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Theorem .0.1

Let ρ : G → GL(V ) be an irreducible representation. If g ∈ G has conjugacy class C, where |C| is

coprime to dim ρ, then either χρ(g) = 0 or ρ(g) acts on V as λ · IdV for some λ ∈ C×

Note: ρ(g) = λ · IdV if and only if ρ(g) = 1, with

G GL(V ) PGL(V ).
ρ

ρ

Where PGL(V ) = GL(V )/{λ IdV | λ ∈ C×}.

We will use Theorem .0.1 to prove

Theorem .0.2

If |G| = paqb with p, q distinct primes and a, b > 0 then G is not simple.

Claim

If G is any nontrivial finite group, and p 6= q are primes dividing |G|, then there exists g ∈ G \ {1}
and an irreducible nontirvial representation ρ : G→ GL(V ) such that χρ(g) 6= 0 and p does not divide

the conjugacy class of G and q - dim ρ.

Proof of Theorem .0.2. First find g 6= 1 such that p does not divide the conjugacy class of G.

If center of G is nontrivial, let g ∈ Z(G) \ {1}. If Z(G) = 1 then

|G| =
∑
C

|C|

|G| − 1 =
∑
C 6=1

|C| ∼= −1 mod p

Thus there is some C 6= 1 so that p - |C|. Fix g ∈ C.

Then the orthogonality of columns for 1 and g gives that

0 =
∑
χirr.

χ(g)χ(1) =
∑
χ

χ(g) dimχ

−1 =
∑
χ 6=1

χ(g) · dimχ

−1

q
=
∑
χ 6=1

χ(g) · dimχ

q

Thus there exists a χ 6= 1 such that χ(g) 6= 0 and (dimχ)/q is not an algebraic integer. Why? Well −1/q

is not an algebraic integer, and χ(g) is always an algebraic integer, so we must have some non-algebraic

integer part of the sum.

Since (dimχ)/q ∈ Q, this means that q - dimχ.

When |G| = paqb this implies that the size of the conjugacy class is coprime to dim ρ. Then Theorem .0.1

implies that g ∈ ker ρ (where ρ = ρ/λ for some λ ∈ C×). Then ker ρ is a nontrivial normal subgroup of G,

and G is not simple unless ker ρ = G.
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But then ρ(h) acts as λ IdV for fixed λ ∈ C×, implying that dimV = 1 because ρ is irreducible.

Thus ρ is a homomorphism G→ C×. We then have that

G/ ker ρ ∼= im ρ = cyclic

But then ρ is nontrivial, so ker ρ 6= G. Thus if G is simple, ker ρ = 1, so G is cyclic, and clearly then G is

not simple.

It remains to prove Theorem .0.1. Use

Theorem .0.3

Let c =
∑
g∈G cgeg in the group algebra C[G]. Assume that c lies in the cneter of C[G], i.e. cg = ch

when g, h are conjugate.

Assume further that each cg is an algebraic integer. Then c acts on any irreducible representation as

scalar multiplication by an algebraic integer

The action is for ρ : G→ GL(V ). c maps V → V via

v 7→
∑
g

cg(g · v)

Since ceg = egc for all g, c is a homomorphism of representations from ρ to ρ, so c is a scalar

multiple by Schur’s Lemma (see homework).

In particular, for g ∈ G and any irreducible representation ρ : G→ GL(V ),

χρ(g) · |C(g)|
dim ρ

is an algebraic integer. This is given by setting c =
∑
h∈C(g) eh.

Proof. The value of the scalar is

ωρ(c) =
1

dim ρ

∑
g

cgχρ(g).

We see that ∑
g

cgχ(g) = tr

(∑
g

cgρ(g)

)
.

We then compute this trace which must be (dim ρ)ωρ(c) because c acts as a scalar.

Since this expresion in c respects addition and scalar multiplication, it suffices to prove ωρ(c) is an algebraic

integer when c =
∑
g∈C eg for some conjugacy class C in G. That is we can assume each cg is zero or one.

Let eρ ∈ C[G] induce projection of any representation θ : G→ GL(V ) onto its ρ-isotypic part. Then we

see that

c · eρ = ωρ(c) · eρ

so eρ is an eigenvector of the action on C[G], with eigenvalue ωρ(c). To see this explicitly
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Consider the regular representation on C[G] given by θ, with eρ =
∑
g eρ,geg. Then necessarily

c · eρ =
∑
g

∑
h

cgeρ,h(egh) =
∑
g

∑
h

cgeρ,h(θ(g)eh) =
∑
g

cg(θ(g) · eρ).

Writing e1 =
∑
i ~vi+ ~w where each ~vi lies in a copy of C[G] isomorphic to ρ, and ~w lies in the complement

of the ρ-isotypic part of C[G]. Then

c · eρ =
∑
g

cg(θ(g) · eρ · e1) =
∑
g

∑
i

cg(ρ(g) · eρ · ~vi)

=
∑
i

(ωρ(g)~vi) = ωρ(g) · eρ

because
∑
i ~vi = eρ by definition. Perfect!

But C[G] → C[G] given by x 7→ cx can be represented as an integer matrix in terms of the basis eg,

because

ceg =

(∑
h∈G

cheh

)
eg

=
∑
h∈G

chehg =
∑
h′∈G

ch′g−1eh′

and each ch′g−1 is zero or one by assumption. The eigenvalues are the roots of the characteristic polynomial,

and this then proves that ωρ(c) is an algebraic integer.

Proof of Theorem .0.1. Suppose |C(g)| is coprime to dim ρ for an irreducible representation ρ : G→ GL(V ).

Then let c =
∑
h∈C(g) eh. We then know that

ωρ(c) =
χρ(g) · |C(g)|

dim ρ

is an algebraic integer. If χρ(g) 6= 0, then because |C(g)| and dim ρ are coprime this implies that χρ(g) =

(dim ρ) · λ for some algebraic integer λ ∈ C, as otherwise we will not be able to cancel the denominator of

dim ρ, and it will show up in any monic polynomial with integer coefficients (similar to the proof that if

α ∈ Q is an algebraic integer then α ∈ Z).

By using the relevant inequalities by which we showed that χρ(g) = dim ρ if and only if ρ(g) is trivial, we

can then derive that all the eigenvalues of ρ(g) are equal, showing that ρ(g) acts by scalar multiplication just

as desired.

Theorem .0.4 (dim ρ | |G|)
If ρ : G→ GL(V ) is an irreducible representation then dim ρ | |G|.

Proof. We know by orthonormality that

|G| =
∑
g∈G

χρ(g)χρ(g)

|G|
dim ρ

=
∑
g∈G

χρ(g)

dim ρ
χρ(g)
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|G|
dim ρ

=
∑
C(g)

χρ(g) |C|
dim ρ

χρ(g)

where
∑
C(g) is a sum over distinct conjugacy classes.

By ?? we know that the right hand side is an algebraic integer, and so because the left hand side is in Q
we know that the left hand side lies in Z as desired.
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