami fy 70 dz.

The left hand side counts the number of zeros of fi inside |z — z¢| < p, which we’ll call Ni. The right hand
side is equal to N, since f is nonzero on 0 < |z — zg| < p, and has a zero of order N at zg.

Since these are integers, they are discrete, so for large enough k, we have Ny, = N! This is exactly eh first
part of the result. What about the second? Play the same game with a smaller p, shrinking p to zero and

o
running the argument again. v

Definition .2.1

We say f is univalent on a domain D C C provided that it is analytic and injective on D.

Theorem .2.2 (Another version of Hurwitz)
Suppose {fr(z)} is a sequence of univalent functions on a connected open D C C that converge

normally to f: D — C. Then f(z) is either univalent OR f(z) is constant.

Example .2.1

Consider fr(z) = 7 converging to the zero function.

¢

Proof. See Gamelin.
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.3. Winding Numbers

Definition .3.1 (Winding Number)

Let v be a piecewise smooth path in C. For zy € v define the winding number as

1 [ dz 1 f
w = — .= — [ darg(z — 20).
(o) = g7 [ 7o = g7 Aol =)

Note: W (7, zp) depends analytically on zg. For C\ {v} — Z given by zo — W (v, z0). Thus W (v, zo) is
constant on connected components of C \ {v}.
Proposition .3.1
Gamelin p254, then let D C C be open, connected. Then the following are equivalent

(1) D is simply connected.
(2)
(3)
(4)
(5)

5) The complement of D in C is connected.

Every closed differential form is exact on D.
For each zy € C\ D, there exists an anlytic branch of Log(z — z) defined on D.
Each closed curve v € D has winding number W (v, 29) for zo € C\ D.

(5) is easiest to check in practice. Proof is in the book.

[. Schwarz Lemma and Hyperbolic Geometry

The Schwarz Lemma is central to the theory of analytic maps between Riemann surfaces. We’'ll state it
as a theorem because it is so important.
Theorem 1.0.1 (Schwarz Lemma)
Let f(z) be analytic on |z| < 1. Suppose |f(z)| < 1 for all |z| < 1. Suppose further that f(0) = 0.
Then |f(2)| < |z| for all |z] < 1.
i0

Furthermore, if | f(z0)| = |20 for some point zo # 0, then f(z) = Az for some A = ¢"’.
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