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Instead of the higher homotopy groups πn, we will study “higher-dimensional holes” in our space using
homology groups.

Homology Pros Homology Cons
Homotopy invariants (like πn) Definition (at first) seems less natural

Functorial (like πn)
Abelian (like πn, n > 1)

No basepoints
Lots of computational tools

Can compute from cell structure on X
Good properties like Hn = 0 if n > dimX

Idea for the Homology Definition

Fix a space X, which is a ∆-complex. We define Cn(X) to be the free abelian group on the n-simplices of
X. That is:

Cn(X) = {finite sums
∑

mασα | mα ∈ Z, σα : ∆n → X}

In a picture:

The n-th homology group will be a subquotient of Cn(X). The Heuristic / imprecise idea is:

• Take subgroup of Cn of “cycles.” These are sums of simplices satisfying a combinatorial condition
on the boundary gluing maps to ensure that they “close up.” (i.e. they have no boundary)

• To take the quotient, we consider two cycles to be equivalent if their difference is a boundary. For
example, in this picture of the torus, a is homologous to b since a− b is the boundary of the shaded
subsurface S.
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In fact, a and b are homotopic (which will imply they’re homologous), but two loops do not need to
be homotopic to be homologous. For example:

a+ b is homologous to c, since a+ b− c is the boundary of S (a+ b [which isn’t even a loop] and c
are not homotopic).

Formal Definition

For the duration, take X with a ∆-complex structure.

Definition .0.1
We define the chain group Cn(X) of order n to be the free abelian group on the n-simplices of X.

Formally:

Cn(X) = {finite sums
∑

mασα | mα ∈ Z, σα : ∆n → X}

Definition .0.2
We now define the boundary homomorphism, which will be a map ∂n : Cn(X) → Cn−1(X). We’ll

first give this in lower dimensions to motivate the general definition:

∂1 : C1(X)→ C0(X)

[σα : [v0, v1]→ X] 7→ σα
∣∣
[v1]
− σα

∣∣
[v0]

∂2 : C2(X)→ C1(X)

[σα : [v0, v1, v2]→ X] 7→ σα
∣∣
[v1,v2]

− σα
∣∣
[v0,v2]

+ σα
∣∣
[v0,v1]

So in general what we have is:

∂n : Cn(X)→ Cn−1(X)

[σα] 7→
n∑
i=1

(−1)iσα
∣∣
[v0,...,v̂i,...,vn]

And this defines the map on the basis, and we extend linearly ,.
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Lemma .0.1
For any n ≥ 2 we have that:

Cn(X)
∂n //

∂n−1◦∂n=0

44
Cn−1(X)

∂n−1
// Cn−2(X)

Definition .0.3
A chain complex (C∗, d∗) is a collection of maps:

· · · // Cn+1

dn+1
// Cn

dn // Cn−1

dn−1
// · · ·

of abelian groups and group homomorphism such that dn−1 ◦ dn = 0. We call Cn the n-th chain group
and dn the n-th differential.

This means that ker(dn) contains im(dn+1), since dn ◦ dn+1 = 0.
The sequence is exact at Cn provided that ker(dn) = im(dn+1). A chain complex is exact if it is exact

at each point. The previous lemma guarantees that our simplicial chain groups form a chain complex.

Definition .0.4
The n-th homology group of a chain complex (C∗, d∗) is written Hn or Hn(C∗). It is the quotient:

Hn =
ker(dn)

im(dn+1)

It measures how far the chain complex is from being exact at Cn.

Definition .0.5
This means that we may now define the homology groups of spaces X with a ∆-complex structure.

Namely ker(∂n) is the subgroup of cycles in Cn(X), and im(∂n+1) is the subgroup of boundaries in
Cn(X). We then set:

Hn(X) =
ker(∂n)

im(∂n+1)
=

cycles

boundaries

I.e., it is the homology of our chain complex:

· · · // Cn+1(X)
∂n+1

// Cn(X)
∂n // Cn−1(X)

∂n−1
// · · ·

Where we take it to be 0 in all negative indices.

· · · ∂3 // C2(X)
∂2 // C1(X)

∂1 // C0(X)
∂0 // 0

Elements of Hn(X) are called homology classes
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