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Last time: We defined
∫
M

f · ν where M is a C∞ manifold and ν is an n-form (“volume form”). This is

well-defined

Definition .0.1

Let ν be an n-form on a C∞-manifold M and let f be a function on M . If φα : Uα → Vα is a chart

we define ∫
Uα

f · ν :=

∫
Vα

(f ◦ φα)
−1 · (φ−1

α )∗(ν).

Then if {Uα}α is a collection of charts, take a partition of unity τα to Uα, and then set∫
M

f · ν =
∑
α

∫
Uα

ταf · ν.

Exercise .0.1

Show this is well-defined, and gives the sensible thing in general cases.

Difference to Rn: no preferred volume form! On Rn we can look at dx1 ∧ · · · ∧ dxn.

Some other good cases:

• If M = G is a Lie group, take X1, . . . , Xn a basis of g = LieG. Then turn these into a basis of left

invariant vector fields.

Let η1, . . . , ηn be a dual basis at the identity. Make ηi left invariant so ηi(Xj) = 1 if i = j and 0

if i ̸= j. Then η1 ∧ · · · ∧ ηn is left invariant.

• Can do the same thing for right invariant.

Proposition .0.1

If G is a Lie group then there exists a left invariant volume form νL unique up to scalar multiplication.

Also there exists a unique (up to scalar) right invariant volume form νR.

Question: When is νL = νR.

Answer: Not always,

G =

{(
a b

0 1
a

)
| a ̸= 0, b

}
The Lie algebra is

g =

{(
A B

0 −B

)
| A,B ∈ R

}
.

But they are equal for

• Abelian groups

• nilpotent groups (e.g. heisenberg groups)

• SLn(R).

Definition .0.2

If νL = νR we call this group unimodular.
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Compact groups are always unimodular. You can measure how unimodular something is by writing νR = ω·νL.
Then one can prove ω(gh) = ω(g)ω(h) (check, Ralf thinks so). So measuring kerω tells you how unimodular

it is.

Also if there is a Γ ⊆ G discrete with G/Γ compact then G is unimodular.

Proposition .0.2

If M is a Riemannian manifold which is oriented, then the Riemannian metric induces a volume form.

The last case is suppose M has a (special) volume form ν and Γ acts on M properly discontinuously. Then

M/Γ is a manifold.

Lemma .0.3

If ν a volume form on M is Γ-invariant, then ν descends to M/Γ.

Furthermore, if Γ is finite and orientation-preserving then one can always build such a Γ-invariant

volume form from an arbitrary volume form on M .

Proof. Use that π : M → M/Γ is a submersion and a local diffeomorphism. Thus locally can pull back ν to

ν on M/Γ. Building it this way gives ν = π∗(ν).

More explicitly. Let p, U in M/Γ with diffeomorphisms γU → U for γ ∈ Γ.

Then ν on U we have ν = (γ−1)∗ν on γν. This commutes with the projection, and so ν defined from

pushing ν on U down to U is the same as that defined from pushing ν on γU down to U .

This allows one to paste it together into a preferred volume form! For the Γ finite case, just average!

Example .0.2

Suppose M2n has a nonvanishing 2-form (symplectic form) α such that

α ∧ · · · ∧ α

is nonvanishing, where we wedge n times.

More general integrals. Let C : ∆k → M be a smooth map from a k-dimensional simplex (sweeping under

the rug–what does it mean to be smooth on the boundary?)

Let α be a k-form on M . Then C∗(α) is a k-form on ∆. Then∫
∆k

C∗(α) =:

∫
C

α.

Note it depends on the map, which is why we write
∫
C
instead of

∫
C(∆k)

. This is a generalization of a line

integral.

Example .0.3

When we’re looking at the line integral, we’re integrating vector fields over 1-simplices. The trick is

Definition .0.3

We’ll call a smooth map C : ∆k → M a k-dimensional simplex in M .

These ideas are the brain-child of Poincaré, Elie Cartan, and de Rham. For now we’ll leave them alone but

we’ll come back to them later.
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.1. Exterior Derivatives

We now want to take α a k-form and associate to it dα, a (k + 1)-form on M .

Example .1.1

For F ∈ C∞(M) (aka a 0-form), we can take dFp(v) = DFp · v (the directional derivative). This is a

1-form!

We’ll use the notation ΩkM for k-forms on M , and just Ωk if M is clear. We want

d : ΩkM → Ωk+1M.

Recall that Ωk(M) is zero for k < 0, k > dimM =: n. So we get a chain

0 Ω0(M) Ω1(M) Ω2(M) · · · Ωn(M) 0.d d d d d

Here’s what we want:

(1) d is d (defined above) on Ω0.

(2) d is a linear map over R (not over C∞(M)!).

(3) d ◦ d = d2 = 0.

(4) It works well with wedge product

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

where α ∈ Ωk(M).

Theorem .1.1

There exists a unique d satisfying Properties 1-4 above.

We’ll prove this theorem in detail on Monday. Also Ralf Spatzier really likes the book Spivak, Calculus on

Manifolds [Spi18]

Goal: Poincaré lemma. On Rn, this will say that if α has dα = 0 (α is a “closed” form),then there exists

a β so that α = dβ, which is called being an “exact form” (notice the converse is always true). We’ll be able

to say something a bit more general. . . this exact statement doesn’t always hold.

Definition .1.1

We can look at Image(d
∣∣
Ωk−1) ⊆ ker(d

∣∣
Ωk). By definition we have

Hk
deRhamM :=

Image(d
∣∣
Ωk−1)

ker(d
∣∣
Ωk)

.

This is called the de Rham cohomology.

Miraculous–this is finite dimensional over R. We’ll abbreviate it Hk, though this is usually reserved for

singular homology (see 592, they agree on manifolds). Instructive examples to compute

Example .1.2

H1(R), H1(S1).
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