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I. Introduction and Administration

Two highlights of the course

(1) We know ax2 + bx+ c (a ̸= 0) has roots

−b±
√
b2 − 4ac

2a
.

There is a similar formula for polynomials of degree 3 and 4, but not degree 5 or higher.

(2) x2 + 2 = y3. The only solutions in integers are x = ±5, y = 3. Important and powerful methods

lurking behind simple problems.

This course: Rings, fields, modules, Galois theory.

Administration

• HW due Mondays midnight.

• Office hours: Sunday 2pm-3:30pm

• Friday: 7-8:30pm

II. Ring Theory

II.1. Group Review + Motivation

We first recall some things

Definition II.1.1

A group (G, ∗) is a set G with a function ∗ : G×G→ G and an element 1G ∈ G such that

• ∗ is associative
• 1G is an identity element (therefore unique).

• For all a, there exists an a′ with aa′ = 1G = a′a.

Consequences: 1G is the unique identity element, inverses are unique.

We say G is abelian if ab = ba for all a, b ∈ G. For abelian groups we denote the group law by

addition, the identity element by 0, and inverses by negation −a.

Example II.1.1

Z (under addition), Z/nZ (under addition). Direct products of these.

R (under addition), R \ {0} (under multiplication).

Definition II.1.2

A group homomorphism between groups G and H is a function φ : G→ H such that

φ(gg′) = φ(g)φ(g′)

this implies φ(1G) = 1H and φ(a−1) = φ(a)−1.

Question: What happens for abelian groupsG,H. What can we say about Hom(G,H) = {homomorphisms G→
H}? Well, first this is clearly an abelian group under pointwise addition.

2
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Example II.1.2

Hom(Z,Z), which is defined by where the generator 1 goes. Thus it is the set

{[n] : i 7→ ni | n ∈ Z} = Z.

Then addition corresponds to addition (by distributivity), and composition corresponds to multiplication.

Likewise Hom(Z× Z,Z× Z× Z) =M2,3(Z) given by
∗ ∗
∗ ∗
∗ ∗


[
a

b

]

. Again following generators (now with relations):

Hom(Z,Z/2Z) = {[n] : i 7→ in mod 2 | n ∈ Z/2Z}

Hom(Z/2Z,Z) = {[0]}

Hom(Z/2Z,Z/3Z) = {[0]}.

Lemma II.1.1

If G,H are groups and H is abelian, then Hom(G,H) is an abelian group under the operation which

takes φ,ψ ∈ Hom(G,H) and produces

φ+ ψ : G→ H

g 7→ φ(g) + ψ(g).

Proof. φ+ ψ ∈ Hom(G,H) because for g, g′ ∈ G we have

(φ+ ψ)(g + g′) = φ(g + g′) + ψ(g + g′)

= φ(g) + φ(g′) + ψ(g) + ψ(g′)

= φ(g) + ψ(g) + φ(g′) + ψ(g′)

= (φ+ ψ)(g) + (φ+ ψ)(g′).

The identity element maps everything to 0

0Hom(G,H) := (g 7→ 0).

Inverses are given by taking φ ∈ Hom(G,H) and producing

−φ : G→ H

g 7→ −φ(g).

Then clearly φ+ (−φ) = 0 = (−φ) + φ. Furthermore −φ ∈ Hom(G,H).

The operation is clearly abelian and associative, as H satisfies both of these properties, for example

(φ+ ψ)(g) = φ(g) + ψ(g) = ψ(g) + φ(g) = (ψ + φ)(g).

3
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Refined question: For G an abelian group, what can we say about End(G) := Hom(G,G)? Here we have

more data, namely the composition

Example II.1.3

End(Z) ∼= Z as a group under +, composition corresponds to ·.
End(Z× Z) ∼=M2,2(Z) under +, composition corresponds to ·.
End(Z/2Z) ∼= Z/2Z under +, composition corresponds to ·.
Note: In each case, there is a familiar way to multiply on the right side, and it always corresponds to

composition on the left side.

For φ,ψ ∈ End(G), φ ◦ ψ : g 7→ φ(ψ(g)) is in End(G).

φ(ψ(g + g′)) = φ(ψ(g) + ψ(g′)) = φ(ψ(g)) + φ(ψ(g′)).

Properties:

• Associative

• Has an identity element 1 : g 7→ g.

• Distributive laws:

(ψ + χ) ◦ φ = (ψ ◦ φ) + (χ ◦ φ)

φ ◦ (ψ + χ) = (φ ◦ ψ) + (φ ◦ χ).

II.2. The Basics of Rings

Definition II.2.1

A ring is a set R with two functions +, · : R×R→ R such that

• (R,+) is an abelian group (say with identity 0 ∈ R, and inverses −r for every r ∈ R).
• (R, ·) is associative with an identity 1.

• Distributive laws hold

a · (b+ c) = (a · b) + (a · c)

(b+ c) · a = (b · a) + (c · a).

We thus showed that if G is an abelian group, then End(G) is a ring.

Definition II.2.2

LetR,S be rings. A ring homomorphism is a function f : R→ S which preserves +, ·, 0, 1, additive inverses.

In fact it suffices to preserve +, ·, 1 because the fact that f preserves + implies it preserves 0 and negation.

More concretely we require

f(r +R r
′) = f(r) +S f(r

′)

f(r ·R r′) = f(r) ·S f(r′)

f(1R) = 1S .

4
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And as a consequence f(−r) = −f(r) and f(0R) = 0S .

Definition II.2.3

A subring of a ring R is a subset of R which is a ring under +,∗ from R.

Lemma II.2.1

If R,S are rings and f : R→ S is a ring homomorphism, then f(R) is a subring of S (meaning it is

a ring with the inherited operations).

Proof. Clearly f(R) is an abelian group from last semester (as f is a homomorphism of abelian groups). We

then know that ∗ is associative and distributive beause these properties are inherited from S. There is also

an idenity element inherited from S because f(1R) = ‘1S .

It is then closed under multiplication because f(rr′) = f(r)f(r′).

Update: Added homework due dates and office hours to Section I

Recall II.2.1

The key example of a ring is End(G) for G an abelian group (with +). Then

(φ+ ψ)(g) := φ(g) + ψ(g)

φ ∗ ψ := φ ◦ ψ

In fact this situation is “universal”

Definition II.2.4

An isomorphism f : R→ S is a bijective homomorphism (implying its inverse is a homomorphism as

well). Rings are isomorphic if there exists an isomorphism between them.

Lemma II.2.2

For every ring R and r ∈ R, r · 0 = 0 = 0 · r.

Proof. Note that 0 + 0 = 0, and so

r · 0 = r(0 + 0) = r · 0 + r · 0

Cancelling r · 0 (by additive inverses) we know that 0 = r · 0 as desired. The other direction is similar.

Lemma II.2.3

In every ring R and for every r ∈ R, we have (−1) · r = −r = r · (−1).

Proof. Note that 1 + (−1) = 0. Therefore

(1 + (−1))r = 0 · r = 0

r + (−1)r = 0.

Thus (−1)r = −r (appealing to group theory).

5
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Theorem II.2.4

Every ring R is isomorphic to a subring of End(R+) (where R+ is the additive group on R).

Concretely, there is a ring homomorphism [−] : R → End(R+) such that the restriction R → im[−]
is an isomorphism.

Proof. We then may write down the relevant homomorphism as

[−] : R→ End(R+)

r 7→ (r′ 7→ rr′).

We know that [r] ∈ End(R+) by the distributive law because

r′ + r′′ 7→ r(r′ + r′′) = rr′ + rr′′ = [r](r′) + [r](r′′).

It is then a ring homomorphism because

[r + s](r′) = (r + s)r′ = rr′ + sr′ = ([r] + [s])r′

[rs](r′) = (rs)r′ = r(sr′) = [r]([s](r′))

[1](r) = 1r = r =⇒ [1] = IdR+
.

Now because the restriction is automatically surjective we just need to show injectivity. Suppose [r] = [s].

Then

[r](1) = r · 1 = r

[s](1) = s · 1 = s.

Thus r = s as desired.

This completes the proof!

Definition II.2.5 (Inverses)

Let R be a ring, and r ∈ R. We say that s ∈ R is an inverse of r provided that

rs = 1 = sr.

If r has an inverse then we say that r is a unit in R. We write R∗ or R× to denote the set of units in R.

This is almost trivially a group under multiplication because

1 · 1 = 1 =⇒ 1 ∈ R×

r1, r2 ∈ R× =⇒ r1r2(s2s1) = 1

=⇒ r1r2 ∈ R×

inverses are tautological.

Note: if s exists then it is unique because

rs = 1 = tr

6
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s = (tr)s = t(rs) = t

In this case, we will denote s by r−1. One can also see this from group theory, but note our proof is slightly

stronger. Namely it implies

Lemma II.2.5

If r has both a left and a right inverse, then these inverses agree.

Example II.2.2

If G is an abelian group then (End(G))× = Aut(G).

End(Z) ∼= Z

Aut(Z) = {±1}

End(Z/mZ) ∼= Z/mZ

Aut(Z/mZ) = {n ∈ Z/mZ | gcd(n,m) = 1}

End(Z× Z) ∼=M2,2(Z)

End(Z× Z = {A ∈M2,2(Z) | det(A) = ±1}

= {invertible 2× 2 matrices over Z}

Example II.2.3

Examples of rings.

Z[
√
2] =

{
n∑
i=1

ai

(√
2
)n
| ai ∈ Z

}
= {a+ b

√
2 | a, b ∈ Z}

It turns out that (Z[
√
2])× = {±(1 +

√
2)n | n ∈ Z}.

The ring R of entire functions on C (all differentiable functions on C, equivalently power series with

an infinite radius of convergence).

What is R×? It is the set of entire functions on C with no zeros. This actually turns out to be

{ef(x) | f(x) ∈ R}.

Theorem II.2.6 (Borel, 1893)

If f1, . . . , fn ∈ R× satisfy f1 + · · ·+ fn = 0 but no (non-empty) proper subset of {f1, . . . , fn} sum to

zero then

fi/fj ∈ C× ∀ i, j

For the rest of the course, rings are commutative!

Amazing Fact: If G is a finitely generated subgroup of C×, then for all n ∈ N the equation

x1 + x2 + · · ·+ xn = 1

has only finitely many solutions with x1, . . . , xn ∈ G in which no nonempty subset sums to zero. In fact, the

number of solutions is bounded in n and in the number of generators of G. (Hard)

7
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Extra credit: Does there exist such a G for which there exist solutions as above for infinitely many n.

From NOW ON: All rings are commutative

Example II.2.4 (Rings and Homomorphisms)

The 0 ring, {0}. For any ring R, there is a homomorphism

0 : R→ 0

r 7→ 0

Definition II.2.6

If f : R→ S is a ring homomorphism, the kernel is ker f := {r ∈ R | f(r) = 0}.
We know from group theory that ker(f) is a normal subgroup of R (under +). Also, if r ∈ R and

x ∈ ker f , then rx ∈ ker f because

f(rx) = f(r)f(x) = f(r) · 0 = 0.

Definition II.2.7 (Ideals)

If R is a ring, an ideal of R is a subgroup of (R,+) which is closed under multiplication by R.

Example II.2.5 (Ideals)

Ideals in Z? Well we know these have to be nZ for n ∈ Z≥0, because these are the only additive

subgroups. It turns out all of these are in fact ideals.

Note: A nonempty subset of a ring R is an ideal if and only if it is closed under R-linear combinations.

That is for r1, . . . , rn ∈ R and i1, . . . , in ∈ I we have
∑
rkik ∈ I.

Definition II.2.8 (Some Ideals)

For r ∈ R, the principal ideal (r) (also denoted rR) which is {rr′ | r′ ∈ R}. This is of course the

smallest ideal containing r.

The unit ideal of R is (1) = 1R = R.

The zero ideal of R is (0) = 0R = 0.

A “proper ideal” of R is an ideal which is not (0) or (1).

Note: If f : R→ S is a homomorphism then ker(f) is an ideal of R.

ker f = (1) ⇐⇒ S = 0

ker f = (0) ⇐⇒ f is injective.

Definition II.2.9 (Quotient Ring)

Let R be a ring and I be an ideal. Then R/I is a group under addition. We claim that R/I is a ring,

called the quotient ring.

Proof. We define

(r + I)(r′ + I) = rr′ + I.

8
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Note: if i, i′ ∈ I then

(r + i)(r′ + i′) = rr′ + ri′ + ir′ + ii′

∈ rr′ + I.

Therefore we have that

(r + i)(r′ + i′) ∈ rr′ + I

because additive cosets partition the set this gives (r + i)(r′ + i′) + I = rr′ + I as desired.

The rest is easy.

Example II.2.6

If R = Z, I = nZ, then R/I = Z/nZ, and so Z/nZ is the quotient of the ring Z by the ideal nZ.

Definition II.2.10 (Field)

A field is a nonzero ring in which every nonzero element is a unit (i.e., has a multiplicative inverse).

Examples: Q,C,R,Z/pZ Non-examples: Z,Z/4Z.

Definition II.2.11 (Integral Domain)

An integral domain is a nonzero ring R such that a, b ∈ R, ab = 0 =⇒ a = 0 or b = 0.

If R is a field, what are the ideals of R? Well, if I ̸= 0 is an ideal, it contains some i ̸= 0, so 1 = i−1i ∈ I.
This implies that I = (1). Therefore R only has (0) and (1) as its ideals.

Proposition II.2.7

If f : R→ S is a ring homomorphism and R is a field, then either f is injective or S = 0.

Proof. Note that ker f is an ideal, and so ker f = (0) or ker f = (1). By the previous discussion this implies

the result.

Notation: Often if R is a ring, I is an ideal, r ∈ R, we denote the element r + I of R/I by r.

Theorem II.2.8 (First Isomorphism)

Let f : R→ S be a ring homomorphism with kernel K. Let I be some ideal of R, and let π : R→ R/I

be the quotient map. Then

(1) If I ⊆ K then f uniquely factors as

R S

R/I

f

π
f

(2) If I = K then f is injective (then if f is surjective, f is an isomorphism).

Proof. The corresponding statements are all true for groups, so all that we need to show is that f is a ring

homomorphism.

f(1 + I) = f(π(1)) = f(1) = 1

f((r + I)(r′ + I)) = f(rr′ + I)

9
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= f(π(rr′)) = f(rr′)

= f(r)f(r′) = f(r + I)f(r′ + I).

Great!

Theorem II.2.9

If f : R→ S is a surjective homomorphism with kernel K, then the maps

I 7→ f(I)

f−1(J)←[ J

are inverse bijections between

{ideals of R containing K} ↔ {ideals of S}

Proof. We know from group theory that these maps induce bijections between

{subgroups of R containing K} ↔ {subgroups of S}.

Thus it suffices to show that if I is an ideal containing K, then f(I) is an ideal, and if J is an ideal then

f−1(J) is an ideal.

If s ∈ S, and i ∈ I, then sf(i) = f(r)f(i) = f(ri) ∈ f(I) for some r ∈ R by surjectivity. Thus f(I) is an

ideal.

Now suppose r ∈ R, r′ ∈ f−1(J). Then f(rr′) = f(r)f(r′) ∈ f(r)J ⊆ J . Thus rr′ ∈ f−1(J) as desired,

and f−1(J) is an ideal.

Supplement: Same notation, R/I ∼= S/f(I) and R/f−1(J) ∼= S/J .

Proposition II.2.10

If φ : R→ S is a surjective ring homomorphism and I ⊇ kerφ is an ideal of R, then R/I ∼= S/φ(I).

[Note: We showed last time that φ(I) is indeed an ideal].

Proof. We look at the following maps

R S S/φ(I).
φ

Their composition is a surjective ring homomorphism, and it remains to show that the kernel is R. Well the

kernel of S → S/φ(I) is φ(I), and so the total kernel is φ−1(φ(I)) = I, where equality holds by Theorem II.2.9.

Then we have from last time that

R S/φ(I)

R/I

∼=

Then the induced map R/I → S/φ(I) is surjective and has trivial kernel. Perfect!

10
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Example II.2.7

Compute Z[i]/(2 + i) where (2 + i) denotes the “ideal generated by 2 + i.”

Formally, Z[i] ∼= Z[x]/(x2 + 1). This gives us our maps

Z[x] Z[i] Z[i]/(2 + i).
φ

So what’s the preimage of (2 + i)? Well

φ−1((2 + i)) = (x2 + 1, 2 + x).

So now we mod out in the other order

Z[x] Z[x]/(2 + x) ∼= Z

f(x) f(−2).

ψ

Then by Proposition II.2.10, we see that

Z[i]/(2 + i) ∼= Z[x]/(x2 + 1, 2 + x)

∼= Z/((−2)2 + 1) = Z/5Z.

Idea: The “free” ring on one generator x is exactly Z[x]. This idea carries us forward in many ways by

using “universal” maps such as Z[x] → Z[i] as above. This is nice because Z[x] is nice (e.g. it has unique

prime factorization).

Summary: Polynomial rings Z[x1, . . . , xn] play the role for (commutative) rings that free groups play for

groups–namely, every ring R with generators g1, . . . , gn is the homomorphic image of

Z[x1, . . . , xn]→ R

f(x1, . . . , xn) 7→ f(g1, . . . , gn)∑
ℓ=(ℓ1,...,ℓn)

aℓx
ℓ 7→

∑
ℓ

aℓg
ℓ1
1 · · · gℓnn

II.3. Polynomial Rings

Definition II.3.1

Let R be a ring. Then R[X] is defined as

R[X] :=

{
n∑
i=0

aiX
i | n ∈ N, ai ∈ R

}
.

Addition and multiplication are as usual for polynomials. Namely

n∑
i=0

aiX
i +

m∑
j=0

bjX
j =

max(n,m)∑
k=0

(ak + bk)X
k

where ak, bk = 0 if k > n, k > m respectively. Furthermore(
n∑
i=0

aiX
i

) m∑
j=0

bjX
j

 =

m+n∑
k=0

(
k∑
ℓ=0

aℓbk−ℓ

)
Xk

11
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with the same conventions.

One could do R[X1, . . . , Xk] similarly.

Definition II.3.2

For f(X) =
∑n
i=0 aiX

i ∈ R[X] the degree deg f(X) of f(X) is the largest i such that ai ̸= 0 if such

an i exists (otherwise f(X) = 0, and deg f = −∞).

If f(X) ̸= 0, the leading coefficient of f is adeg f . We say f(X) ̸= 0 is monic if adeg f = 1.

Fact: For f, g ∈ R[X], we have that

deg(fg) ≤ deg(f) + deg(g)

with equality if R is an integral domain (this implies that if R is an integral domain then R[X] is an integral

domain). Furthermore

deg(f + g) ≤ max(deg f, deg f)

with equality when deg(f) ̸= deg(g).

Definition II.3.3

For any ring R and any r ∈ R, there is a unique ring homomorphism

evr : R[X]→ R

mapping X 7→ r and s 7→ s for all s ∈ R. Namely f(X) 7→ f(r). This is called evaluation at r.

More generally, if φ : R→ S is a ring homomorphism and s ∈ S, there exists a unique homomorphism

φ̃ : R[X]→ S mapping X 7→ s, r 7→ φ(r). Namely

φ̃ :

n∑
i=0

aiX
i 7→ φ(ai)s

i.

Proof of uniqueness. DIY!

Example II.3.1

Let φ : Z ↠ Z/5Z ↪→ (Z/5Z)[X]. Then we get

φ̃ : Z[X]→ (Z/5Z)[X]

All of this works for multivariable polynomials too (with notions of degree with respect to a variable and

total degree).

Note that: R[X,Y ] ∼= (R[X])[Y ] ∼= (R[Y ])[X], which we just identify.

Theorem II.3.1 (Polynomial Division Algorithm)

Given f(X), g(X) ∈ R[X] where g(X) ̸= 0 is monic, then there exists a unique q(X), r(X) ∈ R[X]

such that

f(X) = g(X)q(X) + r(x)

and deg r < deg g.

12
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Proof. Existence: say deg g = m. If n ≥ m, then Xn = Xn−mg(X) + h(X) where deg h < n. Why? Well

write g(X) =
∑m
i=0 biX

i. Then

Xn = Xn−mg(X)−
m−1∑
i=0

biX
n−m+i.

