Faye Jackson MATH 591 - TOC

Notes on
MATH 591
(Differential Topology)

September 21, 2023

Faye Jackson

CONTENTS
I Introduction/AdminiStration. ... .......c. oottt e e 2
II.  Definitions and Building BlocKsS . .. ..ot e e e 2
IL.1.  Paracompactiiess . ... ..ottt et ettt e e e e 2
I1.2. Definition of a Differentiable Manifold ........... ..o 4
I1.3.  Topological Groups/HOmOgeneous SPACES . . ... vntutn ittt ettt 6
ITI. Tangent Vectors/Differentiation . ...........o.ooiu it 12
IV. Fiber/Vector BUndles . ... ......ouon ottt e e e 19
V. Vector Fields/Derivations/Lie Brackets. ... ... ..o 21
V.1. Flow on Vector Fields .. ... ..o e e e 32
V.2, DiIsStribubions . . ..o e 38
VI, Lie Groups/Lie AIGEDIas ... ...ttt e e 41
VL1, Exponential Map . ... ittt et et e e 45
VII. Differential Forms and Integration on Manifolds........ ... ... i i i, 48
VILL. Partitions of Unify ... ... e e e 48
VIL2. Embedding of Manifolds into RN . ... ... .. 0 e 48
VIL3. Multilinear AIGeDra . ... ...t e 49
VIL4. Orientations on Manifolds. ....... ... e 50
VIL5. The Wedge Product. .. ..o e 52
VILG6. Defining Integrals . ... ..o e e e e e 57
VIL7. Exterior Derivatives. .. ... ... e e e 59
VILS. deRham CohOmOlOZY . ...ttt e e e 62
VIII.  Stoke’s TRheOoTem . . ...ttt e e e e e e e 64
VIIL.1. Manifolds with Boundary ........ .o e 64



Faye Jackson August 31st, 2022 MATH 591 - II.1

I. Introduction/Administration

e Professor: Ralf Spatzier
e Office Hours:
— Monday 11-12
— Tuesday 5-6, EH 4088
Friday 11-12
— By appointment.
e HW: Due Wednesdays

I1. Definitions and Building Blocks

Definition I1.0.1
M is called locally euclidean provided that for all p € M there exists a neighborhood U of p and a

homeomorphism U — R™ for some n.

Lemma II1.0.1
It is good enough that for all p € M there exists a neighborhood V' of p such that V' is homeomorphic

to an open subset in R™.

Proof. Take V LNy e C R™ with V* open. Then there is an open ball U* C V* containing p, and so we can
o

take U = ¢~1(U*) =2 U*. It is clear from real analysis that U* = R™. 4

II.1. Paracompactness

Definition II.1.1
Consider a collection of subsets x of M. x is called locally finite provided that each point p € M has
a neighborhood U intersecting only finitely many C' € x.

Definition II.1.2
A topological space M is called paracompact if every open cover x of M admits a locally finite open

subcover.

Recall I1.1.1
A cover of M is a collection of x such that |J C' = M. A subcover of a cover x of M is a collection
Cex
X" C x such that every C* € x* is contained in some C' € .

x* is also called a refinement. A cover x is open if every element of y is an open set.

Definition II1.1.3
M is called locally compact if every point p € M and neighborhood U of p there exists a neighborhood
V C U such that V C U (the closure) is compact.

Lemma I1.1.1

Topological manifolds are locally compact.

¢

Proof. They are locally euclidean and R" is locally compact.
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Theorem II1.1.2

Topological manifolds are paracompact.

Proposition II1.1.3

A 2nd countable locally compact Hausdorff space admits an exhaustion by compact sets.

Definition I1.1.4
An exhaustion is a sequence of sets K,, C K,,+; with | K,, = M.

Proof of Proposition I1.1.5. In the appendix of Lee [lee]. We repeat it here. There is a basis of precompact
open sets since M is locally compact. We should extract countably many precompact open sets {U; }ien such
that |JU; = M.

By second countability, let {W,};en. Then taking p € M, we know p € W;. There then exists a
precompact neighborhood V' C W; which is compact. Take sets {Wy, } whose union contains V. Then take
finitely many such precompact open sets Wy, , ..., Wy, . It is possible to make the previous argument happen

in some neighborhood O which is precompact. Thus we have Wy, C O, so the Wy, C O are compact (by

Hausdorffness).
Let’s define the exhaustion by compact sets. First let {U;};en be precompact open sets covering M. Let
mo o o
i=1

Exercise 11.1.2

Think of how to define a differentiable manifold.

The idea is as follows.
Definition II1.1.5

Ifpe Mandp € U 2y U* C R™ where U* is open is a homeomorphism, then (U, p) is called a

coordinate chart at U.

Definition I1.1.6

Call charts (U, ¢) and (V, ) compatible if ¢ o) is differentiable

71‘[/"’%7\/*

Proof of Theorem I1.1.2. We now prove that topological manifolds are paracompact. We first find an ex-
haustion by compact sets, K1 ¢ Ko C --- with UK; = M. We set V; = K11 \ (Int K;). Now let
W, =Int K10\ K;_1.

Note that V;, W; are compact/open respectively. Consider an open cover x, given x € M, let x, € x be a
set containing x. Take B a countable basis, and find B, € B such that € B, C x,.

The V; are compact, so there are finitely many B,, which cover V;. Thus {B,,} are a refinement of .
We can also require B;, C W;. This will immediately imply locally finite. .v.

Deep Fact from 100 years ago which we will not prove right now. Namely if ¢ : U CR® — V C R’ is a
homeomorphism and U, V' are open then n = ¢. This is called “invariance of domain theorem.” A special case
is ¢ : (a,b) — U C R then £ = 1 (disconnect (a,b) by removing a single point). In 592 (algebraic topology)

you can generalize this argument using loops or homology.
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Corollary I1.1.4
Dimension of a connected topological manifold is well-defined. Namely dim M = ¢ if for every point

p, there is a neighborhood of p which is homeomorphic to R¥.

Convention: on any connected component the dimension is well-defined, and we assume the dimesnion is
constant across connected components in this class.
Proposition II1.1.5
Let M be a topological manifold, then M is connected if and only if it is path-connected.

Proof. Forward direction is the difficult piece. Fix p € M, take X = {y € M | there exists a path from p to y}.
We will prove X is clopen, so then since p € X, X = M.

Take y € X, then taking a neighborhood of y which is homeomorphic to R", we see that within this
neighborhood we’re path-connected, so X is open. Likewise if z € X, then take a neighborhood of z

o
homeomorphic to R™, this intersects X, and so z € X. Thus X is closed. 4

I1.2. Definition of a Differentiable Manifold
Definition II1.2.1

Suppose M is a topological manifold of dimension n, we call it a differentiable manifold if it has a

differentiable (C*, k =1,...,00,w [analytic behaves differently]) structure.

Namely, we require that there exists a cover by open sets U; and homeomorphisms ¢; : U; — V; C R”
of M such that for each 7, j the map ¢; o 99;1 1 9i(U; oUj) = ¢;(U; 0 Uj) between open subsets of R™ is
differentiable (C*). These maps are called transition maps, and this data {(U}, ¢;)}; is called an atlas.

We often call C'°° manifolds smooth manifolds.

Example I1.2.1

For spheres S™ you can take enlargened hemispheres and do stereographic projection. In fact we can
take S™ \ {P} and S™ \ {@Q} where P, @ are the north,south poles. The transition map is algebraic and
well-defined, so it’s differentiable (for n =2 it’s z — 1/2).

Bonus Problems: Due 1 week after regular problems, if Gradescope complains let the professor know.

Idea for Problem 1 from Homework 1

Let M be a 1-dimensional, compact, connected manifold.

Choose charts U, around each € M homeomorphic to intervals. Choose a finite subcover U; 2 (a;, b;)

and suppose this is a minimal such cover. Make a lemma that if U; U Uj is connected

Standards for what constitutes a proof will be determined over time by a conversation between the students,
the grader, and the professor.
Deep Theorem
Theorem 11.2.1
There exist topological manifolds which do not admit any differentiable structure.

In fact: “Piecewise linear” manifolds of such type exist.

Next Question: Can two differentiable manifolds give the same topological manifolds?
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Yes! Milnor in the late 50s constructed exotic S7 i.e. My, ..., Mg all homeomorphic but none of them
diffeomorphic. There are infinitely many higher dimensional spheres exhibiting this behavior, though it does
not occur in dimensions < 6. There are even uncountably many differentiable structures on R*!!!

Definition I1.2.2

If 21, Qo are differentiable structures (aka atlases) on M, we say that 1, {25 are compatible if 21 UQq
is a differentiable structure.
A maximal atlas is the union of all compatible atlases.
Bourbakian method: Always use maximal atlas vs. Hands-on approach: find your atlas, work with it.

Proposition 11.2.2

Suppose M, N are both differentiable manifolds, then M x N is a differentiable manifold whose

dimension is dim M + dim N.

Proof. Say (Ua, ¢a)a is an atlas for M, (Vg,13)s an atlas for N. Then {(Uy X V3, (¢a,¥8) }a,p is an atlas
for M x N.
What to check?

e Clearly a cover of M x N.
o (0a,p) : Uy x Vg — R™ x R* 2 R™*™,

e Check compatibility of charts which is similarly clear.

Quotients on the other hand, are very ill-behaved. As you know, Hausdorff spaces can have non-Hausdorff
quotients, and differentiable structure is also not respected.
Example I1.2.2
Take S' C C, let © ~ y provided that zy~! = 2" where a € R is fixed, n € Z. In fact S'/ ~= S!
when a € Q.
However when o ¢ Q, the equivalence class of any x is dense in S!, so S/ ~ is not Hausdorff. In

fact
Claim

() and St/ ~ are the only open sets.

Proof. Suppose U C S/ ~ is open. Assume U is nonempty, and let V := 7~1(U) where 7 : ST — S/ ~.
Then fix z € S, we see that [z] NV is nonempty since [2] is dense and V is a nonempty open set.

" Y
Thus z is equivalent to something in V, so [2] € U. Thus U = S/ ~. v
Note the quotient map is indeed open as well by density.

Definition I11.2.3
Let X be some space and ~ an equivalence relation on X. We call ~ open provided that 7 : X — X/ ~

is an open map.

Equivalently, if U C X is open, then {x € X |3y € U,z ~ y} = 7~ 1(x(U)) is open.

Fact: If X is second countable, then ~ is an open equivalence relation if and only if X = X / ~is an
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Lemma II1.2.3
In a compact Hausdorff space, any two disjoint closed sets can be separated by open neighborhoods

which contain these closed sets.

Proof. First we prove that if C' is closed and = ¢ C then we can separate z,C'. We know C is compact since
X is compact and Hausdorff. For each y € C, let Uy, V,, separate x,y. Then {V,} covers C, so we can take a
finite subcover V. Let V :=J, V}, and U := (), Uy,. U,V clearly separate z,C and are open.

Now take C,C’ which are disjoint closed sets. For each = € C, take neighborhoods U,, V,, separating x, C’.

Then by compactness take a finite subcover U,,. As before union the U,, and intersect the V,, to separate
e

C,c. v

Theorem 11.2.4
Take X as a topological space with ~ open on X. Then

graph ~=T = {(z,y) €e X x X |z ~ y}

Then X/ ~ is Hausdorff if and only if ' C X x X is a closed subset.

Proof. Proof of = left as an exercise. Suppose [z] # [y] within X/ ~. Then (z,y) € I', so using the basis
for the product topology, there are U,V open so that (z,y) € U x V and U x V C T'“.
Thus 7(U) N7 (V) is empty, where 7 : X — X/ ~. Furthermore, 7(U), 7(V') are open, and so they separate

Proposition I1.2.5
If ~ is open, X is second countable, then X/ ~ is second countable

Proof Idea. Take a countable basis of X and take their images. These are open, and it’s easy to check this

is a basis. —

Aside: There is an interesting non-Hausdorff topology. Namely, the closed sets in R, C™ (some algebraic
variety) are given by zeros of polynomials.

Fact: This is compact.

I1.3. Topological Groups/Homogeneous Spaces

Definition I1.3.1
We say G is a topological group provided that G is a group equipped with a topology such that the

maps

(g,h) = gh
g—g!
are continous as maps G x G — G and G — G.

Example I1.3.1
R,C,R",C", Z,ZF, and any discrete group.
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Also GL, (R), GL,, (C) which are invertible matrices. O(n), the orthogonal group which is the matrices
so A- At =1

SO(n) = {A € O(n) | det A = 1}, the rotations. Then SL,,(R) which are the matrices of determinant
one.

The circle S = SO(2). We may also consider 7" = S x - --x S, n times and 7> = S* x-- - x St x- - ..
T is compact (Tychonoff).

Example I1.3.2
Q) is the completion of Q with respect to the p-adic norm || - ||,. Write a = pFec, b = p*d where ¢, d

I;
b

Note p"™ — 0 as n — co. Furthermore Q, is a topological field.
We may look at SL(n,Q,), GL(n,Q,) which have dimension 0.

are coprime to p, then

(—k

=D
P

Definition I1.3.2
A topological group G is called a Lie group if it is equipped with a smooth differentiable structure

such that the maps

(g,h) = gh grr g
are smooth.

Definition 11.3.3

Let M, N are differentiable manifolds and f : M — N is some continuous map. We call f differen-
tiable (C*,C*, C> aka smooth) provided that for any coordinate chart (Uy,¢q) around z € M and any
coordinate chart (Vz,1g) around f(z) € N we have

fuz,ﬂ = wﬂ o f o 90(:1 : ()D(U(Y n f71<vﬂ)) g Rdim]ﬂ — ?/Js(f(Uu) N ‘/’3) g RdimN

is differentiable (C1, C*, C>°) for all o, 3. Notice these sets are nonempty as x, f() respectively lie in
each of them.

Lemma II1.3.1
This is well-defined. That is, it is independent of compatible atlases.

Example I1.3.3 (Examples of Lie Groups)
R, SY,R", 7" = S! x - - x S, GL(n, R).

Note: Famously, S? is not a Lie group. In fact SV, S', 52 are the only spheres which are Lie groups. These

correspond to unit norm in the real numbers, complex numbers, and quaternions.
Reason: Euler characteristic x(S?) = 2, and there is a theorem
Theorem II1.3.2
If a manifold M has a nonvanishing vector field (to be defined later) then x (M) = 0.

Aside: There exists an exotic S7 = Sp(2)/ Sp(1)
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Definition I1.3.4

G is a group (possibly topological, Lie) acts (possibly continuously, smoothly) on a space X (possibly

topological, smooth manifold) provided there exists a map (possibly continuous, smooth)
GxX—X
(9,x) > g-x
such that

La=z (9192) - ® = g1 (g2 - ).

Notation: One might say differentiable to mean each X — X induced by x — ¢ - = is differentiable, and
use jointly differentiable to mean G x X — X is differentiable.

Example I1.3.4
St acts on St by multiplication, R” acts on R™ by addition, and importantly GL(n,R) acts on R™

by matrix multiplicationu.

All examples given of group actions are jointly C*° (smooth).
Theorem 11.3.3
If G is a compact topological group, G acts continuously on X, X is compact Hausdorff, then X/G

is Hausdorfl.

Proof. We must check ~ is open and graph ~ is closed. Let 7 : X — X/G be the quotient map.
Take U C X open, then we see that

m i @U) ={yeX|y~a}={g-uluelUgeG}

:Ug.U

geG

is open because g - U = (¢71)~}(U) is a preimage of a continuous map.
Now we must show I is closed. Look at ¢ : G x X — X x X given by (g,z) — (x,gz). Note that im¢ =T
o

But wait! G x X is compact, so I' is compact, so I' is closed since X x X is Hausdorff. 4

Example I1.3.5
Take X = S™, G =7/27 = Zs = {1, A}. Then G acts on S™, where A -z = —x for x € S™.
Then S"/G = RP".

Example I1.3.6

Consider S2"~1 C C™ with the action of S! on C" via
e (21, 2n) = (€921, ..., %,,).
This is a continuous action on $2"~! by S'. Therefore

SQn—l/Sl — (CPn_l
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Example I1.3.7 (Very General Example)

Suppose H is a Hausdorff topological group and G C H is a compact subgroup. Then G acts on
H by (g,h) — gh. Then H/G is compact Hausdorff if H is compact. Spaces of the form H/G (even
when G is not compact) are called homogeneous spaces so long as H/G is Hausdroff. These spaces are
extremely important.

