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Faye Jackson August 30th, 2022 MATH 596 - II.1

I. Introduction and Administration

See the syllabus (see ??)! As a summary

• Prereqs: Analysis at the level of 451, multivariable calculus, and familiarity with complex numbers.

• HW: Generally due Monday (proofy homework, B homework) and Wednesday (calculationy home-

work, A homework). Two lowest homeworks in both series are dropped (four total).

• Goal: Prepare PhD students for the qualifying exams.

• Book: Gamelin Complex Analysis (see [Gam03]) and an older book by Ahlfors (see [Ahl53]).

• Grading Scheme

– 45% Homework

– 25% Midterm (in class Oct 25th)

– 30% Final (Dec 15th 1:30pm-3:30pm)

The first A homework is due tomorrow (8/31) and the first B homework is due next Tuesday due to Labor

Day (9/6).

II. The Basics

II.1. Motivation and Recollections

C-analysis is a nexus for lots of fields:

• Algebra (fields and solving equations)

• Algebraic geometry and complex manifolds

• Geometry (platonic solids, flat tori, hyperbolic manifolds in dimensions 2 and 3)

• Lie Groups

• ♡ dynamics ♡
• Number theory (automorphic forms, elliptic functions, zeta functions)

• Riemann surfaces (Teichmuller theory, curves and their Jacobians)

• Several complex variables and complex manifolds

• Real analysis and PDEs (harmonic functions, elliptic equations, distributions)

The complex numbers are formally defined as the field C = R[i] where i2 = −1, They are represented in

the Euclidean plane by z = (x, y) = x + iy. There are 2 square roots of −1 in C, the number i is the one

with positive imaginary part.

Definition II.1.1

If z = x+ iy we define the real and imaginary parts as

ℜ(z) := x ℑ(z) := y

We should recall the definition of addition, multiplication, and division in C. If zj = xj + iyj :

z1 + z2 = (x1 + x2) + i(y1 + y2)

z1z2 = (x1x2 − y1y2) + (x1y2 + x2y1)i.

3
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Because C = R[i] there is a Galois automorphism for this field extension

z = x+ iy 7→ z := x− iy

called complex conjugation which fixes R. We know

z1 + z2 = z1 + z2 z1z2 = z1 · z2.

We then define the norm squared of z to be the multiplication of all its Galois conjugates (works for any

finite Galois extension), that is

|z|2 := z · z = x2 + y2 ∈ R≥0.

Compatibility of |z| =
√
|z|2 with the Euclidean metric on R2. This along with the fact that C ∼= R2 as a

vector space justifies the identification of C with R2

If z ̸= 0, z = x+ iy then
z

|z|
=

x

|z|
+ i

y

|z|
lies on the unit circle S1. Thus we can write this complex number as

z

|z|
= cos θ + i sin θ

for some θ ∈ R. Please note θ is uniquely defined only up to adding integer multiples of 2π and only when

z ̸= 0. This number θ is called the argument of z, denoted arg(z).

We let

eiθ := cos θ + i sin θ

so that z = |z| eiθ in these “polar” coordinates. The nice thing about polar coordinates is that if z = reiα, w =

ρeiβ then zw = rρ · ei(α+β). Thus

|zw| = r1r2.

II.2. Solving Polynomial Equations

A critical feature of C is that it is algebraically closed. In other words, we have

Theorem II.2.1 (The Fundamental Theorem of Algebra)

Every nonconstant polynomial in C[X] has a root in C.

This is the historical origin of the complex numbers. In the 16th century, Cardano and others were solving

cubic equations over R which have solutions in R! However, their calculations/algorithms included complex

numbers which cancelled in the end to give real solutions.

Example II.2.1

Fix a ∈ C. We must solve z2 = a. If a = 0 there is one solution, z = 0.

If a ̸= 0, write a = reiθ, then we may take ω = eiθ/2,−ω = ei(θ/2+π) so that (±ω)2 = eiθ. Then

±ω
√
r are two roots of a, and neither can be “preferred”

4
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Proposition II.2.2 (see HW)

There is no continuous (topology!) function f : C → C such that (f(z))2 = z for all z ∈ C. In other

words, there is no continuous choice of a square root.

Proof. HW.

Definition II.2.1

Let n ∈ N and consider the equation zn = 1. The solutions of this equation are called the roots of

unity of order n.

Proof there are n n-th roots of unity. Note if zn = 1, then |z|n = 1, so |z| = 1. Note zn − 1 has polynomial

derivative nzn−1, whose only solution is 0, so no roots are repeated.

Explicitly, we have solutions zj = eiθj where

θj =
2πj

n

for j ∈ Z. Up to integer multiples of 2π, there are n such arguments, and n such zj .

A similar arguments shows that any nonzero complex number z has n different n-th roots that are exactly

spaced around the circle of radius |z|1/n.

II.3. Topology Time

C is a metric space as d(z, w) = |z − w|. Refresher on the induced topology is

• If a ∈ C and r > 0 then B(a, r) = {z ∈ C | |z − a| < r} is the open ball centered at a of radius r.

• We call a set U ⊆ C open provided that for every z ∈ U there exists an rz > 0 such that B(z, rz) ⊆ U .

• A subset A ⊆ C is closed provided that C \ A is open. This is equivalent to the statement that

for every convergent sequence zn → z with zn ∈ A, we have z ∈ A (that is the set of limit points

A′ ⊆ A).

A′ := {ω ∈ C | ω is a limit point of A} := {ω ∈ C | There exists {an}n∈N ⊆ A converging to ω}.

• We say a sequence an ∈ C converges to ℓ ∈ C provided that for all ε > 0 there exists an N ∈ N so

that for n ≥ N we have |an − ℓ| < ε.

We know that C is Cauchy complete as it is essentially the same as R2.

If f : C → C and a ∈ C we say that f is continuous at a provided that for all ε > 0 there exists a δ > 0

such that if |z − a| < δ then |f(z)− f(a)| < ε.

We may also take limits to infinity and negative infinity in real analysis. In complex analysis, we only

have ONE direction of infinity.

For f : C → C let ℓ ∈ C. We define lim
z→∞

f(z) = ℓ to mean for all ε > 0 there exists an M ∈ R such that if

|z| > M then |f(z)− ℓ| < ε.

II.4. The Riemann Sphere

We add a single point to C, called the point at infinity and denoted ∞ to get Ĉ := C ∪ {∞}.

5
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Definition II.4.1

Ĉ = C ∪ {∞} is called the Riemann sphere

We can naturally identify Ĉ with the unit 2-sphere S2 := {v ∈ R3 | ∥v∥ = 1} ⊆ R3 via stereographic

projection. That is if N is the north pole, we can cook up a map ϕ : S2 → {N} → C via taking ϕ(p) to be

the intersection of the line through N and p with the plane {(x, y, 0) ∈ R3} ∼= C.
We can extend ϕ to a bijection ϕ̂ : S2 → Ĉ via N 7→ ∞. The topology on S2 exactly matches the limit

definition we gave above for lim
z→∞

, and also this is a homeomorphism where Ĉ is given the topology of the

one-point compactification.

Formally, if f : C → Cm we can compose to make g = f ◦ ϕ : S2 \ {N} → C. Then for ℓ ∈ C

lim
z→∞

f(z) = ℓ ⇐⇒ lim
p→N

g(p) = ℓ.

This second limit is defined using Euclidean distance in S2 ⊆ R3. If C is a circle in S2 (the intersection of

S2 with a plane in R3) then ϕ̂(C) is a circle in C if N ̸∈ C and the image in C is a line if N ∈ C. Conversely,
every circle and every line in C is obtained this way.

II.5. Examples of Functions

We take arg(z) to be multivalued, and Arg(z) is the principal values of arg(z) lying in (−π, π].
We can consider the map z 7→ z2. If we take square root to be the one in the right half-plane then we

have a discontinuity across the negative real axis.

Definition II.5.1

The principal value of the square root function is ω 7→ |ω|1/2 eiArg(ω)/2.

We also have polynomials p(z) = adz
d + · · ·+ a1z + a0, ai ∈ C. And furthermore we have the exponential

exp : C → C taking ez = exeiy = ex(cos y + i sin y). Modulus of ez is eRe(z) and argument is Im(z)

The image of ez is C \ {0} and it is not injective. Defining the logarithm will give multiple vlaues.

We can take logw = log |w| + i arg(w) for w ̸= 0, which is multivalued. We can also take a principal

branch Log(w) = log |w|+ iArg(w), which is an inverse of exp(z).

exp is periodic of period 2πi

Definition II.5.2

f : U → C is periodic with period λ ∈ C if f(z + λ) = f(z) for all z ∈ U .

Fact: exp(z + w) = exp(z) exp(w), and log(1 + i) = log
√
2 + (π/4 + 2kπ)i for all k ∈ Z.

We can also consider power functions. Fix α ∈ C, and define for z ̸= 0

zα := exp(α log(z))

this is multivalued unless α ∈ Z.

ii = e−π/2e−2πk ∈ R

for k ∈ Z

6
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III. Complex Differentiation

Let U ⊆ C be open, f : U → C, we’re going to define holomorphic functions (in Gamelin [Gam03], this is

“analytic”)

Definition III.0.1

The function f is holomorphic at z0 ∈ U provided that

lim
h→0

f(z0 + h)− f(z0)

h

exists, and in that case we call that limit the derivative f ′(z0).

The function f is holomorphic on U provided that it’s holomorphic at all points inside U .

If C ⊆ U is closed, then we say f : C → C is holomorphic on C provided that there is an open set

containing C on which f is holomorphic.

f is said to be entire provided that f is holomorphic on all of C.

Proposition III.0.1

If f, g : U → C are holomorphic at some z0 ∈ U then

(1) f + g is holomorphic, (f + g)′ = f ′ + g′.

(2) fg is holomorphic, (fg)′ = f ′g + fg′.

(3) If g(z0) ̸= 0, then f/g is holomorphic at z0 and(
f

g

)′

(z0) =
f ′(z0)g(z0)− f(z0)g

′(z0)

(g(z0))2

(4) If f : Ω → U is holomorphic at z0, g : U → C is holomorphic at f(z0), g ◦ f is holomorphic at

z0 and

(g ◦ f)′(z0) = g′(f(z0))f
′(z0)

Proof. Same as in R! Just manipulating limits with each other.

Example III.0.1

Polynomials are entire! The proof is now easy. Constants and the identity map are both entire

(exercise), and polynomials are sums/products of these.

Question: How can we tell if a function is holomorphic at a given point z0 ∈ U? In the case of complex

differenitation, the derivative is a complex number. . .

Consider f : C → C, we can view this as a map F : R2 → R2, and then the derivative of F is a linear

transformation with standard basis on R2, namely(
∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

)
.

7
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Proposition III.0.2 (Cauchy-Riemann Equations)

Writing f = u+ iv which is holomorphic at some z0 = x0 + iy0, we have

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

in other words

∂f

∂x
= −i∂f

∂y
.

Proof. Consider the limit

lim
h→0

f(z0 + h)− f(z0)

h

Write h = h1 + ih2, and approach along real/imaginary axes

f ′(z0) = lim
h1→0

f(z0 + h1)− f(z0)

h1
=
∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
.

Similarly

f ′(z0) = lim
h2→0

f(z0 + ih2)− f(z0)

ih2
= −i∂f

∂y
=
∂v

∂y
− i

∂u

∂y
.

Equating these gives the Cauchy-Riemann equations above.

Remark III.0.1

If f is complex differentiable at z0 ∈ U , then it is continuous at z0. Write

f(z0 + h)− f(z0) = h

(
f(z0 + h)− f(z0)

h

)
and take the limit as h→ 0.

Note:

|f ′(z0)|
2
=

∣∣∣∣(∂u∂x + i
∂v

∂x

)∣∣∣∣2
=

(
∂u

∂x

)2

+

(
∂v

∂x

)2

=
∂u

∂x
· ∂u
∂y

− ∂v

∂x
· ∂u
∂y

which is the determinant of the Jacobian when we view this as a map R2 → R2.

Gamelin’s definition requires that f ′(z0) exists and also that f ′(z) is continuous at z0. Later we will show

that the derivative of a holomorphic function (at z)) is also holomorphic at z0, which will give us lots of extra

stuff

If we assume this, then the functions u, v in f = u+ iv will have continuous partial derivatives of every

order, and so the mixed partials will agree. . . this is useful to keep in mind.

Stuff:

• HW 2 (A due tomorrow, B due next week)

• HW 1B due tonight

8
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• Bagels! WAlks!

Recall III.0.2

The principal values of the argument are Arg(z) ∈ (−π, π] for z ̸= 0.

The principal branch is U → C for U = C \ R≤0. We may also define the principal branch of the

logarithm as Log(z) = log |z|+ iArg(z).

Back to calculus!

Remark III.0.2

If f is complex differentiable at z0 ∈ U , then it is continuous at z0. Look at

f(z0 + h)− f(z0) = h

(
f(z0 + h)− f(z0)

h

)
and take limits as h→ 0, to see that lim

h→0
f(z0 + h)− f(z0) = 0.

Lets now consider what the Cauchy-Riemann equations imply about |f ′(z)| for some f holomorphic at z.

Well, if f = u+ iv we have that

|f ′(z)| =
(
∂u

∂x
+ i

∂v

∂x

)(
∂u

∂x
− i

∂v

∂x

)
=

(
∂u

∂x

)2

+

(
∂v

∂x

)2

=
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
.

This is the determinant of the Jacobian matrix of partials.

Remark III.0.3

Gamelin’s definition of holomorphic requires not only that f ′(z) exists, but also that f ′(z) is continuous

at z. This is redundant! But it makes some things easier to phrase early on.

Eventually, we will show that the derivative of a holomorphic function at z is also holomorphic at z,

which will give us lots of extra stuff.

This will later show that if f = u+ iv is holomoprhic, it will have continuous partial derivatives of every

order and so the mixed partials will be equal! Taking partial derivatives of the left and right hand sides of

the Cuachy-Riemann equations yields

∂2u

∂x2
=

∂2v

∂x∂y

∂2u

∂x∂y
= −−∂2v

∂x2

∂2u

∂y∂x
=
∂2v

∂y2
∂2u

∂y2
= −−∂2v

∂y∂x

A consequence if the mixed partials are equal is that

∂2u

∂x2
= −∂

2u

∂y2
∂2v

∂x2
= −∂

2v

∂x2
.

We see that

∆u :=
∂2u

∂x2
+
∂2u

∂y2
= 0

9
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∆v :=
∂2v

∂x2
+
∂2v

∂y2
= 0.

Definition III.0.2

A smooth function u : R2 → R that satisfies Laplace’s equation

∆u :=
∂2u

∂x2
+
∂2u

∂y2
= 0

is said to be harmonic

The real and imaginary parts of a holomorphic function are thus harmonic.

Definition III.0.3

If two harmonic functions u, v : R2 → R satisfy Cauchy-Riemann equations, then v is said to be “the”

harmonic conjugate of u (unique up to an additive constant).

Example III.0.3

Let u = x2 − y2. This is harmonic. Can we build a harmonic conjugate? Well we know

∂v

∂y
=
∂u

∂x
= 2x

∂v

∂x
= −∂u

∂y
= 2y.

We’re led to consider v = 2xy + const.

Building the function f = u+ iv yields f(z) = (x2 − y2) + i(2xy + const) = z2 + i · const.

Formal + Helpful:

Consider f(x, y) = u(x, y) + iv(x, y), z = x+ iy, z = x− iy. Then x = 1
2 (z + z), y = − i

2 (z − z). We want

to change variables from (x, y) to (z, z). We define new operators

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

To say that f is holomorphic (aka u, v satisfy the Cauchy-Riemann equations) is exactly to say ∂f
∂z = 0, and

this gives ∂f
∂z = f ′.

If f is holomorphic, then is 1/f holomorphic? Yes, provided that f is nonzero.

Rational functions! Let R(z) = P (z)/Q(z) where P,Q are polynomials and P,Q have no common roots.

The zeros of Q are called poles of R. We extend R to a function R̂ : Ĉ → Ĉ by taking R̂(z) = ∞ for z a pole

of R. We could also consider

R̂(∞) = lim
z→0

R(z).

It is nicer to use a related function R1(z) = R(1/z), and define R̂(∞) = R̂1(0). Note that R(1/z) is a rational

function

R(z) =
a0 + a1z + · · ·+ amz

n

b0 + b1z + · · ·+ bmzm

R1(z) = zm−n

(
a0z

n + a1z
n−1 + · · ·+ an

b0zm + b1zm−1 + · · ·+ bm

)
.

10
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If m > n, R(z) has a zero of order m− n at ∞, define R̂(∞) = 0. If m < n, the point at infinity is a pole of

order n−m so R̂(∞) = ∞. If m = n, then R̂(∞) = an

bm
̸= 0,∞.

Consider R(z) = z2+57i
z−53 . The zeros of R̂ are ±

√
−57i, and the poles are z = 53,∞.

Fact: The total number of zeros of a rational function is equal to max(n,m) which is also equal to the

number of poles wher we count with multiplicity. Find it in your book!

Definition III.0.4

The degree of a rational function R(z) = P (z)/Q(z) is max(degP,degQ).

This will agree with the topological degree, which you might know about.

Definition III.0.5 (Möius tranformations)

A Möbius transformation is a rational function of degree 1.

Möbius transformations are in fact the automorphisms (bijective, holomorphic, with holomorphic inverse)

of Ĉ. To think about defining whether a function f : Ĉ → Ĉ is holomorphic at ∞, consider testing if

f(1/z) : Ĉ → Ĉ is holomorphic at 0.

Example III.0.4

When if f(z) = az+b
cz+d a Möbius tranformation? Maybe we should think about if

det

(
a b

c d

)
= ad− bc ̸= 0.

We say a Möbius transformation g is affine provided that g(∞) = ∞, and we can then express g(z) = αz+β

for some α, β ∈ C. The affine group is then

{z 7→ αz + β | α ̸= 0, β ∈ C} = Aut(C).

Stuff:

• HW 2B due September 13th by 10PM.

– For 6, to say LM is C-linear means there exists α ∈ C so that the following diagram commutes

R2 R2

C C

z αz

LM

– For 9, the set U ⊆ C which is the domain of f : U → C should be connected.

To say f is holomorphic at a point, we will always mean f is holomorphic on a neighborhood of z0.

We’re headed to Gamelin, II.4-7, Ahlfors 3.2-3.3. Now back to Möbius transformations

If we have a Möbius transformation f(z) = az+b
cz+d we note that

f(∞) =
a

c
, c ̸= 0 f(∞) = ∞, c = 0

f−1(∞) =
−d
c
, c ̸= 0 f−1(∞) = ∞, c = 0.

11
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One can compute that

f−1(z) =
dz − b

−cz + a

which is also a Möbius transformation.

Fact: Möbius transformations are holomorphic.

Question: what does it mean for a function Ĉ → Ĉ to be holomorphic

Answer: Use local charts around each point. The relevant charts are Ĉ \ {∞} → C, Ĉ \ {0} → C given

by stereographic projection about each pole. The transition map on the intersection is given by z 7→ 1/z.

Consider inv : z 7→ 1/z

Definition III.0.6

Let f : Ĉ → Ĉ be continuous and a ∈ Ĉ. We say that f is holomorphic at a provided that

(i) When a = ∞, f(a) = ∞, the map inv ◦f ◦ inv is holomorphic at z = 0.

(ii) When a = ∞, f(a) ̸= ∞, the map f ◦ inv is holomorphic at z = 0.

(iii) When a ̸= ∞, f(a) = ∞, the map inv ◦f is holomorphic at z = a.

(iv) When a ̸= ∞, f(a) ̸= ∞, the map ◦f is holomorphic at z = a.

Consequence: all rational functions R(z) = P (z)
Q(z) are holomorphic maps Ĉ → Ĉ.

Corollary III.0.3

Möbius transformations are holomorphic.

Exercise III.0.5

Prove that polynomials extend to holomorphic maps Ĉ → Ĉ. It is clear for constant polynomials, so

let p(z) be nonconstant.

Take p(z) =
d∑

j=1

ajz
j with aj ∈ C and ad ̸= 0, it is clear that p is holomorphic at z ̸= ∞. We just

need to check around z = ∞. Here we have p(∞) = ∞ unless p is constant. We thus must look at

(inv ◦p ◦ inv)(z) = 1

p
(
1
z

) =
1∑

j ajz
−j
.

Cleaning this up gives

zd

ad + · · ·+ a1zd−1 + a0zd
.

This is holomorphic at zero since ad ̸= 0. Its derivative is indeed

p′(∞) =

{
0 if d > 1
1
ad

if d = 1
.

Even better: Möbius transformations are biholomorphisms on the Riemann sphere (aka a holomorphic

bijection with holomorphic inverse).

We collect these into a group

Möb := {µ : Ĉ → Ĉ | µ is a Möbius trnasformation}

12
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Algebraically, Möb is a group with respect to the binary operation of composition. We can think of this as a

matrix group via GL2(C). Namely via the map(
a b

c d

)
7→ fA(z) =

az + b

cz + d
.

The determinant being nonzero corresponds to ad − bc ̸= 0, which we require. One can check this is a

surjective homomorphism. The kernel is

ker(GL2(C) → Möb) =

{
λ

(
1 0

0 1

)
| λ ∈ C \ {0}

}
,

which may be easily checked. We often call the quotient of GL2(C) by this kernel the “projective general

lienar group”

PGL2(C) := GL2(C)
/{

λ

(
1 0

0 1

)
| λ ∈ C \ {0}

}
∼= Möb

We could normalize our matrices to have determinant one. . .

SL2(C) = {A ∈ GL2(C) | det(A) = 1}

There is then a homomorphism SL2(C) → Möb with kernel

{
±

(
1 0

0 1

)}
. This gives us

PSL2(C) := SL2(C)
/{

±

(
1 0

0 1

)}
∼= Möb.

This is in some sense 3-dimensional, as we have four variables and one condition, ad− bc = 1.

There are three fundamental types of Möbius transformations

(1) Linear, z 7→ αz where α ∈ C \ {0}.
(2) Translation, z 7→ z + β for some β ∈ C.
(3) Inversion, z 7→ 1

z .

Theorem III.0.4

We have that

(i) The group Möb is generated by translation, linear maps, and inversion.

(ii) The action of Möb on Ĉ is “simply 3-transitive” i.e. for any two triples of distinct points

(p1, p2, p3), (q1, q2, q3) on Ĉ there exists a unique Möbius transformation taking pj to qj .

(iii) The action of Möb on Ĉ preserves circles.

Proof of (ii). For existence, it suffices to show that any triple (p1, p2, p3) can be sent to (0, 1,∞), then take

f(z) =
(p2 − p3)(z − p1)

(p2 − p1)(z − p3)
.

13
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Caution: Breaking the rules a bit if one of the pi is ∞. . . but just adjust and change formula a bit. Namely

one of these three formulas

p2 − p3
z − p3

, p1 = ∞ z − p1
z − p3

, p2 = ∞ z 7→ z − p1
p2 − p1

, p3 = ∞.