Similarly, if c(X) has degree n ≥ m and leading coefficient a, then

c(X) = aXn−mg(X) + h(X)

with deg(h) < deg c.

Repeat this, replacing c by h, and continue to get f = gq + r, with deg r < deg g.

Uniqueness: Suppose f = gq + r = gq̃ + r̃ with deg r, deg r̃ < deg g. Then

r − r̃ = g(q̃ − q).

But we know that because g is monic

deg(r − r̃) < deg g deg(g(q − q̃)) = deg g + deg(q − q̃).

Together this forces deg(q− q̃) = −∞, so q = q̃, and r = r̃ by plugging into the equation above. Perfect!

Corollary II.3.2

If K is a field (that is a ring with K× = K \ {0}), then K[X] admits a Euclidean algorithm (which

implies unique prime factorization).

The proof will be held until later until after we define things.

Lemma II.3.3

For any ring R, there exists a unique (ring) homomorphism φ : Z→ R.

For n ∈ Z, we’ll write n (in R) for φ(n).

Proof. Uniqueness: We know φ(1) = 1R, and then φ(n) = 1R + · · ·+ 1R, n times (or with negatives in the

appropriate cases). This gives a unique formula for φ.

Existence: It is then easy to check that this formula gives a ring homomorphism.

Definition II.3.4

If R is a ring with φ : Z → R, then we know that kerφ is an ideal of Z. But then kerφ = mZ for

some unique m ∈ Z≥0.

Here m is the order of 1R under addition if 1R has finite order, and 0 otherwise. We call m the

characteristic of R.

Example II.3.2

Z,Q,R,Z[i] have characteristic 0. Z/3Z, (Z/3Z)[X] has characteristic 3. Also Z[i]/(2 + i) has charac-

teristic 5.

Definition II.3.5

In any ring R, an element r ∈ R is called irreducible if all three of the following conditions hold

13
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• r ̸= 0

• r is not a unit in R

• r is not the product of two non-units in R.

Definition II.3.6

We say that R is a unique factorization ring if every r ̸= 0 which is not a unit can be written as a

product
∏n
i=1 fi where fi ∈ R is irreducible. In addition, if

∏n
i=1 fi =

∏m
j=1 gj with fi, gj ∈ R irreducible,

then n = m and there is some permutation σ ∈ Sn such that fi is a unit times gσ(i) for all i.

Last time: If R is a ring, f, g ∈ R[x] with g ̸= 0 and the leading coefficient of g a unit in R, then f = gq+r

for some q, r ∈ R[x] with deg r < deg g.

Corollary II.3.4

For α ∈ R and f(x) ∈ R[x], there exists q(x) ∈ R[x] and c ∈ R such that

f(x) = (x− α)q(x) + c.

If we evaluate at α, we then see that c = f(α).

Example II.3.3

Look at 4x3 + x in Z[x]. Then we see that

4x3 + x = (2x)(2x2) + x

But 4x3 + x ̸= (2x)q(x) + r(x) where deg(r) < deg(2x) = 1.

If K is a field, what are the ideals in K[x]?

Definition II.3.7 (Principal Ideal)

In a ring R, for any α ∈ R, (α) := αR is called a principal ideal. Note that (α) = (αu) for any

u ∈ R×.

A principal ideal domain is an integral domain R where every ideal is principal.

Proposition II.3.5

Let K be a field. Any nonzero ideal I in K[x] is (g(x)) where g(x) ̸= 0 is any element of I having

the smallest possible degree.

This shows that K[x] is a principal ideal domain.

Proof. Fix some nonzero g(x) ∈ I having the smallest possible degree. Now for f(x) ∈ I, we see that

f = gq + r

where g, r ∈ K[x] nad deg r < deg g. But then r = f − gq ∈ I, so the minimality of deg g implies that r = 0.

Perfect! This shows us that f ∈ (g). The other inclusion (g) ⊆ I is trivial.

Proposition II.3.6

If R is an integral domain, α, β ∈ R then (α) = (β) if and only if α = βu for u ∈ R×.

Proof. We have (α) = (β) if and only if α = βx, β = αy for some x, y ∈ R.

14
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Then we see that

α = βx = αyx

α(1− yx) = 0

so either α = 0, implying β = 0 so α = β · 1. Otherwise yx = 1, in which case x, y ∈ R× and we have that

α = βx.

Example II.3.4

If R is an integral domain, then (R[x])× = R×.

If R = Z/4Z, we have that (R[x])× = 1 + 2R[x]. This happens because if f ∈ R[x] then

(2f + 1)2 = 4f2 + 4f + 1 = 1.

If f, g ∈ R[x] satisfy fg = 1, then apply φ : R[x]→ (R/(2))[x] to get φ(f)φ(g) = 1.

Therefore φ(f) = φ(g) = 1. Thus f = 1 + 2A, g = 1 + 2B for A,B ∈ R[x]. Then

fg = 1 + 2(A+B) + 4AB = 1 + 2(A+B)

which is 1 if and only if A = B + 2C, Thus

f = 1 + 2(B + 2C) = 1 + 2B = g.

If R = Z/6Z, we have that (Z/(6)[x])× = {±1}.

Definition II.3.8 (Product Ring)

If R,S are rings, then R× S with coordinate wise addition/multiplication is a “product ring.”

II.4. Ring Extensions

Example II.4.1

We want to think of things like

Z[i] = Z[x]/(x2 + 1)

and i is the image of x in this ring. We also have

Z[1/2] = Z[x]/(2x− 1)

If R is a ring, and I is an ideal of R[x], then we can consider R[x]/I. This is obviously a ring, and there

is a homomorphism R→ R[x]→ R[x]/I. This homomorphism might not be injective

Definition II.4.1 (Ring Extension)

If R is a ring and I is an ideal of R[x], then we say that R[x]/I is an extension of R provided that

the homomorphism R→ R[x]/I is injective.

Example II.4.2

Consider (Z/4Z)[x]/(2x− 1). Let u be the image of x in this ring. Then we see that

2u = 1 =⇒ 4u2 = 1 =⇒ 0 = 1.

15
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Definition II.4.2 (Module)

A module M over a ring R is an abelian group M equipped with a map R×M →M satisfying

• 1 · x = x

• (a+ b)x = ax+ bx.

• a(x+ y) = ax+ ay.

• a(bx) = (ab)x.

Intuitively these are the same as vector spaces, but the scalars can come from a ring instead of from a

field.

Example II.4.3

If f(x) ∈ R[x] is a monic polynomial of degree n, then S := R[x]/(f(x)) is an extension of R. For

convenience let u be the image of x in S.

Then each element of S can be written in exactly one way as a(x) + ((f(x)) with deg(a) < n since if

g(x) ∈ R[x] then g = fq + r for some unique q, r ∈ R[x] with deg r < n.

This means that S is a “free” R-module of dimension n. That is we have a basis 1, u, u2, . . . , un−1 for

S.

Definition II.4.3

Let R be a principal ideal domain, so for f, g ∈ R, we know (f, g) = (h) for some h ∈ R.
Thus h = uf + vg for some u, v ∈ R and f = hr, g = hs for some r, s ∈ R.
This shows that h is a greatest common divisor of f, g. Namely if w ∈ R divides both f, g, then

w | uf + vg = h.

Proposition II.4.1

Every principal ideal domain is a unique factorization domain

Proof. Using the proof for Z, for uniqueness it suffices to show that if p ∈ R is irreducible and p | fg, then
p | f or p | g.

If p ∤ f , then (p, f) = (h) for some h ∈ R. Because h | p and p is irreducible, we know that h is a unit or

h is a unit times p. However because p ∤ f , we know h is not p times a unit. Therefore we can assume h = 1

because (h) = (1).

Therefore pu + fv = 1 for some u, v ∈ R. Multiplying by g we see that pug + fgv = g. We know that

p | fg by hypothesis, so this shows that p | g as desired.

We will do existence later! See Proposition II.6.6

Example II.4.4

If K is a field then K[x] is a principal ideal domain and thus a unique factorization domain.

The proof for existence is not difficult in K[x] (DIY!)

Extra Credit Problem on HW2 extended until Thursday night.

Theorem II.4.2

If R is an integral domain, then there exists an injective homomorphism φ : R ↪→ K for some field K.

16
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More precisely, there is a field Frac(R) which is in some sense the “smallest field” with such an

injective map R ↪→ Frac(R). This field is called the field of fractions of R, or the fraction field of R

That is for every φ : R ↪→ K, there exists a unique map Frac(R) ↪→ K such that the following diagram

commutes

R K

Frac(R)

φ

Proof. Let Frac(R) = {(a, b) | a, b ∈ R, b ̸= 0}/ ∼. Definining (a, b) ∼ (c, d) ⇐⇒ ad = bc.

Then we write a/b for the equivalence class of (a, b). Then define

a

b
+
c

d
:=

ad+ bc

bd
a

b
· c
d
:=

ac

bd
.

We check that these are well-defined. Namely say a/b = A/B and c/d = C/D. We must check

ad+ bc

bd
=
AD +BC

BD
ac

bd
=
AC

BD

To check this we see that

BD(ad+ bc) = BaDd+BbDc = bADd+BbdC

= bd(AD +BC)

acBD = AbCd = ACbd.

It is not difficult to check that Frac(R) is a field. and R ↪→ Frac(R) by r 7→ r/1. Also (a/b)−1 = b/a if a ̸= 0.

The mapping property is also not difficult to verify, because we can define a/b = ab−1 7→ φ(a)φ(b)−1.

Example II.4.5

Frac(Z) = Q. If K is a field then Frac(K[X]) = K(X) (the rational functions, ratios of polynomials).

Also Z[X] = Q(X).

Example II.4.6

We have that

C[x, y]
(xy − 1)

= C[x, 1/x]

II.5. Basic Algebraic Geometry

Definition II.5.1 (Maximal Ideal)

A maximal ideal M of a ring R is an ideal M ≠ R such that there does not exist an ideal I such that

M ⊊ I ⊊ R.

17
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Example II.5.1

If R = Z, the maximal ideals are pZ for p a prime.

If R = C[X], the maximal ideals are (X − α) for α ∈ C.
Intuitively this means that the maximal ideals are points in C, and we should think of the maximal

ideals in Z as “points” in some space. See homework for the definition of SpecR.

Lemma II.5.1

If φ : R→ S is a surjective ring homomorphism, then ker(φ) is a maximal ideal if and only if S is a

field.

Proof. Use the correspondence theorem (see Theorem II.2.9). This means that

kerφ is maximal ⇐⇒ the only ideals of R containing

kerφ are (1) and ker(φ) and ker(φ) ̸= (1)

Cor⇐⇒ the only ideals of S are (0), (1), (0) ̸= (1)

⇐⇒ S is a field.

Corollary II.5.2

An ideal I of R is maximal if and onyl if R/I is a field.

Corollary II.5.3

The ideal (0) of R is maximal if and only if R is a field.

Lemma II.5.4

If K is a field, then

(1) The maximal ideals of K[X] are exactly (f) for irreducible f ∈ K[X]. (DIY, use that K[X] is

principal)

(2) If φ : K[X] → S is a homomorphism to an integral domain S, then kerφ is either (0) or a

maximal ideal.

Proof of (2). Note that if fg ∈ kerφ, this implies φ(f)φ(g) = 0, so φ(f) = 0 or φ(g) = 0. thus f ∈ kerφ or

g ∈ kerφ.

But note that kerφ is an ideal of K[X], so it must be (h) for some h. We then use the fact that K[X] is

an integral domain to show that h = 0, h is irreducible, or (1).

But then (1) is ruled out by the fact that S is an integral domain.

Theorem II.5.5 (Hilbert’s Nullstellensatz)

The maximal ideals of R := C[X1, . . . , Xn] are in “natural” bijection with the points in Cn. Explicitly
they are

(X1 − α1, . . . , Xn − αn)

18
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with α1, . . . , αn ∈ C.

Proof. Note this ideal is the kernel of the evaluation map C[X1, . . . , Xn] → C taking Xi to αi. This is

surjective, and so the kernel is a maximal ideal.

We now prove the converse. Let M be a maximal ideal of R. Then we have a quotient map R ↠ R/M ,

and R/M is a field.

Restrict to the subring C[Xi] ↪→ R↠ R/M . Then we have a ring homomorphism C[Xi]→ R/M . Because

R/M is an integral domain, Lemma II.5.4 tells us that C[Xi] → R/M is either (0) or a maximal ideal of

C[Xi]

In fact we have either (0) or (Xi − αi) as the ideal for some constant αi because C is algebraically closed.

But it can’t be (0), since if it were (0), then C(X1) would embed into R/M (by Theorem II.4.2).

But these maps are necessarily the identity on C, but then a vector space of uncountable dimension

embedding into a vector space of countable dimension (all over C). This is impossible. Explicitly C[x1, . . . , xn]
is spanned by xe1 · · ·xenn for e1, . . . , en ∈ Z≥0. Then C(X) has an uncountable collection of independent

vectors

1

X − α
, α ∈ C.

We conclude C[Xi] ↪→ R↠ R/M has kernel (Xi − αi). Thus M contains (Xi − αi), and so

(X1 − α1, . . . , Xn − αn) ⊆M ⊈ (1).

By maximality we get the desired equality.

Corollary II.5.6

If I is an ideal of C[X1, . . . , Xn] generated by some f1, . . . , fk, and V (I) is the set of all

α := (α1, . . . , αn) ∈ Cn such that fi(α) = 0. ∀i

Then the maximal ideals of R/I are in bijection with V (I).

Proof. The maximal ideals of R/I are given by π(M) where M is any maximal ideal of R which contain I.

This is in fact a bijection.

Well I ⊆M means that f1, . . . , fk ∈M . Thus M is maximal if and only if M = (X1 − α1, . . . , Xn − αn).
We know fi ∈M if and only if fi is in the kernel of f 7→ f(α1, . . . , αn). That is if and only if (α1, . . . , αn) ∈

V (I).

Lemma II.5.7 (Zorn’s Lemma)

If S is a partially ordered set in which every totally ordered subset has an upper bound, then every

subset has an upper bound.

Corollary II.5.8

If R is a ring and I ̸= (1) is an ideal, then I is contained i a maximal ideal.
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Proof. Let S be the set of ideals containing I which aren’t (1). This is a partially ordered set under

containment. If T is a totally ordered subset of S, then we claim the ideal J which is the union of all ideals

in T .

This is an ideal since if we have a finite linear combination
∑
i riji for ji ∈ Ti ∈ T , then there is some n

so that Ti ⊆ Tn by total ordering. And then
∑
i riji ∈ Tn.

If we have 1 ∈ J then we would have 1 lying in some ideal lying in T , which is impossible.

Then by Zorn’s Lemma, S contains a maximal element, which is a maximal ideal containing I.

Corollary II.5.9

If a ring R has no maximal ideals, then R is the zero ring.

Corollary II.5.10

f1, . . . , fk ∈ C[x1, . . . , xn] have no common zeros if and only if (f1, . . . , fn) = (1). That is 1 =
∑
i gifi

for some gi ∈ C[x1, . . . , xn].

Proof. The converse is obvious. To show the forward direction (by contrapositive), note that if (f1, . . . , fk)

is not (1), then (f1, . . . , fk) is contained in a maximal ideal (X1 − α1, . . . , Xn − αn) where αi ∈ C. Then fi
are all zero on α = (α1, . . . , αn).

Theorem II.5.11 (Bézout’s Theorem)

If f(X,Y ) and g(X,Y ) are polynomials in C[X,Y ] with no (nonconstant) common factor, then they

only have finitely many common zeroes.

(In fact, we won’t show this but the number of zeroes is at most the product of their total degrees).

Proof. We know C[X,Y ] = (C[Y ])[X] ⊆ (C(Y ))[X].

The ideal (f, g) in (C(Y ))[X] is principal, say it’s (h) where h ∈ (C(Y ))[X]. For the sake of contradiction,

suppose (h) ̸= (1). Note that h = v(y)h1(x, y)/u(y) where h1 ∈ C[X,Y ], v, u ∈ C[y] \ {0} (we know v ̸= 0

because at least one of f, g is nonzero).

But v(y)/u(y) is a unit so (h) = (h1) in this ring. Thus we may assume h ∈ C[X,Y ] with no C[y] dividing
h. For some r, s ∈ (C(Y ))[X] we then have

rf + sg = h.

Then clearing denominators, we have r1, s1 ∈ C[X,Y ] and u ∈ C[Y ] \ {0} such that

r1f + s1g = hu

and we may assume u, r, s have no common factors. If h = 1, then any common root (x0, y0) of f, g would

have u(y0) = 0. Thus there are finitely many possibilities for y0, and similarly we can show there are finitely

many possibilities for x0.

Now we show h is a unit multiple of one. We know that h | f in (C(y))[x]. This says that

h
a(y)

b(y)
H(x, y) = f
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where a, b ∈ C[y] are coprime, b ̸= 0, with H(x, y) ∈ C[x, y] not divisible by any nonconstant polynomial in

C[Y ]. Then

h(x, y)a(y)H(x, y) = b(y)f(x, y).

If b(y) is nonconstant, then it has a root β ∈ C. Then

h(x, β)a(β)H(x, β) = 0.

Thus y − β divides one of h, a,H. It cannot divide a because a, b are coprime. It cannot divide h or H

because no nonconstant polynomial in C[Y ] divides h,H. Therefore b is constant, and we see that h | f in

C[X,Y ]

Similarly, h | g in C[X,Y ]. This is a contradiction unless h is a nonzero constant, that is a unit multiple

of one. This finishes the proof!

II.6. Euclidean Domains, PIDs, Noetherian-ness, and UFDs

If R is an integral domain, then

u ∈ R× ⇐⇒ (u) = (1).

And we have a condition for when u is irredudcible (i.e, u ̸= 0, u is not a unit, and u is not a product of two

nonzero non-units). Namely

r is irreducible ⇐⇒ (0) ⊊ (r) ⊊ (1) is maximal among pricipal ideals

r is reducible ⇐⇒ (0) ⊊ (r) ⊊ (a) ⊊ (1) for some a ∈ R.

Definition II.6.1

We say that r ∈ R is prime provided that r is not a unit and when r | ab we have r | a or r | b.

Lemma II.6.1

If R is an integral domain and r ∈ R is prime and r ̸= 0, then r is irreducible

Proof. Let r = ab where a, b are nonzero. Thus r | ab, so r | a or r | b. If r | a then

a = rs =⇒ r = rsb =⇒ r(1− sb) = 0.

for some s ∈ R. By cancellation (within an integral domain), sb = 1, so b is a unit. Great! This shows either

a, b are a unit. Thus r is irreducible.

Lemma II.6.2

If R is a principal ideal domain and r ∈ R is irreducible, then r is prime.

Proof. Suppose that r | ab. Then (r, a) = (h) for some h ∈ R. Thus h | r. If h is not a unit, then r = h · unit,
meaning that (r) = (h). This means that r | a.

So suppose h is a unit. Then rx+ ry = 1 for some x, y ∈ R. Therefore

rbx+ aby = b
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and since r | ab we see that r | b. Perfect!

Note: In an integral domain, if r ∈ R is prime, then r | a1a2 · · · ak implies r | ai for some i. If in addition

all ai are irreducible, then r = ai · unit for some i.

Lemma II.6.3

If R is an integral domain in which all irreducible elements are prime, then any nonzero element of R

has at most one prime factorization (up to equivalence).

I.e., if p1 · · · pk = q1 · · · qℓ with pi, qj prime in R, then k = ℓ and there is some σ ∈ Sk such that

pi = qσ(i) · unit for all i.

Proof. If p1 · · · pk = q1 · · · qℓ for pi, qj irreducible, then p1 | q1 · · · qℓ.
Thus p1 = qj · unit for some j. We can then just cancel and induct on the length. Namely

p2 · · · pk =

∏
r ̸=j

qr

 · unit

Next Time: If R is a PID (or more generally, if every ideal in R is finitely generated) then every nonzero

non-unit in R admits a factorization into irreducibles.

This shows that if R is a PID, then R is a UFD (see Proposition II.4.1).

Definition II.6.2

An integral domain R is Euclidean if there exists a map ϕ : R → {−∞} ∪ Z≥0 such that for all

a, b ∈ R with b ̸= 0 there exists q, r ∈ R such that a = bq + r where ϕ(r) < ϕ(b).

