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Proof that Cellular Homology ∼= Singular Homology. We get some exact sequences from our preliminaries
last time:

0 = Hn+1(Xn) // Hn(Xn) // Hn(Xn, Xn−1) // Hn−1(Xn−1)

Hn+1(Xn+1, Xn) // Hn(Xn) // Hn(Xn+1) // Hn(Xn+1, Xn) = 0

These come from the long exact sequences of a pair combined with the things we’ve deduced in the preliminaries.
We can paste these together into a diagram:

0

0

''

Hn(Xn+1) ∼= Hn(X)

66

Hn(Xn)

77

jn

''

· · · // Hn+1(Xn+1, Xn)

∂n+1

88

dn+1
// Hn(Xn, Xn−1)

dn //

∂n ((

Hn−1(Xn−1, Xn−2) // · · ·

Hn−1(Xn−1)

jn−1

66

0

66

Hatcher tells us this diagram commutes, and what we’ve done here tells us that the two red diagonal pieces
crossing at Hn(Xn) are exact. We also have exactness of the bottom right diagonal by just going down a
degree.

Then this has to at least be a chain complex. Why? Well the diagram commutes because of Hatcher. We
then know that:

dn+1 ◦ dn = jn−1 ◦ ∂n ◦ jn ◦ ∂n+1 = 0

By exactness, we know that if ι∗ : Hn(Xn)→ Hn(Xn+1) then using the first isomorphism theorem:

Hn(X) ∼= Hn(Xn+1) = im ι∗ ∼=
Hn(Xn)

ker ι∗
=
Hn(Xn)

im ∂n+1

Since jn injects by exactness,

jn : Hn(Xn)
∼=−→ jn(Hn(Xn))

im ∂n+1

∼=−→ im(jn ◦ ∂n+1) = im dn+1

jn−1 must also inject by exactness, and so applying exactness:

ker dn = ker ∂n = im jn

Then we just do some group theory, the n-th cellular homology group is:

ker dn
im dn+1

∼=
im jn

im(jn ◦ ∂n+1)
∼=
Hn(Xn)

im ∂n+1

∼= Hn(X)

There is one thing left to show, namely commutativity of this map. That is

Claim
The differentials dn = jn ◦ ∂n+1 satisfy the formula (in terms of degree) that we stated. This is done

by direct analysis of definitions of maps; details in Hatcher.
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.1. The Formal Viewpoint: Eilenberg-Steenrod axioms

Definition .1.1
Given two functors F,G : C → D, a natural transformation η : F → G is a collection of maps

ηX : F (X)→ G(X) lying in D for every X ∈ C so that for any map f : X → Y we have a commutative
diagram:

F (X)
ηX //

F (f)

��

G(X)

G(f)

��

F (Y )
ηY
// G(Y )

Definition .1.2
A homology theory is a sequence of functors:

Hn : pairs (X,A) of spaces→ abelian groups

Equipped with natural transformations ∂ : Hn(X,A)→ Hn−1(A), where Hn−1(A) := Hn−1(A, ∅) called
the boundary map. Naturality here means that for any map f : (X,A)→ (Y,B) we have a commutative
diagram:

Hn(X,A)
∂ //

f∗

��

Hn−1(A)

f∗

��

Hn(Y,B)
∂ // Hn−1(B)

These must satisfy these axioms:

(1) (Homotopy) If f, g : (X,A)→ (Y,B) and f ' g, then f∗ = g∗
(2) (Excision) If U ⊆ A ⊆ X so that U ⊆ Int(A) then ι : (X \ U,A \ U) ↪→ (X,A) induces

isomorphisms on homology
(3) (Dimension) Hn(∗) = 0 for all n 6= 0, where ∗ denotes some arbitrary point
(4) (Additivity) Hn (

⊔
αXα) =

⊕
αHn(Xα).

(5) (Exactness) If we have an inclusion ι : A ↪→ and j : X → (X,A) induces a long exact sequence
on homology:

· · · // Hn(A)
ι∗ // Hn(X)

j∗ // Hn(X,A)
∂ // Hn−1(A) // · · ·

If H∗ satisfies all axioms but dimension, it is called an extraordinary homology theory

Example .1.1
Topological K-theory and cobordism.

Theorem .1.1
If Hn : CW pairs → Ab is a homology theory and H0(∗) = Z, then Hn are exactly the singular

homology functors up to a natural isomorphism of functors
More generally, without the assumption that H0(∗) = Z, then Hn are exactly the singular homology

functors with coefficients in the abelian group H0(∗).

Proof. Reconstruct the cellular homology groups using the axioms. The exact same argument we did today
follows. We then check that the cellular homology groups we just constructed satisfies the degree formula as

in our last step. This is a bit more difficult, but we won’t get into it.
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