To prove uniqueness, suppose g ∈ Möb that sends (p1, p2, p3) 7→ (0, 1,∞). We must examine f ◦ g−1.

This is a Möbius transformation fixing 0, 1,∞. Check that the only such map is the identity.

Something cool: Suppose p1, p2, p3, p4 are distinct points in C that lie on a circle Γ ⊆ C. The Möbius

transformation f(z) = 1
z−p1

sends the circle Γ to a line L = f(Γ).

Let qk = f(pk), k = 2, 3, 4. Choose the ordering so on the circle p3 is between p2, p4. Then q3 is between

q2, q4. This gives that

|q2 − q4| = |q2 − q3|+ |q3 − q4|

plug in qk = 1
pk−1 and simplyify to get

|p1 − p3| · |p2 − p4| = |p1 − p2| · |p3 − p4|+ |p1 − p4| · |p2 − p3|

Theorem III.0.5 (Ptolemy’s Theorem)

A quadrilateral can be inscribed in a circle if and only if the sum of products of lengths of opposite

edges is equal to the product of the lengths of the diagonals.

Stuff:

• Office Hours Wednesday 10:30-12 EH3855.

• HW 2B due tonight 10pm

• HW 3A, 3B is the next round. For 3A, possibly look at Gamelin for inspiration.

• Walk: Carol + snowcones!

Back to Möbius transformations. Recall that

Möb := {f : Ĉ → Ĉ | f(z) = az + b

cz + d
, ad− bc ̸= 0}.

14
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This is a group with respect to function composition, we saw an isomorphism with familiar groups earlier.

Furthermore we have

Möb ⊆ Aut(Ĉ) := {g : Ĉ → Ĉ | g is a biholomorphism}.

In fact, Möb = Aut(Ĉ). We will show this eventually.

What about

Aut(C) := {f : C → C | f is biholo}.

Note that affine maps z 7→ αz+β where α ∈ C× are biholomorphisms of the plane. These are special examples

of Möbius transformations. In fact the affine transformations are exactly those Möbius transformations that

send ∞ to ∞. Let Aff be the group of these transformations.

Fact: Aff = Aut(C).
We can also consider the open disk

D := {z ∈ C | |z| < 1}.

This will become one of our close friends. The disk has a nice cousin

H := {z ∈ C | Im(z) > 0}

which is the upper half plane. Who is this! Well consider the map

φ : H → D

z 7→ i− z

i+ z
.

One must check this is holomorphic, bijective, and its inverse is holomorphic. This preserves angles and so

we call it conformal. A picture is below.

Definition III.0.7

We define the cross ratio of an ordered quadruple of distinct points p1, p2, p3, p4 ∈ Ĉ is

[p1, p2, p3, p4] :=
(p3 − p1)(p4 − p2)

(p2 − p1)(p4 − p3)
.

If pi = ∞, the definition is interpreted as the appropriate limit.

Example III.0.6

[0, p2, p3, p4] =
p4 − p2
p4 − p3

Exercise III.0.7

Compute for pi = 0, 1,∞, z. What are all possible outputs with all possible permutations

[0, 1,∞, z] = lim
w→∞

(w − 0)(z − 1)

(1− 0)(z − w)
= lim

w→∞

z − 1
z
w − 1

= 1− z.

15
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According to a classmate (Zach), there are six distinct outputs

z, 1− z,
1

1− z
,
1

z
,

z

1− z
,
1− z

z

Cool properties!

Theorem III.0.6

Consider these neat properties

(i) If f ∈ Möb is the unique element sending (p1, p2, p4) 7→ (0, 1,∞) then

[p1, p2, p3, p4] = f(p3).

In particular, [p1, p2, p3, p4] takes values in Ĉ \ {0, 1,∞}.
(ii) Two quadruples (p1, p2, p3, p4) and (q1, q2, q3, q4) can be sent to each other by Möbius transfor-

mations if and only if

[p1, p2, p3, p4] = [q1, q2, q3, q4].

(iii) If f : Ĉ → Ĉ is a homeomorphism that preserves cross ratios of ALL quadruples, then f is a

Möbius transformation.

(iv) Four points p1, p2, p3, p4 lie on the same circle in C if and only if [p1, p2, p3, p4] ∈ R.

Back to holomorphic discussion!

Recall III.0.8

f : U → C, z0 ∈ U , we say that f is holomorphic at z0 means f is holomorphic on a neighborhood of

z0, that is for any z within that neighborhood the limit

f ′(z) := lim
h→0

f(z + h)− f(z)

h
∈ C

exists. We showed that if f = u+ iv then

• ∂f
∂z = 1

2

(
∂
∂x + i ∂

∂y

)
f = 0

• f satisfies Cauchy-Riemann equations on U

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
.

• For ∆ := ∂2

∂x2 + ∂2

∂y2 we have ∆u,∆v = 0 under regularity assumptions on u, v (which will be

unnecessary later). This means u, v are harmonic, and in fact they are harmonic conjugates.

Theorem III.0.7

Let u, v : U → R have contiuous first order partials on U and satisfy the Cauchy-Riemann equations

on U . Then f = u+ iv is holomorphic on U .

Proof. We will use Taylor’s Theorem for real variables. Consider some point z0 = (x0, y0) ∈ U , and consider

some small h = (h1, h2). We see that

u(x0 + h, y0 + k)− u(x0, y0) =
∂u

∂x

∣∣∣∣
(x0,y0)

· h1 +
∂u

∂y

∣∣∣∣
(x0,y0)

· h2 + ε1

16
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and

v(x0 + h, y0 + k)− v(x0, y0) =
∂v

∂x

∣∣∣∣
(x0,y0)

· h1 +
∂v

∂y

∣∣∣∣
(x0,y0)

· h2 + ε2

where ε1, ε2 tend to 0 more rapidly than h+ ik in the sense that

ε1
h1 + ih2

,
ε2

h1 + ih2
→ 0 ⇐⇒ |ε1|2

h21 + h22
,

|ε2|2

h21 + h22
→ 0

as h = h1 + ih2 → 0. Using the Cauchy-Riemann equations, we have that

f(z0 + h)− f(z0) =

(
∂f

∂x

∣∣∣∣
(x0,y0)

+ i
∂v

∂x

∣∣∣∣
(x0,y0)

)
· h+ ε1 + iε2. lim

h→0

f(z0 + h)− f(z0)

h
=
∂f

∂x

∣∣∣∣
(x0,y0)

+ i
∂v

∂x

∣∣∣∣
(x0,y0)

.

Thus f ′(z0) exists.

Using this converse, one may show the exponential exp : C → C is holomorphic. Recall the definition

below

exp : C → C

x+ iy 7→ ex · eiy

= ex cos y + i sin y.

Exercise III.0.9

Show that exp is holomorphic by showing it satisfies the Cauchy-Riemann.

For the logarithm, we need to use the inverse function theorem. This gets an upgrade in the setting of

complex analysis!

Theorem III.0.8

Suppose f is holomorphic on the open set Ω ⊆ C and f ′(z0) ̸= 0 for z0 ∈ Ω. Then there exists a

neighborhood U containing z0 on which

• f is injective.

• The image V := f(U) is open in C.
• The inverse f−1 : V → U is holomorphic on V and satisfies(

f−1
)′
(f(z)) =

1

f ′(z)
.

Proof. The first two bullet points come from analysis of real variables by using the identification R2 ∼= C.
Take g = f−1, and let w = f(z), w1 = f(z1). Then we want to show g′(w1) exists. Consider

lim
w→w1

g(w)− g(w1)

w − w1
= lim

z→z1

z − z1
f(z)− f(z1)

=
1

f ′(z1)
.

We must show Log(z) : C \ R≤0 → C is holomorphic, where

Log(z) = log |z|+ iArg(z).
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Well, consider exp : R × (−π, π) → C \ R≤0 and use the inverse function theorem. . . Note exp is already

bijective on this domain.

Consider your homework, that a linear map R2 LM−−→ R2 which has positive determinant descends to a

C-linear map z 7→ αz as

R2 R2

C C

z αz

LM

if and only if LM preserves angles between vectors. Thus if f : U → C then f ′(z0) exists if and only if the

derivative preserves angles or it is zero.

Definition III.0.8

Let U ⊆ C be open. The function f : U → C is conformal at z0 ∈ U provided that it preserves angles

in the since that for any pair of smooth curves γ1 : [a, b] → C, γ2 : [c, d] → C with γ1(t1) = γ2(t2) = z0,

the angle between γ′1(t1) and γ
′
2(t2) is equal to the angle between (f ◦ γ1)′(t1), (f ◦ γ2)′(t2) at f(z0).

More precisely,

|⟨γ′1(t1), γ′2(t2)⟩|
∥γ′1(t1)∥ · ∥γ′2(t2)∥

=
|⟨(f ◦ γ1)′(t1), (f ◦ γ2)′(t2)⟩|
∥(f ◦ γ1)′(t1)∥ · ∥(f ◦ γ2)′(t2)∥

.

If we further require that the signs match, that is

⟨γ′1(t1), γ′2(t2)⟩
∥γ′1(t1)∥ · ∥γ′2(t2)∥

=
⟨(f ◦ γ1)′(t1), (f ◦ γ2)′(t2)⟩

∥(f ◦ γ1)′(t1)∥ · ∥(f ◦ γ2)′(t2)∥
.

This makes a statement about the orientation being preserved as well, we call these orientation-preserv-

ing.

Caution: Gamelin insists that all maps that are conformal at z0 are orientation-preserving at z0. We will

adopt Gamelin’s convention.

Example III.0.10

Complex conjugation will preserve the angles between 2 vectors, but not the directed angle.

Theorem III.0.9

If f : U → C is holomorphic then f is conformal (and orientation-preserving) at all points z0 ∈ U

such that f ′(z0) ̸= 0.

Proof. We use the chain rule, set z0 = γ(a) = δ(c) for smooth curves γ, δ. Then

(f ◦ γ)′(a) = f ′(γ(a))γ′(a) (f ◦ δ)′(c) = f ′(δ(c))δ′(a).

But wait! We then have that

⟨f ′(z0)γ′(a), f ′(z0)δ′(c)⟩ = |f ′(z0)|
2 ⟨γ′(a), δ′(c)⟩

because h 7→ f ′(z0) · h is a C-linear map, and thus an angle/orientation-preserving linear map R2 → R2 from

homework.
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Stuff:

• HW 3B due Tuesday

• Due dates for 4A/4B to be decided

• There exists Math Club (Constructing R!)
• There exists Math S1 (Thursdays 6:30pm-8pm, starts next week 9/22)

• There is a 40 mile walk on Saturday October 1st!

• There is Super Saturdays (starts 10/8, 9:30am-12pm)

• Math Mental Health Hour Sunday (2-3pm), EH 1866

• Bagels on Sunday 10am-11:30am

• U(M) Undergrad Mathematics Seminar EH 3096

Recall III.0.11

If f = u+ iv, we know if f : U → C is holomorphic, then u is harmonic on U , that is ∆u = 0 and u

has continuous first and second order partials.

Faye’s question: Given u : U → R2 harmonic, does there exist a harmonic conjugate?

No! Take u(z) = Log |z|, which is harmonic on C \ {0}. This does not have a harmonic conjugate on

C\{0}, but does have a harmonic conjugate on C\R≤0, namely Arg(z). Then Log(z) = log |z|+ iArg(z)

is harmonic on C \ R≤0.

What’s the difference in domains? C \ {0} is not simply connected, while C \ (−∞, 0] is simply

connected.

Proposition III.0.10

If u : U → R is harmonic on U and U is simply connected, then a harmonic conjugate exists.

For Gamelin, he constructs a harmonic conjugate p57 on rectangles (and will eventually do star-shaped

regions).

Back to conformal maps: We saw that if f ′(z0) ̸= 0, then f maps orthogonal curves then z0 to orthogonal

curves at f(z0).

Definition III.0.9

The map f : U → V is conformal on U provided that

(1) f is conformal at all points z0 ∈ U .

(2) f is bijective.

Example III.0.12

exp : C → C satisfies (1) but not (2). We can also consider z 7→ z2 as a map C \ {0} → C \ {0}.

IV. Complex Integration!

Chapter 3/III in Gamelin.

IV.1. Review of prerequisites

Definition IV.1.1

A path in the plane is a continuous function γ : [a, b] → C, and we say it is a path from γ(a) to γ(b).
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A path γ is simple provided that γ
∣∣
[a,b)

is injective. The path γ is closed provided that γ(a) = γ(b).

All paths γ have an orientation, γ(a) is the initial point and γ(b) is the end point.

A path is called smooth if it is smooth as a function.

If we have paths γ : [0, 1] → C from A ∈ C to B ∈ C and δ : [0, 1] → C from B to C ∈ C, we can

construct a path

(γ ∗ δ)(t) =

{
γ(2t) if 0 ≤ t ≤ 1/2

δ(2t− 1) if 1/2 ≤ t ≤ 1

from A to C. This is called the concatenation.

A piecewise smooth path is a concatenation of smooth paths. A curve is a smooth path or piecewise

smooth.

Let γ be a path in C from A to B and let P (x, y), Q(x, y) be continuous complex-valued functions on the

image of γ. Break up the image of γ into pieces (xi, yi) and form the sum∑
P (xj , yj)(xj+1 − xj) +

∑
Q(xj , yj)(yj+1 − yj).

where we require γ(tj) = (xj , yj) where a = t0 < t1 < · · · < tn = b.

Definition IV.1.2

If these sums have a limit as distance between points (xj , yj) → 0 then we define the limit to be the

line integral of P dx+Qdy along γ, denoted∫
γ

P dx+Qdy.

More precisely, let γ(t) = (x(t), y(t)) with a ≤ t ≤ b. Suppose tj ∈ [a, b] satisfies γ(tj) = (xj , yj) with

a ≤ t0 < t1 < · · · < tn = b.

Apply the Mean Value Theorem to find points t∗j ∈ [tj , tj+1] so that x(tj+1) − x(tj) = x′(t∗j )(tj+1 − tj).

Likewise for y. Plugging into the above sums this gives∑
P (x(tj), y(tj))x

′(t∗j )(tj+1 − tj) +
∑

Q(x(tj), y(tj))y
′(t∗j )(tj+1 − tj)

=
∑

(P (x(tj), y(tj))x
′(t∗j ) +Q(x(tj), y(tj))y

′(t∗j ))(tj+1 − tj).

As tj+1 − tj go to zero we have this is equal to∫
γ

P dx+Qdy =

∫ b

a

P (x(t), y(t))x′(t) +Q(x(t), y(t))y′(t) dt.

Theorem IV.1.1 (Green’s Theorem)

Consider some region Ω ⊆ C which is a connected bounded open set whose boundary consists of a

finite # of disjoint piecewise smooth curves.

Let P,Q be continuously differentiable on Ω ∪ ∂Ω, then∫
∂D

P dx+Qdy =
x

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.
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Definition IV.1.3

If h(x, y) is a continuously differentiable C-valued function, we define its differential as

dh =
∂h

∂x
dx+

∂h

∂y
dy.

The differential P dx+Qdy is called exact if P dx+Qdy = dh for some h.

Theorem IV.1.2 (FTC for Line Integrals)

If γ is a piecewise smooth curve from A to B and if h(x, y) is continuously differentiable on γ then∫
γ

dh = h(B)− h(A).

Proof. Chain rule! See Gamelin!

Example IV.1.1

Exact differentials are nice and very easy to integrate♡
Natural question: which differentials P dx+Qdy are exact? hmmm. . .

Definition IV.1.4

As before, let P,Q be complex-valued and continuously differentiable on U ⊆ C, the integral∫
P dx+Qdy

is said to be path independent provided that for any paths A,B ∈ U , and for any pair of paths γ, δ from

A to B we have ∫
γ

P dx+Qdy =

∫
δ

P dx+Qdy.

Note: This is equivalent to the statement that given any simple closed curve in U , call it µ ⊆ D, we have∫
µ

P dx+Qdy = 0.

Lemma IV.1.3

Let P,Q : U → C be continuous. Then
∫
P dx+Q dy is independent of path if and only if P dx+Q dy

is exact.

Proof. The converse follows from Theorem IV.1.2. For the forward direction, fix a basepoint z0 ∈ U , then

define h(z) =
∫ z

z0
P dx+Qdy.

It does not take much effort to show dh = P dx+Qdy.

Definition IV.1.5

Let P,Q be continuously differentiable on a connected open set U . The differential P dx + Qdy is

closed on U provided that

∂P

∂y
=
∂Q

∂x
,

that is any Green’s theorem type integral will be zero.

21



Faye Jackson September 20th, 2022 MATH 596 - IV.1

If P dx+Qdy is a closed form, then ∫
∂U

P dx+Qdy = 0

for any bounded connected open set U ⊆ C. We have

independence of path ⇐⇒ exact ⇐⇒ closed

Theorem IV.1.4

If U is simply connected (often we will use star-shaped spaces, which are simply connected) then

closed implies exact.

Stuff:

• HW 3B due tonight!

• HW 4 – Due Thursday (4A) and Tuesday (4B)

• Lots of Department Stuff!

– Math S1

– Super Saturdays

– Bagel Sundays

– 20 mile walk 9/24, 40 mile walk 10/1

– U(M) Student Seminar EH 3096 4-5pm this Friday: Circle Method and Waring’s problem by

Xun

– Math Mental Health Hour EH1866 every 2 weeks Sunday afternoon

We had a problem on the homework which shows that

Claim

If p is a complex polynomial whose zeroes lie in the half plane Re(z) > 0, then the zeros of p′ lie in

this half-plane as well.

Theorem IV.1.5 (Gauss-Lucas Theorem)

If p is a complex polynomial, then the zeros of p′ lie in the convex hull of the zeros of p.

Recall IV.1.2

A subset A of Rn is convex provided that for any two points a, b ∈ Rn the line between a, b is a subset

of A.

The convex hull of a set of points {z1, . . . , zm} is the set of all combinations
∑
tjzj such that 0 ≤ tj ≤ 1

and
∑
tj = 1.

Back to integration!

Lemma IV.1.6

If P,Q : D → C are continuous functions on a connected open set, then
∫
P dx + Qdy is path

independent if and only if the form is exact.

See Gamelin [Gam03, Chapter III].

Lemma IV.1.7

Exact differentials are closed
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Proof. Suppose P dx+Qdy is exact. Then there exists h such that dh = P dx+Qdy, that is

∂h

∂x
= P

∂h

∂y
= Q.

Then we have that

∂P

∂y
=

∂

∂y

∂h

∂x
=

∂

∂x

∂h

∂y
=
∂Q

∂x

Definition IV.1.6

The connected open set D ⊆ C is called star shaped provided that there exists some z0 ∈ D such

that for all z ∈ D, the line between z0 and z is contained in the set.

It is convenient to call z0 the “spectator” as a nice piece of terminology. Note that this is not

necessarily unique.

This implies simply connected (contract everything to the spectator), but the converse is not true. Consider

a horseshoe, which is simply connected but not star-shaped.

Theorem IV.1.8

Let P,Q be continuous differentiable functions on a connected open subset D ⊆ C. Suppose

(1) D is star-shaped (simply connected suffices, but we won’t prove it).

(2) P dx+Qdy is closed on D.

Then P dx+Qdy is exact.

Proof Sketch. Let A be a spectator for D. Define

h : D → C

B 7→
∫ B

A

P dx+Qdy.

We take the path of integration A→ B to be the straight line from A to B. We must then check that this h

works. See [Gam03]

Example IV.1.3

Consider the 1-form

P dx+Qdy =
−y dx+ xdy

x2 + y2

on C \ {0}. This is closed by a simple computation, but it isn’t exact/path-independent! Why? Well

integrate about the unit circle C in the counterclockwise direction.∫
C

P dx+Qdy = 2π.

However, P dx+Qdy is exact on C \ (−∞, 0]. P dx+Qdy = dArg(x+ iy). . .

We’ll now apply this discussion to harmonic conjugates (Faye’s question). Take u ∈ C1 with second order

partials with ∆u, then does there exist a v harmonic so that f = u+ iv is holomorphic.
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Lemma IV.1.9

If u(x, y) is harmonic on an open connected set D ⊆ C, then the differential

−∂u
∂y

dx+
∂u

∂x
dy

is closed.

Proof. A simple computation.

Id D is star-shaped, then we know that is exact, so

dv = −∂u
∂y

dx+
∂u

∂x
dy.

But then we have that

∂v

∂x
= −∂u

∂y

∂v

∂y
=
∂u

∂x
,

so that f = u+ iv is holomorphic!

Theorem IV.1.10

Any harmonic function u(x, y) on a star-shaped domain (can promote this to simply connected)

D ⊆ C has a harmonic conjugate v(x, y) on D.

Example IV.1.4

Consider u = log |z| on C \ (−∞, 0]. We showed this was harmonic (hw). By the previous discussion

there exists a harmonic conjugate v(x, y) on C \ (−∞, 0]. Then

u(x, y) =
1

2
log(x2 + y2)

du =
x

x2 + y2
dx+

y

x2 + y2
dy

dv =
−y

x2 + y2
dx+

x

x2 + y2
dy

v(z) =

∫ z

1

dv.

This is choosing the conjugate from the proof above, normalized so that v(1) = 0. This tells us that

Arg(z) =

∫ z

1

−y
x2 + y2

dx+
x

x2 + y2
dy,

as harmonic conjugates are unique up to adding constants.

We’re now in [Gam03, Gamelin III.4], the Mean Value Property.

Definition IV.1.7

Take D ⊆ C to be a connected open subset containing the disk {|z − z0| < ρ}. Let h : D → R be

continuous.

We define the average value of h on the circle {|z − z0| = r} for 0 < r < ρ to be

Ah(r, z0) :=
1

2π

∫ 2π

0

h
(
z0 + reiθ

)
dθ.
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Theorem IV.1.11

If u(z) is a harmonic function on D (as defined above), then

Au(r, z0) :=
1

2π

∫ 2π

0

u(z0 + reiθ) dθ = u(z0).

Proof. We see because −∂u
∂y dx+ ∂u

∂x is closed/exact/path-independent (on |z − z0| < ρ) that

0 =

∫
|z−z0|=r

−∂u
∂y

dx+
∂u

∂x
dy.

We parameterize the circle as x(θ) = x0 + r cos(θ), y(θ) = y0 + r sin(θ). We see that thsi is exactly

0 =

∫ 2π

0

(
∂u

∂y
· (r sin θ) + ∂u

∂x
· (r cos θ)

)
dθ.

We then see via the chain rule that this is

0 = r

∫ 2π

0

∂u

∂r
dθ

Divide both sides by 2πr and exchanging the integral with the differentation, we see that

0 =
∂

∂r

∫ 2π

0

u(z0 + reiθ)
dθ

2π
=

∂

∂r
Au(r, z0).

Thus Au(r, z0) is constant in r, and since u is continuous at z0, as r → 0, the average value of the function

tends to u(z0) as r → 0. Thus Au(r, z0) = u(z0).