Example II.6.1

R = Z, ϕ(n) = |n|. If R = K[x] for K a field, then ϕ(f) = deg(f).

Lemma II.6.4

Z[i] is Euclidean with ϕ(x) = |x|2, that is ϕ(a+ bi) = a2 + b2.

Proof. Given a, b ∈ Z[i], b ̸= 0, we want q, r ∈ Z[i] such that a = bq + r and |r| < |b|.
Well, this is equivalent to saying a/b = q + r/b where |r/b| < 1. Well clearly for all α ∈ C there exists a

q ∈ Z[i] such that α− q = u+ vi where u, v ∈ R, |u| , |v| ≤ 1/2.

Furthermore if α ∈ Q[i] then u, v ∈ Q. Well then |α− q| ≤
√
1/2 < 1. Then we can just write r = b(u+vi).

We know then that r = a− bq ∈ Z[i], and |r| < |b|.

Definition II.6.3

A ring R is Noetherian provided that every ideal is finitely generated.

Proposition II.6.5

If a ring R is Noetherian if and only if there is no infinite ascending chain of ideals

I1 ⊊ I2 ⊊ I3 ⊊ · · · .
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This is called the ascending chain condition.

Proof. Suppose R is Noetherian and that we have such an ascending chain. Then
⋃
n In is finitely generated.

Each generator is in In for some n, so then all generators are in IN for some N . Thus
⋃
n In = IN . This is a

contradiction as it implies IN = IN+1.

Suppose R satisfies the ascending chain condition. Now fix some ideal I, and suppose it is not finitely

generated. Then we can select elements r1, r2, . . . ∈ I so that

(r1) ⊊ (r1, r2) ⊊ (r1, r2, r3) ⊊ · · · ⊆ I.

But this contradicts the ascending chain condition.

Proposition II.6.6

If R is Noetherian integral domain, then every nonzero nonunit in R is a product of irreducible

elements.

Proof. Suppose otherwise. Then there exists an x ∈ R which is nonzero, non-unit, and not a product of

irreducibles.

Then x is reducible, say x = yz. At least one of y or z is neither a unit nor a product of irreducibles. Then

write x = x1y1, where x1 is not a unit or a product of irreducibles and y1 is not a unit.

Repeat this process, writing xn = xn+1yn+1 where xn+1 is not a unit nor a product of irreducibles and

yn+1 is not a unit.

Since yn+1 is not a unit we have

(x) ⊊ (x1) ⊊ (x2) ⊊ (x3) ⊊ · · ·

This contradicts the ascending chain condition (see Proposition II.6.5).

Last time

R = PID =⇒ all irr. are prime =⇒ every elt of R has at most one factorization into irr.

And this time

R = PID =⇒ R = Noetherian =⇒ every elt of R has some factorization into irr.

Therefore we have

R = PID =⇒ R = UFD

Lemma II.6.7

If R is a Euclidean integral domain then R is a PID.

Proof. Let ϕ : R→ {−∞} ∪ Z≥0 be a Euclidean function on R.

If I is a nonzero ideal of R, then ∅ ≠ ϕ(I \ {0}) ⊆ {−∞} ∪ Z≥0. Then ϕ(I \ {0}) has a smallest element

ϕ(b) for b ∈ I \ {0}. We claim that I = (b).
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Figure 1. Z[i] is Euclidean

Clearly (b) ⊆ I. Suppose a ∈ I. Then a = bq + r for some r with q, r ∈ R, and ϕ(r) < ϕ(b). Thus

r = a− bq ∈ I. Therefore r = 0 by minimality of ϕ(b). This shows that a = bq ∈ (b).

Perfect!

Example II.6.2

Z[i] is Euclidean with ϕ(x + iy) = x2 + y2 = |x+ iy|2. One can see this by thinking of the picture

Figure 1 with b = x+ yi.

Namely, this picture shows us that any element of Z[i] lies within one of these squares, and then we

can approximate by one of the corners of the squares, with an r remainder term.

Example II.6.3

But ϕ(a+ b
√
−3) = a2 +3b2 is NOT a Euclidean function on Z[

√
−3] since you can’t divide 1+

√
−3

by 2 to get a smaller remainder.

Moreover, Z[
√
−3] is not Euclidean, since it’s not a UFD. Namely (1 +

√
3)(1−

√
3) = 4 = 2 · 2. It is

not difficult to show these are all irreducible and they’re not unit multiples of each other.

But Z[(1 +
√
−3)/2] is Euclidean with ϕ as a Euclidean function.

We know Z[i] is Euclidean. What are the primes in Z[i]? Well we know it has a Euclidean function called

the “norm”

N : Z[i]→ Z

a+ bi 7→ a2 + b2 = |a+ bi|2 .

Then N(xy) = N(x)N(y). And also N(x) = xx where a+ bi = a− bi.
Lemma II.6.8

We have the following in Z[i]

N(x) ≥ 0

N(x) = 0 ⇐⇒ x = 0
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N(x) = 1 ⇐⇒ x = ±1,±i

N(x) = 1 ⇐⇒ x is a unit

Proof. The first three statements are nearly trivial. For the other direction, if N(x) = 1 then xx = 1, so x is

a unit.

If x is a unit, then xy = 1 for some y, so N(xy) = N(1) = 1. By multiplicativity, we have N(x)N(y) = 1.

Since N(x), N(y) are integers, N(x) = 1.

Corollary II.6.9

If x ∈ Z[i] and N(x) is prime in Z, then x is irreducible in Z[i].
But there are other irreducibles in Z[i] too!

Given x ∈ R which is non-zero, non-unit, then N(x) = Z≥2. If x is irreducible, then x is irreducible. So

N(x) is a product of two irreducibles in Z[i].
But N [i] can also be factored as N(x) = p1 · · · pk prime numbers in Z. Then we write each pi as a product

of irreducibles in Z[i]. So either k = 1 and p1 is a product of two irreducibles in Z[i]. Or k = 2 and p1, p2

are each irreducible in Z[i] where x = up1, x = vp2 implying p1 = p2 for u, v ∈ {±1,±i}.
It remains to show that for p ∈ Z prime

p is irreducible in Z[i] ⇐⇒ p ≡ 3 mod 4.

We’ll do this next time!

Midterm: Monday February 21st (13 days from now).

We know Z[i] is Euclidean =⇒ PID =⇒ UFD

Lemma II.6.10

Every irreducible element in Z[i] divides some positive prime in Z. Furthermore, if zw = p for some

prime p ∈ Z>0, then if z, w are non-units then z, w are both irreducible. Even better, if a prime p ∈ Z
is reducible in Z[i] if and only if p = x2 + y2, x, y ∈ Z

Proof. If z = x+ yi ∈ Z[i] is irreducible, then N(z) = x2 + y2 = zz is an integer greater than 1.

Thus z divides some integer greater than 1. Now simply factor N(z) = p1p2 · · · pk as a product of primes

within Z. Then apply the fact that irreducibles are prime in a PID to see that z divides pj for some j.

For the other direction, if zw = p, then N(z)N(w) = N(p) = p2, so N(z) = N(w) = p. Great! This means

z, w are irreducible. Even better z = N(z) = zz. Similarly if p = x2+y2, we see that p = (x+yi)(x−yi).

Now to find the irreducibles, we can factor primes in Z over Z[i]. Trivially we see:

2 = (1 + i)(1− i) = −i(1 + i)2.

Now we know p is reducible if and only if p = x2 + y2. Reducing mod 4, we see

p ≡ (0 or 1) + (0 or 1).

But then p is prime so it can’t two zeros or two ones. Thus p ≡4 1 provided that p is reducible.

Therefore if p ≡4 3 (and p is a positive prime in Z) then p is irreducible in Z[i].
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If we instead reduce mod p we see 0 ≡p x2 + y2. Thus x2 = −y2. We see y cannot be divisible by p from

p = x2 + y2. Thus (xy−1)2 ≡p −1.
Therefore, −1 is a square in (Z/pZ)×. Now we show the converse.

If a2 ≡p −1 for some a ∈ Z, we will show somehow that p = x2 + y2. Why? Well, p | (a2 + 1) in Z, so
p | (a+ i)(a− i) in Z[i]. We know p ∤ a± i, so p is not prime in Z[i], so it is not irreducible.

Thus we have the following result for p > 0 a prime in Z

p reducible in Z[i] ⇐⇒ p = x2 + y2, x, y ∈ Z ⇐⇒ −1 ≡ a2 mod p, a ∈ Z.

Know: If p = 2 then −1 is a square mod p, and if p ≡4 3 then −1 is not a square mod p.

Show: If p ≡4 1 then −1 is a square mod p.

Proof 1. We claim that ((p− 1)/2)! is −1 mod p.

Proof 2. (Z/pZ)× is cyclic of order divisible by 4, thus it has an order 4-element a, then a2 has order 2,

implying a2 ≡p −1.
Note: to show x2 ≡p 1 implies x ≡p ±1 we see p | x2 − 1 = (x− 1)(x+ 1), so p | x− 1 or p | x+ 1.

Proof 3. Consider the squaring map (Z/pZ)× → (Z/pZ)×. This is a homomorphism with kernel ±1. Thus
the image has size (p− 1)/2, which is even.

Therefore by Cauchy’s theorem, the image has an order 2 element by Cauchy’s theorem. But the only

such element is −1, so −1 is a square mod p.

Lemma II.6.11

If K is a field, f(x) ∈ K[x] has degree d > 0, then f(x) has at most d roots.

Proof. c ∈ K implies f(x) = (x − c)g(x) + r for r ∈ K. Evaluate at x = c, then f(c) = r. If f(c) = 0,

x− c | f(x) in K[x].

But x − c is irreducible in K[x], thus x − c is one of the irreducibles showing up in the unique prime

factorization of f(x).

Clearly c ̸= c′ implies x − c, x − c′ are not unit multiples of one another. We can factor f in K[x] as a

constant u ∈ K× times polynomials

u · (x− c1)(x− c2) · · · (x− cℓ) · (product of irreducibles with degree ≥ 2).

for ci ∈ K. Then d = ℓ+ sum of degrees of large irreducibles. Thus d ≥ ℓ ≥ # roots.

Corollary II.6.12

If R is an integral domain, then any nonzero f ∈ R[x] has ≤ deg(f) roots in Frac(R), and hence

≤ deg(f) roots in R.

But this fails in non-integral domains.

Example II.6.4

Note 2x has roots 0, 2 in Z/4Z. And x2 − 1 has roots ±1,±3 in Z/8Z.
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Lemma II.6.13

If p > 2 is prime in Z and a ∈ Z with p ∤ a, then x is a square mod p if and only if a
p−1
2 ≡p 1.

Proof. The polynomial x
p−1
2 − 1 has ≤ (p− 1)/2 roots in Z/pZ. But if a ∈ (Z/pZ)× then

(a2)
p−1
2 = ap−1 ≡ 1 mod p.

Therefore all the squares are roots of this equation (using Lagrange’s Theorem).

Now we just count the squares. We claim that 12, 21, . . . , ((p − 1)/2)2 are distinct mod p (the rest are

negatives of these, so have the same squares).

Since if x2 ≡p y2, then p | (x− y)(x+ y). Therefore x = y or x = −y. This doesn’t happen for the above

when 0 < x < y < p/2.

Thus by counting, the roots of x
p−1
2 − 1 are precisely the squares modulo p.

Proof 4. If p ≡4 1, then (−1)(p−1)/2 = 1, which implies −1 is a square.

Of course not all domains are UFDs, such as

Example II.6.5

6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5) in Z[

√
−5]. Then 2, 3, 1 ±

√
−5 are all irreducible and not unit

multiples of one another.

This implies Z[
√
−5] is NOT a UFD.

Factorign in Z[x] versus in Q[x].

Z[x] Q[x]

±1 units Q×

If p ∈ Z is prime, then p is irreducible in Z[x], but p is a unit in Q[x].

Given nonzero f(x) ∈ Z[x], let c := gcd(coeffs of f) (called the “content” of f) then write f(x) = c · f̂(x)
Where f̂(x) ∈ Z[x] has content 1. We say f̂(x) is “primitive.”

Note: A nonzero f(x) ∈ Z[x] is primitive if and only if the image of f(x) in (Z/pZ)[x] is nonzero for all

prime p.

Consequence: If g, h ∈ Z[x] are primitive, then gh is primitive, since if p is prime and g, h are the image

of g, h in (Z/pZ)[x], then gh ̸= 0.

Proposition II.6.14

If f(x) ∈ Z[x] is primitive and irreducible (in Z[x]), then f(x) is irreducible in Q[x].

Proof. If f(x) = g(x)h(x) for g, h ∈ Q[x] non-constant. Then g = a
b ĝ(x) where a, b ∈ Z \ {0} are coprime

and ĝ(x) ∈ Z[x] is primitive.

Likewise write h = c
d ĥ(x) with the same conditions. Then

bdf(x) = acĝ(x)ĥ(x).

But then ĝ(x)ĥ(x) is primitive.

Finish next time!
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Let R be a UFD, K := Frac(R).

Note that in a UFD, gcd makes sense (at least in terms of divisors up to units, not in terms of Bezout).

Namely, to get gcd(a, b), factor a, b into irreducibles, and then take as many powers of common irreducibles

as possible.

Theorem II.6.15

R[x] is a UFD.

Note this implies that R[x1, . . . , xn] is a UFD.

Proof. First note that (K[x])× = K× ⊇ R× = (R[x])×.

For any nonconstant f(x) :=
∑n
i=0 aix

i in R[x], define the “content” of f(x) to be

cont(f) := gcd(a0, a1, . . . , an).

Thus f(x) = cont(f)f̂(x) where f̂(x) ∈ R[x] \R and cont(f̂) = 1 (equivalently a unit).

If f(x) ∈ R[x] \ R has cont(f) = 1, say f(x) is “primitive.” Note that if f(x) ∈ R[x] \ R is irreducible,

then cont(f) = 1 by the above factorization.

So: The irreducibles in R[x] are

• Irreducible elements in R (those are units in K[x])

• Nonconstant irreducibles in R[x] (these are primitive).

We’ll show that the irreducible polynomials in K[x] are precisely the primitive irreducible polynomials in

R[x] times elements of K×.

Any nonconstant f(x) ∈ K[x] can be written as a
b f̂(x) with f̂(x) ∈ R[x] primitive and a, b ∈ R \ {0}. We

may assume that gcd(a, b) = 1.

If f, g ∈ R[x] are primitive then fg is primitive. We prove the contrapositive. Suppose that cont(fg) ̸= 1,

then there is some irreducible p ∈ R such that p | cont(fg). We can then consider the homomorphism

ϕ : R[x]→ (R/(p))[x]. Then ϕ(fg) = 0, meaning ϕ(f)ϕ(g) = 0. But then p is irreducible, R is a UFD, so p

is prime, then R/(p) is an integral domain, and so is (R/(p))[x]. Thus ϕ(f) or ϕ(g) = 0. Then p divides the

coefficients of one of these, so p | cont(f) or p | cont(g). Thus f or g is not primitive. f or g is not primitive.

Claim

If f ∈ R[x] is irreducible and primitive, then f is irreducible inK[x]

Suppose f = gh for g, h ∈ K[x] nonconstant. We may assume that g ∈ R[x] is primitive by moving the

“a/b portion” and absorbing it into h.

Then h(x) = a
b ĥ(x) where ĥ(x) ∈ R[x] is primitive and a, b are coprime. Then bf = agĥ, with f, g, ĥ

all primitive. Then gĥ is primitive as well. We see b | a and a | b because of primitivenes. Thus a = bu

for a unit u ∈ R×, so f = ugĥ. But wait! ug, ĥ ∈ R[x] are not constants!

This is impossible since f is irreducible in R[x]!

Now if f, g ∈ R[x] are primitive then f ∈ gR× if and only if f ∈ gK×. The first direction is clear, for the

other direction, if f = a
b g for a, b ∈ R \ {0} coprime. Then bf = ag, by primitiveness a | b, b | a, so we can

cancel to get f = ug for some unit u ∈ R× where a = bu.
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Now given any f(x) ∈ R[x] which is not zero, if f(x) ∈ R then the unique factorization from R is the

unique factorization in R[x]. If deg f > 0, then f = cont(f)f̂(x) for primitive f̂ . So there is a factorization

of f(x) in R[x] by appending factorizations of cont(f) ∈ R and of f̂(x) (for example by going to K[x] and

using primitiveness).

Conversely, any factorization of f(x) in R[x] must consist of a unit times irreducibles with product cont(f)

times irreducibles with product f̂ , again using primitiveness. The factorization of cont(f) is unique since R

is a UFD, and higher degree polynomials cannot multiply to become constants. The factorization of f̂(x)

consists of primitives, and is then the unique factorization in K[x]. But because of the above this is not a

concern (as uniqueness is the same in both settings).

Thus R[x] is a UFD.

Proposition II.6.16 (Eisensteins Irreducibility Criterion)

If f(x) = anx
n+an−1x

n−1+ · · ·+a0 ∈ Z[x] and for some prime p, we have that p ∤ an, p | an−1, . . . , a0,

p2 ∤ a0, and cont(f) = 1 (e.g. when an = 1), then f(x) is irreducible in Z[x] (and hence in Q[x].

Proof. Let ϕ : Z[x] → (Z/pZ)[x]. We know that ϕ(f) = anx
n ̸= 0. If f = gh with g, h ∈ Z[x] nonconstant

then ϕ(f) = ϕ(g)ϕ(h). Because p ∤ an we see that

deg(ϕ(g)) = deg(g) deg(ϕ(h)) = deg(h).

Then ϕ(g) = bxi, ϕ(h) = dxn−i for b, d ∈ (Z/pZ)× and 0 < i < n.

Then we have that p | g(0), p | h(0), so p2 | g(0)h(0) = a0, and this is a contradiction.

Corollary II.6.17

xn − p is irreducible in Q[x] for all n > 0 and every prime p.

Next time: Deduce that xp−1 + · · ·+ 1 is irreducible in Q[x] for all primes p.

Corollary II.6.18

For prime p, Φp(x) = xp−1 + · · ·+ 1 is irreducible in Q[x].

Proof. Note that Φp(x) =
xp−1
x−1 . Thus

Φp(x+ 1) =
(x+ 1)p − 1

x

= xp−1 +

(
p

1

)
xp−2 +

(
p

2

)
xp−3 + · · ·+

(
p

p− 1

)
.

Note then that
(
p
p−1

)
= p, and p |

(
p
i

)
for 1 ≤ i < p− 1.

Then Φ)p(x+ 1) is irreducible in Q[x] by Eisenstein. Thus Φp(x) is irreducible in Q[x].

Just so you’ve seen it because it’s awesome.
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Theorem II.6.19 (Frobenius’s Density Theorem)

For f(x) ∈ Q[x] of degree n, and any partition P of n. Then

lim
N→∞

# primes p ≤ N s.t. P = degrees of irr. factors of f in Fp[x]
# primes ≤ N

is equal to

#{g ∈ G | P = cycle lengths of g

#G

where G is the Galois group of f(x) over Q (which we’ll define later as a subgroup of Sn).

Consequences:

(1) f(x) factors into degree 1 polynomials in Fp(x) for at least 1
n! of all primes p. But in fact it is exactly

1
#G where G is the galois group.

(2) If f(x) ∈ Q[x] of degree n, then f(x) has a root mod p for at least 1/n of all primes p.

This is because at least 1/n elements of any subgroup of Sn have a fixed point.

Analogous Result: If f(x) ∈ Fp[x] has degree n, and #f(Fp) < p, then #f(Fp) ≤ p− (p− 1)/n.

Definition II.6.4 (Prime Ideals)

An ideal P ̸= (1) of a ring R is prime if ab ∈ P implies that a ∈ P or b ∈ P for all a, b ∈ R.
(so if P = (p) with p ∈ R, then P is a prime ideal if and only if p is a prime element).

Note: P is a prime ideal if and only if R/P is an integral domain. So: all maximal ideals are prime.

Recall II.6.6

If I, J are ideals of R, then

IJ =

{
n∑
k=1

ikjk | ik ∈ I, jk ∈ J

}

Example II.6.7

Recall that Z[
√
−5] is not a UFD since 2 · 3 = 6 = (1 +

√
−5)(1 −

√
−5). Further all these are

irreducible except 6, and the units are exactly ±1, so no two of these are unit multiples.

