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I. Foundations

This week: Some foundations.
e Homotopies of maps
e Homotopy Equivalence of spaces. A coarser notion of equivalence of spaces than homeomorphism
e CW Complexes. A class of topological spaces that is “the right setting” to do algebraic topology.
They are more general than manifolds but still very well-behaved and also combinatorial.

1.1. Homotopies
1.1.1. Basic Definitions

Definition I.1.1

Let XY be topological spaces and f, g be continuous maps X — Y. By definiton a homotopy from
f to g is a continuous 1-parameter family of maps that we can view as continuously deforming the map
f to the map g.

Concretely, a homotopy from f to g it is amap F : X x I — Y, where I = [0, 1] is a closed interval,
subject to the conditions that for all z € X:

F(2,0) = () F(z,1) = g()
We often write Fy(z) for F'(z,t).

We should think of ¢ as a time parameter, and the map F as giving a deformation of the map f into a map g.
In other words, this is a family of maps X — Y interpolating between f and g. In pictures, this looks like:

™M {F{a(ﬂ\

Tag amap XY

Definition 1.1.2
If a homotopy exists from f to g, we say that f and g are homotopic and write f ~ g.
If f is homotopic to a constant map, then we write f ~ x and we call f nullhomotopic

Example I.1.1
Any two maps f,g: X — R are homotopic. We can deform f to g by the “straight line homotopy”:

Fi(z) = tf(x) + (1 —t)g(x)
Example 1.1.2

Let S! be the unit circle in R? and let D? be the closed unit ball in R2.
The inclusion S* < D? is nullhomotopic. Here we can consider the homotopy Fy(z) = (1 —t) f(x)

t=0 t=1/2 t=1
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Example 1.1.3
The maps:

St — st St — st
60— 0 0 — —0

are not homotopic.
Exercise 1.1.4
On homework, you will prove that “homotopic” is an equivalence relation on maps X — Y

Breakout Rooms

Exercise 1.1.5
A subset of R™ is called star-shaped if there exists some zg € S so that for all x € S, the line segment,
from x to xg is contained in S. Show that any map from a space to S is nullhomotopic.

Solution. We will show that any map f : X — S is homotopic to the constant map xy : X — S. This is
given by the straight line homotopy:

Fi(z) = (1 =) f(x) + txo

We know that f(x) € S, so this straight line is contained in S because S is star-shaped. Furthermore this is
continuous since it is a convex combination of continuous functions. Of course Fy(x) = f(x) and Fi(z) = o,
as

and so f is nullhomotopic. v

Exercise 1.1.6

Suppose that we have the following maps:

fo go
Sy,
X_ 2y~ 2z
f1 g1

And further that fo ~ f; and go ~ ¢g1. Then show that gg o fo ~ ¢1 o fi1.

Solution. Write F' : X x [0,1] = Y and G : Y x [0,1] — Z as the homotopies from fy to fi and gy to ¢1
respectively. Then consider the map:

Hy(z) = Gi(Fi(z))
By writing out this map more explicitly we can show that it is continuous:
H(z,t) = G(F(z,1),t)
Note then this is a composition of the continuous maps given as:
(,t) — (F(z,t),t) = G(F(x,t),t)

Of course, note that since the map (x,t) — (F(z,t),t) is continuous in each component it is continuous overall.
Therefore H is continuous since it is a composition of continuous functions. Thus, H gives a homotopy from
go © fo to g1 o f1 since F' and G are homotopies and we know:

Hy(z) = Go(Fo(x)) = go(fo(x)) = (g0 © fo)(x)
Hy(z) = G1(F1(z)) = g1(f1(%)) = (g1 © f1) (=)

Therefore gg o fo >~ g1 o f1 just as desired.

¢

Exercise 1.1.7

How could you prove that two maps are not homotopic
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Resume Breakout Rooms

Last time we were working on the following problem:

Exercise 1.1.8

How could you prove that two maps are not homotopic

Solution. We had a few ideas for the example maps from last time:
e We can embed S! in a larger space like R% and show that any homotopy between the two maps will
land outside the circle at some point
e We can use the fact that one map is orientation-preserving and one map is orientation-reversing and
show that homotopic maps will have the same behavior on orientation.
e Show that any homotopy in S* will become a bad homotopy in R when we lift it back by using the
fact that S1 = R/Z.

v
Resume Lecture

Definition 1.1.3
Let X,Y be spaces and let B C X be a subspace. A homotopy Fi(z) : X x [0,1] — Y is called a
homotopy relative to B (“rel B”) if Fy(b) is independent of ¢ for every b € B.

Example 1.1.9
Homotopies of paths [0,1] — Y rel {0,1}. Here’s a nice picture courtesy of Jenny!

—\

1.2. Homotopy Equivalence

Definition 1.2.1

A map f: X — Y is a homotopy equivalence if there exists a g : Y — X such that fog ~Idy and
go f ~Idx. You can say these are inverses “up to homotopy”

X and Y are called homotopy equivalent and we say they have the same homotopy type provided
that there exists a homotopy equivalence between them. We write X ~ Y.

Exercise 1.2.1 (Homework)
You will prove that “homotopy equivalent” is an equivalence relation

Example 1.2.2

If we look at D™ (the closed n-ball), then we see that D™ ~ «, aka it is homotopy eqivalent to a point.

The map f : D™ — x* is trivial, and we can choose any map ¢ : * — D", but for simplicitly we’ll
choose the map g : * — 0. Then f o g = Id, so that’s easy. On the other side go f : D™ — D™ is the
constant map which maps the entire disk to the origin.

Note that by using the straight line homotopy we can see that g o f ~ Idp~, and so D™ is homotopic
to a point. Here’s a picture
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Definition 1.2.2
A space X is contractible if it is homotopy equivalent to a point.

Example 1.2.3
R™ ~ %, using a proof similar to the above.

Take-aways:
e R" ~ R™ ~ x for all n,m
e Homotopy equivalence does not preserve dimension
e It does not preserve compactness since D? ~ x ~ R?

Example 1.2.4
The inclusion S! < D? is not a homotopy equivalence. Right now this would be fairly hard to prove.

Definition 1.2.3
Given a space X and a subspace B C X. A (strong) deformation retraction F} is a homotopy rel B
to a map with image in B from Idx.
In plain terms:
o Fy(z) =z forallz € X
e Fi(z)e Bforallz e X
e Fy(b)="bforallbe Bandte|[0,1].

Exercise 1.2.5
When X deformation retracts to a subspace B, X is homotopy equivalent to the subspact B.
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Announcements

e Quiz #1 is on Wednesday. Here are your hints!:
— Know definition and examples from Lecture I on homotopies
— You may assume the result from homework: “homotopic” is an equivalence relation.

Lecture Time!

Example 1.2.6
The point {0} is a deformation retract of R™ via the straight-line homotopy. (That is R™ deformation
retracts onto {0}, to make things unambiguous)

Example 1.2.7
St is the circle, and the circle is a deformation retract of the cylinder.

as 41, Sude

WS alang Lerd
PO 11nes (3

St is also a deformation retract of the Mobius band:

Take-away: “Homotopy equivalence” does not respect orientability, since the cylinder is orientable but
the Mobius band is not.

Exercise 1.2.8

Prove that any homotopy equivalence induces a bijection on path components, and thus the number
of path components is a homotopy invariant. This is in a sense the most basic homotopy invariant, and
much of our course is focused on building more of these invariants.

1.3. CW Complexes
1.3.1. Examples of CW complexes

Example 1.3.1 (S! and S?)

We can take an interval and glue the two points of its boundary together to get S!. Similarly we can
cosnstruct S? by gluing the boundary of 2-disk together.

We could also take two intervals and glue them at their boundaries to make S!, or two 2-disks and
glue them at their boundaries to get S2. Here’s a nice picture of these four constructions:

\ue 2
csws‘ci
to g1

’t qlue 2-dsk

Here are some more explicit instructions for the S? construction, since it can be a little bit unclear:
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Example 1.3.2 (Torus)
Here’s the traditional method of building a torus as a quotient space. Notice that the four corners
are identified:

We can now view the square above as giving us gluing instructions for gluing in the edges to the point
in the 1-skeleton, and the disk to the edges in the 2-skeleton.
Breakout Rooms

Exercise 1.3.3
Prove that if X ~ Y then X is path connected if and only if Y is.

Solution. Note that it suffices to prove that when X ~ Y and X is path connected that Y is path connected
because homotopy equivalence is an equivalence relation. Let the homotopy equivalence be given by f: X — Y
and ¢g: Y — X, and let F': Y x [0,1] = Y be the homotopy from f o g to Idy. Note that for any y € Y this
induces a path from y to f(g(y)) by holding the first input to the homotopy fixed:

¢y(t) = Fi(y) ¢y (0) = f(9(y)) gy(1) =1
Great!

Now fix two points y, z € Y. We know since X is path connected that there is some path p: [0,1] = X
from g(y) to g(z), and we can compose this with f to get a path from f(g(y)) to f(g(z)) given by f op.
We then know that there is a path from y to f(g(y)) and a path from f(g(z)) to z given by the above, and
pasting these paths appropriately we get a path from y to z as desired! Therefore Y is path connected!
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o
Awesome! We now have our first homotopy invariant! L 4

Exercise 1.3.4
Identify these quotient spaces!

7. (Quotient surfaces). Identify among the following quotient spaces: a eylinder, a Mobius band, a
sphere, a torus, real projective space, and a Klein bottle.

A A A A A A

Let’s go in order!
1) Klein bottle
Mobius band

2)
3) Torus
4) Cylinder
5)
6)

N N N S

Sphere
(6) Real projective space
Great ©

Definition 1.3.1
D™ is the closed n-disk and S"~! = D"
A 0O-cell is a point, and a n-cell for n > 1 is the interior of D".

1.3.2. The CW Complex Definitions

Definition 1.3.2
A CW complex (cell complex) is a topological space constructed as follows:

o X0 (0-skeleton) is a set of discrete points
e We build X" (n-skeleton) from X"~! by attaching n-cells e” (« is an index). The instructions
for how to “glue” el are given by the attaching map

o S XL

This tells us where to glue the boudary of an n-disk 9D™, which will be a boundary of our n-cell
el. Formally, we take:

X" = <X”1 ]_[Dg) / (z ~ ¢o(z) Yz € D)
As a set then:

X" — Xn—l Heg

e We define X = J,,», X™ with the weak topology. That is U is open in X if and only if U N X™
is open in X™ for all n > 0.
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Announcements

e First office hours tonight, 8pm-9pm, use the “Zoom Lounge”
e Homework #1 due 8pm Friday on Gradescope.

Definition 1.3.3
We need a few definitions for working with CW complexes!
e A CW-complex is called finite if it involves a finite number of cells.
e A subcomplex of a CW complex is a closed subset consisting of a union of cells.

Exercise 1.3.5
A subcomplex is itself a CW complex.

1.3.3. Operations on CW Complexes

Definition 1.3.4
We can consider the product of two CW complexes can be given a CW complex structure.

m

Namely, given X and Y CW complexes, we can take two cells e from X and e}’ from Y we can form

the product space e, x e3* which is homeomorphic to an (n + m)-cell. We take these products as the
cells for X x Y

Warning It is possible (in “pathological” cases) that the product topology on X x Y does not agree
with the weak topology. They do agree if either X or Y is locally compact or if X and Y have at most
countably many cells

Exercise 1.3.6
The torus is S* x St. Write down the CW complex structure on the torus that comes from the CW
complex structure on S with one point and one edge.

Definition 1.3.5
If X is a CW complex and A is a subcomplex, then the quotient X/A (A is identified to a point)
inherits a CW complex structure. Namely
e The 0-skeleton is points in X% — A° unioned with one point for A
e Each cell in X™ — A is attached to (X/A)™ by the attaching map defined by composing with the
quotient map S” — X" — X" /A™.

Example 1.3.7
We can take the sphere and squish the equator down to form a wedge of two spheres as follows:

Example 1.3.8
We can take the torus and squish down a ring around the hole like in this picture:
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The above is homotopy equivalent to a 2-sphere wedged with a 1-sphere via the extending the red point

into a line, and then sliding the left point of the line along the two-sphere towards the other point,
forming a circle.

Definition 1.3.6

Take X,Y to be CW complexes, and let 29 € X°,yo € Y". Then we can consider X VY which is the
quotient of X UY by identifying x¢ and yy to one point, called the wedge sum.

10
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Announcements

e Quiz 1 now graded - Gradescope, and solutions are posted on the webpage
e Homework #1 due 8pm tonight on Gradescope, be sure to select the pages
e Office hours 2:30-4:30 in “Lounge Zoom”

Back to Lecture!

1.4. Intro to Category Theory
1.4.1. Our Definitions

Definition 1.4.1
A category ¥ is three pieces of data with two conditions. Here’s the data first:

e A class of objects, Ob(%).
e For all X,Y € Ob(%) we have a class of morphisms (or arrows) denoted Home (X, Y).
e For every X,y,Z € Ob(%’) we have a composition law, that is a map:

Homg (X, Y) x Homg (Y, Z) — Homeg (X, Z2)

(frg) > gof

All of this satisfies the following two conditions:
e Associativity of composition:
(fog)oh=fol(goh)

And this holds for all f, g,k such that these compositions make sense.
e For every object X € Ob(%) there should exist some Idy € Home (X, X) such that;

foldx =f ldxog=g
For all f, g such that these compositions are defined.

Example 1.4.1
Let’s get some examples down.