Definition IV.1.8

We say that a continuous function h(z) on a connected open domain D ⊆ C has the mean value

property provided that for all z0 ∈ D, h(z0) is the average of its values over any small circle centered at

z0. I.e., for all z0 ∈ D, there exists an ε > 0 such that for all 0 < r < ε, we have

h(z0) =

∫ 2π

0

h(z0 + reiθ)
dθ

2π
.

Now we move to [Gam03, Gamelin III.5].

Definition IV.1.9

Let u(z) be a real-valued continuous function with the mean value property (so including harmonic

functions!) on the connected open subset D ⊆ C. Suppose there exists M ∈ R such that for all z ∈ D,

u(z) ≤M . If u(z0) =M for some z0 ∈ D, then u is constant.

Proof Strategy. Let SM := {z ∈ D | u(z) = M} and S<M := {z ∈ D | u(z) < M}. We see that D =

SM

∐
S<M . We know that z0 ∈ SMM

We know that S<M is open, so it suffices to show that SM is open, as then D = SM . Suppose that

u(z1) =M , i.e., z1 ∈ SM .

We use the Mean Value property to write

M = u(z1) =

∫ 2π

0

u(z1 + reiθ
dθ

2π
.
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We may then rearrange to give that

0 =

∫ 2π

0

[M − u(z1 + reiθ)]
dθ

2π
.

But wait! This is a non-negative continuous integrand!!! So the integral is zero if and only ifM = u(z1+re
iθ)

for all θ. Thus for 0 < r < ρ we have

u(z + reiθ) =M,

so SM is open as desired.

Comment on HW4B problem 5: Given a Möbius transformation f(z) = az+b
cz+d , we wish to show the number

of g such that g(g(g(g(g(z))))) = f(z) is 1, 5 or∞. It would be very difficult to work with a general f . Perhaps

instead we should work with particular f and show this is enough. One should think about conjugation in

the group, namely consider for f, h ∈ Möb, the conjugate h ◦ f ◦ h−1.

It is enough to solve the problem for a conjugate. Use g5 to genote 5 copies of g composed, then

g5 = f ⇐⇒ (hgh−1)(hgh−1)(hgh−1)(hgh−1)(hgh−1) = hfh−1.

Since g 7→ hgh−1 is a bijection between the set of rational functions with itself, we’re good!

We now need to understand the conjugacy classes in Möb. What is somethingthat is invariant under

conjugation. The # of fixed points of f : Ĉ → Ĉ is invariant under conjugation. Consider

az + b

cz + d
= z ⇐⇒ cz2 + (d− a)z − b = 0.

It turns out there are three possibilities

• f has exactly one fixed point (conjugate to z 7→ z + 1).

• f has exactly two fixed points (conjugate to z 7→ λz, ∥λ∥ = 1).

• f has infinitely many fixed points (conjugate to z 7→ z).

In Sarah’s research area, she takes rational functions f : Ĉ → Ĉ and considers the behavior of iterations

f ◦ · · · ◦ f : Ĉ → Ĉ. A “simple” example is f(z) = z2 + c where c ∈ C is some parameter.

Definition IV.1.10 (Filled Julia set)

The filled Julia set Kf of f is

Kf := {z0 ∈ C | orbit of z0 under f is bounded}.

The orbit here is the sequence zn defined by zn = f(zn−1).

Example IV.1.5

For z 7→ z2 the filled Julia set is simple
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Re(z)

Im(z)

Generally filled Julia sets are crazy. For z 7→ z2 + i we have

For z 7→ z2 + 1/4 we have a cauliflower shape
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For z 7→ z2 + 1/2 we get cantor dust!

All filled julia sets for polynomials are full, that is their complement is connected. Why? Well it’s a

corollary of our discussion using a rate of escape function which is harmonic. . .

IV.2. Defining Complex Integrals

Why do we want to do integration? Well holomorphic maps have amazing properties. It is much easier to

prove that they have these properties with integrals. We integrate 1-forms, and we define formally

dz := dx+ idy.

If γ is a curve in C, f = u+ iv, with u, v continuous on γ, then∫
γ

f(z) dz =

∫
γ

udx− v dy + i

∫
γ

udy − v dx.

We can also parameterize as ∫
γ

f(z) dz =

∫ b

a

f(γ(t))
dγ

dt
dt.

As well we have ∫
γ

f(z) dz =

∫
γ

f(z) dx+ i

∫
γ

f(z) dy.

Remark IV.2.1

All of the basic theorems concernining linearity from real integrals work! Namely∫
γ

c(f(z) + g(z)) dz = c

∫
γ

f(z) dz +

∫
γ

g(z) dz.

Example IV.2.1

Consider γ : [0, 2π] → C given by γ(t) = eit. Then we wish to calculate
∫
γ

dz
z . Then we see that
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dz = ieit dt, and so ∫
γ

dz

z
=

∫ 2π

0

i dt = 2πi.

Example IV.2.2

Let L be the line segment in C parameterized by [0, 1] → C. t 7→ p+ t(q − p).

Fix n ∈ Z, n ̸= −1, then∫
L

zn dz =

∫ 1

0

(p+ t(q − p))n · (q − p) dt =

(
(p+ t(q − p))n+1

n+ 1

]1
0

=
qn+1 − pn+1

n+ 1
.

Exercise IV.2.3

Fix m ∈ Z and R > 0, compute∫
|z−z0|=R

(z − z0)
m dz =

{
0 if m ̸= −1

2πi if m = −1

Arc length, we denote as

|dz| := ds =
√
dx2 + dy2.

if γ is parameterized by γ(t) = x(t) + iy(t) then∫
γ

h(z) |dz| =
∫ b

a

h(γ(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Theorem IV.2.1

[ML Theorem] Suppose γ is a piecewise smooth curve in the plane. If h(z) is continuous on γ, then

(1)
∣∣∣∫γ h(z) dz∣∣∣ ≤ ∫γ |h(z)| |dz|.

(2) Furthermore, if γ has length L and |h(z)| ≤M on γ then∣∣∣∣∫
γ

h(z) dz

∣∣∣∣ ≤ ∫
γ

|h(z)| |dz| ≤ML.

Proof. Use triangle inequality and Riemann sums.

IV.3. The Complex Fundamental Theorem of Calculus

Definition IV.3.1

Let f(z) be a continuous function on a connected open subset D ⊆ C. F : D → C is called a complex

primitive for f(z) provided that F (z) is holomorphic on D and F ′(z) = f(z).

Theorem IV.3.1 (FTC I)

If f(z) is continuous on a connected open subset D and if F (z) is a primitive for f(z), then∫
γ

f(z) dz = F (B)− F (A),

where γ is any path from A to B.
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Proof. Fix γ a path between A and B. We see that∫
γ

f(z) dz =

∫
γ

dF

dz
dz =

∫
γ

dF

dz
dx+ i

∫
γ

dF

dz
dy =

∫
γ

dF

dx
dx+ i

∫
γ

−idF
dy

dy

using the Cauchy-Riemann Equations! We then have that∫
γ

f(z) =

∫
γ

dF

dx
dx+

dF

dy
dy =

∫
γ

dF = F (B)− F (A).

Stuff:

• HW 4B due today

• Purple HW 5

• Office Hours Wednesday/Friday

• Halloween shirts for Michigan Math $15 (walk around EH for info!)

• Walk 40 miles through rattlesnakes on Saturday

• For HW 4B #7a, prove f is constant on closed unit disk.

Lets go back to the FTC, first we’ll do an example

Example IV.3.1 (Application of Theorem IV.3.1)

Consider z 7→ 1
z on a connected open set D that contains the unit circle. Does this have a primitive

on D?

No! We know
∫
S1

dz
z = 2πi, which would contradict that

∫
S1

dz
z = F (1) − F (1) = 0 if there were a

primitive F for 1
z on D.

Theorem IV.3.2 (FTC II)

Let D ⊆ C be an open connected star shaped (can be simply connected) subset of C. Let f(z) be

holomorphic on D. Then f(z) has a primitive on D, and the primitive is unique up to adding a constant.

The primitive can be given as

F (z) =

∫ z

z0

f(ζ) dζ

for z ∈ D, where we take any available path.

Proof. Write f = u+ iv. Consider the differential form u dx−v dy. Since f is holomorphic, Cauchy-Riemann

implies that ∂u
∂y = − ∂v

∂u . Thus udx− v dy is a closed differential form.

Since D is open, connected, and simply connected, we know udx − v dy is exact on D. Thus there is a

continuously differentiable function U on D so that dU = udx− v dy. That is ∂U
∂x = u, ∂U∂y = −v.

Applying Cauchy-Riemann yields

∂2U

∂x2
+
∂2U

∂y2
=
∂u

∂x
− ∂v

∂y
= 0.

Thus U is harmonic on D. Since D is simply connected, there exists a harmonic conjugate V for U on D

such that G = U + iV is holomorphic on D.
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We see that

G′ =
∂U

∂x
+ i

∂V

∂x
=
∂U

∂x
− i

∂U

∂y
= u+ iv = f.

Perfect! This shows that there is a primitive G for f . To show it is unique up to adding a constant, let H be

another primitive, then G−H has derivative zero, so G−H is constant on D.

Finally, if z0 is any point of D, then by Theorem IV.3.1 we see that

F (z) :=

∫ z

z0

f(ζ) dζ = G(z)−G(z0).

Differentiating both sides yields F ′(z) = G′(z) = f . This completes the proof of all the pieces given above of

the theorem.

Corollary IV.3.3

Integrals of holomorphic functions in star-shaped regions are path-independent.

IV.4. Cauchy’s Theorem

Setting: f = u+ iv is holomorphic on a connectedopen set D ⊆ C. Then

f(z) dz = (u+ iv)(dx+ idy) = (u+ iv) dx+ (−v + iu) dy

Exercise IV.4.1

The condition that f(z) dz is closed is exactly the Cauchy-Riemann equations. That is

∂[u+ iv]

∂y
=
∂[−v + iu]

∂x
.

Theorem IV.4.1 (Morera)

A continuously differentiable function f(z) on D is holomorphic if and only if the differential f(z) dz

is closed on D.

Theorem IV.4.2 (Cauchy)

Let D be a bounded connected open subset of C with piecewise smooth boundary. If f(z) is holomor-

phic on D and if it extends smoothly to ∂D, then∫
∂D

f(z) dz = 0.

Proof. Apply Green’s theorem!

Corollary IV.4.3

If f(z) is holomorphic on a region that contains an annulus D with inner radius r and outer radius

R about z then ∫
|z−w|=r

f(w) dw =

∫
|z−w|=R

f(w) dw.
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Proof. We know that

0 =

∫
∂D

f(w) dw =

∫
|z−w|=R

f(w) dw −
∫
|z−w|=r

f(w) dw.

Theorem IV.4.4 (Cauchy’s Integral Formula for f(z))

Let D ⊆ C be a bounded, connected, open subset with piecewise smooth boundary. If f(z) is

holomorphic on D and f(z) extends continuously to ∂D, then for each z ∈ D we have

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw.

Compare this with
∫
|w|=1

dw
w = 2πi. This is the f(w) = 1, z = 0 case. In fact we’re going to use this to

steal the game.

Proof. Fix z ∈ D and choose ε > 0 so that B(z, ε) ⊆ D (the closed ball).

Define Dε := D \ B(z, ε). We know w 7→ f(w)
w−z is holomorphic on Dε and extends smoothly to ∂Dε =

∂D ∪ {|w − z| = ε}, with reversed orientations.

We then have that ∫
Dε

f(w)

w − z
dw = 0∫

Dε

f(w)

w − z
=

∫
∂D

f(w)

w − z
dw −

∫
|w−z|=ε

f(w)

w − z
dw∫

∂D

f(w)

w − z
dw =

∫
|w−z|=ε

f(w)

w − z
dw.

Thus we can reduce the problem to evaluating the integral over a small circle |w − z| = ε. There are a number

of different proofs. The simplest uses the mean value property. Parameterizing |w − z| = ε as z + εeiθ for

0 ≤ θ ≤ 2π yields ∫
∂D

f(w)

w − z
=

∫ 2π

0

f(z + εeiθ)i dθ

1

2πi

∫
∂D

f(w)

w − z
=

∫ 2π

0

f(z + εeiθ
dθ

2π
.

Applying the mean value property to u, v where f = u+ iv gives us the result.

If we want to approach this using analysis directly, we may do so as below

Note that the value of this integral cannot depend on ε > 0. Fix some δ > 0, we wish to show that∣∣∣∣2πif(z)− ∫
∂D

f(w)

w − z
dw

∣∣∣∣ < δ.

Well, we may write this as

2πif(z)−
∫
|z−w|=ε

f(w)

w − z
dw =

∫
|z−w|=ε

f(z)− f(w)

z − w
dw,
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because ∫
|z−w|=ε

dw

z − w
= 2πi.

Then using the ML-inequality (see [thm:ml-theorem]) we have that∣∣∣∣∣2πif(z)−
∫
|z−w|=ε

f(w)

w − z
dw

∣∣∣∣∣ =
∣∣∣∣∣
∫
|z−w|=ε

f(z)− f(w)

z − w
dw

∣∣∣∣∣ = 2πε · sup
|z−w|=ε

|f(z)− f(w)| .

Taking ε→ 0 takes the right hand side to zero, so we win!

Theorem IV.4.5 (Cauchy’s Generalized Integral Formula)

Let D ⊆ C be a bounded connected open subset with piecewise smooth boundary. Suppose that f(z)

is holomorphic onD and f(z) extends smoothly to ∂D, then f has complex derivatives of all orders on

D, which are given by

f (m)(z) =
m!

2πi

∫
∂D

f(w)

(w − z)m+1
dw.

Proof. Proof is via induction on m. Going from m = 0 to m = 1 is similar enough to going from m = n to

m = n+ 1, so we’ll do the first only.

Consider that

1

w − (z + h)
− 1

w − z
=
w − z − (w − (z + h)

(w − (z + h))(w − z)
=

h

(w − (z + h))(w − z)
.

Then we have by Theorem IV.4.4 that

f(z + h)− f(z)

h
=

1

2πih

∫
∂D

(
f(w)

w − (z + h)
− f(w)

w − z

)
dw

=
1

2πi

∫
∂D

f(w)

(w − (z + h))(w − z)
dw.

As we take h→ 0, the integrand converges to f(w)
(w−z)2 uniformly on w ∈ ∂D. Thus the integrals converge and

we obtain

f ′(z) =
1

2πi

∫
∂D

f(w)

(w − z)2
dw

for z ∈ D.

Corollary IV.4.6

If f(z) is holomorphic onD, then f(z) is infinitely differentiable and all derivatives are also holomorphic

on D.

Example IV.4.2

We can simply compute ∫
|z|=2

sin(2z)

(z − i)6
dz.

33



Faye Jackson September 29th, 2022 MATH 596 - IV.5

We know f(z) = sin(2z) is holomorphic on this region, and so Cauchy’s integral formula tells us that

f (5)(i) =
5!

2πi

∫
|z|=2

sin(2z)

(z − i)6
dz.

Taking 5 derivatives of sin(2z) yields 25 cos(2z). Thus this is

25 cos(2i) =
5!

2πi

∫
|z|=2

sin(2z)

(z − i)6
dz.

Noting that 2 cos(θ) = eiθ + e−iθ, we have that∫
|z|=2

sin(2z)

(z − i)6
dz =

25πi(e−2 + e2)

5!

Stuff:

• Math club today 4pm

• Math S1 this evening 6:30-8pm

• Halloween shirts! Order by 10/8

• Bagel Sunday at 11:30

• MMHH Sunday afternoon

• 40 Mile Walk this saturday.

Exercise IV.4.3 (Warmup)

Compute the following for n ∈ N ∫
|w|=1

ew

wn
dw.

Answer: 2πi
(n−1)! , using the Cauchy integral formula.

IV.5. Liouville’s Theorem

This is given in [Gam03, Gamelin IV.5].

Setting: f(z) is holomorphic on a closed disk {|z − z0| ≤ ρ}. By our convention, f is holomorphic on a

neighborhood of that closed disk.

The Cauchy integral formula is

f (m)(z0) =
m!

2πi

∫
|z−z0|=ρ

f(w)

(w − z)m+1
dw.

We may then parameterize the circle as w = z0 + ρeiθ, and since dw = ρieiθ we get that

f (m)(z0) =
i ·m!

ρm

∫ 2π

0

f(z0 + ρeiθ)e−imθ dθ

2π
.

Then applying the triangle inequality yields that∣∣∣f (m)(z0)
∣∣∣ ≤ m!

ρm

∫ 2π

0

∣∣f(z0) + ρeiθ
∣∣ dθ
2π
.
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Theorem IV.5.1 (Cauchy estimates)

Suppose f(z) is holomorphic for |z − z0| ≤ ρ. Then if |f(z)| ≤M for |z − z0| = ρ, then∣∣∣f (m)(z0)
∣∣∣ ≤ m!

ρm
M,

for m ≥ 0.

Proof. ML estimate.

Theorem IV.5.2 (Liouville’s Theorem)

Let f(z) be an entire function. If f(z) is bounded, then it is constant!

Proof. We show the derivative is zero at any z0 ∈ C, say f is bounded by M on C. Take m = 1 and send

ρ→ ∞ in the Cauchy estimate, then |f ′(z0)| ≤ M
ρ , the right hand side goes to zero, so f ′(z0) = 0.

We’ll now see an application of this theorem to the theory of Riemann surfaces.

Recall: Sarah said earlier that there are exactly 3 “different” types of simply connected Riemann surfaces

(complex manifolds of dimension 1).

Examples of Riemann surfaces: C, Ĉ,H,D, and any open U ⊆ C.
We call 2 Riemann surfaces X,Y equivalent provided there is a biholomorphism (that is a bijective

holomorphic map with holomorphic inverse) φ : X → Y .

Lets look at some examples

Spherical Hyperbolic Euclidean

Ĉ H C

D

Cayley map

Because Ĉ is compact we know it is not equivalent to H or C. Liouville’s theorem tells us that since any map

C φ−→ D would be entire and bounded. . . it would be constant! Thus C is not equivalent to D either.

How does one find a conformal map φ : U → D when U ⊊ is open and simply connected?

2-dimensional manifolds it’s much much much harder. Bill Thurston’s geometrization program was all

about this, and led to the proof of the Poincare conjecture by Perelmann.

Exercise IV.5.1

Simpler simpler case, take a square and find a conformal isomorphism to the disk. This is hard.

Take a fractal (say a julia set!) and find a conformal isomorphism from Ĉ\fractal → Ĉ\closed unit disk.

This is in fact easier than the square problem. . .

If you’ve taken 592: Fix a Riemann surface X. The universal cover of X is either Ĉ,C, or D.
We’ll see some proofs of statements like this later. Another application!

Theorem IV.5.3 (Fundamental Theorem of Algebra)

Every nonconstant polynomial p(z) has a root in C.
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Proof. Let p(z) be a nonconstant polynomial with no root in C. Then z 7→ 1
p(z) is entire on C. Is it bounded

on C? p is a polynomial, so on a large disk, p “looks likes” zn. Namely with some Pain in the Ass Estimates

lim
z→∞

p(z) = ∞

lim
z→∞

1

p(z)
= 0.

Thus on outside a large disk 1
p(z) is smaller than 53, and inside of the disk it is bounded by the Extreme

Value Theorem.

IV.6. Morera’s Theorem

Theorem IV.6.1 (Morera)

Let f(z) be a continuous function on a connected open subset D ⊆ C. If
∫
∂R
f(z) dz = 0 for every

closed rectangle R ⊆ D with sides parallel to the real/imaginary axes, then f is holomorphic on D with

continuous derivative.

Proof. Suppose D is a disk with center z0 (this is sufficient by openness, since everything is local).

Define F : D → C as

F : z 7→
∫ z

z0

f(ζ) dζ.

The path of integration is taxicabs, and is well-defined by the assumption above. We now compute the

derivative. Fix z ∈ D, and take |h| to be small enough so that z + h ∈ D.

Then we have that

F (z + h)− F (z) =

∫ z+h

z

f(ζ) dζ

=

∫ z+h

z

f(ζ) dζ +

∫ z+h

z

(f(z)− f(z)) dζ

= hf(z) +

∫ z+h

z

f(ζ)− f(z) dζ

F (z + h)− F (z)

h
= f(z) +

1

h

∫ z+h

z

f(ζ)− f(z) dζ.

Now using the ML-inequality we know that∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ = 1

|h|

∣∣∣∣∣
∫ z+h

z

f(ζ)− f(z) dζ

∣∣∣∣∣
≤ 2Mh,

where Mh is the maximum value of |f(ζ)− f(z)| for ζ satisfying |ζ − z| ≤ |h|. Notice: the 2 comes from the

taxicab metric.

Since f(ζ) is continuous at z, Mh → 0 as h→ 0.

Note: We assume f is continuous, so since F ′ = f , we know F ′ is continuous. This means F (z) is

holomorphic and it has continuous derivative. Apply Cauchy integral formula to get f ′ exists and is continuous.
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IV.7. Goursat’s Theorem

We’re going to get rid of Gamelin assumption in definition of holomorphic. Recall: Gamelin assumes

f ′(z0) exists and f
′ is continuous in a neighborhood of z0.

Theorem IV.7.1 (Goursat)

If f(z) is a complex-valued function on a connected open set D such that

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

exists at each z0 ∈ D, then f ′ is continuous onD. Thus f is holomorphic in the sense of Gamelin.

Proof. Idea: Use Morera.

Let R0 be a closed rectangle in D with sides parallel to the coordinate axes. Divide R0 into 4 equally

sized subrectangles S11, . . . , S14. Let R1 be the subrectangle for which∣∣∣∣∣
∫
∂(subrect)

f(z) dz

∣∣∣∣∣
is maximal. Note∣∣∣∣∫

∂R

f(z) dz

∣∣∣∣ = ∣∣∣∣∫
∂S11

f(z) dz +

∫
∂S12

f(z) dz +

∫
∂S13

f(z) dz +

∫
∂S14

f(z) dz

∣∣∣∣
≤ 4

∣∣∣∣∫
∂R1

f(z) dz

∣∣∣∣ .
Induct! Divide R1 into 4-subrectangles and call R2 the subrectangle (of R1) for which

∣∣∣∫∂(subrect) f(z) dz∣∣∣ is
maximal.

In this way, we get a sequence of nested rectangles R =: R0 ⊇ R1 ⊇ R2 ⊇ R3 such that∣∣∣∣∣
∫
∂Rj

f(z) dz

∣∣∣∣∣ ≤ 4

∣∣∣∣∣
∫
∂Rj+1

f(z) dz

∣∣∣∣∣∣∣∣∣∫
∂R

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

∂Rn

f(z) dz

∣∣∣∣ .
As n→ ∞, the rectangles shrink down to a single point (since their diameters shrink to 0), which we call z0.

