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Stuff:

HW 12 due 12/8, 11:59pm.
4 Classes Left. Here’s the Plan

Today: Prove Riemann Mapping Theorem
e After Today: Finish some syllabus topics

e If we have time: Prime Number Theorem? Dynamics? Elliptic Functions?

Recall .0.1 (Schwarz Lemma)
Let f: D — C be a holomorphic map and suppose |f(z)| < 1. If f(z) =0, then

< |z

/(=)

for all z € D. Furthermore, if there exists a zy € D for which |f(z0)| = |20, then f(z) = €’z for some
0 € R.
0

Infinitesimal version: Same hypotheses, |f/'(0)] < 1, with equality if and only if f(z) =e

Z.

Using these we characterized the automorphisms of I as

Z—a

fla) =

1—az
for a € D.

These together gave us Pick’s lemma,
Recall .0.2 (Pick’s Lemma and Hyperbolic Geometry)

Let f: D — D be holomorphic. Then

Y 1_‘,[(Z)‘2
)< —
RO

for all z € D, with equality when f € Aut(ID). This told us that

|dz|

12

|dw
1—

2

w
for w = f(z) where f € Aut(D). This allowed us to define

|dz|

hyplength_, = 2 / 2
' Jy 1— 2|

and taking the infimum along such paths gives a metric p(z, 21).

Theorem .0.1

For any two distinct points zg, z1 there exists a unique geodesic from zy to z; in the hyperbolic metric.

Namely, it is the arc of the circle passing through zg, z; which is perpendicular to 9D.

Proof. Let w = f(z) be a conformal automorphism D — D with f(z9) = 0. Rotate to move f(z1) to the
positive real axis. Call that point r = |f(z1)| > 0. We want the geodesic from 0 to r to be the line segment

from 0 to r, as then we’ll be done!
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Now suppose v(t) = z(t) + iy(t) is a path in D connecting 0 to r, with 0 < ¢ < 1. Then z(¢) defines a
path from 0 to r also, along the real axis. Set a(t) = z(t). We see that

dz| [ |da()] bofda(t)| |dz|
/,11_|z|2 _/0 1—a(t)? S/o 1—|y(@) S/71_|Z|2'

Thus if y(¢) # 0 then for some ¢ € [0,1], |y(¢)| > |=(t)], and so the path o = x(¢) is strictly shorter than ().

. . . . d
Moreover, if a backtracks, then « is decreasing on some interval, and we could make fa 1L|’ZZ||2

even smaller,
by removing these segments. Thus the integral is minimized uniquely when « is a straight line from 0 to

as
r. v

Recall .0.3 (Arzela-Ascoli Theorem, the late 19th century.)
Let E C C be compact and let F = {f; : E — C | i € I} be a family of continuous functions on F
which is uniformly bounded. Then the following are equivalent
(1) F is equicontinuous at all zy € E.

(2) Each sequence of functions f,, € F has a subsequence which converges uniformly on £. (NOTE:

the limit of the subseqence may or may not belong to F).

Gamelin uses this on p307 to prove Montel’s theorem. Some mathematical genealogy

Borel —— Montel —— Henri Cartan —— Douady —— Hubbard —— Sarah

Theorem .0.2 (Montel’s Theorem)
Suppose F is a family of analytic functions on a connected, nonempty, open D C C such that F is
uniformly bounded on all compact subsets of D.

Then every sequence in F has a subsequence that converges normally on D; that is, it converges

uniformly on compact subsets.

Proof. We want to apply Arzela-Ascoli. We need to get that F is equicontinuous at all points of D.

Fix zop € D. Since D is open there exists an r > 0 so that {|z — 29| < r} € D. By hypothesis, F
is uniformly bounded on this closed disk by some M. The Cauchy estimate tells us that the derivatives
of functions in F are uniformly bounded on a slighly smaller disk {|z — 29| < r — e} C D. This gives us
equicontinuity via the mean value theorem.

We now apply Arzela-Ascoli with a diagonalization argument. We define

1
E, = {z € D| |z| <n and dist(z,0D) > }
n

The E, are compact and increase to fill up D, that is £y C E> C --- and {J,, B, = D. Even better, any
compact subset of D is contained in some FE,.

Let {fn} be a sequence of points (aka functions) in F. By Arzela-Ascoli there is a subsequence
fi1, fi2, fi3, - .. that converges uniformly on FEj.

By Arzela-Ascoli there is a subsequence of fi,, that converges unifromly on Es to get fo,,. Lather rinse

repeat
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Claim
The diagonal sequence f,., is a subsequence of { f,,} converging uniformly on each FE,,, hence uniformly

on each compact subset of D.
<
The Deepest Result in C-analysis. The Riemann Mapping Theorem.
e Riemann, partial proof 1851. Details kept getting filled in
e Schwarz 1870
Osgood 1900
e Koeloe 1907

e Carathéodory 1912
e Modern Proof: Riesz 4+ Fejer 1923.

