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I. Introduction

Here is the basic information about the course.

Book) Artin’s Algebra, 2nd Edition

Office Hours/Homework Dates

II. Group Theory

II.1. Basic Definitions

What are we studying in this course? Well, we study groups.

Definition II.1.1

A group is a set S equipped with a “binary operation”:

· : S × S → S

(s, t) 7→ s · t

which satisfies the following axioms:

Associativity) s(tu) = (st)u

Identity) There is some element e such that s · e = e · s for all s ∈ S.

Inverses) For every s ∈ S there is some t ∈ S such that st = e = ts.

We sometimes denote such a group by the triple (S, ·, e). One should not think about it like this.

Groups arise as symmetries of objects in nearly all areas of mathematics. This allows them to be broadly

applied and to solve a variety of problems. Furthermore, we understand groups very very very well, and this

allows us to transform problems that are challenging in other areas into problems in group theory which are

perhaps less challenging.

Example II.1.1

A classic example of a symmetry group is the symmetries of a set, aka for a set S we can consider

the set Aut(S) of invertible functions S → S with the operation of function composition.

This is a great example to remember for thinking of groups as symmetries.

Remark II.1.1

Some results and ideas in this course are generalized in a subject called category theory. This starts

exactly. . . now! Do not worry if you do not know category theory. However, some remarks will be left

for those that do, as well as an appendix on the subject Appendix A.

Category Theory formalizes the idea of symmetries of an object being a group. Namely, for an object

X lying in a category C , there is a group AutC (X) of invertible morphisms X → X in C .

We now move on to some basic examples and results to guide our thinking about the subject.

Example II.1.2

Lets quickly give some examples of groups to see how amazing they really are.

3
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Symbol Set Operation

Z Z +

Q× Q \ {0} ×
SL3(Z) 3× 3 matrices with det one Matrix Mult.

SL3(Z/10Z) 3× 3 matrices with det one and entries in Z/10Z Matrix Mult.

GL2(Z/5Z) 2× 2 matrices with nonzero det and entries in Z/1Z Matrix Mult.

Sn Permutations of {1, . . . , n} Composition

Cn = Z/nZ {1, . . . , n} Addition modulo n.

The group Z/nZ is called the cyclic group of order n and is extremely important.

Interesting Note: Z/nZ is “generated” by 1. This means that any element of Z/nZ may be obtained

by repeatedly multiplying 1 by itself.

Proposition II.1.1

Here is a list of fundamental and basic results about about groups:

• The identity element is unique. If e, e′ are both identities, e′ = ee′ = e.

• The inverse of a given element s ∈ S is unique. We call this inverse s−1. Suppose s−1s = e = st

then:

s−1 = s−1e = s−1(st) = (s−1s)t = et = t

Great!

• When multiplying many elements, there is no need to write parentheses. I.e. s1s2 · · · sn (for

si ∈ S) always evaluates to the same element of S regardless of how it is grouped.

One might think that they should understand groups by going through all of the possible sizes one by one

and classifying those groups. This is awful and a terrible idea. We do it anyway to show you that it works

for very small groups:

Size 1) C1.

Size 2) C2.

Size 3) C3.

Size 4) C4 and C2 × C2 (see Definition II.1.2).

Size 5) C5.

Size 6) S3, C6.

Size 7) C7.

Size 8) Ugly.

Definition II.1.2

Given two groups G,H with respective operations ·, ? we have that G × H is a group with the

operation

(·, ?) : (G×H)× (G×H)→ G×H

((g1, h1), (g2, h2)) 7→ (g1 · g2, h1 ? h2).

To study groups well we should define extra structure to think about them.

4
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Definition II.1.3

A subgroup of a group (G, ·, e) is a subset H of G which contains e such that (H, ·, e) is also a group.

An equivalent definition is that H is a subet of G containing e such that:

• If s, t ∈ H then st ∈ H.

• If s ∈ H then s−1 ∈ H.

Example II.1.3

Subgroups of Z under addition are all nZ with n some arbitrary non-negative integer.

