Faye Jackson October 13th, 2022 MATH 596 - .1

Stuff:

e HW 7 Due Friday October 21st, 11:59pm
e Problem 3
— Setup: j + g;, nowhere vanishing entire, and we have j — p; polynomials with deg(p;) < 10.
— fj = g;p; converges locally uniformly on C to f: C — C. Then f = g - p, where g is nowehre
vanishing and entire, p is a polynomial. What do we know about deg(p)?

— This requires Hurwitz’s theorem, so we will delay this problem until later!

Last time: Powerful result! Analytic functions.

We saw that if f(2) is not identically zero on a connected open set D C C, and if zg € D is a zero of f,
then 2o has a finite order as a zero; i.e., f(z) = (z — 20)"V - h(2) where h(zp) # 0 is analytic locally about 2.
We used this to show that the zeros of f (when f is not identically zero) are isolated from each other.

We were then able to prove the uniqueness principle: if f, g are analytic on a connected open set D C C
and f(z) = g(z) for z belonging to a set with an accumulation point then f = g on D.

Cool application: Let g(z) be an entire function such that g(z) = exp(x) for all x € R, and then
9(2) = exp(2).

.1. The Open Mapping Theorem

Pause: Topology Break!
Definition .1.1

Let X,Y be topological spaces, a map f : X — Y is called open provided that for every open U C X
we have f(U) CY is open.

Example .1.1

Projection X x Y — X taking (z,y) — x. The identity map. Conway’s base 13 function is an
example of an open map which is not continuous. It is given by writing a real number x in base 13, using
the additional symbols {+, —, .}, and saying 2 maps to a number if some tail of the base 13 expansion
is a valid base 10 number (and we take the longest such tail). If no such tail exists then we send = to 0.

The function R — R taking & ~— 22 is not open since the image of R is [0,00). Similarly the map
F:C — R with F(z) = |z| is not open, since F(C) = [0,00). However these are “close” to being open
in some sense.

Another nonexample is the constant function z — 57 + 53i.

An example of an open map are affine maps f : C — C wiht z — az + b for a # 0 since they are

homeomorphisms.

Remark .1.1
If f: U — C is holomorphic with f/(z) # 0 for all z € U, then f is locally invertible. Thus f is a

local homeomorphism, and so f must be open. This is a consequence of the inverse function theorem.

Exercise .1.2
Show a local homoemorphism must be open. More generally show that being open is a “local” property

(appropriately define this as well).
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Example .1.3

The map z ~ 2¥ on C for k > 1 is open. Yes! We only have to worry about points where f’(z) = 0.
Thus we only need to worry about z = 0.

Working with a basis of the topology, take a small open disk of radius » > 0 about 0, this maps to a

small open disk of radius r* about 0, with k preimages for each point. Great!

Theorem .1.1 (Open Mapping Theorem)
Let D C C be open and connected and let f: D — C be a nonconstant holomorphic function. Then

f is an open map.

Proof. We only need to worry about zo € D where f/(z9) = 0, since it is a local homeomorphism elsewhere.
Since f is nonconstant, we know that f’ # 0 (not identically zero). Thus there exists a minimal k > 1

such that f®*)(z) # 0. There is then some disk |z — zo| < p in D so that

F(2) = f(z0) + ar(z = 20)* - h(2)

with ag # 0, h(29) = 1, and h(z) analytic. We know the map z ~ 2* is locally invertible in a neighborhood
of z=1. Let g be a local inverse.
When z is close to zp, h(z) is close to 1, and so in a neighborhood of zy we have (g(h(z)))* = h(z). Thus

we can look at

f(2) = f(20) + ar((z — 20) - g(h(2)))"

This is a composition of open maps near zo (translation, powering, and a mystery function) since

d

(2 = 20)9(h(2))

= = [ = 20)g (B (2) + g((2))]

=g(h(z0)) = L.

zZ=zg Z=Zz0

¢

Perfect! This shows that f is open near zy as desired!
Back to Gamelin!

.2. Analytic Continuation

This is section V.8 in [GamO03]. There are no homework problems / QR problems on this part especially
anything with paths/monodromy.
Definition .2.1
Let U C V C C be open and connected. Now let f : U — C be analytic. We call F: V — C an

analytic continuation provided that F ‘U =f.

Example .2.1
Define f(z) =3, (%)k for |z| < 2. Well when |z| < 2 we have
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We can expand f(z) at zo = —1 to get a different series
2 2 2 1
1(z) = 2—(241—-1) 3—(z+1) 3 1_ (+1)

e k
2 z+1
()
k=0
which is valid for |z + 1| < 3.

This gives an analytic continuation!

END OF MIDTERM I MATERIAL
MIDTERM 1 is in class October 25th

How do we extend analytic functions? Especially important for things like the Riemann ¢ function.

Lemma .2.1
Let D C C be open and connected and let f(z) be analytic on D. Now let R(z1) be the radius of

convergence of the power series expansion about z; € D. Then in fact

|R(21) — R(22)| < |21 — 22.

Proof. Gamelin! .v.

We say that f(z) is analytically continuable along v C C if for each ¢ € [a,b] there exists a convergent

power series
fi(2) = an(t)(z = 4(t)"
n=0

for |z — y(t)| < r(t) such that f,(z) is the power series representation for f(z) at zo = v(a) and when s € [a, b]
is near ¢ € [a,b], then fs(z) = fi(2) for z in the intersection of the disks in convergence.
By the uniqueness principle, the series f;(z) determines uniquely each of the series fs(z) for s near ¢.
Theorem .2.2

Suppose f(z) can be continued analytically along the path + for t € [a,b]. Then the analytic
continuation is unique.
Example .2.2

Take f(2) to be the principal branch of the square root function, and v(t) = e®.
In a neighborhood of z = 1 we have

f(Z)=1+%(z—1)—é(z—1)2+...

We may then change centers to get

o—it/2 (o o) o—3it/2
2

ft(z) — eit/2 +
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1 1
for(2) = =1 = 2(z=1) + 2z = 1)2 = -~
2 8
It turns out fo, gives us the other branch of the square root. The fancy way of saying this is we picked

up monodromy.
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