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I. Introduction/Administration

• Professor: Ralf Spatzier

• Office Hours:

– Monday 11-12

– Tuesday 5-6, EH 4088

– Friday 11-12

– By appointment.

• HW: Due Wednesdays

II. Definitions and Building Blocks

Definition II.0.1

M is called locally euclidean provided that for all p ∈ M there exists a neighborhood U of p and a

homeomorphism U → Rn for some n.

Lemma II.0.1

It is good enough that for all p ∈M there exists a neighborhood V of p such that V is homeomorphic

to an open subset in Rn.

Proof. Take V
ϕ−→ V ∗ ⊆ Rn with V ∗ open. Then there is an open ball U∗ ⊆ V ∗ containing p, and so we can

take U = ϕ−1(U∗) ∼= U∗. It is clear from real analysis that U∗ ∼= Rn.

II.1. Paracompactness

Definition II.1.1

Consider a collection of subsets χ of M . χ is called locally finite provided that each point p ∈M has

a neighborhood U intersecting only finitely many C ∈ χ.

Definition II.1.2

A topological space M is called paracompact if every open cover χ of M admits a locally finite open

subcover.

Recall II.1.1

A cover of M is a collection of χ such that
⋃
C∈χ

C =M . A subcover of a cover χ of M is a collection

χ∗ ⊆ χ such that every C∗ ∈ χ∗ is contained in some C ∈ χ.

χ∗ is also called a refinement. A cover χ is open if every element of χ is an open set.

Definition II.1.3

M is called locally compact if every point p ∈M and neighborhood U of p there exists a neighborhood

V ⊆ U such that V ⊆ U (the closure) is compact.

Lemma II.1.1

Topological manifolds are locally compact.

Proof. They are locally euclidean and Rn is locally compact.
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Theorem II.1.2

Topological manifolds are paracompact.

Proposition II.1.3

A 2nd countable locally compact Hausdorff space admits an exhaustion by compact sets.

Definition II.1.4

An exhaustion is a sequence of sets Kn ⊆ Kn+1 with
⋃
Kn =M .

Proof of Proposition II.1.3. In the appendix of Lee [lee]. We repeat it here. There is a basis of precompact

open sets since M is locally compact. We should extract countably many precompact open sets {Ui}i∈N such

that
⋃
Ui =M .

By second countability, let {Wj}j∈N. Then taking p ∈ M , we know p ∈ Wj . There then exists a

precompact neighborhood V ⊆Wj which is compact. Take sets {WVi
} whose union contains V . Then take

finitely many such precompact open sets WV1 , . . . ,WVN
. It is possible to make the previous argument happen

in some neighborhood O which is precompact. Thus we have WVi
⊆ O, so the WVi

⊆ O are compact (by

Hausdorffness).

Let’s define the exhaustion by compact sets. First let {Ui}i∈N be precompact open sets covering M . Let

Km =
m⋃
i=1

Ui.

Exercise II.1.2

Think of how to define a differentiable manifold.

The idea is as follows.

Definition II.1.5

If p ∈ M and p ∈ U
φ−→ U∗ ⊆ Rn where U∗ is open is a homeomorphism, then (U,φ) is called a

coordinate chart at U .

Definition II.1.6

Call charts (U,φ) and (V, ψ) compatible if φ ◦ ψ−1
∣∣
U∗∩V ∗ is differentiable

Proof of Theorem II.1.2. We now prove that topological manifolds are paracompact. We first find an ex-

haustion by compact sets, K1 ⊊ K2 ⊊ · · · with
⋃
Kj = M . We set Vj := Kj+1 \ (IntKj). Now let

Wj := IntKj+2 \Kj−1.

Note that Vj ,Wj are compact/open respectively. Consider an open cover χ, given x ∈M , let χx ∈ χ be a

set containing x. Take B a countable basis, and find Bx ∈ B such that x ∈ Bx ⊆ χx.

The Vj are compact, so there are finitely many Bxi
which cover Vj . Thus {Bxℓ

} are a refinement of χ.

We can also require Bxℓ
⊆Wj . This will immediately imply locally finite.

Deep Fact from 100 years ago which we will not prove right now. Namely if φ : U ⊆ Rn → V ⊆ Rℓ is a
homeomorphism and U, V are open then n = ℓ. This is called “invariance of domain theorem.” A special case

is φ : (a, b) → U ⊆ Rℓ, then ℓ = 1 (disconnect (a, b) by removing a single point). In 592 (algebraic topology)

you can generalize this argument using loops or homology.
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Corollary II.1.4

Dimension of a connected topological manifold is well-defined. Namely dimM = ℓ if for every point

p, there is a neighborhood of p which is homeomorphic to Rℓ.

Convention: on any connected component the dimension is well-defined, and we assume the dimesnion is

constant across connected components in this class.

Proposition II.1.5

Let M be a topological manifold, then M is connected if and only if it is path-connected.

Proof. Forward direction is the difficult piece. Fix p ∈M , takeX = {y ∈M | there exists a path from p to y}.
We will prove X is clopen, so then since p ∈ X, X =M .

Take y ∈ X, then taking a neighborhood of y which is homeomorphic to Rn, we see that within this

neighborhood we’re path-connected, so X is open. Likewise if z ∈ X, then take a neighborhood of z

homeomorphic to Rn, this intersects X, and so z ∈ X. Thus X is closed.

II.2. Definition of a Differentiable Manifold

Definition II.2.1

Suppose M is a topological manifold of dimension n, we call it a differentiable manifold if it has a

differentiable (Ck, k = 1, . . . ,∞, ω [analytic behaves differently]) structure.

Namely, we require that there exists a cover by open sets Ui and homeomorphisms φi : Ui → Vi ⊆ Rn

of M such that for each i, j the map φj ◦φ−1
i : φi(Ui ◦Uj) → φj(Ui ◦Uj) between open subsets of Rn is

differentiable (Ck). These maps are called transition maps, and this data {(Uj , φj)}j is called an atlas.

We often call C∞ manifolds smooth manifolds.

Example II.2.1

For spheres Sn you can take enlargened hemispheres and do stereographic projection. In fact we can

take Sn \ {P} and Sn \ {Q} where P,Q are the north,south poles. The transition map is algebraic and

well-defined, so it’s differentiable (for n = 2 it’s z 7→ 1/z).

Bonus Problems: Due 1 week after regular problems, if Gradescope complains let the professor know.

Idea for Problem 1 from Homework 1

Let M be a 1-dimensional, compact, connected manifold.

Choose charts Ux around each x ∈M homeomorphic to intervals. Choose a finite subcover Ui ∼= (ai, bi)

and suppose this is a minimal such cover. Make a lemma that if Ui ∪ Uj is connected

Standards for what constitutes a proof will be determined over time by a conversation between the students,

the grader, and the professor.

Deep Theorem

Theorem II.2.1

There exist topological manifolds which do not admit any differentiable structure.

In fact: “Piecewise linear” manifolds of such type exist.

Next Question: Can two differentiable manifolds give the same topological manifolds?

4
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Yes! Milnor in the late 50s constructed exotic S7 i.e. M1, . . . ,M28 all homeomorphic but none of them

diffeomorphic. There are infinitely many higher dimensional spheres exhibiting this behavior, though it does

not occur in dimensions ≤ 6. There are even uncountably many differentiable structures on R4!!!

Definition II.2.2

If Ω1,Ω2 are differentiable structures (aka atlases) on M , we say that Ω1,Ω2 are compatible if Ω1∪Ω2

is a differentiable structure.

A maximal atlas is the union of all compatible atlases.

Bourbakian method: Always use maximal atlas vs. Hands-on approach: find your atlas, work with it.

Proposition II.2.2

Suppose M,N are both differentiable manifolds, then M × N is a differentiable manifold whose

dimension is dimM + dimN .

Proof. Say (Uα, φα)α is an atlas for M , (Vβ , ψβ)β an atlas for N . Then {(Uα × Vβ , (φα, ψβ)}α,β is an atlas

for M ×N .

What to check?

• Clearly a cover of M ×N .

• (φα, ψβ) : Uα × Vβ → Rm × Rn ∼= Rm+n.

• Check compatibility of charts which is similarly clear.

Quotients on the other hand, are very ill-behaved. As you know, Hausdorff spaces can have non-Hausdorff

quotients, and differentiable structure is also not respected.

Example II.2.2

Take S1 ⊆ C, let x ∼ y provided that xy−1 = ei2nαπ, where α ∈ R is fixed, n ∈ Z. In fact S1/ ∼∼= S1

when α ∈ Q.

However when α ̸∈ Q, the equivalence class of any x is dense in S1, so S1/ ∼ is not Hausdorff. In

fact

Claim

∅ and S1/ ∼ are the only open sets.

Proof. Suppose U ⊆ S1/ ∼ is open. Assume U is nonempty, and let V := π−1(U) where π : S1 → S1/ ∼.

Then fix z ∈ S1, we see that [z] ∩ V is nonempty since [z] is dense and V is a nonempty open set.

Thus z is equivalent to something in V , so [z] ∈ U . Thus U = S1/ ∼.

Note the quotient map is indeed open as well by density.

Definition II.2.3

LetX be some space and∼ an equivalence relation on X. We call∼ open provided that π : X → X/ ∼
is an open map.

Equivalently, if U ⊆ X is open, then {x ∈ X | ∃y ∈ U, x ∼ y} = π−1(π(U)) is open.

Fact: If X is second countable, then ∼ is an open equivalence relation if and only if X
π−→ X/ ∼ is an

5
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Lemma II.2.3

In a compact Hausdorff space, any two disjoint closed sets can be separated by open neighborhoods

which contain these closed sets.

Proof. First we prove that if C is closed and x ̸∈ C then we can separate x,C. We know C is compact since

X is compact and Hausdorff. For each y ∈ C, let Uy, Vy separate x, y. Then {Vy} covers C, so we can take a

finite subcover Vyi . Let V :=
⋃
i Vyi and U :=

⋂
i Uyi . U, V clearly separate x,C and are open.

Now take C,C ′ which are disjoint closed sets. For each x ∈ C, take neighborhoods Ux, Vx separating x,C ′.

Then by compactness take a finite subcover Uxi
. As before union the Uxi

and intersect the Vxi
to separate

C,C ′.

Theorem II.2.4

Take X as a topological space with ∼ open on X. Then

graph ∼:= Γ := {(x, y) ∈ X ×X | x ∼ y}

Then X/ ∼ is Hausdorff if and only if Γ ⊆ X ×X is a closed subset.

Proof. Proof of =⇒ left as an exercise. Suppose [x] ̸= [y] within X/ ∼. Then (x, y) ∈ Γc, so using the basis

for the product topology, there are U, V open so that (x, y) ∈ U × V and U × V ⊆ Γc.

Thus π(U)∩π(V ) is empty, where π : X → X/ ∼. Furthermore, π(U), π(V ) are open, and so they separate

[x], [y].

Proposition II.2.5

If ∼ is open, X is second countable, then X/ ∼ is second countable

Proof Idea. Take a countable basis of X and take their images. These are open, and it’s easy to check this

is a basis.

Aside: There is an interesting non-Hausdorff topology. Namely, the closed sets in Rn,Cn (some algebraic

variety) are given by zeros of polynomials.

Fact: This is compact.

II.3. Topological Groups/Homogeneous Spaces

Definition II.3.1

We say G is a topological group provided that G is a group equipped with a topology such that the

maps

(g, h) 7→ gh

g 7→ g−1

are continous as maps G×G→ G and G→ G.

Example II.3.1

R,C,Rn,Cn,Z,Zk, and any discrete group.

6
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Also GLn(R),GLn(C) which are invertible matrices. O(n), the orthogonal group which is the matrices

so A ·At = I.

SO(n) = {A ∈ O(n) | detA = 1}, the rotations. Then SLn(R) which are the matrices of determinant

one.

The circle S1 = SO(2). We may also consider Tn = S1×· · ·×S1, n times and T∞ = S1×· · ·×S1×· · · .
T∞ is compact (Tychonoff).

Example II.3.2

Qp is the completion of Q with respect to the p-adic norm ∥ · ∥p. Write a = pkc, b = pℓd where c, d

are coprime to p, then ∥∥∥a
b

∥∥∥
p
= pℓ−k.

Note pn → 0 as n→ ∞. Furthermore Qp is a topological field.

We may look at SL(n,Qp),GL(n,Qp) which have dimension 0.

Definition II.3.2

A topological group G is called a Lie group if it is equipped with a smooth differentiable structure

such that the maps

(g, h) 7→ gh g 7→ g−1

are smooth.

Definition II.3.3

Let M,N are differentiable manifolds and f : M → N is some continuous map. We call f differen-

tiable (C1, Ck, C∞ aka smooth) provided that for any coordinate chart (Uα, φα) around x ∈M and any

coordinate chart (Vβ , ψβ) around f(x) ∈ N we have

fα,β := ψβ ◦ f ◦ φ−1
α : φ(Uα ∩ f−1(Vβ)) ⊆ RdimM → ψβ(f(Uα) ∩ Vβ) ⊆ RdimN

is differentiable (C1, Ck, C∞) for all α, β. Notice these sets are nonempty as x, f(x) respectively lie in

each of them.

Lemma II.3.1

This is well-defined. That is, it is independent of compatible atlases.

Example II.3.3 (Examples of Lie Groups)

R, S1,Rn, Tn = S1 × · · · × S1,GL(n,R).

Note: Famously, S2 is not a Lie group. In fact S0, S1, S3 are the only spheres which are Lie groups. These

correspond to unit norm in the real numbers, complex numbers, and quaternions.

Reason: Euler characteristic χ(S2) = 2, and there is a theorem

Theorem II.3.2

If a manifold M has a nonvanishing vector field (to be defined later) then χ(M) = 0.

Aside: There exists an exotic S7 = Sp(2)/ Sp(1)

7
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Definition II.3.4

G is a group (possibly topological, Lie) acts (possibly continuously, smoothly) on a space X (possibly

topological, smooth manifold) provided there exists a map (possibly continuous, smooth)

G×X → X

(g, x) 7→ g · x

such that

1 · x = x (g1g2) · x = g1 · (g2 · x).

Notation: One might say differentiable to mean each X → X induced by x 7→ g · x is differentiable, and

use jointly differentiable to mean G×X → X is differentiable.

Example II.3.4

S1 acts on S1 by multiplication, Rn acts on Rn by addition, and importantly GL(n,R) acts on Rn

by matrix multiplicationu.

All examples given of group actions are jointly C∞ (smooth).

Theorem II.3.3

If G is a compact topological group, G acts continuously on X, X is compact Hausdorff, then X/G

is Hausdorff.

Proof. We must check ∼ is open and graph ∼ is closed. Let π : X → X/G be the quotient map.

Take U ⊆ X open, then we see that

π−1(π(U)) = {y ∈ X | y ∼ x} = {g · u | u ∈ U, g ∈ G}

=
⋃
g∈G

g · U

is open because g · U = (g−1)−1(U) is a preimage of a continuous map.

Now we must show Γ is closed. Look at φ : G×X → X×X given by (g, x) 7→ (x, gx). Note that imφ = Γ.

But wait! G×X is compact, so Γ is compact, so Γ is closed since X ×X is Hausdorff.

Example II.3.5

Take X = Sn, G = Z/2Z = Z2 = {1, A}. Then G acts on Sn, where A · x = −x for x ∈ Sn.

Then Sn/G = RPn.

Example II.3.6

Consider S2n−1 ⊆ Cn with the action of S1 on Cn via

eiα · (z1, . . . , zn) = (eiαz1, . . . , e
iαzn).

This is a continuous action on S2n−1 by S1. Therefore

S2n−1/S1 = CPn−1

8
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Example II.3.7 (Very General Example)

Suppose H is a Hausdorff topological group and G ⊆ H is a compact subgroup. Then G acts on

H by (g, h) 7→ gh. Then H/G is compact Hausdorff if H is compact. Spaces of the form H/G (even

when G is not compact) are called homogeneous spaces so long as H/G is Hausdroff. These spaces are

extremely important.

Addendum: homogeneous spaces are important because

(1) You can calculate

(2) “Systems” with symmetry are typically homogeneous

(3) GL(n,R)/GL(n,Z) shows up in number theory everywhere.

For those doubting since GL(n,Z) is not compact, look at Z acting on R. We claim R/Z is nice, check

the graph is closed!

Definition II.3.5

We call a group action of G on a set X transitive provided that X is one G-orbit, i.e., for every

p, q ∈ X there is a g ∈ G so that g · p = q.

Example II.3.8

The action of SO(n+ 1) on Sn ⊆ Rn+1 is transitive. Take v ∈ Sn, and extend it to an orthonormal

basis and make these the columns of g ∈ SO(n+ 1). We see that g ·
(
1 0

... 0

)
= v.

Definition II.3.6

Suppose G acts on X, p ∈ X, the stabilizer of p in G or isotropy group of p in G if

Gp := {g ∈ G | g · p = p}.

Lemma II.3.4

The stabilizer Gp is a subgroup of G. If G is a topological group, Gp ⊆ G is a closed subgroup (i.e.

it is a closed set).

Proof. Showing it’s a subgroup if trivial. We can quickly show it is closed. Why? Well if gn → g and gn ∈ Gp

then p = gn · p→ g · p by continuity, so g · p = p, so g ∈ Gp.

Future: We will prove that if G is a Lie group, H ⊆ G is a closed subgroup, then H has a Lie group

structure.

Example II.3.9

Consider SO(n+ 1) acting on Sn. The stabilizer of the N := (1, 0, . . . , 0) ∈ Sn is

SO(n+ 1)N =

{(
1 0

0 ∗

)
| ∗ ∈ SO(n)

}
.

This shows Sn = SO(n+ 1)/ SO(n).

Lemma II.3.5

If G acts on M transitively and p ∈ M , then there is a bijective continuous map G/Gp → M . If

G/Gp is compact and M is Hausdorff, then this has a continuous inverse, so G/Gp ∼=M .

9
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Proof. We have a surjective map f : G→M given by g
f7−→ g ·p since the action is transitive. By the universal

property of quotients since for x ∈ Gp we have f(gx) = g · x · p = f(g) this map descends as

G M

G/Gp

f

f̃

to a continuous map. To show it is one-to-one we see that if f̃([g]) = f̃([h]) then g · p = h · p, so h−1g · p = p,

so h−1g ∈ Gp.