Addendum: homogeneous spaces are important because

(1) You can calculate
(2) “Systems” with symmetry are typically homogeneous
(3) GL(n,R)/GL(n,Z) shows up in number theory everywhere.
For those doubting since GL(n,Z) is not compact, look at Z acting on R. We claim R/Z is nice, check

the graph is closed!

Definition I1.3.5
We call a group action of G on a set X transitive provided that X is one G-orbit, i.e., for every

p,q € X thereisa g € G so that g-p=gq.

Example I1.3.8
The action of SO(n + 1) on S™ C R™*! is transitive. Take v € S™, and extend it to an orthonormal

basis and make these the columns of g € SO(n + 1). We see that g - ( = .

1030)

Definition I11.3.6
Suppose G acts on X, p € X, the stabilizer of p in G or isotropy group of p in G if

G, ={9€G|g-p=n}

Lemma I1.3.4
The stabilizer G), is a subgroup of G. If G is a topological group, G, C G is a closed subgroup (i.e.

it is a closed set).

Proof. Showing it’s a subgroup if trivial. We can quickly show it is closed. Why? Well if g, — g and g,, € G},
ae
then p = g, - p — g - p by continuity, so g-p =p, so g € G,. v

Future: We will prove that if G is a Lie group, H C G is a closed subgroup, then H has a Lie group

structure.
Example I1.3.9

Consider SO(n + 1) acting on S™. The stabilizer of the N := (1,0,...,0) € S™ is

SO(n+1)n = { ((1) 0) | % € SO(n)}.

This shows S™ = SO(n + 1)/ SO(n).

Lemma II1.3.5
If G acts on M transitively and p € M, then there is a bijective continuous map G/G, — M. If

G/G, is compact and M is Hausdorff, then this has a continuous inverse, so G/G, = M.




Faye Jackson September 16th, 2022 MATH 591 - 11.3

Proof. We have a surjective map f : G — M given by g ER g-p since the action is transitive. By the universal

property of quotients since for z € G, we have f(gxz) =g -z -p = f(g) this map descends as

~

G— M

2
-
-
-

N )

|
G/G,

to a continuous map. To show it is one-to-one we see that if f([g]) = f([h]) then g-p=h-p,so h=g-p =p,
so h™lg € G,,. -

Example I1.3.10
Consider GL(2,R) acting on R2. This is not transitive since A-0 = 0. But it is transitive on R?\ {0}.

1 ¢

GL(2,R)/P = R*\ {0}.

Now consider

We then see that

(in this case we’re not compact, but it still works)

Example I1.3.11

G = GL(n + 1,R) acts on R"™! and transitively on R™*!\ {0}. This descends to a transitive action
on RP™.

Consider £; = R* - eq, then

A
Gy, = ) A e RX detxs £0 5.
0 *9

Goal: G/Gy, is differentiable.

Wanted: T C G “transversal” to Gy, of dimension dimRP™ = n. We can look at

el D) ew)

(1) Suppose a Lie group G acts transitively on M. We want to endow M with a differentiable
(C1,C*, 0%, C%) structure.

(2) Takepe M, G/Gp = M.

(3) If you can find a “transversal” “subspace” of G to G, say T

Then R™ = T - /1 so we have a chart!

Recipe:

(4) Try coordinate charts T — T - p,t +— t - p.
Back to the Future: If G is a Lie group, H is a closed sugroup, then G/H is always a smooth manifold.

10
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Example 11.3.12
We’ll give one more example of a homogeneous space. We want a Lie group G and a closed subgroup
H C G, and M = G/H. This is the same as G acting transitively on M, and H = G,, for some p € M.
Note: If G}, does not depend on p, then?
So we're going to look at Grassmannian of k-planes in n-planes (R™). We call this Grg ,(R). Recall
that
Gri, = RP"! = GL(n,R)/ (; *>

*

=50(n)/0(n —1) = (SO(n)/ SO(n — 1)) /Zs

Sn—1

where O(n — 1) is embedded in SO(n) as

detA 0
A .
0 A

In the general case take ey, ..., e, as a basis for R", p := (e1,...,ex) is a k-dimensional subspace. Then

we can define an action by
GL(n,R) x Grg,, — Grgp
A V={A-v|veV}

This is also transitive. If V' = (v1,...,vx) is a k-dimensional subspace, then A = (v1,...,vg,7,...,7)
where we have extended to a basis maps p to V. Thus Gry , = GL(n,R)/ GL(n,R),. We see that

*
AeGL(n,R), <= A-p=p < A ¢, €p A:(Z )
*

where the blocks are k x k,k x (n —k),(n— k) x k,(n — k) x (n — k).
Then the transversal subspace making this a manifold is an (n — k) x k block of anything in the lower

left hand block, 1s on the diagonal, and then 0Os elsewhere.

Lemma I1.3.6

If g =g p, then G, = gG,g~*. If we have a transversal T}, we should try T, = gT},g~".

Exercise 11.3.13

SO(n) also acts transitively on Gry ., so one can do the same work here.

Example I1.3.14
S =R/Z,T" = S' x --- x S = R"/Z". In these cases everything we said works although Z" is not
compact.

In contrast we have the bad (interesting) example given by Z acting on S! by irrational rotation.

11
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Definition I1.3.7

Let T be a discrete group acting on a topological space X. We say the action is properly discontinuous

provided that I'" - & can be taken to be “separate.” We make this precise via

e Namely, for any compact set K C X, we have (I - x) N K is finite. In other words,
'xX —X

is a proper map.
o If for some z € X, € I', we have - p = p, then v = 1. (This is also said as I" acts freely, and

is only included by some author).

Exercise 11.3.15
Suppose I" acts on a manifold M properly discontinuously, then M/T" is a manifold.

The same holds for differentiable (C*) structure so long as I' acts via differentiable (C*) maps.

Example I1.3.16
SL(n,R)/SL(n,Z) is the most famous example of this type. This is in fact the space of lattices in R™
of volume 1. This has a deep connection to number theory.

Particularly the case n = 2 is important because the tori carry complex analytic structure.

III. Tangent Vectors/Differentiation

Take M to be a differentiable manifold. How can we define a “tangent vector” on it. Well a tangent vector
for VC R"™ is just a choice (p, h) where p € V,h € R™.

So what if we just work chart-wise for charts (¢n,Us) 7 Well then for a p € M, we can look at a tangent
vector (¢a(p),h) € T, (p)Va- But how do we look between charts??? Aka what does (¢« (p), h) look like in
Va?

Well we can look at the transition map T, 5 = ¢ o ¢, '. Then we can define an equivalence relation
(#a(p),h) ~ (s(p), h') <= dTap(h) =1'.

Definition III1.0.1

We define the tangent space
T,M = {[v, Ua, ¢a)] | [v, (Ua, ¢a)] is an equivalence class of tangent vectors in charts}

Nice interpretation, p € R™, w € T, M. Take ¢(t) differentiable for t € (—¢,¢), ¢(0) = p, then we can look
at ¢'(0).

We can talk about two different curves then say c1, co are equivalent as tangent vectors if ¢; (0) = ¢5(0).

For p € M a differentiable manifold, and a differentiable curve ¢(t) through that point at ¢t = 0, then [c],

is a tangent vector defined at charts as ¢/(0) upon appropraite choice of coordinates.

12
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Definition II1.0.2
Let f: M — N be a differentiable map at p € M. We define

dfp : Tp]V[ — Tf(P)N'

Take some differentiable curve ¢ representing our tangent vector in T,,M. We can then take df,([c],) =

[fodiw € TN

Also T), M, T,y N have vector space structures inherited from the case in R", and as before for multivariable

calculus, dfj, is a linear map.
Recall I11.0.1
Let f: U C R™ — R™. be a differentiable map. Recall from multivariable calculus that if p € U then

we define df, to be the best linear approximation of f at p, that is we require

iy L0+ =10 =05E)

We can compute that in the standard coordinates

of of
ae (P) g
Ofm Ofm
(()T (])) o ((");1,‘

Lets make the definition of tangent vectors with curves more explicit

Definition IT1.0.3
Call two differentiable curves ¢, d in M with ¢(0), d(0) = p equivalent if for one (and hence every chart

in the atlast) Uy, ¢, we have

(¢a 0¢)'(0) = (¢a ©d)'(0).

Then
Tp,M = {[c] | ¢: (—&,e) — M differentiable at 0, ¢(0) = p}.

Claim
T,M has a vector space vector of dimension dim M.

Proof. Use the coordinate chart definition. Take A, B € T,M. Then in coordinates A, B correspond to

Vo, Wa € Ty, (p)R™ for some chart (Uy, 0a)-
Then vy +wq € Ty, (,nR", take A+ B = [Va + wg]. We should check that it doesn’t matter where we do

the addition. Well let vg, wg represent A, B in T, ,,)R".
We check that

(ATpa) s (p) (V8 +wg) = (ATpa) ps(p) (V8) + (AT Ba) g5 (p) (W5) = Va + Wa-

]

Scalar multiplication is quite similar.
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Recall I11.0.2
Recall Definition I11.0.2 of the derivative of a map f: M — N which is differentiable at p.

Note on notation first: We can do all of

(fX)p = Dpf = Dfp - (dfp = dpf)

But we really shouldn’t be using df, = d,f, as later it will confuse us with differential forms.

Now we give the definition in terms of charts. Take a chart (Ua, @) about p and take A € T, M,
)R']l.
Take some other chart (V1) about f(p) in N. Then we take Df,(A) to be represented by

then A is represented by some v, € Ty, (,

D(iy 0 fo p;l)ﬁi (p)(v(y).

Theorem I11.0.1
If f: U — V is differentiable at p € U where U C R",V C R’ are open, and Df, is onto, then
F1(f(p)) (aka a level set) is a manifold.

Might be nice on homework. . .
Convention: All manifolds are assumed to be differentiable (in fact C'). Later we will prove that
Theorem IIIL.0.2

If M has a C* structure then it has a compatible C* structure.

Proposition IT1.0.3 (Chain Rule)
Let f: M — N,g: N — O be differentiable maps, then g o f is differentiable and

Dy(go f) = Dypygo Dyf.

Writing this diagramatically

Dy(gof)
T,M s Tgos) (0O
Q’f Df(V
Tf(p)N

Proof. Use curves (aka hide the coordinate charts in the equivalence of curves with charts)! To do this, let ¢

be a curve then

Dygo Dpf([e]) = Dypg([foc]) =lgofod=I(gof)oc = Dylgof).

¢

What is a diffeomorphism?
Definition I11.0.4

A differentiable map f: M — N is called a diffeomorphism provided that it is bijective and its inverse
g : N — M is differentiable.

A map f: M — N is a local diffeomorphism at p € M if there exists open neighborhoods U of p
and V of f(p) usch that f: U — V is a diffeomorphism.

14
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Remark II1.0.1

In this case we have
Id = Dy(Id) = Dy(g o f) = Dypyg © Dy f-

That is D, f has an inverse map.

Furthermore, coordinate charts ¢ : U — U C R™ are always invertible.

Corollary II1.0.4
If fis a local diffeomorphism at p, then D, f : T, M — Ty, )N has an inverse. This implies that
dim M = dim N about p.

Theorem III.0.5 (Inverse Function Theorem from Real Analysis)
If f:U— V withU CR", V CR™ has an invertible derivative D, f at p, then there is a neighborhood
U’ C U such that f: U — f(U’) is a diffeomorphism.

Theorem III.0.6 (Inverse Function Theorem for Manifolds)
Suppose f: M — N is C! and suppose D f, : T,M — TfpyN is invertible (as a linear map), then f

is a local diffeomorphism at p.

Proof. Fix charts (U, ), (V, ) about p, f(p), with U C R", so that f(U) C V C R™ (this requires minor
yoga). Call T =1 o fop!

o
By the chain rule, DT is invertible, and so n = m. By the inverse funct 4

Definition III.0.5

Suppose M is a C! manifold, we say that S C M is called a embedded submanifold of M provided
that for all p € S, there exists a coordinate chart (U, ) about M such that <,o|s :SNU — RF C R™.
That is

S={qeU]|plq = (*...,%0,0,...,0).
We call such a thing an adapted chart (adapted to S).

Note: S is a C''-manifold in its own right.
Example II1.0.3
0,M C M, Rt CR"”, 8¢ C S™ C R**!, RP* C RP".

Example I11.0.4

Consider T? =2 R?/72 = S1 C S1, and let p: R? — T2. Let £ C R? be a line forming an angle of « to
the origin. If o = 0 this is S* x {1}. If o & 7Q then p(¢) is dense in T2.

This means that p(¢) will not be a submanifold when « ¢ 7Q. This doesn’t cross over itself, but the

density prevents you from taking a small open chart making the rest a line.
Definition II1.0.6
Suppose f : M — N is a C! map. Then f is called an immersion provided that for all p € M we

have that D, f is injective.

15
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This will imply that f(M) is “locally” a submanifold.

Definition II11.0.7

We call S C M an immersed submanifold if S is a manifold, and ¢ : S < M is an immersion.

Definition II1.0.8
Call amap f: M — N which is C! a submersion provided that every value y € N is a regular value.

That is, for every o € M such that f(z) =y we have D, f : T,M — T, N is surjective.

Convention: If f: M — N and y & f(M) then y is a regular value of f.
Note: If M — N is a submersion, then dim M = dim T, M > dim Ty N = dim V.
Question: Why is dim M = dim T, M for all x € M? Well it is clear that if ¢ is a chart we have

dim 7, M = dim T, R"™ M = dim M.
Note that once we pick a coordinate chart ¢, it induces an isomorphism of vector spaces
TIM ~ T(p(x)Rdim M ~ Rdim M

This isomorphism is given by taking representatives of the equivalence classes by which T, M is defined. The
isomorphism is intimately related to ¢.
Theorem I11.0.7
Suppose f: M — N and ¢ = f(p) is a regular value, then f~1(q) is an embedded submanifold of M.
In fact f~*(q) has dimension dim M — dim N.

Proof Idea. Really, work with a coordinate chart for M at p € M. Select a chart (Wg,¢¥g) about ¢ = f(p) to
R™ with dim N = n. Now take a chart (Ua, ¥a), @o : Uy — R™ with dim M = m and U, C f’l(Wg). For
convenience let p = ¢ (p) and ¢ = ¢¥g(q).

Now consider the map Fpg = g0 fop, ! : R™ — R™. It now suffices to check the claim for the coordinate
map F,5. We want F~1(q) to be a submanifold. Well, we know that D,F : T,R™ — T,R™ is surjective.

This means m > n and ker Dp /' € R™ has dimension m — n. Put this kernel into R™ as the last m —n
coordinates, to do this use an invertible linear map B with B~!(ker D, F) = R™ ™",

We may then precompose to get F' = F o B.We know DBq(p)F = DpF o B, and so this is surjective with

kernel R™~". We define an extended map
G:R™— R"xR™™"
Gy, xm) = (F(z1,..,xm), 2 +m—n+1,....2,),
then Dp-1)(G) is an isomorphism. Why? Well it has the form (Dp-1(p)F,Idgm-»). This is clearly

surjective with zero kernel.

Now use inverse function theorem on G. G is a local diffeomorphism, so G=1(q) — R* C R* x R™~" = R™.
" Y
We then use G to get an adapted coordinate chart! v
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Example I11.0.5
SL(n,R) C GL(n,R) is an embedded submanifold (seen on HW). To show this, we proved det :
GL(n,R) — R has D,, det is surjective for any p € SL(n, R), and so SL(n, R) = det™'(1) is a submanifold.

Idea of proof: somehow apply inverse function theorem
Summary of the proof of the regular value theorem in steps:
(Step 1) Use coordinate charts to reduce to a problem about F : U — R¥ so that U C R™ is open.
(Step 2) We have F : U — R™ and g a regular value of F. We want to show F~1(g) is a submanifold of R™.
We know that p € F~1(g) DFj is surjective and

OF, ... OF
oz o,
DFp=| :
oF, .. OFy
oz oz,

Since DFjy has rank k, so it has k linearly independent row vectors. We may assume without loss of
generality that they are the first k.
(Step 3) Take G : R™ — R¥ x R"~F to be defined by G(x1,...,2,) = (F(1,...,Tn), Tht1,---,Tpn). Then we

have
oFr, .. OF
811 6ack
A=| :
oF, ... OF
811 8wk

A x
DG, =
0 Id.

This is obviously invertible. Thus G is a local diffeomorphism, which means G~1({¢} x R*~¥) willbe
locally a submanifold.

(Step 4) F~1(q) = G'({q} x R*7*). Thus F~1(q) is locally a submanifold.

Example II1.0.6

There is a canonical submersion given by R” — R¥ with (xq,...,2,) = (z1,...,7%) for k < n.

