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Announcements

e Midterm tomorrow!
e Extended Office Hours tonight 7pm-9pm

.1. Singular Homology

Definition .1.1
A singular n-simplex in a space X is a continuous map o : A" — X.

Definition .1.2
Let C,,(X) be the free group on singular n-simplices in X. The singular n-chains with boundary
maps:

On 2 Cp(X) = Cpmr (X)
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This gives us a singular chain complex

Definition .1.3
The singular homology groups are the homology groups of this singular chain complex given as
Hn(X) _ ker 0,
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Since the generating sets for C,,(X) are almost always hugely uncountable, it’s almost impossible to
compute with these. However it does give us a definition that does not depend on any other structure than
the topology of X, making it useful for developing theory ©.

Heuristic: Interpret a chain o1 09+ -+ -+ 0y as a map from a A-complex to X. For example with o1 + o».
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Where we’ve glued [v1, ve] of o1 to [vp, ve] of og if 01|[U1 o1 and opy, 4, are the same singular n-chain with
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opposite signs.
Goals:
e Singular homology is a homotopy invariant

e Singular and simplicial homology groups are isomorphic.

Exercise .1.1
Check that if X has path components {X,} then H,(X) = @, Hn(Xa).

H,(X) = {
Exercise .1.3
If X is path-connected, then Hy(X) = Z

Exercise .1.2

If X = % then
ifn=0
ifn>1

N

.2. Functoriality and Homotopy Invariance
Definition .2.1
For a given continuous map f : X — Y we can consider the following map:
fu: Cp(X) = C(Y)
[c: A" - X] = [foo: A" = Y]
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Definition .2.2
Given two chain complexes (Cy, 0,) and (D, d,), a chain map between them is a collection of group
homomorphisms g, : C,, — D,, such that the below diagram commutes:

Onyo Ont1 O On—1
e Cn—i—l Cn Cn—l

ngﬂrl lgn lgn 1

Ont2 Snt1 On Sn—1
c— Dn+1 E— Dn —_— Dn—l —_—

i.e. we have that 0, o f,, = fn—1 0 0.

Exercise .2.1
We have that fx0 = 0fx. In other words, f4 is a chain map. Thus by the homework f4 induces a
group homomorphism on the homology groups. We write this as f, : H,(X) — H,(Y) for all n.

Exercise .2.2
We have functoriality, i.e. (f o g)« = fs 0 g«. Also we have that (Idx ). = Idg, (x)-

Theorem .2.1
The n-th homology group H,, : X = H,(X) gives a functor from Top to Ab. This follows from the
two exercises above.

Theorem .2.2
If f,g: X — Y are homotopic, then they will induce the same map on homology f. = g. : H,(X) —
H,(Y).

Exercise .2.3
These two theorems imply that H,, is a homotopy invariant.
To prove the second theorem, we introduce some homological algebra.
Definition .2.3
Given chain complexes (A.,d?) and (B.,d?) and chain maps f.,g. : A, — B.. A chain homotopy
from f to g is a sequence of group homomorphisms v, : A,, — Bj41 such that:
fn —09n = df+1 © wn + wnfldﬁ

In a diagram, letting h,, = f, — gn:

dA

n+2 n—
An+1
Rnt1
d5+2 d5+1 d,, dfi 1
Bn+1 Bn Bn— 1

This diagram does not commute, but it shows everything that is going on. However the red map is the
sum of the green maps composed up.
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