We see that

(2, 1 +
√
−5) = (2, 1−

√
−5)

(3, 1 +
√
−5) = (3, 1−

√
−5)

are prime ideals. But in Z[
√
−5], every ideal except (0), (1) is a product of prime ideals in exactly one

way (up to permuting the prime ideals).

Then in Z[
√
−5]:

(2, 1 +
√
−5)2 = (4, 2 + 2

√
−5,−4 + 2

√
−5) = (2)

(6) = (2)(3) = (1 +
√
−5)(1−

√
−5)

(2, 3) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5)
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(1 +
√
−5)(1−

√
−5) = (2, 1 +

√
−5)(3, 1 +

√
−5)(2, 1−

√
−5)(3, 1−

√
−5).

This factorization is in fact unique.

Example II.6.8

In contrast, Z[2i] does NOT have unique prime factorization of ideals.

(−4) = (2i)(2i) = (2)(−2).

Definition II.6.5 (Dedekind Domain)

A Dedekind Domain is an integral domain with unique prime factorization of ideals. These will not

be used in this course.

Fact: If K = Q[x]/(f(x)) where f(x) ∈ Q[x] is irreducible, and R is the ring of all algebraic integers

in K (i.e. roots of monic polynomials in Z[x]), then R is a Dedekind Domain.

For example, Z[
√
d] is a Dedekind domain if d ∈ Z \ {0, 1} is square-free and d ̸≡ 1 mod 4.

Example II.6.9

Z[x] is a UFD.

Z[x]/(x2 + 5) ∼= Z[
√
−5] is not a UFD.

More generally: R is a UFD implies R[x] is a UFD, but R/I need not be a UFD (even when I is a

prime ideal).

Likewise, R is a PID does not imply R[x] is a PID (e.g. Z[x] is not a PID), but R/I is a PID for all

prime ideals I.

Even better, R is Notherian implies R[x] is Noetherian (Hilbert basis theorem), and R/I is Noetherian

for any ideal I.

Lemma II.6.20

Let R be a UFD and K = Frac(R). If α ∈ K is a root of a monic polynomial in R[x], then α ∈ R.

Proof. Say α is a root of xn + a1x
n−1 + · · ·+ an with ai ∈ R. Write α = u/v where u, v ∈ R are coprime.

Then we see that

un

vn
+ a1

un−1

vn−1
+ · · · an−1

u

v
+ an = 0.

Multiplying by vn we see

un + a1u
n−1v + a2u

n−2v2 + · · ·+ an−1uv
n−1 + anv

n.

If v were not a unit, it would have some irreducible/prime factor p, but then p | un because it divides all the

other terms. But then p | u, and this is a contradiction since u, v are coprime.

Therefore v is a unit and α ∈ R.

III. Midterm Review

Midterm: Monday 6PM-8:30PM.

If R is a UFD, say a nonconstant f(x) ∈ R[x] is “primitive” if gcd(coeffs of f) = 1.
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Any nonconstant f(x) ∈ R[x] can be writen as a constant c ∈ R times a nonconstant primitive polynomial

f̂(x) ∈ R[x]
Then any nonconstant irreducible f(x) ∈ R[x] is primitive. And ifK := Frac(R), then f remains irreducible

in K[x].

Any nonconstant f(x) ∈ K[x] can be written as c · f̂(x), c ∈ K×, f̂(x) ∈ R[x] primitive. Then f(x) is

irreducible in K[x] if and only if f̂(x) is irreducible in R[x].

All nonzero constants in K are units in K, but there can be nonzero constants which are nonunits in R[x].

• Ideals (see Definition II.2.7): Kernels of ring homomorphisms, aka non-empty subsets of R which are

preserved under (finite) R-linear combinations.

– If I is an ideal of R, then there is a quotient map R↠ R/I which is a surjective ring homomor-

phism.

Conversely, if R ↠ S is a surjective ring homomorphism, then there exists an isomorphism

R/I → S such that

R S

R/I

commutes.

– Correspondence Theorem (see Theorem II.2.9) If R
φ
↠ S is a surjective ring homomorphism.

Then the maps

I 7→ φ(I)

φ−1(J)← [ J

are inverse bijections

{ideals of R containing kerφ} {ideals of S}
Also if I ⊇ kerφ then R/I ∼= S/φ(I). See Example II.2.7 for a great example of a use case for

this. Namely proving that Z[i]/(2 + i) ∼= Z/5Z.
• Basics of Polynomial Rings

– Evaluation Maps (see Definition II.3.3). If φ : R→ S is a homomorphism, and s ∈ S is a fixed

element, then there is a unique extension of φ to φ̂ : R[x]→ S taking x to s.

Note if φ : R→ S this gives a unique extension φ̂ : R[x]→ S[x] which sends x to x. We can do

the same thing in many variables.

– Polynomial Division (see Theorem II.3.1)): If f(x), g(x) ∈ R[x] and g(x) ̸= 0 is monic, then

there exists a unique q(x), r(x) ∈ R[x] such that

f(x) = g(x)q(x) + r(x)

and deg r < deg g.

– Quotient by a monic (see Example II.4.3). If f(x) ∈ R[x] is monic and nonconstant, then

R ↪→ R[x]→ R[x]/(f(x)) is injective. Even better, each element of R[x]/(f(x)) can be written

in exactly one way as a(x) + (f(x)) with deg(a) < deg f by long division.

In contrast, if R = Z/(4) then R[x]/(2x− 1) = 0 does not have this property.
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• Field of Fractions (see Theorem II.4.2): Every integral domain has a field of fractions K.

Even better if L is a field containing R, then L ⊇ K ⊇ R with K ∼= Frac(R).

This is called the “resultant” of ax2 + bx+ c, 2ax+ b.

• Maximal Ideals (see Definition II.5.1): An ideal M of R is maximal (that is M ̸= R and M ⊊ I for

an ideal I implies I = R). This holds if and only if R/M is a field.

– Hilbert’s Nullstellensatz (Theorem II.5.5) The maximal ideals ofC[x1, . . . , xn are (x1−α1, . . . , xn−
αn) with α1, . . . , αn ∈ C.

• Euclidean Rings, PIDs, UFDs (see Section II.6)

– R is Euclidean =⇒ R is a PID =⇒ R is a UFD. Z[x],C[x, y] shows the second converse

doesn’t hold and Z[α] for α = (1 +
√
−19)/2 shows the first converse doesn’t hold.

This comes in a few parts. PIDs are clearly Noetherian, and Proposition II.6.6 gives that all

PIDs have a factorization, and Proposition II.4.1 gives uniqueness.

Then Lemma II.6.7 gives that Euclidean =⇒ PID.

– If R is a UFD and p ∈ R is irreducible then p is prime.

– If R is an integral domain and p ∈ R is prime, then p is irreducible (see Lemma II.6.1).

– Non-UFD’s Z[
√
−5].

• Useful ideas

– The norm function C× → C× given by a+ bi 7→ a2 + b2 = (a+ bi)(a− bi) is very useful.

Restrict to Z[i],Z[
√
−2],. . . , then the images are in Z and we can use these to show Eucldean-

ness. Even for the counterexample of α = (1 +
√
−19)/2 we can use this to show Z[α] is a

PID.

– For other algebraic integers, for example Z[
√
2] we can take a+ b

√
2 7→

∣∣(a+ b
√
2)(a− b

√
2)
∣∣ =∣∣a2 − 2b2

∣∣.
This is then a multiplicative function Z[

√
2]→ Z. We will work with generalizations later.

• Good to recall Bezout’s Theorem (see Theorem II.5.11).

What can you say when two polynomials f, g ∈ R[x] have a common root in some ring containing R.

Example III.0.1

Consider ax2 + bx+ c and its derivative 2ax+ b. Then, pretending R is an integral domain (really

working over Z[A,B,C, x] and then going to R[x] by a nice map) we have

ax2 + bx+ c = (2ax+ b)

(
x

2
+

b

4a

)
+

(
c− b2

4a

)
.

Then we have that

4a(ax2 + bx+ c) = (2ax+ b)(2ax+ b) + (4ac− b2)

4a2x2 + 4abx+ 4ac = (2ax+ b)(2ax+ b) + (4ac− b2).

Any common zero of these in a ring containing R would be a zero of 4ac− b2. Thus 4ac− b2 = 0.

Alternately: If A,B,C are independent variables over Q, then
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(1) Do Euclid’s algorithm in (Q[A,B,C])[x] on AX2, BX + C, 2Ax+B to get

1 = (Ax2 +Bx+ C) · u(x) + (2Ax+B) · v(x)

for u, v ∈ (Q(A,B,C))[x] and then let ∆(x) ∈ Z[A,B,C][x] be a common denominator of u, v.

Then multiply. Then ∆ = Z[A,B,C] is some linear combination of Ax2 +Bx+ C, 2Ax+B.

Then apply Z[A,B,C][x]→ R[x]. given by mapping A 7→ a,B 7→ b, C 7→ c, x→ x. Conclude

that the image of ∆ is a R[x]-linear combination of ax2 + bx+ c, 2ax+ b.

This is called the “resultant” of ax2 + bx+ c, 2ax+ b.

IV. Galois Theory

IV.1. Field Extensions

Definition IV.1.1

Given a fieldK, a field L containing K is called an extension of K and L/K (NOT A QUOTIENT!)

is a field extension

Definition IV.1.2

If L/K is a field extension, then its degree is dimK L, that is the dimension of L as a K-vector space.

Notation: We often denote the degree by [L : K] = dimK L.

Definition IV.1.3

Let L/K be a field extension and let α ∈ L. Then K(α) is the smallest field containing K and α,

that is

K(α) :=

{
a(α)

b(α)
: a, b ∈ K[X], b(α) ̸= 0

}
.

Let S = {f(x) ∈ K[x] : f(α) = 0}. Then S is an ideal of K[x] (closed under linear combinations).

Therefore S = (m(x)) for some m(x) ∈ K[x] because K[x] is principal. Furthermore, if S ≠ 0 then m(x) is a

nonzero polynomial of minimal degree in S, because we can use the division algorithm in a field.

Even better, we may assume m(x) is monic or zero, by multiplying by units, and clearly m(x) is irreducible

because if m(x) = f(x)g(x), f(α), g(α) = 0 because we’re in an integral domain, and then m | f or m | g.
Great!

Definition IV.1.4

α is called algebraic over K if f(α) = 0 for some nonzero f(x) ∈ K[x]. In this case, the minimal

polynomial of α over K is

minpolK(α) = irrK(α)

is the unique monic irreducible polynomial in K[x] such that irrK(α) = 0.

α is called transcendental over K if α is not algebraic over K.

If α is transcendental thenK[x] ↪→ K[α] ⊆ K(α) by evaluation, and being transcendental implies injectivity.

This then gives an isomorphism of rings K[x] ∼= K[α], and it extends to an isomorphism K(x) ∼= K(α) as

well.
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This means intuitively that we can treat a transcendental α as a formal variable x.

Now suppose α ∈ L is algebraic over K, with m(x) = irrK(α). Then K[x] → K[α] is a surjecton, with

kernel (m(x)). Then

K[x]/(m(x)) ∼= K[α]

and because (m(x)) is a maximal ideal since m is irreducible, we know that K[α] is a field, and K[α] = K(α).

We see that K[α] ∼= K[x]/(m(x)) is a K-vector space with basis 1, x, . . . , xn−1 where n := deg(m) by the

polynomial division algorithm, as each coset in K[x]/(m(x)) has a unique representative of degree < n.

Perfect! This implies that

Proposition IV.1.1

If α is algebraic over K, and n := deg(irrK(α)), then K[α] = K(α) has basis 1, α, . . . , αn−1 as a

K-vector space, an so

dimK K(α) = n = deg(irrK(α)).

Example IV.1.1

We have that for p a prime,

[Q(i) : Q] = 2

[Q( n
√
p) : Q] = n

[Q(e2πi/p : Q] = p− 1.

The second follows from Eistenstein because xn − p is irreducible, and this actually extends to p ≠ 1

and not a square. The second follows because irrQ(e
2πi/p) = xp−1 + xp−2 + · · ·+1. We showed this was

irreducible using eistensteins as well.

Note that if you have a polynomial with α as a root, it gives an upper bound on the degree of

[K(α) : K].

Example IV.1.2

Any n-dimensional C-vector space has dimension 2n as an R-vector space. If α1, . . . , αn is a C-basis,
then every element of the vector space can be written in exactyl one way as∑

(aj + ibj)αj

so α1, iα1, . . . , αn, iαn is an R-basis.

Proposition IV.1.2

If L/K is a field extension and V is an L-vector space, then

dimK V = [L : K] · dimL(V ).

.

Proof. Let α1, α2, . . . , αn be an L-basis for V and let β1, β2, . . . , βm be a K-basis for L. We show {βiαj} is
a K-basis for V .
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Every element of V cna be written in exactly one way as
∑
j ℓjαj with ℓj ∈ L. Each ℓj can be written in

exactly one way as
∑
i kijβi with kij ∈ K.

Therefore every element of V can be written in exactly one way as
∑
j

∑
i kijβiαj . This shows {βiαj} is

a K-basis for V .

Note: It is nice to know this basis.

Corollary IV.1.3

if K,L,M are fields with M ⊇ L ⊇ K then

[M : K] = [M : L] · [L : K].

Example IV.1.3

By Eisensteins, xn − p is irreducible over Q for any prime p. Thus

[Q( n
√
p) : Q] = n.

Therefore if K is a field containing n
√
p, then [K : Q] is divisible y n or is infinite.

Note also that if α ∈ K has a square root in L, then [K(
√
α) : K] = 1 or 2 isnce there is a degree 2

polynomial with
√
α as a root.

Then if α1 ∈ Q, define K1 = Q(
√
α1), and inductively let αi+1 ∈ Ki,Ki+1 = Q(

√
α1, . . . ,

√
αi+1.

Then

[Ki+1 : Ki] = 1 or 2.

Thus [Ki : Q] divides 2i.

If n is not a power of 2, then n ∤ [Ki : Q]. Therefore n
√
p ̸∈ Ki. Wait! This shows things such as

3
√
2 ̸=

√
1 +

√
1 +
√
2−

√
1

2
+
√
3

as the latter is contained in such a fieldKi, namely take α1 = 2, α2 = 3, α3 = 1+
√
2, α4 = 1/2+

√
3, α5 =

1 +
√
α3.

Thus, n
√
p cannot be expressed as successive sums, multiplications, divisions, or square roots of

elements of Q when p is a prime and n is not a power of 2. This can be extended to when p is not a

perfect square fairly easily.

Specifically, 3
√
2 cannot be expressed this way.

IV.2. Motivation: Constructions with Straight Edge and Compass

This section will not be tested, and we will return to fields after the break.

You start with two points. We will call these A,B, and we will think of the distance between them as

being one.

Build from these: points, lines, circles. Here are the rules:

• Given 2 points, you can construct the line passing through them.

• Given 2 points, you can construct the circle centered at one point and passing through the other.

• Given 2 lines (or 2 circles or 1 line, 1 circle), then you can construct the points on their intersection.
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Definition IV.2.1

A number ℓ ∈ R is constructible if, with straight edge and compass, we can construct a point C on

the line through A,B such that the signed distance from A to C is ℓ times the signed distance from A

to B.

Theorem IV.2.1

A number ℓ ∈ R is constructible if and only if ℓ ∈ Kn where Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn where

Ki = Ki−1(
√
αi) with αi ∈ Ki−1 ∩ R>0.

Corollary IV.2.2

If ℓ ∈ R is constructible then [Q(ℓ) : Q] = 2m for some m ∈ Z≥0.

The converse is badly false, most numbers whose degree is a power of two are not constructible.

Proof. We see [Kn : Q] is a power of two, and [Kn : Q] = [Kn : Q(ℓ)][Q(ℓ) : Q], so [Q(ℓ) : Q] is a power of

two.

First, we’ll look at the consequences

(1) Impossible to “duplicate a cube,” i.e., construct a cube whose volume is twice that of a given cube.

That is 3
√
2 is not constructible, which we did last time, since [Q( 3

√
2) : Q] = 3.

(2) Impossible to “square the circle,” i.e., construct a square whose area is that of a given circle. I.e.,
√
π is not constructible, true because [Q(

√
π : Q] =∞.

(3) Impossible to “trisect an arbitrary angle,” since cos 60◦ = 1/2 is constructible, but cos 20◦ is not. We

know this because

cos(3θ) = 4 cos3 θ − 3 cos θ

1

2
= 4 cos3 20◦ − 3 cos 20◦

Thus cos 20◦ is a root of 8x3 − 3x− 1. Substituting y = x/2 we get

y3 − 3y − 1

which is irreducible in F2[y], so it is irreducible in Z[y], so it is irreducible in Q[y]. Perfect! Thus

[Q(cos 20◦) : Q] = 3.

Gauss somehow figured out that

cos
2π

17
=

1

16
+

√
17

16
+

√
34− 2

√
17

16
+

1

8

√
17 + 3

√
17−

√
34− 2

√
17− 2

√
34 + 2

√
17

We can then build a tower
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Q
(√

17,
√
34 + 2

√
17, cos 2π/17

)

Q
(√

17,
√
34 + 2

√
17
)

Q(
√
17)

Q

2

2

2

showing that cos(2π/17) is constructible.

Claim

We can construct a regular n-gon if and only if we can consturct cos (2π/n).

Corollary IV.2.3

If p is prime and a regular p-gon is constructible, then p must be a Fermat prime, that is p = 2k + 1

(which implies k = 2ℓ, ℓ ≥ 0 or ℓ = −∞).

Proof. If α = e2πi/p, then we have that

α+ 1
α

2
= cos

2π

2

α2 −
(
2 cos

2π

p

)
+ 1 = 0.

Thus we have that

[Q(α) : Q] = [Q(cos 2π/p, α) : Q(cos 2π/p)] ≤ 2.

And because α ̸∈ R, cos 2π/p ∈ R, that the degree is exactly two.

But irrQ(α) = xp−1 + · · ·+ 1. Therefore

[Q(α) : Q] = p− 1.

Therefore, we have a tower of extensions

Q(α)

Q(cos 2π/p)

Q

2

p−1

(p−1)/2

So we must have that p− 1 = 2k if the regular p-gon is constructible as desired.

Lemma IV.2.4

Given two points, can construct the perpendicular bisector of the segment between them.

Given a line ℓ and a point p, can construct a line through p which is perpendicular to ℓ.
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Given a line ℓ and a point p, can construct a line through p and a parallel to ℓ.

Given points p, q, r and a line ℓ containing r, can construct a point s on ℓ such that the segments rs

and pq have the same length.

Proof. Let’s go! To get perpendicular bisectors, we see that

is a perpendicular bisector. To get perpendiculars, we just see that

We can construct parallels by drawing perpendiculars twice

The last is left as an exercise!

Npte: Given p, q, you can construct a line through p with angle θ from the line pq if and only if cos θ is

constructible. This is because you can drop perpendiculars.

Proof of Theorem IV.2.1, forward. Let K ⊆ R be a field which we’re working over.

A line through 2 points with coordinates in a field K has an equation over K. Similarly a circle with

center a point over K passing through a point over K has an equation over K.

The intersection of two lines with equations over K is either ∅ or a point with coordinates in K.

The intersection of a line with coordinates in K with a circle with coordinates in K is either ∅, a point

with coordinates in K, two points with coordinates in K, or two points with coordinates in K(α) for some

α ∈ K, α > 0.

Intersecting two circles: We may center one of the circles at 0. Then we have x2+y2 = r1, (x−a)2+(y−b)2 =

r2, where r1, r2, a, b ∈ K. Then we see that (x, y) must satisfy

−2ax+ a2 − 2by + b2 = r2 − r1

If (a, b) ̸= (0, 0) then this defines a line over K, and so the intersection of these two circles over K is either

the same as the intersection of the first circle with a line over K.

Thus the intersection is either ∅, a point over K, two points over K, or two points over K(
√
α) where

α ∈ K,α > 0.