Example II.3.10

Consider GL(2,R) acting on R2. This is not transitive since A · 0 = 0. But it is transitive on R2 \ {0}.
Now consider

P := GL(2,R)( 10 )
=

{(
1 c

0 d

)
| c ∈ R, d ̸= 0

}
.

We then see that

GL(2,R)/P ∼= R2 \ {0}.

(in this case we’re not compact, but it still works)

Example II.3.11

G := GL(n+ 1,R) acts on Rn+1 and transitively on Rn+1 \ {0}. This descends to a transitive action

on RPn.
Consider ℓ1 = R× · e1, then

Gℓ1 =

{(
λ ∗1
0 ∗2

)
| λ ∈ R×,det ∗2 ̸= 0

}
.

Goal: G/Gℓ1 is differentiable.

Wanted: T ⊆ G “transversal” to Gℓ1 of dimension dimRPn = n. We can look at

T =

{(
1 0

v Id

)
| v ∈ Rn

}
.

Then Rn ∼= T · ℓ1 so we have a chart!

Recipe:

(1) Suppose a Lie group G acts transitively on M . We want to endow M with a differentiable

(C1, Ck, C∞, Cω) structure.

(2) Take p ∈M , G/Gp ∼=M .

(3) If you can find a “transversal” “subspace” of G to Gp, say T

(4) Try coordinate charts T → T · p, t 7→ t · p.

Back to the Future: If G is a Lie group, H is a closed sugroup, then G/H is always a smooth manifold.

10
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Example II.3.12

We’ll give one more example of a homogeneous space. We want a Lie group G and a closed subgroup

H ⊆ G, and M = G/H. This is the same as G acting transitively on M , and H = Gp for some p ∈M .

Note: If Gp does not depend on p, then?

So we’re going to look at Grassmannian of k-planes in n-planes (Rn). We call this Grk,n(R). Recall
that

Gr1,n = RPn−1 = GL(n,R)/

(
∗ ∗
0 ∗

)
= SO(n)/O(n− 1) = (SO(n)/SO(n− 1)︸ ︷︷ ︸

Sn−1

)/Z2

where O(n− 1) is embedded in SO(n) as

A 7→

(
detA 0

0 A

)
.

In the general case take e1, . . . , en as a basis for Rn, p := ⟨e1, . . . , ek⟩ is a k-dimensional subspace. Then

we can define an action by

GL(n,R)×Grk,n → Grk,n

A · V = {A · v | v ∈ V }.

This is also transitive. If V = ⟨v1, . . . , vk⟩ is a k-dimensional subspace, then A = (v1, . . . , vk, ?, . . . , ?)

where we have extended to a basis maps p to V . Thus Grk,n = GL(n,R)/GL(n,R)p. We see that

A ∈ GL(n,R)p ⇐⇒ A · p = p ⇐⇒ A · ei ∈ p ⇐⇒ A =

(
∗ ∗
0 ∗

)

where the blocks are k × k, k × (n− k), (n− k)× k, (n− k)× (n− k).

Then the transversal subspace making this a manifold is an (n− k)× k block of anything in the lower

left hand block, 1s on the diagonal, and then 0s elsewhere.

Lemma II.3.6

If q = g · p, then Gq = gGpg
−1. If we have a transversal Tp we should try Tq = gTpg

−1.

Exercise II.3.13

SO(n) also acts transitively on Grk,n, so one can do the same work here.

Example II.3.14

S1 = R/Z, Tn = S1 × · · · × S1 = Rn/Zn. In these cases everything we said works although Zn is not

compact.

In contrast we have the bad (interesting) example given by Z acting on S1 by irrational rotation.

11
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Definition II.3.7

Let Γ be a discrete group acting on a topological space X. We say the action is properly discontinuous

provided that Γ · x can be taken to be “separate.” We make this precise via

• Namely, for any compact set K ⊆ X, we have (Γ · x) ∩K is finite. In other words,

Γ×X → X

is a proper map.

• If for some x ∈ X, γ ∈ Γ, we have γ · p = p, then γ = 1. (This is also said as Γ acts freely, and

is only included by some author).

Exercise II.3.15

Suppose Γ acts on a manifold M properly discontinuously, then M/Γ is a manifold.

The same holds for differentiable (Ck) structure so long as Γ acts via differentiable (Ck) maps.

Example II.3.16

SL(n,R)/ SL(n,Z) is the most famous example of this type. This is in fact the space of lattices in Rn

of volume 1. This has a deep connection to number theory.

Particularly the case n = 2 is important because the tori carry complex analytic structure.

III. Tangent Vectors/Differentiation

Take M to be a differentiable manifold. How can we define a “tangent vector” on it. Well a tangent vector

for V ⊆ Rn is just a choice (p, h) where p ∈ V, h ∈ Rn.
So what if we just work chart-wise for charts (φα, Uα) ? Well then for a p ∈M , we can look at a tangent

vector (φα(p), h) ∈ Tφα(p)Vα. But how do we look between charts??? Aka what does (φα(p), h) look like in

Vβ?

Well we can look at the transition map Tα,β = φβ ◦ φ−1
α . Then we can define an equivalence relation

(φα(p), h) ∼ (φβ(p), h
′) ⇐⇒ dTα,β(h) = h′.

Definition III.0.1

We define the tangent space

TpM = {[v, (Uα, φα)] | [v, (Uα, φα)] is an equivalence class of tangent vectors in charts}

Nice interpretation, p ∈ Rn, w ∈ TpM . Take c(t) differentiable for t ∈ (−ε, ε), c(0) = p, then we can look

at c′(0).

We can talk about two different curves then say c1, c2 are equivalent as tangent vectors if c′1(0) = c′2(0).

For p ∈M a differentiable manifold, and a differentiable curve c(t) through that point at t = 0, then [c]p

is a tangent vector defined at charts as c′(0) upon appropraite choice of coordinates.

12
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Definition III.0.2

Let f :M → N be a differentiable map at p ∈M . We define

dfp : TpM → Tf(p)N.

Take some differentiable curve c representing our tangent vector in TpM . We can then take dfp([c]p) =

[f ◦ c]f(p) ∈ Tf(p)N .

Also TpM,Tf(p)N have vector space structures inherited from the case in Rn, and as before for multivariable

calculus, dfp is a linear map.

Recall III.0.1

Let f : U ⊆ Rn → Rm. be a differentiable map. Recall from multivariable calculus that if p ∈ U then

we define dfp to be the best linear approximation of f at p, that is we require

lim
ε→0

f(p+ ε)− f(p)− dfp(ε)

∥ε∥
= 0.

We can compute that in the standard coordinates

dfp =


∂f1
∂x1

(p) · · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

(p) · · · ∂fm
∂xn

 .

Lets make the definition of tangent vectors with curves more explicit

Definition III.0.3

Call two differentiable curves c, d in M with c(0), d(0) = p equivalent if for one (and hence every chart

in the atlast) Uα, φα we have

(φα ◦ c)′(0) = (φα ◦ d)′(0).

Then

TpM = {[c] | c : (−ε, ε) →M differentiable at 0, c(0) = p}.

Claim

TpM has a vector space vector of dimension dimM .

Proof. Use the coordinate chart definition. Take A,B ∈ TpM . Then in coordinates A,B correspond to

vα, wα ∈ Tφα(p)Rn for some chart (Uα, φα).

Then vα + wα ∈ Tφα(p)Rn, take A+B = [vα + wα]. We should check that it doesn’t matter where we do

the addition. Well let vβ , wβ represent A,B in Tφβ(p)Rn.
We check that

(dTβα)φβ(p)(vβ + wβ) = (dTβα)φβ(p)(vβ) + (dTβα)φβ(p)(wβ) = vα + wα.

Scalar multiplication is quite similar.

13
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Recall III.0.2

Recall Definition III.0.2 of the derivative of a map f :M → N which is differentiable at p.

Note on notation first: We can do all of

(f∗)p = Dpf = Dfp = (dfp = dpf)

But we really shouldn’t be using dfp = dpf , as later it will confuse us with differential forms.

Now we give the definition in terms of charts. Take a chart (Uα, φα) about p and take A ∈ TpM ,

then A is represented by some vα ∈ Tφα(p)Rn.
Take some other chart (Vγ , ψγ) about f(p) in N . Then we take Dfp(A) to be represented by

D(ψγ ◦ f ◦ φ−1
α )φα(p)(vα).

Theorem III.0.1

If f : U → V is differentiable at p ∈ U where U ⊆ Rn, V ⊆ Rℓ are open, and Dfp is onto, then

f−1(f(p)) (aka a level set) is a manifold.

Might be nice on homework. . .

Convention: All manifolds are assumed to be differentiable (in fact C1). Later we will prove that

Theorem III.0.2

If M has a C1 structure then it has a compatible C∞ structure.

Proposition III.0.3 (Chain Rule)

Let f :M → N, g : N → O be differentiable maps, then g ◦ f is differentiable and

Dp(g ◦ f) = Df(p)g ◦Dpf.

Writing this diagramatically

TpM T(g◦f)(p)O

Tf(p)N

Dp(g◦f)

Dpf Df(p)g

Proof. Use curves (aka hide the coordinate charts in the equivalence of curves with charts)! To do this, let c

be a curve then

Df(p)g ◦Dpf([c]) = Df(p)g([f ◦ c]) = [g ◦ f ◦ c] = [(g ◦ f) ◦ c] = Dp(g ◦ f).

What is a diffeomorphism?

Definition III.0.4

A differentiable map f :M → N is called a diffeomorphism provided that it is bijective and its inverse

g : N →M is differentiable.

A map f : M → N is a local diffeomorphism at p ∈ M if there exists open neighborhoods U of p

and V of f(p) usch that f : U → V is a diffeomorphism.

14
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Remark III.0.1

In this case we have

Id = Dp(Id) = Dp(g ◦ f) = Df(p)g ◦Dpf.

That is Dpf has an inverse map.

Furthermore, coordinate charts φ : U → Ũ ⊆ Rn are always invertible.

Corollary III.0.4

If f is a local diffeomorphism at p, then Dpf : TpM → Tf(p)N has an inverse. This implies that

dimM = dimN about p.

Theorem III.0.5 (Inverse Function Theorem from Real Analysis)

If f : U → V with U ⊆ Rn, V ⊆ Rm has an invertible derivativeDpf at p, then there is a neighborhood

U ′ ⊆ U such that f : U ′ → f(U ′) is a diffeomorphism.

Theorem III.0.6 (Inverse Function Theorem for Manifolds)

Suppose f :M → N is C1 and suppose Dfp : TpM → Tf(p)N is invertible (as a linear map), then f

is a local diffeomorphism at p.

Proof. Fix charts (U,φ), (V, ψ) about p, f(p), with U ⊆ Rn, so that f(U) ⊆ V ⊆ Rm (this requires minor

yoga). Call T = ψ ◦ f ◦ φ−1.

By the chain rule, Dφ(p)T is invertible, and so n = m. By the inverse funct

Definition III.0.5

Suppose M is a C1 manifold, we say that S ⊆M is called a embedded submanifold of M provided

that for all p ∈ S, there exists a coordinate chart (U,φ) about M such that φ
∣∣
S
: S ∩ U → Rk ⊆ Rn.

That is

S = {q ∈ U | φ(q) = (∗, . . . , ∗, 0, 0, . . . , 0).

We call such a thing an adapted chart (adapted to S).

Note: S is a C1-manifold in its own right.

Example III.0.3

∅,M ⊆M , Rℓ ⊆ Rn, Sℓ ⊆ Sn ⊆ Rn+1, RPℓ ⊆ RPn.

Example III.0.4

Consider T 2 ∼= R2/Z2 ∼= S1 ⊆ S1, and let p : R2 → T 2. Let ℓ ⊆ R2 be a line forming an angle of α to

the origin. If α = 0 this is S1 × {1}. If α ̸∈ πQ then p(ℓ) is dense in T 2.

This means that p(ℓ) will not be a submanifold when α ̸∈ πQ. This doesn’t cross over itself, but the

density prevents you from taking a small open chart making the rest a line.

Definition III.0.6

Suppose f : M → N is a C1 map. Then f is called an immersion provided that for all p ∈ M we

have that Dpf is injective.

15
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This will imply that f(M) is “locally” a submanifold.

Definition III.0.7

We call S ⊆M an immersed submanifold if S is a manifold, and ι : S ↪→M is an immersion.

Definition III.0.8

Call a map f :M → N which is C1 a submersion provided that every value y ∈ N is a regular value.

That is, for every x ∈M such that f(x) = y we have Dxf : TxM → TyN is surjective.

Convention: If f :M → N and y ̸∈ f(M) then y is a regular value of f .

Note: If M → N is a submersion, then dimM = dimTxM ≥ dimTyN = dimN .

Question: Why is dimM = dimTxM for all x ∈M? Well it is clear that if φ is a chart we have

dimTxM = dimTφ(x)RdimM = dimM.

Note that once we pick a coordinate chart φ, it induces an isomorphism of vector spaces

TxM ∼= Tφ(x)RdimM ∼= RdimM

This isomorphism is given by taking representatives of the equivalence classes by which TxM is defined. The

isomorphism is intimately related to φ.

Theorem III.0.7

Suppose f :M → N and q = f(p) is a regular value, then f−1(q) is an embedded submanifold of M .

In fact f−1(q) has dimension dimM − dimN .

Proof Idea. Really, work with a coordinate chart for M at p ∈M . Select a chart (Wβ , ψβ) about q = f(p) to

Rn with dimN = n. Now take a chart (Uα, φα), φα : Uα → Rm with dimM = m and Uα ⊆ f−1(Wβ). For

convenience let p = φα(p) and q = ψβ(q).

Now consider the map Fαβ = ψβ ◦f ◦φ−1
α : Rm → Rn. It now suffices to check the claim for the coordinate

map Fαβ . We want F−1(q) to be a submanifold. Well, we know that DpF : TpRm → TqRn is surjective.

This means m ≥ n and kerDpF ⊆ Rm has dimension m− n. Put this kernel into Rm as the last m− n

coordinates, to do this use an invertible linear map B with B−1(kerDpF ) = Rm−n.

We may then precompose to get F = F ◦B.We know DB−1(p)F = DpF ◦B, and so this is surjective with

kernel Rm−n. We define an extended map

G : Rm → Rn ×Rm−n

G(x1, . . . , xm) = (F (x1, . . . , xm), x+m− n+ 1, . . . , xm),

then DB−1(p)(G) is an isomorphism. Why? Well it has the form (DB−1(p)F , IdRm−n). This is clearly

surjective with zero kernel.

Now use inverse function theorem on G. G is a local diffeomorphism, so G−1(q) → Rn ⊆ Rn×Rm−n = Rm.

We then use G to get an adapted coordinate chart!
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Example III.0.5

SL(n,R) ⊆ GL(n,R) is an embedded submanifold (seen on HW). To show this, we proved det :

GL(n,R) → R has Dp det is surjective for any p ∈ SL(n,R), and so SL(n,R) = det−1(1) is a submanifold.

Idea of proof: somehow apply inverse function theorem

Summary of the proof of the regular value theorem in steps:

(Step 1) Use coordinate charts to reduce to a problem about F : U → Rk so that U ⊆ Rn is open.

(Step 2) We have F : U → Rn and q a regular value of F . We want to show F−1(q) is a submanifold of Rn.
We know that p ∈ F−1(q) DFp is surjective and

DFp =


∂F1

∂x1
· · · ∂F1

∂xn

...
. . .

...
∂Fk

∂x1
· · · ∂Fk

∂xn

 .

Since DFp has rank k, so it has k linearly independent row vectors. We may assume without loss of

generality that they are the first k.

(Step 3) Take G : Rn → Rk × Rn−k to be defined by G(x1, . . . , xn) = (F (x1, . . . , xn), xk+1, . . . , xn). Then we

have

A :=


∂F1

∂x1
· · · ∂F1

∂xk

...
...

. . .
...

∂Fk

∂x1
· · · ∂Fk

∂xk


DGp =

(
A ∗
0 Id .

)

This is obviously invertible. Thus G is a local diffeomorphism, which means G−1({q}×Rn−k) willbe
locally a submanifold.

(Step 4) F−1(q) = G−1({q} × Rn−k). Thus F−1(q) is locally a submanifold.

Example III.0.6

There is a canonical submersion given by Rn → Rk with (x1, . . . , xn) 7→ (x1, . . . , xk) for k ≤ n.

Another way of stating the regular value theorem is

Theorem III.0.8

If f : M → N is C1 and q is a regular value, then for any p ∈ f−1(q) there exist coordinate charts

(U,φ), (V, ψ) such that

Rm Rn

φ(U) ψ(V )

(x1, . . . , xm) (x1, . . . , xn).

⊂

ψ◦f◦φ−1

⊂

with m = dimM,n = dimN . This is called the normal form.

What is the engine of the IVT? The contraction mapping fixed point theorem!!!
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Drives many things in the subject, such as existence and uniqueness of solutions of ODEs. It also shows

up in dynamics.

Example III.0.7

Consider O(n) = {n× n matrices with AAt = Id}. We show it’s a submanifold of GLn(R) ⊆ Rn2

by

looking at

F :Mn(R) → Sym(n× n) ∼= Rn(n+1)/2

A 7→ AAT ,

where Sym(n × n) are the symmetric n × n matrices. We must show that the identity Id is a regular

value.

We must calculate DFg where g ∈ F−1(Id), so ggt = Id. We calculate DFg(v) using curves, where

v ∈ Rn2

. Consider

F (g + tv) = (g + tv)(g + tv)T = (g + tv)(gT + tvT )

= Id+t(gvT ) + t(vgT ) + t2 · ∗

d

dt
F (g + tv)

∣∣∣
t=0

= gvT + vgT .

The claim is that any symmetric matrix has this form. Set v = wg, then

DFg(v) = wT + w.

If A is a symmetric matrix, then taking w = A
2 is sufficient.

Alternative approach: Compute the kernel ker(DFg). If v ∈ ker(DFg) then gv
T = −vgT , so vgT is

skew-symmetric. The dimension of this is n(n− 1)/2.

Then the dimension of the image of DFg is

n2 − n(n− 1)

2
=
n(n+ 1)

2
.

But this is exactly the dimension of the symmetric matrices, and so we’re done.