Proof. Let H be a subgroup of Z. By definition, any subgroup contains zero. {0} = 0Z is a subgroup.

Now H 6= {0}, so it contains some nonzero element, and so it must contain some positive element

because inverses correspond to negation. We then may take the smallest positive element n ∈ H.

By repeated addition, nZ ⊆ H, so we must show that H ⊆ nZ. To show this, let x ∈ H. By the

division algorithm, x = nq+r for some q ∈ Z and 0 ≤ r < n. But then r = x−nq ∈ H, so by minimality

of n, we have that r = 0 and x = nq.

Now we prove one of the most crucial results about finite groups right off the definition. To do we introduce

a new concept, a “coset” and these cosets will partition our set.

Definition II.1.4

Given a group G, a subgroup H of G, and an element g ∈ G, the set gH = {gh | h ∈ H} is called a

coset of H or of g.

Theorem II.1.2 (Lagrange’s Theorem)

If G is a finite group and H is a subgroup of G, then |H| (the size of H) divides |G|. Notably the

converse is not always true.

Spoecifically we have that |G| = |H| · [G : H], where [G : H] is the number of different cosets of H in

G

Proof. We do this by showing that the cosets partition G into equal pieces. Equivalently, this defines an

equivalece relation on G (g ∼ g′ if gH = g′H, or equivalently they belong to the same coset, equivalently

g′g−1 ∈ H).

For g ∈ G, consider the coset gH. Clearly |gH| = |H| since gx = gy implies that x = y. Also
⋃
g∈G gH = G

since e ∈ H, so g = ge ∈ gH.

We simply must show that gH ∩ g′H 6= ∅ then gH = g′H. Let x ∈ gH ∩ g′H, so x = gh = g′h′ for some

h, h′ ∈ H. Without loss of generality, it suffices to prove that gH ⊆ g′H, as the same method will show that

g′H ⊆ gH.

Fix some y ∈ gH, then y = ghy for some hy ∈ H. Then y = ghy = g′h′h−1hy ∈ g′H.

Put another way, we can write this symbolically at the level of sets:

gH = ghh−1H = g′h′h−1H = gh′H = gH

Using the fact that hH = H for any h ∈ H, which can be proven quickly using the fact that H is closed

under the group operation and under inverses.

5
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Therefore G is the union of disjoint subsets, each of size |H|, so |H| divides |G|. Using the fact that

hH = H for any h ∈ H, which can be proven quickly using the fact that H is closed under the group

operation and under inverses.

Therefore G is the union of disjoint subsets, each of size |H|, so |H| divides |G|.

Corollary II.1.3

Every g ∈ G satisfies g|G| = 1G (that is the identity in G)

Proof. Let H be the group generated by g, that is all “powers” of g. Then |H| is the smallest nonnegative

integer so that g|H| = 1G Because |H| divides G, we may then write g|G| = gs|H| = 1sG = 1G for some integer

s.

Announcements and Ideas

• Office Hours (via Zoom): MW, 8pm-9:30pm

• Don’t read math line by line. Try not to spend time understanding the technical details and instead

extract the key idea.

We now talk about different ways of describing groups, and a few common groups. To think about this,

consider how awful it would be to describe a group with 100 elements via a 100× 100 table to describe the

operation · : S × S → S.

Definition II.1.5

The order of a group G is its size as a set.

Definition II.1.6

The cyclic group generated by an element g (in a group S) is the smallest (ordered by inclusion)

subgroup of S which contains g. We often denote this group by 〈g〉.
Equivalently, this is {gn | n ∈ Z}, where gn = ggg · · · g︸ ︷︷ ︸

n copies

(taking inverses for negative n). Note that all

powers of g commute, that is gngm = gmgn.

Proposition II.1.4

If this group is finite, then it’s {g, g2, . . . , gk} where k is the smallest positive integer such that gk = e.

Proof. Finiteness gives gi = gj for some 0 < i < j, so (g−1)igi = (g−1)igj = gj−i. There is then a positive

integer with gk = e. Pick the smallest such k.