Furthermore, if L is the perimeter of R, then L
2n is the length of ∂Rn. Now since f(z) is complex

differentiable at z0, we know that for every ε > 0 there exists an N ∈ N so that for all n > N and z ∈ Rn we

have ∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ ≤ ε.

Thus if we let

εn := sup
z∈Rn

∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ ,
we know εn → 0 as n→ ∞.

Now we write

|f(z)− f(z0)− f ′(z0)(z − z0)| ≤ εn |z − z0|
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Consider z 7→ f(z0) + f ′(z0)(z − z0). This is an affine function of z, so it is holomorphic in z, and it has a

primitive G(z) on Rn, so we have∫
∂Rn

f(z0) + f ′(z0)(z − z0) dz = 0∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ = ∣∣∣∣∫
∂Rn

f(z)− f(z0)− f ′(z0)(z − z0) dz

∣∣∣∣
≤
∫
∂Rn

εn |z − z0|dz.

Since |z − z0| is at most Pn/2¡ where Pn = P/2n is the perimeter of Rn and P is the perimeter of R, we have

that ∣∣∣∣∫
∂Rn

f(z) dz

∣∣∣∣ ≤ εn
P

2n
· P

2 · 2n
.

Then we know that ∣∣∣∣∫
∂R

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫

∂Rn

f(z) dz

∣∣∣∣ ≤ εnP
2

2
.

Taking n→ ∞ takes the right hand quantity to 0 and the left hand quantity does not depend on n! Perfect!

Thus the integral is zero and we win by applying Morera!

V. Series!

Stuff:

• HW 5B due tonight!

• HW 6A due Thursday

• HW 6B due next week

• Office Hours: Wednesday + Friday (email with questions!)

• Popcorn? T-shirts Halloween and voting

• Super Saturdays

• Student Seminar Friday 10/7 4pm-5pm EH 3096: Partition Statistics and the S1 method by Faye

Jackson.

Hint for n,m < 0 in HW 5B Q1. Take small circles around 0. Also for HW 5B Q1 note

zz = r2 |dz| = −ir
z

dz.

V.1. Very Quick Review

A sequence of complex numbers is a function n 7→ an ∈ C for n ∈ N. Associated to this is a new sequence

that we can build

m 7→ (sm :=

m∑
k=1

ak)

called the sequence of partial sums. If limm→∞ sm exists, then we say series
∞∑
1
an converges and is equal to

that limit. There are a number of nice tests from real analysis and many extend to complex analysis

• Divergence Test: If
∞∑
1
an converges then an → 0. Caution: Remember the harmonic series.
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Proposition V.1.1

If |z| < 1 then the series

∞∑
n=0

zn =
1

1− z
.

If |z| ≥ 1 then the series diverges.

Proof. Very lucky! Work out what the partial sums are explicitly.

Definition V.1.1

A complex series
∑
ak converges absolutely provided that

∑
|ak| converges.

Theorem V.1.2

If
∑
ak converges absolutely, then

∑
ak converges.

Proof. Write Re(ak) = Re(ak) + |ak| − |ak|. Then since |Re(ak)| ≤ |ak|, we know that

0 ≤ Re(ak) + |ak| ≤ 2 |ak|

Similarly

0 ≤ Im(ak) + |ak| ≤ 2 |ak| .

We then know that the series of non-negative real numbers
∑

Re(ak)+ |ak| and
∑

Im(ak)+ |ak| both converge

by the monotone convergence theorem, since the partial sums are bounded above by 2
∑

|ak|.
Then we see that ∑

Re(ak) =
(∑

Re(ak) + |ak|
)
−
∑

|ak|∑
Im(ak) =

(∑
Im(ak) + |ak|

)
−
∑

|ak|∑
ak =

∑
Re(ak) + i

∑
Im(ak).

Thus
∑
ak converges!

Next: Series of FUNctions!

In Gamelin this is [Gam03, pp. V .2].

Definition V.1.2

The sequence n 7→ (fn : E → C) converges pointwise to f : E → C on E provided that for all x ∈ E,

the sequence n 7→ fn(x) converges to f(x).

Definition V.1.3

The sequence of fuctions n 7→ (fn : E → C) converges uniformly to f : E → C on E provided that for

all ε > 0 there exists an N ∈ N such that for all n > N and for all x ∈ E we have |fn(x)− f(x)| < ε.
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Importantly, the choice of N does not depend on x. An equivalent formulation is to define for

f, g : E → C

∥f − g∥ = sup
z∈C

|f(z)− g(z)| .

Example V.1.1

If we pick fn : [0, 1] → [0, 1] with fn : x 7→ xn then fn(x) → 0 for x ∈ [0, 1) and fn(1) → 1. Thus it

converges, but it’s clear it doesn’t converge uniformly.

Why do we like uniform convergence?

Theorem V.1.3

Let n 7→ (fn : E → C) be a sequence of functions converging uniformly to f : E → C. If all the fn

are continuous on E, then f is continuous on E.

Theorem V.1.4

Let γ ⊆ C be a piecewise smooth curve in the plan. If j 7→ (fj : E → C) is a sequence of continuous

functions on γ converging uniformly to f : E → C then∫
γ

fj(z) dz →
∫
γ

f(z) dz.

We will apply this whole discussion to series! We’ll look at a series of functions
∑
gj(x) and consider when

the partial sums sn(x) =
n∑

j=0

gj(x) converges uniformly to some limit function G.

Stuff:

• HW 6A due tonight (Problem 1 erased).

• HW 6B due Tuesday.

• Math Club

• Math S1.

• Super Saturdays starts this weekend.

• Student Seminar Friday 4pm EH 3096: Circle Method and Applications to Partitions by Faye Jackson.

• HW Hint: (9) Gamelin p119 4. f : C → C is entire and there is an R > 0 so that f(z)/zn is

bounded for all |z| ≥ R. We must show f(z) is a polynomial. What does it mean to show that f

is a polynomial? Show there exists N ∈ N such that f (m)(z) = 0 for all m ≥ N . Fix z ∈ R from

hypothesis, choose r > max(R, |z|). . . .

Theorem V.1.5 (Weierstrass M -test)

Suppose Mk ≥ 0 and
∑
Mk converges. If gk(z) are C-valued on some set E ⊆ C and |gk(z)| ≤ Mk

for all z ∈ E, then
∑
gk(z) converges unifornly on E.

Proof. A Real Analysis Course. See p135 of [Gam03] if you would still like a proof.

Example V.1.2

Consider
∞∑
0
zk 1

1−z for |z| < 1. Is the convergence of the partial sums SN (z) = 1−zN+1

1−z uniform for

|z| < 1?
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No! However, if we take |z| ≤ r for 0 < r < 1, then the convergence is uniform! Namely for Mk = rk

we have
∑
Mk converges, so

∑
zk converges uniformly by the Weierstrass M -test because

∣∣zk∣∣ ≤ rk.

Theorem V.1.6

If {fk(z)} is a sequence of holomorphic functions on a connected open D ⊆ C that converges uniformly

to f : D → C, then f is holomorphic.

Proof. Consider any closed region R in D. Then∫
∂R

f(z) dz = lim
k→∞

∫
∂R

fk(z) dz = 0

Furthermore f is continuous since each fk is continuous. Thus f is holomorphic by Theorem IV.4.1.

Theorem V.1.7

Suppose {fk(z)} is a sequence of functions holomorphic on |z − z0| < R and suppose fk converges

uniformly to f on |z − z0| < R. Then for each fixed 0 < r < R and each fixed m ≥ 1, the sequence of

m-th derivatives {f (m)
k (z)}k converges uniformly to f (m)(z) on |z − z0| ≤ r.

Proof. Suppose we have εk → 0 as k → ∞ is a sequence such that |fk(z)− f(z)| < εk for all |z − z0| < R.

Fix m ≥ 1.

Fix r, s such that 0 < r < s < R. We use the Cauchy integral formula to get

f
(m)
k (z)− f (m)(z) =

m!

2πi

∫
|z−z0|=s

fk(ζ)− f(ζ)

(ζ − z)m+1
dζ

for |z − z0| ≤ r < s. By the triangle inequality we know |ζ − z| ≥ s− r. Thus∣∣∣∣fk(ζ)− f(ζ)

(ζ − z)m+1

∣∣∣∣ ≤ εk
(s− r)m+1

.

The triangle inequality and the ML-estimate yields∣∣∣f (m)
k (z)− f (m)(z)

∣∣∣ ≤ m!

2π(s− r)m+1
· εk · 2πs

for any z satisfying |z − z0| ≤ r. Sending k → ∞ gives uniform convergence of m-th derivatives on |z − z0| ≤
r.

Definition V.1.4

We say that for a sequence of holomorphic functions fk : D → C on a connected open set D ⊆ C
converges normally to f : D → C on D provided that it converges uniformly to f(z) on every closed

disk contained in D.

Some mathematicians instead say “converges locally uniformly.”

Example V.1.3∑
zk converges normally on |z| < 1.

Theorem V.1.8

Suppose fk9z) is a sequence of holomorphic functions on a connected open D ⊆ C. Suppose fk(z)
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converges uniformly to a holomorphic f : D → C. Then for each m ≥ 1 the sequence of m-th derivatives

f
(m)
k (z) converges normally to f (m)(z) onD.

V.2. Power Series

In Gamelin this is [Gam03, p. V.3]

Definition V.2.1

A power series (centered at z0 ∈ C) is a series of the form
∞∑
k=0

ak(z − z0)
k.

Claim

We can reduce just about all conversations of power series centered at z0 to power series centered at

z0 = 0 via the change of variables w = z − z0.

Theorem V.2.1

Let
∑
akz

k be a power series. Then there exists an R, 0 ≤ R ≤ +∞ so that
∑
akz

k converges

absolutely if |z| < R, and
∑
akz

k does not converge if |z| > R.

Furthermore, for each fixed r satisfying 0 ≤ r < R, the series
∑
akz

k converges uniformly on |z| ≤ r.

That is
∑
akz

k converges normally on |z| < R.

Definition V.2.2

This R is called the radius of convergence of the power series.

Proof. Consider the sequence k 7→ |ak| rk. If this sequence is bounded for some r =0, then it is bounded for

all values of r satisfying 0 ≤ r ≤ r0. Define

R := sup{r ≥ 0 | the sequence k 7→ |ak| rk is bounded}.

Here we take sup to be ∞ if the right hand set is unbounded. We just need to show this R has the right

properties.

By construction, for all r < R, k 7→ |ak| rk is bounded, and for all s > R, k 7→ |ak| sk is unbounded.

Back to our series
∑
akz

k . If |z| > R, then the terms akz
k do not go to 0 as k → ∞, so the series does

not converge.

Now suppose |z| ≤ r < R. Choose s such that r < s < R. Then the sequence k 7→ |ak| sk is bounded by

some C ∈ R. If |z| ≤ r, then for all k ≥ 0 we have∣∣akzk∣∣ ≤ |ak| rk = |ak| sk
(r
s

)k
≤ C

(r
s

)k
.

Set Mk = C
(
r
s

)k
. Does

∑
Mk converge? Yes because s > r > 0. By the M -test

∑∣∣akzk∣∣, ∑ akz
k both

converge uniformly for |z| ≤ r. Thus
∑
akz

k converges absolutely and unifomrly on |z| ≤ r.

Gamelin: Examples on p139 [Gam03].

Remark V.2.1

The partial sums of the power series
∑
akz

k are all polynomial functions! Thus they are holomorphic

functions and everything is awesome!
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Theorem V.2.2

Suppose
∑
akz

k is a power series with radius of convergence R > 0. Then the function

f(z) =

∞∑
k=0

akz
k

for |z| < R is holomorphic on |z| < R. Furthermore the derivatives f (m)(z) are obtained as power series

by differentiating the power series term by term. By example

f ′(z) =

∞∑
k=1

kakz
k−1

f ′′(z) =

∞∑
k=2

k(k − 1)akz
k−2.

Moreover, the coefficients ak = f(k)(0)
k! . This is given by evaluating the derivatives above at 0.

Proof. This follows from all of the above.

Example V.2.1∑
zk = 1

1−z , |z| < 1. We also have

1

(1− z)2
=

∞∑
k=1

kzk−1 =

∞∑
m=0

(m+ 1)zm, |z| < 1.

Note, we can also integrate term by term because we have uniform convergence on subdisks |z| ≤ r for

r < R.

Example V.2.2

We can write that for |z| < 1

−Log(1− z) =

∫ ∞

0

dζ

1− ζ
=

∫ z

0

∞∑
k=0

ζk dζ

=
∞∑
k=0

∫ z

0

ζk dz =

∞∑
k=0

zk+1

k + 1
.

Therefore if we set w = 1− z, then for |w − 1| < 1 we have

Logw =

∞∑
k=1

(−1)k

k
(w − 1)k.

How do we compute R?

Example V.2.3

Sarah’s advisor (Hubbard) likes to ask people to compute sup{cos(10n) | n ∈ N}. This exists but is
so difficult to compute you’d probably win a fields medal if you did. . . it’s almost surely equal to 1. . .

Try to reinterpret this as a famous hard problem (it’s not too difficult to do). Hint: 2kπ being

somehow close to 10n. . .

How do we compute it? Recall the Ratio and Root tests from calculus!
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Theorem V.2.3

Let
∑
akz

k be a power series. If
∣∣∣ ak

ak+1

∣∣∣ has a limit as k → ∞ (the limit is allowed to be +∞), then

the limit is equal to R, where R is the radius of convergence of
∑
akz

k.

Proof. Set L = lim
k→∞

∣∣∣ ak

ak+1

∣∣∣. If r < L, then
∣∣∣ ak

ak+1

∣∣∣ > r eventually, say for k ≥ N . Then we have

|ak| > r |ak+1|

for all k ≥ N . Thus

|aN | rN ≥ |aN+1| rN+1 ≥ · · ·

so the sequence k 7→ |ak| rk is bounded. Thus r ≤ R. From this we have that L ≤ R (as if L > R we could

pick an L > r > R).

Suppose next that s > L, then
∣∣∣ ak

ak+1

∣∣∣ < s eventually, say for all k ≥ N . Then

|ak| < s |ak+1| .

Therefore

|aN | sN < |aN+1| sN+1 ≤ · · ·

and akz
k does not go to zero if |z| ≥ s! Thus

∑
akz

k does not converge for |z| ≥ s. It follows then that

L ≥ R. Together we have L = R.

Theorem V.2.4

If k
√
|ak| has a limit as k → ∞ (we allow limit to be +∞). Then

R =
1

limk→∞
k
√

|ak|
,

where R is the readius of convergence of
∑
akz

k.

Proof. See Gamelin.

Remark V.2.2

In the above two theorems we can replace the limit with the limit superior and they still work.

We have seen that
∑
ak(z − z0)

k converges to a holomorphic function inside a disk of convergence

{|z − z0| < R}.
We will now see that ANY function that is holomorphic on a disk can be represented locally by power

series. That is for each z within the disk we can find a power series which converges to the function on a small

ball around z. This latter property is called being analytic, and so we can now use holomorphic/analytic

interchangeably.
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Theorem V.2.5

Suppose that f(z) is holomorphic for |z − z0| < ρ. Then f(z) is represented by the power series

f(z) =

∞∑
k=0

ak(z − z0)
k

for ak = f(k)(z0)
k! on |z − z0| < ρ, and the radius of convergence R of the power series satisfies R ≥ ρ.

Furthermore, for any fixed r with 0 < r < ρ we have

ak =
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)k+1
dζ,

and if |f(z)| ≤M on |z − z0| < r then

|ak| ≤
M

rk
.

We first need a lemma

Lemma V.2.6

Fix z satisfying |z| < r. For |ζ| = r we have

1

ζ − z
=

1

ζ

1

1− z
ζ

=

∞∑
k=0

zk

ζk+1

We claim this converges uniformly for |ζ| = r.

Proof. Weierstrass M -test!

Proof. It suffices to take z0 = 0 by translation. For any fixed r, satisfying 0 < r < ρ, we have

ak =
1

2πi

∫
|ζ|=r

f(ζ)

ζk+1
dζ,

by the Cauchy integral formula. Furthermore if |f(z)| ≤M on |z| ≤ r, then by the Cauchy estimates.

|ak| ≤
M

rk

for k ≥ 0. Furthermore for |z| < r we have convergence of
∑
akz

k then by the Weierstrass M -test! Thus the

radius of convergence R ≥ ρ.

Now fix |z| < r, we have by the Cauchy integral formula and uniform convergence that

f(z) =
1

2πi

∫
|ζ|=r

f(ζ)

ζ − z
dζ

=
1

2πi

∫
|ζ|=r

∞∑
k=0

f(ζ)zk

ζk+1
dζ

=

∞∑
k=0

(
1

2πi

∫
|ζ|=r

f(ζ)

ζk+1
dζ

)
zk

=

∞∑
k=0

akz
k,

and everything must converge.
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Stuff:

• HW 6B due this evening!

• HW 7 is due the 20th, some Gamelin and Qual Exam problems.

• Midterm Tuesday October 25th.

Midterm Information

• Admin:

– In class

– Bring a sheet of notes

– Solo Exam

• Topics:

– Gamelin, everything we have covered through + including stuff in Section V [Gam03]

– Likely problems from Gamelin will be stolen. . .

Definition V.2.3

A function f(z) is analytic on |z − z0| < r provided that there exists a sequence k 7→ ak such that

f(z) =
∞∑
k=0

ak(z − z0)
k. for all z satisfying |z − z0| < r.

A function f(z) is called analytic at z0 provided there is a neighborhood of f on which f is analytic

(i.e, agrees with a power series).

A function f is holomorphic on |z − z0| < r if and only if f is analytic on |z − z0| < r.

Example V.2.4

Let z 7→ exp(z). This is entire, and so it has a power series about 0 which converges everywhere. In

fact

exp(z) =
zk

k!

Corollary V.2.7 (of Theorem V.2.5)

Syppose f(z) and g(z) are analytic for |z − z0| < r. If g(k)(z0) = f (k)(z0) for all k ≥ 0, then g = f

on |z − z0| < r.

The above is known as a rigidity theorem. The tagline is that

“Analytic functions are extremely rigid”

Corollary V.2.8 (p146, [Gam03])

Suppose f(z) is analytic at z0 with power series expansion f(z) =
∑
ak(z − z0)

k. Then the radius

of convergence of the power series is the largest R such that f(z) extends to be analytic on the disk

{|z − z0| < R}.
That is there is an analytic g on |z − z0| < R given by the power series which agrees with f on the

restriction to any disk about z0 where both f and g are defined.

Tagline: “Radius of convergence is the distance from z0 to the nearest singularity.”
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Warning: f may be defined on a larger domain and disagree with the extension g at some

points.

Example V.2.5

Consider f : R → R given by x 7→ 1
1+x2 . Is this R-analytic at x0 = 0. Yes! The series is given by∑

(−x2)k whenever
∣∣−x2∣∣ < 1, that is |x| < 1. There are different power series expansions about say 2.

Why do you hit an obstruction at ±1??? YOU DON’T. You are actually crashing into ±i for the
complex function F : C \ {±i} → C given by z 7→ 1

1+z2 .

The complex numbers are showing us things that the real numbers cannot show us!!!

There is a definition of power series at ∞ given in Gamelin. Recall that f(z) is holomorphic at z = ∞
means that g(w) = f

(
1
w

)
is holomoprhic at w = 0.

Section V.6 of [Gam03] is about algebraic manipulation of series and details of this.

V.3. Zeros of Analytic Functions

Definition V.3.1

We say that f(z) has a zero of order N at z0 provided that

f(z0) = f ′(z0) = · · · = f (N−1)(z0) = 0

and f (N)(z0) ̸= 0. This happens if and only if we can write f(z) = (z − z0)
Nh(z) for some holomorphic

function h(z) and h(z0) =
f(N)(z0)

N ! ̸= 0. Note h is only defined about some disk about z0.

This all happens if and only if the power series expansion has the form

f(z) = aN (z − z0)
N + aN+1(z − z0)

N+1 + · · ·

where aN ̸= 0.

Definition V.3.2

Let E ⊆ C. We say that a point x ∈ C is an accumulation point of C provided that for all open

U ⊆ C which contain x, we have E ∩ (U \ {x}) ̸= ∅.
To say E is isolated is to say that it has no accumulation points.

Restricting our attention to points in E, we have

E = accumulation points of E in E ⊔ isolated points in E.

For a closed set S, to say S is isolated is equivalent to saying that for any s ∈ S there is an open ball

B(s, ε) so that B(s, ε) contains no points of S except for s.

I.e. it is equivalent to saying S consists only of isolated points.

Theorem V.3.1

Let D ⊆ C be open and connected, and let f : D → C be analytic. Now suppose that f is not

identically zero. Then the zeros of f are isolated, that is they have no accumulation points.

That is given any zero z0 of f , we can find a neighborhood of z0 that contains no other zero of f .
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Proof. Note that any accumulation point would necessarily be a zero of f by continuity of f . We start by

showing that

Claim

If z0 is a zero of f , then it has finite order (as a zero).

Let U = {z ∈ D | f (m)(z) = 0 for all m}. If z0 ∈ U , then the power series
∑
ak(z − z0)

k has zero

coeffficients, and is equal to f on a disk centered at z0. Thus U is open. To see that U is closed, note

that

U =
⋂
m

(f (m))−1({0}),

and all the f (m) are continuous, so U is closed. Thus either U = ∅ or U = D by the connectedness of D.

if U = D then f is identically zero, so U = ∅.

Now suppose z0 ∈ D is a zero of f , necessarily of finite order N . We may write f(z) = (z − z0)
Nh(z) for

h(z) analytic at z0 and h(z0) ̸= 0.

For ρ sufficiently small we have h(z) ̸= 0 for all |z − z0| < ρ. Therefore f(z) cannot be zero for those z

satisfying 0 < |z − z0| < ρ! Thus the zeros at z0 are separated from other zeros of f .

Theorem V.3.2 (Uniqueness Principle)

If f(z) and g(z) are analytic on a connected open set D ⊆ C, and if f(z) = g(z) on a set that has an

accumulation point lying in D, then f(z) = g(z) everywhere.

Proof. Apply the above!

Stuff:

• HW 7 Due Friday October 21st, 11:59pm

• Problem 3

– Setup: j 7→ gj , nowhere vanishing entire, and we have j 7→ pj polynomials with deg(pj) ≤ 10.

– fj := gjpj converges locally uniformly on C to f : C → C. Then f = g · p, where g is nowehre

vanishing and entire, p is a polynomial. What do we know about deg(p)?

– This requires Hurwitz’s theorem, so we will delay this problem until later!

Last time: Powerful result! Analytic functions.

We saw that if f(z) is not identically zero on a connected open set D ⊆ C, and if z0 ∈ D is a zero of f ,

then z0 has a finite order as a zero; i.e., f(z) = (z − z0)
N · h(z) where h(z0) ̸= 0 is analytic locally about z0.

We used this to show that the zeros of f (when f is not identically zero) are isolated from each other.

We were then able to prove the uniqueness principle: if f, g are analytic on a connected open set D ⊆ C
and f(z) = g(z) for z belonging to a set with an accumulation point then f = g on D.