SO(n) is the connected component of the Id in O(n) because det : O(n) → R takes values in {±1}. Thus
SO(n) is clopen in O(n).

Fact: SO(n) is connected.

Corollary III.0.9

Submersions are open maps

Proof. The local normal form is a projection, which is an open map.

Now lets look at examples of submersions.

Example III.0.8

If F,M are manifolds, then we can look at the projection M × F → M . Then this is obviously a

submersion!

We call this type of submersion a trivial bundle

18
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IV. Fiber/Vector Bundles

Definition IV.0.1

A submersion π :M → N is a fiber bundle provided that

• π is surjective.

• We equip N with a covering by open sets {Vα} such that π−1(Vα) is diffeomorphic by φα to

Vα × F for some fixed manifold F . These are called local trivializations

• For each Vα the following diagram commutes

π−1(Vα) Vα × F

V

π

φα

The manifold F is called the fiber of the bundle.

Example IV.0.1

N × F → N , and for M the Möbius band, M → S1, with F = (−1, 1).

Note that the Möbius band is not diffeomorphic to S1 × (−1, 1).

If N ⊆ RL is an embedded submanifold, we can consider the unit tangent bundle

S(N) = {v ∈ TpN | p ∈ N, ∥v∥ = 1}.

For N = S2 is sort of complicated. For N = S1, we get

N(S1) = S1 × {0, 1}.

Fact: S(S2) is not a trivial fiber bundle.

HW: S(S3) is a trivial bundle. Hint: It’s a group.

Definition IV.0.2

Let M be an abstract differentiable manifold. As a set the tangent bundle of M is

TM :=
∐
p∈M

TpM.

Claim: This is a fiber bundle, in fact it is a vector bundle

Definition IV.0.3

A vector bundle π : M → N is a fiber bundle with fiber F a vector space such that π−1(z0) is

intrinsically a vector space and for any local trivialization (Uα, φα) induces a linear map φα : π−1(z0) →
{z0} × F for all z0 ∈ Uα.

Equivalently, if (Uα, φα), (Uβ , φβ) are any two trivializations, then

π−1(Uα × Uβ) (Uα ∩ Uβ)× F

φα

φβ

has φ−1
β ◦ φα (called is a linear map (and therefore a linear isomorphism). This allows one to place a

canonical vector space structure on π−1(z0) for any z0 ∈ N .
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Recall the claim from last time: TM is a vector bundle over M . To do this we need to show that TM

carries a manifold structure. It turns out we lose regularity (summed up below)

Remark IV.0.1

If M has a Cr-manifold structure, then TM has a Cr−1-manifold structure. Thus M must have at

least C2-structure to get TM with C1-structure (that is a manifold).

Note: In the end this is not a problem, as we will later show that every C1 manifold has a C∞

structure

Proposition IV.0.1

If M is a Cr-manifold then TM :=
∐
p TpM is a Cr−1-manifold which is a vector bundle over M .

Proof the Tangent Bundle is a Vector Bundle. Take M to be an abstract differentiable manifold, and π :

TM →M the obvious map. Call m := dimM , then we’ll take F := Rm. We must do two things

(a) Give TM a manifold structure.

(b) Show it can be endowed with a vector bundle structure.

We take a covering of M by charts (Uα, φα), φα : Uα →Wα ⊆ Rm. Note φα is in fact a diffeomorphism, by

how we’ve set up the definition of differentiability on manifolds.

Then we’ll do each of the above

(a) We know that TWα ⊆ R2m is an open subset, as TWα =Wα × Rm.

Then

TUα =
∐
p∈Uα

TpUα
Dφα−−−→

∐
p∈Uα

Tφα(p)Wα = TWα.

We take this as a coordinate chart on TM . Namely, take TM to have a topological strcture with

basis the open sets {TUα}.
Then we claim (TUα, Dφα) is an atlas. We must look at the transition map, that is

TUα ∩ TUβ

Dφα(TUα ∩ TUβ) Dφβ(TUα ∩ TUβ)

Dφα Dφβ

Dφβ◦Dφ−1
α

By the chain rule this is D(φβ ◦ φ−1
α ), which is Cr−1 by assumption. Thus this is a Cr−1-atlas.

(b) We now will show this is a vector bundle. Note that

π−1(Uα) =
∐
p∈Uα

TpM.

We then have Uα
φα−−→Wα ⊆ Rm. Note then

π−1(Uα)
Dφα−−−→ TWα =Wα × Rm.

This is nearly our trivialization. Follow up with (φ−1
α , Id) to get

π−1(Uα)
(φ−1

α ,Id)◦Dφα−−−−−−−−−→ Uα × Rm.

Call this ψα. Clearly proj ◦ψα = π, so this is a fiber bundle.
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Last thing to check is that ψα is linear on fibers. This comes from the fact that TpUα inherits its

linear structure from Tφα(p)Wα.

That is

ψα : TpUα = TpM
(φ−1

α ,Id)◦Dpφα−−−−−−−−−−→ {p} × Rm

is linear because Dpφα is linear by construction of the linear structure on TpM .

We’ll now do constructions with vector bundles! Take V,W to be vector bundles over M with maps π1, π2

to M .

• HW5: Define V ⊕W → M , and if Vp = π−1
1 (p) and Wp are similar then the fiber over p should be

Vp ⊕Wp.

• We can take V∗ with fibers V ∗
p , where ∗ denotes the dual space. For this one looking fiber by fiber

ϕα : π−1(p) → {p} × V

is linear, and we have

ϕ∗α : {p} × V ∗ → (π−1(p))∗.

This goes in the opposite direction as desired, but ϕα is invertible! Thus we can look at

(ϕ∗α)
−1 : (π−1(p))∗ → {p} × V ∗.

• If V,W are two vector bundles you can look at V ⊗W.

• Important one down the road: Given one specific vector space V . We cal look at the k-fold tensor

product V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

. Hiding inside of this is something important, the k-alternating linear forms∧k
V .

We can of course do this with V as a vector bundle
∧k V. Later then ∧k TM will be differential

k-forms, which will lead to de-Rham cohomology at the end.

Recall IV.0.2

A multilinear form on V1, . . . , Vk is a map

V1 ⊕ V2 ⊕ · · · ⊕ Vk → R

if λ(v1, . . . , vk) is linear in each coordinate. If V = V1 = · · · = Vk then λ is called alternating when

λ(v1, . . . , vi, . . . , vj , . . . , vk) = −λ(v1, . . . , vj , . . . , vi, . . . , vk).

Prime example: Determinant, det : Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R.

V. Vector Fields/Derivations/Lie Brackets
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Definition V.0.1

If E
π−→ B is a fiber bundle then we call σ : B → E a section if π ◦ σ = IdB .

Definition V.0.2

A vector field V :M → TM is a section (continuous, C1, Ck, C∞)of TM .

Example V.0.1

If M = Rn, then we have very special vector fields which are constant at e1, . . . , en. We often denote

these vector vields by ∂
∂xi

, to specify that they are tangent vectors (and thus related to differentiation).

Then if X : Rn → TRn is any vector field we may write for all p ∈ Rn

X(p) = a1(p)
∂

∂x1
(p) + · · ·+ an(p)

∂

∂xn
(p),

where ai : Rn → R is the i-th coefficient function. X is Cr if and only if all the ai are C
r.

How does one check X :M → TM is a differentiable vector field in practice? For convenience consider M

is a C∞ manifold. Take a chart (Uα, φα) for M . Then Dφα : TUα → T (φα(Uα)) ⊆ TRn Thus we want to

know that

z 7→ Dφα(X(φ−1
α (z)) : φα(Uα) → T (φα(Uα))

is differentiable.

Exercise V.0.2

If f :M → N is Cr then Df : TM → TN is Cr−1, where the obvious definition is

Df((p, v)) = (f(p), Dpf · v).

Of course if f is C∞ then Df is C∞.

Check: Use coordinates. Take coordinates (U,φ) on M and (V, ψ) on N . Then Dφ,Dψ provide

coordinates on TM, TN and so

Dψ ◦Df ◦Dφ−1 = D(ψ ◦ f ◦ φ−1).

By definition ψ ◦ f ◦ φ−1 is Cr, so D(ψ ◦ f ◦ φ−1) is Cr−1. Perfect!

Back to vector fields. To check smoothness (or do any calculation) write X in a chart. We have e1, . . . , en

on φ(U). We can pull back e1, . . . , en to get ∂
∂x1

, . . . , ∂
∂xn

, so ∂
∂xi

= Dφ(p)(φ
−1)(ei). Then of course

X
∣∣
U
=

n∑
i=1

ai(p)
∂

∂xi
(p)

where ai : U → R is the i-th coordinate function for the chart (U,φ).

Warning: ∂
∂xi

is a vector field. There will also be dxi, which are cotangent fields, which are differential

1-forms, that is local sections to T ∗M := (TM)∗. Then dxi ∈ T ∗Uα.

Definition V.0.3

Last time we learned how to take the dual space to a vector bundle. Thus we define the cotangent

bundle of M to be T ∗M := (TM)∗.

To summarize what we just did
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Definition V.0.4

If (U,φ) is a coordinate chart on M we define local coordinates for TM via vector fields

∂

∂xi
: U → TU

p 7→ Dφ(p)(φ
−1
α )(ei).

Then we define dxi : U → T ∗U at each point p ∈ M so that {dxi(p)}i=1,...,n as the dual basis to{
∂
∂xi

(p)
}
.

Example V.0.3

Consider the simplest nontrivial manifold, that isM = S1. Consider two charts φ−1, ψ−1 : (−π, π), (0, 2π) →
S1 given by θ 7→ eiθ. These cover S1.

We can then take

X(φ−1(t)) = sin(t)
∂

∂t

and choose a compatible function for X(ψ−1(t)).

Note: If E
π−→M is a vector bundle and σ1, σ2 :M → E are sections, then for any functions f1, f2 :M → R

We can take

(f1σ1 + f2σ2)(p) = f1(p)σ1(p) + f2(p)σ2(p).

In algebraic terms, this means Ck-sections of a vector bundle form a module over Ck(M), which is the ring

of Ck functions M → R.
Definition V.0.5

A linear map ∂ : C∞(M) → R is called a derivation at p provided that for all f, g ∈ C∞(M) we have

∂(f · g) = f(p)∂(g) + ∂(f)g(p).

To spell out linearity we want for c ∈ R that

∂(cf) = c∂(f)

∂(f + g) = ∂(f) + ∂(g).

For Non-Michigan students: 115/215 are single/multi-variable calculus.

Example V.0.4 (115/215 Example)

Take M = R. The simplest derivation is ∂(f) = f ′(p).

For f : Rn → R we can take the directional derivative over a vector v ∈ TpRn.
Likewise for f :M → R whereM is a C∞ manifold for any (p, v) ∈ TpM we can take ∂v(f) := Dfp(v).

This gives us a derivation ∂v : C
∞(M) → R.

Remark V.0.1

One can alternatively frame tangent vectors in terms of derivations on a manifold. Professor Spatzier
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thinks this is beautiful and also useless. One must always eventually work with charts or use a Lie group

structure.

Note for the very interested reader: for Cr manifolds where r <∞ these two notions are not actually

equivalent, see [tangentPlanes] and this mathoverflow post

https://mathoverflow.net/a/358273

Announcements

• HW5 Deadline extended to 10/7 Friday 11pm

Definition V.0.6

Suppose we have two vector-bundles V,W over M,N respectively. A map of vector bundles consists

of two maps Φ : V → W and ϕ :M → N (Cr for whatever r you want) such that the following diagram

commutes

V W

M N

Φ

π τ

ϕ

and also

Φ
∣∣
π−1(p)

: π−1(p) → τ−1(ϕ(p))

is linear. Call (Φ, ϕ) a vector bundle isomorphism if there are inverses (Ψ, ψ) to Φ and ϕ respectively.

In this case we call V,W equivalent.

We call V trivial if it is equivalent to a trivial bundle Rn ×M , with Rn ∼= π−1(p).

For the trival bundle τ : Rℓ ×M →M we have lots of sections, say σi(p) = (ei, p), ei ∈ Rℓ a basis of Rℓ.
The σi are smooth vector fields and {σi(p)} are linearly independent and in fact a basis for τ−1(p) for all

p ∈M .

Thus we get ℓ sections of τ : Rℓ ×M →M which are linearly independent at every point. The converse

also holds!

Proposition V.0.1

Let π : V →M be a vector bundle of rank ℓ (that is π−1(p) ∼= Rℓ). If there exist ℓ sections σ1, . . . , σℓ

which are linearly independent at every point then V is trivial (i.e., isomorphic to the trivial bundle of

rank ℓ).

Proof. Consider the map

Rℓ ×M → V

((a1, . . . , aℓ), p) 7→
ℓ∑
i=1

aiσi(p).

Corollary V.0.2

The tangent bundle of a differentiable manifold is trivial if and only if there exist dimM many vector

fields which are linearly indepenent at every point.
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Remark V.0.2

Warning: There are two senses in which sections σi may be linearly independent. We can have that

in the space of sections ∑
aiσi = 0

implies ai = 0. We can also have linear independence at every point, namely for every p ∈M we have∑
aiσi(p) = 0

implies ai = 0. We’ll call the latter notion linearly independent pointwise.

Consider S2 =M . Then X has a non-zero vector field which is 0 somewhere but not 0 everywhere!

X is linearly independent as a single vector in the space of sections, but not at every point.

Notice that

dim{sections of V →M} = ∞

unless V or M is of dimension 0.

Last time: We looked briefly at derivations as point p ∈M . We’re going to continue to talk about them ,

Example V.0.5

Consider a smooth vector field X on M and we define

∆ : C∞(M) → C∞(M)

(∆f)(p) = ∂X(p)(f)

where ∂X(p) is the directional derivative at p in the direction of X(p) (see last time).

Then in fact we have

∆(f · g) = f ·∆g +∆f · g.

Example V.0.6

Consider X = y ∂
∂x , Y = x ∂

∂y on R3. Then we’re going to look at

(X ◦ Y ) =

(
y
∂

∂x

)(
x
∂

∂y

)
= y ·

(
∂

∂
x

)
∂

∂y
+ yx

∂

∂x

∂

∂y

= y
∂

∂y
+ yx

∂2

∂x∂y
.

What is this??? It’s not a vector field. . .What about the other way

(Y ◦X) =

(
x
∂

∂y

)(
y
∂

∂x

)
= x(

∂

∂y
y) · ∂

∂x
+ xy

∂

∂y

∂

∂x

= x
∂

∂y
+ xy

∂2

∂y∂x
.
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We can view X,Y as ∆X ,∆Y : C∞(M) → C∞(M). Then look at it as ∆X◦Y = ∆X ◦∆Y and likewise.

Now we can consider

X ◦ Y − Y ◦X = y
∂

∂y
− x

∂

∂x
.

This is a vector field!

Theorem V.0.3

LetM be a smooth manifold with smooth (C1 is enough) vector fields X,Y . Then in factX◦Y −Y ◦X
is a derivation C∞(M) → C∞(M).

Because of this we’ll call [X,Y ] := X ◦ Y − Y ◦X, and we’ll call it the Lie bracket of X and Y .

Proof. Linearity is immediate. We just need to check the product rule. Namely we must check

[X,Y ](fg) = ([X,Y ]f)g + f([X,Y ]g).

Theorem V.0.4

Every C∞ derivation δ at p defines a tangent vector to p, i.e., there exists v ∈ TpM such that δ = ∂v.

Corollary V.0.5

Every derivation ∆ : C∞(M) → C∞(M) defines a vector field.

Example V.0.7

Take X = ∂
∂x , Y = ∂

∂y . Then [X,Y ] = 0, as the mixed partials are equal on smooth functions.

We don’t see the geometry in these formulas. We need to see the geometry!!!

Lemma V.0.6

If v ∈ TpM , then ∂v(f) := Dpf ·v is a derivation. Moreover if ∂v = ∂w, then v = w, where v, w ∈ TpM .

Proof Idea. We’ve already seen the first property. For the second, take a coordinate chart (Uρ, ρ). We

can take Dρp(v) =
∂
∂x1

and Dρp(w) =
∂
∂x1

. We can do this unless w = a · v. This works because we have

linearly independent vectors Dρp(v), Dρp(w) and take a linear map A taking these to e1, e2. Replace ρ by

A ◦ ρ.
Look at x1 : ρ(Uα) → R, which is the coordinate (projection) map to the first coordinate. We see that

∂

∂x1
x1 = 1

∂

∂x2
x1 = 0.

This will show ∂v, ∂w disagree on this function. . . but wait! x1 is only defined on a small neighborhood Uρ of

p.

We need to understand the relationship between C∞(M) and C∞(U) for U a neighborhood of some p ∈M .

We know one map
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C∞(M) C∞(U)

f f
∣∣
U

g g
?

so that g
∣∣
U
= g.

Need: Bump functions

• Ad: This comes up a lot

• On R we want a function f(x) that looks like

x

y

Warning: Cannot do in Cω(R).
• We take

ψ(x) =

{
e
− 1

1−x2 if x ∈ (−1, 1)

0 if x ̸∈ (−1, 1)
.

• Likewise for ψ : Rn → R, where we want ψ ≡ 0 outside B1(0) and ψ is C∞ on Rn, and ̸= 0 on B1(0).

We take ψ(x) = ψ(|x|2).
• We can generalize this. Want ϕ ≡ 1 on B1/2(0), ϕ ≡ 0 outside B1(0). We pick something like

ψ(x) · ψ
(

1
2|x|2

)
.

• We can use these to construct our g.

We can prove Lemma V.0.6 by taking everything locally, and using bump functions

Corollary V.0.7

There exists n linearly independent derivations since TpM ↪→ {derivations at p}.

Lemma V.0.8

Derivations at p form an n-dimensional vector space.

Proof. It is at least n-dimensional since {δv | v ∈ TpM} is n-dimensional.
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Now for f ∈ C∞(M), we can use bump functions to look locally at C∞(Uρ), and work locally around 0 in

Rn. Consider

Ip = {f ∈ C∞ near p | f(p) = 0}

I2
p = {

∑
figi | figi ∈ Ip}

Then we see that

δ(f · g) = δ(f) · g(p) + f(p) · δ(g) = δ(f) · 0 + 0 · δ(g) = 0.

Therefore, the derivations vanish on I2
p . Thus the derivations embed into (Ip/I2

p)
∗ (which is a vector space.

