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1 Kolmogorov Axioms

We start with some experiment

Example. Here are some expirements

a) Flip a coin

b) Roll a die

c) Draw a ball from an urn

d) Pick a number between 0 and 1.

We will use the Kolmogorov axioms for a Probability Space (Ω,F , P ).

1.1 The Sample Space

Let’s detail what Ω–the sample space–is in each example.

a) Ω = {H,T}

b) Ω = {1, 2, 3, 4, 5, 6}.

c) Ω = {red, blue,black}

d) Ω = [0, 1]

In the first three cases these are finite, and in the last case the sample space

is infinite. Sometimes these are really hard to figure out!
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Example . The experiment is the time I will wake up tomorrow? (say

between 6am-10am). There are many possible sample spaces!

• Ω = [6, 10], measuring time with perfect precision.

• Ω = [6, 10] ∩Q, measuring time with arbitrary, but finite, precision

• Ω = finite, measuring time with precision up to the minute.

In the abstract set-up, Ω is any set.

1.2 The Events

This has to do with F . An event is some set of outcomes:

Example. Going back to our first examples

a) A = {H}A = {T}

b) A = any even number = {2, 4, 6}

c) A = not black = {red, blue}

d) A = a number less than 1
2 =

[
0, 12
)

An event then is a subset of Ω. For technical reasons, not all subsets of Ω

will be allowed. Thus:

F = the set of subsets of Ω that are allowed to be events ⊆ P(Ω)

We want to be able to perform the following operations provided that A and

B are events:

• A ∪ B is an event (this represents inclusive or). We interpret this as

“at least one of A or B happens.”

• A ∩B is an event (this represents and). We interpret this as “both A

and B happen.”

• A \ B is an event. We interpret this as “A happens but B does not

happen”
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• A4B = (A∪B) \ (A∩B) is an event, called the symmetric difference

in set theory. We interpret this as “exactly one of A and B happens.”

More generally, we require:

• If A1, A2, A3, . . . are events, then so is their union:

∞⋃

n=1

An = {x ∈ Ω | there exists some n such that x ∈ An}

This expresses inclusive or as above.

• If A is an event then so is Ac = Ω \A.

Definition. A set F of subsets of Ω is called a σ-field (or σ-algebra) provided

that it satisfies the above two axioms and Ω ∈ F (we call Ω the “sure” event).

Example. The simplest example is just let F = P(Ω), the set of all subsets

of Ω (that is the powerset). When Σ is finite we almost always allow F =

P(Ω). When the sample space is infinite, we run intro trouble with P .

Exercise. If A1, A2, . . . are events then so is their intersection:

∞⋂

n=1

An = {x ∈ Ω | for all n, x ∈ An}

This is justified by DeMorgan’s law:

( ∞⋃

n=1

An

)c

=
∞⋂

n=1

Ac
n

1.3 Group Work

Justify the following:

1. Given two subsets A,B argue that (A ∪B)c = Ac ∩Bc

2. Generalize this to DeMorgan’s law as given above

3. Conclude that A ∩B, A \B, and
⋂∞

n=1An are all events.
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Proof of 1. We will do this by two-way inclusion:

(⊆) Fix x ∈ (A ∪B)c. Then x 6∈ A ∪B, and therefore x is not in A and x

is not in B. Therefore x ∈ Ac and x ∈ Bc, implying x ∈ Ac ∩Bc.

(⊇) Fix x ∈ Ac ∩ Bc. Then x ∈ Ac and x ∈ Bc, implying that x is not in

A and x is not in B. Therefore x 6∈ A ∪B, and so x ∈ (A ∪B)c.

Proof of 2. Let’s go!

(⊆) Fix x ∈ (
⋃∞

n=1An)c. Then we know that there does not exist n ∈ N
so that x ∈ An. Therefore for all n ∈ N we must have x 6∈ An, and

thus x ∈ Ac
n for all n ∈ N, giving us that x ∈ ⋂∞

n=1A
c
n.

(⊇) Fix x ∈ ⋂∞
n=1A

c
n. Then for all n ∈ N we must have x ∈ Ac

n, that is

x 6∈ An. By negation then there deos not exists an n ∈ N such that

x ∈ An, and so:

x ∈
( ∞⋃

n=1

An

)c

Just as desired ,

Proof of 3. Suppose A,B,A1, A2, . . . are events. We now proceed

• We know that Ac and Bc are then events by defintion of a σ-field, and

thus we also have Ac ∪Bc is an event as well. This then gives:

(Ac ∪Bc)c = (Ac)c ∩ (Bc)c = A ∩B

is an event, as desired

• Since B is an event we know that Bc is an event. Therefore by the

earlier proof we know A ∩Bc is an event. We now show that A \B =

A ∩Bc.
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(⊆) Fix x ∈ A \ B, then x ∈ A ⊆ Ω and x 6∈ B. Therefore x ∈ Bc as

well and so we have x ∈ A ∩Bc.

(⊇) Fix x ∈ A ∩ Bc, then x ∈ A and x ∈ Bc, implying that x 6∈ B.

Therefore x ∈ A \B as desired.

This means we must have that A \B is an event.

• Consider that by assumptions we know Ac
n is an event for all n ∈ N.

Therefore we must also have that
⋃∞

n=1A
c
n is an event. By taking

complements we then know:

( ∞⋃

n=1

Ac
n

)c

=

∞⋂

n=1

(Ac
n)c =

∞⋂

n=1

An

And so this is an event as well, just as desired.

Great! We win ,

1.4 The probability measure P

P is a function F → [0, 1], which assigns a probability to each event. P

must satisfy the axioms:

• P (Ω) = 1.

• If A1, A2, . . . are events such that An ∩ Am is empty for all naturals

n 6= m. Then:

P

( ∞∑

n=1

An

)
=

∞∑

n=1

P (An)

This is called σ-additivity.

Definition. A function P as above is called a probability measure

Definition. A probability space is a triple (Σ,F , P ) where Ω is any set, F
is a σ-field of subsets of Ω, and P : F → [0, 1] is a probability measure.
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1 Last Time

We talked about what a probability space (Ω,F , P ) is:

• Ω is a sample space.

• F is a σ-field of events

• P : F → [0, 1] is a probability measure.

2 Finite Sample Spaces

We will assume for today that Ω is finite and take F = P (Ω).

Definition. For any x ∈ Ω such that {x} ∈ F , we call {x} an atomic event

Note that for Ω finite and F = P (Ω) we must have all the possible atomic

events, and moreover:

P (A) = P

(⋃

a∈A
{a}
)

=
∑

a∈A
P ({a})

We can thus conclude that knowing the probability of the atomic events

determines the whole probability measure.
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2.1 Symmetric Spaces

Definition. We call a probability space a symmetric probability space pro-

vided that P ({x}) does not depend on x for all x ∈ Ω. That is all outcomes

are equally likely. Thus when Ω is finite we have:

P ({x}) =
1

|Ω|

P (A) =
|A|
|Ω|

Example. Flip a fair coin

Non-Example. Flip an unfair coin

Example. Let there be n people, including Ali and Bo, who are seated in

a row. All arrangments are equally likely. What is P (Ali is left of Bo)?

Consider the function f : Ω→ Ω, where we switch the places of Ali and

Bo. f is an involution with no fixed points, and consider that:

A = {Ali is left of Bo}
Ac = {Ali is right of Bo}

f : A↔ Ac

|A| = |Ac|

Because f is in particular a bijection. But now we win! Watch:

1 = P (Ω) = P (A) + P (Ac)

= P (A) + P (A)

P (A) =
1

2

Example . Same set up. but now P (Ali is directly left of Bo). We split

into two cases, in the first we consider that P (Bo is left-most) = 1
n , and so

P (Bo is not left-most) = n−1
n .

In the later case, P (Ali is directly left of Bo) = 1
n−1 sinc there are n− 1
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people. Therefore:

P (Ali is directly left of Bo) =
n− 1

n
· 1

n− 1
=

1

n

2.2 Group Work

For any finite Ω, show that:

• P (Ac) = 1− P (A)

• P (A ∪B) = P (A) + P (B)− P (A ∩B)

• This one is nasty

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

Proof. Let’s go!

• Note that A ∩Ac = ∅. Thus:

1 = P (Ω) = P (A) + P (Ac)

Rearranging we find P (Ac) = 1− P (A).

• Let D = B \ (A ∩ B). Then B = D ∪ (A ∩ B), where this is a

disjoint union so we can say P (B) = P (D)+P (A∩B). Now note that

A ∪B = A ∪D, where the latter union is disjoint:

P (A ∪B) = P (A ∪D) = P (A) + P (D)

= P (A) + P (B)− P (A ∩B)
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• Consider by the second bullet:

P ((A ∪B) ∪ C) = P (A ∪B) + P (C)− P ((A ∪B) ∩ C)

= P (A) + P (B)− P (A ∩B)− P ((A ∩ C) ∪ (B ∩ C))

= P (A) + P (B)− P (A ∩B)

− P (A ∩ C)− P (B ∩ C) + P ((A ∩ C) ∩ (B ∩ C))

= P (A) + P (B)− P (A ∩B)

− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C)

Example. Ali and Bo are taking a class together. They have been able to

estimate that:

P (Ali gets a B) = 0.3

P (Bo gets a B) = 0.4

P (neither gets an A but at least one gets a B) = 0.1

They want to know the probability that neither gets a C but at least one

gets a B. Note that the sample space is:

Ω = {A,B,C}2

P ({BA,BB,BC}) = 0.3

P ({AB,BB,CB}) = 0.4

P ({BB,BC,CB}) = 0.1

P ({AB,BA,BB}) = ?

We then note that:

P ({AB,BA,BB}) = P ({AB,BA,BB,BC,CB})− P ({CB,BC})
= P ({BA,BB,BC}) + P ({AB,BB,CB})− P ({BB})− P ({CB,BC})
= 0.3 + 0.4− 0.1 = 0.6
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3 Why bother with F
Take Ω = [0, 1). For any q ∈ Q and any subset A ⊆ [0, 1), define a new

subset A+ q ⊆ Ω by first translating the set and then taking the fractional

part of each element of the translated set:

A+ q = {x ∈ Ω | ∃z ∈ Z, x+ z − q ∈ A}

There exists a set A ⊆ Ω such that:

• A ∩ A + q = ∅ for any q ∈ [0, 1) ∩ Q. Note that A + p ∩ A + q =

A ∩ (A+ (q − p)) + p.

• Also:

Ω =
⋃

q∈[0,1)∩Q
A+ q

But then the axioms of a probability space tell us that:

1 = P (Ω) =
∑

q∈[0,1)∩Q
P (A+ q) =

∑

q∈[0,1)∩Q
P (A)

We get the last equality because we want our measure to be “translation

invariant,” and so P (A+ q) = P (A) for any rational q. If P (A) = 0 then we

get 1 = 0, and if P (A) > 0 then we get 1 =∞. This is bad. Thus A should

not be allowed to be an event.

To get A we use the concept of an equivalence relation and the Axiom of

Choice. Declare x, y ∈ Ω equivalent if x − y ∈ Q. Then we must have that

Ω is the disjoint union of the equivalence classes. The axiom of choice gives

a set A which contains exactly one number from each equivalence class.

Example. Let Ω = [0, 1]. Let F be the smallest σ-field that contains all

intervals. This is called the Borel σ-field. You can prove that this exists!
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We let P be the unique probability measure such that for any a ≤ b:

P ((a, b)) = P ([a, b]) = b− a

This P is called the Lebesgue measure. Note that for any x ∈ [0, 1] we have:

P ({x}) = 0

3.1 Properties of the Lebesgue measure

There are some nice properties of P .

Theorem. Consider that if A1 ⊆ A2 ⊆ · · · is an ascending chain of events.

Then:

P

( ∞⋃

n=1

An

)
= lim

n→∞
P (An)

Proof. Let Bn = An \An−1 where A0 = ∅. Then:

∞⋃

n=1

An =
∞∐

n=1

Bn

Therefore:

P

( ∞⋃

n=1

An

)
= P

( ∞∐

n=1

Bn

)
=

∞∑

n=1

P (Bn)

= lim
n→∞

(
n∑

k=1

P (Bk)

)
= lim

n→∞
P (An)

Corrolary. If A1 ⊇ A2 ⊇ · · · is a descending tower of events then:

P

( ∞⋂

n=1

An

)
= lim

n→∞
P (An)
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Proof. But note that Ac
1 ⊆ Ac

2 ⊆ · · · is an ascending chain and so:

P

( ∞⋂

n=1

An

)
= 1− P

(( ∞⋂

n=1

An

)c)

= 1− P
( ∞⋃

n=1

Ac
n

)

= 1− lim
n→∞

Ac
n

= lim
n→∞

(1−Ac
n)

= lim
n→∞

An
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1 Conditional Probability

Let AB be events and assume P (B) > 0. Then we define:

Definition. The following probability:

P (A | B) =
P (A ∩B)

P (B)

We call this “the probability of A assuming B”

Remark. Formally we replace Ω with ΩB = B and F by FB = {A∩B | A ∈
F}. Then PB(A ∩B) = P (A | B).

Definition. We say that A is independent of B provided that P (A | B) =

P (A). Furthermore we say that B attracts A provided that P (A | B) >

P (A), and that B repels A provided that P (A | B) < P (A).

Remark. The following holds for A and B:

P (A ∩B) = P (A) · P (B) ⇐⇒ A is independent from B

P (A ∩B) < P (A) · P (B) ⇐⇒ B repels A

P (A ∩B) > P (A) · P (B) ⇐⇒ B attracts A

Also the relations of independence, attraction, and repelling are symmetric.
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Example. Let A be the probability that a card is an ace and B be the

probability that the card is spades. Note that:

P (A) =
4

52
=

1

12

P (B) =
1

4

P (A ∩B) =
1

52
=

1

12
· 1

4
= P (A) · P (B)

Now remove the Jack of Hearts. Same question:

P (A) =
4

51

P (B) =
13

51

P (A ∩B) =
1

51
< P (A) · P (B) =

52

51
· 1

51

Observe 1. A,B are independent is not at all the same as A ∩B = ∅.

2 Group Work

1) Let A,B be events, 0 < P (B) < 1. Show that:

P (A) = P (A | B) · P (B) + P (A | Bc) · P (Bc)

2) If A ⊆ B then P (A) ≤ P (B). This inclusion means B implies A.

3) If A ⊆ B and P (A) = P (B). Does it follows that A = B?

Proof of 1. Note that 0 < P (Bc) = 1− P (B) < 1. And so:

(A ∩B) t (A ∩Bc) = A

P (A ∩B)

P (B)
· P (B) +

P (A ∩Bc)

P (Bc)
· P (Bc) = P (A ∩B) + P (A ∩Bc)

= P (A)
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Proof of 2. Note that:

P (B) = P (A) + P (B \A) ≥ P (A)

And so we win! ,

Non-Example . Let A,B be events with P (A) > 0 and P (B) = 0 and

A,B 6= ∅ and A ∩B = ∅. Then:

A ⊆ A ∪B

P (A) = P (A ∪B)

A 6= A ∪B

For another example take A to be the probability that a randomly chosen

number from [0, 1] is less than a half but not equal to one third. Then take

B to be the probability that a randomly chosen number from [0, 1] is less

than one half.

Corrolary. If B1, . . . , Bn are events such that:

• Ω = B1 ∪ · · · ∪Bn

• Bi ∩Bj = ∅ for any 1 ≤ i, j ≤ n and i 6= j

• P (Bi) > 0 for 1 ≤ i ≤ n

Then for any event A we have:

P (A) =

n∑

i=1

P (A | Bi) · P (Bi)

Example. There are two kinds of covid tests. The Type I tests are defective

20% of the time. Then Type II tests are defective 5% of the time. There

are twice as many Type II tests.

Question: Having chosen a random test what is the chance that it’s not

defective? This is A.
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Let B be the event tha tthe test is of type I, then:

P (A) = P (A | B) · P (B) + P (A | Bc) · P (Bc)

=
4

5
· 2

3
+

19

20
· 1

3
=

51

60

You can flip things around and ask what is the probability that a defective

test is of type I:

P (B | Ac) =
P (B ∩Ac)

P (Ac)
=

P (Ac ∩B)

P (Ac)

=
P (Ac | B) · P (B)

P (Ac)

=
1
5 · 23
9
60

=
8

9

Example. Coin tosses. Consider all patterns that occur when tossing a

coin three times. You and I choose a pattern. We begin tossing a fair coin.

Whoever’s pattern appears first wins.

Claim. If you choose first. I can always choose a pattern such that my win

probability is at least two thirds.

Example. You choose HTH as your pattern. I choose the pattern HHT

given this. Let X be the probability that I win. If we toss tails then the

win probability doesn’t change. If we toss heads twice then I always win,

because eventually we will toss a tail. If we toss HTH then you win. If we

go HTT then the probability is x again. Therefore:

x =
1

2

(
x +

1

2

(
1 +

1

2
(0 + x)

))

x =
5

8
x +

1

4
=⇒ x =

2

3

We can always do this kind of choosing, so we win at least two thirds of

the time.

Definition. Take a collection {Ai}i∈I be a collection of events indexed by a

set I of arbitrary cardinality. The collection {Ai}i∈I is independent provided
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that for any finite subcollection J ⊆ I we have:

P


⋂

j∈J
Aj


 =

∏

j∈J
P (Aj)

The collection is pairwise independent provided that any two events are in-

dependent.

Remark . Note that independence easily implies pairwise independence.

However the converse is not true.

Example. Roll a die twice. Look at the following three events. A says the

first die shows a three. B says second die shows four. C says the sum of the

two rolls is seven:

P (A) = P (B) = P (C) =
1

6

P (A ∩B) = P (A ∩ C) = P (B ∩ C) =
1

36

P (A ∩B ∩ C) =
1

36

Thus this collection is pairwise independent but not independent
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Basic Combinatorics

Let k, n be natural numbers:

Repeating Experiments

Say you have an experiment with k outcomes. Repeating n times gives kn

outcomes. If Ω is the sample space of the experiment. Then Ωn is the sample

space of the experiment repeated n times. Furthermore:

P ({(x1, . . . , xn)}) = P ({x1}) · P ({x2}) · · ·P ({xn})

The underlying assumption is that these events are independent.

Definition. If (Ω1,F1, P1) and (Ω2,F2, P2) are probability spaces. Their

product is (Ω,F , P ) where:

• Ω = Ω1 × Ω2 = {(x1, x2) | x1 ∈ Ω1, x2 ∈ Ω2}

• F is the smallest σ-field containing all A×B for A ∈ F1, B ∈ F2

• P is uniquely determined by P (A× B) = P (A) · P (B) for all A ∈ F1

and B ∈ F2.