Cool application: Let g(z) be an entire function such that g(x) = exp(x) for all x ∈ R, and then

g(z) = exp(z).
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V.4. The Open Mapping Theorem

Pause: Topology Break!

Definition V.4.1

Let X,Y be topological spaces, a map f : X → Y is called open provided that for every open U ⊆ X

we have f(U) ⊆ Y is open.

Example V.4.1

Projection X × Y → X taking (x, y) 7→ x. The identity map. Conway’s base 13 function is an

example of an open map which is not continuous. It is given by writing a real number x in base 13, using

the additional symbols {+,−, .}, and saying x maps to a number if some tail of the base 13 expansion

is a valid base 10 number (and we take the longest such tail). If no such tail exists then we send x to 0.

The function R → R taking x 7→ x2 is not open since the image of R is [0,∞). Similarly the map

F : C → R with F (z) = |z| is not open, since F (C) = [0,∞). However these are “close” to being open

in some sense.

Another nonexample is the constant function z 7→ 57 + 53i.

An example of an open map are affine maps f : C → C wiht z 7→ az + b for a ̸= 0 since they are

homeomorphisms.

Remark V.4.1

If f : U → C is holomorphic with f ′(z) ̸= 0 for all z ∈ U , then f is locally invertible. Thus f is a

local homeomorphism, and so f must be open. This is a consequence of the inverse function theorem.

Exercise V.4.2

Show a local homoemorphism must be open. More generally show that being open is a “local” property

(appropriately define this as well).

Example V.4.3

The map z 7→ zk on C for k ≥ 1 is open. Yes! We only have to worry about points where f ′(z) = 0.

Thus we only need to worry about z = 0.

Working with a basis of the topology, take a small open disk of radius r > 0 about 0, this maps to a

small open disk of radius rk about 0, with k preimages for each point. Great!

Theorem V.4.1 (Open Mapping Theorem)

Let D ⊆ C be open and connected and let f : D → C be a nonconstant holomorphic function. Then

f is an open map.

Proof. We only need to worry about z0 ∈ D where f ′(z0) = 0, since it is a local homeomorphism elsewhere.

Since f is nonconstant, we know that f ′ ̸≡ 0 (not identically zero). Thus there exists a minimal k ≥ 1

such that f (k)(z0) ̸= 0. There is then some disk |z − z0| < ρ in D so that

f(z) = f(z0) + ak(z − z0)
k · h(z)

with ak ̸= 0, h(z0) = 1, and h(z) analytic. We know the map z 7→ zk is locally invertible in a neighborhood

of z = 1. Let g be a local inverse.
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When z is close to z0, h(z) is close to 1, and so in a neighborhood of z0 we have (g(h(z)))k = h(z). Thus

we can look at

f(z) = f(z0) + ak((z − z0) · g(h(z)))k

This is a composition of open maps near z0 (translation, powering, and a mystery function) since

d

dz
(z − z0)g(h(z))

∣∣∣
z=z0

=
[
(z − z0)g

′(h(z))h′(z) + g(h(z))
]
z=z0

= g(h(z0)) = 1.

Perfect! This shows that f is open near z0 as desired!

Back to Gamelin!

V.5. Analytic Continuation

This is section V.8 in [Gam03]. There are no homework problems / QR problems on this part especially

anything with paths/monodromy.

Definition V.5.1

Let U ⊆ V ⊆ C be open and connected. Now let f : U → C be analytic. We call F : V → C an

analytic continuation provided that F
∣∣
U
= f .

Example V.5.1

Define f(z) =
∑

k

(
z
2

)k
for |z| < 2. Well when |z| < 2 we have

f(z) =
2

2− z
.

We can expand f(z) at z0 = −1 to get a different series

f(z) =
2

2− (z + 1− 1)
=

2

3− (z + 1)
=

2

3
· 1

1− (z+1)
3

=
2

3
·

∞∑
k=0

(
z + 1

3

)k

,

which is valid for |z + 1| < 3.

This gives an analytic continuation!

END OF MIDTERM I MATERIAL

MIDTERM I is in class October 25th

How do we extend analytic functions? Especially important for things like the Riemann ζ function.

Lemma V.5.1

Let D ⊆ C be open and connected and let f(z) be analytic on D. Now let R(z1) be the radius of

convergence of the power series expansion about z1 ∈ D. Then in fact

|R(z1)−R(z2)| ≤ |z1 − z2| .

Proof. Gamelin!
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We say that f(z) is analytically continuable along γ ⊆ C if for each t ∈ [a, b] there exists a convergent

power series

ft(z) =

∞∑
n=0

an(t)(z − γ(t))n

for |z − γ(t)| < r(t) such that fa(z) is the power series representation for f(z) at z0 = γ(a) and when s ∈ [a, b]

is near t ∈ [a, b], then fs(z) = ft(z) for z in the intersection of the disks in convergence.

By the uniqueness principle, the series ft(z) determines uniquely each of the series fs(z) for s near t.

Theorem V.5.2

Suppose f(z) can be continued analytically along the path γ for t ∈ [a, b]. Then the analytic

continuation is unique.

Example V.5.2

Take f(z) to be the principal branch of the square root function, and γ(t) = eit.

In a neighborhood of z = 1 we have

f(z) = 1 +
1

2
(z − 1)− 1

8
(z − 1)2 + · · ·

We may then change centers to get

ft(z) = eit/2 +
e−it/2

2
(z − eit)− e−3it/2

8
(z − eit)2 + · · ·

f2π(z) = −1− 1

2
(z − 1) +

1

8
(z − 1)2 − · · · .

It turns out f2π gives us the other branch of the square root. The fancy way of saying this is we picked

up monodromy.

Stuff:

• Exam on Tuesday October 25th in class (full time)

• HW 7 due tomorrow

• Office Hours on Friday 1-2:30pm EH3855

• Math Club!

• Popcorn Thursdays/Bagel Sundays!

• Super Saturdays!

• Voting t-shirts

• Student seminar tomorrow (Topic: Conway’s topograph by Xuyan), EH 3096 4pm-5pm.

No content from today on the midterm. HW8 will be based on today and will be received tuesday after

midterm.

VI. Laurent Series

VI.1. Laurent Decomposition

This is Gamelin Ch. VI, 1-4 [Gam03], and [Ahl53] 5.1.
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Motivating Question: Let D ⊆ C be open and connected, and let

A(D) := {f : D → C | f is analytic on D}.

How do we understand this?

Example VI.1.1

If D = BR(z0) or D = C then

A(D) =

{
f(z) =

∞∑
k=0

ak(z − z0)
k | lim sup

k→∞
|ak|1/k ≤ 1

R

}
.

Example VI.1.2

Consider D = Ĉ \Br(0). That is analytic on an open disk about ∞.

This is D = {|z| > r} ∪ {∞}. Setting w = 1/z. This is the same as

A(D) = {f | f(z) analytic on |z| > r and z = ∞}

∼= {g | g(w) analytic on |w| < 1/r}.

What about the intersection of these? This will be an annulus, and the space A(D) will be larger, as the

domain is smaller and so it is easier to be analytic here.

Theorem VI.1.1 (Laurent Decomposition Theorem)

Suppose 0 ≤ ρ < σ ≤ ∞ and suppose f(z) is analytic for ρ < |z − z0| < σ. That is, suppose f is

analytic on an annulus

ρ

σ

z0

Then f(z) can be decomposed as a sum f(z) = f0(z)+ f1(z) where f0(z) is analytic on |z − z0| < σ and

f1(z) is analytic on |z − z0| > ρ and at z = ∞.

If we normalize so that f1(∞) = 0, then this decomposition is unique.

Proof of Uniqueness. Suppose we have f(z) = f0(z) + f1(z) = g0(z) + g1(z), and normalize so that f1(∞) =

g1(∞). Then we have that

g0(z)− f0(z) = f1(z)− g1(z)

for all ρ < |z − z0| < σ. We know that g0(z) − f0(z) is analytic on |z − z0| < σ. Likewise f1(z) − g1(z) is

analytic in |z − z0| > ρ and at z = ∞. We may define

h : C → C
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z 7→

{
g0(z)− f0(z) if |z − z0| < σ

f1(z)− g1(z) if |z − z0| > ρ
.

We see that h is entire, and

lim
z→∞

h(z) = f1(∞)− g1(∞) = 0.

Thus h is bounded on C, and so it is a constant by Liouville’s Theorem. Thus h = 0, showing that

g0 = f0, f1 = g1.

Proof of Existence. We will use the Cauchy integral formula. Choose r and s so that ρ < r < s < σ. Call

the annulus r < |ζ| < s, A. Then keeping track of orientations we have

f(z) =
1

2πi

∫
∂A

f(ζ)

ζ − z
dζ

=
1

2πi

(
−
∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ +

∫
|ζ−z0|=s

f(ζ)

ζ − z
dζ

)
.

Define

f0(z) :=
1

2πi

∫
|ζ−z0|=s

f(ζ)

ζ − z
dζ

f1(z) := − 1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z
dζ.

We know f0 is defined on |z − z0| < s, and f1 is defined on |z − z0| > r.

HW 4A (up to small changes) shows that they’re analytic on these areas (note we’re only plugging in

ζ on the region where f is continuous). Although this depends on r, s, because of the uniqueness of the

decomposiion in fact f0, f1 must not depend on our choice of r, s!

Question: Can we get independence of the decomposition with only Cauchy integral formula?

Express f1(z) as a power series in 1
z−z0

, then

f1(z) =

−1∑
k=−∞

ak(z − z0)
k, |z − z0| > ρ

Note f1(∞) is the constant term, in this series which is 0. The series for f1(z) converges absolutely for any

r > ρ, and it converges uniformly for |z − z0| ≥ r.

f(z) =

∞∑
k=−∞

ak(z − z0)
k = lim

K→∞

(
K∑

k=0

ak(z − z0)
k +

−1∑
k=−K

ak(z − z0)
k

)
.

when ρ < |z − z0| < σ. This converges absolutely and converges uniformly for ρ < r ≤ |z − z0| ≤ s < σ.

How do we get coefficients? Namely what’s a formula for ak? Well let ρ < r < s < σ. We know

f(z) =

∞∑
−∞

ak(z − z0)
k
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How do we extract an for n ∈ Z, divide both sides by (z − z0)
n+1 and integrate. Then∫

|z−z0|=r

f(z)

(z − z0)n+1
dz =

∫
|z−z0|=r

1

(z − z0)n+1

∞∑
−∞

ak(z − z0)
k.

We have uniform convergence, so we can swap integral and series to get

∞∑
−∞

ak

∫
|z−z0|=r

(z − z0)
k−n−1 dz = 2πian,

because only the integral where k − n− 1 = −1 does not vanish! Therefore

an =
1

2πi

∫
|z−z0|=r

f(z)

(z − z0)n+1

Example VI.1.3

Let f(z) = 1
z−z2 , which is defined for z ̸= 0, 1.

Let z0 = 0. We want to find the Laurent series decomposition. We do this using partial fractions,

but in fact this depends on the annulus we consider!!! If we take ρ = 0, σ = 1, then we get

f(z) =
1

z︸︷︷︸
f1

+
1

1− z︸ ︷︷ ︸
f0

=
1

z
+

∞∑
k=0

zk

=

which is valid for |z| < 1.

If we take ρ = 1, σ = ∞, then we get f0 = 0 and f1 = 1
z−z2 . Then

f(z) =
−1

z2
· 1

1− 1
z

=

∞∑
k=0

−z−k−2.

which converges for |z| > 1.

Theorem VI.1.2 (Laurent Series Expansion)

Suppose 0 ≤ ρ < σ ≤ ∞ and suppose f(z) is analytic on the annulus ρ < |z − z0| < σ. Then f(z)

has a Laurent series expansion that converges absolutely at each point in the annulus and converges

uniformly on each subannulus r ≤ |z − z0| ≤ s, where ρ < r < s < σ.

The coefficients are uniquely determined by f(z) and given as

an =
1

2πi

∫
|z−z0|=r

f(z)

(z − z0)n+1
dz.

VI.2. Isolated Singularities

Definition VI.2.1

A point z0 ∈ C is an isolated singularity of f(z) if f(z) is analytic in a punctured disk centered at z0.

Example VI.2.1

f(z) = 1/z

54



Faye Jackson October 27th, 2022 MATH 596 - VI.2

Non-Example VI.2.2

Log(z) does not have an isolated singularity at z = 0. There is no argument function on any

neighborhood of 0.

Isolated singularities come in 3 types.

Definition VI.2.2

The isolated singularity of f(z) at z0 is said to be removable if a Laurent series about z0 has ak = 0

for all k < 0.

In this case, the Laurent series becomes an honest power series, and f(z) can be continued analytically

to z0 with f(z0) = a0.

Example VI.2.3

f(z) = sin z
z has an isolated singularity at z = 0. This is a removable singularity since

sin z

z
= 1− z2

3!
+
z4

5!
− · · · .

Stuff:

• HW 8A due tonight

• HW 8B due Tuesday

• Math Club 4pm-5pm today

• Math Circle 6:30-8pm today

• Bagel Sunday/Popcorn Thursdays

• Super Saturdays 9:30am-12pm Saturday

Recall VI.2.4

A point z0 ∈ C is an isolated singularity of f(z) provided that f(z) is holomorphic in a punctured

disk {0 < |z − z0| < r}.

Example VI.2.5

Let f(z) = 1
z−53 , this has an isolated singularity at z0 = 53.

Non-Example VI.2.6

The complex logarithm Log(z). One cannot define the logarithm on any neighborhood of 0.

There are three types of isolated singularities. Set up: Let f(z) have an isolated singularity at z0. Expand

f(z) in a Laurent series about z0

f(z) =

∞∑
k=−∞

ak(z − z0)
k

which is valid for 0 < |z − z0| < r.

Definition VI.2.3

The three types of singularities are

(I) ak = 0 for all k < 0, in which case we say z0 is a removable singularity

(II) ak ̸= 0 for finitely many k < 0 (and at least one), in which case we say z0 is a pole.
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(III) ak ̸= 0 for infinitely many k < 0, in which case we call z0 an essential singularity

Note: If z0 is a removable singularity, then we can define f(z0) = a0, and this make f analytic in the

whole disk |z − z0| < r since the Laurent series is just a power series.

Example VI.2.7

If f(z) = sin(z)
z then the Laurent series is

1− z2

3!
+
z4

5!
+ · · · ,

and the singularity at z = 0 is removable, so f can be extended to an entire function with f(0) = 1.

What can we say at f(z) when z is close to a removable singularity z0? The limit should exist!

• It should have lim
z→z0

f(z) is some complex number.

• f can be extended continuously

Even better!

Theorem VI.2.1 (Riemann’s Removable Singularity Theorem)

Let z0 be an isolated singularity of f(z). f is bounded near z0 if and only if f(z) has a removable

singularity at z0.

Proof. The converse is immediate from the above discussion. For the forward direction, expand f(z) in a

Laurent series

f(z) =

∞∑
k=−∞

ak(z − z0)
k

on 0 < |z − z0| < ρ. We know from before that

ak =
1

2πi

∫
|z−z0|=r

f(z)

(z − z0)k+1
dz

where 0 < r < ρ. We want ak = 0 for all k < 0. We know f(z) is bounded near z0 so there exists an M so

that |f(z)| ≤M for all 0 < |z − z0| < ρ (possibly making ρ smaller).

Using the ML-estimate yields

|ak| =
2πr

2π

M

rk+1
=
M

rk
.

If k < 0 then this tends to 0 as r → 0.

Definition VI.2.4

The isolated singularity of f(z) at z0 is called a pole of order N if there exists an N > 0 such that

a−N ̸= 0 but ak = 0 for all k < −N .

In this case

f(z) =

∞∑
k=−N

ak(z − z0)
k.
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In this case, we collect the terms with negative powers of (z − z0):

P (z) := Pf (z; z0) :=

−1∑
k=−N

ak(z − z0)
k

which we call the principal part of f at z0. This is a piece of the Laurent decomposition from last week.

Example VI.2.8

f(z) = 1/z has a pole of order 1 at z0 = 0, and

g(z) =
1

(z − 53)2(z + 57)

which has a pole of order 2 at z0 = 53 and a pole of order 1 at z0 = −57.

Theorem VI.2.2

Let z0 be an isolated singularity of f(z0). Then z0 is a pole of order N if and only if we may write

f(z) =
g(z)

(z − z0)N

where g(z) is analytic at z0 and g(z0) ̸= 0.

Proof. First for the forward direction. Give the Laurent expansion as

f(z) =

∞∑
n=−N

an(z − z0)
n =

1

(z − z0)N

∞∑
n=0

an−N (z − z0)
n,

let g(z) be the right hand power series, then g(z0) = a−N ̸= 0, and we win!

For the other direction, just expand g(z) as a power series about z0 and then divide through to get a

Laurent series for f .

Example VI.2.9

f(z) = ez

(z−1)5 has a pole at z0 = 1 of order 5.

Theorem VI.2.3

Let z0 be an isolated singularity of f(z). Then z0 is a pole of f(z) of order N if and only if 1
f(z) is

analytic at z0 with a zero of order N .

Proof. Use the previous theorem! [Gam03].

Example VI.2.10

Consider f(z) = 1
sin(z) . This has isolated singularities at all z0 = nπ, for n ∈ N. What kind of

singularities are they?

Well we can use the previous theorem! First check that 1
sin(z) is unbounded near these points, so it’s

not removable (work over R). The previous theorem tells us to look at sin(z), which has simple zeros

(zeros of order 1) at each z = nπ, so 1
sin(z) has simple poles at z = nπ.
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Quick calculation:

sin(z) = sin(z − nπ + nπ) = cos(nπ) sin(z − nπ) = (−1)n
[
(z − nπ)− (z − nπ)3

3!
· · ·
]
.

Definition VI.2.5

We say that a function f : D → C is meromorphic on a connected open set D ⊆ C provided that f(z)

is analytic on D except possibly at isolated singularities, each of which is a pole.

Sums/Products/Quotients (as long as denominator is not identically zero).

Theorem VI.2.4

Let z0 be an isolated singularity of f(z). Then z0 is a pole if and only if |f(z)| → ∞ as z → z0.

Proof. Suppose z0 is a pole of f(z) of order N . Write f(z) = g(z)
(z−z0)N

. Then

lim
z→z0

|f(z)| = lim
z→z0

∣∣∣∣ g(z)

(z − z0)N

∣∣∣∣ = ∞

since g(z0) ̸= 0, and g is continuous.

For the other direction, suppose |f(z)| goes to ∞ as z → z0. Then since f is not identically zero, we know

f(z) is nonzero in a punctured disk around z0. Here set

h(z) :=
1

f(z)
,

which is analytic on this punctured disk and has h(z) → 0 as z → z0. Then Riemann’s theorem applies and

h(z0) = 0. If N is the order of the zero that h has at z0, then

f(z) =
1

h(z)

has a pole of order N at z0.

Definition VI.2.6

The isolated singularity of f(z) at z0 is said to be essential provided that ak ̸= 0 for infinitely many

k < 0.

Example VI.2.11

f(z) = exp(1/z) has an essential singularity at z = 0.

We now state some theorems to prove next time.

Theorem VI.2.5 (Casorati-Weierstrass, 1868)

Suppose z0 is an isolated singularity of f . Then z0 is an essential singularity if and only if for every

complex number w, there exists a sequence zn → z0 so that f(zn) → w.

On the suggestion of Sarah. Here is a discord link for everyone!

https://discord.gg/SFc3QmXMhm

We now move to proving the Casorati-Weierstrass Theorem from last time

Proof of Theorem VI.2.5. The converse is immediate from our characterization of poles/removable singulari-

ties.
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We prove the forward direction via contrapositive. Suppose w0 ∈ C is not the limit of such a sequence

f(zn) (where zn → z0). Then the image of f avoids some neighborhood of w0 when z is near z0.

In other words, there exists an ε > 0 such that |f(z)− w0| > ε for all z near z0. We may define

h(z) =
1

f(z)− w0
.

This is bounded near z0 and analytic on a punctured disk around z0, and so by Riemann’s theorem, h(z) can

be extended analytically near z0. We may then write

h(z) = (z − z0)
Ng(z)

for some N ≥ 0, and some analytic g(z) with g(z0) ̸= 0.

This immediately implies that

f(z)− w0 = (z − z0)
−N · 1

g(z)
,

with 1
g(z) analytic on a disk around z = z0. If N = 0, then f(z) = w0 +

1
g(z) and z0 is a removable singularity

of f . If N > 0, then f(z) has a pole of order N at z0.

In either case, z0 is NOT an essential singularity of f(z).

Stay tuned for the Great Picard Theorem, to be proved later!!!

Theorem VI.2.6 (Great Picard Theorem)

If an analytic function f(z) has an essential singularity at z0, then on any punctured neighborhood

of z0, f(z) takes on all possible complex values with at most one exception!

Example VI.2.12

exp(1/z), with its essential singularity at 0. The only point not hit on a neighborhood of 0 is 0 itself

(since the exponential is always nonzero).

Why is it only one point? There is some sort of intuition that Sarah has about C,C \ {a} both being

Euclidean, whereas C \ {a, b} (or more) is hyperbolic. . . hmmmmm

VI.3. Singularities at ∞

We want to define what it means for f(z) to have isolated singularities at ∞. We analyze f(1/w) at w = 0,

and just look there. Compare with Gamelin discussion of analytic functions at ∞, namely [Gam03, V.5,

p149]

VI.4. Partial Fractions decompositions

We say a function f(z) is meromorphic on D ⊆ Ĉ provided that f(z) is analytic on D except possibly at

isolated singularities each of which is a pole.

Möbius transformations!!! We once made a claim that

Aut(Ĉ) = Möb,

we proved ⊇, but we have not shown ⊆. Can we do it now?
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Theorem VI.4.1

A meromorphic function on Ĉ must be a rational map.

Proof. See HW 10!

VII. Residue Calculus

This section will give you the ability to evaluate real integrals by shifting to the complex plane. A

cautionary quote from Ahlfors:

“Even complete mastery does not guarantee success” /

VII.1. The Residue Theorem

Suppose f(z) has an isolated singularity at z0 and write f(z) as a Laurent Series

f(z) =

∞∑
n=−∞

an(z − z0)
n,

which is valid for some annulus 0 < |z − z0| < ρ. Then we say that

an =
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z)n+1
dζ

where 0 < r < ρ. One of these is more special than the others! Namely

a−1 =
1

2πi

∫
|ζ−z0|=r

f(ζ) dζ.

In fact, a−1 is special because it is an invariant of the one-form f(ζ) dζ. It does not change when we change

coordinates!

Definition VII.1.1

We define the residue of f(z) at z0 to be the coefficient of a−1 of 1
z−z0

in the Laurent series. We

define notation for the residue as

Res[f(z), z0] := a−1.

Example VII.1.1

We have

Res

[
1

z − 57
, 57

]
= 1

Res

[
1

(z − 53i)2
, 53i

]
= 0

Res

[
z3 + z + 1

z2 + 1
,−i
]
?