Another way of stating the regular value theorem is
Theorem 111.0.8
If f: M — N is C! and q is a regular value, then for any p € f~!(q) there exist coordinate charts
(U, ), (V,1) such that
R™ R™
V) U
p(U) 2122 y(v)

(X1yee oy @m) — (21,00, Zp).

with m = dim M, n = dim N. This is called the normal form.

What is the engine of the IVT? The contraction mapping fixed point theorem!!!
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Drives many things in the subject, such as existence and uniqueness of solutions of ODEs. It also shows
up in dynamics.
Example IT1.0.7
Consider O(n) = {n x n matrices with AA’ = Id}. We show it’s a submanifold of GL,(R) C R" by
looking at

F: M,(R) — Sym(n x n) = R(n+1)/2
A AAT,

where Sym(n x n) are the symmetric n x n matrices. We must show that the identity Id is a regular
value.

We must calculate DF, where g € F~1(Id), so gg* = Id. We calculate DF,(v) using curves, where
v € R". Consider

F(g+tv) = (g+tv)(g+tv)' = (g +tv)(g" +toT)
=TId +t(gv?) + t(vg") + 12 - %

d
—F(g+t =gl T
gllott)| =gv +vg

The claim is that any symmetric matrix has this form. Set v = wg, then

DFy(v) = w" + w.

If A is a symmetric matrix, then taking w = % is sufficient.

Alternative approach: Compute the kernel ker(DF,). If v € ker(DFy) then gv? = —uvg®, so vg? is
skew-symmetric. The dimension of this is n(n —1)/2.

Then the dimension of the image of DF is
5 nn—-1) nn+1)

2 2

But this is exactly the dimension of the symmetric matrices, and so we’re done.

SO(n) is the connected component of the Id in O(n) because det : O(n) — R takes values in {+1}. Thus
SO(n) is clopen in O(n).

Fact: SO(n) is connected.

Corollary I11.0.9

Submersions are open maps

¢

Proof. The local normal form is a projection, which is an open map.

Now lets look at examples of submersions.
Example I11.0.8

If F, M are manifolds, then we can look at the projection M x F' — M. Then this is obviously a
submersion!

We call this type of submersion a trivial bundle

18
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IV. Fiber/Vector Bundles

Definition IV.0.1
A submersion 7 : M — N is a fiber bundle provided that
e T is surjective.
e We equip N with a covering by open sets {V,} such that 7=%(V,,) is diffeomorphic by ¢, to

V., x F for some fixed manifold F'. These are called local trivializations

e For each V,, the following diagram commutes
(V) —22— Vo x F

\ s
-
e
T
v

1%
The manifold F' is called the fiber of the bundle.

Example IV.0.1
N x F — N, and for M the Mobius band, M — S*, with F = (—1,1).
Note that the Mébius band is not diffeomorphic to S* x (—1,1).

If N C RY is an embedded submanifold, we can consider the unit tangent bundle
S(N)={veTpN [pe N, || =1}.
For N = S? is sort of complicated. For N = S, we get
N(S') = S' x {0,1}.

Fact: S(S?) is not a trivial fiber bundle.
HW: S(S3) is a trivial bundle. Hint: It’s a group.
Definition IV.0.2

Let M be an abstract differentiable manifold. As a set the tangent bundle of M is

T™ = [] T,M.
peEM

Claim: This is a fiber bundle, in fact it is a vector bundle
Definition IV.0.3

A vector bundle 7 : M — N is a fiber bundle with fiber F' a vector space such that 7=1(2g) is
intrinsically a vector space and for any local trivialization (Us, ¢, ) induces a linear map o, : 7~ 1(29) —
{z0} x F for all zy € U,.

Equivalently, if (Uy, ¢a), (Ug, @) are any two trivializations, then
Pa

T

W_l(UaXUg) (UaNUg) x F

~_

®p
has gpgl o, (called is a linear map (and therefore a linear isomorphism). This allows one to place a

canonical vector space structure on 7~ !(zg) for any 29 € N.
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Recall the claim from last time: T'M is a vector bundle over M. To do this we need to show that T'M
carries a manifold structure. It turns out we lose regularity (summed up below)
Remark IV.0.1

If M has a C"-manifold structure, then TM has a C"~'-manifold structure. Thus M must have at
least C%-structure to get TM with Cl-structure (that is a manifold).

Note: In the end this is not a problem, as we will later show that every C'' manifold has a C'>

structure

Proposition IV.0.1
If M is a C"-manifold then T'M = ]_[p T,M is a C"~1-manifold which is a vector bundle over M.

Proof the Tangent Bundle is a Vector Bundle. Take M to be an abstract differentiable manifold, and 7 :
TM — M the obvious map. Call m := dim M, then we’ll take F' := R™. We must do two things

(a) Give T'M a manifold structure.

(b) Show it can be endowed with a vector bundle structure.
We take a covering of M by charts (Uy, ©a), @a : Us = W, € R™. Note ¢, is in fact a diffeomorphism, by
how we’ve set up the definition of differentiability on manifolds.

Then we’ll do each of the above
(a) We know that TW,, C R*™ is an open subset, as TW,, = W,, x R™.
Then

TU. = [ ToUa 2% [ TpuinWa = TWa.
peUa peUq
We take this as a coordinate chart on T'M. Namely, take T M to have a topological strcture with
basis the open sets {TU,}.
Then we claim (TU,, Dy,,) is an atlas. We must look at the transition map, that is
TU,NTUg

Do (TU, N TU/g) Dypg (TU, N TUB)

DypgoDy !
By the chain rule this is D(¢g o ¢, '), which is C"~! by assumption. Thus this is a C"~!-atlas.
(b) We now will show this is a vector bundle. Note that

mUs) = [] ToM.
p€Ua

We then have U, 2% W, C R™. Note then
7 (Us) 222 TW, = W, x R™,
This is nearly our trivialization. Follow up with (¢;!,1d) to get

)OD‘Poz

-1
7 (U,) P 10D R,

Call this v,,. Clearly projot, = 7, so this is a fiber bundle.
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Last thing to check is that 1), is linear on fibers. This comes from the fact that 7),U, inherits its
linear structure from T%(p)Wa.
That is

(p5 ! Id)oDppa {
—

Yo : TyUy = T,M p} x R™

is linear because D¢, is linear by construction of the linear structure on 7}, M.
o
v
We’ll now do constructions with vector bundles! Take V, W to be vector bundles over M with maps 7y, mo
to M.

e HW5: Define V@& W — M, and if V,, = 7, }(p) and W, are similar then the fiber over p should be
Vo @ W,
e We can take V* with fibers V', where x denotes the dual space. For this one looking fiber by fiber

¢t (p) = {p} x V
is linear, and we have
Gn Py x V" = (771 ()"
This goes in the opposite direction as desired, but ¢, is invertible! Thus we can look at
(@e) " ()" = {p} x V™.

e If V. W are two vector bundles you can look at ¥V @ W.
e Important one down the road: Given one specific vector space V. We cal look at the k-fold tensor

product V®V ® --- ® V. Hiding inside of this is something important, the k-alternating linear forms
—_— ——

k times
NV
We can of course do this with V as a vector bundle /\k V. Later then /\k TM will be differential
k-forms, which will lead to de-Rham cohomology at the end.
Recall 1V.0.2

A multilinear form on V7, ..., Vi is a map

VieVod -V =R
if A(v1,...,v;) is linear in each coordinate. If V.=V, = --- =V}, then ) is called alternating when
MU,V ooy Vg UE) = = A (V1,0 Uy e, Uy oo, V).

Prime example: Determinant, det : R" x -+ x R" — R.
S ——

n times

V. Vector Fields/Derivations/Lie Brackets
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Definition V.0.1

If E S Bis a fiber bundle then we call o : B — F a section if 7 oo = Idp.

Definition V.0.2
A vector field V' : M — TM is a section (continuous, C', C*, C°)of TM.

Example V.0.1
If M =R", then we have very special vector fields which are constant at ey, ..., e,. We often denote

these vector vields by a%i, to specify that they are tangent vectors (and thus related to differentiation).
Then if X : R™ — TR" is any vector field we may write for all p € R"

i

0x1

where a; : R™ — R is the i-th coefficient function. X is C" if and only if all the a; are C".

X(0) = a1(p) 5 () + -+ a0 (p) 5 (),

How does one check X : M — T'M is a differentiable vector field in practice? For convenience consider M
is a C* manifold. Take a chart (Uy, o) for M. Then Dy, : TU, — T(pa(Us)) € TR™ Thus we want to
know that

2 Doo(X(931(2) : paUa) = T(0a(Ua))

is differentiable.
Exercise V.0.2

If f: M — Nis C" then Df : TM — TN is C"~', where the obvious definition is

Df((p,v)) = (f(p); Dpf - v).

Of course if f is C°° then D f is C'*°.
Check: Use coordinates. Take coordinates (U,¢) on M and (V,¢) on N. Then Dy, D1 provide

coordinates on T'M, TN and so

DiypoDfoDe ' =D(pofop™t).

By definition 1 o fo ™1 is O™, s0 D(p o f o~ 1) is O™~ L. Perfect!

Back to vector fields. To check smoothness (or do any calculation) write X in a chart. We have eq, ..., e,
on ¢(U). We can pull back ey, ..., e, to get 6%1, e %, SO (f% = Dy (¢ ")(ei). Then of course

X|, = Zai(p)a%i(p)

where a; : U — R is the i-th coordinate function for the chart (U, ¢).
Warning: 6%1- is a vector field. There will also be dx;, which are cotangent fields, which are differential
1-forms, that is local sections to T*M = (T'M)*. Then dz; € T*U,.
Definition V.0.3
Last time we learned how to take the dual space to a vector bundle. Thus we define the cotangent

bundle of M to be T*M = (T'M)*.

To summarize what we just did

22



Faye Jackson October 3rd, 2022 MATH 591 - V.0

Definition V.0.4

If (U, ) is a coordinate chart on M we define local coordinates for TM via vector fields

0

U —=TU

p— Dap(p)(@(:l)(ei)'
Then we define dz; : U — T*U at each point p € M so that {dx;(p)}i=1,.. . as the dual basis to

{0}

Example V.0.3

Consider the simplest nontrivial manifold, that is M = S'. Consider two charts o1, %=1 : (=, 7), (0,27) —

S1 given by 6 +— €. These cover S'.
We can then take

X(e™'(0) = sin(t) o

and choose a compatible function for X (¢=1(¢)).

Note: If E =+ M is a vector bundle and o1, 0 : M — E are sections, then for any functions fi, fo : M — R
We can take

(fro1 + fao2)(p) = fi(p)oi(p) + fa(p)oa2(p).

In algebraic terms, this means C*-sections of a vector bundle form a module over C*(M), which is the ring

of C* functions M — R.
Definition V.0.5

A linear map 0 : C*°(M) — R is called a derivation at p provided that for all f, g € C°°(M) we have

a(f-g)= f(p)olg) +9(f)g(p).

To spell out linearity we want for ¢ € R that

aef) = edlf)
o(f +g) = a(f) + dlg).

For Non-Michigan students: 115/215 are single/multi-variable calculus.
Example V.0.4 (115/215 Example)
Take M = R. The simplest derivation is 9(f) = f'(p).
For f : R™ — R we can take the directional derivative over a vector v € T,R™.
Likewise for f : M — R where M is a C°° manifold for any (p,v) € T, M we can take 0, (f) = D f,(v).
This gives us a derivation 9, : C*°(M) — R.

Remark V.0.1

One can alternatively frame tangent vectors in terms of derivations on a manifold. Professor Spatzier

23



Faye Jackson October 5th, 2022 MATH 591 - V.0

thinks this is beautiful and also useless. One must always eventually work with charts or use a Lie group
structure.
Note for the very interested reader: for C™ manifolds where r < oo these two notions are not actually

equivalent, see [tangentPlanes] and this mathoverflow post

https://mathoverflow.net/a/358273

Announcements
e HW5 Deadline extended to 10/7 Friday 11pm
Definition V.0.6

Suppose we have two vector-bundles V, W over M, N respectively. A map of vector bundles consists

of two maps ® : V — W and ¢ : M — N (C" for whatever r you want) such that the following diagram

commutes
y—2 oW
‘ﬂ'J/ T
M 7> N
and also

O 7 0) = T (0(p)

is linear. Call (¥, ¢) a vector bundle isomorphism if there are inverses (¥, 1) to ® and ¢ respectively.

In this case we call V, W equivalent.

We call V trivial if it is equivalent to a trivial bundle R™ x M, with R™ = 7~ 1(p).

For the trival bundle 7 : R x M — M we have lots of sections, say o;(p) = (e;, p), e; € R a basis of R.
The o; are smooth vector fields and {o;(p)} are linearly independent and in fact a basis for 7=1(p) for all
pe M.

Thus we get ¢ sections of 7 : R x M — M which are linearly independent at every point. The converse

also holds!
Proposition V.0.1

Let 7 :V — M be a vector bundle of rank ¢ (that is 7—1(p) = R¥). If there exist ¢ sections o1,..., 0
which are linearly independent at every point then V is trivial (i.e., isomorphic to the trivial bundle of
rank /).

Proof. Consider the map
R x M —V
¢
((ala LR af)’p) — Zaiaz(p)
i=1
<
Corollary V.0.2

The tangent bundle of a differentiable manifold is trivial if and only if there exist dim M many vector

fields which are linearly indepenent at every point.
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Remark V.0.2

Warning: There are two senses in which sections o; may be linearly independent. We can have that

Zaioi =0

implies a; = 0. We can also have linear independence at every point, namely for every p € M we have

Zami(P) =0

implies a; = 0. We'll call the latter notion linearly independent pointwise.

in the space of sections

Consider S2 = M. Then X has a non-zero vector field which is 0 somewhere but not 0 everywhere!
X is linearly independent as a single vector in the space of sections, but not at every point.

Notice that
dim{sections of V - M} = 00

unless V or M is of dimension 0.

Last time: We looked briefly at derivations as point p € M. We’re going to continue to talk about them ®
Example V.0.5

Consider a smooth vector field X on M and we define
A:C®(M)— C®(M)
(Af)(p) = Oxp)(f)

where Ox ;) is the directional derivative at p in the direction of X (p) (see last time).

Then in fact we have
A(f-g)=Ff-Ag+Af-g.

Example V.0.6

Consider X = y%, Y = xa% on R3. Then we're going to look at

xon=(68) (5)
0 0

(2o, 00
V8" oy TV ox oy
32
- y@ Ty 0xdy’
What is this??? It’s not a vector field. .. What about the other way

von-(:8)(63)
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We can view X, Y as Ax, Ay : C®(M) — C°°(M). Then look at it as Axo.y = Ax o Ay and likewise.

Now we can consider
0 0
XoY - YoX=y— —z—.
o o y 3y T e

This is a vector field!

Theorem V.0.3

Let M be a smooth manifold with smooth (C? is enough) vector fields X, Y. Then in fact XoY —Y o X
is a derivation C*°(M) — C*>°(M).

Because of this we'll call [X,Y]: =X oY —Y o X, and we’ll call it the Lie bracket of X and Y.

Proof. Linearity is immediate. We just need to check the product rule. Namely we must check
(X, Y](fg) = (X, Y]f)g + f([X,Y]g).
<
Theorem V.0.4
Every C*° derivation ¢ at p defines a tangent vector to p, i.e., there exists v € T, M such that § = 9,.

Corollary V.0.5
Every derivation A : C*° (M) — C°°(M) defines a vector field.

Example V.0.7

Take X = %, Y = 8%' Then [X,Y] = 0, as the mixed partials are equal on smooth functions.

We don’t see the geometry in these formulas. We need to see the geometry!!!
Lemma V.0.6

Ifv e T,M, then 9,(f) == D, f-v is a derivation. Moreover if 9, = 9,,, then v = w, where v, w € T, M.

Proof Idea. We've already seen the first property. For the second, take a coordinate chart (U, p). We
can take Dp,(v) = 6%1 and Dpp(w) = 8%1' We can do this unless w = a - v. This works because we have
linearly independent vectors Dp,(v), Dp,(w) and take a linear map A taking these to eq, es. Replace p by
Aop.

Look at 21 : p(Uy) — R, which is the coordinate (projection) map to the first coordinate. We see that

0
aixlxl—l

0
aile‘l—O

This will show 0,, 0,, disagree on this function. .. but wait! z; is only defined on a small neighborhood U, of

p.

We need to understand the relationship between C*° (M) and C*°(U) for U a neighborhood of some p € M.

We know one map
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C>®(M) — C>(U)
f  E— f’U
so that §|U =g.