This proves the forward direction. If a number ℓ ∈ R is constructible then it belongs to a tower of field

extensions of degrees 1 or 2.
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Proof of Theorem IV.2.1, converse. if a, b are constructible, then so are a + b, −a (by circles), and ab by

drawing perpendiculars and using similar triangles.

Similarly we can construct 1/a with similar triangles.

We can also construct
√
a, also by similar triangles and circles.

IV.3. More Field Extensions / Splitting Fields

Recall IV.3.1

The characteristic of a ring R is the order of 1R under addition if this order is finite, and 0 if this order

is not finite. Put another wya it is the unique positive generator of the kernel of the map φ : Z→ R.

If R is an integral domain (more specifically when R is a field), charR must be 0 or a prime, because

Z
kerφ

∼= imφ ⊆ R.

And so imφ is an integral domain, so kerφ is a prime ideal.

Example IV.3.2

Q,R,C,Q(x0 all have characteristic 0. Note that if L ⊇ K then char(L) = char(K).

Also note that for n ∈ Z, char(R) | n if and only if n = 0 in R.

For K a field, char(K) ∤ n if and only if n ∈ K×.

Definition IV.3.1 (Frobenius Map)

If p := char(K) is positive, then the map x 7→ xp is a homomorphism, called the Frobenius Map.

This holds since (xy)p = xpyp, and

(x+ y)p = xp +

(
p

1

)
xp−1y + · · ·+

(
p

p− 1

)
xyp−1 + yp = xp + yp

because if 1 ≤ k ≤ p− 1 then
(
p
k

)
= p!/k!/(p− k)! is divisible by p.

Example IV.3.3

In characteristic two, (x+ y)2 = x2 + 2xy + y2 = x2 + y2.

In characteristic three, (x+ y)3 = x3 + 3x2y + 3xy2 + y3 = x3 + y3.

Note: A homomorphism K → L of fields is injective, because the kernel is an ideal of K, and so is either

(0) or (1). But 1 7→ 1, so 1 does not lie in the kernel. Thus the kernel is (0).

Recall IV.3.4

If K is a field, α ∈ L, L ⊇ K, then α is algebraic over K provided that α is a root of a nonzero

polynomial in K[x].

Then the kernel of K[x]
evα7−−→ K is a prime ideal, and so it is generated by a unique monic irreducible

polynomial with α as a root. We call this the minimal polynomial of α.

If this minimal polynomial has degree n, then 1, α, . . . , αn−1 is a basis of K[α] as a K-vector space

and

K[α] = K(α) =
K[x]

(minimal polynomial of α)

[K(α) : K] = deg(minimal polynomial of α).
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Then note that L/K has degree 1 if and only if L = K.

Proposition IV.3.1

If L/K has degree p for p a prime, and L ⊇M ⊇ K. Then M = L = K.

Proof. We see that [L : K] = [L :M ][M : K], so one of [L :M ] or [M : K] is one.

Proposition IV.3.2

Suppose K is a field and char(K) ̸= 2. Then L/K has degree two if and only if L = K[
√
d] for some

d ∈ K with no e ∈ K such that e2 = d.

⇐= is clear by the minimal polynomial x2 − d.

Proof. Let α ∈ L,α ̸∈ K. By Proposition IV.3.1 we have that L = K(α). Now let f(x) be the minimal

polynomial of f . Then deg f = 2, f is monic, so f(x) = x2 − bx− a for some a, b ∈ K.

Then α2 − bα = a. If char(K) ̸= 2 then (
α− b

2

)2

= a+
b2

4
.

Then α− b/2 ̸∈ K,−α+ b/2 ̸∈ K are distint. Thus

L = K(α− b/2) = K[
√
a+ b2/4].

If L/K has degree 2, char(K) = 2, α ∈ L \K, then α2 + bα = a for some a, b ∈ K. If b ̸= 0 then

α2

b2
+
α

b
=

a

b2

so α/b is a root of x2 + x = a/b2, L = K(α/b). If b = 0, then α is a root of x2 = a, then L = K(α) and

x2 − a = (x− α)2.
Remark IV.3.1

We will throw away adjoining p-th roots in characteristic p because they behave badly (in the future

see the definitions of separable/inseparable, Definition IV.4.3).

Example IV.3.5

If L = Q( 3
√
2),K = Q then L = Q( 3

√
4 + 5 3

√
2 + 1) by Proposition IV.3.1.

More generally the minimal polynomial of a 3
√
4 + b 3

√
2 + c over Q has degree three for all a, b, c ∈ Q

with a, b not both 0. Thus we’ve learned something about infinitely many polynomials by only knowing

about x3 − 2.

Note: if K is a field, f ∈ K[X] is irreducible, then L := K[X]/(f(X)) is a field, and if α is the image of x

in L then f(α) = 0 and L = K[α] = K(α).

Definition IV.3.2

For g(x) ∈ K[x] \ K, a splitting field of g(x) over K is a field L ⊇ K such that g(x) factors into

linears in L[x] as c · (x− α1) · · · (x− αn) for c ∈ K, αi ∈ L, and L = K(α1, . . . , αn).
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Proposition IV.3.3

Splitting Fields exist

Proof. Given g(x) ∈ K[x] \K, we may assume g is monic by multiplying by a unit in K.

If g factors into linears over K, then K is itself the splitting field. Otherwise, let g1 be an irreducible

factor of g(x) in K[x] of degree greater than 1, and let K1 = K[x]/(g1(x)).

Now g has more irreducible factors in K1[x] than K[x]. g has at most deg g irreducible factors in any

L[x], L ⊇ K. So repeat until you get K1,K2, . . . ,Kn as the splitting field of g over K.

Our next goal is to prove the uniqueness of splitting fields. That is given g(x) ∈ K[x] \K and L,L′ are

splitting fields over K, then there is an isomorphism L→ L′ which is the identity on K.

Amazing Fact: If L is a splitting field of g(x) over K and h(x) ∈ K[x] is irreducible and has a root in L,

then h(x) factors into linears in L[x], so L contains a splitting field of h(x) over K.

Recall IV.3.6

If L is a field containing K, and α ∈ L, then K(α) is the smallest subfield of L containing K and α.

Explicitly, it’s {a(α)/b(α) | a, b ∈ K[X], b(α) ̸= 0}. If α is algebraic over K, then

K(α) = K[α] ∼= K[X]/(f(X))

where f = minpolyK(α).

Last time: For any field K, and any irreducible f(X) ∈ K[X], there exists a field L containing K such

that f(x) has a root in L, namely K[Y ]/(f(Y )).

Example IV.3.7

Consider x3 − 2 over Q. It’s irreducible by Eisenstein, and it has a root in Q[Y ]/(Y 3 − 2), namely

Y = Y + (Y 3 − 2)Q[Y ].

In C, there are three roots of x3 − 2, 3
√
2, ω 3
√
2, ω2 3

√
2 for ω = e2πi/3.

So adjoining a cube root of 2 to Q (in C) yields Q( 3
√
2),Q(ω 3

√
2),Q(ω2 3

√
2).

Furthermore, each of these is isomorphic to Q[Y ]/(Y 3 − 2). In other words

HomQ
(
Q[Y ]/(Y 3 − 2),C

)
has size 3.

These are given by Y 7→ 3
√
2, ω 3
√
2, ω2 3

√
2.

Proposition IV.3.4

If L is a field containing K, and α ∈ L has minimal polynomial f(X) over K, then

HomK(K[X]/(f(X)), L) ∼= HomK(K(α), L)

is in bijection with {roots of f(X) in L}.
That is the number of roots of minpolyK(α) in L only depends on the isomorphism class of K(α)

over K.

Proof. Note K(α) = K[α]. Now if σ ∈ HomK(K(α), L), then β := σ(α) has

f(β) = f(σ(α)) = σ(f(α)) = σ(0) = 0
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because σ is the identity on K (can do this explicitly but why). Furthermore, σ is determined by σ(α)

because K(α) = K[α].

Conversely, if β ∈ L is a root of f(X), then we know

K(β) ∼=K
K[Y ]

(f(Y ))
∼=K K(α)

β 7→ Y 7→ α.

So there is a map

K[α] ∼=K K[β]

α 7→ β.

Thus the inclusion K(α) ∼=K K[β] ↪→ L gives us a map in HomK(K(α), L) mapping α to β.

Corollary IV.3.5

Suppose φ : K → L is a homomorphism between fields, M/K is a field extension, and α ∈ M is

algebraic over K with minimal polynomial f(X).

Then the # of extensions of φ to a homomorphism K(α) → L equals the number of roots of

fφ(X) ∈ L[X], where fφ(X) is the image of f(X) under the extension φ : K[X]→ L[X].

Proof. Let K ′ := φ(K), then φ : K ∼= K ′. Therefore

HomK′(K ′[Z]/(fφ(Z)), L) ∼= {# of roots of fφ in L}.

Now we ned to show that elements HomK′(K ′[Z]/(fφ(Z)), L) are exactly extensions of φ to K(α)→ L.

Well, under φ : K → K ′ we have the isomorphism

K(α) ∼= K[Y ]/(f(Y )) ∼= K ′[Z]/(fφ(Z))

Composition of a map HomK′(K ′[Z]/(fφ(Z)), L) with this isomorphism is exactly an extension of φ.

Proposition IV.3.6

Suppose L,M are splitting fields of f(x) ∈ K[x] \K over K.

Then there is an isomorphism L→M which is the identity on K.

Uniqueness of Splitting Fields. Given f(X) ∈ K[X] \K, let L and M be splitting fields of f(X) over K.

Let f1(x) ∈ K[X] be an irreducible factor of f(X) having degree at least two (if no such factor exists then

L = K =M). Let α1 ∈ L be a root of f1(X).

Then HomK(K(α1),M) is the number of roots of f1(X) in M by Proposition IV.3.4. Then there are that

many choices for φ1 : K(α1) ∼= K(β1) ⊆M as below

L M

K(α1) K(β1)

K K

φ1

Id
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Call L1 = K(α1),M1 = K(β1). If f(X) factors into linears over L1[X] then f(X) = fφ1(X) factors into

linears in M1[X]. Then L1 = L,M1 =M,φ1 : L1

∼=−→K M1.

Otherwise, let f2(X) ∈ L1[X] be an irreducible factor of f(X) with deree at least two. Let α2 ∈ L be a

root of f2(X). Then by Corollary IV.3.5 the number of extensions of φ1 to a homomorphism L1(α2)→M

is the number of roots of fφ1

2 (X) in M , which is positive.

Thus there are that many choices for φ2 : L1(α2) ∼=M1(β2) ⊆M as

L M

L1(α2) M1(β2)

K(α1) K(β1)

K K

φ2

φ1

Id

Because L1(α2) = K(α1, α2) this ends up with the following picture

L M

K(α1, α2, α3) K(β1, β2, β3)

K(α1, α2) K(β1, β2)

K(α1) K(β1)

K K

φ3

φ2

φ1

Id

We claim this process eventually terminates. Why? Well f has at most deg f roots in L, and at each step

we select a root αi ∈ L of a degree two irr. factor of f in Li−1[X] (where x− αj are now factors for j < i).

Thus αi ̸= α1, . . . , αi−1.

Even better: The number of choices of φ1 is exactly

# roots of f1(X) in M ≤ deg(f1) = [K(α1) : K] ≤ deg(f)

(the ≤ is almost always equal). Likewise, after choosing φ1, the # of choices for φ2 is

# of roots of fφ1

2 (x) in M ≤ deg(f2) = [K(α1, α2) : K(α1)] ≤ deg(f)− 1.

Corollary IV.3.7

Let L,M be splitting fields of f over K, then

#HomK(L,M) ≤ [L : K] ≤ deg(f)!

First inequality is almost always equal. We can then choose L =M , and then HomK(L,M) = AutK(L).

Last time: Given a field K, and a nonconstant f(X) ∈ K[X], there exists a splitting field of f(X) over

K. Furthermore, if L,M are both splitting fields of f(X) over K then there is a K-isomorphism (fixing K)

L→M .
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We also showed that if N is a splitting field of f(X) over K, then |AutK(N)| ≤ [N : K], and I claim that

usually this is equality.

N N

K(α1, α2, α3) K(β1, β2, β3)

K(α1, α2) K(β1, β2)

K(α1) K(β1)

K K

φ

φ3

φ2

φ1

Id

where αi is a root of an irreducible factor fi(X) of f(X) in K(α1, . . . , αi−1)[X]. The number of choices for

φ1 is the number of roots of f1(X) in N which is ≤ deg(f1) = [K(α1) : K]. We just continue here.

The number of choices for φi given a choice for φ1, . . . , φi−1 is the number of roots βi of f
φi−1

i (X) which

is

≤ deg(fi) = [K(α1, . . . , αi) : K(α1, . . . , αi−1)]

If we have equality that

# of roots of f
φi−1

i (X) in N
?
= deg(fi) = [K(α1, . . . , αi) : K(α1, . . . , αi−1)]

then we’ll have the desired equality. Conclude that

|AutK(N)| ≤ [K(α1) : K] · [K(α1, α2) : K(α1)] · · · = [N : K].

Proposition IV.3.8

If L/K is a finite extension and M/K is any extension, then

|HomK(L,M)| ≤ [L : K]

Proof. DIY, same proof.

Example IV.3.8

Consider x3 − 1 over Q. Well, this factors as (x− 1)(x2 + x+ 1).

Then we look at

Q[X]

(x2 + x+ 1)
∼= Q(e2πi/3).

This is the splitting field, as

x3 − 1 = (x− 1)(x− e2πi/3)p(x)

and deg p = 1, so it has a root. Particularly if ω := e2πi/3.

Then

(x3 − 1) = (x− 1)(x− ω)(x− ω2)

AutQ(Q(ω)) = {Id, z 7→ z}
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= {ω 7→ ω, ω 7→ ω = ω2 = −ω − w}.

Example IV.3.9

The splitting field of x3 − 2 over Q. The roots are α, αω, αω2 where α := 3
√
2. Building our tower

Q(α, ω) Q(β, ω̂)

Q(α) Q(β)

Q Q

φ2

φ1

Id

where β = α, αω, αω2, and ω̂ = ω, ω2.

Then AutQ(Q(α, ω)) ∼= S3, since it is a subgroup of S3 (determined by how it permutes the roots),

and it has six things in it.

IV.4. Separability

Definition IV.4.1 (Separable)

A nonzero f(X) ∈ K[X] is separable if it has deg(f) distinct roots in a splitting field of f/K.

Definition IV.4.2

A field K is perfect if all irreducible polynomials over K are separable.

We’ll show: all fields of characteristic 0 are perfect and finite fields are perfect.

Note: f(X) is separable if and only if f(X) is the product of coprime separable irreducible polynomials.

Lemma IV.4.1

If an irreducible f(X) ∈ K[X] is NOT separable then p := char(K) is positive and f(x) = g(xp) for

some g ∈ K[X].

Proof. If f is non-separable, and L is the splitting field of f/K then there is an α ∈ L, h(x) ∈ L[x] with

(x− α)2h(x) = f(x)

2(x− α)h(x) + (x− α)2h′(x) = f ′(x)

0 = f ′(α).

But f(x) is irreducible and f(α) = 0, so f = minpolyK(α). So since f ′(α) = 0 and deg(f ′) < deg(f), we

know that f ′(x) = 0.

This never happens in characteristic zero, because then f ′(x) = 0 if and only if f is constant. Thus

p := char(K) > 0. We then see that

f(X) =

n∑
i=0

aiX
i

f(X) =

n∑
i=1

iaiX
i−1.
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Thus iai = 0. If i = 0, then p | i. Thus we can write f as

f(X) =

n∑
j=0

apjX
pj = g(Xp).

Where apj = 0 if pj > n.

Corollary IV.4.2

If char(K) = 0 then K is perfect.

Corollary IV.4.3

If char(K) = 0 and N/K is the splitting field over K of some f(X) ∈ K[X] then

|AutK(N)| = [N : K].

Definition IV.4.3

Given an extension L/K, then α ∈ L is separable over K provided that α is algebraic over K and

minpolyK(α) is separable.

L/K is separable provided that every α ∈ L is separable over K.

L/K is algebraic if every α ∈ L is algebraic over K.

Note: If α is algebraic over K, then α is separable over K if and only if

|HomK(K(α), N)| = [K(α) : K]

for some extension N/K (say the algebraic closure of N or a splitting field of the minimal polynomial of α).

Lemma IV.4.4

If L/K is finite then L/K is separable if and only if |HomK(L,N)| = [L : K] for some N/K

Proof. L = K(α1, . . . , αn) for some α1, . . . , αn ∈ L (which we can pick at will).

We form a tower as before

L N

K(α1, α2, α3)

K(α1, α2)

K(α1)

K K

φ

φ3

φ2

φ1

Id

where the # of choides for φi given φi−1 is

≤ [K(α1, . . . , αi) : K(α1, . . . , αi−1)
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with equality if and only if αi is separable over K. Then

|HomK(L,N)| ≤ [K(α1) : K][K(α1, α2) : K(α1)] · · ·

= [L : K]

The equality is true when L/K is separable.

For the converse, choose α1 to be any element of L. The # of choices for φ1 has to agree with [K(α1) : K]

if and only if α1 is separable over K, and this has to agree if we are to have the desired equality.

Corollary IV.4.5

If M/L and L/K are finite, then M/K is separable if and only if M/L is separable and L/K is

separable.

The =⇒ is clear.

Proof. If L/K and M/L are separable then there exists N/K such that

|HomK(L,N)| = [L : K] |HomL(M,N)| = [M : L]

So there exist [L : K] K-homomoprhisms L → N and each of these can be extended in [M : L] ways to a

homomorphism M → N yielding [M : K] K-homomorphisms M → N .

Recall IV.4.1

A finite extension L/K is separable if and only if |HomK(L,Ω)| = [L : K] for some extension Ω/K

(think of C for Q or the algebraic closure of K).

We used this to prove: If M/L and L/K are finite extensions then M/K is separable if and only if

both M/L and L/K are separable.

Also: If char = 0 then all algebraic extensions of K are separable (K is called perfect).

Corollary IV.4.6

If α1, . . . , αn are separable over K then K(α1, . . . , αn)/K is separable.

Corollary IV.4.7

If f(X) ∈ K[X] is separable and N is a splitting field of f(X) over K then

|AutK(N)| = [N : K]

IV.5. Finite Fields

If K is a finite field, then p := char is a positive prime and K contains Fp (the additive group generated

by 1 in K). Thus K is an Fp-vector space of dimension n (since it’s finite).

Thus |K| = pn. Our plan is to show there is exactly one such field for every choice of p, n.

Proposition IV.5.1

There is exactly one finite field K of size q = pn for a prime p and n ≥ 1 up to isomorphism.

Notation: We write Fq for “the” finite field of size q.
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Proof. If K is a finite field, say of size q, then K× has order q − 1. Lagrange’s theorem tells us that for

α ∈ K× gives αq−1 = 1. Therefore every α ∈ K satisfies αq = α.

This shows that every α ∈ K is a root of xq − x. Thus K is a splitting field of xq − x over Fp. Any two

splitting fields are isomorphic, so this is clear.

Conversely, if q = pn, then let S be the set of roots of xq − x in a splitting field of xq − x over Fp.

(1) |S| = q since (xq − x)′ = −1 has no roots, so there are no repeated roots.

(2) S is closed under multiplication and addition.

Note that the map α 7→ αp is the Frobenius homomorphism (Definition IV.3.1), and α 7→ αq is

the composition of this map with itself so it is a field homomorphism. Thus if α, β are roots of xq−x
then

(αβ)q = αqβq = αβ

(α+ β)q = αq + βq = α+ β.

Finite nonempty sets which are closed under addition and multiplication are fields (inverses come for free).

Thus S is a field of size q.

Remark IV.5.1

Note that F8 does not contain F4 because 8 is not a power of 4.

Proposition IV.5.2

Fq ⊇ Fr if and only if they have the same characteristic p and q = rk for some k.

This means that r = pℓ, so q = pℓk.

Proof. The forward direction holds because field extensions always have the same characteristic, and Fq is a

finite vector space over Fr, and so it has some dimension k.

Conversely, if ℓ | n then Fpn ⊇ Fpℓ since Fpn is the roots of xp
n − x and xp

ℓ − x divides xp
n − x.