Great! This should be proved as an exercise.
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Proof. First lets prove that there does exist a smallest σ-field containing

all A×B for A ∈ F1 and B ∈ F2. We do this by letting:

F∗ := {A×B | A ∈ F1, B ∈ F2}
F :=

⋂

G∈Σ(Ω)
F∗⊆G

G

Where Σ(Ω) is the set of all σ-algebras over Ω. We must show this is a

σ-algebra.

• Let C1, C2, . . . be events in F . Now fix a G ∈ Σ(Ω) such that

F∗ ⊆ G. Then by definition C1, C2, . . . are events in G, and so⋃∞
n=1Cn ∈ G. Therefore

⋃∞
n=1Cn ∈ F just as desired.

• Let X ∈ F . Then fix G ∈ Σ(Ω) such that F∗ ⊆ G. Then note

that X ∈ G so Xc ∈ G. Therefore we must have Xc ∈ F just as

desired.

Note also that clearly F∗ ⊆ F as desired, and F is the smallest σ-field

containing F∗.

TODO:

Probabil-

ity mea-

sure

Example. Toss a coin 3 times, then Ω = {H,T} and Ω3 = {HHH,HHT, . . .}.

Selecting a committee

We have n people and want a committee of k people, n ≥ k. First select the

most important person, then the next important, etc.

Total # of choices = n(n− 1) · · · (n− k + 1) =
n!

(n− k)!

This number records importance. If one doesn’t want to record order,
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must divide by # of orders, which is k!. Thus the number of committees

without order is the integer n!
(n−k)!k! =:

(
n
k

)
. Note that:

(
n

k

)
=

(
n

n− k

)

Example. You are writing a letter to each of n people. Each letter is put

into a random envelope. What is the probability that at least one letter is

in the correct envelope:

Ai = i-th letter is in the correct envelope

P

(
n⋃

i=1

Ai

)
=

n∑

i=1

P (Ai)−
∑

1≤i<j≤n
P (Ai ∩Aj) + · · ·

=
∞∑

k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤n
P




k⋂

j=1

Aij




Note first that P (Ai) = 1
n and P (Ai ∩Aj) = 1

n · 1
n−1 . More generally:

P




k⋂

j=1

Aij


 =

1

n(n− 1) · · · (n− k + 1)
=

(n− k)!

n!

Note that this summand is independent of the indexing set. Look at an

example:

• Note first that:

|{(i, j) | 1 ≤ i < j ≤ n}| = 1

2
· |{(i, j), 1 < i 6= j ≤ n}| = 1

2
· n · (n− 1)

• In general:

|{(i1, . . . , ik) | 1 ≤ i1 < i2 < · · · < ik ≤ n}| =
(
n

k

)
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Therefore we have that:

P

(
n⋃

i=1

Ai

)
=
∞∑

k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤n

(n− k)!

n!

=
∞∑

k=1

(−1)k−1 ·
(
n

k

)
· (n− k)!

n!

= −
∞∑

k=1

(−1)k

k!
= 1− e−1 ≈ 0.63

By recalling that:

ex =

∞∑

k=0

xk

k!

Group Work

You deal 5 cards. What is the probability that exactly three are aces?

# total deals =

(
52

5

)

# exactly three are aces =

(
4

3

)
·
(

48

2

)

P (A) =

(
4
3

)
·
(

48
2

)
(

52
5

)

There are two ways of thinking about this

a) Think of individual arrangements. Then:

(
5

3

)
· 4

52
· 3

51
· 2

50
· 48

49
· 47

48

b) Another way to compute it is:

(
4
3

)
·
(

48
2

)
(

52
5

)
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Random Walks

Some setups

• A frog jumps each minutes, and with probability p goes left, and with

probability 1− p moves right

• Flip a coin. Probability p it’s heads, and 1− p that it’s tails

• A gambler wins $1 with probability p and loses $1 with probability

1− p

Formally we start with an integer k, we add 1 with probability p, and sub-

tract 1 with probability 1−p. A certain path is called a trajectory. You can

ask:

a) Number of trajectories from (0, k) to (t, n). Note that:

t = ups + downs

n− k = ups− downs

But then:

ups =
1

2
(ups + downs) +

1

2
(ups− downs) =

1

2
(t+ n− k)

downs =
1

2
(ups + downs)− 1

2
(ups− downs) =

1

2
(t− n+ k)

Then the number of trajectories is equal to:

(
t

t+n−k
2

)
=

(
t

t−n+k
2

)

Note that t + n − k must be even or else this is not a well-defined idea.

Because then the number of ups would not be a non-negative integer.

Likewise if |n− k| > t there are negative ups or downs. Thus we assume

|n− k| ≤ t.

b) The Reflective Principle. Let n > k > 0. The # of trajecctories from

(0, k) to (t, n) which touch the x-axis is equal to the number of all tra-

5



jectories from (0,−k) to (t, n). Just reflect the part before the first time

the trajectory touches the x-axis

c) We can compute the number of trajectories from (0, k) to (t, n) that do

not touch the x axis. So we have this as:

(
t

t+n−k
2

)
−
(

t
t+n+k

2

)

Example. A gambler plays a fair game where he wins/loses $1, 50 turns.

What’s his probability of starting at $10and ending at $20, without going

broke.

2−50 ·
((

50
50+20−10

2

)
−
(

50
50+20+10

2

))
= 2−50 ·

((
50

30

)
−
(

50

40

))
= 0.04

In an unfair game with 0.6 change of going up, we get:

0.630 · (0.4)20 ·
((

50
50+20−10

2

)
−
(

50
50+20+10

2

))
= 0.630 · (0.4)20 ·

((
50

30

)
−
(

50

40

))
= 0.11
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Last Time

Recall. Random Walk: The trajectories from (0, k) to (t, n). This is:

(
t

t+n−k
2

)
=

(
t

t−n+k
2

)

Trajectories from (0, k) to (t, n) that touches the x-axis

(
t

t+n+k
2

)

And so trajectories that do not touch the x-axis are:

(
t

t+n−k
2

)
−
(

t
t+n+k

2

)

Example. Flip a fair coin 2n times. Think of n being large. Which is more

likely?

A: at the end there is exactly as many H as T . B: at any time, there are

more H than T , or at any time, there are more T than H.

We model with a symmetric random walk. For A, we are interested in

trajectories which go from (0, 0) to (2n, 0).

#A =

(
2n

n

)
P (A) = 2−2n

(
2n

n

)

1



For B, note that the two events making it up are disjoint and symmetric:

P (B) = 2 · P (at any time, more H than T )

So we go (0, 0) → (1, 1) → (2n, 2k) for 0 < k < n without touching the

x-axis, we count these:

(
2n− 1

2n−1+2k−1
2

)
−
(

2n− 1
2n−1+2k+1

2

)
=

(
2n− 1

n+ k − 1

)
−
(

2n− 1

n+ k

)

If k = n, there’s only one way to go from (1, 1) to (2n, 2n).

Total # of trajectories = 1 +
n−1∑

k=1

((
2n− 1

n+ k − 1

)
−
(

2n− 1

n+ k

))

But wait this is a telescoping sum!

Total # of these trajectories = 1 +

(
2n− 1

n

)
−
(

2n− 1

2n− 1

)
=

(
2n− 1

n

)

and so we then have:

P (B) = 2−2n · 2 ·
(

2n− 1

n

)
= 2−2n · 2 · (2n− 1)!

n!(n− 1)!

= 2−2n · 2n(2n− 1)!

n!n!
= 2−2n ·

(
2n

n

)

And so P (A) = P (B)!!!! Wow!

Stirling’s Formula:

n! ∼ nn · e−n ·
√

2πn

With this formula:

P (A) ∼ 2−2n · (2n)(2n)e−2n ·
√

4πn

n2n · e−2n · 2πn =
1√
π · n

2



Absorbing Barriers

Example. We consider again a gambler. They start with $k and they play

until:

• They go broke

• They end up with $n and buy a Porsche.

Let sk be the probability of success, starting at k. Let fk be the probability

of failure. We also let p be the probability of getting $1 in each thurn

We’ll apply the conditional probability formula:

P (A) = P (A | B) · P (B) + P (A | Bc) · P (Bc)

Then we can write that:

sk = p · sk+1 + (1− p)sk−1

This is a difference equation, which is a discrete analog of a differential equa-

tion. Thus we’re essentially solving a differential equation with boundary

conditions. Namely we know s0 = 0 and sn = 1.

Case 1: p = 1
2 Then we have:

sk =
1

2
(sk+1 + sk−1)

2sk = sk−1 − s− k − 1

sk+1 − sk = sk − sk−1

This means that the difference in values never changes, thus call x :=

3



s1 − s0, so that:

k∑

j=1

(sj − sj−1) = k · x

k∑

j=1

(sj − sj−1) = sk − s0 = sk

sn = n · x = 1 =⇒ x =
1

n

Thus sk = k
n . Note that geometrically success and failure are exactly

symmetric by a reflection, and we also know p = 1
2 so this is truly

symmetric. Thus fk = sn−k = n−k
n . Thus:

sk + fk = 1

This is weird, the event of bouncing around in the middle forever is

non-empty.

Claim. In fact if n ≥ 4, the number of trajectories that are not ab-

sorbed is uncountable.

Proof. It is enough to assume n = 4. Then we count trajectories

between 1 and 3. At every second step we know the particle on this

trajectory is at 2 and has 2 choices. Thus these trajectories are in

bijection with:

{f : 2N→ {+1,−1}} ∼= P (N) ∼= R

Thus there are uncountably many such trajectories.

Case 2: p 6= 1
2 Then sk = p · sk+1 + (1− p)sk−1. Then:

sk+1 − sk =
1− p
p

(sk − sk−1)

4



Where α := 1−p
p . Let x := s1 − s0. Then:

sk = (sk − sk−1) + (sk−1 − sk−2) + · · ·+ (s1 − s0)
= x(αk−1 + αk−2 + · · ·+ α+ 1)

= x · α
k − 1

α− 1

1 = sn = x · α
n − 1

α− 1
= x · α

n − 1

α− 1

x =
α− 1

αn − 1

sk =
αk − 1

αn − 1

Now we have symmetry again, but we also have to replace p with 1−p,
therefore:

fk =
αk−n − 1

α−n − 1

Therefore:

sk + fk = 1

What happens if we let n→∞. In case 1:

sk =
k

n
→ 0

This is called the gambler’s ruin. If you play against a bank with

unlimited money. You lose with probability 1. For case 2:

sk =
αk − 1

αn − 1
=

{
0 if α > 1, p < 1

2

1− αk if α < 1, p > 1
2

Group Work

Same game, so 0 is ruin, n is success, k is start. p is the probability of +.

Then the decision is to get $1 or $1
2 . Which is better?

5



Consider that:

s
1
2
k,n = s12k,2n

So in both cases

• When p = 1
2 :

s1k,n =
k

n

s
1
2
k,n =

2k

2n
=
k

n

• When p 6= 1
2 :

s1k,n =
αk − 1

αn − 1

s
1
2
k,n =

α2k − 1

α2n − 1

So lets divide them:

s
1
2
k,n

s1k,n
=
α2k − 1

αk − 1
· α

n − 1

α2n − 1

=
αk + 1

αn + 1
=

{
> 1 if α < 1, p > 1

2

< 1 if α > 1, p < 1
2

6
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Random Variables

The definition

Definition. Let (Ω,F , P ) be a probability space. A random variable is a

function x : Ω→ R. such that for every real number y, {ω ∈ Ω | x(ω) ≤ y}
is an event. As shorthand, we write this event as {x ≤ y}

Example. We’re going to toss a coin twice, counting the number of H. Then

Ω = {HH,TH,HT, TT}, and each point gets assigned values 2, 1, 1, 0.

Remark. Let’s think about how that condition works!

• If Ω is finite, F = P (Ω), then the condition that {x ≤ y} is an event

is tautologically true. We can ignore it

• In general there is a natural σ-field of subsets of R, the Borel σ-field.

It is generated by any of the following collections of subsets:

– All open intervals

– All closed intervals

– (−∞, a] for all a ∈ R

– (−∞, a) for all a ∈ R

– (a,∞) for all a ∈ R

– [a,∞) for all a ∈ R.

1



The condition that {x ≤ y} for all y ∈ R is equivalent to the condition

that: For every B ⊆ R in the Borel σ-field, {ω ∈ Ω | x(ω) ∈ B} is an

event. We write this in shorthand as {x ∈ B}. Such a function x is

called measurable

Definition. Suppose we have two spaces with σ-fields (Ω1,F1) and (Ω2,F2).

We call a function f : Ω1 → Ω2 measurable provided that for every A ∈ F2

we have f−1(A) ∈ F1.

Example. For any a ∈ R, {a} is in the Borel σ-field so the event {x = a} =

{ω ∈ Ω | x(ω) = a} ∈ F .

For any a, b ∈ R all of (a, b), (a, b], [a, b), [a, b] are in the Borel σ-field so:

{a < x < b} {a < x ≤ b}
{a ≤ x < b} {a ≤ x ≤ b}

Remark. You can think of a random variable as a real number that depends

on a certain experiment.

Definition. If A ⊆ Ω is an event. Then the characteristic function:

1A : Ω→ R

ω 7→
{

1 if ω ∈ A
0 if ω 6∈ A

is a random variable.

Proof. Note that for any y:

{1A ≤ y} =

{
Ω if y ≥ 1

Ac if y < 1

Therefore this is always an event

Lemma. If X and Y are random variables and c is a constant, then X+Y ,

XY , and c are random variables

2



Proof. TODO

Definition. The cumulative distribution function of a random variable X

is FX : R→ [0, 1] defined as FX(a) = P (x ≤ a).

Example. Toss a coin twice, X = #H.

Group Work

1) We throw a dart at a circle of radius 1. We let X be the distance from

the center. Compute FX

2) Let X be any random variable whatsoever. Prove that

i) 0 ≤ FX ≤ 1

ii) lima→−∞ FX(a) = 0

iii) lima→∞ FX(a) = 1.

iv) limb↓a FX(b) = F (a) (The notation b ↓ a means b approaches a from

above)

v) If a ≤ b then FX(a) ≤ FX(b)

Let’s Go!

1) If a is non-negative then FX(a) = P (X ≤ a) = a2 because the area

of the inner circle we want to hit is πa2 and the area of the whole

dartboard is π. If a is negative then FX(a) = 0.

2) Proof stuff

i) 0 ≤ FX(a) = P (X ≤ a) ≤ 1 because P is a probability measure.

3



ii) Pick a monotonic sequence of real numbers (ak) converging to

−∞. We want to show that limk→∞ FX(ak) = 0. Define:

Ak = {X ≤ ak}

We know from (v) that Ak+1 ⊆ Ak. This is a descending tower

of events. Using lemma from class:

lim
k→∞

FX(ak) = lim
k→∞

P (Ak) = P

( ∞⋂

k=1

Ak

)

We claim that this intersection is empty. Fix some ω ∈ Ω, we

can choose aj < X(ω). Then ω 6∈ Aj , and so ω 6∈ ⋂∞k=1Ak.

This is the end of the proof.

iii) Pick a monotonic sequence of real numbers (ak) converging to

∞. We want to show that limk→∞ FX(ak) = 0. We can define

Ak = {X ≤ ak} as above. This is then an ascending tower of

events so:

lim
k→∞

FX(ak) = lim
k→∞

P (Ak) = P

( ∞⋃

k=1

Ak

)

For any ω ∈ Ω, let aj > X(ω), so ω ∈ Aj ⊆
⋃∞

k=1. Thus this

union is the whole sample space and we win.

iv) Consider a monotonically decreasing sequence (ak) converging

to a. Then Ak is a descending tower and we have:

∞⋂

k=1

Ak = A = {X ≤ a}

We omit the two-way containment proof. Therefore:

lim
k→∞

FX(ak) = lim
k→∞

P (Ak) = P

( ∞⋂

k=1

Ak

)
= P (A)

4



v) Let a ≤ b. Then note that:

{X ≤ a} ⊆ {X ≤ b}
P (X ≤ a) ≤ P (X ≤ b)

FX(a) ≤ FX(b)

Remark. It is not true that limb↑a FX(b) = FX(a).
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Recall. We have a random variable X : Ω → R. We have a cumulative

distribution function FX : R→ [0, 1]:

FX(a) = P (X ≤ a) = P ({ω ∈ Ω | X(ω) ≤ a})

We proved that:

i) 0 ≤ FX(a) ≤ 1

ii) lima→∞ FX(a) = 0

iii) lima→−∞ FX(a) = 0

iv) lima↓b FX(a) = FX(b)

v) If a ≤ b then FX(a) ≤ FX(b).

Property (iv) says that FX is right continuous, but it might not be left

continuous. Note that FX is left-continuous if and only if P (X = a) = 0 for

all a ∈ R. However, we do know that FX has left limits.

Definition. A function F : R → [0, 1] is called a distribution function

provided that it satisfies

i) 0 ≤ F (a) ≤ 1

ii) lima→∞ F (a) = 0

iii) lima→−∞ F (a) = 0

1



iv) lima↓b F (a) = F (b)

v) If a ≤ b then F (a) ≤ F (b).

Proposition. If F is a distribution function, then there exists a probability

space (Ω,F , P ) and a random variable X : Ω→ R so that FX = F .

Proof of a Special Case. Suppose that F is a continuous and strictly increas-

ing distribution function:

Ω = (0, 1) F = Borel σ-field P = Lebesgue Measure

Basic knowledge from real analysis tells us that F has an inverse function

G : (0, 1)→ R. Now set X = G, then:

{X ≤ a} = G−1([−∞, a]) = F ((−∞, a]) = (0, F (a)]

Since (0, F (a)] is an interval, it lies in the Borel σ-field, so {X ≤ a} is an

event. Thus X is a random variable. Moreover:

FX(a) = P ({X ≤ a}) = P ((0, F (a)]) = F (a)

Definition. A random variable X can be given two names:

1) discrete provided that X(Ω) is countable (or finite). In that case we define

its probability mass function as fx(a) = P (X = a). Then:

FX(a) =
a∑

b=−∞
fx(b)

2) absolutely continuous provided that there exists an integrable function

fx : R→ [0,∞) such that:

FX(a) =

∫ a

−∞
fx(b) db

We call fx the probability density function

2



Caution: There are random variables that are neither discrete nor continu-

ous. There is also some disagreement in the literature as to the definition

of a continuous random variable (some say continuous [Tasho and book], I

choose to say absolutely continuous)

Remark. Some quick things:

• If Ω is finite, we know X is discrete immediately.

• Also the indicator random variable 1A is a discrete random variable

whatever A ⊆ Ω is.

• The cumulative distribution function of a discrete random variable

that takes finitely many values is piecewise constant.

• The cumulative distribution function of an absolutely continuous ran-

dom variable is in fact absolutely continuous (and thus continuous).