Need: Bump functions

e Ad: This comes up a lot

e On R we want a function f(x) that looks like

N

Warning: Cannot do in C¥(R).
o We take

B e TE ifre (-1,1)
V@) = { 0 if 2 ¢ (—1,1)

e Likewise for 1) : R® — R, where we want 1) = 0 outside B1(0) and v is C* on R", and # 0 on By (0).
We take P (z) = ¢(|z[*).

e We can generalize this. Want ¢ = 1 on By/3(0), ¢ = 0 outside B1(0). We pick something like
B@) -6 (ke )-

e We can use these to construct our g.

We can prove Lemma V.0.6 by taking everything locally, and using bump functions
Corollary V.0.7

There exists n linearly independent derivations since T, M — {derivations at p}.

Lemma V.0.8

Derivations at p form an n-dimensional vector space.

Proof. Tt is at least n-dimensional since {d, | v € T, M} is n-dimensional.
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Now for f € C*°(M), we can use bump functions to look locally at C*°(U,), and work locally around 0 in

R™. Consider

I, ={f € C* near p| f(p) = 0}
Iy = {Z figi | figi € Tp}

Then we see that

6(f-g)=0(f) glp)+ f(p)-d(g) =6(f)-0+0-d(g9) =0.

Therefore, the derivations vanish on Z2. Thus the derivations embed into (Z,/Z2)* (which is a vector space.

We prove another result Corollary V.0.12 to finish this proof.

Corollary V.0.9
We have that

by equality of dimensions.

Lemma V.0.10

f(x) = f(0) +zifi,

with £;(0) = $L(0).

Proof. By Fundamnetal theorem of calculus, we have that

fa) = 1O+ [ Grear

Lemma V.0.11

ij=1
Proof. Apply last lemma to f;(x).

Corollary V.0.12
dim(Z,/Z7) = n.

28

{derivations at p} = {8, | v € T,M} = (Z,/Z})"

Suppose f: U — R, C* with 0 € U open in R", then there exist C*° functions f; on U such that

Suppose f is C*° in R™ near 0. Then there exist C*° functions f;; on R"™ near 0.

F@) = 50+ Yol o)+ 3 wiay fi).
i=1 !

o
v

¢
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Proof. Apply the lemma just above. For any ¢ € (Z, /Ig)* we can take locally

as
since § vanishes on Z7?, so we can say it vanishes on x;x; fij(x) above. The proof in general is similar. &

Dealing with germs of functions. Fix p € M a C'°° manifold. Suppose f € C* is defined in an open
neighborhood Uy of p, and g € C* is defined on U, > p. We say f, g define the same germ if

f’Ufng = 9|Ufng'
Note: f1, fo having the same germ [f] and g1, ¢> having the same germ h, then f; + g1, fo + g2 define the
same germ. Really f1, fo having the same germ defines an equivalence relation.
Partial derivatives are well-defined on germs. They’re somewhere “between local and infinitesimal.” So

note, we have

(1) Globally defined functions f € C*(M)

(2) Locally defined functions f on some open neighborhood of p.

(3) Germs at p

)

(4) Partial derivatives at p.

where the order reflects closer and closer to infinitesimal information. Note that Ip,Ig make sense for germs.

Furthermore our above discussion tells us

dim 7, germ /I, =n.

,germ

It also has the falling property. Given ¢ : M — N, and a germ [f] on N. Then [f o ¢] in fact defines a germ
on N. In representatives this takes f : N O U — R and compose fo ¢ : ¢~} (U) — R. This does not depend

on the representatives. We then get a map
P Iso(p)/Ig(p) - IP/I;%
(1= [f o ¢l

We have a duality! In diagrams we have

T,M ﬂ) T«p(p)N

! !

« ()" X
(To/72) 0 T/ T2,)
Ip/Iz% ¢ o IS"(P)/IZ(}?)
because of our discussion above concerning identifying 7, M with derivations and derivations with the middle

row. Then we can think of all this as

TiM =1,/1;
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which is the cotangent space at p. Then we have a duality
" TN —=>T*M
i : TueM — T, N.

Announcements

e Move midterm by 1 or 2 weeks.
e Bonus 5 + HW6 Due Friday 11PM
Last time: Take a chart ¢ : U — R™ which takes p to 0. We really want to take a smooth f on ¢~1(B.(0))
to a smooth f which is 0 outside ¢ ~*(B2(0)).
For this, we take a bump function p : R" — R which is 0 outside Bs.(0) and which is 1 inside B.(0).
Now back to immersions, submersions, and regular values.
Recall V.0.8
Let M, N be C* manifolds, ¢ € N is a regular value of f : M — N if Df,, : T, M — T, N is surjective

for all p € f~1(q). Note that if ¢ ¢ Image(f) then ¢ is regular

We recall a bit of measure theory. Let A C R™ and define vol(A) = [ 4 Ldz. Lebesgue measure is preferable,
but we say A mas measure zero if vol(A) = 0.
Definition V.0.7

Suppose M is a C! manifold. Consider B C U some chart. We say B has measure zero if o(B) has
measure Zero.

Note this is well-defined since the transition maps are C'', which gives for two charts o, that

vol(¢(B)) = '/(B> 1dx

— [ det(Dwoy ), do
©(B)

Note then that volume changes across charts; but zero volume is well-defined.
Say B C M has zero measure if for all charts (U, ) we have vol(o(BNU)) = 0.
We say A C M has full measure if M \ A has 0 measure.

Theorem V.0.13 (Sard’s Theorem)
Let M, N be C* manifolds and f : M — N be smooth, then the set of regular values has full measure.

Warning: needs C* (at least some C* for k large enough).

ae
Proof Idea. Approximate f by a linear map Df = L. Actually lol Professor Spatzier doesn’t know v

Example V.0.9

Here’s an application. To show SL,(R) is a manifold it suffices to show 1 is a regular value of det
since SL, (R) = det™'(1).

Note det(AA) = A\ det(A) for A € GL,(R).

Claim

If 1 is not a regular value, then neither is A" for A # 0.
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If )\ is nonzero, then A 2 X - A is invertible. Suppose A" is a regular value. Then fix A so that
det(A) = 1. Then we see that D 4 det is surjective if and only if

DA(det om)\) = Dy det ODA(m)\)

is surjective, which follows by regularity and invertibility of m.

Now by Sard, since any {A\" | A # 0} doe snot have measure zero, 1 must be a regular value.

The simplest immersion is given for k < n as
RF < R"
(1,...,2k) = (T1,...,2,0,...,0).
Proposition V.0.14

Suppose f : M — N where k = dimM,n = dim N is an immersion at p, so that Df, is injective.
Then there exist charts (U, ¢) at p and (V, ) at f(p) so that ¢ o f o ¢~ ! has the form given above.

Proof. Fix arbitrary charts (U, ¢) and (V,v) as well. We’ll work on the charts, and this is good enough.
From now on conflate f with its coordinate map.

We know D f, is injective and n x k so we can look at

Aq
Ay

We know that the rank of A is k, so there exists k linearly independent rows. We can compose with an

)
(0 )

We can then get a local diffeomorphism to define coordinates in R™. By construction in this chart f has the

desired form. . . v

inverse to these rows to get

Then Ao F : RF — R” extends to R® — R”.

This gives us for the derivative

Announcements

e Midterm remains on Wednesday October 19th in class.
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V.1. Flow on Vector Fields

How do we flow on vector fields? That is how do we think of the vector field as a field of force/acceleration
for a particle.
Well we wish to fill up a manifold M with curves and then differentiate them! That tells us the vector
field at every point. However, we must avoid crossings so we can decide where to take the vector field
Recipe:
(1) Fill up M with disjoint differenitable curves ¢;.
(2) Then take X(p) = ¢p,(p) for ¢p, a curve through p.
(3) What about C°,C*,...7
(4) Along a C'*°-curve ¢(t) the vector field is C*°, “transversally” to the curves regularity is unclear. But
if ¢ — ¢y, is sufliciently differentiable, then all is good.
Example V.1.1

Strange example. Take an angle o € 27Q and take a line through the flat torus which forms an angle

For convenience here is a picture of curves in the flat and curved torus

1.0

0.8 1

0.6 4 —— T—

0.0+ T T T T
0.0 0.2 04 0.6 0.8 1.0

(a) Flat torus as square in R? with (b) Curved torus embedded in R?.
edges identified.

This picture is taken from [eltzner].

We want to go the opposite direction. Given a vector field, how do we produce a flow which incudes it?
Definition V.1.1

Let X be a vector field on M. We call ¢ : (a,b) — M a solution curve for X provided that for all
to € (a,b) we have

d
— t) = X(c(tp)).
Sl et = Xtetto)
In coordinates, for a C*°-chart U take standard vector fields %. Then we know

" )
Xy =) aip)5—
i=1 v

X is C*° if and only if a; is C°.
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Write ¢(t) = (c1(t), ..., cn(t)) in these coordinates. Then we have that

¢(to) = (¢1(to), - -, nlto))-

To require that X (c(t9)) means to require that

3 aulelto)) g (elt0) = 3 alto) - 5 (elto)).
i=1 ¢ v

i=1
Therefore we must have a;(c(to)) = ¢i(to). We have that the a; are given by the vector field. What’s not
given is the C’s
“Bacid ODEs, Vague.” For a C'-manifold we can solve uniquely if a; are Lipschitz functions then the
solutions are unique.

Why vague? For what time ¢ do we get a solution. Well something like

ci: (—e(p),e(p)) — R"

within coordinates. This occurs because the “speed” along which ¢; goes on the vector field may escape to
infinity, and then we don’t know what to do at e(p).

More precise version. Let X be some C°° vector field. There exists an € > 0 and a § > 0 such that for all
q € B.(p) ther exists a solution to the ODE on the inversal (-4, d).

This is called a local solution. We have existence and uniqueness of local solutions. We will not prove this
because it is painful, it is an application of the Contraction Mapping Theorem.

Definition V.1.2

Call M a C*° manifold. We say a vector field X on M is complete if solution curves exist through

any point for all time.

Ad: Nearly impossible to actually calculate solutions to these curves (supercomputers can approximate),
except in special cases (ex. linear ODEs). Actual computations is the Quantitative, explicit solutions, and
would be called ODEs.

Dynamical systems would be considering the Qualititative study of vector fields! This goes back to

Poincaré.
Lemma V.1.1

If M is a compact C* manifold and X is a C¥ vector field for k£ > 1 then X is complete.

Proof. For short time, on a neighborhood U of p € M we have a solution curve ¢, : (—e(p),e(p)) = U
Then there are finitely many p1, ..., p, with |(JU,, = M. Take € :== min¢,,.
For each ¢ € U,, we can flow along the field for (—¢,¢). Uniqueness of solutions on (—e¢,¢) implies that
things will agree on the overlap. We can keep flowing in either direction forever!!! This finishes the proof.
Warning: The curve exists for all time but may have finite length! We may come to a stop at a stationary

o
point on the vector field!!! v

Definition V.1.3
Let X be a complete vector field on M. Call a map ® : R x M — M so that ¢(t,p) for fixed p € M

and varying t is a solution curve at p the flow generated by X.
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We define ¢;(p) = ®(t,p). We can call ¢, the (global) flow determined by X.
Next time: This gives you an action of the real numbers on M.
Midterm in class on Wednesday October. Things you should know:
e Charts
Tangent Stuff: T, M, TM,T*M.

Vector bundles and sections

Basic Examples/Counterexamples
Constructions

— Products

— Group Actions
— Level sets via Regular Value Theorem (Remember: Sard’s Theorem, easy proof that SL,, is a

manifold)

Midterm: 50 minutes, ~4-5 questions, should be able to answer questions in &~10-15 minutes.

CONTENT FOR MIDTERM I STOPS HERE

(does not include flows)

Recall that uniqueness of ODEs tells us that if ¢ = ¢y, (p) then

©s(q) = Pro+s(p)

by uniqueness of ODEs. Therefore

Pstto(P) = ©s(1o (D)
Ps+to = Ps © Ptos
where @g44, is defined. If X is complete, we get an R-action on X, commonly called a flow on X.
Definition V.1.4

Now suppose X is a vector field and F' : M — N is a diffeomorphism. Then we can define the
pushforward of X by F.

(FL(X))(p) = Dy F(X(q))-

where p = F(q). Then F,(X) is a vector field on M.
IfY = F.(X) we say that X, Y are F-related (still makes sense for local diffeomorphisms). We also

say X and Y are C7-conjugate if F is C”.
Let @, 1 be flows for X, Y (vector fields on M, N). If F: M — N is a diffeomorphism and Y = F,(X),

what can we say about the flows?
Fix ¢ € M. Then

— (F(ee(@))| = DFy, (q) - X (#10(4))-

det t=to
=Y (F(¢1,(q)))
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From this and the uniqueness of ODEs we can see that
Py =Fogp oF L
Namely, by the chain rule again we have for p € N that

SEE )], =Vl (P o),

More generally: one might have a map 7 : M — N and flows ¢y, ¢y on M, N where 1),om = mop;. Something
like this would be called a “quotient of ¢, or a factor of ¢;.”
Suppose X, Y are vector fields on M. Recall that a vector field X can be thought of as a derivation
X : C®(M) — C°°(M). We had an unproved lemma from last time we discussed commutators
Lemma V.1.2
[X,Y] =Y o X — X oY is a vector field, that is the Lie bracket of two vector fields is a vector field.

Proof. We must verify the product rule, since linearity of [X, Y] is clearly. Thus we compute

(X oY) (fg) =X (flg+ fY(9))

= (XoY)(f)g+Y(f)X(9) + X(f)Y(9) + f(X oY) (g)
Yo X)(fg) = (Yo X)(f)g+X(f)Y(g9) +Y(f)X(9) + (Y o X)(g)
(X, Y](fg) = [X,Y](f) -9+ [ [X,Y](9).

" Y
Perfect! v

Message: [X,Y] measures how much X,Y do not commute. What does it mean in terms of vector fields?
Suppose ¢y, 1 are local flows of X, Y respectively. Consider the following sequence of moves starting at
peM

Vi(et(p))
ot (Ve(pe(p)))
Yt (p—t (Ve (pe(p))))-

As t — 0 this goes to p by a continuity argument. But what about the derivative at t = 0.
Example V.1.2

For X = 8%’ Y = a@ this commutator is zero.
Yy
Aside: maps of constant rank. A submersion gives rise to level sets. For f : M — N a C* map consider
p — rank D fp, := dim Image D f,,.

f is a submersion if and only if this map is constant and the rank of f is always dim V.

35



Faye Jackson October 21st, 2022 MATH 591 - V.1

Definition V.1.5

f has constant rank if p — rank D f, is constant in p.

Theorem V.1.3 (Constant Rank Theorem)

If f has constant rank, then f~1(q) is a C*=submanifold

Idea of Proof. Locally we can take a projection g from f(M) to Image D f,, which is a linear subspace in
o
coordinates. This is a submersion, and then we use local submersion theorem. 4

Consider C'*° vector fields X,Y on a manifold M. We know
[X,)Y]=XoY —-YoX

defines a vecto field, where we view these as derivations. Now consider a special situation, where X,Y don’t
vanish on M (or some U C M open).
Proposition V.1.4
Assume [X,Y] = 0. Then there exist coordinates on a chart such that X = %, Y = a%'
More generally, if X1, ..., X} are vector fields so that { X;(p)} are linearly independent and [X;, X;] =0
for all 4, j, then there exist coordinate charts about p so that X; = %.
Idea of Proof. If k =1, then X ~» ¢, a local flow of X. Let U C U so that the flow is defined.
Pick T a submanifold of dimension m — 1. Then T' = {(0,y2, ...,¥,)} in some coordinates. We may also

pick T so that it is transversal to X (p). Give coordinates on U as

(I):(t?y27"'ayn) Hg@t(oaer"ayn)'

It suffices to check D® . . o) is a local diffeomorphism at p (which is 0 in local coordinates), and then ® is a

chart. We compute

D® ... 0) =
o o0 --- 1.

(invertibility and this computation comes from transversality.
If k = 2, Let [X,Y]. Without loss of generality, X = % in local coordinates. We’ll cheat and look at
dim M = 2 (it will be clear how to generalize).
We may then let Y = a(z,y) 2 + b(z, y)a%. We compute that
0 0 0 2 0
X, Y] =— —+0 — | - — —b
[ ’ ] ax (a(x7y)al' + (xay)ay) a(xay)axz (x7y)amay
— @ﬁ + %(x )2
~9z0z oz oy’
Thus a(x,y) = a(y), b(z,y) = b(y). Let ¢, be a local flow for y. We know

U(xz,t) = ¥, 0).
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Then we can use this as a coordinate chart. If dim M > 2, take a submanifold (local) through p of codimension

which is tranversal to both X,Y. Then apply the same trick as when & = 1. We also take a flow ¢; and set
U(s,t,2) = Uy 0 ps(2).

