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Recall the claim from last time: TM is a vector bundle over M . To do this we need to show that TM

carries a manifold structure. It turns out we lose regularity (summed up below)

Remark .0.1

If M has a Cr-manifold structure, then TM has a Cr−1-manifold structure. Thus M must have at

least C2-structure to get TM with C1-structure (that is a manifold).

Note: In the end this is not a problem, as we will later show that every C1 manifold has a C∞

structure

Proposition .0.1

If M is a Cr-manifold then TM :=
∐

p TpM is a Cr−1-manifold which is a vector bundle over M .

Proof the Tangent Bundle is a Vector Bundle. Take M to be an abstract differentiable manifold, and π :

TM →M the obvious map. Call m := dimM , then we’ll take F := Rm. We must do two things

(a) Give TM a manifold structure.

(b) Show it can be endowed with a vector bundle structure.

We take a covering of M by charts (Uα, φα), φα : Uα →Wα ⊆ Rm. Note φα is in fact a diffeomorphism, by

how we’ve set up the definition of differentiability on manifolds.

Then we’ll do each of the above

(a) We know that TWα ⊆ R2m is an open subset, as TWα =Wα × Rm.

Then

TUα =
∐

p∈Uα

TpUα
Dφα−−−→

∐
p∈Uα

Tφα(p)Wα = TWα.

We take this as a coordinate chart on TM . Namely, take TM to have a topological strcture with

basis the open sets {TUα}.
Then we claim (TUα, Dφα) is an atlas. We must look at the transition map, that is

TUα ∩ TUβ

Dφα(TUα ∩ TUβ) Dφβ(TUα ∩ TUβ)

Dφα Dφβ

Dφβ◦Dφ−1
α

By the chain rule this is D(φβ ◦ φ−1
α ), which is Cr−1 by assumption. Thus this is a Cr−1-atlas.

(b) We now will show this is a vector bundle. Note that

π−1(Uα) =
∐

p∈Uα

TpM.

We then have Uα
φα−−→Wα ⊆ Rm. Note then

π−1(Uα)
Dφα−−−→ TWα =Wα × Rm.

This is nearly our trivialization. Follow up with (φ−1
α , Id) to get

π−1(Uα)
(φ−1

α ,Id)◦Dφα−−−−−−−−−→ Uα × Rm.

Call this ψα. Clearly proj ◦ψα = π, so this is a fiber bundle.
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Last thing to check is that ψα is linear on fibers. This comes from the fact that TpUα inherits its

linear structure from Tφα(p)Wα.

That is

ψα : TpUα = TpM
(φ−1

α ,Id)◦Dpφα−−−−−−−−−−→ {p} × Rm

is linear because Dpφα is linear by construction of the linear structure on TpM .

We’ll now do constructions with vector bundles! Take V,W to be vector bundles over M with maps π1, π2

to M .

• HW5: Define V ⊕W → M , and if Vp = π−1
1 (p) and Wp are similar then the fiber over p should be

Vp ⊕Wp.

• We can take V∗ with fibers V ∗
p , where ∗ denotes the dual space. For this one looking fiber by fiber

ϕα : π−1(p) → {p} × V

is linear, and we have

ϕ∗α : {p} × V ∗ → (π−1(p))∗.

This goes in the opposite direction as desired, but ϕα is invertible! Thus we can look at

(ϕ∗α)
−1 : (π−1(p))∗ → {p} × V ∗.

• If V,W are two vector bundles you can look at V ⊗W.

• Important one down the road: Given one specific vector space V . We cal look at the k-fold tensor

product V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

. Hiding inside of this is something important, the k-alternating linear forms∧k
V .

We can of course do this with V as a vector bundle
∧k V. Later then

∧k
TM will be differential

k-forms, which will lead to de-Rham cohomology at the end.

Recall .0.1

A multilinear form on V1, . . . , Vk is a map

V1 ⊕ V2 ⊕ · · · ⊕ Vk → R

if λ(v1, . . . , vk) is linear in each coordinate. If V = V1 = · · · = Vk then λ is called alternating when

λ(v1, . . . , vi, . . . , vj , . . . , vk) = −λ(v1, . . . , vj , . . . , vi, . . . , vk).

Prime example: Determinant, det : Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R.
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