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Consider a group homomorphism G1
φ−→ G2. There is trouble: there exists a φ : R → R which is a

homomorphism but which is not differentiable. You can construct nice ones with Galois theory, but a simpler

one is given by writing R as a Q-vector space with an uncountable basis and mapping the basis around in a

strange way.

Definition .0.1

If φ : G1 → G2 between Lie groups is a group homomorphism and C∞, then we call it a Lie group

homomorphism

Remark .0.1

It is good enough to assume φ is measurable (more strongly, continuous). When we say measurable we

mean to be with respect to charts. This is very very important, although we won’t use it. The thought:

it’s generally much easier to prove something is measurable than to prove something is differentiable.

This induces a Lie algebra homomorphism

Dφ1 : Lie(G1) = T1G1 → T1G2 = Lie(G2).

Call these g1, g2. We want this to respect the bracket.

LetX ∈ g1 be some left-invariant vector field on G1. Dφ1X(1) ∈ g2, and corresponds to some left invariant

vector field Y on g2.

Claim

X,Y are φ-related.

Proof. Take some g ∈ G1. We must show that

Dgφ ·X(g) = Y (φ(g)).

Well, we know that

Dgφ ·X(g) = Dgφ ·D1Lg ·X(1)

Y (φ(g)) = D1Lφ(g) · Y (1) = D1Lφ(g) ·D1φ ·X(1).

The result then follows since Lφ(g) ◦ φ = φ ◦ Lg since this is a group homomorphism.

THE FOLLOWING THEOREM IS WRONG, CORRECTED NEXT TIME

Theorem .0.1

There is a bijective correspondence between Lie group homomorphisms G1 → G2 and Lie algebra

homomorphisms g1 → g2.

Proof. The forward direction we just did (modulo 1-1 business). For the converse we need a trick. Namely if

ψ : g1 → g2 is a Lie algebra homomorphism we see that

graphψ = {(X,ψ(X)) | X ∈ g1}
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is in fact Lie subalgebra of g1 × g2, which is a Lie algebra with bracket

[(X1, Y1), (X2, Y2)] = ([X1, X2], [Y1, Y2]).

We then see that

[(X1, ψ(X1)), (X2, ψ(X2))] = ([X1, X2], [ψ(X1), ψ(X2)]) = ([X1, X2], ψ([X1, X2])).

We now have a Lie subalgebra, so by the main result last time there is a Lie subgroup H ⊆ G1 ×G2 (note:

Lie(G1 ×G2) = Lie(G1)× Lie(G2)).

Claim

H is the graph of a homomorphism Ψ : G1 → G2.

I.e., Ψ(g1) = g2 if (g1, g2) ∈ H. One must check that this is well-defined and a homomorphism

Exercise .0.1

Check well-definedness and homomorphism. We’ll come back to it later.

.1. Exponential Map

Let X ∈ g, where G is a Lie group with Lie algebra g. Then {tX | t ∈ R} is a Lie subalgebra since

[sX, tX] = st[X,X] = 0.

Thus there exists a connected Lie subgroup of G corresponding to X ∈ g.

This is extremely abstract. Lets get down to Earth again. Le t X ∈ g be a left invariant vector field. This

gives us a local flow φt on G.

We can consider 1 ∈ G and define gt := φt(1). Then

gt · gs = φt · φs(1) = φt+s(1) = gt+s.

We also have

Claim

φt is a global flow, i.e. defined for all t.

Proof. Appeal to the subgroups argument. Or more simply, we know the local flow of X through g is simply

Lg(φt(1)) = g · gt.

Thus if local flow at 1 is defined on (−ε, ε) so is it at g. We can then define it globally, around each point in

(−ε, ε) the flow is defined in (−ε, ε) about it, and then we can continue, defining the flow on (−2ε, 2ε). . .

Since ε > 0 is fixed this gives us a global flow.

Example .1.1

We want to look at this very concretely. Prime Example is G = GLn(R). We see that

gln(R) = T1 GLn(R) =Mn,n.
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If X ∈Mn,n then what is φt, well

etX =

∞∑
n=0

(tX)n

n!
,

converges sicne ∥∥∥∥∥
∞∑

n=0

(tX)n

n!

∥∥∥∥∥ ≤
∞∑

n=0

|t|n ∥X∥n

n!
= e|t|·∥X∥,

where ∥·∥ is the operator norm, and it is easy to check that ∥AB∥ ≤ ∥A∥·∥B∥, whcih gives ∥Xn∥ ≤ ∥X∥n.
Finally note that d

dt (e
tX) = XetX . We also must show etX ∈ GL(n,R). This will be because if A,B

commute then eAeB = eA+B , so etXe−tX = Id.

Example .1.2

This also works for any subgroups of H ⊆ GLn(R), namely if we have a flow for X ∈ T1H lying in

GLn(R), then of course the flow lies in H.
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