You can then do it for any number of vector fields.
For k and dim M arbitrary. Find a transversal submaniofld to Xi,..., Xy at p. We then compose flows

just as above

(tl,...,tn,Z) HQD%I OO@?R(’Z>

Because the flows commute (Lie bracket zero) this will give exactly what we need. We can move (;535 to the
front. This is a corollary of the discussion for k = 2 (where we take the derivatives explicitly).
One can always find tranversals because we’re only working locally, and so in coordinates we can just take

e
a linear subspace tranversal to X;(p) for all 1. v

Corollary V.1.5
If [X,Y] = 0 then their local flows commute.

Proof. Look at the case k = 2 above. .v‘

Consider any X,Y to be C™ vector fields. Let ¢, 1) be local flows for X, Y. Then we can consider C(t) to
be defined as

Clt)=v_zo0_z0%50°94(D)

for t > 0. This is in Spivak’s text on differentiable manifolds. We define C(—t) similarly but flowing in the

opposite direction.
Theorem V.1.6
Let X,Y be C* vector fields. Then C(t) is differentiable and C’(0) = [X,Y](p).

Midterm Announcements:

e Graded—will get it back today

120 points possible out of 100 because Problem 2 had an error

e Median was around 100. Very good job

Midterm given back in last 5 minutes of class.
Recall V.1.3
If F: M — Nis (C*, and X,Y vector fields on M, N respectively then we call X,Y F-related if

dF,(X(p)) = Y(F(p)) € Tr(yN.

Call this X ~ Y. If X5 ~ Y5 are well, then [X, X5] ~ [V, Y5].

To show this, it’s convenient to know the flow of [X, X5]. Letting ¢, be local flows for these respectively,
we claim the flow for [X, X5] is given by

Ct:wﬁogpiﬂoz/}ﬁoapﬁ.
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‘Well consider
G(s7t) =19 _s0p 0150 @t(p)'

It is then clear that
0 0
%(G(Svo)) -

One must then use Taylor Expansion up to order s2,t2, st in order to derive the result.

(p) =0.

S=cC

If X has solution curve ¢;(p), then F(p:(p)) is a solution curve for YV if X, Y are F-related. Then by the
characterization of the flow [X,Y]

V.2. Distributions

This means way too many things in math. We might also call them k-plane fields.
Consider a manifold M which is C°, cosndier taking T, M to Gry(T,M), which si k-dimensional vector
subspaces of T, M. Fancy: Make a fiber bundle out of
Grp(M) = [ Gru(T,M).
pEM

Make this a smooth manifold using the local product structure of TM. In fact
Gl‘k,n — Grk(M) 1) M

is a fiber bundle, where n := dim M.
Definition V.2.1

A distribution is a smooth section of this fiber bundle. In down to earth terms, D(p) C T,M is a
k-dimensional subspace, spanned by say (v1,...,v;). Do this for every point.

Locally we get v1(q),...,vr(g) where ¢ is in a neighborhood of p. We require that the v;(q) are
smooth vector fields on this neighborhood p. We could do stupid things, like making v;(¢) be changed
by a linear transformation at rational points. ..so instead we just require there is a choice.

Thus smooth distributions of dimension k are given by the following data

e Forall p e M, D(p) C T, M is a k-dimensional subspace.

e To define smoothness of D, it suffices to do it locally. l.e., for all p € M, there exists a
neighborhood U of p and there exist smooth vector fields vy, ..., v, on U so that
(1) For all i,q, v;(q) € D(q)
(2) For all 4,q, v1(q),...,vr(q) are linearly independent.

Equivalently the span of v1(q),...,vk(q) is D(q) for all ¢ € U.

There are two types of distributions, the boring ones (which are most important), and the exciting ones
(which are not used very much).
Example V.2.1
Let R® = M, and for each p € R™ let D(p) = R¥ = {(21,...,2%,0,...,0)}. This is spanned by
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Example V.2.2
Suppose G is a Lie group that acts on some manifold M. Suppose for all p € M, we have G,, is
discrete. Then {G - p} for p € M will cut up M into submanifolds (we haven’t shown this formally).
The distribution will then be given by D(p) = T,(G - p).

Example V.2.3

Take V a nonvanishing vector field on R”. We can take D(p) = V(p)=.

Consider M = R"™ \ {0}, and take V(p) = p. This is exactly the tangent spaces to spheres of certain
radii. This is actually a Lie group example—it’s SO(n) acting on M. To see explicitly the vector fields,
one can think of polar coordinates + the angles.

Even more explicitly one can look at one coordinate being nonzero and then take a radial vector field
there.

Example V.2.4
Consider the Heisenberg group

Heis =

o O =
=
—

Consider tangent vectors

Ay = Ay =

o o O
S O =
o o O
o o O
o o O

0
1
0

which are tangent vector fields at the identity. Then A, Ay are left-invariant vector fields. We can
consider D =R-A4; + R - As.

This is not a Lie group vector field, and so is much more complicated.

Stuff:

e Problem 3.2 is incorrect as stated. If S C M is a submanifold and X is a vector field on M which is
tangent to S, then if X is tangent to S then for all p € S, the integral curve %) (¢) (the flow) of X
is contained in S for small values of t.

The problem stated was for all values of ¢, obviously false.

e Hint for Problem 2: If M + v, N intersect, then v = y — z for some y € N,z € M. Consider the map
F: M x N — R" given by F(z,y) =y — « and apply Sard’s Theorem.

o Last time: distributions (k-plane fields), V(p) C T, M a k-dimensional subspace..

There are two kinds of distributions
e integrable (tractable)
e non-integrable (more fun)
Definition V.2.2
We call a k-plane V integrable provided that for all p € M there exists a coordinate chart (U, ¢) such
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that for all z € M,

Example V.2.5
— _ ) o)

Take M = R", and V(p) = (2, 5% )-

This is in particular an example of a “foliation,” which we will define now. Namely the foliation is
given by the partition of R? as

R* = | R x {z}.
z€R

Non-Example V.2.6

The Heisenberg group from last time, namely if

Heis =

o O =
S =8
— <

Then if we take

o O O
o o O
[
o o O
o o O

0
m):< ! >
0

We can of course set V(g) = DL4(V(1)).

Definition V.2.3
Let M be a C°° manifold. A foliation is a partition F of M such that for all x € M we have F), is

an immersed submanifold of M, and
F,NF,#0 < F,=F,

(i.e., F' defines an equivalence relation).

Furthermore, we require that for all p € M there exists a coordinate chart (U, ¢) such that for each
x € U, if V, is the connected component of F, NU in U, then (V) locally looks like R¥ x {0} + o(z)
(aka looks locally like the above example).

We take the connected component in case F). “loops back” into U.

If F is a foliation, then call F;, the leaf of 7 through 2. Then we can define a distribution V'(p) = T}, F},,

which is a k-dimensional distribution, C'*°.

Consider: Let X,Y be vector fields on M such that for all p € M, we have X(p),Y (p) € V(p) = T,F, for
some foliation F'. By the Homework 7 Problem 3c we know that [X,Y](p) € V(p).

Fact: If V(p) is the tangent distribution to a foliation F (i.e., V(p) = T, F},), then for any two vector fields
X,Y with X(p),Y (p) € V(p) for all p, we have [X,Y](p) € V(p).

Definition V.2.4

Given any smooth k-dimensional distribution V' on a C'**°-manifold M, we call V' involutive if for any
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two vector fields X, Y with X (p),Y (p) € V(p) (tangent to V') for all p we have [X,Y](p) € V(p) for all
.
Theorem V.2.1 (Frobenius Theorem)

A distribution is involutive if and only if it is integrable (defined with charts).

Proof. This is in [lee], p490. The <= direction we just did with HW 7 Problem 3 —

Example V.2.7

Give p + R? as a foliation on R3, with V its corresponding distribution. Now quotient out by R3, so
then V(p) = D, - V(p) where 7 : R® — R3/Z3 =: T3.

This gives us 2-tori foliating T.

Mess it up a little, rotate V(p) by an angle irratioanl with the embedded R2. Namely consider a
foliation R - v1 4+ R - vo where vy, v, are irrational with respect to Z2.

We may then push this down to T? as before (check this is well-defined. .. ). Then T? is foliated by

“planes” (they cannot close up) densely.

Proof of Frobenius, in special case. Suppose for all p there exists a U neighborhood of p with vector fields
Xi,..., Xy with (X1(q),..., Xk(q)) = V(q) such that for all ¢, j we have [X;, X;] = 0.
Then Frobenius holds. By last Friday, local flows ¢; associated with X; commute. We can then build an

immersion

(tl,... ,tk) —> (Pk(tk) [ IO O@Q(tQ) O(pl(tl) * P.

PN
v

i

Proof of Frobenius, in general. Let X; = (Dn)~1 (%(W(q))) (for an adapted chart). If ¥; = 52-(p), the
these are m-related, and so the X; commute. Namely we know [X;, X;] is tangent to the chart V', and then
g 0
Dr([ X, Xj]) = |=—,=—| =0,

thus [X;, X,;] = 0, showing these commute.
Great! Then the special case implies the general theorem. This proof is only local, but we can do this

globally as well, which we will do in the next section. .v.

VI. Lie Groups/Lie Algebras

Let G be a C* Lie group. We want to look at left invariant vector fields. L.e. we have V(g) = DL4(V (1)),
and this is clearly a vector space. Its dimension is dim G.
Definition VI.0.1

Let G be a C'*° Lie group. We define

Lie G := g == { left invariant vector fields} = T1G == { right invariant vector fields},

which is a vector space often called the Lie algebra of GG. Its dimension is dim G as mentioned above.
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This comes with extra structure, since if X,Y are left invariant, then [X,Y](g9) = DLy([X,Y](1)).

Well we know for any diffeomorphism ¢ that
Do([X,Y]) = [DpX, DeY].
This is the algebra structure.
Recall that [X,Y] = —[Y, X] via the derivation definition.

Lemma VI1.0.1 (Jacobi Identity)
We have for X, Y, Z vector fields that

[X7 [Yv Z] + [Yv [ZvXH + [Z7 [XvY]] =0

Proof. Expand with the definition .v.

We can define a general Lie algebra as a vector space which is equipped with an anticommutative bilinear
form which satisfies the Jacobi identity).

Let G be a Lie group, H C G a Lie subgroup, i.e. an immersed submanifold. We know that the set
{gH }4ec is a foliation of G. We know V' (g) = T,(g - H) which is a left invariant distribution.

We can then look a the left invariant vector fields tangent to V(g) (i.e, tangent to gH). This defines b C g.
And in fact, if X, Y € b then [X,Y] € b via the Frobenius theorem (since the V(g) is integrable).
Definition VI.0.2

Given a Lie algebra g, a Lie subalgebra ) C g is a vector subspace such that for any X,Y € h we
have [X,Y] € b.

Theorem VI1.0.2 (Lie Groups/Lie Algebras)

If H is a Lie subgroup of G, then ) C g is a Lie subalgebra. i.e, [h,h] € b.

Conversely, if h C g, and [h, h] C b, then there exists H C G a connected Lie subgroup such that
h=T,(gH) (ie., b is left-invariant vector fields tangent to gH).

This gives a bijective correspondence between connected Lie subgroups H of G and Lie subalgebras

hCag.

Example VI.0.1

Here is an example that you need the connected statement. Take Z C R, then

Lie(Z) = {0} = Lie({0}).

HAPPY HALLOWEEN

Recall VI.0.2
Last time we began to consider the relationship between Lie groups and Lie algebras. One statement
was that if H C G are Lie groups, then h C g is a Lie subalgebra.
This holds because if V' is an H-left-invariant vector field, then W(g) := D(g - —)1 - V(1) is a
G-left-invariant vector field agreeing with V' at points in H.
¢ and [, —]#

Furthermore, both the [—, —] are just brackets of vector fields (so they agree), and thus

if X,Y € b then [X,Y] €b.
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Lemma VI.0.3
[aF,bG]| = aF(b)G — bG(a)F + ab[F, G].

Proof. Just expand as derivations to get
aF(bG) — bG(aF) = aF(b)G + abF'G — bG(a)F — baGF
=aF(b)G — bG(a)F + ab(FG — GF)
=aF(b)G — bG(a)F + ab[F,G].

¢

Proof of the relationship of Lie groups/Lie algebras. We've just done the forward direction (easy exercise as
well).

For the backwards direction, take h C T1G (since it is G-left-invariant vector fields). Then we may take a
distribution V(g) = DLy(h) (where L, is left translation by g € G).

Claim

V is involutive, i.e. if X1, X5 are tangent to V' then [X;, X5] is tangent to V.

Let z1,..., 2, form a basis of h (which has dimension k). Thus z; are left invariant vector fields with
[Zi, Zj] € h
Then X =) a;z and Y =) b;z;, and by the lemma

(X, Y] = Z fizi + Zgij[zi,zj]
i 0

for some functions f;, g;;, and this lies in V' as desired.

Claim

Thus V is integrable.

When we did Frobenius we only did it locally. .. we need a global foliation. Take local charts Fioc(p),
we must define a global foliation F (with global leafs).

Namely say g € Fioc(p) we want Fioe(p) U Floc(q)-

We need a quick lemma that if ¢ € Floe(p) then for any neighborhood of U of ¢ where Fioc(p) and
Floc(q) both are defined they must agree. This works because both are tangent to V.

Then we can consider F!(p) = Foc(p) and

]:n+1(p) = U Floc(9),

qE€F™(p)

and take F(p) = [JF"*(p). This construction gives a path-connected global leaf.

Frobenius then says b is given by a foliation F. Then we can set H = F(1). It remains to check H is a
subgroup, since it is a smooth submanifold of G.

Suppose h € H, then

h-H=LyH = L,(F(1))
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— F(h-1) = F(h)
= F() =1,

where we have used that the vector field is left-invariant to get left-invariance of the foliation. If h € H, is
h=' € H? Well we know h=*h =1, so

h=tF(h) = F(1),

but then 1 € F(h), so h=t € F(1) = H.
By construction we know Ty (H) = Ty (F(1)) = V(1) = b, as desired. <

Facts: Know given a Lie group G, we can give a Lie algebra g. We can ask the converse question if we
define a Lie algebra in general
Definition VI.0.3
A Lie algebra g is a vector space over a field F' equipped with a bilinear operation [—, —] satisfying
o [x,2] =0

o [z,[y,2]] + |y, [z, 2]] + [z, [z,y]] = 0. for all z,y,z € g.

Then given any finite-dimensional Lie algebra g is there a Lie group G with Lie algebra g and how many?

Answer:

e Yes you can find one
e No it is not unique
e But it’s sort of unique. If G1, G5 both give rise to g then the universal covers 6’1 and (~}'2 coincide

and both give rise to g.

Consider a group homomorphism Gy % G,. There is trouble: there exists a ¢ : R — R which is a
homomorphism but which is not differentiable. You can construct nice ones with Galois theory, but a simpler
one is given by writing R as a Q-vector space with an uncountable basis and mapping the basis around in a
strange way.

Definition VI.0.4

If ¢ : G; — G4 between Lie groups is a group homomorphism and C°°, then we call it a Lie group

homomorphism

Remark VI.0.1
It is good enough to assume ¢ is measurable (more strongly, continuous). When we say measurable we
mean to be with respect to charts. This is very very important, although we won’t use it. The thought:

it’s generally much easier to prove something is measurable than to prove something is differentiable.

This induces a Lie algebra homomorphism
Dng : Lle(Gl) = T1G1 — T1G2 = Lle(Gg)

Call these g1, g2. We want this to respect the bracket.
Let X € g1 be some left-invariant vector field on G1. D1 X (1) € ga, and corresponds to some left invariant

vector field Y on gs.
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Claim

X,Y are p-related.

Proof. Take some g € G;. We must show that
Dyp - X(g) = Y((9))-
Well, we know that
Dy - X(9) = Dgp - DiL, - X(1)

Y((p(g)) = D1L¢(g) . Y(l) = D1L¢(g) . Dlgo . X(].)

¢

The result then follows since Ly 4) 0 ¢ = ¢ o Ly since this is a group homomorphism.

THE FOLLOWING THEOREM IS WRONG, CORRECTED NEXT TIME
Theorem VI1.0.4
There is a bijective correspondence between Lie group homomorphisms G; — G2 and Lie algebra

homomorphisms g; — go.

