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Last time we showed that the 1-dimensional continuous representations of R are

ρs : R→ GL1(C) = C×

x 7→ esx

for all s ∈ C.

A 2-dimensional continuous representation of R

R→ GL2(R) ⊆ GL2(C)

x 7→

[
1 x

0 1

]
.

The vector (1, 0)T is fixed by these matrices, so its span W := span((1, 0)T ) is an isomorphic copy of the

trivial representation.

But R2 (or C2) is not W ⊕W ′ for any subrepresentation W ′ of R. This means that Maschke’s Theorem

fails for this representation. The problem is that the matrices in the image are not unitary.

Last time: if ρ : G→ GLn(C) is a continuous representation of a topological space whose image ρ(G) is

contained in the set of unitary matrices in GLn(C), then Maschke’s Theorem holds.

Observation: From any 1-dimensional representation of

θ : S1 ∼= R/Z→ C×

we get a representation of R

R � R/Z θ−→ C×

Which representations ρs : R→ C× arise in this way? But we see that

R R/Z C×

1 0 1

and thus es = 1. Therefore s = (2πi)n for some n ∈ Z.

Schur’s Lemma didn’t require G to be finite (and most of it works over any field). Namely if L : V →W is a

homomorphism of representations between two irreducible representations, then L is either zero or invertible.

Lemma .0.1 (Schur’s Lemma)

Suppose ρ : G → GL(V ) and ρ′ : G → GL(W ) are two irreducible representations (even infinite-

dimensional), and let L : V →W be a homomorphism of G-representations.

That is the following commutes for all g ∈ G

V V

W W

L

ρ(g)

L

ρ′(g)

.

Then either L is an isomorphism or zero.

Proof. kerL is a subrepresentation of ρ, so kerL = 0 or kerL = V by irreducibility. Thus L is injective or

L = 0.
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imL is a subrepresentation of ρ′. Thus ρ′ is irreducible, and either imL = 0 or imL = W . Thus L = 0 or

L is surjective.

Therefore if L 6= 0 then L is bijective. We may then check that its inverse on the level of sets is an

isomorphism

If we work over a finite-dimensional vector space over C (or any algebraically closed field), it is easy to

then derive that if L : V → V then L = λ IdV for some λ ∈ C (by finding an eigenvalue).

Proof. Let ~v be an eigenvector for L with L~v = λ~v for some λ.

Then ~v ∈ ker(L− λ IdV ) is also a subrepresentation of V .

Since V is irreducible, ker(L− λ IdV ) = V , and so L = λ IdV .

Corollary .0.2

If G is abelian any (finite-dimensional) irreducible representation of G (over C) is 1-dimensional.

Proof. For all g ∈ G, ρ(g) is an invertible linear map V → V . We claim that it is a homomorphism of

G-representations. This is precisely the statement that for any g′ ∈ G and v ∈ V

g · (g′ · v) = g′ · (g · v).

Clearly this holds when G is abelian. By Schur’s Lemma (Lemma .0.1), we know for all g ∈ G there is a λ

such that ρ(g) = λ IdV .

We then know that ρ(g) maps every 1-dimensional subspace of V to itself. So each such subspace is a

subrepresentation. Because ρ is irreducible, this implies any such subspace must be all of V .

.1. Compact Groups (namely S1 ∼= R/Z)

Let G = {x ∈ C× | |x| = 1} = S1. Then G is a compact topological group. Furthermore

R/Z
∼=−→ G

x 7→ e2πix

is an isomorphism of topological groups. G is abelian, so the irreducible representations ofG are 1-dimensional.

Earlier, we showed that the 1-dimensional representations are

ρ : R/Z→ GL1(C) ∼= C×

x 7→ e2πinx

for some n ∈ Z, and these are of course unitary.

Thus the finite-dimensional unitary representations of these are the direct sums of copies of the above

representations.

Decomposing a representation into irreducibles turns into the problem of writing a function as a combina-

tion of these ρ’s.

For any integrable function ϕ, the fourier series of ϕ is∑
n∈Z

cne
2πinx =

∑
n∈Z

cnρn(x)
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such that cn ∈ R. Furthermore the cn is given in terms of an integral.

cn =

∫
R/Z

ϕ(x)e2πinx dx
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