Then if 0 < a < b ≤ n and ga = gb then we would have e = gb−a, which is impossible. Now just note

that {g, g2, . . . , gn} is closed under multiplication, contains the identity, and contains inverses. Namely for

0 < i < n we have gign−i = gn = e, and gngn = e.

Definition II.1.7

We define the order of an element g (in a group S) to be the size of 〈g〉. That is:

|g| =
{

n if 〈g〉 has n ∈ N elements

∞ if 〈g〉 is infinite

6
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Definition II.1.8

We say a group G is abelian provided that any two elements of G commute. That is for all g, h ∈ G,

gh = hg.

There is also a cancellation law for groups. If G is a group and gh = gr for g, h, r ∈ G then h = r by

mulitplying on the left by g−1. Likewise if hg = rg then h = r.

Recall that last time we proved the subgroups of Z are cyclic groups nZ, with n being a non-negative

integer. The key to the proof was that if a subgroup contains two positive integers a, b, then it also contains

a− bz for all z ∈ Z. We then combine this iwth the division algorithm, which says that there is some z, r ∈ Z
such that a = bz + r and 0 ≤ r < |b|. We then can run through this multiple times to find that the subgroup

is nZ for the smallest positive n in the group.

We can actually get more out of this!!!

Proposition II.1.5

Consider the subgroup G = 〈a, b〉 generated by two nonzero integers a, b. Then G = gcd(a, b)Z.

Furthermore this does some number theory for us!

• There is a greatest common divisor of two nonzero integers.

• Every common divisor of a, b divides the greatest common divisor.

• The greatest common divisor is expressible as gcd(a, b) = ax + by for x, y ∈ Z. This is called

Bezout’s Lemma.

Proof. Note that G = aZ + bZ, that is integer multiples of a plus integer multiples of b. G must clearly

contain this set, and this set contains G by using commutativity of addition.

We know G = nZ for some n > 0. Note then that a, b ∈ nZ, so n divides both a, b. But also n ∈ aZ+ bZ,

so n = ax+ by for some x, y ∈ Z. Now if d ∈ Z divides both a and b then d | n. Why? Well, dA = a, dB = b

so n = ax+ by = d(Ax+By). Therefore n is the greatest common divisor of a, b.

Corollary II.1.6

If a prime p ∈ Z divides p | ab with a, b ∈ Z, then p | a or p | b.

Proof. If p | a then gcd(p, a) = 1 since p is prime. Therefore 1 = ax+ py for x, y ∈ Z. Then b = abx+ pby.

Since p | ab, we know then that p | b.

Theorem II.1.7

Every positive integer can be written as a product of positive primes in exactly one way, up to

permuting the prime factors. Where the empty product is one by convention.

Proof. Induct on n to show existence of a prime factorization (clear if n = 1 or n is prime, otherwise n = ab

for a, b < n, apply induction).

Now we must show uniqueness by induction as well. If n = p1p2 · · · pk = q1q2 · · · q` with pi, qj prime. Then

we use that p1 | q1q2 · · · q`, so p1 | qi for some i. Because they are primes, p1 = qi, and by rearrangement we

may assume i = 1.

By cancellation, p2 · · · pk = q2 · · · q` < n because p1 = q1 > 1. By induction we’re done.

7
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We now list some order-theoretic properties of these subgroups, noting that the intersection of two

subgroups of a group G is always a subgroup of G. Let a, b ∈ Z \ {0}.
• aZ ∩ bZ = nZ with n = lcm(a, b). The proof is easy and is left as an exercise.

• 〈a, b〉 = aZ+ bZ = dZ where d = gcd(a, b).

There is also an alternative proof of unique factorizations. Lets sketch it! Suppose n is the least positive

integer with at least two prime factorizations n = p1 · · · pk = q1 · · · q`, and we might as well assume p1 ≤
· · · ≤ pk and q1 ≤ · · · ≤ q`. Then one may consider n− p1q1, and go from there, noting that if p1 = q1 then

we’re already done by the above ide ideaa.