Well, use partial fractions

f(z) =
z3 + z + 1

z2 + 1
= z − 1

2i
· 1

z + i
+

1

2i
· 1

z − i
.
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Then

Res

[
z3 + z + 1

z2 + 1
,−i
]
= − 1

2i
=
i

2
.

Example VII.1.2

Let’s look at

f(z) =
sin(z)

z6
=

1

z6

(
z − 1

6
z3 +

1

120
z5 − 1

7!
z7 + · · ·

)
=

1

z5
− 1

6

1

z3
+

1

120
· 1
z
− z2

7!
+ · · ·

this has a pole at z = 0 of order 5, and

Res[f(z), 0] =
1

120
.

Theorem VII.1.1 (Residue Theorem)

Let D ⊆ C be bounded, open, and connected with ∂D being piecewise smooth. Now suppose that

f(z) is analytic on D ∪ ∂D except for a finite number of isolated singularities z1, z2, . . . , zm in D. Then∮
∂D

f(z) dz = 2πi

m∑
j=1

Res[f(z), zj ].

Proof. Punch out tiny ε-disks about each singularity, and call the new region Dε. By Cauchy’s Theorem, we

have that ∮
∂Dε

f(z) dz = 0 <

since f is holomorphic here. But then∮
∂Dε

f(z) dz =

∮
∂D

f(z) dz −
m∑
j=1

∮
|z−zj |=ε

f(z) dz.

The latter piece is equal to the residues as desired. The minus sign comes from an orientation flip.

Residue Rules/Recipes:

Rule 1: If f(z) has a simple pole at z0 then Res[f(z), z0] then

Res[f(z), z0] = lim
z→z0

f(z)(z − z0),

which we can derive from the Laurent expansion

f(z) =
a−1

z − z0
+ a0 + a1(z − z0) + · · · .

Rule 2: If f(z) has a double pole at z0, then

Res[f(z), z0] = lim
z→z0

d

dz
((z − z0)

2f(z)).
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This can be seen since (z − z0)
2f(z) has the form

(z − z0)
2f(z) = a−2 + a−1(z − z0) + a0(z − z0)

2 + · · · . d
dz

((z − z0)
2f(z)) = a−1 + 2a0(z − z0) + · · · .

Rule 3: If f(z) and g(z) are analytic at z0 and if g(z) has a simple zero at z0, then

Res

[
f(z)

g(z)
, z0

]
=
f(z0)

g′(z0)
.

Why? Well f(z)/g(z) has at “worst” a simple pole at z0, and then apply rule #1.

Rule 4: While this is just rule 3, Gamelin says it is so darn useful. If g(z) is analytic and has a simple zero

at z0, then

Res

[
1

g(z)
, z0

]
=

1

g′(z0)
.

Rule 1: We see that 1
z2+1 has a simple pole at i, so

Res

[
1

z2 + 1
, i

]
= lim

z→i
(z − i)

1

z2 + 1

= lim
z→i

1

z + i
=

1

2i
.

Rule 2: We see 1
(z3+1)z2 has a double pole at 0, so

Res

[
1

(z3 + 1)z2
, 0

]
= lim

z→0

d

dz

1

z3 + 1

= lim
z→0

(z3 + 1)−2(−3z2) = 0.

Rule 3: Since sin(z) has a simple zeto at z = π we see

Res

[
ez

sin z
, π

]
=

eπ

cosπ
= −eπ

Exercise VII.1.3

Compute the residues of f(z) = 1
zn+1 at its poles. Recall that it has poles at the 2n-th roots of unity

which are not also n-th roots of unity since z2n − 1 = (zn + 1)(zn − 1).

VII.2. Integrals of Rational Functions

We want to compute something like
∫∞
−∞

dx
1+x2 . Consider f(z) =

1
1+z2 . Consider a contour ∂DR consisting

of a semi-circle ΓR from R to −R of radius R about 0 and a line segment [−R,R] (with the counterclockwise

orientation). This encloses a region DR which contains i if R > 1, so∮
∂DR

f(z) dz = 2πiRes[f(z), i] = 2πi lim
z→i

z − i

z2 + 1

= 2πi lim
z→i

1

z + i
= π.

We know that

π =

∮
∂DR

f(z) dz =

∫ R

−R

dx

1 + x2
+

∫
ΓR

dz

1 + z2
.
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We claim that as R→ ∞ that
∫
ΓR

dz
1+z2 → 0. This comes from the ML-estimate, if z ∈ ΓR then for R > 1,∣∣∣∣ 1

1 + z2

∣∣∣∣ ≤ 1

R2 − 1
.

Then ∣∣∣∣∫
ΓR

dz

1 + z2

∣∣∣∣ ≤ 1

R2 − 1
2πR,

which goes to 0 as R→ ∞. This tells us that

lim
R→∞

∫ R

−R

dx

1 + x2
= π.

Stuff:

• Math Club Today!

• Math S1 tonight 6:30pm-8pm!

• Popcorn 4:30pm

• Bagel Sunday at 11:30am

• Free voting t-shirts

• Super Saturdays!

• Extra Halloween Shirts / Free voting shirts

• Student seminar Friday 4pm EH3096 “Combinatorial reciprocity via Möbius functions.”

• Undergrad student advisory council 1-2pm atrium.

Last time: Residue theorem! Evaluating real integrals!

The same techniques from last time can evaluate integrals of the form∫ ∞

−∞

P (x)

Q(x)
dx,

where P,Q are real polynomials where Q has no real zeros and degQ ≥ degP + 2. In this case we’ll have∫ ∞

−∞

P (x)

Q(x)
dx = 2πi

∑
Res

[
P (z)

Q(z)
, zj

]
,

where each zj is a zero of Q within the upper half-plane. This method can be used to evaluate other integrals

too! Consider ∫ ∞

−∞

p(x)

q(x)
cos axdx,

where a > 0 and p, q are polynomials of the form mentioned above. We would like to complexify. The

simplest candidate is

p(z)

q(z)
cos az =

p(z)

q(z)
· e

iaz + e−iaz

2
.

But cos az is unbounded in the upper half plane. . . this causes problems for us. Instead we’ll use eiz and

apply real and imaginary parts at the end of the calculation. In particular, we’ll look at f(z) = p(z)
q(z)e

iaz.
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Example VII.2.1

Show
∫∞
−∞

cos ax
1+x2 dx = πe−a when a > 0. We can look at f(z) = eiaz

1+z2 . We’ll look at our favorite

contour ∂D given by the semi-circle ΓR and the interval [−R,R].
We see by the residue theorem and our Rule 3 that∫

∂D

eiaz

1 + z2
dz = 2πiRes[f(z), i] = 2πi

eiaz

2z

∣∣∣
z=i

=
2πie−a

2i
= πe−a.

Now we see via the ML-estimate that since
∣∣eiaz∣∣ ≤ 1 in the upper half plane (since a > 0) that∫

ΓR

eiaz

1 + z2
dz ≤ πR · 1

R2 − 1
,

which goes to 0 as R→ ∞. Thus

lim
R→∞

∫
∂D

eiaz

1 + z2
dz = lim

R→∞

∫ R

−R

eiaz

1 + z2
dz.

Applying what we’ve already done, this yields

πe−a =

∫ ∞

−∞

eiax

1 + x2
dx,

which upon taking Real parts of both sides yields the desired result.

VII.3. Integrals of Trig Functions

Previous plan: Start with real integral + complexify, integrate over a “good” contour, take limit and we’re

happy.

Now we have things of the form ∫ 2π

0

dθ

5 + 4 sin θ
.

How can we use complex analysis to integrate this. Well we use the common substitution z = eiθ. Then

dz = iz dθ. Furthermore, we have some nice identities for |z| = 1, namely z = 1/z = e−iθ and

cos θ =
1

2

(
z +

1

z

)
sin θ =

1

2i

(
z − 1

z

)
.

Example VII.3.1

Let’s actually compute
∫ 2π

0
dθ

5+4 sin θ . Armed with the identities, we have∫ 2π

0

dθ

5 + 4 sin θ
=

∫
|z|=1

1

5− 2i(z − 1/z)

dz

iz

=

∫
|z|=1

dz

2z2 − 2 + 5iz
.
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We factor the denominator (or use the quadratic formula) to get

2z2 + 5iz − 2 = (2z + i)(z + 2i).

Thus there are simple zeros at −i/2,−2i. We then see that∫
|z|=1

dz

2z2 − 2 + 5iz
= 2πiRes[f(z),−i/2] = 2π

3
.

VII.4. Integrands with Branch Cuts

We would like to evaluate things like
∫∞
0

xa

(1+x)2 dx where 0 < |a| < 1 is real. We recall that

za = exp(a log z)

is not well-defined in the complex plane. Thus instead we have to take branch cuts. . . Take a branch of the

log where the argument ranges from 0 to 2π. The contour we’re going to use is something called a keyhole

contour of the following shape

The inner semi-circle will be called γε (it has radius ε), and the outer arc of a circle ΓR,ε and will have radius

R♡ :=
√
R2 + ε2. The lines are from iε to R + iε and −iε to R − iε. We’ll call the top one L+(ε,R), and

the one on the bottom L−(ε,R) (in opposite orientation). We’ll also take ε < 1/2 and R > 2 so that the

singularity at −1 is included. We’ll call the region bounded by these D(ε,R).

We’ll show that ∫ ∞

0

xa

1 + x2
dx =

πa

sin(πa)
.

We’ll use the function f(z) = za

(1+z)2 . f has a double pole at z = −1, and we have

Res[f(z),−1] =
d

dz
(1 + z)2

za

(1 + z)2

∣∣∣
z=−1

= −aeπia.

The residue theorem then gives ∫
∂D(ε,R)

f(z) dz = 2πi(−aeπia).
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This breaks into four pieces ∫
∂D(ε,R)

=

∫
L+(ε,R)

+

∫
ΓR,ε

+

∫
L−(ε,R)

+

∫
γε

.

If |z| = R♡ then

|f(z)| =
∣∣∣∣ za

(1 + z)2

∣∣∣∣ ≤ Ra
♡

(R♡ − 1)2

abd if |z| = ε then

|f(z)| =
∣∣∣∣ za

(1 + z)2

∣∣∣∣ ≤ εa

(1− ε)2
.

We then have that ∣∣∣∣∣
∫
ΓR,ε

f(z) dz

∣∣∣∣∣ ≤ Ra
♡

(R♡ − 1)2
2πR♡,

which goes to 0 as R→ ∞ since R♡ ≥ R and a ∈ (−1, 1). Also∣∣∣∣∫
γε

f(z) dz

∣∣∣∣ ≤ εa

(1− ε)2
,

which goes to 0 as ε→ 0.

If z ∈ L+(ε,R) then as ε→ 0 the argument is close to 0, and if z ∈ L−(ε,R) then as ε→ 0 the argument

is close to 2π. In the limit, as ε→ 0 and R→ ∞ (which we’ll denote with L+),∫
L+

f(z) dz =

∫ ∞

0

xa

(1 + x)2
dx

−
∫
L−

f(z) dz =

∫ ∞

0

xae2πia

(1 + x)2
dx.

Writing ∂D for the limit as ε→ 0, R→ ∞ we have

−2πiaeπia) =

∫
∂D

f(z) dz =

∫
L+

f(z) dz +

∫
L−

f(z) dz

=

∫ ∞

0

xa

(1 + x)2
dx−

∫ ∞

0

xae2πia

(1 + x)2
dx

= (1− e2πia)

∫ ∞

0

xa

(1 + x)2
dx.

Putting this all together gives ∫ ∞

0

xa

(1 + x)2
dx = − 2πiaeπia

1− e2πia
.

This simplifies down to πa
sinπa .

VII.5. Fractional Residues

Idea: What can we do when our path of integration crashes into a singularity?

If f(z) has a simple pole at z0, then we can do something cool!
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Theorem VII.5.1 (Fractional Residue Theorem)

If z0 is a simple pole of f(z), and Cε is an arc of the circle {|z − z0| = ε} of angle α, then

lim
ε→0

∫
Cε

f(z) dz = αiRes[f(z), z0].

Here the integration is taken with the orientation where the singularity is on the left (as usual). This

nearly generalizes the full Residue Theorem when z0 is simple.

Clarification: we’re integrating from angle 0 to angle α around the circle. If α is like 4π then we’re

integrating over the full circle twice.

Proof. Write f(z) = A
z−z0

+ g(z) where g is analytic at z0 and A = Res[f(z), z0]. Parameterize Cε as

z = z0 + εeiθ where θ0 < θ < θ0 + α. Then∫
Cε

A dz

z − z0
= iA

∫ θ0+α

θ0

dθ = αiA.

Furthermore as ε → 0 we see
∫
Cε
g(z) dz → 0 since g(z) is bounded near z0 and the length of Cε is αε.

Combining these two results yields the theorem.

Stuff:

• Handout: Ahlfor’s Guide to Contours

• HW 9B due tonight!

• HW 10A + 10B due Thursday and next Tuesday.

Last time: Evaluating real integrals using the residue theorem, and the fractional residue theorem.

Example VII.5.1 (Example of Fractional Residue Theorem)

Look at ∫ ∞

0

log x

x2 − 1
dx.

Consider f(z) = log z
z2−1 . We’ll integrate along a semicircular contour of radius R with indents at −1 and

0. This will split into six integrals, and we’ll use a branch cut of log with argument from −π/2 to 3π/2.

We’ll call the non-linear parts ΓR,Cε (indent at −1),γδ (indent at 0). We know∫
∂D(R,ε)

f(z) dz = 0.

Furthermore
∫
ΓR
f(z) dz → 0 as R → ∞. The C0

δ piece will also go to 0. By the fractional residue

theorem

lim
ε→0

∫
Cε

f(z) dz = −πiRes[f(z),−1] = −πi iπ

2(−1)
= −π

2

2
.

Take real and imaginary parts and let ε→ 0 to get∫ ∞

0

log x

x2 − 1
+

∫ 0

−∞

log |x|
x2 − 1

dx− π2

2
= 0.
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Therefore we get ∫ ∞

0

log x

x2 − 1
dx =

π2

4

VII.6. Principal Values

Definition VII.6.1

Suppose f(x) is continuous for a ≤ x < x0 and x0 < x ≤ b. We define the principal value of∫ b

a

f(x) dx

to be

PV

∫ b

a

f(x) dx = lim
ε→0

(∫ x0−ε

a

+

∫ b

x0+ε

f(x) dx

)
,

provided that this limit exists.

VII.7. Jordan’s Lemma

Recall VII.7.1

We know all about ∫ ∞

−∞

P (x)

Q(x)
dx,

well, we needed zeros of Q not on R and degQ ≥ 2 + degP . Jordan’s Lemma will allow us to change

this to degQ ≥ 1 + degP , by circumventing the ML-estimate portion of this proof.

Lemma VII.7.1 (Jordan)

If ΓR is the semicircular contour z = Reiθ for 0 ≤ θ ≤ π, then∫
ΓR

∣∣eiz∣∣ · |dz| < π.

Proof. Rewrite this as z = Reiθ, dz = zidθ, so thaen |dz| = R dθ. The lemma boils down to∫ π

0

e−R sin θ dθ <
π

R
,

Notice that y = 2
π θ and y = sin θ both go through the points (0, 0) and (π/2, 1), but sin θ is above this line

for all θ ∈ [0, π/2]. Therefore∫ π

0

e−R sin θ dθ = 2

∫ π/2

0

e−R sin θ dθ

≤ 2

∫ π/2

0

e−2Rθ/π dθ

=
2(−1)π

2R
e−2πRθ/π

]π/2
0

=
−π
R

·
(

1

eR
− 1

)
In other words, this is π

R − positive, which is less than π
R .
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VII.8. Exterior Domains

Question: Can we defined the residue of f at ∞ on Ĉ.
Definition VII.8.1

Let D ⊆ Ĉ be open, connected, and suppose it contains a neighborhood of ∞. That is there exists

an R > 0 such that D contains |z| > R. Then D is called an exterior domain

Theorem VII.8.1

Let D ⊆ C be an exterior domain with piecewise smooth boundary. Suppose f(z) is analytic on

D ∪ ∂D except for a finite # of isolated singularities z1, . . . , zm ∈ D. Let a−1 be the coefficient of 1
z in

the series of f at ∞. Then ∮
∂D

f(z) dz = −2πia−1 + 2πi

m∑
j=1

Res[f(z), zj ]

Definition VII.8.2

We define residue of f(z) at ∞ to be Res[f(z),∞] = −a−1. Why the negative!!!

Proof. Apply the standard residue theorem to the new region DR = D \ (disk |z| > P ), and follow nose and

see Gamelin. Cool HW problem on 10B.

VII.9. Logarithmic Integral

Gamelin: Let D ⊆ C be bounded, open, connected subset. Suppose f(z) is meromorphic on D that

extends to be analytic on ∂D such that f(z) ̸= 0 for all z ∈ ∂D.

Then: f has finitely many zeros in D. Question: How many zeros in D, and how many poles in D?

Suppose f(z) has a zero of order N > 0, then f(z) = (z − z0)
Ng(z) at z0. Then

f ′(z) = (z − z0)
Ng′(z) + g(z)N(z − z0)

N−1

f ′(z)

f(z)
=
g′(z)

g(z)
+

(z − z0)
N−1N · g(z)

(z − z0)Ng(z)
=
g′(z)

g(z)
+

N

z − z0
.

We call f ′(z)
f(z) the logarithmic derivative of f , since if log f(z) is defined when we take the derivative we get

this.

But wait! We have

Res

[
f ′(z)

f(z)
, z0

]
= N,

this is amazing!!! In fact we have the same thing for if we started with any N ∈ Z! This can also detect

poles!

Theorem VII.9.1

Let f(z) be as above. Then we have that

1

2πi

∮
∂D

f ′(z)

f(z)
dz = (# of zeros of f in D)− (# of poles of f in D),

where we count with multiplicity.
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What is f ′/f !!! See Curt McMullen notes rs.pdf and search “good cocycle”

Now we go to the Argument Principle.

Definition VII.9.1

If f(z) is analytic on D ⊆ C, then for a closed curve γ ⊆ D such that f(z) ̸= 0 for all z ∈ γ, we call

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi
d(log f(z)) =

1

2πi

∫
γ

d log |f(z)|+ 1

2π

∫
γ

d arg f(z).

Thus the left hand side is 0 because the differential is exact. . .

But the argument is something different!!!

Theorem VII.9.2 (Argument Principle)

Suppose D ⊆ C is bounded, connected, open, and with piecewise boundary and let f(z) be meromor-

phic on D that extends to be analytic on ∂D. Suppose further that f(z) ̸= 0 for all z ∈ ∂D. Then the

increase in the argument of f(z) around the boundary of D is

2π [(# zeros of f in D −# of poles] .

Example VII.9.1

Let f(z) = zN for N ∈ N¡ we know the number of zeros of in D minus the number of poles in D is

N . So as we traverse the boundary of any D containing 0, then the argument increases by 2πN .

Application: Show that p(z) = z4+2z2− z+1 has exactly one zero in the first quadrant. Solution: Apply

the arugment principle. There are no poles!

Go around the quadrant in three pieces. If z ∈ [0, R], then one can check that p(z) > 0 there, so there are

no zeros. For R large enough there are no zeros when |z| = R, 0 ≤ arg z ≤ π
2 , and p(z) ≈ z4. Thus as z goes

along this quater circle the change in the argument is 2π.

Stuff:

• Math Club Today 4-5pm, random graphs social networks and the internet.

• Math S1 6:30-8pm

• Super Saturdays!

• Popcorn Thursday!

• Career Fair tomorrow!

• Mass undergrad peer advising 7-9:30pm atrium Monday!

Last time, we had a lemma

Lemma VII.9.3

Suppose D ⊆ C is an open connected set, and f : D → f(D) ⊆ C is holomorphic and injective, then

f ′(z) ̸= 0 for all z ∈ D.

Thus the inverse is holomorphic on f(D)!

Proof. Compare this with the proof that nonconstant holomorphic maps are open. Suppose f ′(z0) = 0 for

some z0 ∈ D. Then near z0 we have

f(z)− f(z0) = (z − z0)
ng(z)
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where n ≥ 2, g(z) is holomorphic at z0, and g(z0) ̸= 0. Then we can find some analytic h(z) near z0 such

that g(z) = (h(z))n. Then

f(z)− f(z0) = ((z − z0)h(z))
n.

We know f(z)− f(z0) will map a small open set around z0 to a small open set about 0 injectively.

We know ((z − z0) · h(z))n is not injective because (z − z0)h(z) maps to a small open set about 0 and

n ≥ 2. Thus these can’t be equal!

Last time! Logarithmic Integrals! We were interested in the Argument Principle, Theorem VII.9.2. We

restate it fully here for convenience

Theorem VII.9.4

Suppose D ⊆ C is bounded, connected, open, and with piecewise smooth boundary and let f(z) be

meromorphic on D that extends to be analytic on ∂D.

Suppose further that f(z) ̸= 0 for all z ∈ ∂D. Let N0 be the number of zeros of f in D, N∞ be the

number of poles in D counted with multiplicity. Then

1

2πi

∮
∂D

f ′

f
dz = N0 −N∞.

We got the Argument Principle, which is that the increase in the argument of f(z) around the boundary

of D is ∫
∂D

d arg(f(z)) = 2π(N0 −N∞).

VII.10. Rouché’s Theorem

Theorem VII.10.1

Let D ⊆ C be connected, open, and bounded with piecewise smooth boundary. Let f(z) and h(z) be

anlytic on D ∪ ∂D. If |h(z)| < |f(z)| for all z ∈ ∂D then f(z) and f(z) + h(z) have the same number of

zeros in D counting with multiplicity.

Example VII.10.1

An example from Kurt McMullin. Question: Where in C are the zeros of p(z) = z5 + 14z + 1? Let

f(z) = z5, h(z) = 14z + 1. We need to find a region D where for z ∈ ∂D we have

|h(z)| < |f(z)| ,

Lets try D as the ball of radius 2. Then when |z| = 2 we have

|f(z)| = |2|5 = 32 > 29 ≥ |14z + 1| = |h(z)| .

Now Rouché tells us that f(z) and p(z) = f(z) + h(z) have the same number of zeros in D. Since

f(z) = z5 has five zeros in D, this shows p(z) attains all of its zeros in D.
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Can we make the answer more precise? Now consider |z| = 3/2, and break up p(z) as h(z) =

z5 + 1, f(z) = 14z. Then we have

|h(z)| ≤
(
3

2

)5

+ 1 < 9 < |14z|

when |z| = 3/2. Then since f(z) has one zero inside the disk of radius 3/2, so does p(z).

Thus p(z) has one zero in |z| < 3/2 and 4 zeros in the annulus 3/2 < |z| < 2.

Proof. We know since |h(z)| < |f(z)| for all z ∈ ∂D, then this implies f(z) ̸= 0 and f(z) + h(z) ̸= 0 (reverse

triangle inequality) for all z ∈ ∂D.