Proof. The forward direction we just did (modulo 1-1 business). For the converse we need a trick. Namely if

1 : g1 — go is a Lie algebra homomorphism we see that
graph ) = {(X,¢(X)) | X € g1}
is in fact Lie subalgebra of g; x g2, which is a Lie algebra with bracket
(X1, Y1), (X2, Y2)] = ([X1, X, [Y1, Y2)).
We then see that

[(X1,9%(X1)), (X2, ¥(X2))] = ([X1, Xo, [9(X1), ¥(X2)]) = ([X1, Xo], ¥([X1, X2])).

We now have a Lie subalgebra, so by the main result last time there is a Lie subgroup H C G x G2 (note:
Lie(G1 X Gg) = Lle(Gl) X Lle(Gg))
Claim

H is the graph of a homomorphism ¥ : G; — Gs.

Le., ¥(g1) = g2 if (91,92) € H. One must check that this is well-defined and a homomorphism

¢

Exercise VI.0.3
Check well-definedness and homomorphism. We’ll come back to it later.

VI.1. Exponential Map

Let X € g, where G is a Lie group with Lie algebra g. Then {tX | ¢t € R} is a Lie subalgebra since

[sX,tX] = st[X, X] = 0.
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Thus there exists a connected Lie subgroup of G corresponding to X € g.

This is extremely abstract. Lets get down to Earth again. Le t X € g be a left invariant vector field. This
gives us a local flow ¢; on G.

We can consider 1 € G and define g; := ¢;(1). Then
9t 9s = ¢t 9s(1) = pr45(1) = s

We also have
Claim

¢ is a global flow, i.e. defined for all t.
Proof. Appeal to the subgroups argument. Or more simply, we know the local flow of X through g is simply

Ly(pe(1)) = g - g1-

Thus if local flow at 1 is defined on (—¢,¢) so is it at g. We can then define it globally, around each point in

(—e,¢€) the flow is defined in (—e,¢) about it, and then we can continue, defining the flow on (—2¢, 2¢). ..

¢

Since € > 0 is fixed this gives us a global flow.

Example VI.1.1
We want to look at this very concretely. Prime Example is G = GL,,(R). We see that

gl,(R) =T1 GL,,(R) = M, .

If X € M, ,, then what is ¢, well

ix e tX "
3 00

n! ’

n=0

converges sicne

= (X))
Z(n')

n=0

oo n
t X n .
< S _ g
n=0 :

where || -] is the operator norm, and it is easy to check that ||[AB|| < ||All-||B||, whcih gives [| X™|| < || X||™.

Finally note that <& (e*¥) = XeX. We also must show e/X € GL(n,R). This will be because if A, B

A,B
e

A+B 5o el Xe=tX = 1.

commute then e =e

Example VI.1.2
This also works for any subgroups of H C GL,(R), namely if we have a flow for X € T1 H lying in
GL,(R), then of course the flow lies in H.

Final: Thursday December 15th, 4-6pm.

Question: What are the continuous homomorphisms ¢ : S* — R. We know ¢(S!) is compact, and so is
bounded. If we ahve a € ¢(S) then n-a € ¢(5), which cannot be bounded unless a = 0. Thus ¢ is the
constant map at 0.

BUT! Lie(S') = R, and Lie(R) = R. Of course we have a map Lie(S') — Lie(R) given by the identity

(this is a Lie algebra homomorphism since all brackets are zero. .. ).
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Thus a homomorphism between Lie algebras does not give rise to a smooth Lie group homomorphism.
Thus what we did last time is wrong. But it is almost true!

But it is almost true. If G is the universal cover of Gy (see 592, algebraic topology), then given a Lie
algebra homomorphism g; — go there is a Lie group homomorphism C~7'1 = Gos.

Universal Cover: If M is a reasonable space (e.g. a manifold) then we can find a space M Zs M which is
a submersion, nad M has the following property for all p € M

1 (M7p) =1
m1 (X, p) for p € X is defined as a set by
{f:8" = X | f continuous, f(1) = p}

where f ~ g if there is an F': X x [0,1] — X with F(1,t) = p and f(z) = F(z,0), g(z2) = F(z,1). In fact this

has a group structure. Again see algebraic topology (592). There are notes at
http://www-personal.umich.edu/ alephnil /notes/ MATH-592-notes.pdf

We have S! = R, where R — S! is given by exp(2rit).

Fact: G is a Lie group implies G is also a Lie group. For a small enough neighborhood U of 1 the cover
in G is given by U= 7~1(U) and the restriction of 7 to Uis a homeorphism. Then if a, b are in some open
subset of U, their product lies in U. We can then define the product in the covering space by lifting this
product.

Note: The Lie algebra corresponding to G is the same as the Lie algebra of G.

Theorem VI.1.1

There is a bijective correspondence between Lie group homomorphisms él — G2 and Lie algebra

homomorphisms g; — go.

Idea of Proof. Let H C (G; X G4 be defined as last time. This is a subgroup induced by the Lie algebra
h = graph ®, where ® : g; — go.
We know dim H = dim ) = dim g;. We then have maps

H
- |
G x Gy
PCEERN
G Gs

In fact m; ‘H is a local diffeomorphism This holds because D(m; |H) =m ‘h' ‘We would like 71 5 to be injective.
It turns out H N7~ 1(1) is discrete. This cannot be if we pass to the universal cover, but this requires work

from 592. :

Now let G be a Lie group and M a smooth manifold.. Suppose G acts on M smoothly. Let g be a Lie
algebra of G. Then there is a Lie algebra homomorphism g — {smooth vector fields on M}.
To see this, take X € g a left-invariant vector field on G. Now write g-p =: E(g,p) = Ep(g) where p € M.

We can push forward the vector field X to M using the map E, (must check smoothness in p.
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We can also take g; := exp(t- X) (a one-parameter-subgroup) and consider Y (p) = % t:Ogt -p. If we move
transversely to a point ¢ € M near p, it’s conceivable Y (p) and Y (¢) does not vary smoothly. But this is
possible to check.

Converse also holds, but is harder. If g — {smooth vector fields on M} then there is a smooth local action

of G on M. This requires a bit of work.

VII. Differential Forms and Integration on Manifolds

VII.1. Partitions of Unity
Theorem VII.1.1

Let M be compact (can do this all when M is not compact, but it’s more painful) and {U,} is a
cover of M. Then we have a finite subcover Vi,...,V; where for each ¢ there is an o with V; C U,,.

Furthermore, we can give smooth functions

such that for all x € M we have ), p;(z) = 1.

Proof. For all p € M find a neighborhood W, and a smooth bump function 1, : W, — [0, 1] with ¢, =1 on
a neighborhood of p. Then there’s an R, C W), so that ¢, = 0 outside R,.
We can wlog that W, ,..., W), cover M and are contained in the V;. Then we look at

1
vi= Ve
Zi:() ,ll)pi ’

¢

Then ) ¢; = 1 as desired.

In the general case one uses paracompactness.
Stuff

e For HW8 #3, try to use partitions of unity to slow down the vector field.
e Fact we might prove later / on homework: For any two points p, ¢ lying in a compact manifold M,

there is a diffeomorphism M — M taking p to q.

VIL.2. Embedding of Manifolds into RY
Theorem VII.2.1 (Whitney Embedding Theorem)

If M is a manifold, then for some N there exists an f : M — RY which is an embedding.

Proof when M is compact. Let n = dim M. Then if (U,, ¢, ) are the coordinate charts (balls around 0) then

we can map
M — HR" = RN
«

where N = n - #{a} (we can take finitely many charts since M is compact. If 2 € Uy, ..., U, then we can

map x to have zeros for all 8 not an «;, and ¢,, (z) for all those included.
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This is a BAD mapping. Make this construction smooth by tampering with a partition of unity of {U,}.
Call this partition of unity 7. Then we replace g, (x) with 7,4, () - @a, (z).

Also, 17, =1 on V,,, C U,,. We should make sure we get a finite covering of the manifolds by V,,, (and
then we’ll be done. .v.
Proof Idea in General. Look at Hai R™ which is infinite, and project to a large dimensional R™. .v.

VII.3. Multilinear Algebra
Definition VII.3.1
Let V be a vector space, then we define the exterior product A*(V) to be

A¥(V) := {k — multilinear alternating functionals},

i.e. A € A*(V) is a multilinear function A : V x --- x V where for all i, j we have
—_——

k times
Ay viye vy, ) = =AM v, 0.
Note: A(...,v,...,v,...) =0 (any one repetition gives us 0).

Theorem VII.3.1
dim A VY = 1.

Proof Idea. Choose an isomorphism of V' with R™, and work there. The dimension is > 1 because we can
construct the determinant function. It is difficult to show the determinant exists.

The dimension is < 1 part is pretty easy. .v.

Why is this important to us? It’s not just algebraic garbage (Ralf’s words). There’s a geometric interpre-
tation of the determinant!

|det| is VOLUME

Example VII1.3.1

AV = V* (the dual of V).

We can see that dim AV < (dh}z V). Explicitly when k = 2, let A € A%V, and e; a basis of V. Then
let v=7>3", aie;,w =73, Bje;. Then

)\(U, w) = Z aiﬂj)\(ei, €j) = Z(Ozi,@j — ozjﬁi))\(ei, €j).
ij i<j

With this in mind we can define e; A e; as the element of A2V which acts as

(einej) | D e, Y Biej | = iy — a;B:.
; j

ChecK: This is an alternating multilinear form. This give s e; A e; for i < j as a basis of A%V.

Similarly we can get a basis e;; A--- Ae;, where i1 < --- <14 as a basis of AFV.
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MEANING: Lets go to R3. We see that

1 0
(e1 ANeg) 01,11 =1
0 0

e1 A eg is giving the signed area of a square. .. But which square?

0 0
(eshex) | [1],|o0] | =0.
0 1

The area is the 2-dimensional area of the shape projected to a 2-dimensional slice of a plane!
Philosophy: A € A*R” “measures” the k-dimensional area of a parallelipiped with respect to a particlar

fixed k-dimensional subspace.
VII.4. Orientations on Manifolds

Stuft:
e For HWS #1, take a look at Spivak’s Calculus. General Theorem that if f : M — N is C' and

dim M < dim N, then the set of critical values have measure zero.
e For HW8 #3, Consider on U; a local flow defined for time ¢;. Take a partition of unity f; for U; and
then consider Y fiL X.

Comment on Lie subgroups. Let ¢ : H — G be a smooth homomorphism. Instead of looking at b, g
as left invariant vector fields (which led us astray last time) look at the tangent space at the identity. Let
X eTiH="Nh,then Y := Dy, - X € TG = g. Then Y defines a left invariant vector field on G, the claim is
that X,Y are ¢-related (good enough to justify brackets agree).

Cleanup from last time: It was said that k-forms measures area of an intersection. But instead it measures
area of a projection.

Let V be a finite n-dimensional vector space. We know dim A"V = 1. We can’t tell if a real number is
positive or negative without placing an orientation on a line. But we can tell if they are positive multiples of
each other (they have the same orientation)

Definition VII.4.1

Two n-forms «a, 5 # 0 on V have the same orientation if 8 = ¢ - « for ¢ > 0. Otherwise they have the

opposite orientation.

Definition VII.4.2
If M is an n-dimensional manifold (smooth). We let (A*M), := A¥T, M, which is a vector bundle
ARM — M.

A k-form « is a (smooth) section of AFM — M.

Example VII.4.1

Consider R™, then o = dxjgas is a smooth 1-form (where dzygaa is the dual vector to which is

bl
0T 944
a smooth vector field).
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‘ A two form could be something like dz1 A dzy. We have to explain this though.
Question: We know that dim A"T, M = 1 if dim M = n. What would a section of A"M — M (aka an n-form
on M) tell us about M?
Definition VII.4.3

Any n-form 7 (aka a section of A"M — M) such that for all p € M we have 7(p) # 0 is called an
orientation of M (a smooth manifold).

Given an orientation 7 and another o we say that o, 7 define the same orientation on M if there is a

smooth map f: M — (0,00) so that o = f - 7.

Also, if o is an orientation, so is —o, and these are NOT the same orientation.

Note: One can do orientation for topological manifolds but it requires Algebraic Topology and is harder.
Question: Do orientations always exist? Noll!
Example VII.4.2

We can look at the Mobius band, which is a strip glued in opposite directions

A

Definition VII.4.4

Call M orientable if it has an orientation. Also, an oriented manifold is a manifold M with a given

orientation (M, o).

Example VII.4.3

Observe, if we take the two caps of a sphere with natural orientations and glue them together to
respect the orientation, we get S™, which is orientable.

In contrast, if we look at P* = S™/Z, where Zs acts on S™ by  — —x. Does this map preserve
orientation?

Look at the simplest example for S'...then yes. For S? in fact no!

Proposition VII.4.1
Any Lie group G is orientable.

Proof. Pick o(1) € A"T1G. Now make it left invariant by pushing it around. <

Recall VII.4.4

RP3 is diffeomorphic to SO(3), and this is double covered by SU(2). But then SO(3) is a group, so it
is orientable.

Or: Stare at the antipodal map A : S™ — S™. If it preserves the orientation then just push it down

to RP™.
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VIL.5. The Wedge Product

If we have two multilinear maps f, g, then f ® g is also multilinear (given as (f ® g)(v,w) = f(v)g(w)).
But this may not be alternating even if f, g are alternating!!!
Given a € AFV, 8 € A’V , then we wish to define a A 8 € AFHV.
Definition VII.5.1
The wedge product a A 3 of o € A*V, B € AV is

(@A B)(v1,. .., Vpqe) = AT Z (—=1)7a(Vo(1)s - -+ > Vo (k) BVa(kt1)s - - - > Vo (kte))-
T oeS(k+e)

This is very similar to the definition of the determinant. Here S(k + £) is the permutations of {1,...,k + ¢}
such that

o(l)<o(2) <---<o(k)
ok+l)<ok+2)<---<olk+10).
Thus it preserves the ordering on {1,...,k} and on {k +1,...,k + ¢} (but not necessarily both).

Stuft:
e HW due Thursday 11pm, November 17th

e The book uses the notation A¥V* to refer to the alternating k-multilinear maps on V. We’ve been
using A*V to refer to the same thing. Ditto for A*M (our notation) versus A"T*M (the book’s
notation. Make sure to keep this in mind.

We will try to use the book’s notation from now on, but remember that we will always be talking
about alternating k-multilinear maps (k-forms).
Recall VIIL.5.1

A k-form « is smooth if either

e Xi,..., X} are smooth vector fields, and then the function

is smooth.

e iflocally we can write in terms of smooth coordinates a = > cv; (dw;, A+ - -Aday, ) with o : M — R

Example VII.5.2
We'll look at
(d$1 AN d:zg)(axz,@xj)
= dxl((‘)xz) . d$2(31‘z) — dxl(&c]) . dl‘g(axl)
0 if {i,j} #{1,2}
=41 ifi=1lj=2
—1 ifi=2j=1

52



Faye Jackson November 11th, 2022 MATH 591 - VIL5

More generally, we can look at

(dl’l /\de) Zaiaxi,ijaxj
i J

= (d.’[l N dﬂ?g) (alaxl, bzal'g) + (d.’[l N dﬂ?g) (aga.’EQ, blal’l

a; b
= a1b2 — a2b1 = ! ! .
as b2
Recall VII.5.3
For a € A*V*, 3 € A'V* we defined
,, 1 L )
(@A B)(v1y. .., Vkte) = e Z (=1)7(Vo(1)s -+ s Vo)) B(Vo (k1) s - - - 3 Vor(kte))-

T oeS(k+0)

where o € S(k+ /) provided that o is a permutation of k+ ¢ things so that o(i) < o(j) for 1 <i < j <k
and for k+1<i<j<k+V/.

Example VII.5.4
Let Kk =¢=1. Then

(A B)(v1,v2) = a(v1)B(v2) — a(ve)B(v1).

Proposition VII.5.1
a € A*V* B3 € AYV* implies a A B € ARV,

Proof. Check from the book, idea: if you transpose two thingsin 1,...,korin k+1,...,k 4+ £ it’s just from

«, B. If you transpose a thing between the two, then things are more complex. \ 4

This wedge product is super important. Why? Future: wedge product of forms, leading to Poincaré
duality.

Important: A is a multiplicative operation.

Question: Let dimV =n,k+ £ =n,a € A*V*, 3 € A'V*. When multiplied we have

aAfe Ay = Ay =R,

The idea of Poincaré duality will be to associate to « a § so that o A 8 is the determinant (a distinguished
n-form, aka an orientation) on the nose.
If M is an n-dimensional manifold, we say it is oriented with orientation o if there is an n-form, aka a

section o : M — A™M so that o never vanishes.
Definition VII.5.2 (Also Notation)

Call a o like this a “volume form.”