Last time a, b ∈ Z not both zero, then aZ+ bZ = dZ where d = gcd(a, b). So d = am+ bn with m,n ∈ Z.

A consequence is then that if c | a and c | b then c | d (since c | am+ bn).

If p is prime and p - a then gcd(a, p) = 1. Thus 1 = am + pn, where m,n ∈ Z. Also, 1 = am mod p

( −am+ 1 ∈ pZ ). This implies that Z/pZ \ {0} is a group under multiplication (this in fact makes Z/pZ a

field).

This type of multiplicative group is often denoted by (Z/nZ)∗ = (Z/nZ)× = {a ∈ Z/nZ | gcd(a, n) = 1}
is a group under multiplication.

Definition II.1.9

For any group G and any subgroup H define an equivalence relation on G by

g1 ∼ g2 ⇐⇒ g−1
1 g2 ∈ H ⇐⇒ g1H = g2H

It’s a standard check that this is an equivalence relation. Furthermore the conditions above are equivalent

as:

g−1
1 g2 ∈ H ⇐⇒ g−1

1 g2H = H ⇐⇒ g2H = g1H

Note how the condition g−1
1 g2 ∈ H matches the condition from modular arithmetic that a = b mod n

provided that −a+ b ∈ nZ (which we saw above).

Also note that H → gH given by h 7→ gh is a bijection. Further g1H and g2H are either equal or disjoint.

We now recall Theorem II.1.2

Theorem II.1.2 (Lagrange’s Theorem)

If G is a finite group and H is a subgroup of G, then |H| (the size of H) divides |G|. Notably the

converse is not always true.

Spoecifically we have that |G| = |H| · [G : H], where [G : H] is the number of different cosets of H in

G

Extremely Useful Idea: Think of G as inducing permutations on G/H, the set of cosets of H, where g ∈ G
maps g1H 7→ gg1H.

Corollary II.1.8

If a group G has prime order then it is cyclic.

Proof. If g ∈ G isn’t 1G then g generates a subgroup 〈g〉 of G. |〈g〉| divides the prime |G|, but |〈g〉| isn’t one.

Thus |〈g〉| = |G|, so 〈g〉 = G.

8
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We now begin to relate groups to each other via particular nice types of functions.

Definition II.1.10

A homomorphism f : G1 → G2 between groups G1, G2 is a function such that

f(xy) = f(x)f(y)

for all x, y ∈ G1.

Lemma II.1.9

If f : G1 → G2 is a homomorphism then f(1G1
) = 1G2

and f(g−1) = f(g)−1.

Furthermore f(G1) is a subgroup of G2.

Proof. We prove these by simple algebraic manipulation:

f(1G1) = f(1G1 · 1G1) = f(1G1) · f(1G1)

f(1G1
) = 1G2

We also may write:

f(g)f(g−1) = f(gg−1) = f(1) = 1

f(g−1) = f(g)−1

The fact that f(G1) is a subgroup immediately follows, as it contains the identity, inverses, and is closed

under multiplication

Example II.1.4

det : GLn(R) → R×, where GLn(R) are the invertible matrices under multiplication and R× is the

nonzero reals under multiplication.

exp : R+ → R×, where R+ is the group of reals under addition. We also have |·| : C× → R×.

The trivial homomorphism G1 → G2 which takes everything to 1, as g 7→ 1.

We now generalize a definition from linear algebra that turns out to be extremely extremely useful.

Definition II.1.11

Let f : G1 → G2 be some homomorphism. Then define the kernel of f to be

ker f := {g ∈ G1 | f(g) = 1}.

This will be a subgroup of G1 (exercise!), and it will satisfy some very nice properties. Namely if b ∈ ker f

and a ∈ G1 then aba−1 ∈ ker f .

f(aba−1) = f(a)f(b)f(a)−1 = f(a)f(a)−1 = 1

Definition II.1.12

Define a normal subgroup N of G to be a subgroup such that gng−1 ∈ N for all n ∈ N and g ∈ G.