This sets us up to consider their arguments! We can rewrite

f(z) + h(z) = f(z)

[
1 +

h(z)

f(z)

]
.

We then know that

arg(f(z) + h(z)) = arg(f(z)) + arg

(
1 +

h(z)

f(z)

)
.

Since |h(z)|
|f(z)| < 1 on ∂D. Then the values w = 1 + h(z)

f(z) lie in a disk of radius 1 about 1, so Re(w) > 0.

We can then use the argument principle. How does the argument of w = 1 + h(z)
f(z) change as z moves

around in closed loops? It can’t!!! The outputs lie in the right half-plane so d argw is exact! In other words

we can’t wrap around 0 to pick up a change in argument.

Thus we have ∮
∂D

d arg(f(z) + h(z)) =

∮
∂D

d arg f(z) + d arg(w) =

∮
∂D

d arg f(z).

The result then follows from the argument principle.

It is clear from the proof that we can extend to f, h meromorphic on D, analytic on D ∪ ∂D, and then

the number of poles/zeros in D.

Corollary VII.10.2

The Fundamental Theorem of Algebra. Find a large enough disk so that the leading term dominates,

just as in the example.

VII.11. Hurwitz’s Theorem

Recall HW7 #3, which will show up on HW 11. We talked about n 7→ (fn : D → C) a sequence of

functions converging to f : D → C. What can we say about how the zeros of fn compare to zeros of f?

Theorem VII.11.1 (Hurwitz’s Theorem)

Suppose {fk(z)} is a sequence of analytic functions on a connected open set D. Suppose {fk(z)}
converges normally (on compact subsets/locally uniformly) to f : D → C. Further f has a zero of order

N at z0.

Then there exists a small ρ > 0 such that for k large, fk(z) has exactly N zeros on {|z − z0| < ρ},
counting with multiplicity. And these zeros converge to z0 as k → ∞.
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Proof. The hypothesis implies that f is not identically zero. So take ρ > 0 so that {|z − z0| ≤ ρ} ⊆ D and

f(z) ̸= 0 for all z on the punctured disk {0 < |z − z0| ≤ ρ}.
Now choose δ > 0 so that |f(z)| ≥ δ for all z on the boundary circle |z − z0| = ρ. Since {fk} converges

uniformly to f on our closed sets, we know there exists an M so that for all k ≥M we have |fk(z)| > δ
2 for

all z on |z − z0| = ρ.

Furthermore, the sequence of functions (fk)
′(z)

fk(z)
converges uniformly to f ′(z)

f(z) on the boundary circle

|z − z0| = ρ. . . so. . . apply the logarithmic integrals!

lim
k→∞

1

2πi

∮
|z−z0|=ρ

(fk)
′(z)

fk(z)
dz =

1

2πi

∮
|z−z0|=ρ

f ′(z)

f(z)
dz.

The left hand side counts the number of zeros of fk inside |z − z0| < ρ, which we’ll call Nk. The right hand

side is equal to N , since f is nonzero on 0 < |z − z0| < ρ, and has a zero of order N at z0.

Since these are integers, they are discrete, so for large enough k, we have Nk = N ! This is exactly eh first

part of the result. What about the second? Play the same game with a smaller ρ, shrinking ρ to zero and

running the argument again.

Definition VII.11.1

We say f is univalent on a domain D ⊆ C provided that it is analytic and injective on D.

Theorem VII.11.2 (Another version of Hurwitz)

Suppose {fk(z)} is a sequence of univalent functions on a connected open D ⊆ C that converge

normally to f : D → C. Then f(z) is either univalent OR f(z) is constant.

Example VII.11.1

Consider fk(z) =
z
k converging to the zero function.

Proof. See Gamelin.

VII.12. Winding Numbers

Definition VII.12.1 (Winding Number)

Let γ be a piecewise smooth path in C. For z0 ̸∈ γ define the winding number as

W (γ, z0) =
1

2πi

∫
γ

dz

z − z0
. =

1

2π

∫
γ

d arg(z − z0).

Note: W (γ, z0) depends analytically on z0. For C \ {γ} → Z given by z0 7→ W (γ, z0). Thus W (γ, z0) is

constant on connected components of C \ {γ}.
Proposition VII.12.1

Gamelin p254, then let D ⊆ C be open, connected. Then the following are equivalent

(1) D is simply connected.

(2) Every closed differential form is exact on D.

(3) For each z0 ∈ C \D, there exists an anlytic branch of Log(z − z0) defined on D.

(4) Each closed curve γ ∈ D has winding number W (γ, z0) for z0 ∈ C \D.

(5) The complement of D in Ĉ is connected.
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(5) is easiest to check in practice. Proof is in the book.

VIII. Schwarz Lemma and Hyperbolic Geometry

The Schwarz Lemma is central to the theory of analytic maps between Riemann surfaces. We’ll state it

as a theorem because it is so important.

Theorem VIII.0.1 (Schwarz Lemma)

Let f(z) be analytic on |z| < 1. Suppose |f(z)| ≤ 1 for all |z| < 1. Suppose further that f(0) = 0.

Then |f(z)| ≤ |z| for all |z| < 1.

Furthermore, if |f(z0)| = |z0| for some point z0 ̸= 0, then f(z) = λz for some λ = eiθ.

Stuff:

• John W. Milnor’s mathematical writing is excellent. Good book: “Introduction to dynamics in one

Complex variable.

Proof of Schwarz’s Lemma. Write f(z) = z ·g(z) g(z) analytic on |z| < 1. Let r < 1. Then if |z| = r we have

|g(z)| = |f(z)|
r

,

By the maximum principle, |g(z)| ≤ 1
r when |z| ≤ r. Letting r → 1 yields |g(z)| ≤ 1 for all z ∈ C.

This gives |f(z)| ≤ |z| for all z ∈ D. Now suppose |f(z0)| = |z0| for some z0 ̸= 0. Then necessarily

|f(z0)| = |z0| · |g(z0)| =⇒ |g(z0)| = 1,

since z0 ≠ 1. Thus by the strict maximum principle, we have that g is constant. Say g(z) = λ for λ ∈ C. We

then know that |g(z0)| = |λ| = 1. Thus f(z) = λ · z.

VIII.1. Conformal self-maps of D

For example. Consider any rotation!

Lemma VIII.1.1

If g(z) is an automorphism of D with g(0) = 0, then g(z) is a rotation.

Proof. Apply the Schwarz lemma twice, once to the function and once to its inverse. |g(z)| ≤ |z|. Further∣∣g−1(w)
∣∣ ≤ |w|. Plugging in w = g(z0) for any z0 ̸= 0 we have

|z0| ≤
∣∣g−1(g(z0))

∣∣ ≤ |g(z0)| ≤ |z0| .

Thus we have equality, which tells us that g(z) is a rotation via the Schwarz lemma.

Application:

Theorem VIII.1.2

Aut(D) is precisely the Möbius transformations of the form

f(z) = eiθ
(
z − a

1− az

)
where a ∈ D and θ ∈ [0, 2π).
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Question: Do these Möbius transformations belong to Aut(D)? Consider

g(z) =
z − a

1− az
.

Well g maps circles to circles. So g maps unit circle to a unit circle. Fix some eiα ∈ S1. Then∣∣eiα − a
∣∣ = ∣∣e−iα − a

∣∣ = ∣∣1− eiαa
∣∣∣∣g(eiα)∣∣ = 1.

Thus g maps the unit circle to itself! Since g(a) = 0, g maps D → D.

Proof of Theorem. Show if h(z) ∈ Aut(D) then h(z) has the desired form.Set a = h−1(0). Then consider the

map

g(z) =
z − a

1− az
.

We can look at h ◦ g−1 ∈ Aut(D). Then we have

h(g−1(0)) = h(a) = 0.

Thus (h ◦ g−1)(z) = eiθz by the previous lemma and h = h ◦ g−1 ◦ g so

h(z) = eiθ
z − a

1− az
.

Theorem VIII.1.3 (Pick’s Lemma)

If f(z) is analytic and satisfies |f(z)| < 1 for |z| < 1. Then in fact

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2

for |z| < 1. If f(z) is conformal, then equality holds for all z ∈ D. Otherwise, this inequality is strict for

all z ∈ D.

Proof. Want to use Schwarz Lemma, but we don’t have 0 7→ 0. The idea is to use clever composition. Let

f(z0) = w0. Take g, h ∈ Aut(D) so that g(0) = z0, h(w0) = 0 (the previous work has shown Aut(D)’s action
on D is transitive).

Then h ◦ f ◦ g : D → D which maps 0 to 0. Applying Schwarz lemma yields

|(h ◦ f ◦ g)′(0)| = |h′(w0)f
′(z0)g

′(0)| ≤ 1,

using the definition of the derivative as h(f(g(z)))
z as z → 0. Then

|f ′(z0)| ≤
1

|g′(0)| · |h′(w0)|
.

Using the formula for g, h yields g′(0) = 1− |z0|2 and h′(w0) =
1

1−|w0|2
.

Suppose now f is conformal. Then h ◦ f ◦ g is conformal and fixes 0. Thus by the above h ◦ f ◦ g(z) is a
rotation, so |h′(w0)f

′(z0)g
′(0)| = 1. Thus again with the algebra this yields equality.
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We will show if equality holds at some z0 ∈ D then f is conformal and equality holds fro all z0 ∈ D.
Suppose equality holds at some z0. As above we see |(h ◦ f ◦ g)′(0)| = 1.

By Schwarz lemma (see Gamelin for the derivative version), h ◦ f ◦ g is a rotation, so f is a conformal self

map D → D.

VIII.2. Hyperbolic Geometry

Suppose f : D → D is a conformal map. Write w = f(z). Then dw = f ′(z) dz. Therefore∣∣∣∣dwdz
∣∣∣∣ = |f ′(z)| = 1− |f(z)|2

1− |z|2
.

Rearranged with w = f(z), we have

|dw|
1− |w|2

=
|dw|

1− |z|2
.

Then if γ is a smooth curve in D and w = f(z) then∫
f◦γ

|dw|
1− |w|2

=

∫
γ

|dz|
1− |z|2

.

This tells us that if we want to measure distance in the unit disk, then we should use |dz|
1−|z|2 . This metric

will have the miraculous property of being preserved by conformal self-maps of the disk.

Definition VIII.2.1

The length of γ in the hyperbolic metric on D is

hyperbolic lenght of γ := 2

∫
γ

|dz|
1− |z|2

,

where the 2 is innocent, so that the curvature is −1.

NICE: by design, hyperbolic length is invariant under conformal maps D → D.
Definition VIII.2.2

Let z0, z1 ∈ D. We define the hyperbolic distance ρ(z0, z1) to be

ρ(z0, z1) := inf
piecewise smoothγ

γ:z0→z1

2

∫
γ

|dz|
1− |z|2

.

Since conformal maps D → D preserve hyperbolic lengths of curves, conformal maps preserve the hyperbolic

metric too.

Theorem VIII.2.1

For any two distinct points Z0, z1 ∈ D, there exists a unique geodesic in D from z0 to z1 in the

hyperbolic metric. This curve is the arc of circle passing through z0 to z1 that is orthogonal to the unit

circle.

Via an appropriate choice of θ, a we have z 7→ eiθ z−a
1−az maps z0 to 0 (via choosing a) and z1 to the real

axis (via rotation). This makes the problem easier

Stuff:

• HW 11A due today

• Math Circle
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• Super Saturdays

• Bagel Sundays

• Student Seminar 11/18: Dedekind and the Axiom of Choice by Dhruv Kul in EH 3096 4-5pm.

.

Definition VIII.2.3

X is a Riemann surface provided that it is a C-manifold with dimCX = 1.

Example VIII.2.1

U ⊆ C where U is open. Complex tori (which are elliptic curves). We can do similarly for a genus g

surface. Also Ĉ.

We are in the process of classifying all Riemann surfaces. There are three types of Riemann surfaces

(1) Ĉ
(2) C,C∗, and complex tori.

(3) all others

In particular D,H lie in category three.

Warm up: There are exactly three simply connected Riemann surfaces up to conformal isomorphism.

Last time we showed the conformal maps D → D are

z 7→ eiθ
z − a

1− az

for a ∈ D, θ ∈ [0, 2π]. In fact Aut(D) is a “Lie group” (for those of us taking 591), and has dimension 3 over

R.
Lets cook up more examples of holomorphic maps D → D. There are the power maps z 7→ zn for n > 0.

Consider

f1(z) =
z − a1
1− a1z

f2(z) =
z − a2
1− a2z

,

where a1, a2 ∈ D. We could build a new map D → D by multiplying, since |f1(z)| , |f2(z)| < 1.

Definition VIII.2.4

A Blashcke product B : D → D is a rational function of the form

f(z) = eiθ
d∏

j=1

z − aj
1− ajz

.

It turns out that every proper analytic map D → D is a Blaschke product.

Definition VIII.2.5

Let X,Y be topological spaces. f : X → Y is proper provided that for all K ⊆ Y compact we have

f−1(K) ⊆ X is compact.

Non-Example VIII.2.2

z 7→ 57 is not compact since f−1({57}) = C.
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Example VIII.2.3

For any homeomorphism f : X → X, this is proper, since the image of a compact set under a

continuous function is compact (the Extreme Value Theorem)

Proposition VIII.2.2

Let X,Y be metric spaces. Suppose Y is connected, locally compact. Assume f is continuous, open,

proper, then in fact f is surjective.

Proof. Let V = f(X). We will show V is both open and closed. We know V is open by assumption (that f

is an open map).

We’ll show V is closed. Let y0 be an accumulation point of V . Let yn ∈ V be a sequence of points

converging to y0, with f(xn) = yn. Take K a compact neighborhood of y0 in Y . Consider f−1(K) in X,

which is compact since f is proper.

Now for n > N , where N ∈ N, we have yn ∈ K, so xn ∈ f−1(K). By compactness there is a subsequence

xnk
which is convergent to some x, and so then ynk

converges to f(x) and to y! Perfect!

Theorem VIII.2.3

Every proper analytic map f : D → D is a Blaschke product.

Lemma VIII.2.4

Let f : D → D be

f(z) = eiθ
d∏

i=1

z − ai
1− aiz

Then in fact f is proper.

Proof. Note that a closed subset C of D is compact if and only if C does not intersect |z| = 1.

It thus suffices to show that f maps ∂D to ∂D (Exercise: think about why). This follows from arguments

on tuesday since z 7→ z−a
1−az maps S1 to S1 for any a ∈ D.

Proof of [thm:blaschke]. A proper map f : D → D is surjective. So f has at least one zero. Say a. Let

M(z) = z−a
1−az .

Then g(z) = f(z)
M(z) : D → D is analytic, with one fewer zero than f . The result follows by induction on the

degree of f (which we would need more details for).

Corollary VIII.2.5

A proper holomorphic map f : D → D extends to a holomorphic map Ĉ → Ĉ (because Blaschke

products are rational functions).

We know what Aut(D) is. How do we get Aut(H). Well we use the Cayley map to move things around

H H

D D

φ φ
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With this you can show that

Aut(H) ≃
{
z 7→ az + b

cz + d
| ad− bc ̸= 0, a, b, c, d ∈ R

}
= PSL2(R)

Likewise Aut(Ĉ) ∼= PSL2(C)
To do: We need to classify the geodesics on D, which we claimed were arcs of circles intersecting S1 at

right angles (and diameters of the disk).

IX. Riemann Mapping Theorem

IX.1. Arzelà-Ascoli and the Proof

—

We also want to prove a huge theorem

Theorem IX.1.1 (Riemann Mapping Theorem)

If D ⊆ C is open, connected, and simply connected and D ̸= C, then D is conformally isomorphic to

D.

Corollary IX.1.2

A simply connected domain in Ĉ is Ĉ, conformally isomorphic to C, or conformally isomorphic to D.
Such an isomorphism is often called “the” Riemann map (this is clearly not unique). It is unique up

to postcomposition with Aut(D).

We need some ingredients to prove the Riemann Mapping Theorem. They’re pretty heavy.

Preliminaries: We need to study equicontinuity. This is in Gamelin, [Gam03, p. XI.5] page 306. Let E ⊆ C
be a set and let

F ⊆ {f : E → C}

a family of functions E → C.
Definition IX.1.1

We say F is equicontinuous at z0 ∈ E provided that for any ε > 0 there is a δ > 0 so that if z ∈ E,

|z − z0| < δ and f ∈ F then |f(z)− f(z0)| < ε.

Essentially, the continuity has a form of uniformity over the functions in F (not necessarily over the

inputs, that would be uniform continuity).

Definition IX.1.2

We say F is uniformly bounded on E provided that there is an M > 0 so that |f(z)| ≤ M for all

z ∈ E, f ∈ F .

Question: Suppose F is a family of differentiable functions D → C, and further suppose the family of

derivatives is uniformly bounded on D. What can we say about F? Well then F is equicontinuous (or if

you’d like, equi-Lipschitz. . . at least if D is convex).
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Proposition IX.1.3

Suppose F is a family of holomorphic functions D → C whose derivatives are uniformly bounded.

Then F is equicontinuous at any z0 ∈ D.

Proof. Let M > 0 with |f ′(z)| ≤M for all z ∈ D and f ∈ F . So take z ∈ D close to z0, so that the straight

line z to z0 is contained in D, and then integrate

|f(z)− f(z0)| =
∣∣∣∣∫ z

z0

f ′(ζ) dζ

∣∣∣∣ ≤M · |z − z0| .

More general–equi-Lipschitz, with the metric on the codomain defined by the infimum of paths contained in

D.

Big Deal:

Theorem IX.1.4 (Arzelà-Ascoli Theorem, the late 19th century.)

Let E ⊆ C be compact. Let F = {fi : E → C | i ∈ I} be a family of continuous functions on E that

is uniformly bounded. Then the following are equivalent

(1) F is equicontinuous at all z0 ∈ E.

(2) Each sequence of functions fn ∈ F has a subsequence which converges uniformly on E.

Recall IX.1.1

Sarah’s General Advice: If you’re trying to prove something exists, change the problem to a question

about fixed points, inverse function theorem, or use compactness (build a sequence of approximations,

then use compactness).

Next Time: Arzelà-Ascoli Theorem, Hubbard Stuff, donuts, fun!!! Riemann Mapping Theorem after Thanks-

giving!

Stuff:

• HW 11B due tonight, for #11 assume nonconstant.

• There are 2 drops in both the A and B series (so 2 drops each!).

• Happy Early Thanksgiving!

. Fun stuff today: applications of ideas we have seen.

Today, we’re going to talk about Newton’s Method, which is a way of finding zeros of differentiable

functions. Next week we will prove the Riemann Mapping Theorem, which says that if D ⊊ C is open and

simply connected, then D is conformally isomorphic to D. THere is a constructive proof of this with an

iteration scheme.

Thurston Idea: Set up iteration scheme such that the object you need is a fixed point of this scheme, and

appeal to fixed point theorems.

The sketch of Newton’s method in words:

• Start with an initial guess x0.

• Draw the tangent line ℓ1(x) to (x0, f(x0)), and solve for ℓ1(x) = 0 to get x1.

• Lather rinse repeat.

Newton’s Method in pictures
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In formulas we have a map

Nf (x) = x− f(x)

f ′(x)
.

Then we let xn+1 = Nf (xn). Question: when does this converge and what to? Well a weird example,

f(x) = ex is never zero and Nf (x) = x− 1. We can also have cycles

x0 x1 · · · x157 x158

, and bad things happen when f ′(x) = 0.

Steven Smale and Curt McMullen have done incredible work with this. Question: Are there any generally

convergent iterative algorithms for finding roots of polynomials? Generally convergent meaning the set of

bad guesses is sparse (small measure)¿ For Newton’s method there are big open sets of bad guesses. The

answer is no, for degree ≥ 4. There are also theorems that give good algorithms for finding good guesses.

Cayley: work over C. Look at Np(z) = z − p(z)
p′(z) again. Cayley wondered how the initial guess affects the

convergence. For example, you can look at p(z) = z2 − 1. There are two roots, color z0 black if it goes to 1,

and red if it goes to 0. If it does not converge, color it blue. What do the pictures look like in general?

Cayley figured it out for quadratics. . . without a computer!!! This was in 1879, and he published his results

in a 1-page paper. We’ll do this now, and assume monic. Let

p(z) = (z − r1)(z − r2)

Np(z) = z − (z − r1)(z − r2)

(z − r1) + (z − r2)
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=
z2 − r1z + z2 − r2z − (z2 − r1z − r2z + r1r2)

2z − r1 − r2

=
z2 − r1r2

2z − r1 − r2
.

If we plug in r1we get

Np(r1) =
r21 − r1r2
r1 − r2

= r1.

Then Np(z) has r1, r2 as fixed points. In fact they’ll be superattracting fixed points. If r1, r2 are simple roots,

then N ′
p(r1), N

′
p(r2) = 0. Locally, the Newton map must look like z 7→ z2. We see then a tiny neighborhood

of r1 maps to a smaller neighborhood of r1. The colors correspond to splitting the plane in half based on

which one its closest to. Take a line connected them and the perpendicular bisector (proximity based).

The bad initial guesses are along the perpendicular bisector, and stay on the line forever (very thin set).

Everyone thinks that for three roots r1, r2, r3 you get a pizza, a similar proximity based thing. It wasn’t so.

Let’s look at a picture for p(z) = z3 − 1, with roots at the roots of unity, then we get

For bad cubics we can get red basins where there is no convergence, say p(z) = z3 − 2z + 2, we get a picture
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This is actually how computers solve equations. There’s a trick where you can go far out enough and use

equidistant spacings to get good guesses (use “channels”).

Exercise IX.1.2

Let p(z) be a quadratic polynomial with Newton map N(z). Prove that there exists a Möbius

transformation µ so that µ ◦N ◦ µ−1 is the squaring function. This is just changing coordinates in a

nice way.

Stuff:

• HW 12 due 12/8, 11:59pm.

• 4 Classes Left. Here’s the Plan

• Today: Prove Riemann Mapping Theorem

• After Today: Finish some syllabus topics

• If we have time: Prime Number Theorem? Dynamics? Elliptic Functions?

Recall IX.1.3 (Schwarz Lemma)

Let f : D → C be a holomorphic map and suppose |f(z)| ≤ 1. If f(z) = 0, then

|f(z)| ≤ |z|

for all z ∈ D. Furthermore, if there exists a z0 ∈ D for which |f(z0)| = |z0|, then f(z) = eiθz for some

θ ∈ R.
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Infinitesimal version: Same hypotheses, |f ′(0)| ≤ 1, with equality if and only if f(z) = eiθz.

Using these we characterized the automorphisms of D as

f(z) = eiθ
z − a

1− az

for a ∈ D.
These together gave us Pick’s lemma,

Recall IX.1.4 (Pick’s Lemma and Hyperbolic Geometry)

Let f : D → D be holomorphic. Then

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2

for all z ∈ D, with equality when f ∈ Aut(D). This told us that

|dw|
1− |w|2

=
|dz|

1− |z|2

for w = f(z) where f ∈ Aut(D). This allowed us to define

hyplengthγ := 2

∫
γ

|dz|
1− |z|2

,

and taking the infimum along such paths gives a metric ρ(z0, z1).