€ Ob(%) Mor (%)

Set Sets Functions

Grp Groups Group Homomorphisms

Ab Abelian Groups Group Homomorphisms
k-Vect Vector spaces over k k-linear maps

Rng Rings Ring Homomorphisms

Top Top. Spaces continuous maps

Haus Hausdorff Spaces continuous maps

hTop Top Spaces homotopy classes of continuous maps
Top* Top spaces with a distinguished basepoint Continuous maps that preserve the basepoint

Example 1.4.2
Any “diagram” with a composition law defines a category. Just consider:

Wi A -1 B Dldp

Definition 1.4.2
A morphism f: M — N in a category ¢ is monic if for all g1, g : X — M with the same domain:

fogn=foge = g1=9

g1
e
o\g_ﬁM—>N
1

11
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Dually, f is epic if for all g1, 92 : N — X we have:

giof=gof = g1=go
¥ 91
y - 3
]\J%N\ﬁo
g1

Breakout Rooms

Lemma 1.4.1
In Set, Ab, Top a map is monic if and only if it is injective.

Solution. We’ll do the problem in abelian groups. We go in both directions!

(=) Suppose that f : G — H is a monic map of abelian groups. We wish to show that f : G — H is
injective. Fix any two elements a,b € G, and construct morphisms ¢, : Z — G and ¢ : Z — G as

follows:

do(n)=n-a dp(n)=mn-b
Since we know that abelian groups are Z-modules. Now suppose that f(a) = f(b). Then consider
that:

(foda)(n) =f(n-a)=n-fla) =n-f()=f(n-b)=(fo¢)(n)
And therefore f o ¢, = f o ¢p. This shows since f is monic that ¢, = ¢,. However then we're in
business since:
a=¢a(1) = (1) =0

And so a = b. This shows that f is injective. Awesome ©

(<) Suppose that the map f: G — H is injective. We will show that f is monic. To do so, fix two maps
g1,92 : A — G where A is an abelian group, and suppose that fog; = f ogs. Then for any a € A
we know that f(g1(a)) = f(g2(a)), giving us since f is injective that g;(a) = g2(a). Since this holds
for arbitrary a € A we know that g; = g2!!! Great! ©

With this we’ve finished the problem —
1.4.2. Functors

Definition 1.4.3
For €, 2 categories a (covariant) functor I : € — 7 is

(a) A map of objects:
Ob(¥) — Ob(2)
X — F(X)
(b) A map of morphisms:
Hom (X,Y) — Homg (F(X), F(Y))
f = F(f)
In another way we can say that if we have f: X — Y in € then we get a new map lying in 2,
F(f) : F(X) - F(Y).
With the extra conditions that:

(1) F(Idx) = Idp(x) for all X in C
(2) F(fog)=F(f)oF(g) for all maps f, ¢ in ¢ for which the composition makes sense

For a contravariant functor we replace some conditions:

12
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(b)” A map of morphisms:
Home (X,Y) — Homg(F(Y), F(X))
f=F(f)

In another way we can say that if we have f: X — Y in ¥ then we get a new map lying in 2,
F(f): F(Y)— F(X).
(2) F(fog)=F(g)oF(f) for all maps f, ¢ in € for which the composition makes sense

13
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Announcements

e Homework #2 posted — course website

e Quiz #2 Wednesday
— Know definitions of category, functor
— Review our examples of functors

Examples of Functors

Example 1.4.3
We have an identity functor € — % for any category €.

Example 1.4.4 (Forgetful functors)
For example:

Z : Grp — Set
(G,x) — G
[f : (G,x) = (H, %) — [f: G — H|
There are lots of such examples. Consider:
Z : Top — Set
(X, T)—X
f: (X, 7x) > X, Ty)|—[f: X = Y]

Similarly we have:

Example 1.4.5 (Free Functors)
For every ring R we have a free functor:

F: Set - R-mod
A F(A)
[f : A — B]+~ map of R-modules
F(A) — F(B) that extends the map
f: A — B on their bases
We similarly get free group constructions:
F : Set — Grp

A @ group on A

Example 1.4.6
The dual space construction. Given a field £ we have a contravariant functor:

k-vect — k-vect
V = V* = Hom(V, k)
[A:V = W]~ [A* : Homg (W, k) — Homg (V, k)]
[p: W = k] [poA:V — K|

14
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1.5. Free Groups

Definition 1.5.1

Let S be a set. The free group is a group Fs equipped with a map S — Fls satisfying the following
universal property.

If G is any group, and f : S — G is any map of sets, then f extends uniquely to a group homomorphism

f: Fs — G making the following diagram commute:

s—.q

A
|
~ - EINg
Fs '
Aside: This defines a (natural) bijection:
Homge (S, % (G)) = Homgayp (Fs, G)

Where % is the forgetful functor from the category of groups to the category of sets. This is the
statement that the free functor and the forgetful functor are adjoints; specifically that the free functor
is the left adjoint (appears on the left in the Hom’s above).

Remark 1.5.1

Whenever we state a universal property (UP) for an object (+ map) in a category, an object (+ map)
satisfying the UP may or may not eist.

However, if it does exist, the UP determines it “uniquely up to unique isomorphism.” Sow we may
take the UP to be the definition of the object (+ map)

Claim
The Universal Property determines Fs (+ map S — F(S)) uniquely up to unique isomorphism

Proof. Fix S. Suppose Fg, Fs with maps S — Fg and S — Fs which both satisfy the universal property.
There must exist unique maps filling in the bottom two diagrams by the universal property for Fs and
FS:

S— Fs S——Fs
l 7 l 7

/ /
MR- _ 73y
Fg Fs

The goal is to show that f and g are inverses (and hence isomorphisms). The uniqueness follows from the
condition that f and g are the only group homomorphisms making the above diagrams commute.
We now paste the above diagrams together in two different ways:

Fs Fg
x X
/ Tg \\ / Tf \\
| ~
S——Fs  |oof S——Fs | fog
T / * /
‘f / lg /
~ 7 (2
Fg Fg

We then observe that the outer triangle in each case is a Universal Property diagram for ﬁs and Flg respectively.
Since the identity makes these outer triangles commute, we can conclude from the commutativity of the
above diagrams and uniqueness that these are isomorphisms, aka:

go f=1Idg, fog=1Idpg

PN
v

15
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Announcements

e Homework #1 feedback is on gradescope
e Homework #2 due 8pm Friday
e Office hours 8pmm-9pm today

1.5.1. Construction of free groups

Proposition 1.5.1
The free group defined via the universal property before exists. We will give a construction below.

Definition 1.5.2
Fix a set S. A word is a sequence (possibly empty) of formal symbols {s,s~! | s € S}.

Proof. Fix S, Fg is equivalence classes of words:
vsstw ~ vw

8 L sw ~ vw

For every words v, w. The group operation is concatenation of words. v
Example 1.5.1

Given words ab~!, bba their product is:
ab™! - bba = ab~'bba = aba

Exercise 1.5.2
This product is well-defined on equivalence classes.

Exercise 1.5.3
Every equivalence class of words has a unique “reduced form.”
Exercise 1.5.4
Fs satisfies the Universal Property with respect to the map:
S — Fg

Sk S

II. The Fundamental Group 7
1I.1. Basic Definitions

Definition II.1.1
A path in a space X is a continuous map v: I — X
v is a loop if y(0) = (1)

Definition II.1.2
A homotopy of paths 71,72 is a homotopy from ~; to o rel {0, 1}.

16
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Definition II1.1.3
For paths «, 8 with «(1) = 3(0), the composition, product, or concatenation of these paths is defined
as follows:

) a(2t) ifo<t<1/2
m'ﬂU):{:ﬂml)ifu2<t<1

By the pasting lemma this is continuous. Thus « - £ is a path from «(0) to 5(1).

Definition I1.1.4
A reparameterization of 7 is a path:

1515 x

Such that ¢(0) =0 and ¢(1) =1, and ¢ : I — T is continuous

Exercise I1.1.1 (Homework)
A path v is homotopic rel {0, 1} to all of its reparameterizations.

Exercise I1.1.2
Fix zg,z1 € X. “Homotopy of paths” (relative {0, 1}) is an equivalence relation on paths from xg to
€Iq.

Definition II.1.5
Let X be a space, and zp € X. The fundamental group of X based at zy (denoted 71 (X, zp)) is a
group:

e Elements are homotopy classes rel {0, 1} of loops v with v(0) = v(1) = x¢ (we say 7 is based at

/

(L‘())
e The operation is composition of paths
e The identity is the constant loop at zq

e The inverse [y] 7! is represented by the loop ¥(t) = (1 — t):

The proof that this is a group is Homework

17



Faye Jackson MATH 592 - 1.1

Exercise I1.1.3
Composition of paths is well-defined on homotopy classes rel {0, 1}.

Theorem II1.1.1 (Homework)
If X is path-connected then m (X, 2q) = 71 (X, z1) for every g, 21 € X. So we can write m1(X) up
to isomorphism.

Exercise I1.1.4
If X is a contractible space, then X is path connected and 7 (X) is trivial.

18
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I1.2. Calculations with 7;(S")
Theorem II.2.1
m1(St) = Z, and this identification is given by the following paths:
n > [wn(t) = (cos(2mnt), sin(2mwnt))]

Intuitively this winds around S! n times. The key to this proof was to understand S! via the covering
space R — S'. We will talk about covering spaces more in class later.

Proof. See Homework v

Theorem 11.2.2
There is a natural identification m1 (X x Y, (zo,y0)) = m(X,x0) x m1(Y,y0). The identfication is
exactly:
[v: I = X xY] < ([px onls [py 09])
Where px and py are the projections.

Exercise 11.2.1
Give a proof of ths result. The key is that a map:

74 xxy

e (fx(2), v (2))
f is continuous if and only if fx and fy are. The proof should go like:
e Apply this principle to paths I — X x Y
e Apply this principle again to homotopies of paths I x I — X x Y.

Corollary I1.2.3
The torus T' = S x S! has fundamental group 71 (T) = Z2. This will in fact be generated by the
loops around each of the factors:

Furthermore the n-torus S* x --- x S! has fundamental group Z™. One way to think of the n-torus is
—_——

n
as an n-dimensional cube with opposite (n — 1)-dimensional faces identified by translation. We include
a picture of the 3-torus with the generators:

Corollary I1.2.4
R? — {0} = S* x R must have fundamental group 0 x Z = Z. Intuitively the generators are just loops
around the hole:
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Theorem 11.2.5
m1(S™) 2 0 for all n > 2. The picture for the 2-sphere is fairly simple:

Great!

Proof. Let v : I — S™ be loop based at zy. Choose x # xg.

Goal: Homotope 7 (rel {0,1}) so that x is not in its image. Then we know S™ \ {z} = R", which
deformation retracts to xg, and we can use this deformation retraction to push our loop to a point.

Strategy: Choose a small open ball B about x. Then we know that v~1(B) is open in I, so it is a union
of disjoint open intervals (a;, b;). The set y~!(x) is compact, since it is a closed subset of I, so it is contained
in finitely many (a;, b;)

The next observation is that by continuity of v we have v([a;, b;]) € 7v((a;,b;)) € B, and thus the endpoints
a;,b; must map to dB. So then for all i for which v((a;, b;)) passes through z choose a new path «a; in B
from ~y(a;) to v(b;) that misses x:

We homotope v (as.b:] to a; rel {0,1}. We can always do this because D™ is contractible and has enough
“room” to not pass through the point x for n > 2. We do this finitely many times by the compactness argument

above, and so we're done! We have a path homotopic to v that misses x. v

Breakout Rooms: m; is a functor

Theorem 11.2.6
: Top* — Grp is a functor. Recalle the objects in Top * are spaces with a distinguished basepoint
(X, xo) and the maps are base point preserving maps.
The functor is defined on morphisms by considering that a map f : X — Y taking xg to yo induces:
f* : 7T1(Xa ‘(EO) — T‘-l(Y', yO)

(V] = [f o]

Proof: In Breakout Groups. We need to check four things:

(1) fs« is well-defined on homotopy classes
(2) f« is a group homomorphism

(3 ) (Id Xﬂﬂo)) Idﬂ'l(X,Io)

(4) (fog)s = fsogs.

Let’s go in order!
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(1) Take two homotopic paths 7,7’, then there’s a relative homotopy between them T' : T x [ — X.
Then we can postcompose this to get a homotopy f oI from f o~ to f o’. This will be a relative
homotopy since f preserves basepoints.

(2) This is a pretty simple calculation. Fix two loops «, 8 at xg. Then we see that:

(fola-A® = { ?E%Ei?l 1) i oy A
=((foa) (foB))()
Great! Thus this is a group homomorphism since:
fo(l][B]) = fulla- B]) = [f o (- B)] = [(f o) - (f o B] = fula) f(B)
(3) We see that for any loop v at xq:
(d(x,00))+(V]) = d(x,20) ©7] = 1]

And so this map is the identity on the group!
(4) The calculation here is similar to the quiz, using associativity of composition. Namely given a loop
v at zo we see that for f: (Y,yo) = (Z,20) and g : (X, 20) — (Y, yo) that :

(fog(b)=I[(fog)er]=[folgoy)]
= fellgon]) = fulg«(])) = (fs 2 9:) (1))
Great!
With this established we’ve seen our first really cool example of a functor ©.

¢
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Announcements

e Quiz #3 Wednesday. Hints:
— Know our calculation of 7y for spheres and contractible spaces (don’t need proof)
— Know our result on m; of a product
— Know the definition of a retraction
— Understand solution to Homework #3, Assignment Questions la and 1b
e Midterm next week, February 18th 7-8pm

Definition I1.2.1 (From Homework)
Let X be a topological space, and A C X a subspace. A retraction r : X — A is a continuous map
such that r(a) = a for all @ € A. The subspace A is called a retract of X.

Lecture

Last time, we showed in breakout rooms that 7 is a functor from Top * to Grp. Note that parts (3) and
(4) were very similar to the quiz!

II1.3. The Van Kampen Theorem
Goal: Compute 71(X) where X = AU B using the data of m1(A), m1(B), m1 (AN B).