We notation this as N E G.

9
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So, if f : G1 → G2 is a homomorphism then ker(f) is a normal subgroup of G1. Later we will show

the converse, if N is a normal subgroup of G then N is the kernel of some homomorphism G→ G̃ (in

fact, as a set G̃ = G/N).

If f : G1 → G2 is a homomorphism, then

f(x) = f(y) ⇐⇒ f(x)−1f(y) = 1 ⇐⇒ f(x−1)f(y) = f(x−1y) = 1

⇐⇒ x−1y ∈ ker f ⇐⇒ x ker(f) = y ker(f)

This implies that for any g ∈ f(G1),
∣∣f−1(g)

∣∣ = |ker(f)|.
Corollary II.1.10

For a group homomorphism f , f is injective if and only if ker(f) = {1}.

Note first that if G is an abelian group, then every subgroup of G is normal.

Definition II.1.13

A simple group G is a nontrivial group whose only normal subgroups are G and 1.

Example II.1.5

The only abelian simple groups are Z/pZ for p a prime (isomorphic to cyclic of prime order).

Theorem II.1.11 (Feit-Thompson)

If G is a simple group of odd order, then it is cyclic of prime order.

Proof. A 200 page book for a world-class expert in the subject.

Theorem II.1.12

The finite simple groups are known, and understood very very well.

Proof. The experts in group theory classified all the simple groups around the 1960s resulting in an approxi-

mately 15,000 page book.

Fact: There is a surjective homomorphism Sm → Sn if and only if m = n or n = 1 or n = 2 or (m = 4

and n = 3).

Definition II.1.14

A map f : G→ G̃ is an isomorphism provided that f is a bijective homomorphism.

In this case we say that G ∼= G̃, and that G and G̃ are isomorphic

Lemma II.1.13

Let f : G→ G̃ is an isomorphism, then the inverse function f−1 : G̃→ G is an isomorphism.

Proof. Let x = f(a) and y = f(b). Then f(ab) = f(a)f(b) = xy. Thus

f−1(xy) = ab = f−1(x)f−1(y)

Perfect!

10
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Example II.1.6

The Klein 4-group V4 = C2 × C2 =

{(
±1 0

0 ±1

)}
.

In S4, there is a normal subgroup {1, (12)(34), (13)(24), (14)(23)}. This is not cyclic since everything

has order two, and so it is isomorphic to V4.

There is another copy of V4 in S4, namely {1, (12), (34), (12)(34)}, and this is not normal.

This means we need to be careful about talking about isomorphisms between subgroups of a given

group.

Definition II.1.15

An automorphism of a group G is an isomorphism from G to itself.

The set of automorphisms form a group under composition, called Aut(G).

Definition II.1.16

For g ∈ G, define a function

ϕg : G→ G

h 7→ ghg−1

called conjugation by g. This is an automorphism, and these are called the inner automorphisms

Proof. Well we see that

(gh1g
−1)(gh2g

−1) = gh1g
−1gh2g

−1 = g(h1h2)g−1

So this is a group homomorphism. Furthermore it has inverse h 7→ g−1hg, as

h 7→ ghg−1 7→ g−1ghg−1g = h

h 7→ g−1hg 7→ gg−1hgg−1 = h

Perfect!

We can also note that

ϕg1 ◦ ϕg2 = ϕg1g2

Which we can simply compute

h 7→ g2hg
−1
2 7→ g1g2hg

−1
2 g−1

1 = (g1g2)h(g1g2)−1

Thus g 7→ ϕg is a homomorphism G→ Aut(G). We can ask what is the kernel of this homomorphism? Well

ker = {g ∈ G | ϕg = IdG} = {g ∈ G | ϕg(h) = h ∀h ∈ G} = {g ∈ G | gh = hg ∀h ∈ G}

And this is a normal subgroup.

Definition II.1.17

This kernel of the conjugation homomorphism G→ Aut(G) is called the center of the group G and

is denoted Z(G).