We prove another result Corollary V.0.12 to finish this proof.

Corollary V.0.9

We have that

{derivations at p} = {∂v | v ∈ TpM} = (Ip/I2
p)

∗

by equality of dimensions.

Lemma V.0.10

Suppose f : U → R, C∞ with 0 ∈ U open in Rn, then there exist C∞ functions fi on U such that

f(x) = f(0) + xifi,

with fi(0) =
∂f
∂xi

(0).

Proof. By Fundamnetal theorem of calculus, we have that

f(x) = f(0) +

∫ 1

0

d

dt
f(tx) dt

= f(0) +

∫ 1

0

n∑
i=1

xi
∂f

∂xi
(tx) dt

= f(0) +

n∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx) dt︸ ︷︷ ︸

fi∈C∞

.

Lemma V.0.11

Suppose f is C∞ in Rn near 0. Then there exist C∞ functions fij on Rn near 0.

f(x) = f(0) +

n∑
i=1

xi
∂f

∂xi
(0) +

n∑
i,j=1

xixjfij(x).

Proof. Apply last lemma to fi(x).

Corollary V.0.12

dim(Ip/I2
p) = n.
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Proof. Apply the lemma just above. For any δ ∈ (Ip/I2
p)

∗ we can take locally

δ(f) =

n∑
i=1

∂f

∂xi
(0) · δ(xi),

since δ vanishes on I2
p , so we can say it vanishes on xixjfij(x) above. The proof in general is similar.

Dealing with germs of functions. Fix p ∈ M a C∞ manifold. Suppose f ∈ C∞ is defined in an open

neighborhood Uf of p, and g ∈ C∞ is defined on Ug ∋ p. We say f, g define the same germ if

f
∣∣
Uf∩Ug

= g
∣∣
Uf∩Ug

.

Note: f1, f2 having the same germ [f ] and g1, g2 having the same germ h, then f1 + g1, f2 + g2 define the

same germ. Really f1, f2 having the same germ defines an equivalence relation.

Partial derivatives are well-defined on germs. They’re somewhere “between local and infinitesimal.” So

note, we have

(1) Globally defined functions f ∈ C∞(M)

(2) Locally defined functions f on some open neighborhood of p.

(3) Germs at p

(4) Partial derivatives at p.

where the order reflects closer and closer to infinitesimal information. Note that Ip, I2
p make sense for germs.

Furthermore our above discussion tells us

dim Ip,germ/I2
p,germ = n.

It also has the falling property. Given φ :M → N , and a germ [f ] on N . Then [f ◦ φ] in fact defines a germ

on N . In representatives this takes f : N ⊇ U → R and compose f ◦ φ : φ−1(U) → R. This does not depend
on the representatives. We then get a map

φ∗ : Iφ(p)/I2
φ(p) → Ip/I2

p

[f ] 7→ [f ◦ φ].

We have a duality! In diagrams we have

TpM Tφ(p)N

(Ip/I2
p)

∗ (Iφ(p)/I2
φ(p))

∗

Ip/I2
p Iφ(p)/I2

φ(p)

Dφ=φ∗

(φ∗)∗

φ∗

because of our discussion above concerning identifying TpM with derivations and derivations with the middle

row. Then we can think of all this as

T ∗
pM = Ip/I2

p
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which is the cotangent space at p. Then we have a duality

φ∗ : T ∗N → T ∗M

φ∗ : T∗M → T∗N.

Announcements

• Move midterm by 1 or 2 weeks.

• Bonus 5 + HW6 Due Friday 11PM

Last time: Take a chart φ : U → Rn which takes p to 0. We really want to take a smooth f on φ−1(Bε(0))

to a smooth f which is 0 outside φ−1(B2ε(0)).

For this, we take a bump function ρ : Rn → R which is 0 outside B2ε(0) and which is 1 inside Bε(0).

Now back to immersions, submersions, and regular values.

Recall V.0.8

Let M,N be C∞ manifolds, q ∈ N is a regular value of f :M → N if Dfp : TpM → TqN is surjective

for all p ∈ f−1(q). Note that if q ̸∈ Image(f) then q is regular

We recall a bit of measure theory. Let A ⊆ Rn and define vol(A) =
∫
A
1 dx. Lebesgue measure is preferable,

but we say A mas measure zero if vol(A) = 0.

Definition V.0.7

Suppose M is a C1 manifold. Consider B ⊆ U some chart. We say B has measure zero if φ(B) has

measure zero.

Note this is well-defined since the transition maps are C1, which gives for two charts φ,ψ that

vol(ψ(B)) =

∫
ψ(B)

1 dx

=

∫
φ(B)

det(D(ψ ◦ φ−1)x dx

Note then that volume changes across charts; but zero volume is well-defined.

Say B ⊆M has zero measure if for all charts (U,φ) we have vol(φ(B ∩ U)) = 0.

We say A ⊆M has full measure if M \A has 0 measure.

Theorem V.0.13 (Sard’s Theorem)

LetM,N be C∞ manifolds and f :M → N be smooth, then the set of regular values has full measure.

Warning: needs C∞ (at least some Ck for k large enough).

Proof Idea. Approximate f by a linear map Df = L. Actually lol Professor Spatzier doesn’t know

Example V.0.9

Here’s an application. To show SLn(R) is a manifold it suffices to show 1 is a regular value of det

since SLn(R) = det−1(1).

Note det(λA) = λn det(A) for A ∈ GLn(R).
Claim

If 1 is not a regular value, then neither is λn for λ ̸= 0.
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If λ is nonzero, then A
mλ7−−→ λ · A is invertible. Suppose λn is a regular value. Then fix A so that

det(A) = 1. Then we see that DA det is surjective if and only if

DA(det ◦mλ) = DλA det ◦DA(mλ)

is surjective, which follows by regularity and invertibility of mλ.

Now by Sard, since any {λn | λ ̸= 0} doe snot have measure zero, 1 must be a regular value.

The simplest immersion is given for k ≤ n as

Rk ↪→ Rn

(x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0).

Proposition V.0.14

Suppose f : M → N where k = dimM,n = dimN is an immersion at p, so that Dfp is injective.

Then there exist charts (U,φ) at p and (V, ψ) at f(p) so that ψ ◦ f ◦ φ−1 has the form given above.

Proof. Fix arbitrary charts (U,φ) and (V, ψ) as well. We’ll work on the charts, and this is good enough.

From now on conflate f with its coordinate map.

We know Dfp is injective and n× k so we can look at

Dfp = A =



A1

A2

· · ·
Ak
...


=: Â.

We know that the rank of A is k, so there exists k linearly independent rows. We can compose with an

inverse to these rows to get (
Id ∗
∗ ∗.

)

Then Â ◦ F : Rk → Rn extends to Rn → Rn.
This gives us for the derivative (

Id ∗
0 Id

)
We can then get a local diffeomorphism to define coordinates in Rn. By construction in this chart f has the

desired form. . .

Announcements

• Midterm remains on Wednesday October 19th in class.
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V.1. Flow on Vector Fields

How do we flow on vector fields? That is how do we think of the vector field as a field of force/acceleration

for a particle.

Well we wish to fill up a manifold M with curves and then differentiate them! That tells us the vector

field at every point. However, we must avoid crossings so we can decide where to take the vector field

Recipe:

(1) Fill up M with disjoint differenitable curves ci.

(2) Then take X(p) = ċpi(p) for cpi a curve through p.

(3) What about C0, C1, . . .?

(4) Along a C∞-curve c(t) the vector field is C∞, “transversally” to the curves regularity is unclear. But

if c 7→ cpi is sufficiently differentiable, then all is good.

Example V.1.1

Strange example. Take an angle α ̸∈ 2πQ and take a line through the flat torus which forms an angle

α.

For convenience here is a picture of curves in the flat and curved torus

This picture is taken from [eltzner].

We want to go the opposite direction. Given a vector field, how do we produce a flow which incudes it?

Definition V.1.1

Let X be a vector field on M . We call c : (a, b) → M a solution curve for X provided that for all

t0 ∈ (a, b) we have

d

dt

∣∣∣
t=t0

c(t) = X(c(t0)).

In coordinates, for a C∞-chart U take standard vector fields ∂
∂xi

. Then we know

X
∣∣
U
=

n∑
i=1

ai(p)
∂

∂xi
.

X is C∞ if and only if ai is C
∞.
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Write c(t) = (c1(t), . . . , cn(t)) in these coordinates. Then we have that

ċ(t0) = (ċ1(t0), . . . , ċn(t0)).

To require that X(c(t0)) means to require that

n∑
i=1

ai(c(t0))
∂

∂xi
(c(t0)) =

n∑
i=1

ċi(t0) ·
∂

∂xi
(c(t0)).

Therefore we must have ai(c(t0)) = ċi(t0). We have that the ai are given by the vector field. What’s not

given is the C’s

“Bacid ODEs, Vague.” For a C1-manifold we can solve uniquely if ai are Lipschitz functions then the

solutions are unique.

Why vague? For what time t do we get a solution. Well something like

ci : (−ε(p), ε(p)) → Rn

within coordinates. This occurs because the “speed” along which ci goes on the vector field may escape to

infinity, and then we don’t know what to do at ε(p).

More precise version. Let X be some C∞ vector field. There exists an ε > 0 and a δ > 0 such that for all

q ∈ Bε(p) ther exists a solution to the ODE on the inversal (−δ, δ).
This is called a local solution. We have existence and uniqueness of local solutions. We will not prove this

because it is painful, it is an application of the Contraction Mapping Theorem.

Definition V.1.2

Call M a C∞ manifold. We say a vector field X on M is complete if solution curves exist through

any point for all time.

Ad: Nearly impossible to actually calculate solutions to these curves (supercomputers can approximate),

except in special cases (ex. linear ODEs). Actual computations is the Quantitative, explicit solutions, and

would be called ODEs.

Dynamical systems would be considering the Qualititative study of vector fields! This goes back to

Poincaré.

Lemma V.1.1

If M is a compact C∞ manifold and X is a CK vector field for k ≥ 1 then X is complete.

Proof. For short time, on a neighborhood U of p ∈M we have a solution curve cp : (−ε(p), ε(p)) → U

Then there are finitely many p1, . . . , pℓ with
⋃
Upℓ =M . Take ε := min εpi .

For each q ∈ Upi we can flow along the field for (−ε, ε). Uniqueness of solutions on (−ε, ε) implies that

things will agree on the overlap. We can keep flowing in either direction forever!!! This finishes the proof.

Warning: The curve exists for all time but may have finite length! We may come to a stop at a stationary

point on the vector field!!!

Definition V.1.3

Let X be a complete vector field on M . Call a map Φ : R×M →M so that ϕ(t, p) for fixed p ∈M

and varying t is a solution curve at p the flow generated by X.
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We define φt(p) := Φ(t, p). We can call φt the (global) flow determined by X.

Next time: This gives you an action of the real numbers on M .

Midterm in class on Wednesday October. Things you should know:

• Charts

• Tangent Stuff: TpM,TM,T ∗M .

• Vector bundles and sections

• Basic Examples/Counterexamples

• Constructions

– Products

– Group Actions

– Level sets via Regular Value Theorem (Remember: Sard’s Theorem, easy proof that SLn is a

manifold)

Midterm: 50 minutes, ≈4-5 questions, should be able to answer questions in ≈10-15 minutes.

CONTENT FOR MIDTERM I STOPS HERE

(does not include flows)

Recall that uniqueness of ODEs tells us that if q = φt0(p) then

φs(q) = φt0+s(p)

by uniqueness of ODEs. Therefore

φs+t0(p) = φs(φt0(p))

φs+t0 = φs ◦ φt0 ,

where φs+t0 is defined. If X is complete, we get an R-action on X, commonly called a flow on X.

Definition V.1.4

Now suppose X is a vector field and F : M → N is a diffeomorphism. Then we can define the

pushforward of X by F .

(F∗(X))(p) := DqF (X(q)).

where p = F (q). Then F∗(X) is a vector field on M .

If Y = F∗(X) we say that X,Y are F -related (still makes sense for local diffeomorphisms). We also

say X and Y are C?-conjugate if F is C?.

Let φt, ψt be flows for X,Y (vector fields on M,N). If F :M → N is a diffeomorphism and Y = F∗(X),

what can we say about the flows?

Fix q ∈M . Then

d

dt
(F (φt(q)))

∣∣∣
t=t0

= DFφt0
(q) ·X(φt0(q)).

= Y (F (φt0(q)))
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From this and the uniqueness of ODEs we can see that

ψt = F ◦ φt ◦ F−1.

Namely, by the chain rule again we have for p ∈ N that

d

dt
F (φt(F

−1(p)))
∣∣∣
t=t0

= Y (F (φt0(F
−1(p)))).

More generally: one might have a map π :M → N and flows φt, ψt onM,N where ψt ◦π = π◦φt. Something

like this would be called a “quotient of φt or a factor of φt.”

Suppose X,Y are vector fields on M . Recall that a vector field X can be thought of as a derivation

X : C∞(M) → C∞(M). We had an unproved lemma from last time we discussed commutators

Lemma V.1.2

[X,Y ] := Y ◦X −X ◦ Y is a vector field, that is the Lie bracket of two vector fields is a vector field.

Proof. We must verify the product rule, since linearity of [X,Y ] is clearly. Thus we compute

(X ◦ Y )(fg) = X(Y (f)g + fY (g))

= (X ◦ Y )(f)g + Y (f)X(g) +X(f)Y (g) + f(X ◦ Y )(g)

(Y ◦X)(fg) = (Y ◦X)(f)g +X(f)Y (g) + Y (f)X(g) + f(Y ◦X)(g)

[X,Y ](fg) = [X,Y ](f) · g + f · [X,Y ](g).

Perfect!

Message: [X,Y ] measures how much X,Y do not commute. What does it mean in terms of vector fields?

Suppose φt, ψs are local flows of X,Y respectively. Consider the following sequence of moves starting at

p ∈M

φt(p)

ψt(φt(p))

φ−t(ψt(φt(p)))

ψ−t(φ−t(ψt(φt(p)))).

As t→ 0 this goes to p by a continuity argument. But what about the derivative at t = 0.

Example V.1.2

For X = ∂
∂x , Y = ∂

∂y this commutator is zero.

Aside: maps of constant rank. A submersion gives rise to level sets. For f :M → N a Ck map consider

p 7→ rankDfp := dim ImageDfp.

f is a submersion if and only if this map is constant and the rank of f is always dimN .
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Definition V.1.5

f has constant rank if p 7→ rankDfp is constant in p.

Theorem V.1.3 (Constant Rank Theorem)

If f has constant rank, then f−1(q) is a Ck=submanifold

Idea of Proof. Locally we can take a projection g from f(M) to ImageDfp, which is a linear subspace in

coordinates. This is a submersion, and then we use local submersion theorem.

Consider C∞ vector fields X,Y on a manifold M . We know

[X,Y ] := X ◦ Y − Y ◦X

defines a vecto field, where we view these as derivations. Now consider a special situation, where X,Y don’t

vanish on M (or some U ⊆M open).

Proposition V.1.4

Assume [X,Y ] = 0. Then there exist coordinates on a chart such that X = ∂
∂x , Y = ∂

∂y .

More generally, ifX1, . . . , Xk are vector fields so that {Xi(p)} are linearly independent and [Xi, Xj ] = 0

for all i, j, then there exist coordinate charts about p so that Xi =
∂
∂xi

.

Idea of Proof. If k = 1, then X ⇝ φt a local flow of X. Let U ⊆ U so that the flow is defined.

Pick T a submanifold of dimension m− 1. Then T = {(0, y2, . . . , yn)} in some coordinates. We may also

pick T so that it is transversal to X(p). Give coordinates on U as

Φ : (t, y2, . . . , yn) 7→ φt(0, y2, . . . , yn).

It suffices to check DΦ(0,...,0) is a local diffeomorphism at p (which is 0 in local coordinates), and then Φ is a

chart. We compute

DΦ(0,...,0) =


∗ · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1.


(invertibility and this computation comes from transversality.

If k = 2, Let [X,Y ]. Without loss of generality, X = ∂
∂x in local coordinates. We’ll cheat and look at

dimM = 2 (it will be clear how to generalize).

We may then let Y = a(x, y) ∂∂x + b(x, y) ∂∂y . We compute that

[X,Y ] =
∂

∂x

(
a(x, y)

∂

∂x
+ b(x, y)

∂

∂y

)
− a(x, y)

∂2

∂x2
− b(x, y)

∂

∂x∂y

=
∂a

∂x

∂

∂x
+
∂b

∂x
(x, y)

∂

∂y
.

Thus a(x, y) = a(y), b(x, y) = b(y). Let ψt be a local flow for y. We know

Ψ(x, t) = ψt(x, 0).
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Then we can use this as a coordinate chart. If dimM > 2, take a submanifold (local) through p of codimension

which is tranversal to both X,Y . Then apply the same trick as when k = 1. We also take a flow ϕt and set

Ψ(s, t, z) = Ψt ◦ φs(z).

You can then do it for any number of vector fields.

For k and dimM arbitrary. Find a transversal submaniofld to X1, . . . , Xk at p. We then compose flows

just as above

(t1, . . . , tn, z) 7→ φ1
t1 ◦ · · · ◦ φ

n
tn(z).

Because the flows commute (Lie bracket zero) this will give exactly what we need. We can move ϕiti to the

front. This is a corollary of the discussion for k = 2 (where we take the derivatives explicitly).

One can always find tranversals because we’re only working locally, and so in coordinates we can just take

a linear subspace tranversal to Xi(p) for all i.

Corollary V.1.5

If [X,Y ] = 0 then their local flows commute.

Proof. Look at the case k = 2 above.

Consider any X,Y to be C∞ vector fields. Let φ,ψ be local flows for X,Y . Then we can consider C(t) to

be defined as

C(t) = ψ−
√
t ◦ φ−

√
t ◦ ψ√

t ◦ φ√
t(p)

for t > 0. This is in Spivak’s text on differentiable manifolds. We define C(−t) similarly but flowing in the

opposite direction.

Theorem V.1.6

Let X,Y be C∞ vector fields. Then C(t) is differentiable and C ′(0) = [X,Y ](p).

Midterm Announcements:

• Graded–will get it back today

• 120 points possible out of 100 because Problem 2 had an error

• Median was around 100. Very good job

• Midterm given back in last 5 minutes of class.

