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Claim

GLo(Z/pZ) has a cyclic subgroup of order p? — 1.

Proof. 1dea: construct a field Fj2 of order p* and identify F,2 with (Z/pZ)?. Then GL(F,2) < GL2(Z/pZ)
and GL;(IF,2) = Cp2_; so we're done.
For p = 3 we set Fy = (Z/3Z) + (Z/3Z)i where i*> = —1. Also, lets denote Z/pZ by F,. Another way to

see this is
Fo = F3[z]/ (2% + 1)F3]x]

We will prove in 494 that if k is a field and p(z) is an irreducible polynomial then k[z]/p(x)k[x] is a field.
The key ideas are the same as the ideas used to prove Z/pZ is a field—the division algorithm!!!
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In general, if p is odd then the squaring map F, — F, is not injective because (—1)? =, 12, and so it

cannot be surjective. Pick some d € F, without a square root. Then of course z? — d is an irreducible

polynomial (as it has no roots). We then take
Fpz = Fyla]/(a? — c)Fy[2]
Every f € F,[z] can be written in exactly one way as
fl@) = q(x) - (2* — d) +7(2)

where ¢,r € F,[z] and degr < 1. Then each coset contains exactly one polynomial of degree < 1. There are
then p? ways to pick the coefficients and |Fz| = p*. (Note: Fp2 = C, x C,, as a group under addition).
Now we need the multiplication, both that it’s well-defined and it is invertible. Start with

f1(2) = fa(z) mod 2% — dgy(z) = ga(w) mod 22 — d

where f1, f2, 91, g2 € Fp[z]. Then we should show that fi(z)g1(z) = fa(x)g2(z) mod 2? — d. To do this we

see that for some A, B € F),[z] we have

f2(x)ga(2) + (2% — d)(f2(2) B(2) + A(w)g2(x)) + (2 — d)*A(w) B(x)
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And thus the multiplication is well-defined, commutative, associative, distributes with respect to addition,
and has an identity element 1 because these hold in F[z].
Now we show it has multiplicative inverses. This is clear for nonzero elements of F,. Now we want to find

the inverse of ¢ + 7, where T is the image of z in Fp.. Well
(c+Z)(c—T)=c*-F°=c*~deT,

and this is nonzero as d is not a square in F,,. We then have that
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Similarly, @ + b has an inverse in Fp2 for b # 0, as we can multiply by b~! and then multiply by the inverse
of 7 +@.
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Proposition .0.1

If k is a finite field with n elements then k> is a cyclic group of order n — 1.

Proof. Fact: In k[z] for any field k a degree-n polynomial has at most n roots. The reason being that for ¢ a

root

f(@) = (z —c)g(z) +r

where r € IF,,, this implies since f(c) = 0 that » = 0. Then if ¢ # ¢’ and f(c) = f(¢’) then

f(d) = (' = e)g(c)

And so g(¢’) = 0, and we can factor it as well. Because degrees add when multiplying this implies the fact.
In C),—1 all elements have order dividing n — 1, and the # of elements of order dividing d (for any d
dividing n — 1) is d.
In k>, all elements have order dividing n — 1, and if d | n — 1 then every ¢ € k* of order dividing d is a
root of % — 1. But this means there are at most d elements of order dividing d in k*.

Now we just compare.

Ch-1 Both k>

size=n—1

all elements have order

dividing n — 1

exactly d elements of at most d elements of
order dividing d order dividing d
It follows that C,,_; and k* have the same number of elements of each order. Thus £* has an element of
order n — 1 and hence is cyclic. .v.