Theorem IX.1.5

For any two distinct points z0, z1 there exists a unique geodesic from z0 to z1 in the hyperbolic metric.

Namely, it is the arc of the circle passing through z0, z1 which is perpendicular to ∂D.

Proof. Let w = f(z) be a conformal automorphism D → D with f(z0) = 0. Rotate to move f(z1) to the

positive real axis. Call that point r = |f(z1)| > 0. We want the geodesic from 0 to r to be the line segment

from 0 to r, as then we’ll be done!

Now suppose γ(t) = x(t) + iy(t) is a path in D connecting 0 to r, with 0 ≤ t ≤ 1. Then x(t) defines a

path from 0 to r also, along the real axis. Set α(t) = x(t). We see that∫
α

|dz|
1− |z|2

=

∫ 1

0

|dx(t)|
1− x(t)2

≤
∫ 1

0

|dx(t)|
1− |γ(t)|2

≤
∫
γ

|dz|
1− |z|2

.

Thus if y(t) ̸= 0 then for some t ∈ [0, 1], |γ(t)| > |x(t)|, and so the path α = x(t) is strictly shorter than γ(t).

Moreover, if α backtracks, then α is decreasing on some interval, and we could make
∫
α

|dz|
1−|z|2 even smaller,

by removing these segments. Thus the integral is minimized uniquely when α is a straight line from 0 to

r.

Recall IX.1.5 (Arzelà-Ascoli Theorem, the late 19th century.)

Let E ⊆ C be compact and let F = {fi : E → C | i ∈ I} be a family of continuous functions on E

which is uniformly bounded. Then the following are equivalent

(1) F is equicontinuous at all z0 ∈ E.

(2) Each sequence of functions fn ∈ F has a subsequence which converges uniformly on E. (NOTE:

the limit of the subseqence may or may not belong to F).

84



Faye Jackson November 29th, 2022 MATH 596 - IX.1

Gamelin uses this on p307 to prove Montel’s theorem. Some mathematical genealogy

Borel Montel Henri Cartan Douady Hubbard Sarah

Theorem IX.1.6 (Montel’s Theorem)

Suppose F is a family of analytic functions on a connected, nonempty, open D ⊆ C such that F is

uniformly bounded on all compact subsets of D.

Then every sequence in F has a subsequence that converges normally on D; that is, it converges

uniformly on compact subsets.

Proof. We want to apply Arzelà-Ascoli. We need to get that F is equicontinuous at all points of D.

Fix z0 ∈ D. Since D is open there exists an r > 0 so that {|z − z0| ≤ r} ⊆ D. By hypothesis, F
is uniformly bounded on this closed disk by some M . The Cauchy estimate tells us that the derivatives

of functions in F are uniformly bounded on a slighly smaller disk {|z − z0| ≤ r − ε} ⊆ D. This gives us

equicontinuity via the mean value theorem.

We now apply Arzelà-Ascoli with a diagonalization argument. We define

En :=

{
z ∈ D | |z| ≤ n and dist(z, ∂D) ≥ 1

n

}
The En are compact and increase to fill up D, that is E1 ⊆ E2 ⊆ · · · and

⋃
nEn = D. Even better, any

compact subset of D is contained in some En.

Let {fm} be a sequence of points (aka functions) in F . By Arzelà-Ascoli there is a subsequence

f11, f12, f13, . . . that converges uniformly on E1.

By Arzelà-Ascoli there is a subsequence of f1m that converges unifromly on E2 to get f2m. Lather rinse

repeat

Claim

The diagonal sequence fmm is a subsequence of {fn} converging uniformly on each En, hence uniformly

on each compact subset of D.

The Deepest Result in C-analysis. The Riemann Mapping Theorem.

• Riemann, partial proof 1851. Details kept getting filled in

• Schwarz 1870

• Osgood 1900

• Koeloe 1907

• Carathéodory 1912

• Modern Proof: Riesz + Fejer 1923.

Theorem IX.1.7 (Riemann Mapping Theorem)

Every nonempty, connected, open, simply connected, proper subset U ⊆ C is conformally isomorphic

to D.
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Proof. Idea: Solve an extremal problem. We’ll take U ⊊ C, p ∈ U , and we’ll build the conformal map

(U, p)
f7−→ (D, 0). This map is unique up to rotating the right hand side (since we insisted p maps to 0). f is

called a Riemann map

Uniqueness is easy. Suppose f, g : (U, p) → (D, 0) are both conformal maps. Then g ◦ f−1 is a conformal

map (D, 0) → (D, 0), so it is a rotation, and so g = rot ◦ f .
Existence is hard. We’ll do it in 3 steps. The map we seek will be a solution to an extremal problem

(Hubbard: “This is fantastically nonconstructive”).

Plan: Find holomorphic injective maps (U, p)
f7−→ (D, 0), want |f ′(p)| to be as large as possible among

all such holomorphic injective maps (U, p) → (D, 0). Secretly: There’s something called the Kobayashi

metric. . . google it.

Consider the family

F := {f : (U, p) → (D, 0) | f is holomorphic and injective}.

Let’s go!

Step 1) If U were C, then F would be empty by Liouville’s theorem. But since U ̸= C, there is an a ∈ C \U ,

and since U is simply connected the function z 7→ z−a is nonvanishing and has a holomorphic square

root defined on U .

Call this square root function h, with (h(z))2 = z− a for all z ∈ U . We claim h is injective, which

follows since z 7→ z − a is injective. By the open mapping theorem, h(U) ⊆ C is open. Since (h(z))2

is injective and a ̸∈ U , h(U),−h(U) are disjoint.

Take a ball Br(q) ⊆ −h(U). The Möbius transformation φ(z) = r
z−q maps Br(q) onto Ĉ \ D. So

where does φ send h(U)?

It sends h(U) into D. Now take an automorphism ψ ∈ Aut(D) taking φ(h(p)) to 0. Then ψ ◦φ ◦h
lies in F .

Step 2) We’ll show that if f ∈ F and if f(U) ̸= D (i.e. f is not surjective), then there is a g ∈ F such that

|g′(p)| > |f ′(p)|. Why?

We’ll use the “square root trick” due to Carathéodory and Koebe. We’ll adopt some convenient

notation

φa(z) =
z − a

1− az
∈ Aut(D)

sending a to 0. Moreover, (φa)
−1 = φ−a.

Suppose f ∈ F with f(U) ̸= D, and take a ∈ D \ f(U). Then look at φa ◦ f | U → D omits zero.

Thus φa ◦ f : U → C admits a homolormphic square root h : U → C, let s be the squaring function.

Then

s ◦ h = φa ◦ f

on U . We know h is injective and maps U into D (since f does). If b = h(p) then the composition

g = φb ◦ h belongs to F , and

f = φ−a ◦ s ◦ h = (φ−a ◦ s ◦ φ−b) ◦ g.
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But then ψ := φ−a ◦ s ◦ φ−b sends (D, 0) → (D, 0) and is NOT injective on D implying it’s not a

rotation (since it has a squaring part). Thus by the Schwarz Lemma, |ψ′(0)| < 1. But wait!

|f ′(p)| = |ψ′(0)| |g′(p)| < |g′(p)| .

Step 3) Let’s finish1 the proof! We need to cook up an extremal map f ∈ F such that |f ′(p)| is as big as

possible. Let

M := sup{|f ′(p)| | f ∈ F}

We’ll note some facts about M

(a) M > 0 because f ∈ F are injective, so |f ′(p)| > 0.

(b) M < +∞. If Br(p) ⊆ U , then |f ′(p)| ≤ 1
r by the Cauchy estimates since |f(z)| < 1 for all z ∈ U .

Thus M ≤ 1
r .

Let {fn} be a sequence of functions in F such that |f ′n(p)| converges to M . Since F is uniformly

bounded (outputs to D, so by the constant 1), Montel’s theorem applies.

Thus there is a subsequence fnk
which converges normally on U . Call this limit function f . We

know f is an analytic function since the convergence is normal.

Claim

f ∈ F .

We need to check a bunch of things

(a) f(p) = 0 since fnk
(p) = 0 for all k.

(b) We know f(U) ⊆ D, by taking limits of the inequalities. If there was a q ∈ U with |f(q)| = 1,

then f is not open, so f must be constant. But wait! |f ′(p)| =M > 0.

Thus f(U) ⊆ D, so f : (U, p) → (D, 0) is analytic.
(c) We must check f is injective. Well, all fnk

are injective and f is nonconstant, so by some version

of Hurwitz’s theorem (see [thm:hurwitz])

Thus f ∈ F . By Step 2, since |f ′(p)| =M , f is surjective. Done! f : (U, p) → (D, 0) is a conformal

isomorphism.

Stuff:

• Math Club!

• Popcorn 4:30pm

• Bagel Sunday 11:30am

• Super Saturdays

• HW due next week

• Last student seminar of the semester at 4pm in EH 3096, Drew Keisling on S-LID sequences (gener-

alizations of fibonacci stuff)

Exciting Stuff! We were proving Riemann Mapping Theorem2.

1Technically this was done on December 1st, but I didn’t want to split it up
2For users of the notes, the rest of the proof has been uploaded on the document for November 29th
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The proof was incredibly nonconstructive. We had something like

M := sup{|f ′(p)| | f ∈ F}

and we needed a sequence fn with |f ′n(p)| →M . As we all know, supremums are awful to compute.

Example IX.1.6 (Classic 295/296 style example)

sup{cos(10n) | n ∈ N} is not known, but it is almost certainly 1 (related to properties of π, such as

being normal).

To fully appreciate Hubbard’s constructive proof, we need to know some stuff from 592 (algebraic topology).

Question: Great. We know that if U ⊊ C is proper, simply connected, then there exists a conformal

isomorphism U → D. What if U is not simply connected? Well since any conformal map is a homeomorphism,

this will cause problems (simply connected is a topological invariant).

Cool, we won’t prove it! Every annulus has something called an annulus. This is gotten by thinking of an

annulus as a projection of a cylinder. The modulus is then the height/circumference. . . This turns out to be

an invariant in complex analysis.

Fisher-Hubbard-Wittner: Given a domain U ⊊ C, possibly not simply connected, there exists a local

biholomorphism D → U called a covering map

Definition IX.1.3

Let f : X → Y (where X,Y are topological spaces). We call f a covering map provided that for all

points p ∈ Y there is a neighborhood Np such that f−1(Np) is a “pile of plates”

These are called “sheets.” Formally, f−1(Np) is a disjoint union of open sets Ñ i
p such that f : Ñ i

p → Np

is a homeomorphism.

Riemann surfaces are then very closely related to covering maps. In fact, there is a Grandpa to the RMT,

which we will state but not prove.

Theorem IX.1.8 (Uniformization Theorem)

Let X be a Riemann surfaces (C manifold with dimCX = 1. Then there is exactly one cover with

the following total space (the top one):

Ĉ C D

X X X.

sphericalEuc hyp
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These are called universal covers, since they are simply connected (see more 592!). This determines the

geometry, since D is hyperbolic, C is Euclidean, Ĉ is spherical.

The first case X = Ĉ, second is one of torus, C \ {0},C, and third is a wild zoo.

Now how do we compute Riemann maps when they exist. Let U ⊊ C be simply connected. You could use

Hubbard’s method (a limit, for the computers). In general it’s very hard. In fact, going from a square to a

disk is super difficult!

Weirdly enough, it is much easier to compute a Riemann map from the complement of the Mandelbrot

set to the complement of a disk (by inversion ideas, this is the same as an appropriate Riemann map).

Suppose we have a Riemann map (U, p) → (D, 0). When does it extend to a continuous map (U, p) → (D, 0).

Theorem IX.1.9 (Carathéodory,1913)

A Riemann map D → U extends to a continuous map D → U if and only if ∂U is locally connected.

Recall IX.1.7

A topological space X is locally connected at x ∈ X provided that for all neighborhoods U of x, there

exists a connected neighborhood V ⊆ U of x.

Not Known: is the Mandelbrot set M locally connected (if bad things happen it would be at the bound-

ary. . . hmmm).

HW: Asked to prove M is connected and full (a set is full provided that C \M is connected).

Fun fact: A Riemann map D → U extends to a homeomorphism D → U if and only if ∂U is a Jordan

Curve.

IX.2. Mandelbrot Set Things

We’ll look at maps z 7→ z2+c where c ∈ C is a parameter. Is this too specific? No in fact. Any az2+bz+d

can be conjugated with an element of Aut(C) to a polynomial z 7→ z2 + c. Thus from the point of view of

dynamics, all complex polynomials look like z2 + c.

The key idea of the Mandelbrot set is to look at the c-plane (the parameter space). Generally, in dynamics

we like to study orbits. Given a map f : X → X and a point z0, the orbit is the sequence zn = f(zn−1). In

C-analysis, we really like looking at it as polynomials! We can think of these as maps Ĉ → Ĉ with ∞ as a

fixed point (a special point for a polynomial).

Recall IX.2.1 (Filled Julia sets, Definition IV.1.10)

Given a polynomial f : C → C we define the filled Julia set

Kf := {z0 ∈ C | the orbit of z0 is bounded}

Fun facts:

• Kf ≠ ∅, except when f is a non-identity translation, This is since f(z) − z will be a nonconstant

polynonmial, so f will have a fixed point.

• Kf is bounded. Can show if f(z) = z2 + c then they are in disk of r = 2.

• Kf is closed.

C \Kf is the basin of ∞, and consists of all points z0 whose orbit diverges to ∞. Can show this is open

explicitly.
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The big question: How does the shape change when you change the polynomial? What subsets of C arise

as filled Julia sets of z 7→ z2 + c as c varies? Good thing to look up, there are also pictures earlier in the

notes (see around Definition IV.1.10)!

Definition IX.2.1 (Mandelbrot Set)

The Mandelbrot Set is defined as

M := {c ∈ C | Filled Julia set of z 7→ z2 + c is connected}

We can ask the computer to draw filled Julia sets (look at the orbit and see if it escapes outside of disk of

radius 2, do it for long enough). . . How the hell do you draw the Mandelbrot set? We could draw a quilt (tile

complex plane with julia sets). This gets us close! But we need to do better. We need a theorem that relates

connectivity of the filled Julia set to something easy for a computer to check

Theorem IX.2.1 (Proof, basic C-analysis)
The Filled Julia set of z2 + c is connected if and only if it contains 0, in other words if and only if

the orbit of 0 is bounded.

WHY ZERO: well one idea, it’s a critical point since 2 · 0 = 0. But if you’re thinking geometrically it’s also

sort of clear. It’s the center of symmetry of the Julia set, since z0,−z0 have the same orbit. Here is the

Mandelbrot set!

Facts about the Mandelbrot set:

• M ≠ ∅ since 0 ∈ M since the filled Julia set of z 7→ z2 is D.
• Compact, bounded inside closed disk of r = 2. . . Going to keep going.

Stuff:

• HW 12 due Thursday!

• Office Hours tomorrow 10:30am-12pm!

• No Office Hours on Friday!

• Decorating for WOLOG party on Thursday night

• Talk about final

• Hint on 8, show f maps D → D. Show that f is proper, then it’s a Blaschke product. . .

Last time: Mandelbrot stuff! This time: More mandelbrot stuff.
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Recall IX.2.2

M is the “connectedness locus” of z 7→ z2 + c. We said last time that M ̸= ∅ (since 0 ∈ M), M is

compact (why!), M is connected (WHY! Relevant for HW), and M is full (also HW).

See Gamelin for details, but

Theorem IX.2.2 (Fatou-Julia, 100 years ago)

Let P (z) be a polynomoial of degree d ≥ 2. The filled julia set of P (z) is connected if and only if the

orbits of each critical point of P (z) is bounded.

Theorem IX.2.3 (Fatou-Julia)

The filled Julia set Kc of z 7→ z2 + c is disconnected if and only if it is a Cantor set (up to homeo-

morphism).

For other degrees, there is intermediate behavior, essentially because there are multiple critical points, so

one can have bounded orbit while the other does not.

Take c ∈ M. Then the filled Julia set Kc of z2 + c is connected and full (C \Kc is connected, the proof is

maximum modulus principle).

Definition IX.2.2

The basin of ∞ of z2 + c is C \Kc.

FACT: There is an explicit conformal isomorphism on the basis of ∞ for z 7→ z2 + c to the basin of ∞ of

z 7→ z2. Furthermore, it conjugates z2 + c to z2. It’s important here that c ∈ M.

Idea: lift the identity iteratively, let s(z) = z2, P (z) = z2 + c,

(U,∞) (U,∞)

(U,∞) (U,∞)

(U,∞) (U,∞)

P

ϕ2

s

P

ϕ1

s

Id

Then ϕn ◦P = s ◦ ϕn+1. This will converge normally to some map ϕ, and we’ll have ϕ ◦P = s ◦ ϕ. These are

called Böttcher coordinates for the polynomial about ∞. When c ∈ M, this can be extended to all of Ĉ \Kc.

If c ̸∈ M, then we can extend the Böttcher coordinates until we hit the critical point in the dynamical

plane of z2 + c.

We can cook up a map Φ from C \ M to C \ D by c 7→ φc(c) where φc is the conformal isomorphism

defined on the exterior of the figure 8 (aka where Böttcher coordinates apply).

Prove by hand that this is the Riemann map (aka it is a conformal isomorphism). There are three parts

to that

(1) Φ is holomorphic.

(2) Φ is proper. It follows that Φ is surjective.

(3) To get injectivity, look near ∞ and show that Φ has degree 1.
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Corollary IX.2.4

As a corollary the Mandelbrot set is connected and full.

For HW: explain a piece of this proof sketch you find interesting.

Trick: Now you can try to label the boundary of the Mandelbrot set by angles. . . the labeling being unique

even for irrationals is exactly the claim that M is locally connected, a huge conjecture.

Stuff:

• Last Class: Good Job! ,

• Homework due tonight

• No Office Hours tomorrow (stop by atrium tonight!)

• Volunteers (10am tomorrow)! Free t-shirts.

• DRP Presentations at Math Club 4-5pm.

– Chip Firing Game

– Dynamical Systems

– Elliptic Curves

• Final Next Week!

– Friday December 16th 1:30-3:30pm in this classroom

– 1 double-sided Sheet of Notes allowed

– Evenly distributed through content of whole course

• Office Hours next week! Thursday December 15th 1-4pm.

One final topic to cover!

X. Infinite Products

This is [Gam03] page 353.

Definition X.0.1

An infinite product is an expression of the form

∞∏
j=1

pj

where each pj is a complex number.

We say this converges provided that

(1) pj converges to 1.

(2)
∑∞

j=1 Log(pj) converges as a series. We only sum over terms where pj ̸= 0.

This is a strange definition (think about why it’s strange), but it is convenient.

If the infinite product converges, we define its value to be 0 if one of the pj is zero. Otherwise we

define the limit to be

∞∏
j=1

pj := exp

 ∞∑
j=1

Log pj

 .

Observations:
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(1) If
∏
pj converges then at most finitely many of pj are 0.

(2) If
∏
pj converges, then in fact

∞∏
j=1

pj = lim
m→∞

m∏
j=1

pj

(3) We can always factor out a finite # of terms from a convergent infinite product

∞∏
j=1

pj = p1 · · · pm
∞∏

j=m+1

pj .

(4) If an infinite product converges, and if none of the factors is zero, then the product is not zero.

Note: This excludes a product like
∏∞

j=1
1
2 = 0, even though this makes sense sort of intuitively.

Example X.0.1

Consider the following product

∞∏
k=1

(
1 +

(−1)k+1

k

)
= (1 + 1)

(
1− 1

2

)(
1 +

1

3

)(
1− 1

4

)
· · · .

Using the power series of the logarithm we can see that this converges. Then there is a subsequence of

the partial products which is always 1. If we call the terms pj , then because(
1 +

1

2k − 1

)(
1− 1

2k

)
= 1,

the product of the first m terms is always 1 if m is even. If m is odd then it is equal to 1
1+ 1

m

.

General idea: It is helpful to write pj = 1+ aj and look at the product as
∏
(1+ aj), as one can often exploit

the power series expansion of Log near 1 to compute
∑

Log(1 + aj).

Gamelin Notes:

• If 0 ≤ t ≤ 1, then t
2 ≤ log(1 + t) ≤ t. Exercise in basic analysis.

• As a consequence, if tj ≥ 0 then
∑
tj if and only if

∑
log(1 + tj) converges.

Why? Well in either case tj → 0 so eventually 0 ≤ t ≤ 1, so we’re in business to use the comparison

test of the above.

Theorem X.0.1

If tj ≥ 0, then

∞∏
j=1

(1 + tj) converges ⇐⇒
∑

tj converges

Application: Let α > 0. Then consider

∞∏
k=1

(
1 +

1

kα

)
.

Claim

This converges for α > 1 and diverges for 0 ≤ α ≤ 1.

Direct from p-series test from real analysis and the test above.
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Definition X.0.2

The infinite product
∏∞

j=1(1 + aj) is said to converge absolutely provided that aj → 0 as j → ∞ and∑
Log(1 + aj) converges absolutely. Note: if the product converges absolutely then the product itself

converges.

Remark X.0.1

It is very unnatural to look at
∏

|1 + aj |. Why is that unnatural? Explain it as an exercise.

Theorem X.0.2

The infinite product
∏∞

j=1(1+aj) converges absolutely if and only if
∑
aj converges absolutely, which

occurs if and only if
∏
(1 + |aj |) converges.

Proof. See Gamelin, routine.

Example X.0.2

We know
∏(

1 + (−1)k+1

k

)
converges, but does not converge absolutely.

Application: 3blue1brown video and the Riemann zeta (ζ) function. For more, see the Prime Number

Theorem section in Gamelin [Gam03].

Definition X.0.3

For Re(s) > 1 we define

ζ(s) :=

∞∑
n=1

1

ns
.

In fact this converges absolutely and it converges uniformly for Re(s) ≥ 1 + ε for any ε > 0. It will have

severe problems at s = 1.

This function can be continued across the entire plane except at s = 1. Call this extension ξ.

Corollary X.0.3 (Riemann Hypothesis)

If s is a zero of the Riemann zeta then s is a negative even integer or Re(s) = 1/2.

Theorem X.0.4 (Euler)

If Re(s) > 1, then

1

ζ(s)
=

∏
p prime

(
1− 1

ps

)
.

Proof Idea. Consider 1
1−p−s . We like this because it is a geometric series

1

1− p−s
=

∞∑
n=0

p−ns.

Take your favorite prime numbers p1, . . . , pm, and multiply these expressions

m∏
k=1

1

1− p−s
k

=

∞∑
ℓ1,...,ℓm=0

(
pℓ11 · · · pℓmm

)−s

.
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This is in fact ζ(s) as m→ ∞ by the Fundamental Theorem of Arithmetic.
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