Z(G) := {g ∈ G | gh = hg ∀h ∈ G}.

11
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This is of course a normal subgroup.

Lets think about conjugation in Sn. For example consider

(123)(12)(132) = (23)

More concretely we can write this compositon as

1 3oo 3oo 1oo

3 2oo 2

��

3oo

2 1oo 1

^^

2oo

In general

σ ◦ θ ◦ σ−1

is gotten from θ by applying σ to all elements in all cycles of θ, when written in cycle notation.

σ(i)
σ−1

7−−→ i
θ7−→ θ(i)

σ7−→ σ(θ(i))

Proposition II.1.14

Let G be a group and H be a subgroup, with G/H the set of all (left-)cosets gH for g ∈ G.

Then let ηg : xH 7→ gxH be a map, then

η : G→ Sym(G/H) = {permiutations of G/H}

g 7→ ηg

is a homomorphism.

Proof. ηg is in Sym(G/H) because ηg−1 is an inverse by an easy computation.

η is a homomorphism because

ηg1 ◦ ηg2 : xH
ηg27−−→ g2xH

ηg17−−→ (g1g2)xH = ηg1g2(xH)

Perfect!

In case H = 1, this homomorphism has trivial kernel, and so its an injective homomorphism G ↪→ Sym(G).

It then induces an isomorphism G
∼=−→ η(G) ⊆ Sym(G). This says that every group is isomorphic to a

subgroup of permutations.

II.2. The Basic Tools

Going from the well-behaved case of the cyclic groups Cn to the non-abelian case is really hard, and

sometimes requires extra hypotheses. We should think of normal subgroups as analogous to divisors of an

integer, and simple groups as prime numbers.

12
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Definition II.2.1

For any n > 1, there is a surjective homomoprhism sgn : Sn � S2.

First, there is an injective homomorphism:

ρ : Sn ↪→ {n× n integer matrices with det equal to ± 1}

σ 7→
(
Aij = δiσ(j)

)

where δk` is the Kroenecker Delta (which is 1 when k = ` and zero otherwise). Then det ◦ρ is a surjective

homomorphism Sn � {±1}, where {±1} is a group under multiplication. We call this homomorphism

sgn : Sn � S2.

We define An := ker sgn, and we say σ ∈ Sn is even if sgnσ = 1 and otherwise we say σ is odd.

Great fact: If n ≥ 5 then An is simple.

Note: Any 2-cycle is odd.

Easy: Every element of Sn is a product of disjoint cycles (Hint: take a starting point, run it through σ

over and over again until you get back to the starting point).

Consequence: Every element of Sn is a product of 2-cycles, since every cycle is a product of 2-cycles. Why?

Well

(14)(13)(12) = (1234)

and likewise for any other cycle.

Restated: Sn is generated by the two-cycles.

This gives an immediate proof of the following:

Proposition II.2.1

An element σ of Sn is even if and only if it can be written as a product of an even # of 2-cycles if

and only if it cannot be written as the product of an odd # of 2-cycles.

Proposition II.2.2

An is generated by 3-cycles.

Proof. From the above, we know An is all products of an even # of 2-cycles. Thus it suffices to show that

3-cycles are exactly products of two 2-cycles:

(ij)(ij) = Id

(ij)(ik) = (ikj) (i, j 6= k)

(ij)(k`) = (ki`)(ijk) (i, j 6= k, i, j 6= `)

Thus every product of two 2-cycles is a product of some # of 3-cycles and every 3-cycle is in An. Great!

Proposition II.2.3

Let H be a subgroup of G, recall that:

H is normal ⇐⇒ gHg−1 ⊆ H ∀ g ∈ G

13
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⇐⇒ gHg−1 = H ∀ g ∈ G

⇐⇒ gH = Hg ∀ g ∈ G

⇐⇒ H is the kernel of some homomorphism ϕ : K → G

And in fact we have:

aHbH = a(Hb)H = a(bH)H = abHH = abH

This is suggesting we define a group. Namely G/H (the set of left cosets of H) is a group with operation

(aH)(bH) = (ab)H.

