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Stuff:

• Math Club Today 4-5pm, random graphs social networks and the internet.

• Math S1 6:30-8pm

• Super Saturdays!

• Popcorn Thursday!

• Career Fair tomorrow!

• Mass undergrad peer advising 7-9:30pm atrium Monday!

Last time, we had a lemma

Lemma .0.1

Suppose D ⊆ C is an open connected set, and f : D → f(D) ⊆ C is holomorphic and injective, then

f ′(z) ̸= 0 for all z ∈ D.

Thus the inverse is holomorphic on f(D)!

Proof. Compare this with the proof that nonconstant holomorphic maps are open. Suppose f ′(z0) = 0 for

some z0 ∈ D. Then near z0 we have

f(z)− f(z0) = (z − z0)
ng(z)

where n ≥ 2, g(z) is holomorphic at z0, and g(z0) ̸= 0. Then we can find some analytic h(z) near z0 such

that g(z) = (h(z))n. Then

f(z)− f(z0) = ((z − z0)h(z))
n.

We know f(z)− f(z0) will map a small open set around z0 to a small open set about 0 injectively.

We know ((z − z0) · h(z))n is not injective because (z − z0)h(z) maps to a small open set about 0 and

n ≥ 2. Thus these can’t be equal!

Last time! Logarithmic Integrals! We were interested in the Argument Principle, ??. We restate it fully

here for convenience

Theorem .0.2

Suppose D ⊆ C is bounded, connected, open, and with piecewise smooth boundary and let f(z) be

meromorphic on D that extends to be analytic on ∂D.

Suppose further that f(z) ̸= 0 for all z ∈ ∂D. Let N0 be the number of zeros of f in D, N∞ be the

number of poles in D counted with multiplicity. Then

1

2πi

∮
∂D

f ′

f
dz = N0 −N∞.

We got the Argument Principle, which is that the increase in the argument of f(z) around the boundary

of D is ∫
∂D

d arg(f(z)) = 2π(N0 −N∞).

.1. Rouché’s Theorem
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Theorem .1.1

Let D ⊆ C be connected, open, and bounded with piecewise smooth boundary. Let f(z) and h(z) be

anlytic on D ∪ ∂D. If |h(z)| < |f(z)| for all z ∈ ∂D then f(z) and f(z) + h(z) have the same number of

zeros in D counting with multiplicity.

Example .1.1

An example from Kurt McMullin. Question: Where in C are the zeros of p(z) = z5 + 14z + 1? Let

f(z) = z5, h(z) = 14z + 1. We need to find a region D where for z ∈ ∂D we have

|h(z)| < |f(z)| ,

Lets try D as the ball of radius 2. Then when |z| = 2 we have

|f(z)| = |2|5 = 32 > 29 ≥ |14z + 1| = |h(z)| .

Now Rouché tells us that f(z) and p(z) = f(z) + h(z) have the same number of zeros in D. Since

f(z) = z5 has five zeros in D, this shows p(z) attains all of its zeros in D.

Can we make the answer more precise? Now consider |z| = 3/2, and break up p(z) as h(z) =

z5 + 1, f(z) = 14z. Then we have

|h(z)| ≤
(
3

2

)5

+ 1 < 9 < |14z|

when |z| = 3/2. Then since f(z) has one zero inside the disk of radius 3/2, so does p(z).

Thus p(z) has one zero in |z| < 3/2 and 4 zeros in the annulus 3/2 < |z| < 2.

Proof. We know since |h(z)| < |f(z)| for all z ∈ ∂D, then this implies f(z) ̸= 0 and f(z) + h(z) ̸= 0 (reverse

triangle inequality) for all z ∈ ∂D.

This sets us up to consider their arguments! We can rewrite

f(z) + h(z) = f(z)

[
1 +

h(z)

f(z)

]
.

We then know that

arg(f(z) + h(z)) = arg(f(z)) + arg

(
1 +

h(z)

f(z)

)
.

Since |h(z)|
|f(z)| < 1 on ∂D. Then the values w = 1 + h(z)

f(z) lie in a disk of radius 1 about 1, so Re(w) > 0.

We can then use the argument principle. How does the argument of w = 1 + h(z)
f(z) change as z moves

around in closed loops? It can’t!!! The outputs lie in the right half-plane so d argw is exact! In other words

we can’t wrap around 0 to pick up a change in argument.

Thus we have ∮
∂D

d arg(f(z) + h(z)) =

∮
∂D

d arg f(z) + d arg(w) =

∮
∂D

d arg f(z).