Recall V.1.3

If F :M → N is C∞, and X,Y vector fields on M,N respectively then we call X,Y F -related if

dFp(X(p)) = Y (F (p)) ∈ TF (p)N.

Call this X ∼ Y . If X2 ∼ Y2 are well, then [X,X2] ∼ [Y, Y2].

To show this, it’s convenient to know the flow of [X,X2]. Letting φ,ψ be local flows for these respectively,

we claim the flow for [X,X2] is given by

Ct = ψ√
t ◦ φ−

√
t ◦ ψ√

t ◦ φ√
t.
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Well consider

G(s, t) = ψ−s ◦ φ−t ◦ ψs ◦ φt(p).

It is then clear that

∂

∂s
(G(s, 0))

∣∣∣
s=c

=
∂

∂s

∣∣∣
s=c

(p) = 0.

One must then use Taylor Expansion up to order s2, t2, st in order to derive the result.

If X has solution curve φt(p), then F (φt(p)) is a solution curve for Y if X,Y are F -related. Then by the

characterization of the flow [X,Y ]

V.2. Distributions

This means way too many things in math. We might also call them k-plane fields.

Consider a manifold M which is C∞, cosndier taking TpM to Grk(TpM), which si k-dimensional vector

subspaces of TpM . Fancy: Make a fiber bundle out of

Grk(M) =
∐
p∈M

Grk(TpM).

Make this a smooth manifold using the local product structure of TM . In fact

Grk,n → Grk(M)
π−→M

is a fiber bundle, where n := dimM .

Definition V.2.1

A distribution is a smooth section of this fiber bundle. In down to earth terms, D(p) ⊆ TpM is a

k-dimensional subspace, spanned by say ⟨v1, . . . , vk⟩. Do this for every point.

Locally we get v1(q), . . . , vk(q) where q is in a neighborhood of p. We require that the vi(q) are

smooth vector fields on this neighborhood p. We could do stupid things, like making vi(q) be changed

by a linear transformation at rational points. . . so instead we just require there is a choice.

Thus smooth distributions of dimension k are given by the following data

• For all p ∈M , D(p) ⊆ TpM is a k-dimensional subspace.

• To define smoothness of D, it suffices to do it locally. I.e., for all p ∈ M , there exists a

neighborhood U of p and there exist smooth vector fields v1, . . . , vk on U so that

(1) For all i,q, vi(q) ∈ D(q)

(2) For all i, q, v1(q), . . . , vk(q) are linearly independent.

Equivalently the span of v1(q), . . . , vk(q) is D(q) for all q ∈ U .

There are two types of distributions, the boring ones (which are most important), and the exciting ones

(which are not used very much).

Example V.2.1

Let Rn = M , and for each p ∈ Rn let D(p) = Rk = {(x1, . . . , xk, 0, . . . , 0)}. This is spanned by
∂
∂x1

, . . . , ∂
∂xk

.
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Example V.2.2

Suppose G is a Lie group that acts on some manifold M . Suppose for all p ∈ M , we have Gp is

discrete. Then {G · p} for p ∈M will cut up M into submanifolds (we haven’t shown this formally).

The distribution will then be given by D(p) = Tp(G · p).

Example V.2.3

Take V a nonvanishing vector field on Rn. We can take D(p) = V (p)⊥.

Consider M = Rn \ {0}, and take V (p) = p. This is exactly the tangent spaces to spheres of certain

radii. This is actually a Lie group example–it’s SO(n) acting on M . To see explicitly the vector fields,

one can think of polar coordinates + the angles.

Even more explicitly one can look at one coordinate being nonzero and then take a radial vector field

there.

Example V.2.4

Consider the Heisenberg group

Heis :=



1 x z

0 1 y

0 0 1


 .

Consider tangent vectors

A1 =


0 1 0

0 0 0

0 0 0

 A2 =


0 0 0

0 0 1

0 0 0


which are tangent vector fields at the identity. Then A1, A2 are left-invariant vector fields. We can

consider D = R ·A1 + R ·A2.

This is not a Lie group vector field, and so is much more complicated.

Stuff:

• Problem 3.2 is incorrect as stated. If S ⊆M is a submanifold and X is a vector field on M which is

tangent to S, then if X is tangent to S then for all p ∈ S, the integral curve θ(p)(t) (the flow) of X

is contained in S for small values of t.

The problem stated was for all values of t, obviously false.

• Hint for Problem 2: If M + v,N intersect, then v = y− x for some y ∈ N, x ∈M . Consider the map

F :M ×N → Rn given by F (x, y) = y − x and apply Sard’s Theorem.

• Last time: distributions (k-plane fields), V (p) ⊆ TpM a k-dimensional subspace..

There are two kinds of distributions

• integrable (tractable)

• non-integrable (more fun)

Definition V.2.2

We call a k-plane V integrable provided that for all p ∈M there exists a coordinate chart (U,φ) such
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that for all x ∈M ,

{(x1, . . . , xk, 0, . . . , 0) | xi ∈ R} = Dφ(V (x)) ⊆ Tφ(x)Rn ∼= Rn.

Example V.2.5

Take M = Rn, and V (p) =
〈

∂
∂x1

, ∂
∂x2

〉
.

This is in particular an example of a “foliation,” which we will define now. Namely the foliation is

given by the partition of R2 as

R2 =
⋃
x∈R

R× {x}.

Non-Example V.2.6

The Heisenberg group from last time, namely if

Heis =



1 x z

0 1 y

0 0 1


 .

Then if we take

V (1) =

〈
0 0 1 0

0 0 0

0 0 0

 ,


0 0 0

0 0 1

0 0 0


〉
.

We can of course set V (g) = DLg(V (1)).

Definition V.2.3

Let M be a C∞ manifold. A foliation is a partition F of M such that for all x ∈ M we have Fx is

an immersed submanifold of M , and

Fx ∩ Fy ̸= ∅ ⇐⇒ Fx = Fy.

(i.e., F defines an equivalence relation).

Furthermore, we require that for all p ∈M there exists a coordinate chart (U,φ) such that for each

x ∈ U , if Vx is the connected component of Fx ∩ U in U , then φ(V ) locally looks like Rk × {0}+ φ(x)

(aka looks locally like the above example).

We take the connected component in case Fx “loops back” into U .

If F is a foliation, then call Fx the leaf of F through x. Then we can define a distribution V (p) = TpFp,

which is a k-dimensional distribution, C∞.

Consider: Let X,Y be vector fields on M such that for all p ∈ M , we have X(p), Y (p) ∈ V (p) := TpFp for

some foliation F . By the Homework 7 Problem 3c we know that [X,Y ](p) ∈ V (p).

Fact: If V (p) is the tangent distribution to a foliation F (i.e., V (p) = TpFp), then for any two vector fields

X,Y with X(p), Y (p) ∈ V (p) for all p, we have [X,Y ](p) ∈ V (p).

Definition V.2.4

Given any smooth k-dimensional distribution V on a C∞-manifold M , we call V involutive if for any
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two vector fields X,Y with X(p), Y (p) ∈ V (p) (tangent to V ) for all p we have [X,Y ](p) ∈ V (p) for all

p.

Theorem V.2.1 (Frobenius Theorem)

A distribution is involutive if and only if it is integrable (defined with charts).

Proof. This is in [lee], p490. The ⇐= direction we just did with HW 7 Problem 3

Example V.2.7

Give p+ R2 as a foliation on R3, with V its corresponding distribution. Now quotient out by R3, so

then V (p) = Dπp · V (p) where π : R3 → R3/Z3 =: T3.

This gives us 2-tori foliating T.
Mess it up a little, rotate V (p) by an angle irratioanl with the embedded R2. Namely consider a

foliation R · v1 + R · v2 where v1, v2 are irrational with respect to Z2.

We may then push this down to T3 as before (check this is well-defined. . . ). Then T3 is foliated by

“planes” (they cannot close up) densely.

Proof of Frobenius, in special case. Suppose for all p there exists a U neighborhood of p with vector fields

X1, . . . , Xk with ⟨X1(q), . . . , Xk(q)⟩ = V (q) such that for all i, j we have [Xi, Xj ] = 0.

Then Frobenius holds. By last Friday, local flows φi associated with Xi commute. We can then build an

immersion

(t1, . . . , tk) 7→ φk(tk) ◦ · · · ◦ φ2(t2) ◦ φ1(t1) · p.

Proof of Frobenius, in general. Let Xi = (Dπ)−1
(

∂
∂xi

(π(q))
)
(for an adapted chart). If Yi =

∂
∂xi

(p), the

these are π-related, and so the Xi commute. Namely we know [Xi, Xj ] is tangent to the chart V , and then

Dπ([Xi, Xj ]) =

[
∂

∂xi
,
∂

∂xj

]
= 0,

thus [Xi, Xj ] = 0, showing these commute.

Great! Then the special case implies the general theorem. This proof is only local, but we can do this

globally as well, which we will do in the next section.

VI. Lie Groups/Lie Algebras

Let G be a C∞ Lie group. We want to look at left invariant vector fields. I.e. we have V (g) = DLg(V (1)),

and this is clearly a vector space. Its dimension is dimG.

Definition VI.0.1

Let G be a C∞ Lie group. We define

LieG := g := { left invariant vector fields} ∼= T1G ∼= { right invariant vector fields},

which is a vector space often called the Lie algebra of G. Its dimension is dimG as mentioned above.
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This comes with extra structure, since if X,Y are left invariant, then [X,Y ](g) = DLg([X,Y ](1)).

Well we know for any diffeomorphism φ that

Dφ([X,Y ]) = [DφX,DφY ].

This is the algebra structure.

Recall that [X,Y ] = −[Y,X] via the derivation definition.

Lemma VI.0.1 (Jacobi Identity)

We have for X,Y, Z vector fields that

[X, [Y,Z] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

Proof. Expand with the definition

We can define a general Lie algebra as a vector space which is equipped with an anticommutative bilinear

form which satisfies the Jacobi identity).

Let G be a Lie group, H ⊆ G a Lie subgroup, i.e. an immersed submanifold. We know that the set

{gH}g∈G is a foliation of G. We know V (g) = Tg(g ·H) which is a left invariant distribution.

We can then look a the left invariant vector fields tangent to V (g) (i.e, tangent to gH). This defines h ⊆ g.

And in fact, if X,Y ∈ h then [X,Y ] ∈ h via the Frobenius theorem (since the V (g) is integrable).

Definition VI.0.2

Given a Lie algebra g, a Lie subalgebra h ⊆ g is a vector subspace such that for any X,Y ∈ h we

have [X,Y ] ∈ h.

Theorem VI.0.2 (Lie Groups/Lie Algebras)

If H is a Lie subgroup of G, then h ⊆ g is a Lie subalgebra. i.e, [h, h] ∈ h.

Conversely, if h ⊆ g, and [h, h] ⊆ h, then there exists H ⊆ G a connected Lie subgroup such that

h = Tg(gH) (i.e., h is left-invariant vector fields tangent to gH).

This gives a bijective correspondence between connected Lie subgroups H of G and Lie subalgebras

h ⊆ g.

Example VI.0.1

Here is an example that you need the connected statement. Take Z ⊆ R, then

Lie(Z) = {0} = Lie({0}).

HAPPY HALLOWEEN

Recall VI.0.2

Last time we began to consider the relationship between Lie groups and Lie algebras. One statement

was that if H ⊆ G are Lie groups, then h ⊆ g is a Lie subalgebra.

This holds because if V is an H-left-invariant vector field, then W (g) := D(g · −)1 · V (1) is a

G-left-invariant vector field agreeing with V at points in H.

Furthermore, both the [−,−]G and [−,−]H are just brackets of vector fields (so they agree), and thus

if X,Y ∈ h then [X,Y ] ∈ h.
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Lemma VI.0.3

[aF, bG] = aF (b)G− bG(a)F + ab[F,G].

Proof. Just expand as derivations to get

aF (bG)− bG(aF ) = aF (b)G+ abFG− bG(a)F − baGF

= aF (b)G− bG(a)F + ab(FG−GF )

= aF (b)G− bG(a)F + ab[F,G].

Proof of the relationship of Lie groups/Lie algebras. We’ve just done the forward direction (easy exercise as

well).

For the backwards direction, take h ⊆ T1G (since it is G-left-invariant vector fields). Then we may take a

distribution V (g) = DLg(h) (where Lg is left translation by g ∈ G).

Claim

V is involutive, i.e. if X1, X2 are tangent to V then [X1, X2] is tangent to V .

Let z1, . . . , zk form a basis of h (which has dimension k). Thus zi are left invariant vector fields with

[zi, zj ] ∈ h.

Then X =
∑
aizi and Y =

∑
bjzj , and by the lemma

[X,Y ] =
∑
i

fizi +
∑
i,j

gij [zi, zj ]

for some functions fi, gij , and this lies in V as desired.

Claim

Thus V is integrable.

When we did Frobenius we only did it locally. . . we need a global foliation. Take local charts Floc(p),

we must define a global foliation F (with global leafs).

Namely say q ∈ Floc(p) we want Floc(p) ∪ Floc(q).

We need a quick lemma that if q ∈ Floc(p) then for any neighborhood of U of q where Floc(p) and

Floc(q) both are defined they must agree. This works because both are tangent to V .

Then we can consider F1(p) = Floc(p) and

Fn+1(p) =
⋃

q∈Fn(p)

Floc(q),

and take F(p) =
⋃
Fn+1(p). This construction gives a path-connected global leaf.

Frobenius then says h is given by a foliation F . Then we can set H = F(1). It remains to check H is a

subgroup, since it is a smooth submanifold of G.

Suppose h ∈ H, then

h ·H = LhH = Lh(F(1))
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= F(h · 1) = F(h)

= F(1) = H,

where we have used that the vector field is left-invariant to get left-invariance of the foliation. If h ∈ H, is

h−1 ∈ H? Well we know h−1h = 1, so

h−1F(h) = F(1),

but then 1 ∈ F(h), so h−1 ∈ F(1) = H.

By construction we know T1(H) = T1(F(1)) = V (1) = h, as desired.

Facts: Know given a Lie group G, we can give a Lie algebra g. We can ask the converse question if we

define a Lie algebra in general

Definition VI.0.3

A Lie algebra g is a vector space over a field F equipped with a bilinear operation [−,−] satisfying

• [x, x] = 0

• [x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0. for all x, y, z ∈ g.

Then given any finite-dimensional Lie algebra g is there a Lie group G with Lie algebra g and how many?

Answer:

• Yes you can find one

• No it is not unique

• But it’s sort of unique. If G1, G2 both give rise to g then the universal covers G̃1 and G̃2 coincide

and both give rise to g.

Consider a group homomorphism G1
φ−→ G2. There is trouble: there exists a φ : R → R which is a

homomorphism but which is not differentiable. You can construct nice ones with Galois theory, but a simpler

one is given by writing R as a Q-vector space with an uncountable basis and mapping the basis around in a

strange way.

Definition VI.0.4

If φ : G1 → G2 between Lie groups is a group homomorphism and C∞, then we call it a Lie group

homomorphism

Remark VI.0.1

It is good enough to assume φ is measurable (more strongly, continuous). When we say measurable we

mean to be with respect to charts. This is very very important, although we won’t use it. The thought:

it’s generally much easier to prove something is measurable than to prove something is differentiable.

This induces a Lie algebra homomorphism

Dφ1 : Lie(G1) = T1G1 → T1G2 = Lie(G2).

Call these g1, g2. We want this to respect the bracket.

LetX ∈ g1 be some left-invariant vector field on G1. Dφ1X(1) ∈ g2, and corresponds to some left invariant

vector field Y on g2.
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Claim

X,Y are φ-related.

Proof. Take some g ∈ G1. We must show that

Dgφ ·X(g) = Y (φ(g)).

Well, we know that

Dgφ ·X(g) = Dgφ ·D1Lg ·X(1)

Y (φ(g)) = D1Lφ(g) · Y (1) = D1Lφ(g) ·D1φ ·X(1).

The result then follows since Lφ(g) ◦ φ = φ ◦ Lg since this is a group homomorphism.

THE FOLLOWING THEOREM IS WRONG, CORRECTED NEXT TIME

Theorem VI.0.4

There is a bijective correspondence between Lie group homomorphisms G1 → G2 and Lie algebra

homomorphisms g1 → g2.

Proof. The forward direction we just did (modulo 1-1 business). For the converse we need a trick. Namely if

ψ : g1 → g2 is a Lie algebra homomorphism we see that

graphψ = {(X,ψ(X)) | X ∈ g1}

is in fact Lie subalgebra of g1 × g2, which is a Lie algebra with bracket

[(X1, Y1), (X2, Y2)] = ([X1, X2], [Y1, Y2]).

We then see that

[(X1, ψ(X1)), (X2, ψ(X2))] = ([X1, X2], [ψ(X1), ψ(X2)]) = ([X1, X2], ψ([X1, X2])).

We now have a Lie subalgebra, so by the main result last time there is a Lie subgroup H ⊆ G1 ×G2 (note:

Lie(G1 ×G2) = Lie(G1)× Lie(G2)).

Claim

H is the graph of a homomorphism Ψ : G1 → G2.

I.e., Ψ(g1) = g2 if (g1, g2) ∈ H. One must check that this is well-defined and a homomorphism

Exercise VI.0.3

Check well-definedness and homomorphism. We’ll come back to it later.

VI.1. Exponential Map

Let X ∈ g, where G is a Lie group with Lie algebra g. Then {tX | t ∈ R} is a Lie subalgebra since

[sX, tX] = st[X,X] = 0.
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Thus there exists a connected Lie subgroup of G corresponding to X ∈ g.

This is extremely abstract. Lets get down to Earth again. Le t X ∈ g be a left invariant vector field. This

gives us a local flow φt on G.

We can consider 1 ∈ G and define gt := φt(1). Then

gt · gs = φt · φs(1) = φt+s(1) = gt+s.

We also have

Claim

φt is a global flow, i.e. defined for all t.

Proof. Appeal to the subgroups argument. Or more simply, we know the local flow of X through g is simply

Lg(φt(1)) = g · gt.

Thus if local flow at 1 is defined on (−ε, ε) so is it at g. We can then define it globally, around each point in

(−ε, ε) the flow is defined in (−ε, ε) about it, and then we can continue, defining the flow on (−2ε, 2ε). . .

