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Announcements

• Midterm remains on Wednesday October 19th in class.

.1. Flow on Vector Fields

How do we flow on vector fields? That is how do we think of the vector field as a field of force/acceleration

for a particle.

Well we wish to fill up a manifold M with curves and then differentiate them! That tells us the vector

field at every point. However, we must avoid crossings so we can decide where to take the vector field

Recipe:

(1) Fill up M with disjoint differenitable curves ci.

(2) Then take X(p) = ċpi(p) for cpi a curve through p.

(3) What about C0, C1, . . .?

(4) Along a C∞-curve c(t) the vector field is C∞, “transversally” to the curves regularity is unclear. But

if c 7→ cpi
is sufficiently differentiable, then all is good.

Example .1.1

Strange example. Take an angle α ̸∈ 2πQ and take a line through the flat torus which forms an angle

α.

For convenience here is a picture of curves in the flat and curved torus

This picture is taken from [EHM18].

We want to go the opposite direction. Given a vector field, how do we produce a flow which incudes it?

Definition .1.1

Let X be a vector field on M . We call c : (a, b) → M a solution curve for X provided that for all

t0 ∈ (a, b) we have

d

dt

∣∣∣
t=t0

c(t) = X(c(t0)).
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In coordinates, for a C∞-chart U take standard vector fields ∂
∂xi

. Then we know

X
∣∣
U
=

n∑
i=1

ai(p)
∂

∂xi
.

X is C∞ if and only if ai is C
∞.

Write c(t) = (c1(t), . . . , cn(t)) in these coordinates. Then we have that

ċ(t0) = (ċ1(t0), . . . , ċn(t0)).

To require that X(c(t0)) means to require that

n∑
i=1

ai(c(t0))
∂

∂xi
(c(t0)) =

n∑
i=1

ċi(t0) ·
∂

∂xi
(c(t0)).

Therefore we must have ai(c(t0)) = ċi(t0). We have that the ai are given by the vector field. What’s not

given is the C’s

“Bacid ODEs, Vague.” For a C1-manifold we can solve uniquely if ai are Lipschitz functions then the

solutions are unique.

Why vague? For what time t do we get a solution. Well something like

ci : (−ε(p), ε(p)) → Rn

within coordinates. This occurs because the “speed” along which ci goes on the vector field may escape to

infinity, and then we don’t know what to do at ε(p).

More precise version. Let X be some C∞ vector field. There exists an ε > 0 and a δ > 0 such that for all

q ∈ Bε(p) ther exists a solution to the ODE on the inversal (−δ, δ).

This is called a local solution. We have existence and uniqueness of local solutions. We will not prove this

because it is painful, it is an application of the Contraction Mapping Theorem.

Definition .1.2

Call M a C∞ manifold. We say a vector field X on M is complete if solution curves exist through

any point for all time.

Ad: Nearly impossible to actually calculate solutions to these curves (supercomputers can approximate),

except in special cases (ex. linear ODEs). Actual computations is the Quantitative, explicit solutions, and

would be called ODEs.

Dynamical systems would be considering the Qualititative study of vector fields! This goes back to

Poincaré.

Lemma .1.1

If M is a compact C∞ manifold and X is a CK vector field for k ≥ 1 then X is complete.

Proof. For short time, on a neighborhood U of p ∈ M we have a solution curve cp : (−ε(p), ε(p)) → U

Then there are finitely many p1, . . . , pℓ with
⋃

Upℓ
= M . Take ε := min εpi

.

For each q ∈ Upi we can flow along the field for (−ε, ε). Uniqueness of solutions on (−ε, ε) implies that

things will agree on the overlap. We can keep flowing in either direction forever!!! This finishes the proof.
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Warning: The curve exists for all time but may have finite length! We may come to a stop at a stationary

point on the vector field!!!

Definition .1.3

Let X be a complete vector field on M . Call a map Φ : R×M → M so that ϕ(t, p) for fixed p ∈ M

and varying t is a solution curve at p the flow generated by X.

We define φt(p) := Φ(t, p). We can call φt the (global) flow determined by X.

Next time: This gives you an action of the real numbers on M .
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