The result then follows from the argument principle.
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It is clear from the proof that we can extend to f, h meromorphic on D, analytic on D ∪ ∂D, and then

the number of poles/zeros in D.

Corollary .1.2

The Fundamental Theorem of Algebra. Find a large enough disk so that the leading term dominates,

just as in the example.

.2. Hurwitz’s Theorem

Recall HW7 #3, which will show up on HW 11. We talked about n 7→ (fn : D → C) a sequence of

functions converging to f : D → C. What can we say about how the zeros of fn compare to zeros of f?

Theorem .2.1 (Hurwitz’s Theorem)

Suppose {fk(z)} is a sequence of analytic functions on a connected open set D. Suppose {fk(z)}
converges normally (on compact subsets/locally uniformly) to f : D → C. Further f has a zero of order

N at z0.

Then there exists a small ρ > 0 such that for k large, fk(z) has exactly N zeros on {|z − z0| < ρ},
counting with multiplicity. And these zeros converge to z0 as k → ∞.

Proof. The hypothesis implies that f is not identically zero. So take ρ > 0 so that {|z − z0| ≤ ρ} ⊆ D and

f(z) ̸= 0 for all z on the punctured disk {0 < |z − z0| ≤ ρ}.
Now choose δ > 0 so that |f(z)| ≥ δ for all z on the boundary circle |z − z0| = ρ. Since {fk} converges

uniformly to f on our closed sets, we know there exists an M so that for all k ≥ M we have |fk(z)| > δ
2 for

all z on |z − z0| = ρ.

Furthermore, the sequence of functions (fk)
′(z)

fk(z)
converges uniformly to f ′(z)

f(z) on the boundary circle

|z − z0| = ρ. . . so. . . apply the logarithmic integrals!

lim
k→∞

1

2πi

∮
|z−z0|=ρ

(fk)
′(z)

fk(z)
dz =

1

2πi

∮
|z−z0|=ρ

f ′(z)

f(z)
dz.

The left hand side counts the number of zeros of fk inside |z − z0| < ρ, which we’ll call Nk. The right hand

side is equal to N , since f is nonzero on 0 < |z − z0| < ρ, and has a zero of order N at z0.

Since these are integers, they are discrete, so for large enough k, we have Nk = N ! This is exactly eh first

part of the result. What about the second? Play the same game with a smaller ρ, shrinking ρ to zero and

running the argument again.

Definition .2.1

We say f is univalent on a domain D ⊆ C provided that it is analytic and injective on D.

Theorem .2.2 (Another version of Hurwitz)

Suppose {fk(z)} is a sequence of univalent functions on a connected open D ⊆ C that converge

normally to f : D → C. Then f(z) is either univalent OR f(z) is constant.

Example .2.1

Consider fk(z) =
z
k converging to the zero function.

Proof. See Gamelin.
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.3. Winding Numbers

Definition .3.1 (Winding Number)

Let γ be a piecewise smooth path in C. For z0 ̸∈ γ define the winding number as

W (γ, z0) =
1

2πi

∫
γ

dz

z − z0
. =

1

2π

∫
γ

d arg(z − z0).

Note: W (γ, z0) depends analytically on z0. For C \ {γ} → Z given by z0 7→ W (γ, z0). Thus W (γ, z0) is

constant on connected components of C \ {γ}.
Proposition .3.1

Gamelin p254, then let D ⊆ C be open, connected. Then the following are equivalent

(1) D is simply connected.

(2) Every closed differential form is exact on D.

(3) For each z0 ∈ C \D, there exists an anlytic branch of Log(z − z0) defined on D.

(4) Each closed curve γ ∈ D has winding number W (γ, z0) for z0 ∈ C \D.

(5) The complement of D in Ĉ is connected.

(5) is easiest to check in practice. Proof is in the book.

I. Schwarz Lemma and Hyperbolic Geometry

The Schwarz Lemma is central to the theory of analytic maps between Riemann surfaces. We’ll state it

as a theorem because it is so important.

Theorem I.0.1 (Schwarz Lemma)

Let f(z) be analytic on |z| < 1. Suppose |f(z)| ≤ 1 for all |z| < 1. Suppose further that f(0) = 0.

Then |f(z)| ≤ |z| for all |z| < 1.

Furthermore, if |f(z0)| = |z0| for some point z0 ̸= 0, then f(z) = λz for some λ = eiθ.
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