Since ε > 0 is fixed this gives us a global flow.

Example VI.1.1

We want to look at this very concretely. Prime Example is G = GLn(R). We see that

gln(R) = T1 GLn(R) =Mn,n.

If X ∈Mn,n then what is φt, well

etX =

∞∑
n=0

(tX)n

n!
,

converges sicne ∥∥∥∥∥
∞∑
n=0

(tX)n

n!

∥∥∥∥∥ ≤
∞∑
n=0

|t|n ∥X∥n

n!
= e|t|·∥X∥,

where ∥·∥ is the operator norm, and it is easy to check that ∥AB∥ ≤ ∥A∥·∥B∥, whcih gives ∥Xn∥ ≤ ∥X∥n.
Finally note that d

dt (e
tX) = XetX . We also must show etX ∈ GL(n,R). This will be because if A,B

commute then eAeB = eA+B , so etXe−tX = Id.

Example VI.1.2

This also works for any subgroups of H ⊆ GLn(R), namely if we have a flow for X ∈ T1H lying in

GLn(R), then of course the flow lies in H.

Final: Thursday December 15th, 4-6pm.

Question: What are the continuous homomorphisms φ : S1 → R. We know φ(S1) is compact, and so is

bounded. If we ahve a ∈ φ(S) then n · a ∈ φ(S), which cannot be bounded unless a = 0. Thus φ is the

constant map at 0.

BUT! Lie(S1) = R, and Lie(R) = R. Of course we have a map Lie(S1) → Lie(R) given by the identity

(this is a Lie algebra homomorphism since all brackets are zero. . . ).
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Thus a homomorphism between Lie algebras does not give rise to a smooth Lie group homomorphism.

Thus what we did last time is wrong. But it is almost true!

But it is almost true. If G̃1 is the universal cover of G1 (see 592, algebraic topology), then given a Lie

algebra homomorphism g1 → g2 there is a Lie group homomorphism G̃1 → G2.

Universal Cover: If M is a reasonable space (e.g. a manifold) then we can find a space M̃
π−→M which is

a submersion, nad M̃ has the following property for all p ∈M

π1(M̃, p) = 1.

π1(X, p) for p ∈ X is defined as a set by

{f : S1 → X | f continuous, f(1) = p}

where f ∼ g if there is an F : X × [0, 1] → X with F (1, t) = p and f(z) = F (z, 0), g(z) = F (z, 1). In fact this

has a group structure. Again see algebraic topology (592). There are notes at

http://www-personal.umich.edu/ alephnil/notes/MATH-592-notes.pdf

We have S̃1 = R, where R → S1 is given by exp(2πit).

Fact: G is a Lie group implies G̃ is also a Lie group. For a small enough neighborhood U of 1 the cover

in G̃ is given by Ũ = π−1(U) and the restriction of π to Ũ is a homeorphism. Then if a, b are in some open

subset of U , their product lies in U . We can then define the product in the covering space by lifting this

product.

Note: The Lie algebra corresponding to G̃ is the same as the Lie algebra of G.

Theorem VI.1.1

There is a bijective correspondence between Lie group homomorphisms G̃1 → G2 and Lie algebra

homomorphisms g1 → g2.

Idea of Proof. Let H ⊆ G1 × G2 be defined as last time. This is a subgroup induced by the Lie algebra

h = graphΦ, where Φ : g1 → g2.

We know dimH = dim h = dim g1. We then have maps

H

G1 ×G2

G1 G2

π1

∣∣∣
H

π1 π2

In fact π1
∣∣
H

is a local diffeomorphism This holds because D(π1
∣∣
H
) = π1

∣∣
h
. We would like π1

∣∣
H

to be injective.

It turns out H ∩ π−1(1) is discrete. This cannot be if we pass to the universal cover, but this requires work

from 592.

Now let G be a Lie group and M a smooth manifold.. Suppose G acts on M smoothly. Let g be a Lie

algebra of G. Then there is a Lie algebra homomorphism g → {smooth vector fields on M}.
To see this, take X ∈ g a left-invariant vector field on G. Now write g · p =: E(g, p) =: Ep(g) where p ∈M .

We can push forward the vector field X to M using the map Ep (must check smoothness in p.
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We can also take gt := exp(t ·X) (a one-parameter-subgroup) and consider Y (p) = d
dt

∣∣∣
t=0

gt · p. If we move

transversely to a point q ∈ M near p, it’s conceivable Y (p) and Y (q) does not vary smoothly. But this is

possible to check.

Converse also holds, but is harder. If g → {smooth vector fields on M} then there is a smooth local action

of G on M . This requires a bit of work.

VII. Differential Forms and Integration on Manifolds

VII.1. Partitions of Unity

Theorem VII.1.1

Let M be compact (can do this all when M is not compact, but it’s more painful) and {Uα} is a

cover of M . Then we have a finite subcover V1, . . . , Vℓ where for each i there is an α with Vi ⊆ Uα.

Furthermore, we can give smooth functions

φβ : Vi → [0, 1]

such that for all x ∈M we have
∑
i φi(x) = 1.

Proof. For all p ∈M find a neighborhood Wp and a smooth bump function ψp :Wp → [0, 1] with ψp ≡ 1 on

a neighborhood of p. Then there’s an Rp ⊆Wp so that ψp ≡ 0 outside Rp.

We can wlog that Wp1 , . . . ,Wpk cover M and are contained in the Vi. Then we look at

φj =
1∑k

i=0 ψpi
· ψpj .

Then
∑
φj = 1 as desired.

In the general case one uses paracompactness.

Stuff

• For HW8 #3, try to use partitions of unity to slow down the vector field.

• Fact we might prove later / on homework: For any two points p, q lying in a compact manifold M ,

there is a diffeomorphism M →M taking p to q.

VII.2. Embedding of Manifolds into RN

Theorem VII.2.1 (Whitney Embedding Theorem)

If M is a manifold, then for some N there exists an f :M → RN which is an embedding.

Proof when M is compact. Let n = dimM . Then if (Uα, φα) are the coordinate charts (balls around 0) then

we can map

M →
∏
α

Rn =: RN

where N = n ·#{α} (we can take finitely many charts since M is compact. If x ∈ Uα1 , . . . , Uαj then we can

map x to have zeros for all β not an αi, and φαi
(x) for all those included.
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This is a BAD mapping. Make this construction smooth by tampering with a partition of unity of {Uα}.
Call this partition of unity τα. Then we replace φαi

(x) with ταi
(x) · φαi

(x).

Also, ταi
≡ 1 on Vαi

⊆ Uαi
. We should make sure we get a finite covering of the manifolds by Vαi

(and

then we’ll be done.

Proof Idea in General. Look at
∏
αi

Rn which is infinite, and project to a large dimensional RN .

VII.3. Multilinear Algebra

Definition VII.3.1

Let V be a vector space, then we define the exterior product Λk(V ) to be

Λk(V ) := {k −multilinear alternating functionals},

i.e. λ ∈ Λk(V ) is a multilinear function λ : V × · · · × V︸ ︷︷ ︸
k times

where for all i, j we have

λ(. . . , vi, . . . , vj , . . .) = −λ(. . . , vj , . . . , vi, . . .).

Note: λ(. . . , v, . . . , v, . . .) = 0 (any one repetition gives us 0).

Theorem VII.3.1

dimΛdimV V = 1.

Proof Idea. Choose an isomorphism of V with Rn, and work there. The dimension is ≥ 1 because we can

construct the determinant function. It is difficult to show the determinant exists.

The dimension is ≤ 1 part is pretty easy.

Why is this important to us? It’s not just algebraic garbage (Ralf’s words). There’s a geometric interpre-

tation of the determinant!

|det| is VOLUME

Example VII.3.1

Λ1V = V ∗ (the dual of V ).

We can see that dimΛkV ≤
(
dimV
k

)
. Explicitly when k = 2, let λ ∈ Λ2V , and ei a basis of V . Then

let v =
∑
i αiei, w =

∑
j βjej . Then

λ(v, w) =
∑
ij

αiβjλ(ei, ej) =
∑
i<j

(αiβj − αjβi)λ(ei, ej).

With this in mind we can define ei ∧ ej as the element of Λ2V which acts as

(ei ∧ ej)

∑
i

αiei,
∑
j

βjej

 = αiβj − αjβi.

ChecK: This is an alternating multilinear form. This give s ei ∧ ej for i < j as a basis of Λ2V .

Similarly we can get a basis ei1 ∧ · · · ∧ eik where i1 < · · · < ik as a basis of ΛkV .
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MEANING: Lets go to R3. We see that

(e1 ∧ e2)



1

0

0

 ,


0

1

0


 = 1.

e1 ∧ e2 is giving the signed area of a square. . . But which square?

(e1 ∧ e2)



0

1

0

 ,


0

0

1


 = 0.

The area is the 2-dimensional area of the shape projected to a 2-dimensional slice of a plane!

Philosophy: λ ∈ ΛkRn “measures” the k-dimensional area of a parallelipiped with respect to a particlar

fixed k-dimensional subspace.

VII.4. Orientations on Manifolds

Stuff:

• For HW8 #1, take a look at Spivak’s Calculus. General Theorem that if f : M → N is C1 and

dimM ≤ dimN , then the set of critical values have measure zero.

• For HW8 #3, Consider on Ui a local flow defined for time εi. Take a partition of unity fi for Ui and

then consider
∑
fi

1
εi
X.

Comment on Lie subgroups. Let φ : H → G be a smooth homomorphism. Instead of looking at h, g

as left invariant vector fields (which led us astray last time) look at the tangent space at the identity. Let

X ∈ T1H = h, then Y := Dφ1 ·X ∈ T1G = g. Then Y defines a left invariant vector field on G, the claim is

that X,Y are φ-related (good enough to justify brackets agree).

Cleanup from last time: It was said that k-forms measures area of an intersection. But instead it measures

area of a projection.

Let V be a finite n-dimensional vector space. We know dimΛnV = 1. We can’t tell if a real number is

positive or negative without placing an orientation on a line. But we can tell if they are positive multiples of

each other (they have the same orientation)

Definition VII.4.1

Two n-forms α, β ̸= 0 on V have the same orientation if β = c · α for c > 0. Otherwise they have the

opposite orientation.

Definition VII.4.2

If M is an n-dimensional manifold (smooth). We let (ΛkM)p := ΛkTpM , which is a vector bundle

ΛkM →M .

A k-form α is a (smooth) section of ΛkM →M .

Example VII.4.1

Consider Rn, then α = dx1044 is a smooth 1-form (where dx1044 is the dual vector to ∂
∂x1044

which is

a smooth vector field).
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A two form could be something like dx1 ∧ dx2. We have to explain this though.

Question: We know that dimΛnTpM = 1 if dimM = n. What would a section of ΛnM →M (aka an n-form

on M) tell us about M?

Definition VII.4.3

Any n-form τ (aka a section of ΛnM → M) such that for all p ∈ M we have τ(p) ̸= 0 is called an

orientation of M (a smooth manifold).

Given an orientation τ and another σ we say that σ, τ define the same orientation on M if there is a

smooth map f :M → (0,∞) so that σ = f · τ .
Also, if σ is an orientation, so is −σ, and these are NOT the same orientation.

Note: One can do orientation for topological manifolds but it requires Algebraic Topology and is harder.

Question: Do orientations always exist? No!!!

Example VII.4.2

We can look at the Möbius band, which is a strip glued in opposite directions

Definition VII.4.4

Call M orientable if it has an orientation. Also, an oriented manifold is a manifold M with a given

orientation (M,σ).

Example VII.4.3

Observe, if we take the two caps of a sphere with natural orientations and glue them together to

respect the orientation, we get Sn, which is orientable.

In contrast, if we look at Pn = Sn/Z2 where Z2 acts on Sn by x 7→ −x. Does this map preserve

orientation?

Look at the simplest example for S1. . . then yes. For S2 in fact no!

Proposition VII.4.1

Any Lie group G is orientable.

Proof. Pick σ(1) ∈ ΛnT1G. Now make it left invariant by pushing it around.

Recall VII.4.4

RP3 is diffeomorphic to SO(3), and this is double covered by SU(2). But then SO(3) is a group, so it

is orientable.

Or: Stare at the antipodal map A : Sn → Sn. If it preserves the orientation then just push it down

to RPn.

51



Faye Jackson November 11th, 2022 MATH 591 - VII.5

VII.5. The Wedge Product

If we have two multilinear maps f, g, then f ⊗ g is also multilinear (given as (f ⊗ g)(v, w) = f(v)g(w)).

But this may not be alternating even if f, g are alternating!!!

Given α ∈ ΛkV, β ∈ ΛℓV , then we wish to define α ∧ β ∈ Λk+ℓV .

Definition VII.5.1

The wedge product α ∧ β of α ∈ ΛkV, β ∈ ΛℓV is

(α ∧ β)(v1, . . . , vk+ℓ) =
1

k!ℓ!
·
∑

σ∈S(k+ℓ)

(−1)σα(vσ(1), . . . , vσ(k))β(vσ(k+1), . . . , vσ(k+ℓ)).

This is very similar to the definition of the determinant. Here S(k + ℓ) is the permutations of {1, . . . , k + ℓ}
such that

σ(1) < σ(2) < · · · < σ(k)

σ(k + 1) < σ(k + 2) < · · · < σ(k + ℓ).

Thus it preserves the ordering on {1, . . . , k} and on {k + 1, . . . , k + ℓ} (but not necessarily both).

Stuff:

• HW due Thursday 11pm, November 17th

• The book uses the notation ΛkV ∗ to refer to the alternating k-multilinear maps on V . We’ve been

using ΛkV to refer to the same thing. Ditto for ΛkM (our notation) versus ΛnT ∗M (the book’s

notation. Make sure to keep this in mind.

We will try to use the book’s notation from now on, but remember that we will always be talking

about alternating k-multilinear maps (k-forms).

Recall VII.5.1

A k-form α is smooth if either

• X1, . . . , Xk are smooth vector fields, and then the function

p 7→ αp(X1(p), . . . , Xk(p))

is smooth.

• if locally we can write in terms of smooth coordinates α =
∑
αi(dxi1∧· · ·∧dxik) with αi :M → R

Example VII.5.2

We’ll look at

(dx1 ∧ dx2)(∂xi, ∂xj)

= dx1(∂xi) · dx2(∂xi)− dx1(∂xj) · dx2(∂xi)

=


0 if {i, j} ≠ {1, 2}
1 if i = 1, j = 2

−1 if i = 2, j = 1

.
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More generally, we can look at

(dx1 ∧ dx2)

∑
i

ai∂xi,
∑
j

bj∂xj


= (dx1 ∧ dx2) (a1∂x1, b2∂x2) + (dx1 ∧ dx2) (a2∂x2, b1∂x1

= a1b2 − a2b1 =

∣∣∣∣∣a1 b1

a2 b2

∣∣∣∣∣ .
Recall VII.5.3

For α ∈ ΛkV ∗, β ∈ ΛℓV ∗ we defined

(α ∧ β)(v1, . . . , vk+ℓ) =
1

k!ℓ!
·
∑

σ∈S(k+ℓ)

(−1)σα(vσ(1), . . . , vσ(k))β(vσ(k+1), . . . , vσ(k+ℓ)).

where σ ∈ S(k+ ℓ) provided that σ is a permutation of k+ ℓ things so that σ(i) < σ(j) for 1 ≤ i < j ≤ k

and for k + 1 ≤ i < j ≤ k + ℓ.

Example VII.5.4

Let k = ℓ = 1. Then

(α ∧ β)(v1, v2) = α(v1)β(v2)− α(v2)β(v1).

Proposition VII.5.1

α ∈ ΛkV ∗, β ∈ ΛℓV ∗ implies α ∧ β ∈ Λk+ℓV ∗.

Proof. Check from the book, idea: if you transpose two things in 1, . . . , k or in k + 1, . . . , k + ℓ it’s just from

α, β. If you transpose a thing between the two, then things are more complex.

This wedge product is super important. Why? Future: wedge product of forms, leading to Poincaré

duality.

Important: ∧ is a multiplicative operation.

Question: Let dimV = n, k + ℓ = n, α ∈ ΛkV ∗, β ∈ ΛℓV ∗. When multiplied we have

α ∧ β ∈ Λk+ℓV ∗ = ΛnV ∗ ∼= R.

The idea of Poincaré duality will be to associate to α a β so that α ∧ β is the determinant (a distinguished

n-form, aka an orientation) on the nose.

If M is an n-dimensional manifold, we say it is oriented with orientation σ if there is an n-form, aka a

section σ :M → ΛnM so that σ never vanishes.

Definition VII.5.2 (Also Notation)

Call a σ like this a “volume form.”

Lemma VII.5.2

If M is oriented then ΛnM = {f :M → R | f smooth}.
One can think of Λ0M := {f :M → R | fsmooth} = C∞(M). Thus this Lemma is Poincaré duality

for n-forms and 0-forms.
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Proof. If τ ∈ ΛnM then τ(p) = f(p) · σ(p) where σ(p) is the volume form. Thus ΛnM → {f : M →
R | f smooth}. And the reverse also occurs.

More properties of wedge product:

(I) α ∧ β = (−1)k·ℓβ ∧ α. Look at the formula and think about which things you have to switch.

Thus if k is odd, α ∈ ΛkV ∗, then α ∧ α = 0.

(II) (α ∧ β) ∧ γ = α ∧ (β ∧ γ), associative.
(III) Bilinearity.

An aside about orientability: Let M have coordinate charts (Uα, φα).

Consider two charts (Uα, φα) and (Uβ , φβ). Then we get a transition map

Tα,β : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ).

Note Rn is orientable since

dx1 ∧ · · · ∧ dxn ̸= 0.

Thus on Uα we can take γαx := dxα1 ∧ · · · ∧ dxαn. We have a map down to γβy := dyβ1 ∧ · · · dyβn. What happens

under the transition map Tαβ?

Recall VII.5.5

Smooth functions pullback k-forms. Given smooth F : M → N and α ∈ ΛkN then F ∗α ∈ ΛkM as

defined below

(F ∗α)p(v1, . . . , vk) = αp(DFp · v1, . . . , DFp · vk).

We want to ask if T ∗
αβγ

β
y and γαx give the same orientation on φα(Uα ∩Uβ) ⊆ Rn, can we build an orientation

on M?

Can you put these forms together to make an orientation if things agree?

