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Announcements

• Midterm 1 is over!!! Here are the statistics (grades were out of 20)
– Ranged from 13.5 to 20
– Median: 15.5
– Average: 16.11

• The exam was made more difficult in order to prevent searchability, since algebraic topology is very
searchable. Grades will be interpreted accordingly

• The grades for homework this week may come back a bit late due to grading of the midterm taking
precedence.

.1. Proof of the Van Kampen Theorem

Van Kampen: Proof Outline. Let X =
⋃
αAα where the Aα are open, path-connected, and contain the

basepoint x0. We also must guarantee that Aα ∩Aβ is path-connected.

Step 1) We have a map induced by the inclusions:

Φ : ∗
α
π1(Aα, x0)→ π1(X,x0)

We want to show that Φ surjects. Take some γ : I → X. You use compactness of the interval I
to show that you can partition I into pieces, each of which is mapped completely into one Aα. In
particular lets partition I with s1 < · · · < sn so that γ

∣∣
si,si+1

=: γi has image in Aαi
for some αi.

We’ll leave the full point-set argument as an exercise, but as some hints:
– Aα is open for all α
– I is compact

Fora ll i, we choose a path hi from x0 to γ(si) in Aαi−1
∩ Aαi

, using path-connectedness of the
pairwise intersections. Now take γ and write it as follows:

γ = (γ1 · h1) · (h1 · γ2) · · · (γn−1 · hn−1) · (hn−1 · γn)

Great! Each of these paths is fully contained in Aαi
, and so this shows that γ ∈ im(Φ). Therefore Φ

surjects.
Step 2) For the next step, showing the second part of Van Kampen, we assume that our triple intersections

are path connected.
We want to show that ker(Φ) is generated by (iαβ)∗(ω)(iβα)∗(ω)−1, where iαβ : Aα ∩ Aβ ↪→ Aα

for all loops ω ∈ π1(Aα ∩Aβ , x0).

Definition .1.1
A factorization of a homotopy class [f ] ∈ π1(X,x0) is a formal product [f1][f2] · · · [f`] with

[fi] ∈ π1(Aαi , x0), such that f ' f1 · f2 · · · f`.

We showed that every [f ] has a factorization in Step 1. Now we want to show that two facotrizations
[f1] · · · [f`] and [f ′1] · · · [f ′m] of [f ] must be related by two moves:

– [fi] · [fi+1] = [fi · fi+1] if [fi], [fi+1] ∈ π1(Aα, x0). Aka, the relation defining the free product of
groups.

– [fi] can be viewed as an element of π1(Aα, x0) or π1(Aβ , x0) whenever [fi] ∈ π1(Aα ∩ Aβ , x0).
This is the relation defining the amalgamated free product.

Now let Ft : I × I → X be a homotopy from f1 · · · f` to f ′1 · · · f ′m, since they both represent [f ]. We
subdivide I × I into rectangles Rij so that F (Rij) ⊆ Aαij

=: Aij for some αij , using compactness.
We also argue that we can perturb the corners of the squares so that a corner lies in only three of
the Aα’s indexed by adjacent rectangles:
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We also argue that we can set up our subdivision so that the partition of the top and bottom intervals
must correspond with the two factorizations of [f ]. We then perform our homotopy one rectangle at
a time:

Idea: Argue that homotoping over a single rectangle has the effect of using allowable moves to modify
the factorization.

At each triple intersection choose a path from f(corner) to x0 which lies in the triple intersection,
so we use the assumption that the triple intersections are path connected.

Along the top and bottom we make choices compatible with the two factorizations. It’s now an
exercise to check that these choices result in homotoping across a rectangle gives a new factorization
related by an allowable move.
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