• The probability density function of an absolutely continuous random

variable plays the same role as the probability mass function of a dis-

crete random variable. However for an absolutely continuous random

variable X we know P (X = a) = 0 for all a ∈ R. You can think of the

mass function as the density function fx(a) · da.

• The probability function of a discrete random variable X is uniquely

determined by X. However the probability density function of an

absolutely continuous random variable is not uniquely determined by

X, but if fx can be chosen to be continuous, then its continuous form

is uniquely determined by X.

Interesting stuff!

Group Work

Let:

Ω = [0, 1] F = Borel σ-field P = Lebesgue measure

3



Let X(ω) = 1
2(ω + 1). Compute the cumulative distribution function and

decide if X is discrete or absolutely continuous. Compute the probability

mass function or the probability density function accordingly. Note that:

X(Ω) =
1

2
· (Ω + 1) =

1

2
· [1, 2] =

[
1

2
, 1

]

Therefore X is not discrete since this interval has uncountably many ele-

ments. Then note that for ω ∈ Ω:

X(ω) ≤ a 1

2
(ω + 1) ≤ a

ω + 1 ≤ 2a ω ≤ 2a− 1

So then we have for 1
2 ≤ a ≤ 1:

FX(a) = P (X ≤ a) = P ([0, 2a− 1]) = 2a− 1

For any a < 1
2 we know FX(a) = 0, and if a > 1 we know FX(a) = 1.

Therefore we can see that:

FX(a) = P (X ≤ a) =





0 if a < 1
2

2a− 1 if 1
2 ≤ a ≤ 1

1 if a > 1

We then compute:

fx(a) =

{
2 if 1

2 ≤ x ≤ 1

0 otherwise

FX(a) =

∫ a

−∞
fx(t) dt

Example. Recall the dart example, FX(a) = a2 and fx(a) = 2a.

Remark. Any non-negative integrable function f : R → [0,∞) which sat-
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isfies:

∫ ∞

−∞
f(t) dt = 1

Is the probability density function of some random variable. Just define:

F (a) =

∫ a

−∞
f(t) dt

and check this is a cumulative distribution function, and then use the propo-

sition from today.

Example. A very important example:

f(t) =
1√
2π
e

−t2
2

This the normal probability density function. It is clearly non-negative.

Why is its integral equal to one? This is a very beautiful computation.

• Let’s go with a trick. We will compute the square, that is if:

(∫ ∞

−∞
f(t) dt

)2

= 1

Then we are done:

(∫ ∞

−∞
f(t) dt

)2

=

(∫ ∞

−∞
f(x) dx

)
·
(∫ ∞

−∞
f(y) dy

)

=
1

2π

∫

R2

e−
x2+y2

2 dx dy

Great!

• There are two coordinate systems on the plane—cartesian and polar—

and we know:

∫

R2

f(x, y) dx dy =

∫ 2π

0

∫ ∞

0
f(r cos(φ), r sin(φ)) · r · dr dφ

5



Then we must have:

1

2π

∫

R2

e−
x2+y2

2 dx dy =
1

2π

∫ 2π

0

∫ ∞

0
e−

(r cos(φ))2+(r sin(φ))2

2 · r · dr dφ

=
1

2π

∫ 2π

0

∫ ∞

0
re−

r2

2 · dr dφ

=

∫ ∞

0
re−

r2

2 =

[
−e− r

2

2

]∞

0

= −0− (−1) = 1

Just as desired! Great!

Definition. A function f : I → R is called absolutely continuous pro-

vided that for all ε > 0 there exists a δ > 0 such that for all finite col-

lections of intervals {(xi, yi)} such that
∑

(yi − xi) < δ, we have that∑ |f(yi)− f(xi)| < ε.
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Review: Sets and σ-fields

Definition (Cantor). A set is a collection of definite and distinct objects of

our perception or our mind

Example. {1, 2, 3, 4}, {1, 2, 3, 4, . . .} = N, {♥, H, T}

If A is a set we write x ∈ A to say that x is an object in A.

Example. 2 ∈ N, −3 6∈ N.

• If A,B are sets. Then A ⊆ B means x ∈ A =⇒ x ∈ B.

• If P (x) is a true/false condition for each x ∈ A we can form the subset

B = {x ∈ A | P (x)}.

• One has A ∩B, A ∪B, . . .

• If A1, A2 are subsets of B determined by the conditions P1 and P2

then:

A1 ∩A2 = {x ∈ B | P1(x) and P2(x)}
A1 ∪A2 = {x ∈ B | P1(x) or P2(x)}

• If Ω is a set we have the powerset:

P (Ω) = {B | B ⊆ Ω}

1



Then for Ω = {H,T} has P (Ω) = {∅,Ω, {H}, {T}}, note that we have

|P (Ω)| = 2|Ω|

Definition. Given a set Ω, a σ-field of subsets of Ω is a subset F ⊆ P (Ω)

such that

• Ω ∈ F

• If A1, A2, . . . ∈ F then
⋃
i∈N

Ai ∈ F

• If A ∈ F then Ac = Ω \A ∈ F .

Example. P (Ω) is always a σ-field

Example. Let Ω = {0, 1, 2}. Then the following are σ-fields:

• F = P (Ω)

• F = {∅,Ω}

• F = {∅,Ω, {1}, {0, 2}}. (and correspondingly for the other singletons)

Axioms of set theory

Russel’s autinomy: Let A be the set {B | B 6∈ B}. Question, is A ∈ A?

Either way you get a contradiction.

There are ten axioms in total for set theory. One of the most controversial

is the axiom of choice: If {Ai} is a collection of sets, then there exists a set

A which contains a unique element from each Ai. This axiom leads to

paradoxes like the Banach-Tarski paradox, but no contradictions!

Back to Random Variables

If X : Ω→ R is a random variable. We introduced the following shorthands:

{X ≤ a} = {ω ∈ Ω | X(ω) ≤ a}
{X = a} = {ω ∈ Ω | X(ω) = a}

2



Example. Some nice examples

• Ω = [0, 1], and X : Ω→ R is X(ω) = ω. Then:

FX(a) = P (X ≤ a) =





0 if a < 0

a if 0 ≤ a ≤ 1

1 if a > 1

fX(a) =

{
1 if 0 ≤ a ≤ 1

0 otherwise

• fX(t) = 1√
2π
e−

t2

2 . We can write:

FX(a) =

∫ a

−∞
fX(t) dt

There is no closed formula for FX in terms of elementary functions.

We use the Greek letter Φ to represent this cumulative distribution

function. Now take Ω = (0, 1) and then X = Φ−1.

• Bernoulli variable: Let Ω = {H,T}, P (H) = p, P (T ) = 1 − p. And

then let X(H) = 1 and X(T ) = 0. Then:

FX(a) =

{
1− p if a < 1

1 if a ≥ 1

Proposition 1. If f : R → R is continuous and X : R → R is a random

variable. Then f(X) = f ◦X is a random variable.

Proof. Since f is continuous, preimages of open sets under f are open. Since

the Bore σ-field is generated by all open sets, the measurability of X implies

the measurability of f(X).

Example. If X is a random variable, then so are X2, X3,
√
X, lnX, eX ,

sinX, |X|, 1
X , . . .

3



If f : R→ R is continuous, then if U ⊆ R is open, then:

f−1(U) = {x ∈ R | f(x) ∈ U}

is open. This is in fact equivalent to continuity. We need f ◦X measur-

able, which means that some (f ◦X)−1(U) is an event for all U in the

Borel σ-field on R. The Borel σ-field is generated by open sets, so lets

just check opens U :

(f ◦X)−1(U) = X−1(f−1(U))

And since f−1(U) is open, it is in the Borel σ-field, and so X−1(f−1(U))

is an event because X is a random variable.

A useful skill: Given the probability density function of X, compute the

probability density function of f(X). The general strategy for doing this is

to work through the cumulative distribution function.

Example. Say X has density 1√
2π
e−x

2/2. Compute the density of Y = X3.

FY (a) = P (Y ≤ a) = P (X3 ≤ a)

= P (X ≤ 3
√
a) = FX( 3

√
a)

fY (a) = F ′Y (a) = fx( 3
√
a) · 1

3
a−

2
3

=
1

√
2πa

2
3

e−
a
2
3
2

Group Work

1) Start with Ω = [0, 1], X uniform, and Y = X2. Compute the densities.

2) Start with Ω = [−1, 1], X uniform, Y = |X|. Compute the densities.

4



Let’s go!

FY (a) = P (Y ≤ a) = P (X2 ≤ a) =





0 if a ≤ 0

P (X ≤ √a) if 0 ≤ a ≤ 1

1 if a ≥ 1

FY (a) =





0 if a ≤ 0√
a if 0 < a < 1

1 if a ≥ 1

fY (a) = F ′Y (a) =

{
1

2
√
a

if 0 < a < 1

0 otherwise

Now for the next one. Note first that:

fX(a) =

{
1
2 if − 1 ≤ a ≤ 1

0 otherwise

So then

FY (a) = P (Y ≤ a) = P (|X| ≤ a) =





0 if a < 0

P (−a ≤ X ≤ a) if 0 ≤ a ≤ 1

1 if a > 1

Now we compute that:

P (−a ≤ X ≤ a) = P (X ≤ a)− P (X ≤ −a)− P (X = a)

=
1

2
(a+ 1)− 1

2
(−a+ 1)− 0

= a

5



And so

FY (a) =





0 if a < 0

a if 0 ≤ a ≤ 1

1 if a > 1

fY (a) = F ′Y (a) =

{
1 if 0 ≤ a ≤ 1

0 otherwise

Great!
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Expectation

Example. Flip a coin 10,000 times. We expect roughly as many H as T . If

X is a Bernoulli Random Variable with p = 1
2 . Then we should let E[X] = 1

2

Example. Consider the following game: Choose a number 1 ≤ z ≤ 6. Roll

three fair die. If z comes up three times, get $3, if twice $2, if once $1, if

none, pay $1. Should you play? There are 63 = 216 outcomes. If we play

216 times times and get each outcome then:

1 · 3 + (5 + 5 + 5) · 2 + (25 + 25 + 25) · 1 + 125(−1) = −17

We would like E[X] = −17
216 ≈ −0.079

Definition. If (Ω,F , P ) is a probability space and X : Ω → R then we

define the expectation of X as:

E[X] =

∫

Ω
X dP ∈ R

Example. If X = 1A for some A ∈ F . Then E[1A] = P (A).

A Special Case

Definition (Sort Of). If X is a discrete random variable then:

E[X] =
∑

a∈R
a · P (X = a) =

∑

a∈R
a · fX(a)

1



If X is a continuous random variable then:

E[X] =

∫ ∞

−∞
a · fX(a) da

Properties of Expectation:

• E[X + Y ] = E[X] + E[Y ]

• E[cX] = cE[X], c ∈ R.

• E[X] ≥ 0 if X ≥ 0.

Example. If X = 1A and Y = 1B then:

(X + Y )(ω) =





2 if ω ∈ A ∩B
1 if ω ∈ A4B
0 otherwise

So then:

E[X + Y ] = 2 · P (A ∩B) + 1 · P (A4B)

= P (A ∩B) + P (A ∩B) + P (A ∩Bc) + P (B ∩Ac)

= P (A) + P (B) = E[X] + E[Y ]

Great!

Warning: E[X] may not exist!!!

Example. Let Ω = (0, 1) and let X(ω) = 1
ω . And so:

E[X] =

∫ 1

0

1

x
dx =∞

Which is not truly defined

2



In the General Setting

Definition. X is called simple if it takes finitely many values a1, a2, . . . , an.

In that case we define E[X] to be:

E[X] =
n∑

i=1

ai · P (X = ai)

Definition. X is called integrable if there exists a sequence (Xn) of simple

random variables such that:

• (Xn) is Cauchy, i.e. for any ε > 0 there exists an N ∈ N so that if

n,m > N then for all ω ∈ Ω we have E[|Xn −Xm|] < ε. Note that

this is defined since |Xn −Xm| is simple.

• Xn → X almost surely, that is:

P
({
ω ∈ Ω | lim

n→∞
Xn(ω) = X(ω)

})
= 1

• In this situaton we define the expectation of X as:

E[X] = lim
n→∞

E[Xn]

Theorem. This limit always exists for such a sequence Xn, and the quantity

depends only on X, not on the sequence (Xn).

Strategy: To compute expectations. Try to write X as a sum of indicators

Example. Recall the problem of letters. We write n personalized letters

and send randomly. Let X be the number of people who got their letters.

What is E[X]. Write X = X1 + · · ·+Xn where Xi is 1 if person i got their

letter and 0 if not. We know Xi is a Bernoulli variable and:

E(Xi) = P (i-th person got letter) =
1

n

3



By linearity we have that:

E[X] =
n∑

i=1

E[Xi] = n · 1

n
= 1

Group Work

Let a1, . . . , an be a permutation of 1, . . . , n. We say that ak is a record if

ak > ai for 1 ≤ i < k. By convention, a1 is always a record. Let X be the

number of records. Compute E[X].

Tasho’s Grace: Let Xi be the indicator of the event where ai is a record.

P (ai is a record) = P (ai is largest among a1, . . . , ai) =
1

i

And so:

E[X] = 1 +
1

2
+

1

3
+ · · ·+ 1

n
≥ ln(n)

lim
n→∞

(
n∑

i=1

1

i
− ln(n)

)
= γ ≈ 0.577

And so E[X] ≈ γ + ln(n)

4
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Recall. Given (Ω,F , P ) a probability space and a random variable X : Ω→
R we defined:

E[X] =

∫

Ω
X dP

And we have two special cases:

• If X is discrete E[X] =
∑

a∈R a · P (X = a).

• If X is continuous E[X] =
∫∞
−∞ a · fX(x) da

If X is a random variable and g : R → R is continuous then g(X) is a

Random variable

How do we compute E[g(X)]. In principle:

E[g(X)] =

∫ ∞

−∞
a · fg(X)(a) da

Provided that g(X) is continuous.

Theorem (Law of the unconscious statistician). Two parts:

a) If X is discrete then the expectation of g(X) is:

E[g(X)] =
∑

a∈R
g(x) · fX(a)

1



b) If X and g(X) are continuous then:

E[g(X)] =

∫ ∞

−∞
g(a) · fX(a) da

Wow!

Proof. We’ll handle both cases:

a) Suppose X is discrete, then:

E[g(X)] =
∑

a∈R
a · fg(X)(a)

=
∑

a∈R
a · P (g(X) = a)

=
∑

a∈R
a ·

∑

b∈R
g(b)=a

P (X = b)

=
∑

b∈R
g(b) · P (X = b)

Great!

b) We’ll do a special case. Suppose X is continuous and g is strictly in-

creasing and differentiable. So then:

Fg(X)(a) = P (g(X) ≤ a) = P (X ≤ g−1(a)) = FX(g−1(a))

So then:

fg(X)(a) = fX(g−1(a)) ·
(
g−1
)′

(a)

So then:

E[g(X)] =

∫ ∞

−∞
a · fg(X)(a) da =

∫ ∞

−∞
a · fX(g−1(a)) · (g−1)′(a) da

2



But by substitution this is just:

E[g(X)] =

∫ ∞

−∞
g(a) · fX(a) da

And so we’re done!

This completes the proof ,

Aside for Measure Theory

Consider a measure space (Ω1,F1, P1) and (Ω2,F2). Let g : Ω1 → Ω2 be

a measurable function. Define the pushforward measure P2 = g?P1 by the

formula P2(B) = P1(g−1(B)). For any integrable f : Ω2 → R we have:

∫

Ω2

f(y) dP2(y) =

∫

Ω1

f(g(x)) dP1(x)

This is called the change of variables theorem. We get from this:

1) If X : Ω → R a discrete random variable we apply with g = X and

f(x) = x and get:

∫

Ω
X dP =

∫

R
a · dX?P (a) =

∑

a∈R
a · P (X = a)

2) For X : Ω → R a continuous random variable we get from absolute

continuity of FX that dX?P = fX da So then:

∫

Ω
X dP =

∫

R
a · dX?P (a) =

∫

R
a · fX(a) da (1)

3) We get unconcious by using the same formula with X = f and g = g.

Ok, end the Aside!

Example. Consider the uniform distribution on [0, 1] = Ω and X(ω) = ω.

3



Then:

fX(a) =

{
1 if 0 ≤ a ≤ 1

0 otherwise

So then:

E[X] =

∫

R
a · fX(a) da =

∫ 1

0
a da =

[
1

2
a2

)1

0

=
1

2

E
[
X2
]

=

∫

R
a2 · fX(a) da =

∫ 1

0
a2 da =

[
1

3
a3

)1

0

=
1

3

Great!

Conditional Expectation

Definition. Let X : Ω → R be a random variable and let B ∈ F be an

event with P (B) > 0. We define E[X | E] as follows, both definitions are

equivalent:

1) If X is simple then E[X | B] =
∑

a∈R a · P (X = a | B). For general X,

take a limit as we did last time.

2) Consider the probability space (B,FB, PB) and if we consider the random

variable X
∣∣
B

: B → R. Then E[X | B] = E
[
X
∣∣
B

]
.

Theorem. If Ω =
∐n
i=1Bi a disjoint union then:

E[X] =

n∑

i=1

E[X | Bi] · P (Bi)

This follows directly from the usual conditioning formula

Example . Let X be the number of rolls of a fair die until the last 6.

Condition on the outcome of the first roll, let Bi be the event that the

4



outcome is i. Then:

E[X] =

6∑

i=1

E[X | Bi] · P (Bi)

= E[X | B6] · P (B6) +

5∑

i=1

E[X | Bi] · P (Bi)

=
1

6
+

5

6
· (E[X] + 1)

E[X] = 6

Example. Let X be the expected number of tosses of a fair coin until we

get two H in a row. Condition on the first two tosses:

E[X] =
1

4
· E[X | HH] · 1

4
· E[X | HT ] +

1

2
· E[X | T ]

=
2

4
+

1

4
(E[X] + 2) +

1

2
(E[X] + 1)

E[X] = 6

Group Work

Same setup but waiting for HT , call that event X. Let Y be the number of

turns it takes to get a T . Condition on the first tosse:

E[Y ] =
1

2
E[Y | H] +

1

2
E[Y | T ]

=
1

2
(E[Y ] + 1) +

1

2

E[Y ] = 2

E[X] =
1

2
· E[X | H] +

1

2
· E[X | T ]

=
1

2
· (E[Y ] + 1) +

1

2
(E[X] + 1)

2 E[X] = 3 + E[X] + 1

E[X] = 4

Example . Buffon’s Needle. Consider parallel lines of distance 1 apart.

5



Throw down a needle of length 1. What is the probability that the needle

intersects a line?