2 B

N

Definition I1.3.1 (Free product of groups with amalgamation)
Given some collection of groups {G4 }a, the free product * G, is a group:

e Elements are words g1g9s---¢g, where g; € G, for some «. Modulo the equivalence relation
generated by:
— First we have

wg;gjv ~ w(gig;)v
Whenever both g;,g; € Go. And also:
— We also want to deal with identities 1, for 1, € G, the identity element
wlyav = wo
Great!
e Operation is concatenation of words.
If groups G, and Gg have a common subgroup H (inclusion maps i, : H — G, and ig : H — Gp)
then the free product with amalgamation g G, is defined as * modulo the subgroup generated by the
(03

words:
ia (h)29 (h) !

Aka, i, (h) and ig(h) will be identified in the quotient.

We can then write out words as such as g1g2hgs for h € H, and view h as an element of G, or Gg.
In fact, we can do this construction even when ¢, and ig are not injective, though this means we are
not working with a subgroup.

Exercise 11.3.1
Check that ,*xg G, is well-defined as a group under concatenation.
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Exercise 11.3.2
o*i G4 contains each group G, as a subgroup in a canonical way.

Exercise 11.3.3

G g G satisfies the universal property—which is called a pushout—-meaning that whenever we have
f1: Gy — Z and f5 : Go — Z such that f; oi; = f3 05 then there is a unique u : G1 *g G5 making the
diagram commute:

H—" .q

I

Gy —— G xg Ga
N

Awesome!

Note on Notation: The « in g is the indexing set, and the amalgamating group is H, with maps H — G,
H — Gg left implicit. This notation may only be standard for working with two groups.

Analogue: If we have sets A, B with common subset C' (i.e. AN B = (), then we sometimes write
AUe B = AU B, then again we have this universal property:

c—1 a4

|

B—— AUc B
~

The universal property is actually a bit more general if we take any maps C — A and C' — B. In this case
we have:

AUc B =AU B/[f(c) ~ g(c)]

Theorem I1.3.1 (Van Kampen)
Here are the preconditions:

e Suppose we have a space X with base point zg.

e We have X =J, Ao

e A, are each open, path-connected, and contain g
e A, N Ag is path-connected.

Then there exists a surjective homomorphism *,, m1(A4,) — 71(X).
If we additionally assume that if A, N Ag N A, are all path connected, then:

T1(X) = ok, (4anas) T1(Aa)

associated to all maps m1(Ay N Ag) — m1(As), m1(Ag) induced by inclusions of spaces. Le. m1(X) is a
quotient of the free product %, m (A,) where we have:

(tap)s : T (Ao NAg) = m1(An)

which is induced by the inclusion i,g : Ao N Ag = A,. We quotient by the normal subgroup generated
by:

{(Gap)«(M(iga) ()" | 7 € m1(Aa N Ag)}

We’re often interested in the special case with two sets:
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Theorem I1.3.2 (Van Kampen for two sets)
For X = AU B and A, B open path connected sets containing o with A N B path connected, then:

m1(X) = m1(A) *r1(ANB) m1(B)
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Here’s a great visualization of the Van Kampen Theorem:
x=RUB

AOB B

Intuitively we see the fundamental group of X—which is built by gluing A and B along their intersection—as
the fundamental group of A and B glued along the fundamental group of their intersection. In essence,
m1 (X, xg) is the quotient of 7 (A) x 71 (B) by relations to impose the condition that loops like v lying in
AN B can be viewed as elements of either 71 (A) or 71 (B).

Announcements

Midterm — Thursday February 18th

Shorter homework next week on Van Kampen to review for the exam

No quiz next week.

Extra Office Hours next Wednesday 17th February from 7pm-9pm (Midterm review)

Back to Van Kampen

Example I1.3.4
Lets compute the fundamental group of S? again using Van Kampen.

S~

71(S?) must be a quotient of 7y (A) * 71 (B), but since A, B ~ D? we know 71 (A) and 7;(B) are both
zero groups. Thus 71 (A) * 71(B) is the zero group, and m;(S?) is the zero group.

Remark II1.3.1
Something to note, the inclusion of AN B — A induces the zero map m1(A N B) — 71 (A), which
cannot be an injection. In fact we know that 71 (AN B) 2 Z since AN B ~ S'.

Example I1.3.5
Now let’s do the same thing with the torus!

Now note that A ~ D? and B ~ S' Vv S, since it is a thickening of the two loops around the torus in
both ways. This suggests the question of how do we find 71 (B)? We grab a bit of knowledge from Van
Kampen before we continue.

Exercise I1.3.6

Suppose we have path connected spaces (X,,z,) and we take their wedge sum \/_, X, by identifying
the points x,, to a single point z. We also suppose a mild condition for all o, the point x,, is a deformation
retract of some neighborhood of z,.
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For example, this doesn’t work if we choose the “bad point” on the Hawaiian earring. Then we can
use Van Kampen to show that:

1 <\/ X(v@[‘) - *ﬂ—l(Xu,-,iL.u)

«

Proof idea. Take A, = X, UB Us ~ X, where Ug is a neighborhood of x3 which deformation retracts to xg.
This makes A, open as desired. .v.

Corollary 11.3.3
The wedge sum of circles m (\/aeA Sl) = %47 is the free group on A. In particular when A is finite,
the fundamental group of a bouquet of circles is the free group on |A| generators
Returning to Example 11.3.5 we have that:
e m(A)=0
e m(B)=m(S'VSY)=Zx+«Z=F
L] 7r1(Aﬂ B) = 7'('1(51) = 7.
We know that 7 (AN B) — m1(A) is the zero map. We need to understand 71 (AN B) — 71 (B). To do so we
need to understand how we're able to identify 71 (S! v S with Fy and how we identify m1(S*) with Z. We
update our picture to talk about this

5 W

6 Ka

o ¥

[ N
3 Em‘ﬂ}'ﬁ n (BN

From picture we have that:
(AN B) 1 (B) = Fu,
v aba b1
By Van Kampen: identify the image of v in m1(B) [aba~1b~!] with its image in 7 (A) (trivial). Therefore:

T (T?) = F,p/(aba b1 = 72
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Announcements

e Midterm on next Thursday the 18th
e Fill out “when to meet” for midterm study groups
e Extra Office Hours 7pm-9pm Wednesday.

Back to Van Kampen!

Example I1.3.7
Start with a torus, and glue in two disks into the hollow inside:

We'll call this space X, and our goal is to find 71(X). We can place a CW complex structure on this
space so that each disk is a subcomplex. Then by homework we can quotient eeach disk to a point
without changing the homotopy type:

By the same property, we can expand one of these points into an interval, and then contract the red
path:

This is exactly S? v 2 v S'. OUr work with Van Kampen told us that:
7T1(X) :71'1(52\/»92\/51) =0x0%xZ=7Z

Exercise 11.3.8

L 9 . . , .
Consider R* \ {z1,...,: rn}, that is the plane punctured at n points. Then X ~ \/ S', so then
m (X) = F,.
One way to do this is to convince yourself that you can deformation retract the plane onto this wedge:
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I1.4. Group Presentations

Definition I1.4.1
A presentation (S | R) of a group G consists of:
e S, which is a generating set, generators
e R, a set of relations (words in generators) such that
Such that:

G Fs/N

Where Fg is the free group on S, and N is the subgroup normally generated by the elements of R.

A presentation is finite if S, R are finite. G is finitely presented if it admits a finite presentation. One
way to think about the relations is that if r is a word in R then r = 1, where 1 is the identity of G.
People often do this.

Example I1.4.1
We have some nice examples!

Group Presentation
Fy (a,b])
z? {a,b| aba=tb~1)
Z/3Z {a | a®)

PSL, Z {a,b | a?,b3)
S3 <Sat | 52at23 (St)3>

Theorem 11.4.1
Every group has a presentation

Proof. We'll give an outline:

e Choose generators S C G, we could even choose S = G
e There exists a surjective map ¢ : Fig — G which is given by s+ s for s € §
e Choose R to be a generating set for ker ¢. By the first isomorphism theorem G 2 Fg/ ker ¢.

Great

¢

Advantages

Exercise 11.4.2
If G = (S| R) and we have a map ¢ : S — H, then ¢ defines a group homomorphism G — H if
and only if ¢(r) = 0 for all » € R. By this we mean something like if we have G = (a,b | aba), a map
¢ : {a,b} — H gives a group homomorphism if and only if:
p(aba) = p(a)p(b)p(a) = 1

This essentially uses the universal property of quotients.

Exercise 11.4.3
Suppose all relations in R are commutators, so R C [G, G]. Then:

an _ (Fg)ab _ @Z
S

Disadvantages

Computationally very difficult.

Example I1.4.4
Show that (a,b | aba=1b=2,a=2b~tab). This is a presentation of the trivial group, but this is entirely
unclear.
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Announcements

Midterm Thursday 7pm ET
Study Groups
— 7pm tonight ET
— 6pm Tuesday ET
Midterm review package posted on webpage under “Exams”
Midterm
— You are responsible for material up to / including today
— You are responsible for material on homework.
— Two questions, many parts
— True and Counterexample Questions
— Spaces and presentations for the fundamental groups.

Back to Lecture
Exercise 11.4.5
Consider G; = (S7 | R1) and G5 = (S | R2). Then we have
e Gy xGy= (51 USs | Ry URy)
® (1‘\ (1‘2 - (’S] @] Sz ‘ 11)| U /1)2 U { [(/] (/_) g1 € (1‘\ ,g2 € (1'2}’\}
e (1 xy Gy where f1 : H — G4 and fy : H — (G5. Then we have

(Vr'JV *H (71'2 = /\»Sl U SQ ‘ /1)\ U /1)_> U ‘{f] Ul)fg(/l)il h € Il}/\

This is super useful!

11.5. Presentations for m; of CW Complexes

Outline: For X a CW complex:

(a) A 1-dimensional CW complex has free m; (call its generators ay,...,ay)
(b) Gluing a 2-disk by its boundary along a word w in the generators “kills” w in
We then get a presentation for w1 (X?) given by:

{ay,...,an | w for each 2-cell in X?)

(¢) Gluing in any higher dimensional cells along their boundary will not change m;. That is in a CW
complex we have 71(X) = m(X?).

Example I1.5.1
G =7Z/nZ = (a,a™), then we take a loop and then wind a 2-disk around the loop a n times.

Consequence: Given a group G with presentation (S | R) one can construct a 2-dimensional CW complex
with T = G:
e Set X! = \/sess1
e For each relation r» € R glue in a 2-disk along loops specified by the word 7.
Every group is then m; of some space.
This theorem will give us part ¢)
Theorem I1.5.1 (From Homework)
If X is a CW complex and ¢1 : X' < X and 19 : X2 < X, then (i1), surjects onto 71 and (iz), is an
iso on 7.
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Definition I1.5.1
We import some topological definitions of graph theoeretic concepts:

A graph is a 1-dimensional CW complex.

A subgraph is a subcomplex
A tree is a contractible graph.
A tree in a graph X (necessarily a subgraph) is maximal or spanning if it contains all the vertices.

Theorem 11.5.2
Every connected graph has a maximal tree. Every tree is contained in a maximal tree.

Corollary I1.5.3

Suppose X is a connected graph with basepoint 9. Then 7 (X, xo) is a free group.

Furthermore, we can give a presentation for m1(X,zo) by finding a spanning tree T in X. The
generators of m; will be indexed by cells e, € X —T.

eq will correspond to a loop that passes through T, traverses e, once, then returns to the basepoint
o through T.

Idea: X is homotopy equivalent to X/T. via previous work on the homework. T' contains all the vertices, so

the quotient has a single vertex. Thus it is a wedge of circles, and each e, projects to a loop in X/T. Here’s
a picture illustrating the process:
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The current program is to calculate the fundamental groups of CW complexes. For now, we need to see
that the fundamental group of a 1-skeleton (a graph) can be found by taking a maximal tree, and then
quotienting the space by that tree to get a wedge of circles:

Proof (Mazimal Trees Exist). Recall X is a quotient of X°]], I,. Each subset U is open if and only if it
intersects each edge €5 in an open subset. A map X — Y if and only if its restriction to each edge e, is
continuous.
Take Xy to be a subgraph.
Goal: Construct a subgraph Y with
[ ] XO Q Y Q X
e Y deformation retracts to Xy
e Y contains all vertices of X.

So if we take X to be a vertex, then Y is our tree and we’re done!
Strategy: Build sequence Xy € X; C --- and corresponding Yy C Y; C ---. We start with Xy and
inductively define:

X; =X, U all edges e, with one or both vertices in X; 1

Exercise 11.5.2
Check that X = J, X;. In Hatcher we do this by arguing the union on the right is both open and
closed.
Now let Yy = Xy. By induction, we will assume that Y; is a subgraph of X; such that:

e Y, contains all vertices of X
e Y, deformation retracts to Y;_1

We can then construct Y;y; by taking Y; and adding to it one edge to adjoin every vertex of X;q:
Yir1 =Y, U one edge to adjoint every vertex of X;

This is possible by using the axiom of choice.

Exercise 11.5.3
Check that Y;;; deformation retracts to Y; (just smush down each edge).

Exercise 11.5.4

Y deformation retracts to Yy = Xy by performing the deformation retraction fromY; to Y; 1 during
the time interval [1/2%,1/2¢71]
Awesome! We win! v
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Announcements

e Midterm 1 is over!!! Here are the statistics (grades were out of 20)

— Ranged from 13.5 to 20
— Median: 15.5
— Average: 16.11

e The exam was made more difficult in order to prevent searchability, since algebraic topology is very

searchable. Grades will be interpreted accordingly

e The grades for homework this week may come back a bit late due to grading of the midterm taking

precedence.

11.6. Proof of the Van Kampen Theorem

Van Kampen: Proof Outline. Let X = |J, Ao where the A, are open, path-connected, and contain the
basepoint xy. We also must guarantee that A, N Ag is path-connected.