Lemma VII.5.2
If M is oriented then A"M = {f : M — R | f smooth}.
One can think of A°M = {f : M — R | fsmooth} = C°°(M). Thus this Lemma is Poincaré¢ duality

for n-forms and O-forms.
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Proof. If 7 € A™M then 7(p) = f(p) - o(p) where o(p) is the volume form. Thus A"M — {f : M —

R | f smooth}. And the reverse also occurs. v

More properties of wedge product:
(1) aAB=(—1)**B A a. Look at the formula and think about which things you have to switch.
Thus if k is odd, o« € A¥V*, then a A a = 0.
(1) (a«AB) Ay =aA (B A7), associative.
(I1I) Bilinearity.
An aside about orientability: Let M have coordinate charts (Uq, ¢a)-

Consider two charts (Uy, @) and (Ug, ). Then we get a transition map
Top: 0aUa NUg) = 0p(Ua NUps).
Note R™ is orientable since
dxy A+ Adz, £ 0.

Thus on U, we can take vg = dz{' A--- Adzy;. We have a map down to v, = dyf A ---dy2. What happens
under the transition map Tog7
Recall VIIL.5.5
Smooth functions pullback k-forms. Given smooth F': M — N and o € A*N then F*a € AFM as

defined below

(F*a)p(v1,...,v5) = ap(DFy, - vy,...,DE, - vg).

We want to ask if T7; 575 and 7S give the same orientation on ¢ (Uy NUg) C R™, can we build an orientation
on M?

Can you put these forms together to make an orientation if things agree?

Theorem VII.5.3

Let M be a smooth manifold then the following are equivalent

(a) M is orientable.
(b) M has an atlas of coordinate charts so that the transition maps are orientation preserving. In

other words det DT,,g > 0 when it is defined for each transition map T, 5

Lemma VII.5.4
Let p € A"V* and {e1,...,e,} be a basis of V with (a;;) = A an n X n matrix so that

n
fi= E aije;,
j=1

then

N(.flw"afn) = (detA)M(ela"'ven)'
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Proof. We see that

n n
1% E A15€5, ..., E Upj€j = E 15, ~~an]-n/¢(ejl,...,ejn).
j=1 j=1

Jisesdn
If any two of ji,...,J, are the same then the term corresponding to this choice is zero. We can then rewrite

this as

n n
H Zaljej7~-~7zanjej = Z a1o(1)"'am(n)ﬂ(ea(1)7~-~7€a(n))
j=1 j=1 oES,

( Z (-1)° Haw(i)> wuler, ... en) =det(A)pler,...,en).

oeS,

¢

For forms we have if F': W — V is linear then
F* o ARV — AR
Then of course
(F*a)(wy, ..., wg) = a(F(wy), ..., F(wg)).

Lemma VII.5.5

Suppose dim V' = dim W = n, with V, W vector spaces. Further, let F': W — V be linear, eq,..., e,
be a basis of V', f1,..., f, be a basis of W, e1,...,e, the dual basis of V*, ¢1,..., ¢, the dual basis of
W,

Let A be the matrix with respect to this basis. We know

F(fl> = Zaijej.
j=1
In this case we have

F*(eq N Nep) = (det A) (o1 A=+ A dy).

Proof. Apply the above lemma. Namely evaluate the left hand side at fq,..., f,, and show you get det A

using previous lemma (which is enough since dim A"W* = 1). v

Definition VII.5.3
Suppose M, N are manifolds and ® : M — N is a smooth map. We define

O*APN — AFM

with a € A*N, pe M, vi,...,v, € T,M via

This is called the pullback of a differential form.
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Lemma VII.5.6

Let T': U — V be a diffeomorphism where U, V' C R™. Let z1,...,2x be coordinates in V', z1,...,x,
coordinates for U. Here (dx;), is dual to (%) .
i) g

We then have that

(T*(dzy A --- Aday))p = (det DT,) (dyr A -+ dyn)p

o
Proof. Apply previous lemma. v

Stuff:
e HW 3 is due next time, as we haven’t covered enougn to make it tractable. Also Ralf is not sure if it

is true.
e For HW 2d, if you want to show GL(n,C) is connected, you might want to look at C* x SL(n,C).

Then

SL(n,C) = SU(n) - upper triangular matrix with any complex numbers.

Alternately, realize GL(1,C) is orientation preserving and so C carries a natural orientation.
General principle: If T acts on M, and M/T sia manifold and M carries a “structure” invariant by I" which
is invariant, it induces this structure on M/T.

Example VII.5.6
RP" = SN /7, and CP" = §?"~1/81,

Example VII.5.7
Suppose M is C-differentiable and I acts by C-differentiable maps, then M /T is C-differentiable.

Example VII.5.8
If M has a Riemannian metric and I" acts by isometries, then M/I" carries a Riemannian metric. By

acting by isometries we mean that for v € T’

(Dyp - v, Dyp - w) = (v, w).

Last time: ¢ : R® — R™ with coordinates y1,...,y, in the domain and z1,...,z, in the domain. Then
©*(dzy A+ Adxy) = (det D) (dyr A -+ Adyp).

Orientability Theorem, atlas => wvolume form. If x;,...,x, are coordinates on Ug, and ¥, ...,y, are co-

ordinates on U,. Then
Thg(dzy A--- Adxy,) = (det DTop)(dys A -+ Adyn).

Thus these are related by a positive number. Pick a partition of unity {;} subordinate to U,. On U, we

get an n-form o, given by pulling back dz; A - -+ A dz,. Then

E TaOa

will define an n-form on M which is nonvanishing.

¢
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Orientability Theorem, volume form = atlas. Call ¢, positive if the pullback form on U,, given by ©? (dz1 A
-+ Aday) (for coordinates x1,...,x,) is positive with respect to o (a fixed orientation on M). That is it
equals f-o for f > 0.

If all ¢, are 4+ then get coordinate charts are compatible with orientation. If not all ¢, are + then “flip”

" Y
the negative ones. I..e replace the coordinates x1,...,x, with —x1,29,...,2,. v

VIL.6. Defining Integrals

Why bother with orientation? If f : M — R is smooth, then how do we define fM f777 On R™ we just
use Lebesgue integration (or Riemannian integration). Main thing is we know the volume of a cube.

In contrast, there is no preferred way to measure volume on a manifold! You would need a Riemannian
metric. Similarly, an n-form can tell you the volume. .. Maybe if we have an n-form we can do something!!!

So fM f NO IDEA. If fM f7T where 7 is a volume form we have an idea. How to actually do it? In a chart

Uy, with ¢, : Uy, — V,, we consider

/ (foph) - wil(r).
Vo CR®

This is g, - dxy A - -+ Adz, for some coordinates. Why is this well-defined? If we have a change of variables

on R” called T, then
/(hoT)detDTdyl/\~~~/\dyn:/hdxl/\~~/\dxn,
B A

where A =T - B. Thus integrals agree on the overlaps of charts! Namely, the forms transform according to
1,5 which acts via the determinant of the jacobian matrix from the work we’ve done above
Last time: We defined [,, f - v where M is a C*° manifold and v is an n-form (“volume form”). This is

well-defined
Definition VII.6.1

Let v be an n-form on a C'°°-manifold M and let f be a function on M. If ¢, : U, — V, is a chart

we define

[ g [ oo o

Va

Then if {U,} is a collection of charts, take a partition of unity 7, to U,, and then set

Jure=

Exercise VII.6.1

Show this is well-defined, and gives the sensible thing in general cases.
Difference to R™: no preferred volume form! On R™ we can look at dxy A --- Adx,.
Some other good cases:
e If M = (G is a Lie group, take X1,...,X,, a basis of g = Lie G. Then turn these into a basis of left
invariant vector fields.
Let n1,...,m, be a dual basis at the identity. Make 7, left invariant so n;(X;) =1if i =j and 0
if i # 5. Then ny A --- A ny, is left invariant.
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e Can do the same thing for right invariant.
Proposition VII.6.1
If G is a Lie group then there exists a left invariant volume form v, unique up to scalar multiplication.

Also there exists a unique (up to scalar) right invariant volume form vg.

() ee

Question: When is v, = vpg.

Answer: Not always,

The Lie algebra is

But they are equal for
e Abelian groups
e nilpotent groups (e.g. heisenberg groups)
e SL,(R).
Definition VII.6.2

If v, = vr we call this group unimodular.

Compact groups are always unimodular. You can measure how unimodular something is by writing vp = w-vp.
Then one can prove w(gh) = w(g)w(h) (check, Ralf thinks so). So measuring ker w tells you how unimodular
it is.

Also if there is a I' C G discrete with G/T" compact then G is unimodular.

Proposition VII.6.2

If M is a Riemannian manifold which is oriented, then the Riemannian metric induces a volume form.

The last case is suppose M has a (special) volume form v and T" acts on M properly discontinuously. Then
M/T is a manifold.
Lemma VII.6.3
If v a volume form on M is I'-invariant, then v descends to M/T.

Furthermore, if T" is finite and orientation-preserving then one can always build such a I'-invariant

volume form from an arbitrary volume form on M.

Proof. Use that m : M — M/ is a submersion and a local diffeomorphism. Thus locally can pull back v to
7 on M/T'. Building it this way gives v = 7* (D).

More explicitly. Let p,U in M/T with diffeomorphisms yU — U for v € T.

Then v on U we have v = (y~1)*v on qyv. This commutes with the projection, and so v defined from
pushing v on U down to U is the same as that defined from pushing v on yU down to U.

s
This allows one to paste it together into a preferred volume form! For the I' finite case, just average! =
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Example VII.6.2

Suppose M?" has a nonvanishing 2-form (symplectic form) « such that

alN- - N«

is nonvanishing, where we wedge n times.

More general integrals. Let C : A¥ — M be a smooth map from a k-dimensional simplex (sweeping under
the rug—what does it mean to be smooth on the boundary?)
Let o be a k-form on M. Then C*(«) is a k-form on A. Then

NECE /C a.

Note it depends on the map, which is why we write fc instead of [ c(ak): This is a generalization of a line
integral.
Example VII.6.3

When we’re looking at the line integral, we’re integrating vector fields over 1-simplices. The trick is

Definition VII.6.3

We'll call a smooth map C : A¥ — M a k-dimensional simplex in M.

These ideas are the brain-child of Poincaré, Elie Cartan, and de Rham. For now we’ll leave them alone but

we’ll come back to them later.

VII.7. Exterior Derivatives

We now want to take o a k-form and associate to it de, a (k + 1)-form on M.
Example VII.7.1
For F' € C*(M) (aka a 0-form), we can take dF),(v) = DF), - v (the directional derivative). This is a

1-form!

We'll use the notation QFM for k-forms on M, and just QF if M is clear. We want
d: Q"M — QF L

Recall that QF(M) is zero for k < 0,k > dim M =: n. So we get a chain
0 — QM) —% Q'(M) — 02(M) —4— ... —5 (M) — 0.
Here’s what we want:

(1) dis d (defined above) on Q°.
(2) d is a linear map over R (not over C*°(M)!).
(3) dod =d?=0.
(4) It works well with wedge product
d(aAB) =daAB+ (—1)*andB,

where a € QF(M).
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Theorem VII.7.1

There exists a unique d satisfying Properties 1-4 above.

We’ll prove this theorem in detail on Monday. Also Ralf Spatzier really likes the book Spivak, Calculus on
Manifolds [spivak]
Goal: Poincaré lemma. On R, this will say that if & has da = 0 (« is a “closed” form),then there exists
a (3 so that a = df, which is called being an “exact form” (notice the converse is always true). We’ll be able
to say something a bit more general. .. this exact statement doesn’t always hold.
Definition VII.7.1
We can look at Image(d|m71) - k()l“(d!m). By definition we have

Image(d}m,l )

HY M =
deRham ker(d ’ o )

This is called the de Rham cohomology.

Miraculous-this is finite dimensional over R. We’ll abbreviate it H*, though this is usually reserved for
singular homology (see 592, they agree on manifolds). Instructive examples to compute
Example VII.7.2
HY(R), H'(S1).

Theorem VII.7.2 (HW)

If M is a smooth manifold (paracompact) then there is a smooth Riemannian metric (in fact many)

ae
Proof Idea. Glue local solutions together using partition of unity. v

Definition VII.7.2

A Lorentz metric is a nondegenerate inner product (,), on 7,M such that p — (,), is smooth. Le.

for all smooth vector fields X,Y on M we have p — (X (p),Y (p)), is smooth. Furthermore (,), has
signature (n — 1,1).
Given a nondegenerate (,) is a (nondegenerate) inner product on a finite dimensional verctor space

V, dim V' = n. Then if this has signature (k,n — k) then there is a basis v1,..., v, such that

0 ifidj
(vi,vj) =9 1 ifi=j<k
-1 ifi=j5>k
If o =5 xv,y =72 y,v; then
(T, y) =191+ + TkYk — Tkt 1Yk+1 — = — TnYn-

Every inner product has some signature.

Special relativity is Lorentz metrics on R*, and general relativity is the same spiel on a general manifold
(that admits a Lorentz metric).
Theorem VII.7.3 (HW)

Not every smooth manifold supports a Lorentz metric.
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Theorem VII.7.4
52, M where M is a compact connected orientable surface of genus > 1 does not admit a Lorentz

metric.

Proof Idea. Look at S? and use that it does not admit a 1-dimensional distribution (follows from the fact
that S? admits no nonvanishing vector field). Similarly for M where the genus > 1.

The fact that this follows is from covering space theory. Bad idea for finding distributions: {(v,v), = 0}.
Better idea: Use the standard Riemannian metric and grab the unit circle in 7,,S? with respect to Euclidean
metric on R?, call this 7752, Look at (v, v), restricted to T, S2.

{(v,0)p > 0}. 7

In contrast, T? = R?/Z? does since T? = S* x S! and we can place +, — on these respectively. Likewise
Z preserves the x3 — 22 on R?, thus this descends.

For SLy(R) there exists a left invariant (,) on SL(2,R) (in fact bi-invariant). Define it on X,Y given by
for X,Y € g,

(X, Y)h1=tr(Z— [X,[Y,Z]]) = tr(ad X cadY’)
where (ad X)(2) = [X, Z].
Aside on Lie groups. Let T1G = g. define
adX:g—g
7 (X, Z).
Then we can define the “Cartan-Killing form” of g as

B(X,Y)=tr(ad X oadY).

Exercise VII.7.3

Let X,Y lie in gl(n,R) = Lie GL(n,R). Then we must show B(X,Y) = tr(X - Y) (up to some
dimension factor.
Definition VII.7.3

Call g semisimple if B is nondegenerate

Theorem VII.7.5

sl(n,R) is in fact semisimple.

Note: If g has a center. Le. if there is Z € g so that for all X € g we have [X, Z] = 0, then B is degenerate.
Why? Well B(Z,X) =0.
Fact: If G is compact with no center, then B is positive definite and nondegenerate
Example VII.7.4
SU(n),SO(n), etc.

Clarification: 5a is still part of HW6, 5 b,c are the extra credit parts.
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VIL.8. deRham Cohomology

Now, lets compute Hj gpum(S). Well we know that

HO(sl) _ R# connected components —R.

How do we compute H'(S1)? Well recall, we showed that H'(R) = 0 by showing that given a closed 1-form,

i.e. all 1-forms, then
a=ds

where (3 is a 0-form on R defined by .
8@ = [ swar
where o = fdz.
Now think of S* as [0,1]/(0 ~ q). Then if « is a 1-fom it looks like f dz where dz makes sense on S* = R/Z
since it is invariant under  — z + a for all a € R (we only need in Z, but this is better).
Moreover, if a € Q1(S1) then o = fdx where f : S — R is smooth. Then we should of course take
B:S! = R, so take

ﬁ(x):/oxf(t)dt...

BUT WAIT! We need to know if 5(0) = 8(1)! This gives us a condition
1
o is exact <= / f@¢)dt =0.
0

We want to look for H!(S') = {closed}/{exact}. The closed one-forms are just all of them since Q?(S*) = 0.
Now let o = f(z) dz be a closed 1-form. Let A := fol f(t)dt. Then consider &« — A - dz. Then

/1(f(f)—A)dtz/lf(t)dt—A:O.
0 0

Thus there exists 8 € Q°(S!) such that a — Adx = d3. Thus [a] = [A - dz], which we can think of as R since
there is one parameter.