Call ` the distance from the midpoint to the closest line. Also let φ

be the angle between the needle and the lines. We know 0 ≤ ` ≤ 1
2 and

0 ≤ φ ≤ π. The condition that they intersect is ` ≤ 1
2 sin(φ). Assuming

uniform distribution of (`, φ) in [0, 1/2]× [0, π] we have:

P

(
` ≤ 1

2
sin(φ)

)
= P

({
`, φ} ∈ [0, 1/2]× [0, π] | ` ≤ 1

2
sin(φ)

})

And so we compute the probability with area like this:

2

π

∫ π

0

∫ 1
2

sin(φ)

0
1 d`dφ =

2

π

∫ π

0

1

2
sin(φ) dφ =

1

π
[− cos]π0 =

2

π

6
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Recall. We defined conditional expectation E[X | B] for a random variable

X : Ω → R and B ∈ Ω where P (B) > 0. And we have the conditioning

formula:

E[X] =
n∑

i=1

E[X | Bi] · P (Bi)

where Ω =
∐n

i=1Bi is a disjoint union and P (Bi) > 0 for 1 ≤ i ≤ n.

Example . A symmetric random walk with absorbing barriers at 0 and

n. Let Xk be the duration of the walk starting at k. We want to know

ek = E[Xk].

We condition on the first step:

ek = E[Xk] =
1

2
E[Xk | L] +

1

2
E[Xk | R]

=
1

2
(ek−1 + 1) +

1

2
(ek+1 + 1)

2ek = ek−1 + ek+1 + 2

en+1 − ek = ek − ek−1 − 2

We have a difference equation with boundary conditions, namely:

e0 = 0 en = 0

1



Let x = e1−e0. Then e2−e1 = x−2, and in general ek−ek−1 = x−2(k−1):

ek = (ek − ek−1) + (ek−1 − ek−2) + · · ·+ (e1 − e0) + e0

= x− 2(k − 1) + x− 2(k − 2) + · · ·+ x+ 0

= kx− 2 · k(k − 1)

2
= kx− k(k − 1)

en = nx− n(n− 1) = 0

x = n− 1

ek = k · (n− 1)− k · (k − 1) = k(n− k)

With this we have our general formula! Great! Remove the barrier at n by

taking the limit as n → ∞, then ek → ∞. Recall that the probability of

being absorbed at 0 goes to 1 as n→∞. Ponder this!

What does it mean to have ek =∞ = E[Xk] =
∑∞

t=1 t ·P (Xk = t). This

tells us that P (Xk = t) need to go to zero faster than 1
t2

in order to get

something finite, but of course this is not the case.

Independence of Random Variables

Definition. Consider random variables X1, . . . , Xn : Ω → R. We call

them independent provided that for any a1, . . . , an ∈ R the events {X1 ≤
a1}, . . . , {Xn ≤ an} are independent.

Remark. If Xi = 1Ai for some event Ai, then X1, . . . , Xn are independent

if and only if A1, . . . , An are independent.

Remark. A few things to get us started:

• Just as in the case of events, we can generalize this to an arbitrary

collection of random variables by requiring independence of every finite

subcollection.

• Because the sets (−∞, a] generate the Borel σ-field. For any Borel

sets A1, . . . , An ⊆ R the events {X1 ∈ A1}, . . . , {Xn ∈ An} are inde-

pendent.

2



• In particular, given a1, . . . , an ∈ R the events {X1 = a1}, . . . , {Xn =

an} are independent. In fact, if X1, . . . , Xn are discrete, then this is

equivalent to their independence.

Group Work

You are selling your horse. You’ll accept the first offer above $K. Assume

all offers are independent and have the same distribution. The question is

then, how long do you expect to wait? Let p be the probability that any

individual offer is above $K. Let X : Ω→ R tell you how long you wait. Let

Yi be the random variable that gives the i-th offer

E[X] = pE[X | Y1 > $K] + (1− p) E[X | Y1 ≤ $K]

= p+ (1− p)(E[X] + 1) = (1− p) E[X] + 1

pE[X] = 1 =⇒ E[X] =
1

p

Note that this works because, by independence we can see that E[X | Y1 ≤ $K] =

E[X] + 1 since we can restart the game, and treat Y2 as Y1 and so on.

Making Independent Clones

Let X : Ω1 → R, Y : Ω2 → R be random variables. We can construct

a probability space Ω and random variables X ′, Y ′ : Ω → R which are

independent and FX′ = FX and FY ′ = FY . Explicitly let (Ω,F , P ) be the

product of (Ω1,F1, P1) and (Ω2,F2, P2). Define X ′(ω1, ω2) = X(ω1) and

Y ′(ω1, ω2) = Y (ω2). Given a, b ∈ R we look at:

P ({X ′ ≤ a} ∩ {Y ′ ≤ b}) = P ({(ω1, ω2) | X(ω1) ≤ a} ∩ {(ω1, ω2) | Y (ω2) ≤ b})
= P ({X ≤ a} × Ω2 ∩ Ω1 × {Y ≤ b})
= P ({X ≤ a} × {Y ≤ b})
= P1(X ≤ a) · P2(Y ≤ b)
= P ({X ≤ a} × Ω2) · P (Ω1 × {Y ≤ b})
= P (X ′ ≤ a) · P (Y ′ ≤ b)

3



Intuition: X and Y are independent if each acts on their own coordinate.

Theorem. If X1, . . . , Xn : Ω→ R are independent Random Variables then:

E[X1 · · ·Xn] = E[X1] · · ·E[Xn]

Proof. There are three parts to the proof:

• Assume Xi = 1Ai . Then:

X1 · · ·Xn = 1A1 · · ·1An = 1A1∩···∩An

So then:

E[X1 · · ·Xn] = P (A1 ∩ · · ·An) = P (A1) · · ·P (An) = E[X1] · · ·E[Xn]

• Assume each Xi is simple. Note that the identity that we are trying

to prove is linear in each Xi. This then reduces to the case that each

Xi is an indicator.

• For Xi general take Xi = limk→∞Xi,k for Xi,k simple and note that

the equation we’re trying to prove respects limits.

With this we’re done.

Joint Distribution

Definition. Consider a collection X1, . . . , Xn : Ω→ R of random variables.

Their joint distribution is:

FX1,··· ,Xn(a1, . . . , an) = P ({X1 ≤ a1} ∩ · · · ∩ {Xn ≤ an})
= P (X1 ≤ a,X2 ≤ a2, . . . , Xn ≤ an)

Great!

Remark. If X1, . . . , Xn are independent then:

FX1,...,Xn(a1, . . . , an) = FX1(a1) · · ·FXn(an)

4



Just by chasing definitions.

Definition. X1, . . . , Xn have joint density function if there exists a function

fX1,...,Xn : Rn → R non-negative and integrable:

FX1,...,Xn(a1, . . . , an) =

∫ a1

−∞
· · ·
∫ an

−∞
fX1,...,Xn(t1, . . . , tn) dtn · · · dt1

Great!

Remark. If X1, . . . , Xn are idnependent and have densities fX1 , . . . , fXn

then:

fX1,...,Xn(t1, . . . , tn) =

n∏

i=1

fXi(ti)

Great!
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Recall. Let X1, . . . , Xn : Ω→ R be random variables:

• The Joint Distribution FX1,...,Xn : Rn → [0, 1] is defined as:

FX1,...,Xn(a1, . . . , an) = P (X1 ≤ a1, . . . , Xn ≤ an)

• A function fX1,...,Xn : Rn → R is called joint density if it is non-

negative and integrable and:

FX1,...,Xn(a1, . . . , an) =

∫ a1

−∞
· · ·
∫ an

−∞
fX1,...,Xn(t1, . . . , tn) dtn · · · dt1

And it is called a joint mass if it is non-negative, summable, and:

FX1,...,Xn(a1, . . . , an) =
∑

t1∈R
· · ·
∑

tn∈R
fX1,...,Xn(t1, . . . , tn)

• X1, . . . , Xn are independent if the following equivalent conditions hold

– For any Borel subsets A1, . . . , An ∈ R the events {X1 ∈ A1}, .., {Xn ∈
An} are independent

– For any a1, . . . , an ∈ R the events {X1 ≤ a1}, . . . , {Xn ≤ an} are

independent

– The joint distribution function factors as:

FX1,...,Xn(a1, . . . , an) = FX1(a1) · · ·FXn(an)

1



– If fX1 , . . . , fXn are densities or masses for X1, . . . , Xn then the

product is a joint density or joint mass:

fX1,...,Xn(t1, . . . , tn) = fX1(t1) · · · fXn(tn)

Fact: If fX1,...,Xn is a joint density and A ⊆ Rn is a Borel set, then:

P ((X1, . . . , Xn) ∈ A) =

∫

A
fX1,...,Xn(t1, . . . , tn) dt1 · · · dtn

Proof Illustration for n = 2. Consider the following cases:

• A = (−∞, a]× (−∞, b], then by definition we’re done.

• Let A = [c, d]× [d, b] Then:

A = (−∞, a]× (−∞, b] \ (−∞, c]× (−∞, b]

\ (−∞, a]× (−∞, d] ∪ (−∞, c× (−∞, d]

And so this follows from the previous case since the integral will dis-

tribute as we wish

• In general, we rasterize and approximate by rectangles.

Remark. Even if each Xi has a density, they may not have a joint density.

For example let X : Ω → R be a continuous random variable with density

f . Take Y = X. Assume for contradiction that the pair (X,Y ) has a joint

density g. Let ∆ = {(x, x) | x ∈ R} ⊆ R2 be the diagonal:

1 = P (X = Y ) = P ((X,Y ) ∈ ∆) =

∫

∆
g(x, y) dx dy = 0

Since the integral of any integrable function over the diagonal is zero (the

diagonal has measure zero). This is our contradiction!

2



Remark. If FX1,...,Xn is sufficiently differentiable, then:

f(t1, . . . , tn) =
∂n

∂a1, . . . , ∂an
FX1,...,Xn(t1, . . . , tn)

Remark. If X1, . . . , Xn have joint density and g : Rn → R is continuous

then g(X1, . . . , Xn) is a random variable, then:

E[g(X1, . . . , Xn)] =

∫

Rn

g(t1, . . . , tn)fX1,...,Xn(t1, . . . , tn) dt1 · · · dtn

Example. We have:

E[X1 · · ·Xn] =

∫

Rn

t1 · · · tnfX1,...,Xn(t1, . . . , tn) dt1 · · · dtn

Marginal Distribution

Consider two random variables X,Y : Ω → R with the joint distribution

FX,Y (a, b) = P (X ≤ a, Y ≤ b). Note that:

{X ≤ a} =
⋃

b∈R
{X ≤ a, Y ≤ b}

FX(a) = P (X ≤ a) = lim
b→∞

P ({X ≤ a, Y ≤ b})

= lim
b→∞

FX,Y (a, b)

This is what people call marginal distribution. If X and Y are discrete and

we have a joint mass then:

fX(a) =
∑

b∈R
fX,Y (a, b)

And if X,Y have joint density then:

fX(a) =

∫

b∈R
fX,Y (a, b) db

This is marginal mass and marginal density respectively.

3



Group Work

Question Given X,Y : Ω → R random variables with E[XY ] = E[X] E[Y ]

are X,Y independent?

Consider Ω = [−1, 1] with uniform measure. Let X : Ω→ R have X(ω) = ω

and let Y = Ω→ R be given by Y = |X|. Check

i) E[XY ]
?
= E[X] E[Y ].

ii) Are X and Y independent?

This is not too difficult

i) Consider that:

E[X] =

∫

Ω
X dP =

∫ 1

−1

1

2
X(ω) dω =

∫ 1

−1

1

2
ω dω = 0

E[Y ] =
1

2

∫ 1

−1
|ω| dω =

1

2

E[XY ] =
1

2

∫ 1

−1
ω |ω| dω = 0 = E[X] · E[Y ]

ii) Consider since X(ω) ≤ Y (ω) for all ω ∈ R:

P

(
X ≤ 1

2
, Y ≤ 1

2

)
= P

(
Y ≤ 1

2

)
= P

([
−1

2
,
1

2

])
=

1

2

P

(
X ≤ 1

2

)
= P

([
−1,

1

2

])
=

3

4

P

(
X ≤ 1

2

)
· P
(
Y ≤ 1

2

)
=

1

2
· 3

4
6= 1

2
= P

(
X ≤ 1

2
, Y ≤ 1

2

)

Definition. Let X,Y : Ω→ R be random variables. Define:

• The covariance of X,Y , given as:

cov(X,Y ) = E[(X − E[X]) · (Y − E[Y ])]

4



• The variance of X, defined as:

var(X) = cov(X,X) = E
[
(X − E[X])2

]

Remark. We can unfold these using linearity as:

cov(X,Y ) = E[XY ]− E[X] E[Y ]

var(X) = E
[
X2
]
− (E[X])2

Thus cov(X,Y ) = 0 is exactly when E[XY ] = E[X] E[Y ], these random

variables are called uncorrelated

Remark. What happens when Z ≥ 0 and E[Z] = 0. Then Z is itself 0

almost surely.

Definition. X = Y almost surely provided that P (X = Y ) = 1.

Remark. Therefore var(X) = 0 if and only if (X−E[X])2 = 0 almost surely,

nthat is X = E[X] almost surely. So var(X) measures how “dispersed X is”

5
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Recall. X,Y : Ω→ R random variables. We write:

cov(X,Y ) = E[(X − E[X]) · (Y − E[Y ])] = E[XY ]− E[X] · E[Y ]

var(X) = E
[
(X − E[X])2

]
= E

[
X2
]
− E[X]2

cov(X,Y ) = 0 ⇐⇒ E[XY ] = E[X] E[Y ] ⇐= X,Y independent

var(X) = 0 ⇐⇒ X is constant almost surely

Note that there is squaring in the variable, so the units are not preserved

Definition. The standard deviation of X is σ(X) =
√

var(X). The corre-

lation of X and Y is cor(X,Y ) = cov(X,Y )
σ(X)σ(Y )

Definition. Covariance and variance may not exist. A necessary condition

is that E[X],E[Y ] exist. But this is not enough.

Theorem (Cauchy-Schwartz Inequality). Let X,Y → R be random vari-

ables. Then E[XY ]2 ≤ E
[
X2
]
· E
[
Y 2
]
. Moreover, equality holds if and only

if aX = bY almost surely for some a, b ∈ R which are not both zero.

Proof. If E
[
X2
]

= 0, then X = 0 almost surely, so XY = 0 almost surely,

and |E[XY ] = 0. Thus we’re done. Of course the same works if we have

E
[
Y 2
]

= 0.

Assume that E
[
X2
]

and E
[
Y 2
]

are nonzero. Consider Z = aX + bY for

some real numbers a, b ∈ R. Now:

0 ≤ E
[
Z2
]

= E
[
a2X2 + 2abXY + b2Y 2

]
= a2 E

[
X2
]

+ 2abE[XY ] + b2 E
[
Y 2
]

1



Fix b 6= 0 and then we have a quadratic equation. We cannot have two

roots, so we either have one root or no roots, so looking at the discriminant:

4b2 E[XY ]2 − 4b2 E
[
X2
]

E
[
Y 2
]
≤ 0

4b2(E[XY ]2 − E
[
X2
]

E
[
Y 2
]
) ≤ 0

E[XY ]2 − E
[
X2
]

E
[
Y 2
]
≤ 0

E[XY ]2 ≤ E
[
X2
]

E
[
Y 2
]

Great! This is what we want, but now we see that we get equality if and

onl if there is an a ∈ R so that 0 = E
[
Z2
]

= E
[
(aX + bY )2

]
. But of course

this happens if and only if aX + bY = 0 almost surely. Thus −aX = bY ,

and b is nonzero. Perfect ,

Corrolary. |cor(X,Y )| ≤ 1 and |cor(X,Y )| = 1 if and only if aX = bY

almost surely for some a, b ∈ R not both zero.

Proof. Apply the above theorem to X − E[X] and Y − E[Y ].

Group Work

Let X,Y : Ω→ R be discrete random variables with joint mass function:

fX,Y (x, y) = P (X = x, Y = y)

The joint mass is given by:

y

x −1 1

−1 1
3

1
6

1 1
6

1
3

fX(−1) =
1

2
fX(1) =

1

2

fY (−1) =
1

2
fY (1) =

1

2

2



Therefore:

E[X] = E[Y ] = −1 · 1

2
+ 1 · 1

2
= 0

E
[
X2
]

= E
[
Y 2
]

= (−1)2 · 1

2
+ 12 · 1

2
= 1

E[XY ] =
1

3
− 1

6
− 1

6
+

1

3
=

1

3

var(X) = var(Y ) = σ(X) = σ(Y ) = 1

cov(X,Y ) = cor(X,Y ) =
1

3

In particular X and Y are not independent, they are correlated.

Midterm Review

(1) Probability space (Ω,F , P )

• Ω is any set, finite or infinite

• F is a σ-field of subsets of Ω. Generally when Ω is finite take all

subsets, and when Ω is infinite we avoid pathological subsets

• P : F → [0, 1] is a probability measure. That is P (Ω) = 1, P (Ac) =

1− P (A), and P (
∐∞
k=1Ak) =

∑∞
k=1 P (Ak)

• A finite probability space can be symmetric whenever P (A) = #A
#Ω ,

for example a fair coin. It can also be asymmetric, for example a

biased coin.

• Inclusion Exclusion Formulas:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)

− P (B ∩ C)− P (A ∩ C) + P (A ∩B ∩ C)

3



• Towers. An Ascending tower A1 ⊆ A2 ⊆ · · · , then:

P

( ∞⋃

k=1

Ak

)
= lim

k→∞
P (Ak)

And then a descending tower A1 ⊇ A2 ⊇ · · · , then:

P

( ∞⋂

k=1

Ak

)
= lim

k→∞
P (Ak)

(2) Conditioning and Independence

• Given B ∈ F where P (B) 6= 0 we have:

P (A | B) =
P (A ∩B)

P (B)

• This gives us the conditioning formula if Ω = B1 t · · · tBn where

each P (Bi) > 0 then:

P (A) =
n∑

i=1

P (A | Bi) · P (Bi)

• Two events A and B are independent if and only if P (A | B) equals

P (A) or in other words P (A ∩B) = P (A)P (B).

• A1, . . . , An is independent if and only if for any finite subset P (Ai1 · · ·Aik)

is equal to P (Ai1) · · ·P (Aik)

(3) Combinatorics

• Repeated experiments are given by products of probability spaces

defined by:

(Ω,F , P ) = (Ω1,F1, P1)× (Ω2,F2, P2)

Ω = Ω1 × Ω2

F = smallest σ-field containing A1 ×A2 for all Ai ∈ Fi
P (A1 ×A2) = P1(A1) · P2(A2)

4



• Choosing k out of n with order is n!
(n−k)! and without order is

n!
(n−k)!k! =

(
n
k

)
.