Step 1)

Step 2)

We have a map induced by the inclusions:
P : *7'['1(14@,1'0) — 7T1<X,l‘0)

We want to show that ® surjects. Take some v : I — X. You use compactness of the interval I
to show that you can partition I into pieces, each of which is mapped completely into one A,. In
particular lets partition I with s; < --- < s, so that 7’51,&'“ =: v; has image in A,, for some o;.
We'll leave the full point-set argument as an exercise, but as some hints:

— A, is open for all

— I is compact
Fora 1l 4, we choose a path h; from xo to v(s;) in Ay, , N Ag,, using path-connectedness of the
pairwise intersections. Now take v and write it as follows:

Y= (71 : hl) : (hl : '72) ce (’Yn—l : hn—l) : (hn—l : "Yn)
Great! Each of these paths is fully contained in A,,, and so this shows that v € im(®). Therefore ®
surjects.
For the next step, showing the second part of Van Kampen, we assume that our triple intersections
are path connected.
We want to show that ker(®) is generated by (ing)«(w)(iga)s(w) ™!, where ing : Ay N Ag — A,
for all loops w € m1(Aa N Ag, xo).

Definition I1.6.1
A factorization of a homotopy class [f] € (X, z¢) is a formal product [fi1][fz] - - - [f¢] with
1] € 1(Auy, 7o), such that f = fi - fo--- fo.

We showed that every [f] has a factorization in Step 1. Now we want to show that two facotrizations
[f1] -+ [fe] and [f{]---[f},] of [f] must be related by two moves:
— [fil - [fixr] = [fi - fisa] i [fi]s [fiz1] € m1(Aq, z0). Aka, the relation defining the free product of
groups.
— [fi] can be viewed as an element of 71 (Aq,x0) or m1(Ag, zo) whenever [f;] € m1(Ay N Ag, o).
This is the relation defining the amalgamated free product.
Now let Fy : I x I — X be a homotopy from fi--- f; to f1--- f/, since they both represent [f]. We
subdivide I x I into rectangles R;; so that F(R;;) C A,,; =: Aj; for some a;;, using compactness.
We also argue that we can perturb the corners of the squares so that a corner lies in only three of
the A,’s indexed by adjacent rectangles:
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We also argue that we can set up our subdivision so that the partition of the top and bottom intervals
must correspond with the two factorizations of [f]. We then perform our homotopy one rectangle at

a time:

Idea: Argue that homotoping over a single rectangle has the effect of using allowable moves to modify

the factorization.
At each triple intersection choose a path from f(corner) to 2o which lies in the triple intersection,

so we use the assumption that the triple intersections are path connected.

onoose path b
fron \WNage of this

cornel 10 Xo
Along the top and bottom we make choices compatible with the two factorizations. It’s now an

exercise to check that these choices result in homotoping across a rectangle gives a new factorization
related by an allowable move.

P
&
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Announcements

e No class Wednesday, Office Hour moved to 8pm on Thursday
e Homework #5 corrected.

Resume Math!

ITI. Covering Spaces

ITI.1. Definitions and Lifting Properties
Definition III.1.1

A covering space X of X is a space X equipped with a map p : X — X such that there exists an
open cover {U,} of X so that for all a, p~*(U,) is a disjoint union (possibly empty) of open subsets in

X, each of which is mapped homeomorphically by p to U,. Here’s the picture:

>
P —

Uw

Example II1.1.1
Covers of SV S, lifted from Hatcher:

Proposition III.1.1
Covering spaces (say Y over Y) satisfy the homotopy lifting property. That is, we may fill in diagrams
in the following way:

X x{0y= X ¥

F -
PR
7

XxIF—>Y

That is given a lift f‘o of Iy, there is a unique lift ﬁt of F; extending }NWO.
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Corollary IT1.1.2
Covering spaces satisf the path-lifting property:

For each path I % Y and for each preimage o of ~v(0) = yo there exists a unique path I Ly lifting
~ and starting at yo.

Proof. See Homework. =

Proposition III.1.3
Suppose that p: (X,Zo) = (X, x0) is a covering map (i.e. p is a covering map and p(Zy) = xg). Then
we have the following relationships between the fundamental groups:

(i) py: T (X, 7o) = m (X, 20) is injective

(i) ps«(m1(X,Z0)) C m1(X, z0) picks out the subset:
{[7] | Lift ¥ of v starting at Z¢ is a loop}

Proof. Suppose that ¥ € ker p,. Then v =po7. Let 7, be a null-homotopy from v to the constant loop ¢,
rel {0,1}. Then we can lift 4; to 7; where 7y = 7. We then claim that, using a similar proof as in Homework
2:

e 7 is a homotopy rel {0,1}

e 7 is the constant loop cz,.
In diagrams and pictures:

X X
I — X [xIﬁX

This picture provides a proof of the first claim, we know that the left and right edge of I x I maps to zy under
Ve, and cz, lifts this, so by uniqueness ¢ — ¥,(0) and ¢ — 7,(1) must be constant paths at Ty as desired.

This shows that ker p, is trivial. Proving part (i). We leave part (ii) as an exercise. The proof uses similar

ideas. v
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Proposition I11.1.4

Suppose we have a covering map p : (577%) — (Y, y0), a continuous function f : (X, z9) = (Y, v0),
with X path-connected and locally path-connected. Then there exists a lift f: (X, 20) — (}7, Jo) if and
only if f,(m1(X,z0)) C pu(m1(Y,50)). In a picture:

Proof. The “only if” portion is straightforward from the factorization f, = p. o }”; due to functoriality.

}7 7T1(5~/7§0)
al )
XTY TF1(X,.%'0)T>7TI(Y7:UO)

Then we have that f, (1 (X, z0)) = pu(fa(m1(X, 20))) C pu(m1(Y, 50))-
Now lets do the “if” portion. Let z € X. Choose a path v from z¢ to z. The path f o~ has a unique lift

starting at 7p. Define f(x) = f~(1). Consider the following picture:

We must show that fis well-defined and that fis continuous:

(1) Let o' be some other path from z¢ to . We want to show that ﬂ(l) = fA'y//(l) Since 7 -7/ is a loop
in X at zo, we know that fv- f+"is aloop in Y in im(f,). Thus this loop is in im(p,) by assumption,
so it must form a loop when lifted there. Here’s the picture:
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But wait! By uniqueness of lifts, the loop lifting (f7) - (f7') to Y must be equal to the lifts f:y -y
with a common value at t = 1/2. And then Fy(l) = }7(1) as desired. We'll leave the details of this
use of uniqueness as an exercise.

Choose = € X and choose a neighborhood U of f~(x) inY. We may shrink U so that p|ﬁ is

a homeomorphism to p(U ) = U, via the definition of a covering space. We know that f~1(U)
is an open neighborhood of z. It suffices to show that f~1(U) C f_l(ﬁ), and so we may show
F(f~Y(U)) C U, and we actually pass to a smaller neighborhood V and show that f(V) C U. Here’s
the picture:

Replace f~1(U) with a p(ossibly smaller) path-connected open neighborhood V' C f~1(U) using the
fact that X is locally path-connected. Now for any z’ € V' choose a path « from x to z’. If 7 is some
path from z( to x, then we get a path - a from z to 2’. Now fv- fa in Y has a lift Fy : f(vy where
]/”E =p~1(fa), since fa is contained entirely in U, and so p is invertible here. But then necessarily,
f(2') = fa(1) € U. But this is exactly what we wanted! f(V) C U.

A 4

Exercise II1.1.2
On Homework we had that 7, (RP?) = Z/2Z. Prove that every map RP? — S! is nullhomotopic.

Solution. Consider the cover R £» S! given on previous homework. For convenience, choose a presentation
71 (RP?) = (a | a®). Now for any function f : RP? — S we know that f.(a) + fi(a) = fi(a?) = 0, but
necessarily because we are working in Z this means f.(a) = 0. Therefore f,(m;(RP?)) is trivial because f.
sends the generators to 0, and this must be contained in the trivial image of 7 (R) in m (S').

Therefore, by the proposition (Proposition II1.1.4), we know that f extends to some map f RP? — R.

Any such map into R is nullhomotopic to some constant map c¢ because R is contractible. Thus f =po f
is nullhomotopic, because composition respects homotopies, so f = po f ~ po¢, and po ¢ is a constant

map.

4
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Announcements

e Quiz on Wednesday
— Know definition and basic properties (simply connected) of the universal cover
— Know lifting properties (existence / uniqueness) for covers.

Back to Math!

Proposition III.1.5 o
Let p: Y — Y be a covering map with X a connected space, then if two lifts f;, fo of the same map
f agree at a single point then they agree everywhere.
Y
‘p
Y

Proof. Let S = {z € X | fi(z) = fa(z)}. Our goal is to show that S is both open and closed. Since X is
connected, the only sets that are open and closed are X and (), and S is nonempty by hypothesis.

Choose * € X and let U be a neighborhood of f(z) so that p~!(U) is a disjoint union of open subsets
{Uqs} each mapped homeomorphically to U by p. (Aside: we say that U is evenly covered by p, and that
each open subset U, is a slice of the preimage).

Now since f = po f; = po f, we must have that f1(z), fo(z) € p~2(f(2)). Let f1(z) € Uy and fo(z) € Us.

Exercise 1I1.1.3 - R
Since }‘l fz are continuous there exists a neighborhood N C X so that fi(x) € f1(N) C U; and

fa(x) € f2(N) C Us.

There are two cases:

xX—

e Suppose that fl(x) * fg(ac) Then U7 and U, are disjoint because each U, contains only one preimage
of f(z), so fi1 and fo must differ on every point of N. Therefore X \ S is open (aka S is closed)
because x € N C X \ S.

e Suppose that fi(z) = fa(x), that is 2 € S. Then Uy = Us, so for all n € N we have:

fi(n) =p~(f(n)) = fa(n)
Where we're using p~! here to mean p~! : U — U; = Us, the inverse of the restriction p|U1 U =
Us; — U. This shows that S is open since x € N C S.
—
1I1.2. Deck Transformations

Definition II1.2.1
Given covering maps p; : X 1 — X and ps : X2 — X, then an isomorphism of covers is a homeomor-

phism f : )N(l — )?2 such that p; = py o f:

X1 —>X2

W

We can actually talk about a category of covering spaces, but we won’t delve into that too much.

Exercise I11.2.1
This defines an equivalence relation on covers.
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Definition IIT.2.2 _ _
Fix a cover p: X — X. The isomorphims of the cover X — X are called deck transformations. We’ll

let G ()Z' ) be the set of deck transformations. Notice that we’ve suppressed the data of p in the notation,
but this data is essential to what a deck transformation is, when this is unclear we write G(X, p).

Exercise I11.2.2 N B
Deck transformations G(X) are a subgroup of the group of homeomorphisms of X.

Example II1.2.3
Consider the cover p : R — S*, then G(R) = Z, and n € Z acts on R by translating n units.

Example I11.2.4
There are covers p, : S' — S! where we “wind n times.” Then G(S*,p,) = Z/nZ which acts by
rotation.

Exercise II1.2.5 _ _ N
Notice that a deck transformation 7: X — X is a lift of p: X — X:

X

7

T /
v p
s J
X— X

Then by the unique lifting property (Proposition II1.1.5), 7 is determined by the image of a single point
when X is connected.

Corollary III.2.1
If a deck transformation has a fixed point, it is the identity transformation.

Exercise I11.2.6 N B
Let X be connected. Given a deck transformation 7: X — X, and zg € X, 7 defines a permutation
of p~Y(zg). If this permutation has a fixed point, then it is the identity.
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We'll assume that X is connected for now.
Definition I1I1.2.3 _

A covering space p : X — X is normal or regular if for every xy € X and every pair of lifts
T1,To € p~1(x0), there exists a Deck transformation mapping 7 to .

Slogan: A regular cover is “as symmetric as possible”

Exercise II1.2.7
“Regular” means that the group G(X) acts transitively on p~!(x¢). Explain why we cannot ask
for more than this-G(X) cannot (eg) induce the full symmetric group on p~!(zg) (key: uniqueness)

~ 9

provided that ‘p" (xo)

Example I11.2.8
Lets go back to the wedge of two circles!

Exercise I11.2.9
A Deck transformation of covers of St Vv St is precisely a graph automorphism that preserves the
. O
labels / directed edges.

Definition I11.2.4
If G is a group and H is a subgroup, then the normalizer of H is:

N(H)={9€G|gH = Hg}

Exercise 11I1.2.10
Check that:
e N(H) is a subgroup containing H
e H is normal in N(H).
e N(H) is the largest subgroup of G which contains H in which H is normal.

Theorem III.2.2 B
Let p: (X,Zo) — (X, x0) is a covering map. We assume that X, X are path-connected, and locally

path-connected. For convenience, let H = p, (m1 (X, %)) € m1(X, 2). Then:
(a) p is a normal cover if and only if H is normal in m (X, 20).
(b) The group of Deck Transformations G(X) = N(H)/H, where the normalizer of H is taken in
1 (X* 3)0)-

Corollary I11.2.3 N
If p is a normal covering, then G(X) = m (X, z0)/H.

Corollary I11.2.4 N
If X is the universal cover, then G(X) = 71 (X, z)

Exercise 111.2.11
Consider R? — 72 and R — S*.
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Proof of Theorem. Notation: Let (X, z¢) be the base space and %o, 71 € p~*(xg) where p : X > Xisa
covering map. Further let H := p, (m (X, Zo)).

On Homework: (X, x¢), Zo, 71 € p~'(z0), if we change the basepoint from 7 ()Z', Zo) to m ()Z', Z1). Then
we have the the induced subgroups of the base space’s fundamental group are conjugate by some loop
[v] € m1(X, o), that is:

pe(m (X, 1)) = (7] - pu(mi (X, To)) - [71]
Where ~ lifts to a path from zy to Z;.

Therefore [y] € N(H) if and only if p, (1 (X, Z1)) = p«(m1(X, Zo)), and this holds if and only if there is a deck
transformation taking Zp to 1 by the classification of based covering spaces in the homework (alternatively
use the lifting criterion).

Therefore p is a normal cover if and only if H is normal, proving (a).