Theorem VII.5.3

Let M be a smooth manifold then the following are equivalent

(a) M is orientable.

(b) M has an atlas of coordinate charts so that the transition maps are orientation preserving. In

other words detDTαβ > 0 when it is defined for each transition map Tα,β

Lemma VII.5.4

Let µ ∈ ΛnV ∗ and {e1, . . . , en} be a basis of V with (aij) = A an n× n matrix so that

fi =

n∑
j=1

aijej ,

then

µ(f1, . . . , fn) = (detA)µ(e1, . . . , en).
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Proof. We see that

µ

 n∑
j=1

a1jej , . . . ,

n∑
j=1

anjej

 =
∑

j1,...,jn

a1j1 · · · anjnµ(ej1 , . . . , ejn).

If any two of j1, . . . , jn are the same then the term corresponding to this choice is zero. We can then rewrite

this as

µ

 n∑
j=1

a1jej , . . . ,

n∑
j=1

anjej

 =
∑
σ∈Sn

a1σ(1) · · · anσ(n)µ(eσ(1), . . . , eσ(n))

=

(∑
σ∈Sn

(−1)σ
n∏
i=1

aiσ(i)

)
µ(e1, . . . , en) = det(A)µ(e1, . . . , en).

For forms we have if F :W → V is linear then

F ∗ : ΛkV ∗ → ΛkW ∗.

Then of course

(F ∗α)(w1, . . . , wk) = α(F (w1), . . . , F (wk)).

Lemma VII.5.5

Suppose dimV = dimW = n, with V,W vector spaces. Further, let F :W → V be linear, e1, . . . , en

be a basis of V , f1, . . . , fn be a basis of W , ε1, . . . , εn the dual basis of V ∗, ϕ1, . . . , ϕn the dual basis of

W ∗.

Let A be the matrix with respect to this basis. We know

F (fi) =

n∑
j=1

aijej .

In this case we have

F ∗(ε1 ∧ · · · ∧ εn) = (detA)(ϕ1 ∧ · · · ∧ ϕn).

Proof. Apply the above lemma. Namely evaluate the left hand side at f1, . . . , fn and show you get detA

using previous lemma (which is enough since dimΛnW ∗ = 1).

Definition VII.5.3

Suppose M,N are manifolds and Φ :M → N is a smooth map. We define

Φ∗ΛkN → ΛkM

with α ∈ ΛkN , p ∈M , v1, . . . , vn ∈ TpM via

(ϕ∗α)p(v1, . . . , vn) = αΦ(p)(DΦp · v1, . . . , DΦp · vn).

This is called the pullback of a differential form.
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Lemma VII.5.6

Let T : U → V be a diffeomorphism where U, V ⊆ Rn. Let x1, . . . , xN be coordinates in V , x1, . . . , xn

coordinates for U . Here (dxi)q is dual to
(

∂
∂xi

)
q
.

We then have that

(T ∗(dx1 ∧ · · · ∧ dxn))p = (detDTp)(dy1 ∧ · · · dyn)p

Proof. Apply previous lemma.

Stuff:

• HW 3 is due next time, as we haven’t covered enougn to make it tractable. Also Ralf is not sure if it

is true.

• For HW 2d, if you want to show GL(n,C) is connected, you might want to look at C∗ × SL(n,C).
Then

SL(n,C) = SU(n) · upper triangular matrix with any complex numbers.

Alternately, realize GL(1,C) is orientation preserving and so C carries a natural orientation.

General principle: If Γ acts on M , and M/Γ sia manifold and M carries a “structure” invariant by Γ which

is invariant, it induces this structure on M/Γ.

Example VII.5.6

RPn = SN/Z2 and CPn = S2n−1/S1.

Example VII.5.7

Suppose M is C-differentiable and Γ acts by C-differentiable maps, then M/Γ is C-differentiable.

Example VII.5.8

If M has a Riemannian metric and Γ acts by isometries, then M/Γ carries a Riemannian metric. By

acting by isometries we mean that for γ ∈ Γ

⟨Dγp · v,Dγp · w⟩ = ⟨v, w⟩.

Last time: φ : Rn → Rn with coordinates y1, . . . , yn in the domain and x1, . . . , xn in the domain. Then

φ∗(dx1 ∧ · · · ∧ dxn) = (detDφ)(dy1 ∧ · · · ∧ dyn).

Orientability Theorem, atlas =⇒ volume form. If x1, . . . , xn are coordinates on Uβ , and y1, . . . , yn are co-

ordinates on Uα. Then

T ∗
αβ(dx1 ∧ · · · ∧ dxn) = (detDTαβ)(dy1 ∧ · · · ∧ dyn).

Thus these are related by a positive number. Pick a partition of unity {τi} subordinate to Uα. On Uα we

get an n-form σα given by pulling back dx1 ∧ · · · ∧ dxn. Then∑
τασα

will define an n-form on M which is nonvanishing.
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Orientability Theorem, volume form =⇒ atlas. Call φα positive if the pullback form on Uα given by φ∗
α(dx1∧

· · · ∧ dxn) (for coordinates x1, . . . , xn) is positive with respect to σ (a fixed orientation on M). That is it

equals f · σ for f > 0.

If all φα are + then get coordinate charts are compatible with orientation. If not all φα are + then “flip”

the negative ones. I..e replace the coordinates x1, . . . , xn with −x1, x2, . . . , xn.

VII.6. Defining Integrals

Why bother with orientation? If f : M → R is smooth, then how do we define
∫
M
f??? On Rn we just

use Lebesgue integration (or Riemannian integration). Main thing is we know the volume of a cube.

In contrast, there is no preferred way to measure volume on a manifold! You would need a Riemannian

metric. Similarly, an n-form can tell you the volume. . .Maybe if we have an n-form we can do something!!!

So
∫
M
f NO IDEA. If

∫
M
fτ where τ is a volume form we have an idea. How to actually do it? In a chart

Uα, with φα : Uα → Vα we consider ∫
Vα⊆Rn

(f ◦ φ−1
α ) · φ∗

α(τ).

This is gα · dx1 ∧ · · · ∧ dxn for some coordinates. Why is this well-defined? If we have a change of variables

on Rn called T , then ∫
B

(h ◦ T ) detDT dy1 ∧ · · · ∧ dyn =

∫
A

hdx1 ∧ · · · ∧ dxn,

where A = T ·B. Thus integrals agree on the overlaps of charts! Namely, the forms transform according to

T ∗
αβ which acts via the determinant of the jacobian matrix from the work we’ve done above

Last time: We defined
∫
M
f · ν where M is a C∞ manifold and ν is an n-form (“volume form”). This is

well-defined

Definition VII.6.1

Let ν be an n-form on a C∞-manifold M and let f be a function on M . If φα : Uα → Vα is a chart

we define ∫
Uα

f · ν :=

∫
Vα

(f ◦ φα)−1 · (φ−1
α )∗(ν).

Then if {Uα}α is a collection of charts, take a partition of unity τα to Uα, and then set∫
M

f · ν =
∑
α

∫
Uα

ταf · ν.

Exercise VII.6.1

Show this is well-defined, and gives the sensible thing in general cases.

Difference to Rn: no preferred volume form! On Rn we can look at dx1 ∧ · · · ∧ dxn.

Some other good cases:

• If M = G is a Lie group, take X1, . . . , Xn a basis of g = LieG. Then turn these into a basis of left

invariant vector fields.

Let η1, . . . , ηn be a dual basis at the identity. Make ηi left invariant so ηi(Xj) = 1 if i = j and 0

if i ̸= j. Then η1 ∧ · · · ∧ ηn is left invariant.
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• Can do the same thing for right invariant.

Proposition VII.6.1

If G is a Lie group then there exists a left invariant volume form νL unique up to scalar multiplication.

Also there exists a unique (up to scalar) right invariant volume form νR.

Question: When is νL = νR.

Answer: Not always,

G =

{(
a b

0 1
a

)
| a ̸= 0, b

}
The Lie algebra is

g =

{(
A B

0 −B

)
| A,B ∈ R

}
.

But they are equal for

• Abelian groups

• nilpotent groups (e.g. heisenberg groups)

• SLn(R).

Definition VII.6.2

If νL = νR we call this group unimodular.

Compact groups are always unimodular. You can measure how unimodular something is by writing νR = ω·νL.
Then one can prove ω(gh) = ω(g)ω(h) (check, Ralf thinks so). So measuring kerω tells you how unimodular

it is.

Also if there is a Γ ⊆ G discrete with G/Γ compact then G is unimodular.

Proposition VII.6.2

If M is a Riemannian manifold which is oriented, then the Riemannian metric induces a volume form.

The last case is suppose M has a (special) volume form ν and Γ acts on M properly discontinuously. Then

M/Γ is a manifold.

Lemma VII.6.3

If ν a volume form on M is Γ-invariant, then ν descends to M/Γ.

Furthermore, if Γ is finite and orientation-preserving then one can always build such a Γ-invariant

volume form from an arbitrary volume form on M .

Proof. Use that π :M →M/Γ is a submersion and a local diffeomorphism. Thus locally can pull back ν to

ν on M/Γ. Building it this way gives ν = π∗(ν).

More explicitly. Let p, U in M/Γ with diffeomorphisms γU → U for γ ∈ Γ.

Then ν on U we have ν = (γ−1)∗ν on γν. This commutes with the projection, and so ν defined from

pushing ν on U down to U is the same as that defined from pushing ν on γU down to U .

This allows one to paste it together into a preferred volume form! For the Γ finite case, just average!
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Example VII.6.2

Suppose M2n has a nonvanishing 2-form (symplectic form) α such that

α ∧ · · · ∧ α

is nonvanishing, where we wedge n times.

More general integrals. Let C : ∆k → M be a smooth map from a k-dimensional simplex (sweeping under

the rug–what does it mean to be smooth on the boundary?)

Let α be a k-form on M . Then C∗(α) is a k-form on ∆. Then∫
∆k

C∗(α) =:

∫
C

α.

Note it depends on the map, which is why we write
∫
C
instead of

∫
C(∆k)

. This is a generalization of a line

integral.

Example VII.6.3

When we’re looking at the line integral, we’re integrating vector fields over 1-simplices. The trick is

Definition VII.6.3

We’ll call a smooth map C : ∆k →M a k-dimensional simplex in M .

These ideas are the brain-child of Poincaré, Elie Cartan, and de Rham. For now we’ll leave them alone but

we’ll come back to them later.

VII.7. Exterior Derivatives

We now want to take α a k-form and associate to it dα, a (k + 1)-form on M .

Example VII.7.1

For F ∈ C∞(M) (aka a 0-form), we can take dFp(v) = DFp · v (the directional derivative). This is a

1-form!

We’ll use the notation ΩkM for k-forms on M , and just Ωk if M is clear. We want

d : ΩkM → Ωk+1M.

Recall that Ωk(M) is zero for k < 0, k > dimM =: n. So we get a chain

0 Ω0(M) Ω1(M) Ω2(M) · · · Ωn(M) 0.d d d d d

Here’s what we want:

(1) d is d (defined above) on Ω0.

(2) d is a linear map over R (not over C∞(M)!).

(3) d ◦ d = d2 = 0.

(4) It works well with wedge product

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

where α ∈ Ωk(M).
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Theorem VII.7.1

There exists a unique d satisfying Properties 1-4 above.

We’ll prove this theorem in detail on Monday. Also Ralf Spatzier really likes the book Spivak, Calculus on

Manifolds [spivak]

Goal: Poincaré lemma. On Rn, this will say that if α has dα = 0 (α is a “closed” form),then there exists

a β so that α = dβ, which is called being an “exact form” (notice the converse is always true). We’ll be able

to say something a bit more general. . . this exact statement doesn’t always hold.

Definition VII.7.1

We can look at Image(d
∣∣
Ωk−1) ⊆ ker(d

∣∣
Ωk). By definition we have

Hk
deRhamM :=

Image(d
∣∣
Ωk−1)

ker(d
∣∣
Ωk)

.

This is called the de Rham cohomology.

Miraculous–this is finite dimensional over R. We’ll abbreviate it Hk, though this is usually reserved for

singular homology (see 592, they agree on manifolds). Instructive examples to compute

Example VII.7.2

H1(R), H1(S1).

Theorem VII.7.2 (HW)

If M is a smooth manifold (paracompact) then there is a smooth Riemannian metric (in fact many)

Proof Idea. Glue local solutions together using partition of unity.

Definition VII.7.2

A Lorentz metric is a nondegenerate inner product ⟨, ⟩p on TpM such that p 7→ ⟨, ⟩p is smooth. I.e.

for all smooth vector fields X,Y on M we have p 7→ ⟨X(p), Y (p)⟩p is smooth. Furthermore ⟨, ⟩p has

signature (n− 1, 1).

Given a nondegenerate ⟨, ⟩ is a (nondegenerate) inner product on a finite dimensional verctor space

V , dimV = n. Then if this has signature (k, n− k) then there is a basis v1, . . . , vn such that

⟨vi, vj⟩ =


0 if i ̸= j

1 if i = j ≤ k

−1 if i = j > k

.

If x =
∑
xivi, y =

∑
yjvj then

⟨x, y⟩ = x1y1 + · · ·+ xkyk − xk+1yk+1 − · · · − xnyn.

Every inner product has some signature.

Special relativity is Lorentz metrics on R4, and general relativity is the same spiel on a general manifold

(that admits a Lorentz metric).

Theorem VII.7.3 (HW)

Not every smooth manifold supports a Lorentz metric.
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Theorem VII.7.4

S2,M where M is a compact connected orientable surface of genus > 1 does not admit a Lorentz

metric.

Proof Idea. Look at S2 and use that it does not admit a 1-dimensional distribution (follows from the fact

that S2 admits no nonvanishing vector field). Similarly for M where the genus > 1.

The fact that this follows is from covering space theory. Bad idea for finding distributions: {⟨v, v⟩p = 0}.
Better idea: Use the standard Riemannian metric and grab the unit circle in TpS

2 with respect to Euclidean

metric on R3, call this T 1
pS

2. Look at ⟨v, v⟩p restricted to T 1
pS

2.

{⟨v, v⟩p ≥ 0}.

In contrast, T 2 = R2/Z2 does since T 2 = S1 × S1 and we can place +,− on these respectively. Likewise

Z2 preserves the x21 − x22 on R2, thus this descends.

For SL2(R) there exists a left invariant ⟨, ⟩ on SL(2,R) (in fact bi-invariant). Define it on X,Y given by

for X,Y ∈ g,

⟨X,Y ⟩1 = tr(Z 7→ [X, [Y, Z]]) = tr(adX ◦ adY )

where (adX)(Z) := [X,Z].

Aside on Lie groups. Let T1G = g. define

adX : g → g

Z 7→ [X,Z].

Then we can define the “Cartan-Killing form” of g as

B(X,Y ) = tr(adX ◦ adY ).

Exercise VII.7.3

Let X,Y lie in gl(n,R) = LieGL(n,R). Then we must show B(X,Y ) = tr(X · Y ) (up to some

dimension factor.

Definition VII.7.3

Call g semisimple if B is nondegenerate

Theorem VII.7.5

sl(n,R) is in fact semisimple.

Note: If g has a center. I.e. if there is Z ∈ g so that for all X ∈ g we have [X,Z] = 0, then B is degenerate.

Why? Well B(Z,X) = 0.

Fact: If G is compact with no center, then B is positive definite and nondegenerate

Example VII.7.4

SU(n),SO(n), etc.

Clarification: 5a is still part of HW6, 5 b,c are the extra credit parts.
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VII.8. deRham Cohomology

Now, lets compute H∗
deRham(S

1). Well we know that

H0(S1) = R# connected components = R.

How do we compute H1(S1)? Well recall, we showed that H1(R) = 0 by showing that given a closed 1-form,

i.e. all 1-forms, then

α = dβ

where β is a 0-form on R defined by

β(x) =

∫ x

0

f(t) dt

where α = f dx.

Now think of S1 as [0, 1]/(0 ∼ q). Then if α is a 1-fom it looks like f dx where dx makes sense on S1 = R/Z
since it is invariant under x 7→ x+ a for all a ∈ R (we only need in Z, but this is better).

Moreover, if α ∈ Ω1(S1) then α = f dx where f : S1 → R is smooth. Then we should of course take

β : S1 → R, so take

β(x) =

∫ x

0

f(t) dt . . .

BUT WAIT! We need to know if β(0) = β(1)! This gives us a condition

α is exact ⇐⇒
∫ 1

0

f(t) dt = 0.

We want to look for H1(S1) = {closed}/{exact}. The closed one-forms are just all of them since Ω2(S1) = 0.

Now let α = f(x) dx be a closed 1-form. Let A :=
∫ 1

0
f(t) dt. Then consider α−A · dx. Then∫ 1

0

(f(t)−A) dt =

∫ 1

0

f(t) dt−A = 0.

Thus there exists β ∈ Ω0(S1) such that α−A dx = dβ. Thus [α] = [A · dx], which we can think of as R since

there is one parameter.

Moral: The way the coordinate charts are put together to give you a manifold determines H∗
dR(M).

Crucial to put all this together:

Lemma VII.8.1 (Poincaré Lemma)

If A ⊆ Rn is an open, star-shaped set, then any closed k-form on A is exact.

Definition VII.8.1

A set A ⊆ Rn is called star-shaped provided there exists a point p0 ∈ A (called an observer) such

that for any p ∈ A, the line segment [p0, p] ∈ A.

Motivation for the Proof:

• This is really a vast generalization of the fundamental theorem of calculus. It is a long calculation.

• In dimension 1 we look at g(x) =
∫ x
0
f(t) dt and it turned out dg = f(t) dt.

• Idea for star-shaped: integrate along segments (i.e. “radially”).

62



Faye Jackson November 30th, 2022 MATH 591 - VII.8

Proof. We’ll actually define the following in this proof, called a chain homotopy, the middle maps

Ωk−1(A) Ωk(A) Ωk+1(A)

Ωk−1(A) Ωk(A) Ωk+1(A)

d d

d d

Ik Ik+1

What we want: I is a linear map,

dk−1 ◦ Ik + Ik+1 ◦ dk = Id .

Consequence: If dα = 0 for α ∈ Ωk(A). Then

α = I dα+ d(Iα) = I(0) + d(Iα) = d(Iα).