(4) Random Variables

• X : Ω → R is a random variable if and only if X : Ω → R is

measurable, that is {X ∈ A} ∈ F for every Borel subset A ⊆ R.

This is true if and only if {X ≤ a} ∈ F for every a ∈ R.

• Indicators, of the form:

1A(x) =

{
1 if x ∈ A
0 otherwise

• Cumulative distribution functions, mass functions, and density func-

tions:

FX(a) = P (X ≤ a) (cdf)

fX(a) = P (X = a) (mass, X discrete)

FX(a) =

∫ a

−∞
fX(t) dt (X continuous, fX pdf)

These have characterizing properties

– 0 ≤ FX ≤ 1, lima→∞ FX(a) = 1, lima→−∞ FX(a) = 0, a ≤ b

implies FX(a) ≤ FX(b), limb↓a FX(b) = FX(a).

– fX ≥ 0,
∑
fX(a) = 1 for X discrete

– fX ≥ 0,
∫
fX(a) da = 1, X continous.

(5) Expectations

• For X : Ω→ R a random variable, then:

E[X] =

∫

Ω
X dP

This definition can be useful when Ω and P are simple and explicit

5



or Ω is finite. Well we have:

E[1A] = P (A)

E is linear

E[limXk] = lim E[Xk] when Xk is Cauchy

We have the formulas:

E[X] =
∑

x∈R
x · fX(x) (X discrete)

E[X] =

∫

R
x · fX(x) dx (X continuous)

Moreover the law of unconscious statistician says:

E[g(X)] =
∑

x∈R
g(x) · fX(x) (X discrete)

E[g(X)] =

∫

R
g(x) · fX(x) dx (X continuous)

6
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Sum of random variables

Consider two random variables X,Y : Ω → R we know that Z = X + Y is

a random variable

Question: If X,Y are continuous is Z also continuous? If so, what is the

density of Z

Answer: In general, no

Theorem. If X,Y : Ω → R have joint density fX,Y , then Z = X + Y is

continuous and has density:

fZ(a) =

∫ ∞

−∞
fX,Y (x, a− x) dx =

∫ ∞

−∞
fX,Y (a− y, y) dy

Proof. Recall if A ⊆ R2 is a borel set then we know:

P ((X,Y ) ∈ A) =

∫

A
fX,Y (x, y) dx dy

Then if we consider the following A we know:

A := {(x, y) ∈ R2 | x+ y ≤ a}
FZ(a) = P (Z ≤ a) = P ((X,Y ) ∈ A)

There are two ways to integrate over this set, look at the picture

1



y

x

x+ y = a

So we get with a u-substitution of u = y + x:

FZ(a) =

∫ ∞

−∞

∫ a−x

−∞
fX,Y (x, y) dy dx

=

∫ ∞

−∞

∫ a

−∞
fX,Y (x, u− x) dy dx

=

∫ a

−∞

∫ ∞

−∞
fX,Y (x, u− x) dx du

But then fZ(u) =
∫∞
−∞ fX,Y (x, u − x) dx satisfies the conditions for a joint

density.

Special Case

If X,Y are independent then fX,Y (x, y) = fX(x) ·fY (y) is a joint density

and so:

fZ(a) =

∫ ∞

−∞
fX(x) · fY (a− x) dx =

∫ ∞

−∞
fX(a− y) · fY (y) dy

This integral is called the convolution of fX and fY denoted as:

fX+Y = fX ∗ fY

Discrete Version:

If X,Y are discrete random variables they automatically have joint mass

2



fX,Y (x, y) = P (X = x, Y = y). One sees as in the above proof that:

fZ(a) =
∞∑

x=−∞
fX,Y (x, a− x) =

∞∑

y=−∞
fX,Y (a− y, y)

If X,Y are independent then fX,Y = fX · fY and so:

fZ(a) =
∞∑

x=−∞
fX(x)fY (a− x) =

∞∑

y=−∞
fX(a− y)fY (y)

And so of course fX+Y = fX ∗ fY .

Group Work

a) Let X,Y be independent continuous random variables with normal dis-

tributions, i.e. density given by 1√
2π
e−x

2/2. Compute the density of

X + Y .

We compute this by the theorem as a convolution:

fZ(a) =

∫ ∞

−∞
fX(x) · fY (a− x) dx

=

∫ ∞

−∞

1

2π
e−x

2/2e−(a−x)
2/2 dx

=
1

2π

∫ ∞

−∞
e−x

2/2e−a
2/2+ax−x2/2 dx

=
e−a

2/2

2π

∫ ∞

−∞
e−x

2+ax dx

=
e−a

2/2

2π

∫ ∞

−∞
e−(x−a/2)

2+a2/4 dx

=
e−a

2/4

2π

∫ ∞

−∞
e−(x−a/2)

2
dx

=
e−a

2/4

2π

∫ ∞

−∞
e−u

2
du =

e−a
2/4

2π
· √π =

e−a
2/4

2
√
π

b) Let X1, . . . , Xn be independent discrete random variables with bernoulli

3



distribution P (Xi = 1) = p, P (Xi = 0) = 1 − p. Compute the mass of

X1 +X2 + · · ·+Xn.

First we’ll consider when n = 2, then:

fX1+X2(a) =

∞∑

x=−∞
P (X1 = x)P (X2 = a− x)

= P (X1 = 1)P (X2 = a− 1) · P (X1 = 0)P (X2 = a)

=





p2 if a = 2

2p(1− p) if a = 1

(1− p)2 if a = 0

0 otherwise

Guess for Zn = x1 + · · ·+Xn:

fZn(k) =

(
n

k

)
pk(1− p)n−k

We can prove this by induction.

Definition. A discrete random variable is called binomial with parameters

n, p if P (X = k) =
(
n
k

)
pk(1− p)n−k.

Example. If a coin is tossed n times and X is the number of heads, then

X is binomial.

Example. Consider k fixed, n → ∞, p → 0 so that np remains fixed. Set

λ = np. Then:

(
n

k

)
pk(1− p)n−k =

(
n

k

)(
λ

n

)k (
1− λ

n

)n−k

=
n(n− 1) · · · (n− k + 1)

k!
· λ

k

nk
·
(

1− λ

n

)n−k

=
n(n− 1) · · · (n− k + 1)

nk
· λ

k

k!
·
(

1− λ

n

)n−k

4



But then:

n

n
· n− 1

n
· · · n− k + 1

n
→ 1

λk

k!
→ λk

k!(
1− λ

n

)n−k
→ e−λ

And so:

(
n

k

)
pk(1− p)n−k → λk

k!
e−λ

In fact we can calculate that:

E[X] =
∞∑

k=0

k · λ
k

k!
e−λ = e−λ

∞∑

k=1

λk

(k − 1)!
= λe−λ

∞∑

k=1

λk−1

(k − 1)!

= λe−λ
∞∑

k=0

λk

k!
= λe−λeλ = λ

Definition. A discrete random variable X is called Poisson for λ > 0 if

P (X = k) = λk

k! e
−λ for k ≥ 0 and zero for k < 0.

These random variables describe the number of successes in great number

of trials with very small success probability

Example. The number of fender benders on Washtenaw avenue on a given

day. A great number of cars go by, and the probability of accident for a

given car is very small. Say the expectation is two, then:

• The probability of three accidents is 23

3! e
3 = 0.18

• Probability of at least one accident is 1− e−2 ≈ 0.8

5
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Recall. We have the following:

• For X a Bernoulli Random Variable with parameter P : P (X = 1) = p,

P (X = 0) = 1− p

• X a Binomial Random variable with parameters n, p:

P (X = k) =

{ (
n
k

)
pk(1− p)n−k if 0 ≤ k ≤ n

0 otherwise

So X = X1 + · · · + Xn where Xi are independent Bernoulli with pa-

rameter p

• X is a Poisson Random Variable with parameter λ > 0:

P (X = k) =

{
λk

k! e
−λ if k ≥ 0

0 otherwise

Obtained by taking the limit n → ∞ of this binomial mass function

with parameter, (λ/n, n).

Poisson Process

Consider a call center. For a given time interval [t1, t2] we have some prob-

ability of a call, or multiple calls, arriving. Set:

X[t1,t2] := # of calls received in the time interval [t1, t2]

1



The key modeling assumption is that if the time interval is very small, i.e.

[t, t+ ∆t], then:

a) The probability of one call arriving is λ ·∆t

b) The probability of more than one call arriving is zero.

Reasonable: No simulataneous calls

Consequence: X[t1,t2] is the sum of N = t2−t1
∆t independent trials with success

probability λ ·∆t = p. Thus, X[t1,t2] is Poisson with parameter λ(t2 − t1).

Also:

• X[t1,t3] = X[t1,t2] +X[t2,t3] for t1 < t2 < t3

• X[t1,t2] and X[t3,t4] are independent for t1 < t2 < t3 < t4.

Definition. A Poisson process with intensity λ is a family of Random Vari-

ables X[s,t] : Ω→ R indexed by s < t ∈ R sucht hat:

a) X[s,t] is Poisson with parameter λ(t− s).

b) X[r,t] = X[r,s] +X[s,t] for r < s < t.

c) If [si, ti] are finitely many pairwise disjoint intervals then the collection

of random variables {X[si,ti]} is independent.

Consider a Poisson process of intensity λ and ask: How long do we have

to wait for the first arrival? Let Z be the time before first arrival:

FZ(t) = P (Z ≤ t) = 1− P (Z > t)

= 1− P (X[0,t] = 0)

= 1− e−λt

Note that FZ is differentiable, so Z is a continuous Random Variable with

density:

fZ(t) = F ′Z(t) =

{
λe−λt if t > 0

0 otherwise

2



Definition. A continuous random variable Z is called exponential with pa-

rameter λ > 0 if its density is:

fZ(t) =

{
λe−λt if t > 0

0 otherwise

Remark. And then:

• fZ is indeed a density function:

∫ ∞

0
λe−λt dt =

(
−e−λt

]∞
0

= 1

• We can calculate the expectation:

E[Z] =

∫ ∞

0
t · λe−λt dt =

∫ ∞

0
u · e−udu

λ

=
1

λ

(
[−ue−u]∞0 +

∫ ∞

0
e−u du

)
=

1

λ

∫ ∞

0
e−u du

=
1

λ

(
−e−u

]∞
0

=
1

λ

• As we have seen, exponential Random Variables model waiting time

between unpredictable events. We can tie this back to Bernoulli trials

as follows. Say we perform independent trials with success probability

p times ∆t, 2∆t, 3∆t. Let Z be the time before first success:

P (Z > k ·∆t) = (1− p)k

Now fix a time t, then in the interval of time [0, t] there are roughly

k = t
∆t many trials. Let ∆t→ 0 and p = λ ·∆t. Then:

P (Z > t) = lim
∆t→0

(1− λ∆t)
t

∆t

= lim
n→∞

(
1− λ

n

) t
n

= e−λt

3



Group Work

We upgrade our modeling of fender benders on Washtenaw to use the Poisson

process. We expect 2 accidents per 24 hours. Two Questions:

a) What is the probability that we must wait more than 12 hours for the

first accident

We model with the Poisson process, so we have a random variable

X[0,24] where λ is the intensity and X[0,24] is Poisson with parameter

24λ. Then:

E
[
X[0,24]

]
= 24λ = 2

λ =
1

12

Let Z be the waiting random variable then:

P (Z > 12) = P (X[0,12]=0) = e−λ12 = e−1

And so we’re done with this part!

b) How long do we have to wait?

We know that the expectation of the waiting variable is 1
λ = 12 from

previous calculations.

Memoryless property

Lemma. Ley Z be an exponential random variable with parameter λ. Then

for any a, b ≥ 0:

P (Z > a+ b | Z > a) = P (Z > b)
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Proof. Well we have:

P (Z > a+ b | Z > a) =
P (Z > a+ b, Z > a)

P (Z > a)
=
P (Z > a+ b)

P (Z > a)

=
e−λ(a+b)

e−λa
= e−λb = P (Z > b)

The interpretation is that: How long you’ll have to wait is not dependent

on how long you have been waiting.

Lemma. Let X,Y be independent exponential Random Variables with pa-

rameters λ, µ then Z = min(X,Y ) is exponential with parameter λ+ µ.

Proof. Well consider that:

FZ(t) = P (Z ≥ t) = 1− P (Z > t)

= 1− P (X > t, Y > t) = 1− P (X > t)P (Y > t)

= 1− e−λte−µt = 1− e−(λ+µ)t

And so we’re done!

Example. The expected number of crashes in 24 hours is 2 on Washtenaw

and 4 on Main, and these are independent.

a) How long do we have to wait before an accident on either street?

Of course our Wasthenaw parameter is λ = 1
12 and our Main param-

eter is µ = 1
6 . Thus Z = min(X,Y ) is exponential with parameter

λ+ µ = 1
4 . Thus E[Z] = 4.

b) What is the probability that the first accident occurs on main

Well we wish to find:

P (X > Y ) = P ((X,Y ) ∈ A)

5



where A is the graph below y = x. So then:

P (X > Y ) =

∫

A
fX(x)fY (y) dx dy

=

∫ ∞

0
fY (y)

∫ ∞

y
fX(x) dx dy

=

∫ ∞

0

1

6
e−

1
6
y

∫ ∞

y

1

12
e−

1
12
x dx dy

=

∫ ∞

0

1

6
e−

1
6
ye−

1
12
y dy

=
1

6

∫ ∞

0
e−

1
4
y dy =

2

3

6
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Conditioning on Random Variable

Recall. Given an event B with P (B) > 0 we have:

P (A | B) =
P (A ∩B)

P (B)

And likewise E[X | B]. Now also if Ω is the disjoint of B1, . . . , Bn with

P (Bi) > 0 we have:

P (A) =

n∑

i=1

P (A | Bi)P (Bi) E[X] =

n∑

i=1

E[X | Bi]P (Bi)

Special Case: Discrete Y

Definition. Consider two random variables X,Y : Ω → R. First assume

that Y is discrete

• Then define the conditional distribution FX|Y (x | y) = P (X ≤ x | Y = y)

defined for all y ∈ R such that P (Y = y) > 0.

• If X is also discrete we define the conditional mass function fX|Y (x |
y) = P (X = x | Y = y) when P (Y = y) > 0.

• The conditional expectation E[X | Y ] is the function:

y
E[X|Y ]7−−−−→ E[X | Y = y]

1



This function is defined for y ∈ R where P (Y = y) > 0. Extend this

to a function on all of R by zero. Thus E[X | Y ] : R→ R.

Remark. If X is discrete, then:

E[X | Y = y] =
∑

x∈R
x · fX|Y (x | y)

Which is nice

Remark. E[X | Y ] is a random variable on the probability space (ΩY ,FY , PY ).

We take ΩY = R, F as the Borel σ-field, and PY = Y∗P . Since Y is discrete:

PY (A) =
∑

a∈A
P (Y = a)

Proposition 1. E[E[X | Y ]] = E[X].

Recall. We can calculate expectation in two ways:

E[Z] =

∫

Ω
Z dP =

{ ∫
R z · fZ(z) dx if Z is continuous∑
x∈R fZ(z) if Z is discrete

Proof. We calculate using the first method:

E[E[X | Y ]] =

∫

Ω
E[X | Y ] dP =

∑

y∈R
E[X | Y = y] dP (y)

=
∑

y∈R
E[X | Y = y]P (Y = y) = E[X]

Because Ω is the disjoint union of the events Y = y for y ∈ R.

Group Work

A hen lays N eggs, where N is Poisson with parameter λ. Each egg hatches

with probability p independently of the other eggs. Let K be the number of

chicks. Find E[K].
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Consider for any n ∈ N the random variables K1, . . . ,Kn where Ki tells

us that the i-th chick hatched:

fK|N (k | n) = P (K = k | N = n) =

(
n

k

)
pk(1− p)n−k

E[K | N = n] =

∞∑

k=0

k · fK|N (k | n) = np

But then:

E[K] = E[E[K | N ]] =
∞∑

n=0

E[K | N = n] · P (N = n)

=
∞∑

n=0

np · P (N = n) = p
∞∑

n=0

n · P (N = n)

= pE[N ] = pλ

Special Case: Continuous Random Variables

Definition. Suppose that X and Y are continuous with joint density. Then

define:

• The conditional desnity:

fX|Y (x | y) =
fX,Y (x, y)

fY (y)

This is of course defined for all y ∈ R for which fY (y) > 0.

• The conditional distribution:

FX|Y (x | y) =

∫ x

−∞
fX|Y (z, y) dz

We want to have FX|Y = “P (X ≤ x | Y = y)′′, but this is nonsense

since P (Y = y) = 0 given that Y is continuous. So consider for very

3



small ∆y:

P (X ≤ x | y ≤ Y ≤ y + ∆y) =
P (X ≤ x, y ≤ Y ≤ y + ∆y)

P (y ≤ Y ≤ y + ∆y)

=

∫ x
−∞

∫ y+∆y
y fX,Y (s, t) dt ds
∫ y+∆y
y fY (t) dt

=

∫ x
−∞

1
∆y

∫ y+∆y
y fX,Y (s, t) dt ds

1
∆y

∫ y+∆y
y fY (t) dt

Now as ∆y → 0 we have:

1

∆y

∫ y+∆y

y
fX,Y (s, t) dt→ fX,Y (s, y)

1

∆y

∫ y+∆y

y
fY (t) dt→ fY (y)

And so we have that:

P (X ≤ x | y ≤ Y ≤ y + ∆y)→
∫ x
−∞ fX,Y (s, y) ds

fY (y)

=

∫ x

−∞
fX|Y (s | y) ds

• Now to define the conditional expectation we take E[X | Y ] : R → R
that is defined as 0 when fY (y) = 0 and otherwise is defined as:

y
E[X|Y ]7−−−−→ E[X | Y = y] =

∫ ∞

−∞
xfX|Y (x | y) dx

This is a random variable on (ΩY ,FY , PY ). And we also get that

dPY (y) = fY (y) dy

Proposition 2. E[E[X | Y ]] = E[X]
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Proof. We have that:

E[E[X | Y ]] =

∫

ΩY

E[X | Y = y] dPY (y)

=

∫

ΩY

(∫ ∞

−∞
x · fX|Y (x | y) dx

)
dPY (y)

=

∫ ∞

−∞

∫ ∞

−∞
xfX|Y (x | y)fY (y) dy dx

=

∫ ∞

−∞
x

∫ ∞

−∞
fX,Y (x, y) dy dx

=

∫ ∞

−∞
xfX(x) dx = E[X]

Just as desired

Group Work 2: Electric Boogaloo

Choose a point Y uniformly at random from [0, 1]. Choose a point X uni-

formly at random from [0, Y ]. Compute E[X], fX .