We then define a map to help us out:

®: N(H) = G(X)[] -7
Where 7 lifts to a path zg to 27 and 7 is a deck transformation mapping zy to 1, which will be uniquely
defined by uniquness of lifts with specified base points. We need to check some things

(i) Check that ® is a group homomorphism
(ii) @ is surjective
(iii) ker(®)=H
If we can prove these things, then the first isomorphism theorem gives us the desired result.
(ii) We’ve proved that ® is surjective before in our work above.
(iii) ®([y]) is the identity if and only if 7 sends Zo to Zp, meaning that [y] lifts to a loop, well then by
our characterization of the fundamental group downstairs:

ker(®) = {[v] | v lifts to a loop} = H

(i) Suppose we have loops [y1] 2, 71 and [y9] N To. We claim that 7 - o lifts to 71 - 7(72). Here’s our
motivating picture (with translatable notation):

It’s an exercise to check that the lift of v2 starting at 'y is exactly 71(52), where 7 is a lift starting
at To. The picture of the claim is below:
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mug) be UFY
of ¥ %01‘}3“3
at %,

The idea is that by uniqueness of lifts we’ll have the desired claim. We then just observe that this path
1 - 11 (F2) is a path from Zg to 71 (F2(1)) = 71 (72(Z0)), so the image must be a deck transformation
sending Zg to 71(72(Zo)). But then 71 o 79 maps Ty to this same point, and since deck transformations
are determined by where they send a single point, we're done ®.

PN
4
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Announcements

e Corrections to Homework #7
e Quiz on Wednesday on covering spaces
— Know definition of action of the fundamental group on a fiber
— Know the definition of a regular cover
— Know the result on Deck Transformation group of regular cover
— Know the action of N(p,(m1(X,%))) by Deck transformations.
e Midterm II - 1 week from Thursday

II1.3. Covering Space Recap so far

e Lifting Properties
— Homotopy lifting property (extending F,, existence / uniqueness)
— Path lifting (existence / uniqueness given a preimage of v(0))
— Lifts of f: X — Y (given conditions on f,(m (X)) in m1(Y).

e (Classification given by:

{basepoint-preserving isomorphism classes of covers p : (X, %) — (X, z0)} — {Subgroups of 71 (X, z0)}
p = p(m (X, %))

— Constructed the universal cover of X (corresponds to trivial subgroup of 71 (X) whenever X is
path connected, locally path connected, and simply connected
— Constructed cover Xp corresponding to a subgroup H
— Proved uniqueness up to isomorphism
e Deck Transformations
— Classified regular covers using normal subgroups of w1 (X, zo)
— Showed that G(X) = N(H)/H
e Next (current homework): Constructing covers by “covering space actions’

)

Then we can view covers as quotients by group actions that satisfy the properties of a “covering
space action”

IV. Homology
IV.1. A-complexes

This is a stricter version of a CW complex which allows us to decompose our spaces into cells. In terms
of how things fit together, we have this diagram:
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Example IV.1.1
The torus with the following edges a, b, ¢, and gluing in triangles A and B

For this delta complex notice we've glued down a triangle whose vertices are all identified, this is not
allowed in a simplicial complex / triangulation. We can also do it for genus 2 surfaces:

=

~/ L/

Definition IV.1.1 (Simplices)

A O-simplex is a point. A 1-simplex is an interval. A 2-simplex is a triangle. A 3-simplex is a
tetrahedron. . .so what’s a simplex?

Well, in general, a n-simplex is always the convex hull of (n + 1) points in R™. We can view simplices
as both combinatorial and topological objects.

The standard n-simplex is given by:

A" ={(to, ... ta) ER™ | Y "t =1,; > 0 Vi}

In pictures we get the following:

Our simplices will implcitly come with a choice of ordering of the vertices as A™ = [vg,...,v,] (the
convex hull of these points with this ordering).
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Definition IV.1.2
A face of a simplex A" = [vg,...,v,] is a subsimplex spanned by any n of the n + 1 vertices with the
induced order.

Exercise I1V.1.2
n general, any subset of k vertices in spans a subsimplex of dimension k£ — 1.
Ing | ; bset of A t A" I | fd k 1
The order on the vertices of A™ also induces an order on the vertices of every subsimplex.

Definition IV.1.3
A subsimplex of A™ is:
e Combinatorially, a subset of the vertices
e Topologically, we can identify with a smaller dimensional simplex

A face is a subsimplex of 1 dimension lower than A™ (“codimension 17).
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Announcements

e Midterm II - 1 week from tomorrow!
— Practice package available this weekend
— Let me know about conflicts ASAP
— Covers material up to / including this Friday + Homework 8 (focus on material since Midterm
1)
— Study groups will be set up with When2Meet
e Extra OH next week (7-9pm on Mar 17)
e Corrections to Homework #7 Problem #6 posted

Back to Math!

Definition IV.1.4 H
The boundary dA™ of A™ is the union of its faces. The open simplex A™ is A™ \ JA™.

Definition IV.1.5 (A-complex)
A A-complex structure on X is a collection of maps o, : A™ — X (n depends on «) such that:
(1) O An
(ii) Each restriction of o, to a face of A™ must coincide with a map o5 : A"~! — X.
(iii) A set A in X is open if and only if o, 1(A) is open in A™ for all a. (i.e., X is the quotient space
[, .A" = X)

is injective, and each point in X is in the image of exactly one such restriction.

Exercise IV.1.3
The A-complex structure is a CW-complex structure. But with condition that attaching maps must

be injective on the interior of each face individually (must glue faces onto existing simplices).

Non-Example 1V.1.4

Take X = S2. A CW Complex structure can be a O-skeleton of a point, and then glue on a 2-cell by
mapping the entire boundary to a single point. This is not injective on each of the faces of the triangle
given below (which would need to be true because each face should give an attaching map). Nice!

ner Q

There is a A-complex structure on S2, but this particular structure doesn’t work.

IV.2. Motivation for Homology

Definition IV.2.1 (Informal Higher Homotopy Groups)
Define 7, to be homotopy classes of based maps from I" — (X, zg) which maps the boundary to the
basepoint, up to homotopy relative to 0I".

We get a group structure (and even nicer for n > 2 it’s abelian!!!)
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Problem: Although these are the natural, and very useful, they are really hard to compute. So hard that
the higher homotopy groups of the k-sphere 7, (S*) is an open question for n > k.

Instead, we will study homology groups. They are much easier to compute—however their definition is a
bit less intuitive.
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Instead of the higher homotopy groups m,, we will study “higher-dimensional holes” in our space using
homology groups.
Homology Pros Homology Cons
Homotopy invariants (like 7,) Definition (at first) seems less natural
Functorial (like m,,)
Abelian (like m,, n > 1)
No basepoints
Lots of computational tools
Can compute from cell structure on X
Good properties like H,, =0 if n > dim X

Idea for the Homology Definition

Fix a space X, which is a A-complex. We define C,,(X) to be the free abelian group on the n-simplices of
X. That is:

Cp(X) = {finite sums Zmaa(,K | Mo € Z,04 : A" — X}

In a picture:

The n-th homology group will be a subquotient of C,(X). The Heuristic / imprecise idea is:

e Take subgroup of C), of “cycles.” These are sums of simplices satisfying a combinatorial condition
on the boundary gluing maps to ensure that they “close up.” (i.e. they have no boundary)

e To take the quotient, we consider two cycles to be equivalent if their difference is a boundary. For
example, in this picture of the torus, a is homologous to b since a — b is the boundary of the shaded
subsurface S.
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In fact, a and b are homotopic (which will imply they’re homologous), but two loops do not need to
be homotopic to be homologous. For example:

a + b is homologous to ¢, since a + b — ¢ is the boundary of S (a + b [which isn’t even a loop] and ¢

are not homotopic).

Formal Definition
For the duration, take X with a A-complex structure.

Definition IV.2.2
We define the chain group C, (X
Formally:

) of order n to be the free abelian group on the n-simplices of X.

Cp(X) = {finite sums Zmaaa | me € Z,04 : A" — X}

Definition IV.2.3
We now define the boundary homomorphism, which will be a map 9,, : C,,(X) — Cp,—1(

first give this in lower dimensions to motivate the general definition:

O : C1(X) = Cp(X)

X). We'll

[0a : [”Uo’ vi] = X]— Ua| 00}[1;(.}
Ca(X) = (X )
[Uu : [l 0, V1, 12} X} = O—”| [v1,v2] - U“‘[roﬂrg] +0a [vo,v1]

So in general what we have is:
On : Cr(X) = Cph—1(X)

(T — IS
” Z 1(,....,1)1....,1!,,]

And this defines the map on the basis, and we extend linearly ©.
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Lemma IV.2.1
For any n > 2 we have that:

Co(X) =255 Oy (X) 2225 o (X)
\_//r

Op_100,=0

Definition IV.2.4
A chain complex (C\,d,) is a collection of maps:

dn41 dp, dn—1

Cn+1 Cn Cnfl
of abelian groups and group homomorphism such that d,,_1 o d,, = 0. We call C), the n-th chain group
and d,, the n-th differential.
This means that ker(d,,) contains im(d,,11), since d,, o d,,+1 = 0.
The sequence is exact at C,, provided that ker(d,) = im(d,,41). A chain complex is exact if it is exact
at each point. The previous lemma guarantees that our simplicial chain groups form a chain complex.

Definition IV.2.5
The n-th homology group of a chain complex (C\, d.) is written H,, or H, (C,). It is the quotient:

ker(d,,)
im(dy 1)
It measures how far the chain complex is from being exact at C),.

n =

Definition IV.2.6

This means that we may now define the homology groups of spaces X with a A-complex structure.
Namely ker(9,,) is the subgroup of cycles in C,(X), and im(0,41) is the subgroup of boundaries in
Cpn(X). We then set:

Hy(X) = ker(d,)  cycles

im(d,.1)  boundaries
Le., it is the homology of our chain complex:

Ot » On—1
e Cn+1(X) L} On(X) LCTL—l(X) —

Where we take it to be 0 in all negative indices.

B On(X) 2 (X)) 2 o) 20

Elements of H, (X) are called homology classes
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Announcements

Midterm IT on Thursday.

Extra Office Hours Wendesday: 7-9pm ET
Student study group: Tuesday 4pm-6pm ET
Review package posted

HW #8 warm-up + Problem 1 is exam-relevant

IV.3. Computing Simplicial Homology

Example IV.3.1
X = RP2. Goal: Compute simiplical homology groups.

Consider the fundamental polygon given below for RP?:

b

a a
b

Now make this into a A-complex structure as below:
w b v
A
a a
B
v b w

So now we have three nonzero chain groups, where we use (fi, ...

generators:

Co(RP?) = (v, w)
C1(RP?) = {(a,b,c)
C2(RP?) = (4, B)

‘We must choose orientations on A and B:

, fn) to denote the free abelian group on n

Let A = [vg, v1,v2] and take B = [vg, v1,v2] and so then:

0o A = [v1,v9] — [vg,v2] + [vo, 1] =b—c+a

02B = [v1,v2] — [vo, V2] + [v0,v1] =

Now for the boundaries on our edges:

oa=w—wv oOhb=v—w

o1

—a—c—b

Oc=v—v=0
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Now that we’ve computed this we want to look at our chain complex:

0 —2 Cy(RP?) —2 0y (RP2) —25 €y (RP?) —25 0
We know the following images and kernels:
imds =0
imd=(b—c+a,—a—b—c)
imd; = (v —w)
ker 9y = Cp = (v, w)
Now to compute ker 0> we see that:
Oa(mA+nB)=0
mb—c+a)+n(—a—b—c)=0
alm—n)+bm—n)—c(m+n)=0
And so m —n =0 and m + n = 0. This means that we need to have m = n = 0, and so:
ker0; =0
We can also check what the kernel of 9; is as below:
i (aa+ Bb+~ec) =0
afw—v)+ Bv—w)=0
B—-—a)v+(a—pw=0

And so to have this we need to have « — f = 8 — a = 0, this happens when o = 3 and we have no conditions
on 7, and therefore:

ker 9, = {¢,a + b)
Now all we need to do is take the quotients to get the homology groups.

kerds 0
Hy(RP?) = =—-=0
2( ) im83 0
ker 0y (c,a+b)
Hy(RP?) = = :
1(RPY) imdy, (a+b—c,—a—b—c)
Ho(RP?) — kerdy (v, w) ~7

imd;,  (v—w)
Lets think about how to compute the quotient in H;(RP?). We can use row operations from linear algebra
(ways to change from one basis to another) to get that:

+b) (c,a+b—c)

H,(RP?) = le.a =5 ~ 7,/27
1(RP7) (a+b—c,—a—b—c) {a+b—rc,—2¢) /
Key: Given a basis for a free abelian group (by,...,b,) we can replace b; with

by £myby & - £ mb; & -+ mpb,

Exercise 1V.3.2
If by, by is a basis for A C Z", then by — by, by + by is not a basis, it is an index-2 subgroup. The key
. 1 1 . , o
to this is that L l} has determinant 2 (not unit in Z).
Principle
We can transform a basis for a free group into a different basis by applying a matrix of determinant +1.
If we apply a matrix of determinant D we will obtain generators for a subgroup of index |D|..
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10 - 0 +mq o --- 0
o0 - 1 +m;—1 0 --- O
00 - 0 1 0 - 0
00 - 0  4my 0 .- 1

Summary of Procedure

(1) Choose A-complex structure on X. (Later: We will prove H,(X) is independent of the choice of
A-complex structure)

(2) Choose orientations on each simplex (Any choice is okay but you must commit to a choice or you
will make a sign error!)

(3) For each n-simplex o compute 9, (o) (careful with signs!)

(4) im 9, = (0(0) | 0 an n-simplex). Use linear algebra to compute ker(d,)

(5) For each n compute H,(X) = %. Be careful that any change-of-variables map you apply is
invertible over Z.
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Announcements

e Midterm tomorrow!
e Extended Office Hours tonight 7pm-9pm

IV.4. Singular Homology

Definition IV .4.1
A singular n-simplex in a space X is a continuous map o : A" — X.

