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.1. The Basic Tools

Going from the well-behaved case of the cyclic groups Cn to the non-abelian case is really hard, and

sometimes requires extra hypotheses. We should think of normal subgroups as analogous to divisors of an

integer, and simple groups as prime numbers.

Definition .1.1

For any n > 1, there is a surjective homomoprhism sgn : Sn � S2.

First, there is an injective homomorphism:

ρ : Sn ↪→ {n× n integer matrices with det equal to ± 1}

σ 7→
(
Aij = δiσ(j)

)
where δk` is the Kroenecker Delta (which is 1 when k = ` and zero otherwise). Then det ◦ρ is a surjective

homomorphism Sn � {±1}, where {±1} is a group under multiplication. We call this homomorphism

sgn : Sn � S2.

We define An := ker sgn, and we say σ ∈ Sn is even if sgnσ = 1 and otherwise we say σ is odd.

Great fact: If n ≥ 5 then An is simple.

Note: Any 2-cycle is odd.

Easy: Every element of Sn is a product of disjoint cycles (Hint: take a starting point, run it through σ

over and over again until you get back to the starting point).

Consequence: Every element of Sn is a product of 2-cycles, since every cycle is a product of 2-cycles. Why?

Well

(14)(13)(12) = (1234)

and likewise for any other cycle.

Restated: Sn is generated by the two-cycles.

This gives an immediate proof of the following:

Proposition .1.1

An element σ of Sn is even if and only if it can be written as a product of an even # of 2-cycles if

and only if it cannot be written as the product of an odd # of 2-cycles.

Proposition .1.2

An is generated by 3-cycles.

Proof. From the above, we know An is all products of an even # of 2-cycles. Thus it suffices to show that

3-cycles are exactly products of two 2-cycles:

(ij)(ij) = Id

(ij)(ik) = (ikj) (i, j 6= k)

(ij)(k`) = (ki`)(ijk) (i, j 6= k, i, j 6= `)

Thus every product of two 2-cycles is a product of some # of 3-cycles and every 3-cycle is in An. Great!
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Proposition .1.3

Let H be a subgroup of G, recall that:

H is normal ⇐⇒ gHg−1 ⊆ H ∀ g ∈ G

⇐⇒ gHg−1 = H ∀ g ∈ G

⇐⇒ gH = Hg ∀ g ∈ G

⇐⇒ H is the kernel of some homomorphism ϕ : K → G

And in fact we have:

aHbH = a(Hb)H = a(bH)H = abHH = abH

This is suggesting we define a group. Namely G/H (the set of left cosets of H) is a group with operation

(aH)(bH) = (ab)H.

Proof. If H is normal in G, then gHg−1 ⊆ H, and then g−1Hg ⊆ H, so H ⊆ gHg−1.

The backwards direction of this is clear, and the second holds if and only if the third holds by multiplication

by g (resp. g−1) on the right.

Now for the last bit, we know all kernels of homomorphisms are normal from last time. If H E G then we

can write:

G→ G/H

g 7→ gH

is a surjective homomorphism with kernel H.

Definition .1.2

If H E G, then G/H is a group, called the quotient group. The operation is

(aH)(bH) = (ab)H.

And it is well defined because by the above proposition if H is normal that as sets

(aH)(bH) = a(Hb)H = a(bH)H = (ab)H.

Details to be checked that this is a group.

So if H E G then G/H is a group, called the quotient group.

Lemma .1.4

If [G : H] = 2 (the index of H in G, that is |G/H|), then H E G.

Proof. If g ∈ H then gH = H = Hg. Then if g 6∈ H then gH = G \H = Hg.

Note: There is a bijection between G/H and the set of right cosets Hg for g ∈ G given by inversion:

gH 7→ Hg−1
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Note: Automorphisms of G preserve “reasonable” properties. E.g. if σ ∈ AutG and H ≤ G then H E G if

and only if σ(H) E H. Also [G : H] = [G : σ(H)]. Also H is abelian if and only if σ(H) is abelian.

So for instance, if H is the unique subgroup of G with a given index [G : H], then H E G (since H must

be preserved by conjugation by any g ∈ G).
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