Lets use that the Frobenius map (and its compositions) are an isomorphism. Then

xp
ℓ

− x+ (xp
ℓ

− x)p
ℓ

+ (xp
ℓ

− x)p
2ℓ

+ · · ·+ (xp
ℓ

− x)p
(k−1)ℓ

(xp
ℓ

− x) + (xp
2ℓ

− xp
ℓ

) + (xp
3ℓ

− xp
2ℓ

) + · · ·+ (xp
n

− xp
(k−1)ℓ

)

= xp
n

− x

Therefore xp
ℓ − x divides xp

n − x. Then Fpn is the splitting field of xp
n − x over Fp. Thus it contains a

unique splitting field of the factor xp
ℓ − x over Fp.

Thus Fpn ⊇ Fpℓ .

Now we’re going to look at the automorphisms of Fpn . We know we have

Frobp : x 7→ xp
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is an automorphism. Then we can define

Frobp2 = Frobp ◦Frobp

Frobpk : x 7→ xp
k

.

Note that since Fpn is the splitting field of xp
n − x we have that Frobpn = Id These are all automorphisms .

They are distinct because for 0 ≤ ℓ < k < n, if we have xp
k

= xp
ℓ

for all x ∈ Fpn then all pn elements

would be roots of

xp
k

− xp
ℓ

which has degree < pn, which is a contradiction.

Then we have that

⟨Frobp⟩ ⊆ Aut(Fpn)

and the LHS has order n, but in general since any automorphism of Fpn fixes Fp we have that

Aut(Fpn) = AutFp(Fpn) ≤ [Fpn : Fp] = n

Thus

⟨Frobp⟩ = Aut(Fpn) = AutFp(Fpn)

Lets now look at the intermediate fields of F312 . Then we have only the below containments

F312

F36 F34

F33 F32

F3

2 3

2
3

2

3 2

Now if we look at the subgroups of Aut(F312) fixing each intermediate field we get the following corresponding

picture, on the right being the abstract cyclic group picture

⟨Frob312⟩

⟨Frob36⟩ ⟨Frob34⟩

⟨Frob33⟩ ⟨Frob32⟩

⟨Frob3⟩

2 3

2
3

2

3 2

C1

C2 C3

C4 C6

⟨C12⟩

2 3

2
3

2

3 2

Note: If L/K is an extension of finite fields and f(x) ∈ K[x] is minpolyK(x) for some α ∈ L then f(x)

has deg(f) distinct roots in L.
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Also: if f(x) ∈ Fq[x] is a irreducible and α ∈ Fqn is a root of f(x) then

f(x) = (x− α)(x− αq) · · · (α− qd−1)

where d = deg(f).

IV.6. Galois Extensions, and the Fundamental Theorem

Definition IV.6.1

A finite extension L/K is Galois if |AutK(L)| = [L : K]. In this case we say Gal(L/K) := AutK(L)

is the Galois group of L/K.

Note: We always have |AutK(L)| ≤ [L : K]. We have shown that a splitting field of a separable

polynomial is always a Galois extension.

Definition IV.6.2

Given an extension L/K and some subgroup H of AutK(L) we call LH := {ℓ ∈ L | h(ℓ) = ℓ, ∀h ∈ H}
the fixed field of H.

Theorem IV.6.1 (Fundamental Theorem of Galois Theory)

If L/K is Galois, then there are inverse bijections

{fields M with K ⊆M ⊆ L} ↔ {subgroups of G := Gal(L/K)}

given by

M AutM (L)

LH H

φ

ψ

where [L :M ] = |φ(M)|, [M : K] = [G : φ(M)]. Furthermore L/M is Galois with group φ(M).

If K ⊆M,M ′ ⊆ L then

M ⊇M ′ ⇐⇒ φ(M) ≤ φ(M ′).

This gives us the following sort of corresponding picture, if H := φ(M), H ′ := φ(M ′) and M ⊇M ′

L 1

M H

M ′ H ′

K G

Also

The extension M/K is Galois ⇐⇒ φ(M) is a normal subgroup of G

and in this case Gal(M/K) ∼= G/φ(M).

If K ⊆M,M ′ ⊆ L then φ(M ∩M ′) = ⟨φ(M), φ(M ′)⟩ and φ(MM ′) = φ(M) ∩ φ(M ′). This gives a

picture like

51



Faye Jackson March 22nd, 2022 MATH 494 - IV.6

L

MM ′

M M ′

M ∩M ′

K

1

H ∩H ′

H H ′

⟨H,H ′⟩

G

For any finite extension K ′/K with L,K ′ living in a common larger field, LK ′/K ′ is Galois, with Galois

group isomorphis to Gal(L/(L ∩K ′)) = φ(L ∩K ′).

Definition IV.6.3

If f(X) ∈ K[X] is separable and n := deg(f), then we know that L/K is galois where L is the

splitting field of f(X) over K.

Note that an element of σ ∈ Gal(L/K) must permute the roots of f , and is determined exactly by

how it permutes the roots because L = K(roots of f(X)).

Thus there is an injective homomorphism Gal(L/K) ↪→ {permutations of roots} ∼= Sn. Thus we can

think of Gal(L/K) as a subgroup of Sn (at least up to isomorphism).

Define Gal(f(X),K) ≤ Sn to be the image of this homomorphism.

The sizes of the orbits of Gal(f(X),K) are the degrees of the (monic) irreducible factors of f(X) in K[X].

So: if L is the splitting field of f(X) over K, and K ′/K is finite, then

Gal(f(X),K ′) ∼= Gal(LK ′/K ′) ∼= Gal(L/(L ∩K ′))

so the degrees of the (monic) irreducible factors of f(X) in K ′[X] are the sizes of the orbits of Gal(L/(L ∩
K ′)) = φ(L ∩K ′).

Thus f(X) is irreducible over K if and only if Gal(f(X),K) is transitive.

Example IV.6.1

Gal((x2 − 2)(x2 − 3),Q) is not S4 because we cannot swap
√
2 and

√
3, as (

√
2)2 = 2 but (

√
3)2 = 3.

It in fact permutes the roots of (x2 − 2) and it permutes the roots of x2 − 3.

In fact Gal((x2 − 2)(x3 − 3),Q) ∼= C2 × C2 (these are in fact independent.

In constrast, if we have Gal((x2 − 2)(x2 − 3)(x2 − 6),Q) ∼= C2 ×C2 because the relation
√
6 =
√
2
√
3

must be preserved. This can be seen because Q(
√
2,
√
3) is the splitting field of both polynomials.

Looking at Gal(x4 − 2,Q) the only pairs of roots who sum to zero are

4
√
2 + (− 4

√
2) = 0

i
4
√
2 + (−i 4

√
2) = 0

Thus we have to preserve or swap the sets { 4
√
2,− 4
√
2} and {i 4

√
2,−i 4

√
2}. Magma says that Gal(x4 −

2,Q) ∼= D4.

Proof of Theorem IV.6.1, easy/HW bits. We assume the hard parts of the theorem and will prove some of

the easier parts.

52



Faye Jackson March 24th, 2022 MATH 494 - IV.6

We know that L/M is Galois because [L :M ] = |φ(M)| = |AutM (L)|.
If K ⊆M,M ′ ⊆ L, then if M ⊇M ′ then any automorphism of L fixing M also fixes M ′. Thus

φ(M) ≤ φ(M ′).

Likewise if H ≤ H ′, then the elements fixed by H ′ are also fixed by H, so LH ⊇ LH′
.

We will prove on homework that the extension M/K is Galois if and only if φ(M) is a normal subgroup

of G, and that in this case Gal(M/K) ∼= G/φ(M).

Note that M ∩M ′ is the largest field contained in M,M ′, and ⟨φ(M), φ(M ′)⟩ is the smallest subgroup

containing both φ(M), φ(M ′). Because φ reverses orders and is a bijection of lattices we have

φ(M ∩M ′) = ⟨φ(M), φ(M ′)⟩.

The other equality follows similarly

φ(MM ′) = φ(M) ∩ φ(M ′).

We will prove the statement about a finite extension K ′/K on Homework.

Proof of Theorem IV.6.1, hard parts. First: For any finite L/K and any extension N/K, we have that

|HomK(L,N)| ≤ [L : K]

by sending roots to roots and extending inductively. Also, if L/K is Galois and N ⊇ L then by counting

HomK(L,N) = AutK(L).

So if L/K is Galois and K ⊆M ⊆ L we have

|HomK(M,L)| ≤ [M : L]

and each φ ∈ HomK(M,L) can be extended to at most [L : M ] elements of HomK(L,L) ∼= AutK(L) (by

finite-dimensionality and injectivity).

Therefore

[L : K] = |AutK(L)| = |HomK(L,L)|

≤ |HomK(M,L)| [L :M ]

≤ [M : K][L :M ] = [L : K].

Thus every inequality must be an equality. Thus there are [M : K] elements φ ∈ HomK(M,L) and each of

these has [L :M ] extensions to AutK(L). Therefore taking φ = IdM we have

|AutM (L)| = |HomM (L,L)| = [L :M ].

Thus L/M is Galois.

We then know the fixed field

LGal(L/M) := {ℓ ∈ L | σ(ℓ)ℓ,∀σ ∈ Gal(L/M)}

53



Faye Jackson March 24th, 2022 MATH 494 - IV.6

trivially contains M . We then see that

[L : LGal(L/M)] ≤ [L :M ].

But then we have

[L : LGal(L/M)] ≥ |AutLGal(L/M)(L)| = |Gal(L/M)| = [L :M ].

Thus M = LGal(L/M).

Now we need to show that, conversely, for any subgroup H of Gal(L/K), that H = Gal(LH). We know

that

H ≤ AutLH (L) = Gal(L/LH).

|H| ≤ [L : LH ].

But also, L/K is Galois, so it is separable. Thus L = K(α) for some α ∈ L by the Primitive Element

Theorem (see Piazza). Also L = LH(α).

Call f := minpolyLH (α). From the proof of the Theorem B.0.1 (see Appendix), LH = K(coeffs of f).

Now consider

g(x) :=
∏
σ∈H

(X − σ(α)).

Then

σ(g(x)) =
∏
σ′∈H

σ(X − σ′(α))

=
∏
σ′∈H

(X − σσ′(α))

= g(x).

Thus g(x) ∈ LH [X], note that deg g = |H|. Now since g(α) = 0 we have deg f ≤ deg g and may write

|H| ≤ [L : LH ] = [LH(α) : LH ] = deg f ≤ deg g = |H| .

Thus
∣∣Gal(L/LH)

∣∣ = [L : LH ] = |H|, so H = Gal(L/LH).

Example IV.6.2

Say K = Q, L is the splitting field of x3 − 2 over Q, ω = e2πi/3. So L = Q( 3
√
2, ω). Then [L : Q] = 6.

Any σ ∈ Gal(L/Q) maps 3
√
2 7→ 3

√
2ωi, i ∈ Z/3Z and ω 7→ ωj , j = 1 or 2.

Since the Galois group is size 5, there are at most 6 choices for (i, j). Thus all choices must work.

Write σ to be the map 3
√
2 7→ 3

√
2ω, ω 7→ ω and τ : 3

√
2 7→ 3

√
2, ω 7→ ω2.

Then σ, τ ∈ Gal(L/Q), σ3 = 1 = τ2, and

τστ−1 = τστ = (
3
√
2 7→ 3

√
2ω2, ω 7→ ω) = σ2

Thus Gal(L/Q) = ⟨τ, σ⟩ ∼= S3.

We may then draw the following complementary lattices
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1

⟨τσ⟩ ⟨τ⟩ ⟨τσ2⟩

⟨σ⟩

S3

2

2

2

3

2
3

3

3

Q( 3
√
2, ω)

Q( 3
√
2ω) Q( 3

√
2) Q( 3

√
2ω2)

Q(ω)

Q

2

2

2

3

2
3

3

3

As an example calculation, we see that

τσ :
3
√
2 7→ 3

√
2ω2, ω 7→ ω2,

3
√
2ω 7→ 3

√
2ω.

Thus ⟨τσ⟩ fixes 3
√
2ω, and thus fixes all of Q( 3

√
2ω).

Alternatively, since L is the splitting field of a degree 3 separable polynomial we know Gal(L/Q) ≤ S3,

so a size argument gives equality with S3.

Proposition IV.6.2

If L/K is Galois and α ∈ L, then minpolyK(α) splits in L[X]. That is L contains a splitting field of

minpolyK(α) over K.

Proof. Let G := Gal(L/K). Then S := {σ(α) | σ ∈ G} are roots of minpolyK(α). Then we use orbit-

stabilizer.

Explicitly, let H = {σ ∈ G | σ(α) = α} be the stabilizer. Then we have

|S| = [G : H]

via a bijection G/H → S mapping σH to σ(α).

Let T be a set of representatives of G/H. Then let

f(x) :=
∏
σ∈T

(X − σ(α)) =
∏
s∈S

(X − s).

For all σ ∈ G, we have

σ(f(x)) =
∏
σ′∈T

σ(X − σ′(α))

=
∏
σ′∈T

(X − σσ′(α))

=
∏
σ′∈T

(X − σ′(α)) = f(x).
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Thus f(x) ∈ LG[X] = K[X]. So since f(α) = 0 and all roots of f(x) are in L, all roots of minpolyK(α) are

in L.

Proposition IV.6.3 (Natural Irrationalities)

If N/K is Galois, then for any extension L/K (such that N,L are contained in a common field, say

M) then the extension NL/L is Galois, and

Gal(NL/L) ∼= Gal(N/(N ∩ L))

σ 7→ σ
∣∣
N
.

Proof. N/K is Galois, so N is the splitting field over K of some separable f(X) ∈ K[X]. Then NL is the

splitting field over L of f(X). Thus NL/L is Galois.

For σ ∈ Gal(NL/L), σ
∣∣
N
∈ Gal(N/(N ∩ L)) because σ

∣∣
N∩L = Id, and σ

∣∣
N

is determined by where it

sends the roots of f(X), which are permuted by σ, so σ(N) = N .

φ is injective. If σ ∈ ker(φ), then σ
∣∣
N

= Id, σ ∈ Gal(NL/L), so σ
∣∣
L
= Id. So then σ = Id.

We now show that φ is surjective. Let H := Gal(NL/L), G = Gal(N/(N ∩ L)). We know that φ(H) ≤ G,

and Nφ(H) ⊇ N ∩ L.
By the Galois Correspondence

(NL)H = L

Nφ(H) = N ∩ L = NG.

Thus H = G, so we’re done!.

Lemma IV.6.4

If N/K is Galois and L1, L2 are fields containing N , then for any σ ∈ HomK(L1, L2), the restriction

σ
∣∣
N

lies in Gal(N/K).

Proof. By Theorem B.0.1 let N = K(α), f(X) be the minimal polynomial of α over K. Then f(X) splits

over N .

Then for any σ ∈ HomK(L1, L2), σ(α) is a root of f(X), so σ(N) = N . This shows σ
∣∣
N

lies in Gal(N/K).

Proposition IV.6.5

If N1/K and N1/K are Galois, then N1N2/K is Galois, and the map

ψ : Gal(N1N2/K)→ Gal(N1/K)×Gal(N2/K)

σ 7→ (σ
∣∣
N1
, σ
∣∣
N2

)

is an injective homomorphism.

Proof. σ
∣∣
Ni
∈ Gal(Ni/K), so ψ is well-defined, by a similar argument as the above. Similarly ψ is injective,

if ψ ∈ ker(φ), it is trivial on N1, N2, so it is trivial on N1N2.
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Definition IV.6.4

Say a Galois extension N/K is abelian provided that Gal(N/K) is abelian.

Corollary IV.6.6

By Proposition IV.6.5, if N1/K, . . . , Nℓ/K are abelian, then N1N2 · · ·Nℓ/K is abelian.

Corollary IV.6.7

By Proposition IV.6.5, if N1/K, . . . , Nℓ/K are all Galois with [Ni : K] = pni , then [N1 . . . Nℓ : K] =

pm.

Proposition IV.6.8

If N/K and M/K are Galois, then (N ∩M)/K is Galois.

Proof. Any σ ∈ HomK(N ∩M,NM) lifts to an element of Gal(NM/K), which restricts to automorphisms

of N and of M .

Thus σ ∈ AutK(N1∩N2) from the lemma above. From the fundamental theorem |HomK(N ∩M,NM)| =
[N ∩M : K], and so we have [N ∩M : K] things in AutK(N1 ∩N2), proving this is Galois.

Definition IV.6.5

If N/K is Galois and K ⊆ L ⊆ N , then the Galois closure of L/K (inside N) is the smallest field M

with L ⊆M ⊆ N , and M/K is Galois.

Alternately, if L = K(α), then the Galois closure of L/K is the splitting field of the minimal polynomial

of α over K.

Suppose N/K is Galois, G := Gal(N/K) and K ⊆ L ⊆ N , with H := Gal(N/L). Let N ′ be the Galois

closure of L/K, with H ′ := Gal(N/N ′). We have the pictures

N 1

N ′ H ′

L H

K G

Thus N ′/K is the smallest Galois extension containing L, so H ′ is the biggest group contained in H such

that H ′ is normal in G.

Thus H ′ is the intersection of the G-conjugates of H. Equivalently it is the kernel of G→ Sym(G/H) via

left multiplication (we did it last semester). Group theory term: H ′ := coreG(H).

Previously: We showed a length α ∈ R>0 is constructible using straightedge and compass if and only if

Q(α) ⊆ Kn, where [Ki : Ki−1] = 2 is a tower of fields with K0 = Q.

Now show α is constructible if and only if [Gal. cl. of Q(α)/Q : Q] = 2n. This is the same as saying the

splitting field of the minimal polynomial of α over Q has degree 2n.

Proof. If α is constructible, then the Galois closure of Q(α)/Q is Q({σ(α) | σ ∈ HomQ(Ω,Ω
′)}) for some

suitably large fields Ω,Ω′ (for example Ω = Ω′ = C).
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This is contained in the compositum of all σ(Kn), of which there are finitely many because Kn/K is finite

(so the number of restrictions σ
∣∣
Kn

is finite).

This compositum has degree a power of 2, so the Galois closure has degree a power of two (since it’s

contained in a 2m degree extension).

The converse follows from some group theory concerning p-groups. Namely, we show any subgroup of a

p-group, the normalizer is larger than itself.

Note: Fixed the proof of Proposition IV.6.3 from last time, see the proof there.

Last Time: If N1/K,N2/K are Galois, then N1N2/K is Galois, and

ψ : Gal(N1N2/K) ↪→ Gal(N1/K)×Gal(N2/K).

Proposition IV.6.9

N1 ∩N2 = K if and only if ψ is an isomorphism. That is

Gal(N1N2/K) ∼= Gal(N1/K)×Gal(N2/K).

Proof. We see that

Gal(N1N2/N1) ∼= Gal(N2/(N1 ∩N2))

with restriction being the map by Proposition IV.6.3. This equals Gal(N2/K) if and only if N1 ∩N2 = K by

the Galois correspondence.

This proves the result, since it says that imψ contains 1×Gal(N2/K) if and only if N1 ∩N2 = K.

Which then of course holds if and only if it contains Gal(N1/K)× 1. Together, these generate the group,

so we’re done, as ψ is now surjective if and only if N1 ∩N2 = K, and a priori we have ψ is injective.

Another Perspective. Alternatively, let G := Gal(N1N2/K), Gi := Gal(N1N2/Ni).

N1N2

N1 N2

K

1

G1 G2

G

Now G1 ∩G2 = 1 because if you fix N1, N2 you must fix N1N2.

By Galoisness, we know G1, G2 ⊴ G (normal subgroups). Then N1 ∩N2 = K if and only if ⟨G1, G2⟩ = G.

But then ⟨G1, G2⟩ = G1 ×G2.

Corollary IV.6.10

If N1 ∩N2 = K, then [N1N2 : K] = [N1 : K][N2 : K] when N1/K,N2/K are Galois.

Note: Let ω = e2πi/3. Then even though Q( 3
√
2) ∩Q(ω 3

√
2) = Q we have
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Q( 3
√
2, ω 3
√
2)

Q( 3
√
2) Q(ω 3

√
2)

Q

2 2

33

Corollary IV.6.11 (to Proposition IV.6.3)

If N/K is Galois and L/K is arbitrary then [NL : L] | [N : K].