Definition IV.4.2
Let C,,(X) be the free group on singular n-simplices in X. The singular n-chains with boundary
maps:

On 2 Cp(X) = Cpmr (X)

> n ;
0= <71) U|[1;07..4ﬁ7,7...(u,1]

This gives us a singular chain complex

Definition IV.4.3
The singular homology groups are the homology groups of this singular chain complex given as
Hn (X) _ ker 9,

imOp41”

Since the generating sets for C,,(X) are almost always hugely uncountable, it’s almost impossible to
compute with these. However it does give us a definition that does not depend on any other structure than
the topology of X, making it useful for developing theory ©.

Heuristic: Interpret a chain o1 09+ -+ -+ 0y as a map from a A-complex to X. For example with o1 + o».

> X

o | 02

Where we’ve glued [v1, ve] of o1 to [vp, ve] of og if 01|[U1 o1 and opy, 4, are the same singular n-chain with

2]
opposite signs.

Goals:

e Singular homology is a homotopy invariant
e Singular and simplicial homology groups are isomorphic.

Exercise 1V.4.1
Check that if X has path components {X,} then H,(X) = @, Hn(Xa).

Exercise 1V.4.2
If X = % then

—— Z ifn=20
””<‘X>{ 0 ifn>1

Exercise IV.4.3
If X is path-connected, then Hy(X) = Z

IV.5. Functoriality and Homotopy Invariance
Definition IV.5.1
For a given continuous map f : X — Y we can consider the following map:
f# : Cn(X) — Cn(Y)
[c: A" - X] = [foo: A" = Y]
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Definition IV.5.2
Given two chain complexes (Cy, 0,) and (D, d,), a chain map between them is a collection of group
homomorphisms g,, : C,, = D,, such that the below diagram commutes:

6n+2 0n+1 an On—1
4)0714_1 rCn Cn—l

ngﬂrl lgn lgn 1

6n+2 6n+1 On On—1
~4)Dn+1 *%Dn;)Dn—l ?

i.e. we have that 0, o f,, = fn—1 0 0.

Exercise IV.5.1
We have that fx0 = 0fx. In other words, f4 is a chain map. Thus by the homework f4 induces a
group homomorphism on the homology groups. We write this as f, : H,(X) — H,(Y) for all n.

Exercise IV.5.2
We have functoriality, i.e. (f o g)« = fs 0 g«. Also we have that (Idx ). = Idg, (x)-

Theorem IV.5.1
The n-th homology group H,, : X = H,(X) gives a functor from Top to Ab. This follows from the
two exercises above.

Theorem IV.5.2
If f,g: X — Y are homotopic, then they will induce the same map on homology f. = g. : H,(X) —
H,(Y).

Exercise IV.5.3

These two theorems imply that H,, is a homotopy invariant.
To prove the second theorem, we introduce some homological algebra.
Definition IV.5.3

Given chain complexes (A.,d?) and (B.,d?) and chain maps f.,g. : A, — B.. A chain homotopy
from f to g is a sequence of group homomorphisms v, : A,, — Bj41 such that:

fn —Ggn = df—i—l © wn + 1/)n71df3

In a diagram, letting h,, = f,, — gn:

dA

n+2 n—
An+1
Rnt1
df+2 df+1 d,, dfi 1
Bn+1 Bn Bn— 1

This diagram does not commute, but it shows everything that is going on. However the red map is the
sum of the green maps composed up.
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Theorem IV.5.3
If there is a chain homotopy v from f, to g., then the induced maps on homology are equal.

Proof. Let 0 € A, be an n-cycle, i.e. 92¢ = 0. Then we compute that:
(fo = 9u)(0) = d3} 1 ($n(0)) + ¥n-1(dp (0)) = dify1 (Vn(0) € imd,
This tells us that (f, — g»)(0) is a boundary, and so (f,, — g»)(0) = 0 when considered as an element of
the homology group. Thus f,(0) = gn(0o) in the homology group, and so f,g induce the same map as
desired. L 4
We now sketch the proof of Theorem IV.5.2 given in Hatcher. From this point in the course many of the

theorems require much more algebraic work than we are interested in. We instead want to learn how to use
the computational tools.

Proof idea. Suppose we have some homotopy F': I x X — Y from f to g. The most difficulty in this proof
is the combinatorial difficulty involved in the fact that the product of a simplex in X and I is not a simplex.
Key: Subdivide A™ x I into (n + 1) dimensional subsimplices.

We define the prism operator:
P, : Cn(X) — Cn+1(Y)

alternating sums of restrictions

A" x T2 x 1 By

0P~ g5 ~ [T |~ a0

[0: A" = X] —

We now need to check that

We have the following diagram.

¢

Thus P is a chain homotopy and we’re done.
1IV.6. Relative Homology

Definition IV.6.1 (Studied on Homework)
The reduced homology groups H,,(X) = H,(X) when n > 0. When n = 0 we have that:

Hy(X) & Z = Ho(X)

The usefulness of this is that for path-connected space X we have ﬁU(X ) = 0, and for contractible spaces
X we have H,(X) =0.

Definition IV.6.2
Let X be a space, and A C X. Then (X, A) is a good pair if A is closed and nonempty, and also it is
a deformation retract of a neighborhood in X.
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Example IV.6.1
If X is a CW complex and A is a subcomplex, then (X, A) is a good pair.
The proof is given in the Appendix of Hatcher and requires some point-set topology.

Non-Example 1V.6.2
(Hawaiian earring, bad point) is a bad pair.

Theorem IV.6.1
If (X, A) is a good pair, then there exists a long exact sequence (exact at every n) on reduced homology
groups given by:

~ . ~

o Ho(A) — s Ho (X) — s H,(X/A)

5 72 Ty =

S H, 1 (A) s Hy (X)) —2 s H,y 1 (X/A)

b L HNX/A) 50

Where i : A < X is the inclusion and j : X — X/A is the quotient map. We will define each § in the
proof. The fact that this sequence is exact often means that if we know the homology groups of two of
the spaces we can compute the homology of the remaining space.
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Announcements

o Midterm Exams graded
e Correction to Homework Problem # 1
e Quiz Wednesday
— Know definition of singular homology

Application of the quotient Long Exact Sequence.

Proposition 1V.6.2
We have that:

~ Z ifi=n
. ny _
H;(5") = { 0 otherwise

Proof. Some facts we need:

(D™, 0D™) is a good pair (since it is a CW complex and a subcomplex)
D™ /9D™ = S™ (previous homework)

H,,(D™) = 0 for all n since D™ is contractible

opm™ = §n—1

We then proceed by induction on n.

Exercise IV.6.3
Verify the theorem in the case n = 0, so S® = 2 points.

Now using the long exact sequence, we have:

[

S HA(0D™) — s H(D") — s H,(S™)
F) Tx

Y 1 (8D™) — s Hy (D™) —2 s Hyy 1 (S™)

5 Jx

fIO(S”) — 0
By induction we can fill in some of these groups as follows:

[

Summary: We have an exact sequence:
0%[?45")%2%0

By exactness, § is an isomorphism, thus ﬁn(Sn) = Z. Now we must verify fIZ'(S”) = 0 when ¢ # n. In that
case the exact sequence looks like:

— H;(D™) —— H;(5") —— H;_1(dD")

0 H;(S") ———0
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Exactness then tells us that H;(S™) = 0.

Theorem IV.6.3 (Brouwer’s Fixed Point Theorem)
0D™ is not a retract of D™. Hence every continuous map f : D™ — D™ has a fixed point.

Proof. If r : D™ — D™ were a retraction, then by definition this would give us that:

K2

oD —— pr " 5 9pn
Idgpn

Functoriality of homology tells us that:
Hy 1 (0D™) —s Hy_1(D™) —"5 H,_1(0D")
¥Id/
So then:
Z—50-—"50
1d

This is impossible.

Exercise IV.6.4
As with D2, if f: D™ — D" had no fixed point, we could build a retraction.

Tool for proving Theorem: diagram chase

Lemma IV.6.4 (The Short Five Lemma)
Suppose we have a commutative diagram:

0 At p_* ¢ 0
=
0 A— B — (" 0
P @

So that the rows are exact. Then:
(1) If o,y are injective then S is injective.
(2) If @,y are surjective then [ is surjective.
(3) If o,y are isomorphisms then /3 is an isomorphism

PN
v

¢

Proof. (1) and (2) imply (3). We leave (2) as an exercise. We fix b € B such that 3(b) = 0. We want to

show that 8 = 0. Well, we draw a diagram chase:

0t o p? o(b) 1 0
Ia I@ 17
Ot o} 0t Ot 0

w/ 90/

And thus by injectivity of v we know ¢(b) = 0. By exactness, b € im . We then may write for some a € A:

i [ 0

I
r

B Y

O—
o—1o

o

at v
)

0t ala
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Therefore ¢'(a(a)) = B(¥(a)) = B(b) = 0 by commutativity. By exactness of the bottom row we know that
¥’ is an injection. Thus «(a) = 0, so since « is injective, a = 0. With this b = ¢(a) = 1»(0) = 0. Great! With

this ker(8) = 0, and S injects. This ends the proof! ® v
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Definition IV.6.3

Let X be a space and let A C X be a subspace. Then we define the relative chain complex
_ Ch(X)

Crh(A)

Cu(X, A)

Exercise IV.6.5
The boundary map 0 : C,(X) — Cp,_1(X) induces a well-defined map 0 : Cp, (X, A) = Cp,_1(X, A).
Since 0% = 0 we can conclude that these groups will in fact form a chain complex (C, (X, A),0).

Definition I1V.6.4

The homology groups of (C. (X, A), ) are denoted by H,,(X, A), and they are called relative homology
groups

Elements in ker d,, are called relative n-cycles. These are elements o € C,(X) such that d,«a €
C771,71(14)-

Likewise elements in im 0,11 are called relative n-boundaries. This means that « = 9 + + where

‘8 c C‘n (X) ‘(Llld Y S C”,] (A)

Theorem IV.6.5 (LES of a pair)
Let A C X be spaces, then there exists a long exact sequence

—— H,(A) —— H,(X) —— H,(X, A)

Hanl(A) H()(XMA)*)O

Later: We will prove that when (X, A) is a good pair, then H, (X, A) = f[n(X/A) Then Theorem 1V.6.1
is a special case of Theorem IV.6.5. The key to the proof of Theorem IV.6.5 above is the following slogan.

Remark IV.6.1
Slogan A short exact sequence of chain complexes gives rise to a long exact sequence of homology
groups. This will be proved on homework. Then Theorem IV.6.5 will follow from a short exact sequence:

0 C.(A) Co(X) —— C.(X,A) ——0

where C, denotes the augmented chain complex (the one with Z after it).
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Exercise IV.6.6 N B
If A is a single point in X, then H, (X, A) = H,(X/A) = H,(X).
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Theorem IV.6.6 (Excision)
Suppose we have subspace Z C A C X such that Z C Int(A). Then the inclusion:

(X—-Z,A-7)=(X,A)
induces isomorphisms:
Ho(X — Z,A— Z) = H, (X, A)
Exercise IV.6.7
Equivalently for subspaces A, B C X whose interiors cover X, the inclusion:
(B,ANB) — (X,A)

induces an isomorphism:

H,(B,ANB) = H,(X,A)

Hint: B=7Z\Z,7Z =X\ B.

Picture!

Proof Sketch. We sketch the proof here, which is notorious for being hairy.

e Given a relative cycle z in (X, A), subdivide the simplices to make z a linear combination of chains
on “smaller simplices,” each contained in Int(A) or X \ Z.

updwde (nto
o

B =%

This means x is homologous to sum of subsimplices with images in Int(A) or X \ Z. One of the
things we use is that simplices are compact, so this process takes finite time.
Key: “Subdivision operator” is chain homotopic to the identity.
e Since we are working relative to A, the chains with image in A are zero. Thus we have a relative
cycle homologous to & with all simplices contained in X \ Z.
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Exercise Iv.6.8
H.(Y,yo) = H(Y).

Theorem IV.6.7
Let (X, A) be a good pair. Then the quotient map ¢ : (X, A) — (X/A, A/A) induces an isomorphism:
Ho(X,A) = Ho(X/A, AJA) = H,(X/A)

where the last equality is from the exercise.

Proof Outline. Let A CV C X where V is a neighborhood of A that deformation retracts onto A. Using
excision, we obtain a commutative diagram:

Hy(X,A) — S H (X, V)+——— H, (X — AV — A)

H,(X/A AJA) —— H,(X/A,V/A) +—— H,(X/A— AJA,V/A— AJA)

Done if we can prove all the colored isos.
e = is an isomrphism by excision
is an isomorphism by direct calculation (since ¢ is a homeomorphism on the complement of A)

on Homework, since V' deformation retracts to A.

211 11

PN
v
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Announcements

e Quiz #7 Wednesday
— Know the long exact sequence of a good pair, applications like Homework 9 #6
— Know homology/reduced homology of basic spaces. (contractible space, spheres S™, discrete set
of points, RP?, torus, ..., spaces homotopy equivalent to any of the above).
— The following fact below
Fact: If M is a smooth manifold and N is an embedded smooth closed submanifold, then (M, N) is a good
pair. Why? Well this follows from the tubular neighborhood theorem, which should be proven in a course
like 591. We will only use the result in obvious cases, and simply assert that certain pairs are good pairs.
Upshot: With pairs like (R"*1,S™), you can just assert that this is a good pair (and do not need to prove
that S™ is a smooth submanifold of R"*!. Another good example is manifolds and their boundary always
form a good pair.

Theorem IV.6.8
Let X be a A-complex. We use A, (X) to represent the simplicial chain groups on X, and C,,(X) to
denote the singular chain groups. Likewise A, (X, A) = Ap(X)/A,(A) and C,, (X, A) = Cp(X)/Cr(A).
With this notation, we claim that the inclusion A, (X, A) — C,,(X, A) given by:
[0: A" = X] = [o: A" = X]

induces isomorphisms on homology.