Theorem .0.3 (Riemann Mapping Theorem)
Every nonempty, connected, open, simply connected, proper subset U C C is conformally isomorphic
to D.

Proof. 1dea: Solve an extremal problem. We’ll take U C C, p € U, and we’ll build the conformal map
(U, p) ER (D, 0). This map is unique up to rotating the right hand side (since we insisted p maps to 0). f is
called a Riemann map

Uniqueness is easy. Suppose f, g : (U,p) — (D,0) are both conformal maps. Then go f~! is a conformal
map (D,0) — (D, 0), so it is a rotation, and so g = rot o f.

Existence is hard. We’ll do it in 3 steps. The map we seek will be a solution to an extremal problem
(Hubbard: “This is fantastically nonconstructive”).

Plan: Find holomorphic injective maps (U, p) ER (D,0), want |f'(p)| to be as large as possible among
all such holomorphic injective maps (U,p) — (D,0). Secretly: There’s something called the Kobayashi
metric. . . google it.

Consider the family
F={f:(U,p)— (D,0) ]| f is holomorphic and injective}.

Let’s go!
Step 1) If U were C, then F would be empty by Liouville’s theorem. But since U # C, there is an a € C\ U,
and since U is simply connected the function z — z — a is nonvanishing and has a holomorphic square
root defined on U.
Call this square root function h, with (h(2))? = z —a for all 2 € U. We claim h is injective, which
follows since z + z — a is injective. By the open mapping theorem, h(U) C C is open. Since (h(z))?
is injective and a ¢ U, h(U), —h(U) are disjoint.
Take a ball B;(q) € —h(U). The Mobius transformation ¢(z) = ;= maps B;(g) onto C\D. So
where does ¢ send h(U)?
It sends h(U) into D. Now take an automorphism ¢ € Aut(D) taking ¢(h(p)) to 0. Then ¢popoh

lies in F.
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Step 2)

Step 3)

We'll show that if f € F and if f(U) # D (i.e. f is not surjective), then there is a g € F such that
lg'(P)| > |f'(p)]. Why?
We'll use the “square root trick” due to Carathéodory and Koebe. We’ll adopt some convenient
notation
z—a

(Pa(Z) = 1—az € AUt<D)

sending a to 0. Moreover, (¢q,)~! = ¢_,.

Suppose f € F with f(U) #D, and take a € D\ f(U). Then look at ¢, o f | U — D omits zero.
Thus g o f : U — C admits a homolormphic square root h : U — C, let s be the squaring function.
Then

soh=¢g.of
on U. We know h is injective and maps U into D (since f does). If b = h(p) then the composition
g = ¢p o h belongs to F, and

f=¢_a0soh=(p_aos0p )0y

But then ¢ = ¢_, 0 s0 p_p sends (D,0) — (D,0) and is NOT injective on D implying it’s not a
rotation (since it has a squaring part). Thus by the Schwarz Lemma, |¢'(0)| < 1. But wait!

I£' () = ¥ (0)]|g"(p)| < 19’ (P)] -

Let’s finish! the proof! We need to cook up an extremal map f € F such that |f/(p)| is as big as
possible. Let
M = sup{|f'(p)| | f € F}
We’ll note some facts about M
(a) M > 0 because f € F are injective, so |f'(p)| > 0.
(b) M < 4oc. If B.(p) C U, then |f'(p)| < 1 by the Cauchy estimates since | f(z)| < 1 forall z € U.
Thus M < %
Let {f.} be a sequence of functions in F such that |f}(p)| converges to M. Since F is uniformly
bounded (outputs to D, so by the constant 1), Montel’s theorem applies.
Thus there is a subsequence f,,, which converges normally on U. Call this limit function f. We
know f is an analytic function since the convergence is normal.
Claim
ferF.

We need to check a bunch of things
(a) f(p) =0 since fy, (p) =0 for all k.
(b) We know f(U) C D, by taking limits of the inequalities. If there was a ¢ € U with |f(q)| = 1,
then f is not open, so f must be constant. But wait! |f/'(p)| = M > 0.
Thus f(U) CD, so f: (U,p) = (D,0) is analytic.

1Technically this was done on December 1st, but I didn’t want to split it up
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(¢) We must check f is injective. Well, all f,,, are injective and f is nonconstant, so by some version
of Hurwitz’s theorem (see [thm:hurwitz])
Thus f € F. By Step 2, since |f'(p)| = M, [ is surjective. Done! f: (U,p) — (D,0) is a conformal

isomorphism.

¢