Proof. [NL : L] = #Gal(NL/L) = #Gal(N/(N ∩L)) which divides Gal(N/K) by Lagrange’s theorem.

Lemma IV.6.12

For any extensions M/K and L/K, we have that

[ML :M ] ≤ [L : K].

Proof. If L = K(α), then [L : K] is the degree of the minimal polynomial f(X) of α over K.

But then f(X) ∈M [X] and f(α) = 0, so if g(X) is the minimal polynomial of α over M then g | f .
But then ML = M(α), so [ML : M ] = deg g ≤ deg f = [L : K], with equality if and only if f remains

irreducible in M [X].

In general, we can proceed by induction, letting L = K(α1, . . . , αn) and exploiting multiplicativeness of

degrees in towers.

Then we have for Mi =M(α1, . . . , αi), Ki = K(α1, . . . , αi) that

[ML :M ] =

n∏
i=2

[Mi :Mi−1] ≤
n∏
i=2

[Ki : Ki−1] = [L : K].

Alternative Proof. Take a basis ℓ1, . . . , ℓn for L over K. Then V = spanM (ℓ1, . . . , ℓn) contains M,L, and is

a ring (fairly easy to show).

Since it is finite-dimensional over M , it is in fact a field. And so it contains the compositum ML, and is

clearly contained in ML. Thus it is ML, showing the fact immediately.

Last Time: If α ∈ R is constructible by straightedge and compass, then α is algebraic and α is contained

in a field Kn which is the top of some tower of degree 2 extensions.

And even better, we can take Kn/Q to be Galois.

Now we’ll prove the converse. Suppose α ∈ R, α ∈ N , N/Q is Galois, and [N : Q] = 2n.

Lets show that there exists a tower of degree two extensions L0 := Q(α), Lk = Q, [Li−1 : Li] = 2.

Proof. In group language using Galois theory. It suffices to show that if G is a 2-group of order 2n, and

H < G, then there exists a J such that H < J ≤ G and [J : H] = 2. We’d then take G := Gal(N/Q),

H := Gal(N/Li−1), and set Li = NJ to induct.

We’ll show this more generally for p-groups where p is a prime. Let |G| = pn, H < G. Then there exists a

J with H < J ≤ G and [J : H] = p, and in fact H is normal in J .
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This implies that NG(H) ⊋ H, since J ⊆ NG(H). Conversely, if NG(H) ⊋ H, then NG(H)/H is a

p-group, so it has some order p subgroup J ′. This corresponds to a subgroup H < J ≤ NG(H) ≤ G such

that [J : H] = p.

This means we can equivalently show that NG(H) ⊋ H. If H = 1, then NG(H) = G and we’re done. So

suppose H ̸= 1.

To show this, note that g ∈ NG(H) if and only if g−1hg ∈ H for every h ∈ H. That is if and only if

hg ∈ gH for every h ∈ H, or hgH = gH for every h ∈ H.

Thus it suffices to show there is a coset of H which is fixed under multiplication on the left by H other

than H. Call this action ρ : H → Sym(G/H), and we’re looking for a fixed point. We see that for any

gH ∈ Sym(G/H)

|Orbit(gH)| = |H|
Stab(gH)

= pi

for some i, because Stab(gH) ≤ H ≤ G. Then G/H is zero mod p, and |Orb(gH)| is zero mod p unless i = 0.

Thus since H is a fixed point, to get zero mod p we must have other fixed points.

This completes the proof

Definition IV.6.6

L/K is called normal if HomK(L,M) = AutK(L) for every M ⊇ L.

Recall IV.6.3

L/K is Galois if |AutK(L)| = [L : K], and L/K is separable if |HomK(L,M)| = [L : K] for some

field M ⊇ K (M needs to be large enough).

L/K Galois implies L/K is separable.

L/K is Galois if and only if L is the splitting field over K of some separable f(X) ∈ K[X].

L/K is Galois if and only if L/K is separable and normal.

How do we deal with non-Galois extensions? If L/K is separable, let N/K be the Galois closure of L/K

(write L as K(α) and split the minimal polynomial of α). Then letting G := Gal(N/K), H := Gal(N/L).

Then fields between L and K correspond to groups between G and H (see HW10).

Note that this can be studied by the action of G on G/H by left multplication, and the kernel is trivial

because any kernel would give a galois extension between N and L.

Given a separable extension L/K, we can write L = Ln ⊇ Ln−1 ⊇ · · · ⊇ L0 = K where there is no field

between Li and Li−1. This is a powerful approach, enabling one to study arbitrary extensions L/K via

inducting, with inductive step addresses only minimal extensions (see HW9, does not work for Q3).

Useful because: Galois groups of (Galois closures of) minimal separable extensions are massively con-

strained.

Definition IV.6.7

Call such a Galois group of the Galois closure of a minimal separable extension a primitive permutation

group

(viewed as a permutation group by the action of G on G/H).

Facts:
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• If G is a primitive subgroup of Sn, then either

– L× L× · · · × L ≤ G ≤ Aut(Lk) = (Aut(L))k ⋊ Sk where L is a nonabelian simple group.

– n = pk, p prime, (Fp)k ≤ G ≤ AGLk(Fp).
Where

AGLk(Fp) = (Fp)kGLk(Fp)

in the usual action on (Fp)k.
• Also for 100% (not all) of positive integers n, the only primitive subgroups of degree n are An and

Sn.

• Also if n is prime, then every transitive subgroup of Sn is

– Sn or An

– groups between Fn and AGL1(Fn).
– If n = (qk − 1)/(q − 1) with k ≥ 2, and q a prime power, then groups

PGLk(Fq) ≤ G ≤ PΓLk(Fq)

acting on Pk−1(Fq) (the projective plane).

– if n = 23, there’s M23 (Mathieu simple group).

– If n = 11, you get M11 and PSL2(F1!).

IV.7. Solvability by Radicals

Given f(X) ∈ Q[x] \Q, when can all roots of f(X) be expressed in terms of nested radicals, e.g.,

3

√
57
√
31− 53

5

√
21 +

√
3

Definition IV.7.1

An element α ∈ C is expressible in terms of nested radicals if and only if α ∈ Kn for some field Kn

such that Kn ⊇ Kn−1 ⊇ · · · ⊇ K0 = Q such that

Ki = Ki−1(αi) with α
di
i ∈ Ki−1 for some positive integer di.

We call a polynomial f(X) ∈ Q[X] \ Q solvable by radicals provided that all its complex roots are

expressible in terms of nested radicals.

This is equivalent to the splitting field of f(X) over Q being contained in such a field Kn (by pasting

towers together).

Theorem IV.7.1

For any separable f(X) ∈ Q[X] \Q, f(X) is is “solvable by radicals” if and only if Gal(f/Q) (that is

the Galois group of the splitting field)

is “solvable,” i.e., the Jordan Hölder decomposition

Gal(f/Q) ▷ G1 ▷ G2 ▷ · · · ▷ Gk = 1

where Gi−1 is normal in Gi and Gi/Gi−1 is cyclic of prime order.
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Proposition IV.7.2

Abelian groups are solvable.

Proof. Every group in the Jordan Hölder decomposition is simple and abelian, and the only such groups are

cyclic of prime order.

Corollary IV.7.3

All polynomials in Q[X] of degree ≤ 4 are solvable by radicals, since all subgroups of S1, S2, S3, S4

are solvable.

But for all n ≥ 5, there exist degree n irreducible f(X) ∈ Q[X] that are not solvable by radicals,

namely because there exist f(X) with Gal(f/Q) ∼= Sn, which is not solvable because An is simple for

n ≥ 5).

Proof of Theorem IV.7.1, part one. Suppose f(X) is solvable, then we wish to show G := Gal(f(X),Q) is

solvable.

Let the splitting field of f(X) be given by Kn, where Kn ⊇ Kn−1 ⊇ · · · ⊇ K0 = Q, and Ki = Ki−1(αi)

where αdii ∈ Ki−1, di ∈ Z>0.

We may assume that every di is prime since

K(α1/ab) = (K(α(1/a)))

((
α1/a

)1/b)
.

We may also assume that Kn contains all complex N -th roots of unity, for any fixed N .

Thus we may assume all roots of f(X) are in a field Kn where K−1 = Q, K0 = Q(e2πi/N ), Ki = Ki−1(αi)

for i ≥ 1, αdii ∈ Ki−1, di prime, di | N .

We’ll show for all i > 1, either Ki = Ki−1 or Ki/Ki−1 is Galois with group Cdi . Thus suppose αi ̸∈ Ki−1

(if αi ∈ Ki−1 we have Ki = Ki−1).

Claim

Write p := di. We’re trying then to show that if L contains a primitive p-th root of unity ζ and an

element α of some extension of L satisfies αp ∈ L, but α ̸∈ L, then Xp−αp is irreducible in L[X]. Even

better, Gal(Xp − αp, L) ∼= Cp.

Why? Roots of Xp − αp are exactly αζi for i = 0, 1 . . . , p − 1, which is Galois. The splitting field of

Xp − αp over L is L(α), so L(α)/L is Galois. Let σ be any non-identity element of Gal(L(α)/L), which

exists since [L(α) : L] > 1. Then σ cannot fix α.

Therefore σ(α) = αζi for 1 ≤ i ≤ p− 1. Because p is prime, ζi has order p, write it as ξ, as there is

no need to distinguish a p-th root of unity. Then σ fixes ξ = ζi ∈ L. Then

α
σ7−→ αξ

σ7−→ αξ2
σ7−→ αξ3 7→ · · ·

This cycles once we’ve applied σ p times. Thus σ has order p, and |Gal(L(α)/L)| = [L(α) : L] ≤ p

because α satisfies Xp − αp ∈ L[X]. Therefore Gal(L(α)/L) = ⟨σ⟩ ∼= Cp. This implies Xp − αp is

irreducible, as it is the minimal polynomial of α.

Perfect!

Note we have previously shown Q(e2πi/N )/Q is Galois.
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Note: We can make Kn/Q Galois with group G, namely, the Galois closure is given by the compositum of

σ(Kn) for homomorphisms σ ∈ HomQ(Kn,C), and these all can be built in the same way as Kn, and then

pasted together.

Then we have a picture

Kn

...

K2 = K1(α2)

K1 = K0(α1)

K0 = Q(e2πi/N )

K−1 = Q

Gn

...

G2

G1

G0

G−1 = G

where Ki = Ki−1 or Ki/Ki−1 is Galois with Galois group cyclic of prime order. Thus Gi ⊴ Gi−1 with

Gi−1/Gi ∼= Cp for a prime p or p = 1. At least for i ≥ 1. For K0/K−1, this is Galois with galois group

(Z/NZ)×, which is abelian, so this is a fine decomposition.

We started with f(X) ∈ Q[X] with splitting field L (over Q). We’ve shown there exists N such that

G := Gal(L(e2πi/N )/Q) is solvable.

Now conclude that Gal(L/Q) = G/H for H := Gal(L(e2πiN )/L) is solvable.

Namely if π : G↠ G/H is the quotient map then

G/H = π(G) ⊵ π(G0) ⊵ π(G1) ⊵ · · · ⊵ π(Gn) = 1.

Then we see that

Gi−1 ↠ π(Gi−1) ↠ π(Gi−1)/π(Gi)

the kernel contains Gi so

Gi−1/Gi ↠ π(Gi−1)/π(Gi).

The left side has prime order or order 1, so π(Gi−1)/π(Gi) has order 1 or p.

Thus Gal(f(X),Q) = G/H is solvable.

Lemma IV.7.4 (Key lemma)

If a field L contains n n-th roots of unity, and N/L is Galois with Gal(N/L) ∼= Cn, then N = L(α)

where αn ∈ L.

Proof. Of course L contains a primitive n-th root of unity, because the multiplicative group of the n-th roots

of unity in L is cyclic.
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See Piazza for a proof

Proof of Theorem IV.7.1, part two. If f(X) ∈ Q[X] \Q and Gal(f/Q) is solvable, then we must show f(X)

is solvable.

Then we have that the splitting field Kn of f/Q is given as a tower Kn ⊇ · · · ⊇ K1 ⊇ K0 = Q with

Ki/Ki−1 Galois with prime degree.

Say [Ki : Ki−1] = p, for p a prime. Consider L = Ki−1(e
2πi/p). Then LKi/L is Galois, with group a

subgroup of Gal(Ki/Ki−1) ∼= Cp.

Thus the group is either 1 or Cp. If it’s 1, then adjoining a p-th root of unity suffices.

If the group is Cp, the lemma says that LKi = L(α) for some α where αp ∈ L. Thus we can adjoin a p-th

root of unity as well as αp.

Thus everything in the splitting field is expressible in radicals.

Example IV.7.1

Let f(X) = (x− 2)(x− 4)(x− 6)(x2 + 2) + 2/N , where N is large, N is odd, so that f(X) still has

three real roots.

Then complex conjugation is a 2-cycle of f(X), and it is irreducible by Eisenstein since

N(x− 2)(x− 4)(x− 6)(x2 + 2) + 2

has coefficients divisible by 2 except the leading term, and 22 ∤ 2.
Thus Gal(f/Q) is a transitive subgroup of S5, so it contains a 5-cycle. Containing a 5-cycle and a

2-cycle is enough to generate S5, so Gal(f/Q) = S5.

Then of course f(X) is not solvable by radicals.

V. Modules

Definition V.0.1

If R is a ring, an R-module is an abelian group under + equipped with an operation · : R×M →M

satisfying

• r · (r2 ·m) = (r1r2) ·m.

• r · (m1 +m2) = r ·m1 + r ·m2.

• (r1 + r2) ·m = r1 ·m+ r2 ·m.

• 1 ·m = m.

If R is a field, then R-module are R-vector spaces

Example V.0.1

Z-modules are just abelian groups. The last two axioms impose a unique · : Z×M →M .

What are K[X]-modules, for K a field. Well they’re automatically K-vector spaces V , along with a

distinguished map K-linear map V → V given by m 7→ x ·m (this map determines the action of K[X]

on V ).

An R-module contained in R are exactly ideals of R.
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Definition V.0.2

If M is an R-module, then an R-submodule of M is an additive subgroup of M which is closed under

multiplication by R.

Definition V.0.3 (Direct Sum Module)

If M,N are R-modules, M ×N is an R-module where the action of R is taken coordinate-wise.

We often denote this M ⊕N .

Definition V.0.4

Given a module M and an ideal I of R, then

IM =

{
n∑
ℓ=1

iℓmℓ : iℓ ∈ I,mℓ ∈M

}
is an R-module.

Definition V.0.5 (Quotient Modules)

If N is a submodule of an R-module M , then we know M/N is an abelian group under addition.

In fact, M/N is an R-module, where r · (m+N) = r ·m+N (check this is well-defined).

Explicitly, if m + N = m′ + N , then m − m′ ∈ N , so r(m − m′) ∈ N , so rm − rm′ ∈ N , so

rm+N = rm′ +N .

Definition V.0.6

If M,N are R-modules, we call a function f : M → N a homomorphism of R-modules if it is a

homomorphism of abelian groups such that f(r ·m) = r · f(m).

The kernel and image are R-submodules of M,N respectively.

Definition V.0.7

A “free” R-module is the direct sum Rn := R⊕R⊕ · · · ⊕R.
We call n the “rank” of Rn.

Note: R is a free R-module, and submodules of R are ideals. So

Example V.0.2

If R = Z[
√
−5], then R is a free R-module of rank 1. Recall that R has an ideal (aka a submodule)

(2, 1 +
√
−5), which is not free. This violates our intuitions!

We’ve proven it’s not free of rank 1, proving it’s not free is a bit harder.

Proposition V.0.1

If R is not the zero ring, and m ̸= n, then Rm ≇ Rn (as R-modules).

Proof. Let I be a maximal ideal of R. Suppose m < n, and f : Rm → Rn is an isomorphism.

Then Rn is spanned by f -images of the standard basis of Rm. Call these α1, . . . , αm. Thus Rn is R-linear

combinations of α1, . . . , αm.

Then (R/I)n will be R/I-linear combinations of the images of α1, . . . , αm under Rn → (R/I)n. But then

R/I is a field, (R/I)n is an R/I-vector space of dimension n, so it cannot be spanned by m elements.

Next goal: Determine all finitely generated Z-modules (aka finitely generated abelian groups).
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Theorem V.0.2 (Structure Theorem for Abelian Groups)

If G is a finitely generated abelian group, then

G ∼= Zn ⊕ Z/d1Z⊕ · · · ⊕ Z/drZ

where n, r ≥ 0, di ∈ Z>0, di | d2 | · · · | dr.
Also: n, r, di’s are uniquely determined.

Proof. Suppose G is a finitely generated abelian group, with generators g1, . . . , gm. Consider φ : Zm ↠ G

given by

(e1, . . . , em) = e1g1 + · · ·+ emgm.

This is a surjective group homomorphism (since G is abelian). Therefore G ∼= Zm/ kerφ. Thus it suffices to

understand kerφ.

Write K := ker(φ), so K is a subgroup of Zm. First we show that K is finitely generated.

Claim

More generally, if R is Noetherian, then any submodule of Rn is finitely generated.

If R is a PID, then the submodule is generated by at most n elements.

If M is a submodule of Rn, consider πi : R
n → R which projects onto the i-th coordinate. This is an

R-module homomorphism.

So π1(M) is a submodule of R, so π1(M) = (a1, . . . , am) ⊆ R for some a1, . . . , am ∈ R, by Noetherian-

ness.

Let α11, . . . , α1m satisfy π1(α1i) = ai.

Then M = ker(π1
∣∣
M
)⊕R(α1, . . . , αn). π1(m) ∈ (a1, . . . , am), so

π1(m) =
∑
i

riai = π1

(∑
i

riα1i

)
Thus m−

∑
i riαi ∈ kerπ1. It is easy to verify uniqueness.

Then kerπ1
∣∣
M

is a submodule of kerπ1 ∼= Rn−1, so this follows by inducting on n (the base case is

given by Noetherian-ness).

Therefore K is a finitely generated subgroup of Zm. Say the generators of K are k1, . . . , kℓ. Write ki =

(ki1, . . . , kim). Then 
k11 k12 · · · k1m

k21 k22 · · · k2m
...

...
. . .

...

kℓ1 kℓ2 · · · kℓm

 ·

g1

g2
...

gm

 =


0

0
...

0

 .

What operations can we perform on the [kij ] matrix.

• Swapping two rows just means reordering k1, . . . , kℓ.
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• Adding a multiple of one row to another (one at a time). By swapping this is exactly the same as

replacing row 1 with row 1 plus a times row 2.

This is the same as replacing k1 by k1 + ak2, which is fine because ⟨k1, k2⟩ = ⟨k1 + ake, k2⟩.
• Swapping two gi’s means swapping the columns

• Replacing g1 by g1 + ag2 where a ∈ Z does not change G (since ⟨g1, g2⟩ = ⟨g1 + ag2, g2⟩).
This has the effect of subtracting a times the 1st column from the second column.

• Multiply a column by −1, multiply a row by −1.

Proof to be continued next time!

Continued Proof of Theorem V.0.2. We want to use these operations to simplyify K.

If K is all zeros, then we’re done. Swap columns if needed to make 1st row contain a nonzero matrix entry

k1i, and then swap columns to make k11 nonzero. We can then multiply 1st row by −1 if needed to make

k11 > 0.

Subtract a multiple of 1st column from second column to make k12 satisfy 0 ≤ k12 < k11. Similarly in

columns 3, 4, 5, . . . ,m

If some k1i ̸= 0 with i > 1, then swap column 1 and column i and repeat until we cannot continue.

At this point we have k11 > 0, k12, . . . , k1m = 0.

Apply the analogue of this process to the 1st column until k11 > 0, k21, . . . , kℓ1 = 0.

Now do this process to the rows again. Keep going back and forth, k11 is getting smaller and smaller, but

remaining positive. Thus this stops after finitely many steps.

At this point, the first row and first column are zero. That is k11 > 0, k1j = ki1 = 0, i, j > 1.

If some kij is not divisibile by k11, add the i-th row to the first–this doesn’t change k11, but it makes k1j

be not divisibile by k11.

Do the previous steps over again until k11 > 0, k1j = ki1 = 0. Repeat these steps, since they reduce k11,

they have to terminate eventually.

