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I. Introduction

Here is the basic information about the course.

Book) Artin’s Algebra, 2nd Edition

II. Group Theory
1I.1. Basic Definitions

What are we studying in this course? Well, we study groups.
Definition I1.1.1

A group is a set S equipped with a “binary operation”:
i Sx S =S
(s,t) > s-t
which satisfies the following axioms:
Associativity) s(tu) = (st)u

Identity) There is some element e such that s-e=-e¢-s for all s € S.

Inverses) For every s € S there is some ¢t € S such that st = e = ts.

We sometimes denote such a group by the triple (S, -, e). One should not think about it like this.

Groups arise as symmetries of objects in nearly all areas of mathematics. This allows them to be broadly
applied and to solve a variety of problems. Furthermore, we understand groups very very very well, and this
allows us to transform problems that are challenging in other areas into problems in group theory which are
perhaps less challenging.
Example I1.1.1
A classic example of a symmetry group is the symmetries of a set, aka for a set S we can consider
the set Aut(S) of invertible functions S — S with the operation of function composition.

This is a great example to remember for thinking of groups as symmetries.

Remark II.1.1

Some results and ideas in this course are generalized in a subject called category theory. This starts
exactly...now! Do not worry if you do not know category theory. However, some remarks will be left
for those that do, as well as an appendix on the subject 77.

Category Theory formalizes the idea of symmetries of an object being a group. Namely, for an object

X lying in a category @, there is a group Aute (X) of invertible morphisms X — X in 4.

We now move on to some basic examples and results to guide our thinking about the subject.
Example I1.1.2

Lets quickly give some examples of groups to see how amazing they really are.
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Symbol Set Operation
A 7 +
Q* Q\ {0} x
SL3(Z) 3 x 3 matrices with det one Matrix Mult.

SL3(Z/10Z) | 3 x 3 matrices with det one and entries in Z/10Z | Matrix Mult.
GLy(Z/5Z) | 2 x 2 matrices with nonzero det and entries in Z/1Z | Matrix Mult.

Sn Permutations of {1,...,n} Composition
Cn=2Z/nZ {1,...,n} Addition modulo n.

The group Z/nZ is called the cyclic group of order n and is extremely important.

Interesting Note: Z/nZ is “generated” by 1. This means that any element of Z/nZ may be obtained
by repeatedly multiplying 1 by itself.
Proposition I1.1.1

Here is a list of fundamental and basic results about about groups:

e The identity element is unique. If e, ¢’ are both identities, ¢’ = ee’ = e.
1

o The inverse of a given element s € S is unique. We call this inverse s~!. Suppose s 's = e = st
then:
sl=sle=s"Y(st)=(s's)t=et =t
Great!

e When multiplying many elements, there is no need to write parentheses. I.e. s1s9---s, (for

s; € S) always evaluates to the same element of S regardless of how it is grouped.

One might think that they should understand groups by going through all of the possible sizes one by one
and classifying those groups. This is awful and a terrible idea. We do it anyway to show you that it works
for very small groups:

Size 1) Cy.
Size 2) Cs.
Size 3) Cs.
Size 4) C4 and Cy x Cy (see Definition 11.1.2).
Size 5) Cs.
Size 6) Sz, Cg.
Size 7) Cy.
Size 8) Ugly.
Definition I1.1.2
Given two groups G, H with respective operations -,x we have that G x H is a group with the

operation
(%) (GxH)x (GxH)—-GxH

((g1,h1), (g2, ha)) = (g1 - g2, b1 * ha).

To study groups well we should define extra structure to think about them.
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Definition II1.1.3
A subgroup of a group (G, -, e) is a subset H of G which contains e such that (H, -, e) is also a group.
An equivalent definition is that H is a subet of G containing e such that:
e If s;t € H then st € H.
e If s € H then s~! € H.

Example I1.1.3

Subgroups of Z under addition are all nZ with n some arbitrary non-negative integer.

Proof. Let H be a subgroup of Z. By definition, any subgroup contains zero. {0} = 0Z is a subgroup.
Now H # {0}, so it contains some nonzero element, and so it must contain some positive element
because inverses correspond to negation. We then may take the smallest positive element n € H.
By repeated addition, nZ C H, so we must show that H C nZ. To show this, let x € H. By the
division algorithm, x = ng+r for some ¢ € Z and 0 < r < n. But then r = x —ng € H, so by minimality

o
of n, we have that »r = 0 and x = nq. L 4

Now we prove one of the most crucial results about finite groups right off the definition. To do we introduce
a new concept, a “coset” and these cosets will partition our set.
Definition 11.1.4
Given a group G, a subgroup H of G, and an element g € G, the set gH = {gh | h € H} is called a

coset of H or of g.

Theorem I1.1.2 (Lagrange’s Theorem)

If G is a finite group and H is a subgroup of G, then |H| (the size of H) divides |G|. Notably the
converse is not always true.

Spoecifically we have that |G| = |H| - [G : H], where [G : H] is the number of different cosets of H in
G

Proof. We do this by showing that the cosets partition G into equal pieces. Equivalently, this defines an
equivalece relation on G (g ~ ¢’ if gH = ¢'H, or equivalently they belong to the same coset, equivalently
gg ' eH).

For g € G, consider the coset gH. Clearly |gH| = |H| since gx = gy implies that z = y. Also U,cq9H = G
since e € H, so g =ge € gH.

We simply must show that gH N¢g’H # () then gH = ¢'H. Let x € gH Ng'H, so x = gh = ¢g'h’ for some
h,h’ € H. Without loss of generality, it suffices to prove that gH C ¢’ H, as the same method will show that
g'H CgH.

Fix some y € gH, then y = gh,, for some h, € H. Then y = gh, = ¢'h’h"'h, € ¢'H.

Put another way, we can write this symbolically at the level of sets:
gH = ghh™*H = ¢h'h"'*H = gh'H = gH

Using the fact that hH = H for any h € H, which can be proven quickly using the fact that H is closed

under the group operation and under inverses.
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Therefore G is the union of disjoint subsets, each of size |H|, so |H| divides |G|. Using the fact that
hH = H for any h € H, which can be proven quickly using the fact that H is closed under the group
operation and under inverses.

Therefore G is the union of disjoint subsets, each of size |H|, so |H| divides |G|. v
Corollary II.1.3
Every g € G satisfies g/¢l = 15 (that is the identity in G

Proof. Let H be the group generated by g, that is all “powers” of g. Then |H| is the smallest nonnegative

integer so that gl’l = 15 Because |H| divides G, we may then write gl = g*/f1l = 15, = 15 for some integer

5. >
TODOS
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