Note that:

E[X | Y = y] =

∫ y

0

x

y
dx =

y

2

E[X] = E[E[X | Y ]] =

∫ 1

0
E[X | Y = y] dy

=

∫ 1

0

y

2
dy =

1

4

Looking for the density fX we first see:

fY (y) =

{
1 if 0 ≤ y ≤ 1

0 otherwise
fX|Y (x | y) =

{
1
y if 0 ≤ x ≤ y
0 otherwise

5



Then for 0 < x ≤ 1

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy

=

∫ ∞

−∞
fX|Y (x | y) · fY (y)

=

∫ 1

x

1

y
dy = ln(1)− ln(x) = − ln(x)

And otherwise, fX(x) = 0.
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Generating Functions

Definition. Let X be a discrete Random Variable taking values in Z≥0.

Define the probability generating function as the formal sum:

GX(s) =
∞∑

n=0

P (X = n) · sn

Great! We can now do analysis to this!

Remark. Let’s do some analysis!

• This power series converges for |s| ≤ 1, and gives an analytic function.

Clearly if s = 1 then the sum of P (X = n) over all n must be 1 since

X takes values in Z≥0. This gives convergence at s = −1 also. Then

for 0 ≤ s < 1 we know P (X = n) · sn ≤ sn, and so we get convergence

by the geometric series test. Great!!!

• We have an alternative expression:

GX(s) =
∞∑

n=0

fX(n) · sn = E
[
sX
]

By applying the law of the unconscious statistician.

• We know that GX encodes a lot of information about X:

– GX(0) = P (X = 0).

1



– GX(1) = 1.

– G′X(1) =
∑∞

n=1 n ·P (X = n) ·1n−1 =
∑∞

n=1 n ·P (X = n) = E[X].

Example. If X is Poisson with parameter λ, then:

GX(s) =

∞∑

n=0

λn

n!
e−λ = e−λ

∞∑

n=0

(λ− s)n
n!

= e−λ · eλ−s = eλ(s−1)

Proposition 1. If X1, . . . , Xn are independent and X = X1 · · ·Xn then

GX(s) = GX1(s) · · ·GXn(s).

Proof. We use induction! For n = 1 it is trivial. So assume the result holds

for n and fix n+1 independent variablesX1, . . . , Xn+1.. Let Y = x2 · · ·Xn+1.

Then cosnider that:

GX(s) =
∞∑

n=0

P (X = n)sn

=
∞∑

`=0

∞∑

m=0

P (X1 = `, Y = m)s`m

=
∞∑

`=0

∞∑

m=0

P (X1 = `)P (Y = m)s`sm

=
∞∑

`=0

P (X1 = `)s` ·
∞∑

m=0

P (Y = m)sm

= GX1(s) ·GY (s) = GX1(s) ·GX2(s) · · ·GXn+1(s)

Where we use the inductive hypothesis in the last line!

Example. Say that X1, . . . , Xn are independent Bernoulli random variables

with X = X1 + · · ·+Xn. Then:

GXi(s) = (1− p) + p · s = 1 + p(s− 1)

GX(s) = ((1− p) + ps)n =

n∑

k=0

(
n

k

)
pk(1− p)n−k

︸ ︷︷ ︸
P (X=k)

sk

2



This is yet another method to prove the formula for a binomial random

variable’s density.

Let Y be the waiting time until the first success and condition on the

first trial. We write S for success and F for failure:

GY (s) = E
[
sY
]

= E
[
sY
∣∣ S
]
p+ E

[
sY
∣∣ F
]
(1− p)

= p · s+ (1− p) E
[
sY+1

]

= p · s+ s(1− p) E
[
sY
]

= p · s+ s(1− p)GY (s)

We can solve for GY (s) to get:

GY (s) =
ps

1− s(1− p)

To turn this into a power series we use that:

∞∑

k=0

xk =
1

1− x

GY (s) = ps · 1

1− s(1− p)

= ps
∞∑

k=0

(s(1− p))k

=
∞∑

k=0

p(1− p)k · sk+1

Note that P (Y = k) is the coefficient of sk in GY (s) and so P (Y = k) =

p(1− p)k−1 as expected

0.1 Back to the Random Walk

Consider a symmetric random walk with absorbing barries at x = 0 and

x = 5. Let Xk be the duration of the walk starting at k, where k can

be one of 0, 1, 2, 3, 4, 5. We want to compute P (X2) = n for any n. We

will compute GXk
(s) = Gk(s). Observe that G0(s) = G5(s) = 1; and by

3



symmetry G1(s) = G4(s) and G2(s) = G3(s). To compute Gk for 0 < k < 5

and n > 0, we condition on the first step:

P (Xk = n) =
1

2
P (Xk = n | L) +

1

2
P (Xk = n | R)

=
1

2
P (Xk−1 = n− 1) +

1

2
P (Xk+1 = n− 1)

Then since P (Xk = 0) = 0 when 0 < k < 5 we know:

Gk(s) =

∞∑

n=1

P (Xk = n) · sn

=
1

2

∞∑

n=1

(P (Xk−1 = n− 1 + P (Xk+1 = n− 1)) sn

=
s

2

( ∞∑

n=0

P (Xk−1 = n− 1)sn−1 +
∞∑

n=0

P (Xk+1 = n− 1)sn−1
)

=
s

2
(Gk−1(s) +Gk+1(s))

We know that:

G1(s) =
s

2
(G0(s) +G2(s) =

s

2
+
s

2
G2(s)

G2(s) =
s

2
(G1(s) +G3(s)) =

s

2
(G1(s) +G2(s))

=
s2

4
+
s2

4
G2(s) +

s

2
G2(s)

G2(s) =
s2

4− 2s− s2

We want to expand this into a power series. We use partial fractions and

geometric series:

s2

4− 2s− s2 = −1 +
2s− 4

s2 + 2s− 4

We factorize s2 + 2s− 4 as (s− α)(s− β) where:

α = −1 +
√
s β = −1−√s
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We now set up partial fractions as:

2s− 4

s2 + 2s− 4
=

A

s− α +
B

s− β

We get the equations A+B = 2 and and Aβ+Bα = 4. From which we get

that:

α = 1− 3√
5

B = 1 +
3√
5

We then apply the geometric series:

A

s− α = −A
α
· 1

1− s
α

= −A
α
·
∞∑

n=0

sn

αn

B

s− β = −B
β
· 1

1− s
β

= −B
β
·
∞∑

n=0

sn

βn

We put this all together to get:

G2(s) = −1 +
α

s− α +
B

s− β

= −1− A

α

∞∑

n=0

sn

αn
− B

β

∞∑

n=0

sn

βn

= −1−
∞∑

n=0

(
1− 3√

5√
5− 1

· 1

(−1 +
√

5)n
+

1 + 3√
5

−1−
√

5
· 1

(−1−
√

5)n

)
sn

= −1 +

∞∑

n=0

(
3−
√

5

5−
√

5
· 1

(
√

5− 1)n
+ (−1)n

3 +
√

5

5 +
√

5
· 1

(
√

5 + 1)n

)
· sn

And therefore for n > 0 we have:

P (X2 = n) =
3−
√

5

5−
√

5
· 1

(
√

5− 1)n
+ (−1)n

3 +
√

5

5 +
√

5
· 1

(
√

5 + 1)n
(n > 0)
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A good sanity check is P (X2 = 0) = 0, which must be given by:

P (X2 = 0) = −1 +
3−
√

5

5−
√

5
+

3 +
√

5

5 +
√

5

= −1 +
(3−

√
5(5 +

√
5) + (3 +

√
5)(5−

√
5)

25− 5

= −1 +
15− 5 + 3

√
5 + 15− 5− 3

√
5 + 5

√
5

20

= −1 +
10 + 10

20
= 0 (3)

Group Work

Develop the rational function 1
2−s2 in a power series. To do this we can

break it up as 1
(
√
2−s)(

√
2+s)

. Then we write:

1

2− s2 =
A√

2− s
+

B√
2 + s

This gives us a system of equations:

A(
√

2 + s) +B(
√

2− s) = 1

A
√

2 +B
√

2 = 1

As−Bs = (A−B)s = 0

This implies that A = B and 2A
√

2 = 1 and A = B = 1
2
√
2
. Then we may

write:

1

2− s2 =
1

2
√

2(
√

2− s)
+

1

2
√

2(
√

2 + s)

=
1

4
· 1

1− s√
2

+
1

4
· 1

1 + s√
2

6



We may then write the generating function for each of these:

1

2− s2 =
1

4

( ∞∑

n=0

sn

(
√

2)n
+
∞∑

n=0

(−1)nsn

(
√

2)n

)

=
1

4
·
∞∑

n=0

(1 + (−1)n) · 1

(
√

2)n
· sn

And therefore the coefficients are:

an =
1

4
· (1 + (−1)n) · 1

(
√

2)n

a2n =
1

2n+1

a2n+1 = 0
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Stochastic Processes

Recall . Remember that we defined a generating function for a discrete

random variable X taking values in the non-negative integers:

GX(s) = E
[
sX
]

=

∞∑

x=0

sx · P (X = x)

This function has very nice properties such as:

GX(0) = P (X = 0)

GX(1) = 1

G′X(1) = E[X]

If X1, . . . , Xn are independent and X = X1 + · · ·+ Xn, then:

GX(s) = GX1(s) · · ·GXn(s)

Galton-Watson Process

Definition. Let p : Z≥0 → Z≥0 be a mass function, so
∑∞

k=0 p(k) = 1. We

consider a tree growing from a single root. At time zero there is only the

root. At time n, each leaf at depth n grows k descendents with probability

p(k) independently of any other leaf. Let Xn be the total number of leaves

at depth n. This is the Galton Watson Process

1



Analytically, X0 = 1 and:

Xn =

Xn−1∑

i=1

Yi,n−1

where Y1,n−1, . . . , Yn−1,n−1 are independent discrete random variables with

mass function p. Note! X1 has mass function p, i.e. Yi,n−1 are independent

copies of X1

Picture:

Then we have the following table of values:

n 0 1 2 3 4

Xn 1 2 3 1 0

Models: Extinction of family names and survival of genes in a gene pool

Question: The extinction probability at a particular time n, that is

P (Xn = 0), and eventually limn→∞ P (Xn = 0). We also want to look at

the expectation E[Xn]

We will study this using generating functions, which we compute recur-

sively:

Gn(s) = GXn(s) = E
[
sXn

]

g(s) := G1(s) =
∞∑

k=0

sk · P (X1 = k) =
∞∑

k=0

p(k)|cdotsk

2



We’re going to condition on the value of X1:

G2(s) = E
[
sX2
]

E
[
sX2

∣∣ X1 = 0
]

= 1

E
[
sX2

∣∣ X1 = 1
]

= E
[
sY1,1

]
= g(s)

E
[
sX2

∣∣ X1 = k
]

= E
[
sY1,1+···+Y1,k

]
= (g(s))k

By conditioning, we then have that:

G2(s) =

∞∑

k=0

E
[
sX1

∣∣ X1 = k
]
· P (X1 = k)

=

∞∑

k=0

p(k) · (g(s))k

= g(g(s))

Iterating, we get that:

Gn(s) = g(g(g(· · · g(s) · · · )︸ ︷︷ ︸
n times

Gn = g ◦ · · · ◦ g︸ ︷︷ ︸
n times

Consider now the question about eventual extinction:

lim
n→∞

P (Xn = 0) = lim
n→∞

Gn(0)

This is the sequence Gn(0) defined recursively as follows:

d1 = g(0) = p(0)

d2 = G2(0) = g(g(0)) = g(d1)

dn+1 = g(dn)

Such a thing is called a dynamical system.

We have a simple special case where if p(0) = 0 then dn = 0 for all n, so

3



limn→∞ dn = 0. This would tell you that the process never dies, we could

have anticipated this answer. This is intuitive since p(0) is the probability

that any given leaf has no descendents, thus saying p(0) = 0 means that

every leaf must have at least one descendent

Now let’s deal with the general case where p(0) > 0. We need to examine

the properties that g has. Namely g(0) = p(0) > 0, g(1) = 1, g is non-

decreasing between 0 and 1, and g is continuous.

Therefore we may consider g : [0, 1] → [0, 1] as a continuous and non-

decreasing function. Remember that a non-decreasing bounded sequence

has a limit, and note that dn is a non-decreasing and bounded sequence, so

we must have a limit called d. Now consider that:

g(d) = g( lim
n→∞

dn) = lim
n→∞

g(dn) = lim
n→∞

dn+1 = d

Therefore d is some fixed point of g. Moreover, if d′ is any fixed point of g

between 0 and 1 then, noting that:

• d′ > 0 because g(0) = p(0) > 0.

• g(0) ≤ g(d′) since 0 < d′, but then d1 = g(0) ≤ g(d′) = d′.

• But then d2 = g(d1) ≤ g(d′) = d′.

• Therefore dn ≤ d′ for all n, and so

d = limn→∞ dn ≤ d′.

Conclusion: The eventual death probability d is the smallest fixed point

of g between zero and one. Note that 1 is always a fixed point.

Example. Suppose that p(0) = p(1) = p(2) = p(3) = 1
4 . We are looking for

fixed points:

s = g(s) =
1

4
+

1

4
s +

1

4
s2 +

1

4
s3

4s = 1 + s + s2 + s3

s3 + s2 − 3s + 1 = 0

4



We’ll do long division of this polynomial by s− 1, do this in the secrecy of

your own homes.

s3 + s2 − 3s + 1

s− 1
= s2 + 2s− 1

And so we end up with three fixed points:

s = 1

s = −1±
√

2

We need to look only between [0, 1], and so the death probabity is d =

−1 +
√

2 ≈ 0.4.

Group Work

Same question, but p(0) = 1
2 , p(1) = p(2) = p(3) = 1

6 .

So we want to solve the equation:

s = g(s) =
1

2
+

1

6
s +

1

6
s2 +

1

6
s3

6s = 3 + s + s2 + s3

s3 + s2 − 5s + 3 = 0

We know 1 is a root of this equation, so we divide by s− 1:

s3 + s2 − 5s + 3

s− 1
= s2 + 2s− 3

So then solving this equation we get three roots:

s = 1

s =
−2±

√
4 + 12

2
= −1± 2

And so s = 1,−3, 1. Since s = −3 is outside of [0, 1] and thus d = 1.

Question: When is the survival probability positive? Equivalently, d < 1,
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that is g has a positive fixed point less than one. Note that g is convex (not

strictly) so its graph can have one of the following forms:

Then d < 1 holds if and only if E[X1] = g′(1) > 1 which says exactly that

the expected number of descendents of a given node is greater than one

What about extinction at time n : P (Xn = 0). This is much harder, we

must compute Gn. Sometimes possible.

Example. Start with p(k) = 2−(k+1) for k = 0, 1, 2, . . ..

g(s) =

∞∑

k=0

p(k)sk =
1

2
·
∞∑

k=0

(s
2

)k

=
1

2
· 1

1− s
2

=
1

2− s

G2(s) = g(g(s)) =
1

2− 1
2−s

=
2− s

3− 2s

G3(s) = g(G2(s)) =
1

2− 2−s
3−2s

=
3− 2s

4− 3s

Gn(s) =
n− (n− 1)s

(n + 1)− ns

Recall the procedure to convert this into a power series:

n− (n− 1)s

(n + 1)− ns
=

n− 1

2
+

1

n(n + 1)
· 1

1− n
n+1s

=
n− 1

2
+

1

n(n + 1)

∑
∗
(

n

n + 1
s

)k

6



And so:

P (Xn = k) =
1

n(n + 1)

(
n

n + 1

)k

(k > 0)

P (Xn = 0) =
n

n + 1

Great!

We now look at the expectations:

E[Xn] = G′n(1) = g′(Gn−1(1))·
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Recall. X,Y independent =⇒ E[XY ] = E[X] E[Y ].

This motivated the definition of:

cov(X,Y ) = E[XY ]− E[X] E[Y ] = E[(X − E[X])(Y − E[Y ]]

var(X) = cov(X,X) = E
[
X2
]
− E[X]2

We introduced correlation and standard deviation as normalized versions of

these concepts

We also talked about computation using density / mass functions using

unconscious statistician:

var(X) =
∑

k∈R
k2 · fX(k)−

(∑

k∈R
k · fX(k)

)2

var(X) =

∫

R
t2fX(t) dt−

(∫

R
t · fX(t) dt

)2

Let’s do some examples using random variables we’ve seen before
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Example. Let X be Poisson with parameter λ, then:

fX(k) =
λk

k!
e−λ (k = 0, 1, . . .)

E[X] =
∞∑

k=0

k · λ
k

k!
e−λ

= λ · e−λ ·
∞∑

k=1

λk−1

(k − 1)!

= λ · e−λ ·
∞∑

k=0

λk

k!

= λ · e−λ · eλ = λ

So then:

var(X) = −λ2 +

∞∑

k=0

k2
λk

k!
e−λ

We compute the sum:

∞∑

k=0

k2
λk

k!
e−λ =

∞∑

k=1

k · λk

(k − 1)!
e−λ

= λe−λ
∞∑

k=0

(k + 1)
λk

k!

= λe−λ
( ∞∑

k=0

k
λk

k!
+
∞∑

k=0

λk

k!

)

= λe−λ(λ · eλ + eλ) = λ2 + λ

And so:

var(X) = λ2 + λ− λ2 = λ

Great!
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Example. Let X be exponential with parameter λ. Then:

fX(t) = λe−tλ (t > 0)

E[X] =

∫ ∞

0
tλe−tλ dt

=
[
−te−tλ

)∞
0

+

∫ ∞

0
e−tλ dt

= 0 +

[
− 1

λ
e−tλ

)∞

0

=
1

λ

Now to compute the variance we consider that:

∫ ∞

0
t2 · λe−tλ dt =

[
−t2e−tλ

)∞
0

+

∫ ∞

0
2te−tλ dt

= 0 +
2

λ
·
∫ ∞

0
tλe−tλ dt

=
2

λ
· 1

λ
=

2

λ2

And therefore:

var(X) =
2

λ2
−
(

1

λ

)2

=
1

λ2

Great!