Thus k11 | kij , k11 > 0, k1j = ki1 = 0 for all i, j > 1. As an example, we’ve gotten something like
3 0 0

0 6 18

0 −3 21

0 300 30.


Now do all the same steps to get either kij = 0 for all i, j > 1 or k22 > 0, k22 | kij , i, j > 2, k2j = ki2 = 0 for

i, j > 2, and k11 | k22.
Continue this process as long as possible. We end up with a [kij ] matrix looking like

k11 0 · · · 0 · · · 0

0 k22 · · · 0 · · · 0
...

...
. . .

...

. . .
...

0 · · · · · · kℓℓ · · · 0




h1
...

hm


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where 0 ≤ k11, k22, . . . and k11 | k22 | k33, . . . and the hi generate G. The relations are then just

kiihi = 0

for all 1 ≤ i ≤ ℓ. Thus G is Zm/K, and K is given as

G ∼= Z/(r1)⊕ Z/(r2)⊕ · · · ⊕ Z/(rm)

where ri = kii for 1 ≤ i ≤ ℓ and ri = 0 for i > ℓ, where r1, . . . , rn ≥ 0, r1 | r2 | r3 · · · . This gives something

like

Z/2Z⊕ Z/6Z⊕ Z⊕ Z.

Essentially, we’ve shown for every matrix M ∈ Mℓ×m(Z), there exists invertible P ∈ GLℓ(Z), Q ∈ GLm(Z)
so that

PMQ =


r1 0 · · · 0 · · · 0

0 r2 · · · 0 · · · 0
...

...
. . .

...

. . .
... 0 · · · · · · rℓ · · · 0


has the form of a non-negative diagonal matrix with subsequent entries dividing each other.

Now we wish to show G uniquely determines the ri above which aren’t 1. Let T be the group of finite

order elements in G. Then T =
⊕

ri>0 Z/(ri). Then G/T ∼=
⊕

ri=0 Z. We showed last time Zk ∼= Zℓ implies

k = ℓ.

Thus G/T is uniquely determined, that is the number of is such that ri = 0. Now consider T , which is

T = Z/(r1)⊕ · · · ⊕ Z/(rq)

where 0 < r1, . . . , rq and r1 | r2 | · · · | rq. We must show T uniquely determines the ri.

The elements in T of order dividing 2 are

ℓ⊕
i=1

{
Z/2Z if ri even

1 if ri odd
.

This tells you the number of even ri’s. Elements in T of order dividing 4 are

ℓ⊕
i=1

Z/(gcd(ri, 4))

since T determines the number of even ri, T determines the # of ri’s divisible by 4.

Likewise, for every prime power pa, T determines the number of ri’s divisible by pa.

Since r1 | r2 | · · · | rℓ, this determines which ri’s are divisible by pa, which gets everything by unique

factorization.

Generalization: If R is a PID and k1, k2 ∈ Rn with k11, k21 ̸= 0. Then we’re looking for

Rk1 +Rk2 = Rk′1 +Rk′2

where k′1 = uk1 + vk2 with u, v ∈ R where (uk11 + vk21) = (k11, k21), so uk11 + vk21 = gcd(k11, k21).

68



Faye Jackson April 19th, 2022 MATH 494 - VI.1

We know u, v are coprime, as u k11gcd + v k21gcd = 1., so what we’re doing is[
u v

− k21
gcd

k11
gcd

]
·

(
k1

k2

)

so we’re setting k′2 = k11
gcdk2−

k21
gcdk1. Therefore by invertibility of the matrix on the LHS, Rk1+Rk2+Rk

′
1+Rk

′
2.

With this, along with the fact that in a Noetherian ring there are no infinite chains of ideals (here principal

ideals), we can carry out the same proof as above, as this allows us to say k11 cannot reduce forever.

Recall V.0.3

R is Noetherian if and only if every ideal of R is finitely generated.

Theorem V.0.3 (Hilbert Basis Theorem)

if R is Noetherian, then R[X] is Noetherian.

Proof. If I is an ideal of R[X], then the set of leading coefficients in I is an ideal of R.

This is generated by some leading coefficients {a1, . . . , ar} of polynomials {f1, . . . , fr}.
Also Ln, being the leading coefficients of all f ∈ I, deg f = n is an ideal of R.

Then I is generated by
⋃
n≤N Sn, where Sn is any finite subset of elements of I with degree whose leading

coefficients generate Ln, and where N = max1≤i≤r deg fi.

VI. Symmetric Functions

VI.1. Basics in all Rings

Definition VI.1.1

For any ring R, a polynomial f(X1, . . . , Xn) ∈ R[X1, . . . , Xn] is symmetric if

f(Xσ(1), . . . , Xσ(n)) = f(X1, . . . , Xn)

for all σ ∈ Sn.

Example VI.1.1

The sum X1 + · · ·+Xn and product X1X2 · · ·Xn. Also sums of products∑
i ̸=j

XiXj .

Consider two variables. Main examples: X + Y,XY .

Claim

The symmetric polynomials in R[X,Y ] are R[X + Y,XY ], that is

{f(X + Y,XY ) | f(u, v) ∈ R[u, v]}.

Consider something like this, where we’re killing leading terms

X2 + 3XY + Y 2 = (X + Y )2 +XY.
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What about degree 3? Ditto!

X3 + 5X2Y + 5XY 2 + Y 3 = (X + Y )3 + 2X2Y + 2XY 2

= (X + Y )3 + 2XY (X + Y ).

In general, we want to stratify into “homogeneous” pieces

Definition VI.1.2

A nonzero polynomial in R[X1, X2, . . . , Xn] is homogeneous of degree m if for each monomial g in f

we have

m =

n∑
i=1

degi g.

For nonzero polynomials this says f(tX1, . . . , tXn) = tmf(X1, . . . , Xn) where t ∈ R.
If n = 2, this is like f(X,Y ) =

∑m
i=0 aix

iym−i.

Now any polynomial can be written as the sum of homogeneous polynomials, so we can reduce to this case

Proof. If f(X,Y ) ∈ R[X,Y ] is symmetric and homogeneous of degree n, then there exists a monomial

p(U, V ) ∈ R[U, V ] such that p(X + Y,XY ) has the same leading term (sorting by powers of X) as f(X,Y ).

Reason: leading term of f(X,Y ) is cxiyj where i ≥ j (by symmetry). So use

p(U, V ) = cU i−jV j

p(X + Y,XY ) = c(X + Y )i−j(XY )j = cXiY j + · · · .

We see that p(X + Y,XY ) is symmetric and homogeneous of degree n since i+ j = n.

Therefore f(X,Y )− p(X + Y,XY ) is symmetric, homogeneous of degree n (or zero), and we’ve lowered

the largest power of X which appears. Thus if we continue this process it must terminate.

Namely continue until the difference is the zero polynomial. Conclude if f(X,Y ) ∈ R[X,Y ] is symmetric

and homogeneous of degree n, then f(X,Y ) = g(X + Y,XY ) where g(U, V ) ∈ R[U, V ]

g(U, V ) =
∑
i,j

dijU
iY j

with every i+ 2j = n.

Theorem VI.1.1 (Symmetric Function Theorem)

The symmetric polynomials in R[x1, . . . , xn] are precisely R[e1, . . . , en] where the ei are the sum of

all products of i distinct xj ’s. Note that

n∏
i=1

(T − xi) = Tn − e1Tn−1 + e2T
n−2 − · · ·+ (−1)nen.

Namely

e1 = x1 + x2 + · · ·+ xn

e2 =

n∑
i=1

∏
i<j

xixj .
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For the proof, we use the “lexicographic” ordering of monic monomials. That is we say xi11 · · ·xinn comes

before xj11 · · ·xjnn if either i1 > j1 or (i1 = j1 and i2 > j2) or (i1 = j1, i2 = j2 and i3 > j3) or . . . .

Key point: There exists only finitely many monic polynomials which are homogeneous of degree d for any

prescribed d. Thus we can just follow this procedure above, reducing the X1 degree, then the X2 degree, etc.

Proof. Use the same proof as for 2 variables. If f(x1, . . . , xn) is symmetric and homogeneous of degree d

with leading term cxi11 x
i2
2 · · ·xinn . Note i1 ≥ i2 ≥ · · · ≥ in (by symmetry).

Note the leading terms of ej is x1 · · ·xj . So we subtract of ceinn first, which gives us in of all n variables,

so we have cXin
1 · · ·Xin

n . Repeat! This gives us

f(x1, . . . , xn)− ceinn e
in−1−in
n−1 · · · ei1−i21 .

This is either zero or symmetric and homogeneous of degree d with “smaller” leading term than f(x1, . . . , xn).

Repeat until you get zero!

In fact, if we start out homogeneous, everything we end up with is homogeneous!

Example VI.1.2

If α1, . . . , αq are the elements of Fq, andH(x1, . . . , xq) ∈ Fq[x1, . . . , xq] is symmetric and homogeneous

of degree d > 0.

Then H(α1, . . . , αq) = 0 when d < q − 1. We know that H(x1, . . . , xq) = G(e1, . . . , eq) for some

G(u1, . . . , uq ∈ Fq[u1, . . . , uq]. Furthermore each term of G is cui11 · · ·u
iq
q where

i1 + 2i2 + 3i3 + · · ·+ qiq = d.

Note then that

q∏
i=1

(T − xi) = T q − e1T q−1 + e2T
q−2 − · · ·+ (−1)qeq

q∏
i=1

(T − αi) = T q − T.

Thus

0 = e1(α1, . . . , αn) = e2(α1, . . . , αn) = · · · = eq−2(α1, . . . , αn)

and eq(α1, . . . , αn) = 0. Furthermore eq−1(α1, . . . , αn) = (−1)q−1(−1) = −1 because q is odd.

Then since we have degree d < q−1, we can’t involve any term including eq−1, and so H(α1, . . . , αn) =

0.

Consequence by breaking into homogeneous parts, if α1, . . . , αq are the elements of Fq andH(x1, . . . , xq) ∈
Fq[x1, . . . , xq] is symmetric of total degree < q − 1, then

H(α1, . . . , αq) = H(0, . . . , 0).

Theorem VI.1.2 (Williams,Wan,Turnwald)

If f(X) ∈ Fq[x] is nonconstant and f(Fq) ̸= Fq then

#f(Fq) ≤ q −
q − 1

deg f
.
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Proof. First replace f(X) by f(X)− f(0) to assume f(0) = 0.

Consider

F (X) :=
∏
d∈Fq

(X − f(α)).

Since f(Fq) ̸= Fq we know F (X) ̸= Xq −X. Then consider

G(X) := F (X)− (Xq −X).

This is a nonzero polynomial in F2[X]. So the total number of roots of G are ≤ deg(G). The # of roots of

G in Fq is exactly #f(Fq), so we can get a bound this way.

We see that

F (X) = Xq − e1(f(α1), . . . , f(αq))X
q−1 + e2(f(α1), . . . , f(αq))X

q−2 − · · · .

If deg(G) > 1, then deg(G) = q − i, where i is the smallest positive integer such that

ei(f(α1), . . . , f(αq)) ̸= 0.

Note that ei(f(x1), . . . , f(xq)) is symmetric, homogeneous of degree ≤ i deg(f). If ideg(f) < q − 1, then

ei(f(α1), . . . , f(αq)) = 0.

Thus the minimal i satisfies ideg(f) ≥ q − 1. Therefore i ≥ q−1
deg(f) .

Wait! We’re done! Then

#f(Fq) ≤ degG = q − i ≤ q − q − 1

deg(f)
.

If deg(G) = 1, the inequality is trivial.
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Appendix A. Gauss’s Lemma and its Consequences

Gauss’s Lemma and its consequences are critical for our class. However, these were not stated in the best

way during class.

In the interest of making my life easier, I have summarized the relevant results here, lifting from Artin and

generalizing to the case of an integral domain and its fraction field (as we use this in class and on homework

often).

For the remainder of this section, let R be a UFD and K := Frac(R) be its splitting field.

Definition A.0.1

We define the content of f ∈ R[x] to be the gcd of its coefficients, so that f = cont(f) · f̂ . If f = 0

we define cont(f) = 1 for convenience.

We call a polynomial primitive if cont(f) = 1. Clearly f̂ is primitive, and we call it the primitive part

of f .

We define the content of g ∈ K[x] to be the following. Let d be the lcm of the denominators of the

coefficients of g then dg ∈ R[x] and

cont(g) =
cont(dg)

d
.

Note this definition agrees with that in K[x], and

g(x) = cont(g)ĝ(x)

for ĝ(x) ∈ R[x] primitive (when deg g > 0).

Claim

Useful Fact: If g(x) ∈ K[x] is monic then cont(g) is exactly equal to the inverse of the lcm of the

denominators of the coefficients of g.

Note this actually holds if any of the coefficients of g(x) are 1, as the position of the coefficients does

not impact the content.

Proof. Let d be this least common multiple as above. We must simply show that cont(dg) = 1. Write

g(x) =
∑n
i=0 ai/bix

i for ai, bi ∈ R, bi ̸= 0 coprime. With an/bn = 1, an = bn = 1.

Then cont(dg) | d because

dg(x) = dxn +

n−1∑
i=0

dai
bi
xi.

Write d = cont(dg)r for r ∈ R. Then for some ti ∈ R

cont(dg)ti =
dai
bi

=
cont(dg)rai

bi
.

ti =
rai
bi
.

Because ti ∈ R, this implies that bi | r, since ai, bi are coprime.
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Thus since d is the least common multiple, and r is a multiple, r = ds for some s ∈ R. Then d =

cont(dg)r = cont(dg)ds, so

1 = cont(dg)s

so cont(dg) is a unit, which we may call 1.

Lemma A.0.1 (Gauss’s Lemma)

The product of primitive polynomials is primitive.

As a consequence for any f, g ∈ R[x]

cont(fg) = cont(f) · cont(g)

because f̂ ĝ is the primitive part of fg.

Proof. Suppose p ∈ R is an irreducible factor of the coefficients of fg. That is suppose fg is not primitive.

Then let − : R[x]→ (R/(p))[x], noting that R/(p) is an integral domain since (p) is prime. Then

0 = fg = fg.

Thus one of f, g = 0, so p divides the coefficients of one of f, g. Thus one of f, g is not primitive.

We also see that for any f, g ∈ R[x] that

fg = cont(f)f̂ cont(g)ĝ = cont(f) cont(g) · f̂ ĝ

so because f̂ ĝ is primitive we know that

cont(fg) = cont(f) cont(g)

f̂g = f̂ ĝ.

Proposition A.0.2 (Division of polynomials over K)

If p(x) ∈ K[x] divides f(x) ∈ R[x] in K[x] then the primitive part p̂(x) divides f(x) in R[x].

Furthermore, if f(x) = p(x)q(x) then

f(x) = ap̂(x)q̂(x)

for some a ∈ R.

Proof. Suppose p(x)q(x) = f(x). Let cont(p) cont(q) = a/b for a, b ∈ R coprime. Then

ap̂(x)q̂(x) = bf(x).

Then b divides a, since b cannot divide the coefficients of p̂(x)q̂(x) by Lemma A.0.1. Thus b = 1 by coprimality,

and p̂(x)(aq̂(x)) = f(x).
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Corollary A.0.3

If f(x) ∈ R[x] can be written as p1(x) · · · pk(x) for pi(x) ∈ K[x] then f(x) can be written as

f(x) = ap̂1(x) · · · p̂k(x)

for a ∈ R.

Proof. This follows from the above since

f(x) = ap̂1(x) ˆp2(x) · · · pk(x)

= ap̂1(x) · · · p̂k(x).

Proposition A.0.4

If f(x) ∈ R[x] is primitive and irreducible then it is irreducible in K[x].

If g(x) ∈ K[x] is irreducible in K[x] then ĝ(x) ∈ R[x] is irreducible in R[x].

Proof. Let f(x) = p(x)q(x) for p(x), q(x) ∈ K[x], note that p(x), q(x) ̸= 0. Then we have for some a ∈ R
that

ap̂(x)q̂(x) = f(x).

Because f is primitive, a = 1, so p̂(x) or q̂(x) is a unit in R[x], so it is a unit in R.

This shows that p(x) = cont(p)p̂(x) ∈ K is a unit, so f is irreducible in K[x].

For the second part, note g(x) is a nonzero nonunit in K[x], so ĝ(x) = 1/ cont(g) ·g(x) is a nonzero nonunit

in K[x]. Thus it is a nonzero nonunit in R[x].

Write ĝ(x) = p(x)q(x) | g for p, q ∈ R[x]. Then p(x) is a unit in K[x], so p = p(x) ∈ K. But then p divides

the coefficients of ĝ(x), so by primitivity p must be a unit in R.

Proposition A.0.5

R[x] is a UFD

Proof. Fix f(x) ∈ R[x]. We first show a factorization exists. To do so, recall that K[x] is a PID, so it is a

UFD. Thus

f(x) = p1(x) · · · pm(x)

f(x) = ap̂1(x) · · · p̂m(x)

for irreducible p1, . . . , pm ∈ K[x], a ∈ R. Then writing a = a1 · · · an as the prime factorization of a ∈ R we

see that

f(x) = a1 · · · anp̂1(x) · · · p̂m(x)

is a prime factorization of f(x) ∈ R[x].
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For uniqueness, if we have

a1 · · · anp̂1(x) · · · p̂m(x) = b1 · · · bkq̂1(x) · · · q̂ℓ(x).p̂1(x) · · · p̂m(x) =
b1 · · · bk
a1 · · · an

q̂1(x) · · · q̂ℓ(x).

Then we have that m = ℓ since K[x] is a UFD, and after reordering p̂i(x) = ciq̂i(x) for ci ∈ K×. By

primitivity of p̂i(x), ci ∈ R is a unit.

Then cancelling pi, qi we have that a1 · · · an = ub1 · · · bk up to a unit u ∈ R. But then n = k and ai, bi

differ up to a unit after reordering because R is a UFD.

This proves uniqueness!

Appendix B. The Primitive Element Theorem

Theorem B.0.1 (Primitive Element Theorem)

Let L/K be a finite separable extension. Then L = K(α) for some α ∈ L, and we call α a primitive

element for L.

Proof when K is finite. If K is finite, then L is a finite field. From Homework 8 we know that L×, being a

finite subgroup of itself, is cyclic, say with generator α ∈ L×. Then clearly L = K(α) as desired.

Proof when K is infinite. Write L = K(α1, . . . , αr) and Li = K(α1, . . . , αi). We will show by induction that

Li has the form K(βi) for some βi ∈ Li.
The base case i = 1 is immediate. Now suppose the result holds for i, then Li+1 = K(βi, αi+1). For

convenience let α := αi+1, β := βi.

Let σ1, . . . , σn be the K-homomorphisms Li+1 → N where N is large enough (for example, we can say N

is the splitting field over K of the product of minpolyK(α),minpolyK(β)).

Then we know that since L/K is separable that n = [L : K]. We will show all but finitely many c ∈ K
satisfy L = K(α+ cβ), so since K is infinite we’re done.

Write γ := α+ cβ. Since K ⊆ K(γ) ⊆ Li+1, we have K(γ) = Li+1 if and only if [K(γ) : K] = n. That is,

if and only if the minimal polynomial of γ over K has degree n, which means that it has n distinct roots in

a big enough field by separability.

For every root γ′ of this polynomial, there is a K-homomorphism K(γ) → K(γ′) mapping γ 7→ γ′, and

we can extend this to a homomorphism whose domain is L, which is one of the σi.

Thus the roots of the minimal polynomial are σi(γ). Thus K(γ) = L if and only if σi(γ) ̸= σj(γ) whenever

i ̸= j. This condition says that

σi(α) + cσi(β) ̸= σj(α) + cσj(β).

This holds for all i ̸= J if and only if c is NOT a root of

h(X) :=
∏
i ̸=j

(σi(α) + σi(β)X − σj(α)− σj(β)X).

Note that h is not the zero polynomial, as if it were then σi(α) = σj(α), σi(β) = σj(β), and so σi = σj on

K(α, β) = Li+1.

Thus h is nonzero, and only has finitely many roots. Thus all but finitely many c ∈ K satisfy h(c) ̸= 0, so

that K(α+ cβ) = Li+1.
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This completes the inductive step.
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