Moral: The way the coordinate charts are put together to give you a manifold determines Hjy (M).
Crucial to put all this together:

Lemma VII.8.1 (Poincaré Lemma)

If A CR"™ is an open, star-shaped set, then any closed k-form on A is exact.

Definition VII.8.1
A set A C R”™ is called star-shaped provided there exists a point pg € A (called an observer) such

that for any p € A, the line segment [pg, p] € A.

Motivation for the Proof:

e This is really a vast generalization of the fundamental theorem of calculus. It is a long calculation.
e In dimension 1 we look at g(z) = f; f(t)dt and it turned out dg = f(t) dt.

e Idea for star-shaped: integrate along segments (i.e. “radially”).
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Proof. We'll actually define the following in this proof, called a chain homotopy, the middle maps

QF1(4) —9 QF(A) —4 QFFL(A)

k IH\

QF1(A) — QF(A) —— QFL(A)
What we want: [ is a linear map,
dey 0 Iy + Typr o dk = Id.
Consequence: If da = 0 for a € Q%(A). Then
a=Ida+d(la)=1(0)+d(Ia) = d(la).

Thus we’ll have H*(A) = 0. In the one-dimensional case I was simply integration from 0 to z. We’ll define
I : QYA) — Q7 1(A). We'll have
w= Z wrdx;, A--- Adxy,
i1 <ip<---<ig
where wy is a smooth function on A (this works since we’re in R™, so this is true globally, here I is the index

set). We now set

(Iw)(x) = Z Z (/ tfﬁlwI(tx) dt) @y, dxg, A A d/xja Ao Ndy, € fol(A)

11 <ip<-<ip =1
Without loss of generality here we’ve assumed pg = 0 to make things easier to write down. How do we prove

this works? I.e. that do I + I od = Id. Well, you just write it out. ..

d(Jw) =¢ Z (/ t[_le(tx)dt)dxil/\~-~/\dxi£

1< <ig

L n O -
3 St ([ ) ) e e
i1< e <ig a=1j=1 J

The first bit is from % (and the second bit of product rule), and the (—1)®~! disappears because we’ve

switched it to put it in the right place. The second bit is from % for any j, and uses differentiation under
the integral sign.

Then we look at da. Before we do this, note by linearity it suffices to check equality in a fixed term
i1,...,0¢. We'll suppose i1 =n—£+1,...,ip =n. So we’ll omit the sum over i; < ... < ip.

Well this is

0

—wrdz; Adx;, Ao Ad,

= O

I(dw):Z( Bre wl,...,igdt)xchx\j/\dxil/\--~/\dxi£
— J

3} —
- Z(—l)o‘_1 ( téa—wl(m) dt) z;, dx; ANdz;, A--- Adxg, Ao Aday,.
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We’ll pick up this proof on Friday'.

The messy terms then cancel, and we add the other terms
1
l- (/ t Ly (t) dt) dz;y Ao Adag, + Z ( teiwf(tx) dt> zj-dz;, Ao Ada,
0

1
= / %(tewl(tx)) dtdxz;, A+ Adxy,
0

=wr(x)dz;y A--- Aday,

¢

VIII. Stoke’s Theorem

VIII.1. Manifolds with Boundary

Stuff:
e For users of the notes, the rest of the proof from Wednesdaywas added to the November 30th notes.
e The bonus contains some stuff about computing cohomology (Mayer-Vietoris).
e For the next few days we’ll discuss Stoke’s Theorem. You are free to use it on the homework now.
Definition VIII.1.1

For convenience call H" = {(z1, ..., Zn) € R™ | 2, > 0}. A topological manifold with boundary is a

paracompact, Hausdorff, second countable space M with a cover of M by {U, }aer and homeomorphisms
Yot Uy — H™

We can then require the transition maps to be smooth to get a smooth manifold with boundary.

Example VIII.1.1
H™ is a manifold with boundary. So is R” (empty boundary). You can have things like intervals with

endpoints, or taking a standard genus g surface and slicing it in half.

Definition VIII.1.2
We define the boundary of M to be {x € M | p, € OH"} where OH" := {x € H" | z,, = 0}.

Lemma VIII.1.1
OM 1is well defined, i.e. independent of the chart. I.e., a diffeomorphism between H™ and itself
preserves the boundary.

Furthermore, M is a manifold (without boundary) of dimension dim M — 1.
Exercise VIII.1.2
Prove this lemma above.

Lemma VIII.1.2
Let M,0M be a manifold with boundary. Suppose M is oriented. Then M is also oriented.

Proof. Take the situation in H". If p € OH". How do we tell if vy, ...,v,—1 € T,0H" is a positively oriented

basis?

IThe rest of this was technically done on December 2nd
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Well take u = (uq,...,u,) an outward normal, aka so that u, < 0. We then call vy,...,v,_1 positively
oriented for H" if u,vy,...,v,_1 are positively oriented for R™. This does not depend on the particular «
chosen, bc it can be taken to (0, ...,0,u,) by a linear combination with vy,...,v,_1.

For M a manifold with boundary, we endow M with the pullback orientation from OH"™. One must check

this is well-defined, and one checks that transition maps preserve outward normals. v

Theorem VIII.1.3 (Stoke’s Theorem)
Let M be an oriented manifold with boundary M (under the induced orientation).

Given w € Q"1 M, we have that
/ dw = / w.
M oM
Example VIII.1.3

Pick M = [0,1] and pick the left to right orientation. Take w € Q°([0,1]), aka a smooth function
f:00,1] = R.

Then we have
1
/ dw = / W'(t)dt = w(l) — w(0)
[0,1] 0

/ w:/ w=w(l) —w(0),
0[0,1] {0,1}

where the — comes from the orientation. Thus we should think of Stoke’s Theorem as a generalization

of the fundamental.

Corollary VIII.1.4
If M is a manifold (without boundary) and w € Q"~1(M) then

/ dw—/ w=0.
oM

This means the integral of exact forms over manifolds are zero.

What do we need to do to prove this thing? The Idea: look at differentiable cubes, aka smooth maps
C : I*¥ — M. Then taking some wy (M) we look at an integral

/C w = wnC*(w).

Then we’ll cover M by cubes, take a partition of unity, and reduce the whole problem to something about
integrating around cubes.
Final Stuff:

e Extra Office Hours: Next Monday 2pm, Next Tuesday 4pm, plus by appointment/drop by.

e Material will concentrate on things since the midterms, but of course mathematics is largely cumulative
e Old QR problems are good practice. As are old HW problems.

e Each Question will be worth 20pts.

Last time we began discussing singular cubes, i.e. smooth maps I* = I* — M.
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Definition VIII.1.3
A smooth map C : I* — M is called a singular k-cube in M.

New idea, do something crazy: look at formal sums of singular k-cubes. Say

Cr = {Z aic; | a; € Rym e N, cik‘—cubes} .

i=1
This is then the free R-module (i.e. vector space) with basis {¢ | ck-cube}. This space is infinite-

dimensional.
Definition VIII.1.4

An form sum Y. | a;¢; as above is called a singular k-chain in M.

Goal: manifolds to algebra. We need some sort of map between these things.

Note: Cp is formal sums of points in M, as 0-cubes are points in M. Now, we have a map 9 : C, — Cp_1.
What is it? It’s the “boundary” operation (with signs)!

Want: 9% = 0 (this whole thing is “dual” to what we do with forms).

We’ll think of I™ as both [0,1]" and I™ =1d : [0, 1]™ — [0, 1]™. We now take

IznO( ) I<m1>"'7$i71a07xi7---a$n71)
an( ) I(xl,...,xi,l,O,xi,...,xn,l).
If ¢ = 0 we kick the 0 to the last coordinate (in some sense this is all modulo n). where x = (x1,...,2Zp_1).

Well
Example VIII.1.4

1(1170)(): (0). Then I(1 oy(@1) = (0,z1) and 1(2171) = (1,21). Likewise

Ifo,0(21) = (21,0)
1(20,1)(931) = (z1,1).

Crucial Fact: Each (n — 2)-dimensional face of I" is the (n — 2)-face of two (n — 1)-faces of I™. Must figure
out a combinatorial way of assigning opposite signs to get 9% = 0.
Definition VIII.1.5 (Formal Definition of 9)
We define
oI" = Z Z 4+uI77
i=1 a=0,1

This works generally. For C': I™ — M define

IC = CodI" = ZZ F(C oIl ),

i=1 a=0,1

(this is essentially defined by pushing forward 9I"™ from I" to M along C').

Proposition VIII.1.5
0%I" = 0.
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Proof. More formally, suppose ¢ < j. Let z = (z1,...,Z,—2). We compute

(IiT,Loz)j,ﬂ(‘r) = Iini’a)(ifl, N ,{Ejfl,ﬁ71'j, . ,.’En,Q)

= (xl,...,xi,l,a,xi,...,xj,l,ﬂ,wj,...,xn,g).
We likewise compute that
(-U‘Z.Lﬁ)i,oz(x) = ;L.;_Lﬁ(xla~"7xi71aa,xi,"'axn72)
= (‘Tla"'7'1:1'—1;04,1'2','"axj—176,mja"'axn—2)~

Thus these maps are equal! But the signs associated to them, i.e. (—1)"7%(—=1)7*8 and (—1)7 T8+ (—1)"+e

are opposite! Thus these will cancel in 21™. —
Then extend 0 linearly to Cy to Cr_1.
Lemma VIII.1.6
0% =0.
Proof. 9*(I*) = 0. Then §%(C) = C 0 9*(I*) = C 00 = 0. Then including sums gives zero. <

We now want to integrate over singular k-chains. The setup: if C' : I* — M is a k-cube, w € QFM a

k-form, then
/ wi= [ C*(w).
C Ik
We know C*(w) = f-day A--- Adz,. We can then just take

C*(w) = fdxidas - -dx,.
Ik Ik

(In fact: you can integrate on the interior of I*, since this is a Lebesgue integral and the boundary has

measure zero). For chains > " | a;¢; we take
o= [ w
/ ity aic i=1 ¢
Theorem VIIL.1.7 (Basic Stokes)

Suppose w € QF~1(A) where A C R™ is open, then if C is a k-chain then

/dw:/ w.
C oC
Definition VIII.1.6

A manifold M is called closed if it is compact and has no boundary.

For HW11 #4, assume M is oriented and closed. We want to integrate F;*(u) over (M x [0,1]). But

then how do we apply stokes, i.e. how do we differentiate dF; (1). The instinct is to use commutativity to

get Fy(dp) = 0. However d here lives in M x [0, 1], not in M, so this is not quite immediate.
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Stokes says that for C' a k-chain, o a (k — 1)-form.,

/da—/ac

Corollary is stokes for manifolds themselves (cover with k-chain), regular stokes (curl), divergence (div), and

Green’s theorem

Proof of Stokes for simplicial k-chains. Good enough to check for singular k-cubes since

/ do = / C*(da) = / d(C*a)
C [0,1]k [0,1]k

k
[a= > o [ ci.
oC ;

Jk—1

Now we see that o is
k ——
oz=Zfidx1/\---/\dxi/\~-~/\dxk.
i=1

Then it is good enough to check on a = fdxy A--- A d/m\l Adz,.

Claim
Jpwdo = faﬂc @

Note that
— 0 if j#£1
/ Lg(fdry Ao Adog A Adag) = ”A
[0,1]5—1 f[oufxl,...,ﬁ,xi,...,xk) if j =1
because dz; restricted is just 0, and when j # ¢ it shows up. The other one is a bit harder but not too
bad. and

o= -1) ]+ﬁ/ I7: 5 ().
[a=X S e[ e

j=1=0,1
Thus the right hand side of the about equation is

k

S/

i=1 [0,1]k—1

f(xl,...,l,...,xk)—k(—l)i/ flxy,...,0,.. . xp).

[0,1]k -1

On the other hand we have that

A(fdzi A Adzi A Adag) = | df Aday A Ada A day.
I* I*
Then df = Z =1 aq« dz;, and so the wedge is nonzero only when j = i so we have, switching things to

be in standard order that this is

/k(—l)iflg—fdxl Ao Adag.
i

T
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Then we apply Fubini’s Theorem to get

1 1 1
—1)1'—1/ / (/ afdxi)dxl/\~--/\da:i/\---/\dxk
Ox;

// f(zq,. ,1,...,xk)ff(xl,...,O,...,xk))dxl/\~~/\@/\~~/\dxk

via the fundamnetal theorem of calculus.

¢

Via the above reductions we win!

Stuff:

e Office Hours moved to Monday 5pm and Tuesday 4pm.
e Final: Thursday December 15th from 4pm to 6pm

Last Time: We proved for C a singular (k — 1)-chain and « a (k — 1)-form that

/ o=
oC
Corollary VIII.1.8 (Manifold Stokes)

Jyyda = [, « for a an (n — 1)-form, where n = dim M.

But how is f  w defined for an n-form w? We want M to be oriented, compact, and we’ll let n := dim M.
Well take an open cover U; such that each U; C Image(C;) for C; an orientation-preserving singular n-cube.

We may also take a partition of unity subordinate to U;. Write w = Y fiw where f;w is supported on Us.

Then we define
w = fiw.
Lemma VIII.1.9

This is in fact well-defined, i.e. does not depend on U;, C;, f;.

Proof. Essentially the change of variables formula. 4

Proof Idea of Manifold Stokes. In the definition of [ W use C; such that only one face of C; lies in OM.
Write a =, fior. Then

da=>"(dfi)Aa+)_ fida.

i

Then we see by how we wrote the

[ a=>[ fa
oM . Joc;

>/,

¢
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Degree and HJi (M).
Theorem VIII.1.10
If M is a compact, oriented, manifold then HJy (M) =R.

Idea of Proof. We see that R C HJ (M) by orientation.

We then have a map precisely Hiy (M) — R given by w + [, w. Since M is oriented, if v is a volume
form then [;, v > 0. Thus the map is onto.

Now suppose fM w = 0. The claim is that w = dB. To prove this claim, you cover M by open sets U;

contained in some singular n-cubes C;. We do this in such a way that
(U3 U---UU) NUgyq # 0.

Call My, =U; U---UUg. We know M = My, for some k since M is compact.
It suffices to prove that if w on M}, has zero integral then w = dn for some 7 defined on M. We prove
this by induction on k.

For k = 1, we're on a chart so this is just the Poincare Lemma. Suppose the result holds for k. We see

that
/ w =0,
My 41

Let 6 be a form supported in My NUy41 such that ka+1 6 = 1. Let {y, ¢} be a partition of unity subordinate
to {My,Uk+1} and let ¢ == ka+1 ow.

We see that pw — cf is zero on My, thus da = pw — cf for some «. Likewise ©w + cf has integral zero on
Ug41 so is d = Yw + cf (it must have this integral since w has integral zero on My41).

Then we see that d(a + 8) = w! <

Suppose M, N are dimension n, oriented and compact. Let v be a volume form on N.
Definition VIII.1.7

The degree of a map f: M — N is some map then the degree of f is defined by

fv= (degf)/ v,
M N
since this number is uniquely defined

Example VIII.1.5
The map z — 2" on S* — S has degree k. Furthermore, if f : S* — S' is an orientation preserving

diffeomorphism then it has degree 1.

Proposition VIII.1.11
deg(f o g) = deg(f) - deg(g).

Theorem VIII.1.12
Brouwer’s Fixed Point theorem. Let D™ be a closed ball in R™. Then if f: D™ — D" is continuous,

then f has a fixed point.

Proof. Only prove for f smooth.
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Claim

It is enough to prove for f smooth.

Approximate f continuous by smooth maps homotopic to it. Then see Lee.
A homotopy between f,gisamap F : X x[0,1] — X so that F(x,0) = f(z), F(z,1) = g(z). It turns
out the action on de Rham cohomology for a continuous map can be defined by approximating with a

smooth map this way, and is independent of the approximation chosen.

Suppose f: D — D is smooth and has no fixed points. Then define
z— f(z)
Gx)= ———+.
[z — f(2)]|
This map is then well-defined and continuous. G is a map from D — dD = S"~!. We can also let H(t,x)

on S™~! be given by

z —tf(x)
A P
We see that if 0 <t < 1 then ||z|| =1, [|tf(x)|| <t < 1, so this is well-defined. Likewise we know = — f(z) # 0
so it’s well-defined for t = 1 as well.
Then Hy is the identity map, so deg Hy = 1. On the other hand, if v is the volume form on S"~!, then
. Hjv = s Hiv

But then since Hy = g, H{v can be defined over D as G*v. But wait! Applying Stokes yields

/ g*u:/ G*u:/ dG*v
:/G*(du):/OZO.
D D

]

Thus the degree is zero! Contradiction ©.
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