HA(X,A) = H,(X,A)
If we consider the case that A = (), we recover the case of absolute homology.
Hyp (X) 2 Hy(X)
Comment: This says, given a singular homology class x, we can assume z is represented by a simplicial
n-cycle.
The Proof uses the Five Lemma:

Lemma IV.6.9 (The Five Lemma)
If T have a commutative diagram with exact rows:

A—typ_ T so_* .p

R O S

A/ B/ C’/ D/ E/
i j/ k' ¢

If o, B, §, e are isomorphisms, then so is 7.

Proof. Diagram chase! v

Proof Sketch of the Theorem. Here’s the idea

e We can use the long exact sequence of a pair and the five lemma to reduce to proving the result for
absolute homology groups (and we will recover the general result).

e Because the image A" — X is compact, it is contained in some finite skeleton X*. Use this ot reduce
the proof to the finite skeleta X* of X

From the LES of a pair we get:

Hg oy (X8, XY —— HR(XF) —— H(XF) —— HR (X, XM —— H2 o (XM

o T
Hyy (XF, XF=1) 5 H,(XF~1) —— H, (XF) —— H, (X%, Xk —— H,_, (X 1)

The Goal is to prove « is an isomorphism using the 5-lemma.
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We assume that 3, ¢ are isomorphisms by induction, checking the case manually for X° (which will be a
discrete set of points). It remains to show that «, ¢ are isomorphisms.
We know then that:

An(Xk7Xk71) —

Z[k — simplices] if k=mn
0 otherwise
H

Claim: H, (X* X*~1) are also free abelian on the singular k-simplices defined by the characteristic maps
AF — X* when n = k, and 0 otherwise. Consider the map:

o JJ(ak,0ak) —» (x*, Xk

Defined by the characteristic map. This induces an isomorphism on homology since:

[, A8 = X*
[[0AE " Xk
This reduces to checking that:
k ky _ 0 ifn 7£ k
H"(A’aA)_{Z ifn==%
generated by the identity map AF — A, .v.

IV.7. Degree

Definition IV.7.1
Let f:S" — S™ Then f, :Z = H,(S") — H,(S™) = Z. From group theory, this map must be
multiplication by some integer d € Z, which we call the degree deg(f) of f
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Last time we defined degree (Definition IV.7.1). Now we list some of its properties
Properties of Degree:

(a) deg(Idgn) =1 sinc (Idg, ). = Idz.
(b) If f:S™ — S™ is not surjective, then deg(f) = 0. To see this, we know that f. factors as:

H,(8") —— H,(S" — {x}) =0—— H,(S™)

And since the middle group is zero, f. = 0.

(c) If f ~g, then f. = g., so deg(f) = deg(g)-
Later: The converse is true!

(d) (fog)s = fiogs, and so deg(f o g) = deg(f)deg(g).
Consequently: If f is a homotopy equivalence then deg f = £1.

Exercise IV.7.1
It is possible to put a A-complex structure with 2 n-cells, A; and Ay glued together along their

boundary (= 8"~ 1), and H,(S™) = (A1, A).

(e) Consequences: If f is a reflection fixing the equator, and swapping the 2-cells, then deg f = —1.

(f) We now have the following linear algebra exercise.

Exercise IV.7.2
The map R*"*! — R+ given by  — —x is the composite of (n + 1) reflections.
So the antipodal map S™ — S™ given by & — —x has degree which is the product of n 4+ 1 copies of
(—1), and so it has degree (—1)"*1.
(g) We again start with an exercise
Exercise IV.7.3
If f has no fixed points, then we can homotope f to the antipodal map via:
i (1—=1t)f(x) —tx
filx) = < ) —
1= )7 () — tal

Therefore deg f = (—1)"+1.

Theorem IV.7.1 (Hairy Ball Theorem)
See the homework. This essentially says that there is no nonvanishing continuous tangent vector field
on even-dimensional spheres.

Theorem IV.7.2 (Groups acting on S?7)
If G acts on S?" freely, then G = Z/2Z or G = 1

Corollary IV.7.3
S$2" is only the trivial cover S?" — S?" or degree 2 cover (for example, S?" — RP?"). This follows
since any covering space action acts freely.

Proof. There exists a homomorphism given by:
G — {1}
g~ deg(7y)

Where 7, is the action of g € G on S$?" as a map S*" — S?". We know this map is well-defined since 7, is
invertible (simply take 7,-1) for each g € G. Our note on composites shows this is a homomorphism.
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We want to show that the kernel is trivial, since then by the first isomorphism theorem G 22 im, and the
image is either trivial or Z/2Z. Suppose that g is a nontrivial element of g, then since G acts freely we know
that 7, has no fixed points. With this in mind we have degt, = (—1)>"*! = —1. Thus g & ker. Therefore

the kernel is trivial as desired. v

Definition IV.7.2

Let f:S™ — S™ (n > 0). Suppose there exists y € S™ such that f~!(y) is finite, say, {z1,...,Zm}.
Then let Uy, ..., U,, be disjoint neighborhoods of z1, ..., x,, that are mapped by f to some neighborhood

V of y. In a picture

The local degree of f at x; (denoted deg f‘;,; ) is the degree of the map
fo 1 L= H'rl/(U’i/-, U; — {T,}) — H,,(V V- {.U}) =7

Theorem IV.7.4
Let f:S™ — S™ with f=(y) = {z1,...,2m} as above, then:

deg f = Zdeg f!wi
i=1

Thus we can compute the degree of f by computing these degrees.
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Let’s grab some intuition. What really is local homology?

Well, by excision, there is an isomorphism H,,(S™, S"\{z;}) & H,(U,U\{z;}) for any open neighborhood
U of ZTi.

The long exact sequence of a pair also gives us:

coo—— Hip(S™ \ {z:}) —— Hp(S™) L> Hy(S™, 5"\ {x;}) —— Hp_1(S" \ {z:}) —— - -~

Since S™\ {x;} is homeomorphic to an open n-ball, we see that Hy(S™ \ {z;}) = Hr—1(S™\ {z;}) = 0. With
this in mind, j, is an isomorphism.

We want to think about what j, does when k& = n, aka when this is an isomorphism Z = H,(S") —
H, (5™, 5"\ {z;}) 2 Z.

We see that Ay — Ag generate H, (S™), where A1, Ag are the top and bottom hemisphere indicated here:

We then understand that j.(A; — Ag) = A; — Ag = Aqj since Ay =0 in C,(S™)/Cr(S™ \ {z:i}).

Upshot: H,(S™,S™\ {z}) is generated by an n-simplex with z in its interior.

Suppose M is an n-manifold. Then H, (M, M \ {z}) = H,(U,U \ {z}), where U is a small ball around z.
Because U is a ball homeomrphic to R, we see that:

Hp (M, M\ {z}) = H,(U, U\ {z}) = H,(R",R" \ {«})
By the long exact sequence of a pair:
0= H,(R") — H,(R",R"\ {z}) —— H,_1(R"\ {2}) —— H,_1(R") =0

And since R™ \ {z} is homotopy equivalent to an n — 1 sphere, this means that H,(R",R"\ {z}) £ Z. By
homework, this connecting homomorphism is given by taking the boundary of a relative cycle as below:

We intuitively want to use this idea to compute degree using this idea. We use naturality of the long exact
sequence, namely the fact that where f : (U;, U; \ {z:}) — (V,y) is a map of pairs, then the following diagram
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commutes:
- —— Hy (U, Ui \{z;}) — Hpa (Ui, Ui \ {zi}) —— - -

| |
o —— H,(V,V\{y}) —— H, o1 (V,V\ {y}) —— -

By naturality of the LES and the isomorphism discussed above, we can compute the local degree of a map
S™ — S™ at a point x by computing the degree of the map:

H, 1 (U\{z}) —— Ho 1 (V = {y})

In fact the local degree will be the degree restricted to a small S®~! in the neighborhood U.

Let’s work with some examples for our edification

Example IV.7.4
Consider S™ and choose m disks in S™. Namely we first collapse the complement of the m disks to a
point, and then we identify each of the wedged n-spheres with the n-sphere itself

By choosing a good point in the codomain, we get one point for each disk in the preimage, and the
map is a local homeomorphism around these points which is orientation preserving. Perfect! We could
likewise compose the maps to S™ from the wedge with a reflection to construct a map of degree —m.

Example IV.7.5

Consider the composition of the quotient maps below S™ — RP" — RP"/RP"~! = §" We want to
compute the degree of this map.

Note that this restricts to a homeomorphism on each component of S™ \ equator as a map to RP™ \
RP"~!. Suppose we've oriented our copies of S™ in such a way that the homeomorphism on the top
hemisphere is orientation-preserving. The homeomorphism on the bottom hemisphere is given by taking
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the antipodal map and composing with the homeomorphism of the top hemisphere

0 if n even

deg = deg(Id) = deg(antipodal) = 1 + (—1)"*! = { 2 if n odd

IV.8. Cellular Homology

Suppose that X is a CW complex. Then (X", X"~ 1) is a good pair for all n > 1, and X"/X" ! is a
wedge of n-spheres, one for each n-cell e. Hence:
0 ifk#n

n n—1\ ~
Hy(X", X777) = { (e | et is an n-cell) if k=n

Definition IV.8.1
The cellular chain complex of X has chain groups H, (X", X" 1) with X~ = (.
The boundary maps are given as:
dy: Hi(X', X% — Ho(XY)
(1-cells) — (O-cells)

is the usual simplicial boundary map. FOr n > 1, the boundayr map:

n n—1
dp(el) = E dapel

where d,z is the degree of the map:

i Loy n—1\ n—1
quotient by X \ej

n—1 n—1
X Sy

attaching map
a.n . Qn—1 :
()('(y - ‘S(.v

In pictures, this is given as:

Theorem IV.8.1
The homology groups of the cellular chain complex (cellular homology groups) coincide with the
singular homology groups.
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Announcements

Quiz 8 Wednesday

e Compute cellular homology of a CW complex
e Similar to examples in today’s lecture

Corollary IV.8.2 (of Theorem IV.8.1)
We get a good bit of mileage out of this theorem:

e H,(X)=0if X has a CW-complex structure with no n-cells.

e If X has a CW complex with k n-cells, then H,,(X) is generated by at most k elements.

o If H,(X) is a group with a minimum of &k generators, then any CW complex structure on X
must have at least k n-cells.

e If X has a CW complex with no cells in conscecutive dimensions, then its homology is free
abelian on its n-cells. For example S™ n > 2 or CP™.

Example IV.8.1
S™ with n > 2, using the CW coplex structure of e™ attached to a single point xg. The cellular chain
complex is given as:

0 0 (e™) 0 0 (x0)

So then all the boundary maps are zero and we see that:

Z ifk=0,n
Hp(S") = .
0 otherwise
Exercise IV.8.2
Redo this calculation with other CW complex structure on S”, e.g. glue 2 n-cells onto S™"~! and
proceed inductively.

Example IV.8.3
Let’s do this with the torus

The chain complex looks like:

0 <D> °R

{a,b) (x) 0

Note that a =z —x =0and b — . —2x = 0 and so &; = 0. Now D is glued along aba~'b~!, so we look
at the composed up map

We wind forwards then backwards around a, so the degree is zero. The same thing happens for b so:
BbD=0-a+0-b=0

This gives a nice principle: If a 2-cell D is glued down via some word w (this only makes sense for

2-cells), then the coefficient to a letter b in d2 D is the sum of the exponents of b in w.

Great! Now we just have that the homology groups are equal to the chain groups because the boundary
maps are all zero.
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Example IV.8.4
A genus g surface ¥, has the CW complex strucutre:
e 1 O-cell =
[ 2g 1-cells ay, bl, as, bg, e
o 1 2-cell D glued along [a1, bo][az, ba] - - - [ag, bg] (a product of commutators)
We obtain the result that:

al(ai) :Bl(bl) =x—x=0

Furthermore by the principle discussed above, we know that every 1-cell appears once in the word, and
its inverse appears once, so all the coefficients of 1-cells in 92(D) are zero, so d2(D) = 0. This means we
have a chain complex:

0 72729247 0
And so then we have that:
Z ifk=0,2
Hi(2,) = 729 ifk=1
0 otherwise

Example IV.8.5 (Torus example: J5 in more detail)
We're going to work through this example a bit more carefully.
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Announcements

e Math 695

— Cohomology

— Poincare duality

— Spectral Sequences

— “Modern Perspectives”

— Homotopy groups.
e Evaluations: Please give your feedback!
e Today: Some proof outlines

Proof outline for local degree computations. If f : S™ — S™ and we have some y € S™ with f~'({y}) =
{z1,...,2m} then:

deg f = Zdegf’wi

We have a nice commutative diagram:

H,(S™) H,(S™)

o

H, (5™, 5"\ {z1,...,2m}) H, (5™, 5"\ {y})

o

H,, (L, Us, JUs \ {=4})

o

IR

D; Hn (Ui, Ui \ {z:}) ——— Ho(V,V \ {y})

Where we have the isomorphisms 2 by excision and maps / isomorphisms blue by the LES of a pair. And
we also have = from the homology of a disjoint union.
But then tracing around the outside of the diagram we get:

1t deg f

| I

(1, ) ——deg f = X, deg f|

And this proves the result. Perfect! © v

We’re now going to work towards proving that cellular homology agrees with singular homology. First we
need some nontrivial preliminaries:
n v 0 ifk+#n
(1) Hy (X", X = { (n—cells) ifk=n
(2) Hp(X™) =0 for all k > n. If X is finite dimensional, then Hj(X™) =0 for all k£ > dim X.
(3) The inclusion X™ < X induces Hy(X™) — Hy(X). Then this map is
e An isomorphism for k < n.
e Surjective for k =n
e Zero for k > n.

