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Note: Everything from last time works over any ring.
Definition .0.1
A ring R is an abelian group under 4 equipped with a multiplication - which is associative, has an

identity, and distributes over addition.

Example .0.1
Given any abelian group G, then the set of endomorphisms End(G) := Hom(G, G) is naturally a

group under addition and becomes a ring when equipped with composition.

Rings will be the first thing we study next semester.
Definition .0.2

An algebra over a field K is a vector space A over K with the structure of a ring such that for vectors

a,b € A and scalars ¢,d € K we have
(ca) - (db) = (cd)(a - b).
This product is bilinear.

Definition .0.3

Let G be a finite group. Then C[G] is the group algebra.

As a vector space this is C-linear combinations of a basis {e;}4e. For convenience we identify ¢ € C
with ce;. Another way to see this as as {functions G — C, g — ¢4 }.

Recall that G acts on C[G] by the regular representation

h- E Cg€y :E CgChg-

geG geG

Define then a ring structure on C[G] by the following for all g,h € G and ¢ € C
€ney = €hg ceqy = egcC.

Secretly the above formula is

ceq = eg(cer).

What is the center of C[G] (under multiplication)? This is the set of all § € C[G] with §z = z6 for all
z € C[G]. Equivalently fe, = ¢,0 for all g € G.
Write 6 = 3, . chen. Then what this means is
fey = Z Chehg = Z Chegn = eg4b.
hinG hea
Reindexing then gives

E Chehgz E Che(ghgfl)g: E Cg—lh/geh'g

heG heG heG
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Therefore ¢, = ¢;4-1p4 for every h € G. This means that

center of C[G] = {Z chen | cn = cgo1pg Vg € G}

heG

= {Z chep | c— : G — Cis a class function}

heG

= the class functions on G

= {(C—linear combinations of Z en, V conjugacy classes C C G }
heC

Definition .0.4
If p: G — GL(V) is a representaiton and 7 is an irreducible representation, then we can decompose
V' by Maschke’s Theorem into a direct sum of subspaces on which p acts isomorphically to irreducibles.

Collecting all the subspaces on which p acts as 7 into a direct sum gives the m-isotypic part of V.
This is well-defined by Machke’s Theorem.

Recall .0.2
If p: G — GL(V) is a representation, and 7 is an irreducible representation of G, then the projection

of V onto its m-isotypic part (aka a direct sum of things isomorphic to 7) is

dim 7w 1
v ——— Y xx(g7") (g v).
G| =
geG
algebra le age n p is the regular representation), this projection is multiplicati
In group algebra language (when p is the regular representation), this projection is multiplication of

each element in C[G] by

dim 7 .
€r == W Z X (g 1)6!/‘

e

Lemma .0.1

Let m be an irreducible representation of G. Let s =3~ cge, lie in the center of C[G]. Define

1
wrs) = — ; cgXn(9).

Then s — wr(s) is a homomorphism (linearly, and multiplicatively) from Center(C[G]) — C.

Theorem .0.2 (Burnside)

Let p: G — GL(V) be an irreducible representation of a finite group G. If g € G and the size of the
conjugacy class of g is coprime to dim V' then either x(g) = 0 or g is in the kernel of G £ GL(V) —
PGL(V), where PGL(V) = GL(V)/{c-Idy | ¢ # 0}.

That is either x(g) = 0 or p(g) = cIdy for some ¢ # 0.

Theorem .0.3 (Burnside)

Let s = >, c cnen € C[G] where each ¢, is an algebraic integer. If s is in the center of C[G] then
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s acts on any irreducible representation p : G — GL(V') as multiplication by a scalar w,(s), and even
better, this scalar is also an algebraic integer.

In particular, for any g € G,

X,(9) - (size of conjugacy class of g)

dim p

is an algebraic integer.

Proof of very last part. Apply the first part to s =), .~ en, where C' is the conjugacy class of g. Then

wal8) = —— 3" () = X9 1]

- dim p = dim p

¢

This is then an algebraic integer.

Next time: Proofs!!!



