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Stuff:
e Math Club Today!
e Math S! tonight 6:30pm-8pm!
e Popcorn 4:30pm
e Bagel Sunday at 11:30am
e Free voting t-shirts
e Super Saturdays!
e Extra Halloween Shirts / Free voting shirts
e Student seminar Friday 4pm EH3096 “Combinatorial reciprocity via Mobius functions.”
e Undergrad student advisory council 1-2pm atrium.
Last time: Residue theorem! Evaluating real integrals!

The same techniques from last time can evaluate integrals of the form

I

where P, are real polynomials where () has no real zeros and deg @) > deg P + 2. In this case we’ll have
< P(x) ) [P(z) ]
dr = 2mi Res | —=, 2|,
/_oo Q(z) 2 Q(2)""

where each z; is a zero of () within the upper half-plane. This method can be used to evaluate other integrals

too! Consider
o0
/ @ cosazdx,
—o 4(T)

where a > 0 and p, g are polynomials of the form mentioned above. We would like to complexify. The
simplest candidate is

D Z) p(Z) ' eiaz + e—iaz

a(2) ) 2

But cosaz is unbounded in the upper half plane. . .this causes problems for us. Instead we’ll use e** and

apply real and imaginary parts at the end of the calculation. In particular, we’ll look at f(z) = %ei‘”

Example .0.1

Show ffooo ez do = me™® when a > 0. We can look at f(z) = 11—:2 We’ll look at our favorite

contour 9D given by the semi-circle I'g and the interval [—R, R].

We see by the residue theorem and our Rule 3 that

e'L(lZ 3 o 'elaz
/ap 1+ 22 dz = 2mi Res[f(2),i] = 2mi 22 |ami
2mie™ @
— =Te
21

—a

Now we see via the ML-estimate that since |eiaz| < 1 in the upper half plane (since a > 0) that

eiaz 1
dz <7R- ———,
/1~R1+z2 FET R
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which goes to 0 as R — oo. Thus

iaz R iaz
. . e
lim ——dz= lim

——dz.
R— oo 6D1+22 R—o0 _R1+22

Applying what we’ve already done, this yields

oo eiax
me ¢ = / —— dz,
oo 1tz

which upon taking Real parts of both sides yields the desired result.

.1. Integrals of Trig Functions

Previous plan: Start with real integral 4+ complexify, integrate over a “good” contour, take limit and we’re

happy.

Now we have things of the form

/271' de
o BH+4sing’

How can we use complex analysis to integrate this. Well we use the common substitution z = €. Then

dz = izdf. Furthermore, we have some nice identities for |z| = 1, namely Z = 1/z = e~ and

1 1
0=— —
coS 2(z—|—z>
sin@l,(zl).

21 z

Armed with the identities, we have

Example .1.1

dé
54+4sinf

/2“ do _/ 1 dz
o S44sing - 5—2i(z—1/z) iz

B / dz
© Jjajer 222 =24 50z

We factor the denominator (or use the quadratic formula) to get

Let’s actually compute fo%

222 +5iz — 2= (22 +i)(z + 2i).
Thus there are simple zeros at —i/2, —2i. We then see that

dz 2m
Y —2mR —i/2) = .
/,Z:1 27 gt ai  oriReslf(e) i =

.2. Integrands with Branch Cuts

We would like to evaluate things like fooo ﬁ dz where 0 < |a| < 1 is real. We recall that

2% = exp(alog 2)
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is not well-defined in the complex plane. Thus instead we have to take branch cuts. .. Take a branch of the
log where the argument ranges from 0 to 2. The contour we're going to use is something called a keyhole

contour of the following shape

The inner semi-circle will be called 7. (it has radius ¢), and the outer arc of a circle I'g . and will have radius
Ro = v/R? +¢2. The lines are from ic to R+ ic and —ic to R — ic. We'll call the top one L* (e, R), and
the one on the bottom L~ (g, R) (in opposite orientation). We’ll also take ¢ < 1/2 and R > 2 so that the
singularity at —1 is included. We'll call the region bounded by these D(e, R).

‘We’ll show that
oo a
/ T i dz = — Ta .
o l+=z sin(ma)

We'll use the function f(z) = (1%)2 f has a double pole at z = —1, and we have
d 2 ;
R -1]=—(1 L = _ge™e,
()1 = 04 2P o] = e

The residue theorem then gives

/ f(2)dz = 2mi(—ae™*).
dD(e,R)

[ S S e
0D (e,R) L+*(e,R) Tr,e L—(e,R) Ye

This breaks into four pieces

If |z| = Ro then

IR
|f@”_‘a+zﬁ = (Ro — 1)
abd if |z| = € then
z® o
£l = ‘(1+z)2 = (1—¢)2’
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‘We then have that

R%
< <
(

(o =177

f(z)dz

FR,E

which goes to 0 as R — oo since Rp > R and a € (—1,1). Also
JECLE
Ye

If z € LT (g, R) then as € — 0 the argument is close to 0, and if z € L™ (e, R) then as € — 0 the argument

ga

which goes to 0 as € — 0.

is close to 27. In the limit, as € — 0 and R — oo (which we’ll denote with L),

a

- (z)dz:/0 mdx

oS} ma€27ria
- de= [ =" da.
i@ [ g

Writing 0D for the limit as ¢ — 0, R — 0o we have

—2miae™) = (2)dz = /L+ f(z)dz+ . f(z)dz

aD
o] o os} xae27ria
= ——dx — ——dx
| wiet ) e
= (1 — e?min) /oo "
o (1+2z)?
Putting this all together gives
/°° z° d 2miae™e
= ar = ———=.
0 (1 + $)2 1— e27r7,a

Ta
sinma *

This simplifies down to
.3. Fractional Residues

Idea: What can we do when our path of integration crashes into a singularity?
If f(z) has a simple pole at zg, then we can do something cool!
Theorem .3.1 (Fractional Residue Theorem)

If zp is a simple pole of f(z), and C. is an arc of the circle {|z — z9| = €} of angle «, then

lim / f(z)dz = aiRes[f(2), z0].
e—=0 C.

Here the integration is taken with the orientation where the singularity is on the left (as usual). This
nearly generalizes the full Residue Theorem when zq is simple.

Clarification: we're integrating from angle 0 to angle « around the circle. If « is like 47 then we're

integrating over the full circle twice.
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Proof. Write f(z) = —2- + g(z) where g is analytic at zp and A = Res[f(z), 29]. Parameterize C. as

zZ—2Zz0

2 = 2o + €' where 6y < 6 < 0y + . Then

A 00-’1—(1
/ dz 4 d6 = aiA.
Cs

Z— 20 0o

Furthermore as ¢ — 0 we see [, g(z)dz — 0 since g(z) is bounded near zy and the length of C. is ae.

Combining these two results yields the theorem. 4
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