Thus we’ll have H∗(A) = 0. In the one-dimensional case I was simply integration from 0 to x. We’ll define

Iℓ : Ω
ℓ(A) → Ωℓ−1(A). We’ll have

ω =
∑

i1<i2<···<iℓ

ωI dxi1 ∧ · · · ∧ dxiℓ

where ωI is a smooth function on A (this works since we’re in Rn, so this is true globally, here I is the index

set). We now set

(Iω)(x) :=
∑

i1<i2<···<iℓ

ℓ∑
α=1

(−1)α−1

(∫ 1

0

tℓ−1ωI(tx) dt

)
· xiα · dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxiℓ ∈ Ωℓ−1(A)

Without loss of generality here we’ve assumed p0 = 0 to make things easier to write down. How do we prove

this works? I.e. that d ◦ I + I ◦ d = Id. Well, you just write it out. . .

d(Iω) = ℓ
∑

i1<···<iℓ

(∫ 1

0

tℓ−1ωI(tx) dt

)
dxi1 ∧ · · · ∧ dxiℓ

+
∑

i1<···<iℓ

ℓ∑
α=1

n∑
j=1

(−1)α−1

(∫ 1

0

tℓ
∂ω

∂xj
(tx)

)
xiα ∧ dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ dxiℓ .

The first bit is from ∂
∂xiα

(and the second bit of product rule), and the (−1)α−1 disappears because we’ve

switched it to put it in the right place. The second bit is from ∂
∂xj

for any j, and uses differentiation under

the integral sign.

Then we look at dα. Before we do this, note by linearity it suffices to check equality in a fixed term

i1, . . . , iℓ. We’ll suppose i1 = n− ℓ+ 1, . . . , iℓ = n. So we’ll omit the sum over i1 < . . . < iℓ.

Well this is

dω =

n∑
j=1

∂

∂xj
ωI dxj ∧ dxi1 ∧ · · · ∧ dxiℓ

I(dω) =

n∑
j=1

(∫ 1

0

tℓ
∂

∂xj
(ω1, . . . , iℓ dt

)
xj d̂xj ∧ dxi1 ∧ · · · ∧ dxiℓ

−
ℓ∑

α=1

(−1)α−1

(∫ 1

0

tℓ
∂

∂xj
ωI(tx) dt

)
xiα dxj ∧ dxi1 ∧ · · · ∧ d̂xiα ∧ · · · ∧ dxiℓ .
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We’ll pick up this proof on Friday1.

The messy terms then cancel, and we add the other terms

ℓ ·
(∫ 1

0

tℓ−1ωI(tx) dt

)
dxi1 ∧ · · · ∧ dxiℓ +

n∑
j=1

(∫ 1

0

tℓ
∂

∂xj
ωI(tx) dt

)
xj · dxi1 ∧ · · · ∧ dxiℓ

=

∫ 1

0

d

dt
(tℓωI(tx)) dtdxi1 ∧ · · · ∧ dxiℓ

= ωI(x) dxi1 ∧ · · · ∧ dxiℓ

VIII. Stoke’s Theorem

VIII.1. Manifolds with Boundary

Stuff:

• For users of the notes, the rest of the proof from Wednesdaywas added to the November 30th notes.

• The bonus contains some stuff about computing cohomology (Mayer-Vietoris).

• For the next few days we’ll discuss Stoke’s Theorem. You are free to use it on the homework now.

Definition VIII.1.1

For convenience call Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}. A topological manifold with boundary is a

paracompact, Hausdorff, second countable spaceM with a cover ofM by {Uα}α∈I and homeomorphisms

φα : Uα → Hn.
We can then require the transition maps to be smooth to get a smooth manifold with boundary.

Example VIII.1.1

Hn is a manifold with boundary. So is Rn (empty boundary). You can have things like intervals with

endpoints, or taking a standard genus g surface and slicing it in half.

Definition VIII.1.2

We define the boundary of M to be {x ∈M | φα ∈ ∂Hn} where ∂Hn := {x ∈ Hn | xn = 0}.

Lemma VIII.1.1

∂M is well defined, i.e. independent of the chart. I.e., a diffeomorphism between Hn and itself

preserves the boundary.

Furthermore, ∂M is a manifold (without boundary) of dimension dimM − 1.

Exercise VIII.1.2

Prove this lemma above.

Lemma VIII.1.2

Let M,∂M be a manifold with boundary. Suppose M is oriented. Then ∂M is also oriented.

Proof. Take the situation in Hn. If p ∈ ∂Hn. How do we tell if v1, . . . , vn−1 ∈ Tp∂Hn is a positively oriented

basis?

1The rest of this was technically done on December 2nd
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Well take u = (u1, . . . , un) an outward normal, aka so that un < 0. We then call v1, . . . , vn−1 positively

oriented for ∂Hn if u, v1, . . . , vn−1 are positively oriented for Rn. This does not depend on the particular u

chosen, bc it can be taken to (0, . . . , 0, un) by a linear combination with v1, . . . , vn−1.

For M a manifold with boundary, we endow M with the pullback orientation from ∂Hn. One must check

this is well-defined, and one checks that transition maps preserve outward normals.

Theorem VIII.1.3 (Stoke’s Theorem)

Let M be an oriented manifold with boundary ∂M (under the induced orientation).

Given ω ∈ Ωn−1M , we have that ∫
M

dω =

∫
∂M

ω.

Example VIII.1.3

Pick M = [0, 1] and pick the left to right orientation. Take ω ∈ Ω0([0, 1]), aka a smooth function

f : [0, 1] → R.
Then we have ∫

[0,1]

dω =

∫ 1

0

ω′(t) dt = ω(1)− ω(0)∫
∂[0,1]

ω =

∫
{0,1}

ω = ω(1)− ω(0),

where the − comes from the orientation. Thus we should think of Stoke’s Theorem as a generalization

of the fundamental.

Corollary VIII.1.4

If M is a manifold (without boundary) and ω ∈ Ωn−1(M) then∫
M

dω =

∫
∂M

ω = 0.

This means the integral of exact forms over manifolds are zero.

What do we need to do to prove this thing? The Idea: look at differentiable cubes, aka smooth maps

C : Ik →M . Then taking some ωk(M) we look at an integral∫
C

ω = ωIkC
∗(ω).

Then we’ll cover M by cubes, take a partition of unity, and reduce the whole problem to something about

integrating around cubes.

Final Stuff:

• Extra Office Hours: Next Monday 2pm, Next Tuesday 4pm, plus by appointment/drop by.

• Material will concentrate on things since the midterms, but of course mathematics is largely cumulative

• Old QR problems are good practice. As are old HW problems.

• Each Question will be worth 20pts.

Last time we began discussing singular cubes, i.e. smooth maps Ik := Ik →M .
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Definition VIII.1.3

A smooth map C : Ik →M is called a singular k-cube in M .

New idea, do something crazy: look at formal sums of singular k-cubes. Say

Ck :=

{
m∑
i=1

aici | ai ∈ R,m ∈ N, cik-cubes

}
.

This is then the free R-module (i.e. vector space) with basis {c | ck-cube}. This space is infinite-

dimensional.

Definition VIII.1.4

An form sum
∑m
i=1 aici as above is called a singular k-chain in M .

Goal: manifolds to algebra. We need some sort of map between these things.

Note: C0 is formal sums of points in M , as 0-cubes are points in M . Now, we have a map ∂ : Ck → Ck−1.

What is it? It’s the “boundary” operation (with signs)!

Want: ∂2 = 0 (this whole thing is “dual” to what we do with forms).

We’ll think of In as both [0, 1]n and In = Id : [0, 1]n → [0, 1]n. We now take

Ini,0(x) := I(x1, . . . , xi−1, 0, xi, . . . , xn−1)

Ini,1(x) := I(x1, . . . , xi−1, 0, xi, . . . , xn−1).

If i = 0 we kick the 0 to the last coordinate (in some sense this is all modulo n). where x = (x1, . . . , xn−1).

Well

Example VIII.1.4

I1(1,0)()= (0). Then I2(1,0)(x1) = (0, x1) and I
2
(1,1) = (1, x1). Likewise

I2(0,0)(x1) = (x1, 0)

I2(0,1)(x1) = (x1, 1).

Crucial Fact: Each (n− 2)-dimensional face of In is the (n− 2)-face of two (n− 1)-faces of In. Must figure

out a combinatorial way of assigning opposite signs to get ∂2 = 0.

Definition VIII.1.5 (Formal Definition of ∂)

We define

∂In :=

n∑
i=1

∑
α=0,1

(−1)i+αIn(i,α).

This works generally. For C : In →M define

∂C := C ◦ ∂In :=

n∑
i=1

∑
α=0,1

(−1)i+α(C ◦ In(i,α)),

(this is essentially defined by pushing forward ∂In from In to M along C).

Proposition VIII.1.5

∂2In = 0.
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Proof. More formally, suppose i ≤ j. Let x = (x1, . . . , xn−2). We compute

(Ini,α)j,β(x) = In(i,α)(x1, . . . , xj−1, β, xj , . . . , xn−2)

= (x1, . . . , xi−1, α, xi, . . . , xj−1, β, xj , . . . , xn−2).

We likewise compute that

(Inj+1,β)i,α(x) = Inj+1,β(x1, . . . , xi−1, α, xi, . . . , xn−2)

= (x1, . . . , xi−1, α, xi, . . . , xj−1, β, xj , . . . , xn−2).

Thus these maps are equal! But the signs associated to them, i.e. (−1)i+α(−1)j+β and (−1)j+β+1(−1)i+α

are opposite! Thus these will cancel in ∂2In.

Then extend ∂ linearly to Ck to Ck−1.

Lemma VIII.1.6

∂2 = 0.

Proof. ∂2(Ik) = 0. Then ∂2(C) = C ◦ ∂2(Ik) = C ◦ 0 = 0. Then including sums gives zero.

We now want to integrate over singular k-chains. The setup: if C : Ik → M is a k-cube, ω ∈ ΩkM a

k-form, then ∫
C

ω :=

∫
Ik
C∗(ω).

We know C∗(ω) = f · dx1 ∧ · · · ∧ dxn. We can then just take∫
Ik
C∗(ω) =

∫
Ik
f dx1 dx2 · · · dxn.

(In fact: you can integrate on the interior of Ik, since this is a Lebesgue integral and the boundary has

measure zero). For chains
∑m
i=1 αici we take∫

∑m
i=1 αici

ω =

m∑
i=1

αi

∫
ci

ω

Theorem VIII.1.7 (Basic Stokes)

Suppose ω ∈ Ωk−1(A) where A ⊆ Rn is open, then if C is a k-chain then∫
C

dω =

∫
∂C

ω.

Definition VIII.1.6

A manifold M is called closed if it is compact and has no boundary.

For HW11 #4, assume M is oriented and closed. We want to integrate F ∗
t (µ) over ∂(M × [0, 1]). But

then how do we apply stokes, i.e. how do we differentiate dF ∗
t (µ). The instinct is to use commutativity to

get F ∗
t (dµ) = 0. However d here lives in M × [0, 1], not in M , so this is not quite immediate.
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Stokes says that for C a k-chain, α a (k − 1)-form.,∫
C

dα =

∫
∂C

α.

Corollary is stokes for manifolds themselves (cover with k-chain), regular stokes (curl), divergence (div), and

Green’s theorem

Proof of Stokes for simplicial k-chains. Good enough to check for singular k-cubes since∫
C

dα =

∫
[0,1]k

C∗(dα) =

∫
[0,1]k

d(C∗α)

∫
∂C

α =

k∑
i=1

∑
β=0,1

(−1)β+i
∫
Ik−1

C∗
1,i(α).

Now we see that α is

α =

k∑
i=1

fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk.

Then it is good enough to check on α = f dx1 ∧ · · · ∧ d̂xi ∧ dxn.

Claim∫
Ik

dα =
∫
∂Ik

α

Note that∫
[0,1]k−1

I∗j,β(f dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk) =

{
0 if j ̸= i∫ k−1

[0,1]
f(x1, . . . , β, xi, . . . , xk) if j = i

because dxj restricted is just 0, and when j ̸= i it shows up. The other one is a bit harder but not too

bad. and ∫
∂Ik

α =

k∑
j=1

∑
β=0,1

(−1)j+β
∫
[0,1]k−1

I∗(j,β)(α).

Thus the right hand side of the about equation is

k∑
i=1

(−1)i+1

∫
[0,1]k−1

f(x1, . . . , 1, . . . , xk) + (−1)i
∫
[0,1]k−1

f(x1, . . . , 0, . . . , xk).

On the other hand we have that∫
Ik

d(f dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk) =

∫
Ik

df ∧ dx1 ∧ · · · ∧ d̂xi ∧ dxk.

Then df =
∑k
j=1

∂f
∂xj

dxj , and so the wedge is nonzero only when j = i so we have, switching things to

be in standard order that this is ∫
Ik
(−1)i−1 ∂f

∂xi
dx1 ∧ · · · ∧ dxk.
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Then we apply Fubini’s Theorem to get

(−1)i−1

∫ 1

0

∫ 1

0

· · ·
(∫ 1

0

∂f

∂xi
dxi

)
dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk

=

∫ 1

0

∫ 1

0

· · · (f(x1, . . . , 1, . . . , xk)− f(x1, . . . , 0, . . . , xk)) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxk

via the fundamnetal theorem of calculus.

Via the above reductions we win!

Stuff:

• Office Hours moved to Monday 5pm and Tuesday 4pm.

• Final: Thursday December 15th from 4pm to 6pm

Last Time: We proved for C a singular (k − 1)-chain and α a (k − 1)-form that∫
C

dα =

∫
∂C

α.

Corollary VIII.1.8 (Manifold Stokes)∫
M

dα =
∫
∂M

α for α an (n− 1)-form, where n = dimM .

But how is
∫
M
ω defined for an n-form ω? We want M to be oriented, compact, and we’ll let n := dimM .

Well take an open cover Ui such that each Ui ⊆ Image(Ci) for Ci an orientation-preserving singular n-cube.

We may also take a partition of unity subordinate to Ui. Write ω =
∑
fiω where fiω is supported on Ui.

Then we define ∫
M

ω :=
∑
i

∫
Ci

fiω.

Lemma VIII.1.9

This is in fact well-defined, i.e. does not depend on Ui, Ci, fi.

Proof. Essentially the change of variables formula.

Proof Idea of Manifold Stokes. In the definition of
∫
M
ω use Ci such that only one face of Ci lies in ∂M .

Write α =
∑
i fiα. Then

dα =
∑
i

(dfi) ∧ α+
∑
i

fi dα.

Then we see by how we wrote the ∫
∂M

α =
∑
i

∫
∂Ci

fiα

=
∑
i

∫
Ci
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Degree and Hn
dR(M).

Theorem VIII.1.10

If M is a compact, oriented, manifold then Hn
dR(M) = R.

Idea of Proof. We see that R ⊆ Hn
dR(M) by orientation.

We then have a map precisely Hn
dR(M) → R given by ω 7→

∫
M
ω. Since M is oriented, if ν is a volume

form then
∫
M
ν > 0. Thus the map is onto.

Now suppose
∫
M
ω = 0. The claim is that ω = dβ. To prove this claim, you cover M by open sets Ui

contained in some singular n-cubes Ci. We do this in such a way that

(U1 ∪ · · · ∪ Uk) ∩ Uk+1 ̸= ∅.

Call Mk = U1 ∪ · · · ∪ Uk. We know M =Mk for some k since M is compact.

It suffices to prove that if ω on Mk has zero integral then ω = dη for some η defined on Mk. We prove

this by induction on k.

For k = 1, we’re on a chart so this is just the Poincare Lemma. Suppose the result holds for k. We see

that ∫
Mk+1

ω = 0,

Let θ be a form supported inMk∩Uk+1 such that
∫
Mk+1

θ = 1. Let {φ,ψ} be a partition of unity subordinate

to {Mk, Uk+1} and let c :=
∫
Mk+1

φω.

We see that φω − cθ is zero on Mk, thus dα = φω − cθ for some α. Likewise ψω + cθ has integral zero on

Uk+1 so is dβ = ψω + cθ (it must have this integral since ω has integral zero on Mk+1).

Then we see that d(α+ β) = ω!

Suppose M,N are dimension n, oriented and compact. Let ν be a volume form on N .

Definition VIII.1.7

The degree of a map f :M → N is some map then the degree of f is defined by∫
M

f∗ν = (deg f)

∫
N

ν,

since this number is uniquely defined

Example VIII.1.5

The map z 7→ zk on S1 → S1 has degree k. Furthermore, if f : S1 → S1 is an orientation preserving

diffeomorphism then it has degree 1.

Proposition VIII.1.11

deg(f ◦ g) = deg(f) · deg(g).

Theorem VIII.1.12

Brouwer’s Fixed Point theorem. Let Dn be a closed ball in Rn. Then if f : Dn → Dn is continuous,

then f has a fixed point.

Proof. Only prove for f smooth.
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Claim

It is enough to prove for f smooth.

Approximate f continuous by smooth maps homotopic to it. Then see Lee.

A homotopy between f, g is a map F : X× [0, 1] → X so that F (x, 0) = f(x), F (x, 1) = g(x). It turns

out the action on de Rham cohomology for a continuous map can be defined by approximating with a

smooth map this way, and is independent of the approximation chosen.

Suppose f : D → D is smooth and has no fixed points. Then define

G(x) =
x− f(x)

∥x− f(x)∥
.

This map is then well-defined and continuous. G is a map from D → ∂D = Sn−1. We can also let H(t, x)

on Sn−1 be given by

Ht(x) =
x− tf(x)

∥x− tf(x)∥
.

We see that if 0 ≤ t < 1 then ∥x∥ = 1, ∥tf(x)∥ ≤ t < 1, so this is well-defined. Likewise we know x−f(x) ̸= 0

so it’s well-defined for t = 1 as well.

Then H0 is the identity map, so degH0 = 1. On the other hand, if ν is the volume form on Sn−1, then∫
Sn−1

H∗
0ν =

∫
Sn−1

H∗
1ν

But then since H1 = g, H∗
1ν can be defined over D as G∗ν. But wait! Applying Stokes yields∫

Sn−1

g∗ν =

∫
Sn−1

G∗ν =

∫
D

dG∗ν

=

∫
D

G∗(dν) =

∫
D

0 = 0.

Thus the degree is zero! Contradiction ,.
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