Exercise IV.8.6
Check (2) and (3) directly in the case that the CW-complex structure is a A-complex structure using
simplicial chains
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Proof of (2) + (3). We consider the Long Exact Sequence of a pair for fixed n:
S Hp o (X, XY —— Hp (XY —— Hyp (X)) —— Hy (X", X" —— -

When k+1 < nor k > nthen Hy 1 (X", X" 1) = 0 and Hy(X", X"1) = 0, so the above map Hj,(X"1) —
Hi(X™) is an isomorphism. We also get sequences telling us the injective and surjective maps when k =n
ork=n-—1:

0= Hppy (X", X" ) —— H, (X" ) ——— H,(X") ——— H, (X", X" 1)

S (XY s Hy (X7) —— Hy g (X7, X1 =0

So the maps H, (X"™1) — H,(X™) is injective, and the map H,_1(X"1) — H,_1(X™) is surjective.
Fix k, then we a pile of maps induced by the inclusions X" «— X"+1:

Hiy(X0) ——— Hp(XY) ——— Hy(X?) ——— .

inj.

e Hy (XY 2 B (XF)

surj. ~

Hk (XkJrl)

————— Hp(XF*2) —— Hyp (X)) ——— -

Note: This sequence is not exact. Descriptions of maps (in red) follow from our analysis of the LES of a pair
above.
To prove (2):
e k=0, we do by hand
e k> 1, then Hy(X°) = 0, so we have that Hy(X°),..., Hy(X*~1) are all zero from the isomorphisms
above. That is the k-th homology Hy(X™) = Hj(X™) is zero for every n-skeleton where n < k, just
as desired.

We also have the following collection of maps for fixed k:

surj.

Hi(XF) Hy(XFHY) — = Hy(XF2) — .

This implies (3) when X is finite dimensional. For general X, we use the fact that every simplex has image

contained in some finite skeleton (since image is compact). A 4
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Proof that Cellular Homology = Singular Homology. We get some exact sequences from our preliminaries
last time:

0= Hpp1 (X") —— Hy(X") — Hp (X", X" 1) —— H, (X" 1)
Hp (X7 X7 ——5 H, (X™) —— Hy (X" —— H, (X", X") =0

These come from the long exact sequences of a pair combined with the things we’ve deduced in the preliminaries.
We can paste these together into a diagram:

(X"t~ H,(X)

\/
%

Xu)

n+1 \

.. ‘}Hn+1(Xn+l7X'n)

Hatcher tells us this diagram commutes, and what we’ve done here tells us that the two red diagonal pieces
crossing at H, (X™) are exact. We also have exactness of the bottom right diagonal by just going down a

degree.
Then this has to at least be a chain complex. Why? Well the diagram commutes because of Hatcher. We

then know that:
dn+10dn = jn—100,0Jn00nt1 =0
By exactness, we know that if ¢, : H,,(X™) — H, (X™*1) then using the first isomorphism theorem:
Ho(X™)  Hn(X")

H,(X) >~ H,(X"") =im, = =
(X) ( ) =im. ker ¢, im0y, 41

Since j, injects by exactness,

o

Jn t Ho(X™) = jn(Hp (X))
im 8n+1 ’z—) 1m(]n o n+1) = imdn+1
jn—1 must also inject by exactness, and so applying exactness:
ker d,, = ker 9,, = im j,

Then we just do some group theory, the n-th cellular homology group is:

Ferdn o Imin o HlX) o gy )
imdy,+1  im(jp00p41) 1M Ony1

There is one thing left to show, namely commutativity of this map. That is

Claim
The differentials d,, = j,, © 9,41 satisfy the formula (in terms of degree) that we stated. This is done
by direct analysis of definitions of maps; details in Hatcher.

o
v
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1V.9. The Formal Viewpoint: Eilenberg-Steenrod axioms

Definition IV.9.1
Given two functors F,G : C' — D, a natural transformation n : I — G is a collection of maps
nx : F(X) — G(X) lying in D for every X € C so that for any map f: X — Y we have a commutative
diagram:
F(X) 5 a(X)
F(f) G(f)
)

F(Y) —— G(Y)

ny

Definition IV.9.2
A homology theory is a sequence of functors:

H,, : pairs (X, A) of spaces — abelian groups

Equipped with natural transformations 0 : H, (X, A) — H,_1(A), where H, _1(A) := H,_1(A, () called
the boundary map. Naturality here means that for any map f : (X, A) — (Y, B) we have a commutative
diagram:

Hn(X7 A) L Hn—l(A)

| |

These must satisfy these axioms:

(1) (Homotopy) If f,g: (X,A) — (Y, B) and f ~ g, then f, = g.

(2) (Excision) If U € A C X so that U C Int(A) then ¢+ : (X \ U, A\ U) — (X,A) induces
isomorphisms on homology

(3) (Dimension) H, () = 0 for all n # 0, where % denotes some arbitrary point

(4) (Additivity) Hy, (||, Xo) = B, Hn(Xa).

(5) (Exactness) If we have an inclusion ¢ : A < and j : X — (X, A) induces a long exact sequence
on homology:

ey Ho(A) = Hy (X))~ Ho (X, A) —2 s Hyy (A —— -
If H, satisfies all axioms but dimension, it is called an extraordinary homology theory

Example IV.9.1
Topological K-theory and cobordism.

Theorem IV.9.1

If H, : CW pairs — Ab is a homology theory and Hy(x) = Z, then H,, are exactly the singular
homology functors up to a natural isomorphism of functors

More generally, without the assumption that Hy(x) = Z, then H,, are exactly the singular homology
functors with coefficients in the abelian group Hy(x).

Proof. Reconstruct the cellular homology groups using the axioms. The exact same argument we did today

follows. We then check that the cellular homology groups we just constructed satisfies the degree formula as
o

in our last step. This is a bit more difficult, but we won’t get into it. \ 4
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Announcements

e Bonus problem added to Homework 12 on orientability and homology
e Quiz on Wednesday
— Calculation using the Mayer-Vietoris Long Exact Sequence

V. Lefschetz Fixed Point Theorem

V.1. Statement

Definition V.1.1

Let ¢ : Z" — Z™ be a group homomorphism, we may represent this with a matrix A = {a;;}. The
trace is the sum ai1 + -+ - + app.

For a group homomorphism ¢ : M — M where M is a finitely generated abelian group, we define the
trace of ¢ to be the trace of the induced map @ : M/Mp — M /My, where My is the torsion subgroup
of M.

Exercise V.1.1
We have
tr(AB) = tr(BA)

Thus, matrices related by a change of basis have the same trace.

Definition V.1.2

Let X be a space with the assumption that @&y H(X) is finitely generated. That is, each homology
group is finitely generated, and there are finitely many nonzero homology groups. For example X could
be a finite CW complex.

The Lefschetz number 7(f) of a map f: X — X is:

T(f) = _(=DFtr(f, : Hy(X) = Hy(X))

k

Example V.1.2
When f ~ Idx. Then f, = Idg, (x) for all k. Then tr(f. : Hp(X) — Hp(X)) = rank(Hy(X)).
Therefore:

r(f) = 3 rank(Hy (X)) = x(X)
k

Where x(X) is the Euler characteristic (see homework).

Theorem V.1.1 (Lefschetz Fixed Point Theorem)

Suppose X admits a finite triangulation (i.e. a finite simplicial complex structure). Or more generally,
X is a retract of a finite simplicial complex.

Then if f: X — X is a map with 7(f) # 0, then f has a fixed point. Note that the converse does
not hold.

Theorem V.1.2 (Hatcher’s Appendix A.7)
If X is a compact, locally contractible space that can embed in R” for some n, then X is a retract of
a finite simplicial complex.
This includes:
e Compact Manifolds
e Finite CW complexes

Definition V.1.3
Let F be a field, and let Hy(X;F) be the k-th homology of X with coefficients in F (see homework).
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THen Hj(X;TF) is always a vector space over F. Define 7% (X) be:
D (D te(fe s He(X:F) = Hy(X;F))
k
The Lefschetz fixed point theorem still holds if we replace “7(x) # 07 with “7F # 07

Example V.1.3
Let f: S™ — S™ be a degree d map. Then 7(f) is:
(=1)%tr(f. : Ho(S™) — Ho(S™)) + (=1)"tr(fu : H,(S™) — H,(S™))
Then f, : Ho(S™) — Ho(S™) is the identity, and f, : H,(S™) — H,(S™) is given by the 1 X 1 matrix
with entry d. And then we have:
T(f)=1+(-1)"d

Corollary V.1.3
f has a fixed point whenever 1+ (—1)" # 0. Aka whenever d # (—1)"*!. THat is f has a fixed point
if its degree is not equal to the degree of the antipodal map.

Exercise V.1.4
If f: X — X, then tr(fs : Ho(X) — Hp(X)) is equal to the # of path-components of X mapped to
themselves

Exercise V.1.5

If X is contractible, then its homology is concentrated in degree zero, so 7(f) = 1.

If X is a compact manifold or finite CW-complex, every f has a fixed point (in particular, this recovers
Brouwer’s Fixed Point Theorem)

Example V.1.6
If we consider the map f : R — R given by translation by x # 0, then 7(f) = 1, but f does not have
a fixed point. The key here is that R is not compact.
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Example V.1.7 (Qual, May 2016)
Let X be a finite, connected CW complex. X is its universal cover, and X is compact.
Show that X cannot be contractible unless X is contractible.

Solution. By homework, we then know that, since X is contractible and X has finitely many sheets d over

X:

1= x(X) =d-x(X)

Therefore, x(X) =d =1, and so p : X — X is a l-sheeted cover, so it is a homeomorphism. Therefore X is
e

contractible. Perfect! v

Solution. Since X is contractible, (f) =1foral f: X — X. Furthermore, because X is compact and
covers a finite CW complex, it is a finite CW complex. Therefore the Lefschetz Fixed Point Theorem applies,
so any such map has a fixed point. If f is a deck map, then that means that f = Ids from our covering
space theory. Great! B B B N
We have proved then that X = X /G(X) because p : X — X is normal, but then the deck group G(X) is

trivial, so X = X, and we are done. 4

Exercise V.1.8
A 1-sheeted cover is always injective and surjective. Furthermore, it’s a local homeomorphism. This
suffices to show that a 1-sheeted cover is a homeomorphism.

Theorem V.1.4
If X is a finite CW complex, with cellular chain groups H, (X™, X"~ 1). If we have a cellular map
f:X — X, so f induces maps f, : H,(X", X" 1) = H,(X", X" 1). Then:

T(f) _ Z(il)n tI‘(f* . Hn(Xannfl) - Hn(Xn’anln

n

Proof. Do some algebra! This is a purely algebraic fact

Exercise V.1.9
Given a commutative diagram with exact rows:

0 A B C 0
J(v J/J l‘r
0 A’ B’ C’ 0

Then tr(f8) = tr(a) + tr(y).

Using the exercise, the theorem follows by an argument analogous to the argument for Euler Characteristic
o

on Homework 12. v
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Announcements

Fill our the Office Hour / Review Session scheduling survey
No quiz next week
No more homeworks

Final Exam—April 28 1:30pm ET

Definition V.1.4 (Simplicial Complexes)
A simplicial complex is a A-complex with the conditions that:

e FEach simplex is embedded
e Intersection of simplices o1 N oy must be () or a single subsimplex o both o1 and o5

Let’s look at our A-complex structure on the torus:

A simplicial complex structure on the torus requires at least fourteen triangles.
To specify a simplicial complex, we can do the following
e Start with XY (discrete set)
e Indicate which subsets of X° span a simplex.

This completely specifies the data of a simplicial complex.

Example V.1.10
For S! we have the ollowing picture:

Definition V.1.5
A simplicial map f: K — L is a continuous map that sends each simplex of K to a (possibly smaller
dimensional) simplex of L by a linear maps as follows

Z t;v; — Z f,f(l',)

A simplicial map is completely determined by its restriction to the vertex set.

Theorem V.1.5 (Simplicial Approximation)

Given any continuous map f : K — L where K is a finite simplicial complex and L is any simplicial
complex. Then f is homotopic to a map that is simplicial with respect to some iterated barycentric
subdivision of K
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Here is barycentric subdivision in pictures:

That is, we add a new vertex to the center of every subsimplex, filling things in like the above. For an
n-simplex we end up with (n + 1)! simplices which replace it.

Proof Outline of Lefschetz Fized Point Theorem. We now prove Theorem V.1.1. Fix a space X which is a
finitee simplicial complex (or a retract of a fintie simplicial complex) and a map f: X — X.

(Step 1) Reduce to the case of a finite simplicial complex X. Suppose K is a finite simplicial complex, with
r: K — X a retraction. First notice that the following composite of maps

K T X f X L

has the same fixed points as f.

Exercise V.1.11
r. . Hy(K) — Hp(X) is split surjective (see ¢4 ), and so it has to be a projection onto a direct

K

summand

Exercise V.1.12
It follows that tr(c. o f % or,) = tr(f.) on degree n homology.

This implies that 7(f) = 7(¢ o f or). Therefore if we can prove the result for a simplicial complex
then we are done.
(Step 2) Let X be a finite simplicial complex. We show that if f : X — X has no fixed points then 7(f) = 0.
Goal: Find subdivisions K, L of X and g: K — L so that:
e ¢ is simplicial
e g~ f,7(f)=7(9)
e g(o)No =0 for all simplices o.
So this becomes a few steps, none of which we’ll justify too formally:
e Choose a metric d on X
e Since X is compact, and f has no fixed point, then d(z, f(z)) has some minimum value € > 0.
e Subdivide all simplices of X until simplices have diameter smaller than . Call this subdivision
L.
e Use the simplicial approximation theorem to obtain a map g : K — L, where K is a subdivision
of L,g~f
e By proof of simplicial approximation theorem, we can construct g so that for all simplices o,
g(o) is not too far from f(o). We can then conclude that g(o) No = 0.
e So then g is a cellular map K — K that moves every cell. We can then check that:

T(f)=71(9) = Z(—l)” tr(gs : cellular n-chains — cellular n-chains) =0

Because each g, has vanishing diagonal entries.
Then we'’re done! Great ©

¢
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