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Idea of proof: somehow apply inverse function theorem

Summary of the proof of the regular value theorem in steps:

(Step 1) Use coordinate charts to reduce to a problem about F : U → Rk so that U ⊆ Rn is open.

(Step 2) We have F : U → Rn and q a regular value of F . We want to show F−1(q) is a submanifold of Rn.
We know that p ∈ F−1(q) DFp is surjective and

DFp =


∂F1

∂x1
· · · ∂F1

∂xn

...
. . .

...
∂Fk

∂x1
· · · ∂Fk

∂xn

 .

Since DFp has rank k, so it has k linearly independent row vectors. We may assume without loss of

generality that they are the first k.

(Step 3) Take G : Rn → Rk × Rn−k to be defined by G(x1, . . . , xn) = (F (x1, . . . , xn), xk+1, . . . , xn). Then we

have

A :=


∂F1

∂x1
· · · ∂F1

∂xk

...
...

. . .
...

∂Fk

∂x1
· · · ∂Fk

∂xk


DGp =

(
A ∗
0 Id .

)

This is obviously invertible. Thus G is a local diffeomorphism, which means G−1({q}×Rn−k) willbe
locally a submanifold.

(Step 4) F−1(q) = G−1({q} × Rn−k). Thus F−1(q) is locally a submanifold.

Example .0.1

There is a canonical submersion given by Rn → Rk with (x1, . . . , xn) 7→ (x1, . . . , xk) for k ≤ n.

Another way of stating the regular value theorem is

Theorem .0.1

If f : M → N is C1 and q is a regular value, then for any p ∈ f−1(q) there exist coordinate charts

(U,φ), (V, ψ) such that

Rm Rn

φ(U) ψ(V )

(x1, . . . , xm) (x1, . . . , xn).

⊂

ψ◦f◦φ−1

⊂

with m = dimM,n = dimN . This is called the normal form.

What is the engine of the IVT? The contraction mapping fixed point theorem!!!

Drives many things in the subject, such as existence and uniqueness of solutions of ODEs. It also shows

up in dynamics.

1



Faye Jackson September 26th, 2022 MATH 591 - .0

Example .0.2

Consider O(n) = {n× n matrices with AAt = Id}. We show it’s a submanifold of GLn(R) ⊆ Rn2

by

looking at

F :Mn(R) → Sym(n× n) ∼= Rn(n+1)/2

A 7→ AAT ,

where Sym(n × n) are the symmetric n × n matrices. We must show that the identity Id is a regular

value.

We must calculate DFg where g ∈ F−1(Id), so ggt = Id. We calculate DFg(v) using curves, where

v ∈ Rn2

. Consider

F (g + tv) = (g + tv)(g + tv)T = (g + tv)(gT + tvT )

= Id+t(gvT ) + t(vgT ) + t2 · ∗

d

dt
F (g + tv)

∣∣∣
t=0

= gvT + vgT .

The claim is that any symmetric matrix has this form. Set v = wg, then

DFg(v) = wT + w.

If A is a symmetric matrix, then taking w = A
2 is sufficient.

Alternative approach: Compute the kernel ker(DFg). If v ∈ ker(DFg) then gv
T = −vgT , so vgT is

skew-symmetric. The dimension of this is n(n− 1)/2.

Then the dimension of the image of DFg is

n2 − n(n− 1)

2
=
n(n+ 1)

2
.

But this is exactly the dimension of the symmetric matrices, and so we’re done.

SO(n) is the connected component of the Id in O(n) because det : O(n) → R takes values in {±1}. Thus
SO(n) is clopen in O(n).

Fact: SO(n) is connected.
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