We now introduce a technique using variance and generating functions:

Lemma. Let X be a discrete random variable taking values in Z≥0. Then:

var(X) = G′′X(1) +G′X(1)−
(
G′X(1)

)2
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Proof. Recall that:

GX(t) =
∞∑

k=0

fX(t)sk

G′X(t) =
∞∑

k=1

kfX(t)sk−1

G′′X(t) =
∞∑

k=2

k(k − 1)fX(t)sk−1

Just from this we see that E[X] = G′X(1) as we did last time. Now consider:

G′′X(1) =
∞∑

k=2

k(k − 1)fX(k) =
∞∑

k=1

k(k − 1)fX(k)

=
∞∑

k=1

k2fX(k)−
∞∑

k=1

kfX(k)

= E
[
X2
]
− E[X]

But wait! This means that E
[
X2
]

= G′′X(1) +G′X(1). Therefore:

var(X) = E
[
X2
]
− E[X]2 = G′′X(1) +G′X(1)−

(
G′X(1)

)2

Example. We will think about the branching processs that we considered

in the last two lectures. Let p : Z≥0 → [0, 1] be a mass functon. We interpret

p(k) as the probability of a given leaf having k descendents. We have the

generating function:

g(s) =
∑

p(k)sk

Letting Xn be the total number of leaves at depth n. We argued that:

Gn(s) = GXn(s) = g ◦ · · · ◦ g︸ ︷︷ ︸
n times

= g ◦Gn−1
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Then to compute var(Xn) we compute:

G′n(s) = g′(Gn−1(s)) ·G′n−1(s)
G′′n(s) = g′′(Gn−1(s)) · (G′n−1(s))2 + g′(Gn−1(s)) ·G′′n−1(s)

Then:

G′n(s) = g′(1) ·Gn−1; (1) = (g′(1))n

G′′n(1) = g′′(1) · (g′(1))2(n−1) + g′(1) ·G′′n−1(1)

For simplicity, assume g′(1) = 1, then:

G′n(1) = 1

G′′n(1) = g′′(1) +G′′n−1(1)

= ng′′(1)

And therefore:

var(X1) = g′′(1) + 1− (1)2 = g′′(1)

var(Xn) = ng′′(1) + 1− (1)2 = ng′′(1) = n var(X1)

Great!

Proposition. Let X1, . . . , Xn be random variables. We are not assuming

X1, . . . , Xn are independent. Let X = X1 + · · ·+Xn. Then:

var(X) =

n∑

i=1

var(Xi) +
∑

1≤i 6=j≤n
cov(Xi, Xj)

=
n∑

i=1

var(Xi) + 2 ·
∑

1≤i<j≤n
cov(Xi, Xj)
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In particular, if X1, . . . , Xn are independent, then:

var(X) =
n∑

i=1

var(Xi)

Proof. We just compute!

var(X) = E
[
(X − E[X])2

]

= E



(

n∑

i=1

Xi − E[Xi]

)2



= E




n∑

i=1

Xi − E[Xi] +
∑

1≤i 6=j≤n
(Xi − E[Xi])(Xj − E[Xj ])




And then we know by linearity:

var(X) =
n∑

i=1

var(Xi) +
∑

1≤i 6=j≤n
cov(Xi, Xj)

Example. Let X be Bernoulli with parameter p and q := (1− p). Then:

E[X] = p

E
[
X2
]

= p

var(X) = p− p2

= p(1− p) = pq

Example. X is binomial wit parameter n, p. Then X = X1 + . . . + Xn

for Xi Bernoulli with parameter p and independent. Then E[X] = np and

var(X) = np(1− p)
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Group Work

Recall the problem of letters. n personalized letters sent out randomly. Let

X be the numbe of letters that reach their intended recipient. Compute

var(X).

Let Xi be the Bernoulli random variable that tells us if person i receives

their letter and note that Xi has parameter 1
n since there is one letter

for person i out of n letters. In a nice turn of events, X = X1+· · ·+Xn.

Now let 1 ≤ i 6= j ≤ n. We compute cov(Xi, Xj), to do this it’s

convenient to compute that:

E[XiXj ] = P (Xi = 1, Xj = 1)

Since XiXj is either 0 or 1. The 0 does not contribute anything to the

probability and XiXj = 1 only when both Xi and Xj are equal to 1.

To compute this probability note that we must first send the correct

letter to i, with probability 1
n , and then send the correct letter to j

with probability 1
n−1 :

E[XiXj ] =
1

n(n− 1)

Therefore:

cov(Xi, Xj) =
1

n(n− 1)
− 1

n
· 1

n
=

1

n2(n− 1)

This allows us to write by the above that:

var(X) =
n∑

i=1

var(Xi) +
∑

1≤i 6=j≤n
cov(Xi, Xj)

=
n∑

i=1

n− 1

n2
+

∑

1≤i 6=j≤n

1

n2(n− 1)

= n · n− 1

n2
+

n(n− 1)

n2(n− 1)
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This is simple to compute:

var(X) =
n− 1

n
+

1

n
= 1

Note that this only works when n > 1, when n = 1 we have var(X) = 0.

Example. We toss a coin n > 5 times and let X be the number of switches

from H to T . We want to compute the variance of X. Write X = X1 +

· · ·+Xn−1 where Xi is the indicator that the i-th toss is H and i+ 1-th toss

is T .

Each indicator is Bernoulli with parameter 1
4 so E[Xi] = 1

4 and var(Xi) =
3
16 . Note that if i 6= j then Xi and Xj are independent unless i, j are

consecutive.

If j = i+ 1 then:

cov(Xi, Xj) = E[XiXj ]− E[Xi] E[Xj ]

= 0− 1

16
= − 1

16

This occurs since Xi and Xj are Bernoulli for disjoint events, the i + 1-th

toss cannot be both heads and tails. Then:

var(X) =
n−1∑

i=1

var(Xi) + 2
∑

1≤i<j≤n
cov(Xi, Xj)

=
3(n− 1)

16
+ 2(n− 2) · − 1

16
=
n+ 1

16
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Concentration Inequalities

Recall. If X : Ω → R is a Random Variable such that E[X] and var(X)

both exist and var(X) = 0. Then X = E[X] almost surely

Proposition (Markov). Let X : Ω → R be a Random Variable with non-

negative values and assume E[X] exists. Then for any a > 0 we can esti-

mate:

P (X ≥ a) ≤ a−1 E[X]

Proof. Let Y : Ω→ R be defined as:

Y (ω) =

{
a if X(ω) ≥ a

0 if X(ω) < a

Then Y is a Random Variable because Y = a ·1X≥a. Then note that X ≥ Y

and so E[X] ≥ E[Y ]. But wait:

E[X] ≥ E[Y ] = a · P (X ≥ a)

And so we’re done!

Corrolary (Chebyshev’s Inequality). Let X : Ω→ R be a Random Variable.
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Assume that E[X] and var(X) both exist. Then for a > 0:

P (|X − E[X]| ≥ a) ≤ var(X)

a2

Proof. Let Y = (X − E[X])2. Then Y is a Random Variable, moreover

Y ≥ 0 and E[Y ] = var(X) by definition. We apply Markov’s Inequality to

Y :

P (|X − E[X]| ≥ a) = P (Y ≥ a2) ≤ var(X)

a2

And so we win!

Example. We roll a fair die 10,000 times. Let X be the total score, i.e.

X = X1+· · ·+X10,000 where Xi is the score at the i-th roll. Then E[Xi] = 7
2 ,

so E[X] = 35, 000. Then consider that:

var(Xi) = E
[
X2

i

]
− E[Xi]

2 =
12 + 22 + · · ·+ 62

6
− 49

4
=

35

12

And since each Xi is independent:

var(X) = var(X1) + · · ·+ var(X10,000) =
350, 000

12

Applying Chebyshev’s inequality we see that:

P (|X − 35, 000| ≥ 1000) ≤
350,000

12

106
=

35

1200
≈ 0.029

Cool! But we can get a much better bound

Proposition (Bernstein Inequality). Let X1, . . . , Xn be independent Ran-

dom Variables such that E[Xi] = 0 and |Xi| ≤ 1. Let X = X1 + · · · + Xn.

For any a ≥ 0 we have:

P (X ≥ a) ≤ e−a
2/2n P (X ≤ −a) ≤ e−a

2/2n

Proof. The collection−X1,−X2, . . . ,−Xn satsifies the assumption so P (X ≤
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−a) ≤ ea
2/2n follows from P (X ≥ a) ≤ e−a

2/2n applied to −X1, . . . ,−Xn.

Thus it is enough to prove P (X ≥ a) ≤ e−a
2/2n, and it is enough to

assume that a > 0, because for a = 0 we get:

P (X ≥ 0) ≤ e0 = 1

But the probability of any event is less than or equal to one!

Now let a > 0 and let t > 0 be a variable, to be fixed later. Then by

independence and Markov’s Inequality:

P (X ≥ a) = P (etX ≥ eta)

≤ e−ta · E
[
etX
]

= e−ta · E
[
etX1 · · · etXn

]

= e−ta ·
n∏

i=1

E
[
etXi

]

Note that E
[
etXi

]
exists because Xi is bounded. Now note that x 7→ etx is

bounded:

x

Then the exponential is convex. What does this mean? well f is convex if

and only if for every z ≤ x ≤ w. we have:

f(x) ≤ f(w)− f(z)

w − z
· w − f(w)− f(z)

w − z
· z + f(z)

=
f(w)− f(z)

w − z
− f(w)z − f(z)w

w − z
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Thus for f(x) = etx, w = 1, z = −1 we get:

etx ≤ et − e−t

2
· x +

et + e−t

2

So then:

E
[
etXi

]
≤ E

[
et − e−t

2
·Xi +

et + e−t

2

]
=

et + e−t

2

Now consider that:

et + e−t

2
=

1

2

∞∑

k=0

tk + (−t)k
k!

=
∞∑

k=0

t2k

(2k)!

et
2/2 =

∞∑

k=0

t2k

2k · k!

And since 2k · k! ≤ (2k)! we have:

E
[
etXi

]
≤ et + e−t

2
≤ et

2/2

Putting this together we have:

P (X ≥ a) ≤ e−ta ·
n∏

i=1

E
[
etXi

]

≤ e−ta · ent2/2

Then if we set t = a/n we get:

P (X ≥ a) ≤ e−2a
2/2n · ea2/2n = e−a

2/2n

Great! This is exactly what we want ,

Example. We can renormalize each Xi in our previous example as:

Yi =
2

5

(
Xi −

7

2

)
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to achieve that E[X] = 0 and |Yi| ≤ 1. Then set Y = Y1 + · · · + Y10,000.

Then:

|X − 35, 000| ≥ 1000 ⇐⇒ |Y | ≥ 400

Therefore:

P (|X − 35, 000| ≥ 1000) = P (Y ≤ −400) + P (Y ≥ 400)

≤ 2 · e−4002/20,0000 = 2 · e−8 ≈ 0.00067

Group Work

Consider a symmetric Random Walk with no barriers starting at 0. The

Question is how far do you get in n steps. There exists the trajectory that

goes to position n and the trajectory that goes to n. More precisely, compute

P (|X| ≥ k) and deduce from that how far you are likely to go.

Let X = X1 + · · ·+Xn and each Xi is “Bernoulli” with values in {±1}.
These are independent and so:

P (|X| ≥ k) ≤ 2e−k
2/2n

Then write k = a · √n. Then:

P (|X| ≥ a
√
n) ≤ ee−a

2/2

Then:

a P (|X| ≥ a
√
n)

1 1

2 0.27

3 0.022

4 0.00007

Thus, we will likely get as far as about
√
n.

Example. Lets go for the St. Petersburg paradox. We play the following
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game (one round). You flip a fair coin until you get tails. If you had to flip

m times to get tails, I will pay you $2m dollars

Question: What is the fair entrance fee?

Let X be the winning amount. We compute:

E[X] =
1

2
· 2 +

1

4
· 4 +

1

8
· 8 + · · · =∞

Let’s play n rounds and an is the fair entrance fee for one round given the

information that the game will be played n rounds. Let Xi be the win

amount in round i. The let Yn = X1 + · · ·+ Xn. Then:

P

(∣∣∣∣
Yn
nan
− 1

∣∣∣∣ > ε

)
→ 0 as n→∞ (ε > 0)

We have P (Xi = 2m) = 1
2m . Let mn be an integer. Let Xi give Xi provided

that we flip at most 2mn times and 0 otherwise. Then Y n = X1 + · · ·+Xn.

Let an = E
[
Xi

]
= mn. Then E

[
Y n

]
= n ·mn. Then:

p

(∣∣∣∣
Yn

n · an
− 1

∣∣∣∣ > ε

)
≤ P

(∣∣∣∣
Y n

nan
− 1

∣∣∣∣
)

+ P (Y n 6= Yn)

Now var(Xi) ≤ E
[
X

2
i

]
≤ 2mn+1. Now Chebyshev implies that:

P

(∣∣∣∣
Y n

nan
− 1

∣∣∣∣
)
≤ 2mn+1

ε2nmn

So then:

P (Y n 6= Yn) ≤
n∑

i=1

P (Xi 6= Xi) = n · 2mn

We see that mn = an = log2 n + log2 log2 n makes both probabilities go to

zero.
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Recall. Chebyshev said that:

P (|X − E[X]| ≥ a) ≤ var(X)

a2

Lets rescale a by σ(X) =
√

var(X). Then we get that:

P (|X − E[X]| ≥ a · σ(X)) ≤ 1

a2

For 0 < a < 1 we get no information. But for a > 1 we do get information:

P (|X − E[X]| < 2 · σ(X)) ≥ 1− 1

4
= 75% (a = 2)

P (|X − E[X]| < 3 · σ(X)) ≥ 1− 1

9
= 89% (a = 3)

Of course Chebyshev doesn’t always give the best estimate.

Example. If X is normally distributed, i.e. X is continuous and its density

is fX(t) = 1√
2π
e−t

2/2, then E[X] = 0 and σ(X) = 1. Then if we compute:

P (|X − E[X]| < kσ(X)) = P (|X| < k)

=

∫ k

−k
fX(t) dt =

{
95% if k = 2

99% if k = 3

Wow!

Example. But, the point is that Chebyshev cannot be improved for general
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X. Consider a X : Ω→ {−1, 0, 1} such that:

P (X = −1) = P (X = 1) =
1

2k2

Then we immediately see that E[X] = 0, var(X) = 1
k2

, and σ(X) = 1
k . So

then:

P (|X| ≥ kσ(X)) = P (|X| ≥ 1) =
1

k2

The Law of Large Numbers

We expect that the theory of probability that we’ve developed conforms to

our intuition. That is the probability of an event, or the expected value of

a Random Variable, is reflected in the statistical outcomes. For example,

E[X] should equal the average of all outcomesof “measuring X” many times

independently.

In our framework, we take Random Variables X1, X2, . . . , Xn that are

independent and have the same distribution as X (clones!). Define Sn =
1
n(X1 + · · ·+Xn), the average. We expect:

Sn → E[X] as n→∞

We just need to formalize this convergence!

Definition. Let Y1, Y2, . . . be a sequence of Random Variables and let Y be

a random variable. We say Yn → Y :

• almost surely provided that:

P ({ω ∈ Ω | Yn(ω)→ Y (ω)}) = 1

In this case we write Yn
a.s.−−→ Y

• in probability provided that for every ε > 0 we have that:

P (|Yn − Y | > ε)→ 0 as n→∞
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In this case we write Yn
p−→ Y

Proposition 1. Yn
a.s.−−→ Y implies that Yn

p−→ Y .

Proof. Let ε > 0. Consider the event:

An(ε) = {ω ∈ Ω | |Yn(ω)− Y (ω)| > ε}
A(ε) = {ω ∈ Ω | ω ∈ An(ε) for infinitely many n}

First note that if ε1 < ε then An(ε1) ⊇ An(ε) and A(ε1) ⊇ A(ε). Note that:

A(ε) =
∞⋂

m=1

⋃

n≥m
An(ε)

Now we can consider that:

{ω ∈ Ω | Yn(ω)→ Y (ω)} =
⋂

ε>0

A(ε)c =

(⋃

ε>0

A(ε)

)c

Buw wait! We know that the probability of the left hand side is 1 by almost

sure convergence, and so since this is an ascending tower:

P

(⋃

ε>0

A(ε)

)
= 0 =⇒ P (A(ε)) = 0 (∀ε > 0)

And then we get a descending tower:

0 = P (A(ε)) = P



∞⋂

m=1

⋃

n≥m
An(ε)




= lim
m→∞

P


 ⋃

n≥m
An(ε)




≥ lim
m→∞

P (Am(ε))

But wait! This exactly means that Yn converges to Y in probability!!!

Remark. The converse is not true, i.e. convergence in probability is strictly
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weaker than almost sure convergence.

Consider the sequence of events in Ω = [0, 1]. First let:

A1 = [0, 1/2], A2 = [1/2, 1]

A3 = [0, 1/3], A4 = [1/3, 2/3], A5 = [2/3, 1], . . .

Define Yn = 1An . Then we want Yn to converge probabilistically to 0. Well:

P (|Yn| > ε) = P (An)→ 0 as n→∞

But! Yn does not converge to 0 almost surely. For any ω ∈ Ω we can find

sequences in, jn such that ω ∈ Ain and ω 6∈ Ajn . But then Yin(ω) = 1 and

Yjn(ω) = 0, and so the limit of Yn(ω) as n→∞ cannot exist. Therefore:

{ω ∈ Ω | Yn(ω)→ 0} = ∅

And so of course we cannot have Yn converges to 0 almost surely.

Definition. Let X1, X2, . . . be a sequence of independent identically dis-

tributed random variables (iid). We then define:

Sn =
1

n
(X1 + · · ·+Xn)

This sequence satisfies:

• the strong law of large numbers provided that Sn converges to E[X1]

almost surely

• the weak law of large numbers provided that Sn converges to E[X1]

probabilistically.

Theorem. If E[|X1|] < +∞, then the strong law holds. The proof is difficult

and complicated.

Proposition. If var(X1) <∞ then the weak law holds.
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Proof. Consider Sn = 1
n (X1 + · · ·+Xn). Then consider that:

E[Sn] =
1

n
E[X1 + · · ·+Xn] =

n

n
E[X1] = E[X1]

var(Sn) =
1

n2
var(X1 + · · ·+Xn) =

1

n2
· n var(X1) =

var(X1)

n

And then we have by Chebyshev’s inequality that:

P (|Sn − E[X1]| > ε) ≤ var(Sn)

ε2
=

var(X1)

n · ε2 → 0 as n→∞

Remark. This proof even tells us that the rate of convergence is linear with

proportionality var(X1)
ε2

.

Characteristic Functions

Recall. If X is a discrete Random Variable taking values in 0, 1, 2, . . . then

we have a generating function:

GX(s) =
∞∑

k=0

fX(k)sk = E
[
sX
]

The question: can we do this for an random variable X. The answer is yes.

Definition. For any Random Variable X, the characteristic function φX is

defined as:

φX(t) := E
[
eitX

]
= E[cos(tX) + i sin(tX)] = E[cos(tX)] + iE[sin(tX)]

We know this because if we recall from calculus that θ 7→ eiθ traces out a

circle:
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R

iR

eiθ

Here are some nice properties:

• The integral E
[
eitX

]
always converse

• If X is discrete with mass fX then:

φX(t) =

∞∑

x=−∞
fX(x) · eitx

Great! And furthermore if X takes values in 0, 1, . . . then:

φX(t) = GX(eit)

• If X is continuous with density fX then:

φX(t) =

∫ ∞

−∞
fX(t)eitx dx

Example. There are of course many examples:

• If X is Bernoulli with parameter p then:

φX(t) = E
[
eitX

]
= 1 · (1− p) + eit · p

6



• If X is Binomial with parameter n, p we get that:

GX(s) = ((1− p) + ps)n φX(t) = ((1− p) + peit)n

• If X is Poisson with parameter λ then:

GX(s) = eλ(s−1) φX(t) = eλ(e
it−1)

• Suppose X is exponential with parameter λ, then:

φX(t) =

∫ ∞

0
eitx · λe−λx dx = λ

∫ ∞

0
ex(it−λ) dx

= λ

[
ex(it−λ)

it− λ

)∞

0

=
λ

λ− it
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Recall . If X is an Random Variable its characteristic function φX(t) =

E
[
eitX

]
. This is based on:

eit = cos(t) + i sin(t)

R

iR

eiθ

Example. Let X : Ω→ [−1, 1] where P (X = −1) = P (X = 1) = 1
2 . Then:

φX(t) =
eit + e−it

2
= cos(t)

If X = µ ∈ R is constant then:

φX(t) = eitµ = cos(tµ) + i sin(tµ)

Properties of φX :

• φ′(0) = iE[X], φ′′(0) = −E
[
X2
]
, provided these expectations exist.

1



Then:

var(X) = −φ′′(0) + φ′(0)2

If φ′(0) exists then E[X] may or may not exist. However if φ′′(0) exists

then both E[X] and E
[
X2
]

exist.

• If φX is integrable, then X is continuous with density:

fX(t) =
1

2π
·
∫ ∞

−∞
e−itxφX(x) dx

• More generally, we can get information about FX as follows:

lim
T→∞

1

2π
·
∫ T

−T

e−ita − e−itb
it

φX(t) dt = P (a < x < b) +
1

2
P (X = a) +

1

2
P (X = b)

This is called Levy’s Theorem

• Levy’s Continuity Theorem: If (Xn) is a sequence of Random Vari-

able and X is a random Variable such that φXn → φX then we have

FXn(y)→ FX(y) for all y where FX is continuous.

Proposition. An sequence (Xn) of independent identical distributed Ran-

dom Variables satisfies the weak law of large numbers without assuming

var(Xi) <∞.

Proof. Consider φ = φXn . Let Sn = 1
n(X1 + · · ·+Xn) and µ = E[Xi]. Then

we know that φ is differentiable at zero by the properties. Then:

φ(t) = 1 + φ′(0) · t+ α(t) · t
= 1 + iµt+ α(t) · t

2



Such that α(t)→ 0 as t→ 0. Then

φSn(t) = φ(t/n)n

φSn(t) = lim
n→∞

φ(t/n)n

= lim
n→∞

(
1 + iµ

t

n
+ α

(
t

n

)
· t
n

)n

= eiµt

By Levy’s Continuity Theorem FSn(y) → Fµ(y) for all y where Fµ is con-

tinuous. But wait! Fµ is continuous except at µ:

FSn(y)→
{

1 if y > µ

0 if y < µ

Let ε > 0. We need to show that:

lim
n→∞

P (|Sn − µ| ≥ ε) = 0

Well consider this as two separate events:

0 ≤ lim
n→∞

P (|Sn − µ| ≥ ε)

= lim
n→∞

P (Sn ≥ µ+ ε) + P (Sn ≤ µ− ε)

≤ lim
n→∞

P
(
Sn > µ+

ε

2

)
+ P (Sn ≤ µ− ε)

= lim
n→∞

1− FSn
(
µ+

ε

2

)
+ FSn(µ− ε)

= 1− 1 + 0 = 0

And so we get the squeeze theorem to get that Sn converges in probability

to µ.

Example . Let X be normal, i.e. let X be continuous with the density

3



fX(t) = 1√
2π
e−t

2/2. We want to compute φX(t):

φX(t) = E
[
eitX

]
=

∫ ∞

−∞
eitx · 1√

2π
e−x

2/2 dx

=
1√
2π

∫ ∞

−∞
eitx−x

2/2 dx

Instead of it, consider a real number a ∈ R:

1√
2π

∫ ∞

−∞
eax−x

2/2 dx =
1√
2π
·
∫ ∞

−∞
e−(a−x)

2/2+a2/2 dx

=
ea

2/2

√
2π

∫ ∞

−∞
e−(a−x)

2/2 dx

=
ea

2/2

√
2π
·
∫ ∞

−∞
e−u

2/2 du

= ea
2/2

Therefore the functions:

a 7→ 1

2π

∫ ∞

−∞
eaxe−x

2/2 dx a 7→ ea
2/2

Agree for all a ∈ R. But these are defined for all a ∈ C and are analytic.

By the principle of permanence, they agree for all a ∈ C, in particular for

a = it. Therefore we get the important formula:

φX(t) =
1√
2π
·
∫ ∞

−∞
eitXe−x

2/2 dx = e(it)
2/2 = e−t

2/2

Note! Any Random variable with φX(t) = e−t
2/2 is automaticall normal. In

this case, φX is integrable and so X is continuous with density:

fX(t) =
1

2π

∫ ∞

−∞
e−itxe−x

2/2 dx =
1√
2π
e−t

2/2

Definition. Let X be normal with µ ∈ R, σ > 0, then Y := σ ·X + µ is a

4



Guassian Random Variable. We then have:

E[Y ] = µ var(Y ) = σ2

And also:

FY (t) = P (Y ≤ t) = P

(
X ≤ t− u

σ

)
= FX

(
t− u
σ

)

And tehrefore:

fY (t) = F ′Y (t) = fX

(
t− u
σ

)
· 1

σ

=
1

σ ·
√

2π
e
−
(
t−µ
σ
√

2

)2

Here’s the picture

−3 −2 −1 0 1 2 3

And it has the characteristic function:

φY (t) = E
[
eitY

]
= E

[
eit(σX+µ)

]
= E

[
eitµ · eitσX

]

= eitµ · φX(σt) = eitµ · e−(σt)2/2

= eitµ−(σt)
2/2

Corrolary. If X,Y are Guassian and independent then X+Y is also Gaus-
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sian and E[X + Y ] = E[X] + E[Y ] and var(X + Y ) = var(X) + var(Y ).

Proof. The claims about E[X + Y ] and var(X+Y ) are clear. To prove that

X + Y is Guassian, we compute the characteristic function:

φX+Y (t) = φX(t) · φY (t)

= eitµX+(σX t)
2/2 · eitµ2+(σ2t)2/2

= eit(µX+µY )+t2/2·(σ2
X+σ2

Y )

Proposition. Here’s an interesting property of Gaussians. Consider two

independent identically distributed Random Variables X,Y . Assume that

E[X] and var(X) exist and the distribution of X is symmetric. Assume that

X + Y and X − Y are independent. Then X and Y are Gaussian:

Proof. Let φ := φX = φY . Since the distribution of X is symmetric we have

φ(t) = φ(−t). The independence of X,Y gives:

φX+Y (t) = φX(t) · φY (t) = φ(t)2

φX−Y (t) = φX(t) · φY (−t) = φ(t)2

But then:

2X = (X + Y ) + (X − Y )

φX(2t) = φ2X(t) = φX+Y (t) · φX−Y (t) = φ(t)4

We may rewrite this as:

φX(t) = φ(t/2)4

We then may iterate to get:

φX(t) = φ

(
t

2n

)4n

= lim
n→∞

φ

(
t

2n

)4n

6



The existence of µ := E[X] = 0 and σ2 := var(X) gives that φ is twice

differentiable at zero, that is:

φ(t) = 1 + 0 · t− σ2t2

2
+ α(t) · t2 α(t)→ 0, t→ 0

Therefore we may write that:

φX(t) = lim
n→∞

(
1− σ2t2

2 · 4n + α

(
t

2n

)
· t

2

4n

)4n

= e−σ
2t2/2

And so we are done! Wow!

Applications

Consider particles moving randomly on a plane. A 2D model of air particles

in a room. Introduce a coordinate system and let X and Y be the velocities

in the two directions of a randomly chosen particle. Physics tells us thatX,Y

are independent, identically distributed, and have symmetric distribution.

If we rotate the coordinate system by 45◦and let X ′, Y ′ be the new variables.

Again X ′ and Y ′ are independent, but X ′ = 1√
2
(X+Y ) and Y ′ = 1√

2
(X−Y ).

Therefore X and Y are Gaussian!!! Wow!
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Final Review

Logistics

• Final is on Thursday December 17, 10:30-12:30pm (Ann Arbor Time)

on Zoom, office hours zoom link (private meeting room)

• Modalities are as for the midterm

– Video on

– Stay muted

– Cheat sheet of 5 pages that you can prepare

• Cumulative, 6 problems. 2-3 problems from the first half, and 3-4

problems from the second half.

Basic Concepts

• Probability Space (Ω,F , P )

– Elements of Ω are samples, or atomic events. E.g., when you roll

a die Ω = {1, 2, 3, 4, 5, 6}.
– General events are then just subsets of Ω which lie in the σ-aleg-

bra F ⊆ P(Ω). When Ω is finite we can just take F = P(Ω).

When Ω is uncountably infinite we often have to do something

different, but for Ω a subset of R we usually take the Borel σ-

algebra.

1



– P assigns probability to each event, i.e. P : F → [0, 1]. Further-

more it is σ-additive, that is:

P

( ∞∐

k=1

Ak

) ∞∑

k=1

P (Ak)

In particular if Ω is countable then P ({ω}), the atomic events,

determine everything. For Ω = [0, 1], atomic events determine

nothing.

• Random Variables. Formalized as a function X : Ω→ R

– We intuitively think of X as a real number that is undecided. For

ω ∈ Ω then X(ω) ∈ R is the value of X assuming “ω happened.”

– The expectation E[X] is the average of all possible values of X

weighted by likelihood. If Ω is countable then:

E[X] =
∑

ω∈Ω

X(ω) · P ({ω})

More generally, for any Ω, if X takes at most countably many

values then:

E[X] =
∑

y∈R
y · P (X = y)

For a general X, we let E[X]−
∫

ΩX(ω) · dP (ω).

We say that X is integrable if there exists a sequence Xn of sim-

ple Random Variables (taking finitely many values) such that

Xn → X almost surely, and for any ε > 0 there is an N > 0 so

that for n,m > N we have E[|Xn −Xm|] < ε. We then define

E[X] = limn→∞ E[Xn].

Caution: Not every Random Variable is integrable.

– We also have the distribution defined as FX(a) = P (X ≤ a).

These are defined for every random variable and has the proper-

2



ties that it’s monotonically increasing from 0 to 1, right continu-

ous, has left limits.

Need not be continuous, so it breaks the situation into two ex-

tremes:

1. When X takes countably many values, then FX has a dis-

continuity at each of these values and is constant in be-

tween. We then call X discrete, and there is the function

fX(a) = P (X = a) which determines everything, called the

mass function. I.e. E[X] =
∑
a · fX(a)

2. FX is absolutely continuous, this means that there exists an

integrable density function fX such that:

FX(a) =

∫ a

−∞
fX(t) dt

This density determines everything, e.g. E[X] =
∫∞
−∞ t ·

fX(t) dt. Note that the density is not uniquely determined,

unless it can be chosen to be continuous.

What’s important for these is to pay attention to the domains.

• Conditioning

– For events A,B and P (B) > 0 we have:

P (A | B) =
P (A ∩B)

P (B)

Intuitively we think of P (A | B) as the probability that A hap-

pens given that B is known to happen

– We also have E[X | B] which is the expectation of X
∣∣
B

with re-

spect to PB = P (− | B).

– The conditioning formulas for Ω =
∐∞
k=1Bk where P (Bk) > 0
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then we have:

P (A) =
∞∑

k=1

P (A|Bk) · P (Bk)

E[X] =
∞∑

k=1

E[X | Bk] · P (Bk)

Note Conditioning applies to any Y = g(X) so we can use condi-

tioning to compute var(X), generating function, and characteris-

tic function.

– We may also condition on a random variable. Given X,Y random

variables, we may define when Y is discrete that:

E[X | Y ] : R→ R

y 7→
{

E[X | Y = y] if P (Y = y) > 0

0 if P (Y = y) = 0

This is a random variable on (R,Borel, Y∗P ), which isdefined as:

Y∗P (A) =
∑

y∈A
P (Y = y)

We then have the useful formula that:

E[E[X | Y ]] = E[X]

We can also define it when X,Y have a joint density, by defin-

ing the conditional density fX|Y (x|y) as fX,y(x, y)/fY (y), defined

when fY (y) > 0. Then:

E[X | Y ] : R→ R

y 7→
{ ∫∞

−∞ x · fX|Y (x|y) dx if fY (y) > 0

0 otherwise
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Again a random variable on (R,Borel, Y∗P ) where:

d(Y∗P )(y) = fY (y) · dy

And again we have:

E[E[X | Y ]] = E[X]

• Independence

– A,B are independent events provided that P (A ∩ B) = P (A) ·
P (B), equivalently P (A | B) = P (A)

– X,Y are independent random variables provided that {X ∈ A}
and {Y ∈ B} are independent for any Borel sets A,B ⊆ R. We

can only check this on {X ≤ a} and {Y ≤ b} for a, b ∈ R.

When X,Y are discrete this is fX · fY is a joint mass function,

and when X,Y are continuous this is fX · fY is a joint density:

P (X ≤ a, Y ≤ b) =

∫ a

−∞

∫ b

−∞
fX,Y (s, t) dsdt

Fun with Random Variables

• The discrete gang:

– The Bernoulli (p): f(1) = p, f(0) = 1 − p = q, and E[X] = p,

var(X) = pq

– Binomial (n, p): q := 1− p, f(k) =

{ (
n
k

)
pkqn−k if 0 ≤ k ≤ n

0 otherwise
,

and E[X] = np and var(X) = npq

– Geometric (p): f(k) = qk−1 · p, E[X] = 1
p and var(X) = q

p2

– Poisson (λ > 0): f(k) =

{
λk

k! e
−λ if k ≥ 0

0 otherwise
, E[X] = λ and

var(X) = λ.

• The continuous gang:

5



– Uniform on (a, b): f(x) =

{
1
b−a if a < x < b

0 otherwise
, and E[X] = a+b

2

and var(X) = (a−b)2
12

– Exponential (λ): f(x) =

{
λe−λx if x > 0

0 otherwise
., so E[X] = 1

λ ,

var 9X) = 1
λ2

– Normal: f(x) = 1√
2π
e−x

2/2, E[X] = 0, var(X) = 1

– Gaussian (µ, σ2): f(x) = 1
σ
√

2π
e−(x−µ)2/(2σ2), E[X] = µ, var(X) =

σ2

• Generating Functions

– Defined for X : Ω→ Z≥0 as:

GX(s) = E
[
sX
]

=
∞∑

k=0

P (X = k)sk

GX is analytic and converges at least for |s| ≤ 1. We also know

that

– G(0) = P (X = 0), G(1) = 1, G′(1) = E[X], G′′(1) + G′(1) −
(G′(1))2 = var(X)

– If GX is not presented as a power series
∑
aks

k, then you can

compute each ak as:

ak =
G

(k)
X (0)

k!

– If X,Y are independent then GX+Y = GX ·GY .

– Bernoulli: q + ps, Binomial: (q + ps)n, geometric: p
1−qs , Poisson:

eλ(s−1)

• Characteristic Functions
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– For any X any random variable we define:

φX : R→ C

t 7→ E
[
eitX

]

But this has worse analytic properties

– φ(0) = 1, φ′(0) = iE[X], φ′′(0) = −E
[
X2
]
, −φ′′(0) + (φ′(0))2 =

var(X).

– X,Y are independent then φX+Y = φX · φY .

– If X has a generating function then φX(t) = GX(eit)

– If X is continuous with density f then:

φ(t) =

∫ ∞

−∞
eitxf(x) dx

– Conversely if φ is integrable then X is continuous and by Fourier

inversion:

fX(x) =
1

2π

∫ ∞

−∞
e−itxφ(t) dt

– Levy’s Continuity Theorem tells us that if φXn → φX then Xn

converges to X in distribution

– Some examples

∗ Uniform on (a, b): 2
(b−a)t sin(t(b− a)/2)ei(a+b)t/2

∗ Exponential (λ): λ
λ−it

∗ Normal: e−t
2/2

∗ Gaussian (µ, σ2): eitµ−(tσ)2/2

Convergence and Bounds

• Types of Convergence:

1. Xn
a.s.−−→ X when P ({ω ∈ Ω | Xn(ω)→ X(ω)}) = 1.
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2. Xn
P−→ X when for every ε > 0 we have limn→∞ P (|Xn −X| >

ε) = 0.

3. Xn
d−→ X when for every y ∈ R where FX is continuous we have

FXn(y)→ FX(y).

• We have 1 =⇒ 2 =⇒ 3, but in general the converses fail.

• The Law of Large Numbers. If you have (Xn) independently identically

distributed then:

1

n
(X1 + · · ·+Xn)

a.s.−−→ E[X1]

• The Central Limit Theorem. If you have (Xn) iid and E[X1] = 0 and

var(X1) = σ2 <∞ then:

1√
n

(X1 + · · ·+Xn)
d−→ N(0, σ2)

• Variance and Covariance

– We define:

cov(X,Y ) := E[XY ]− E[X] E[Y ] var(X) := cov(X,X)

– If X,Y are independent implies cov(X,Y ) = 0, and if var(X) = 0

then X = E[X] almost surely.

– We also have σ(X) =
√

var(X) the standard deviation, which

preserves units. We also can define:

cor(X,Y ) =
cov(X,Y )

σ(X)σ(Y )

If we have cor(X,Y ) = ±1 then aX + bY + c = 0 for some

a, b, c ∈ R not all zero almost surely.

8



– We then have:

var

(∑

n

Xn

)
=
∑

n

var(Xn) +
∑

n6=m
cov(Xn, Xm)

=
∑

n

var(Xn) + 2
∑

n<m

cov(Xn, Xm)

In particular if these are independent then we have:

var

(∑

n

Xn

)
=
∑

n

var(Xn)

• Concentration Inequalities

– Chebyshev’s inequality says that:

P (|X − E[X]| ≥ a) ≤ var(X)

a2

– Bernstein’s inequality: X = X1 + · · · + Xn are independent and

E[Xn] = 0 and |Xn| ≤ 1 then we have:

P (X ≥ a) ≤ e−a2/2n P (X ≤ −a) ≤ e−a2/2n
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