Proof. If H is normal in G, then gHg−1 ⊆ H, and then g−1Hg ⊆ H, so H ⊆ gHg−1.

The backwards direction of this is clear, and the second holds if and only if the third holds by multiplication

by g (resp. g−1) on the right.

Now for the last bit, we know all kernels of homomorphisms are normal from last time. If H E G then we

can write:

G→ G/H

g 7→ gH

is a surjective homomorphism with kernel H.

Definition II.2.2

If H E G, then G/H is a group, called the quotient group. The operation is

(aH)(bH) = (ab)H.

And it is well defined because by the above proposition if H is normal that as sets

(aH)(bH) = a(Hb)H = a(bH)H = (ab)H.

Details to be checked that this is a group.

So if H E G then G/H is a group, called the quotient group.

Lemma II.2.4

If [G : H] = 2 (the index of H in G, that is |G/H|), then H E G.

Proof. If g ∈ H then gH = H = Hg. Then if g 6∈ H then gH = G \H = Hg.

Note: There is a bijection between G/H and the set of right cosets Hg for g ∈ G given by inversion:

gH 7→ Hg−1

Note: Automorphisms of G preserve “reasonable” properties. E.g. if σ ∈ AutG and H ≤ G then H E G if

and only if σ(H) E H. Also [G : H] = [G : σ(H)]. Also H is abelian if and only if σ(H) is abelian.

So for instance, if H is the unique subgroup of G with a given index [G : H], then H E G (since H must

be preserved by conjugation by any g ∈ G).

14
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Announcements: Midterms

• Friday October 22nd, 6pm-8:30pm

• Thursday: December 9th, 6pm-8:30pm

• NO FINAL EXAM

Given a group G and a subgroup H we defined G/H to be the set of all (left)-cosets of H in G. Recall

that:

• [G : H] := |G/H|.
• If H E G then G/H is a group under the operation induced by G. That is (aH)(bH) = (ab)H. As a

set this is exactly:

{ah1bh2 | h1, h2 ∈ H}

And so either way of interpreting (aH)(bH) is correct!

• There is a quotient map G→ G/H given by g 7→ gH, which is clearly a surjective homomorphism.

And in fact the kernel of this map is H.

Theorem II.2.5 (Artin calls this the Correspondence Theorem)

Let f : G � G′ be a surjective homomorphism with kernel K. There is then a natural bijection

between subgroups of G containing K, and subgroups of G′. This is given by taking image/preimage

under f .

H 7→ f(H)

f−1(J)←[ J

Proof. The images and preimages will in fact be subgroups (easy check). Furthermore if J ≤ G′, then f−1(J)

contains K because 1 ∈ J , and every k ∈ K maps to 1.

It’s immediate that f(f−1(J)) = J because f is surjective. We then need to show for K ≤ H ≤ G that

H = f−1(f(H)). From set theory we know that H ⊆ f−1(f(H)). So we just need to show the other direction.

Let x ∈ f−1(f(H)), so then f(x) = f(h) for some h ∈ H. But then f
(
xh−1

)
= 1, so xh−1 ∈ K ⊆ H.

Thus xh−1 ∈ H and we then know that x = xh−1h ∈ H, and we are done!

Another proof looks like this. Preimages of points are exactly cosets of the kernel, so we have:

f−1(f(H)) =
⋃

h∈H
f−1(f(h)) =

⋃

h∈H
hK = H

Using the fact that K ≤ H, so any element of hK lies in H.

Note if K ≤ H ≤ G then [G : H] = [G′ : f(H)]. Send the coset gH to f(g)f(H), and this will be a

bijection. The argument is standard from similar ideas to the above.

If G is a group and N is a normal subgroup, then the homomorphism G � G/H is called the quotient

homomorphism/quotient map/canonical homomorphism. The correspondence theorem then tells us that

subgroups of G/H are in bijection with the subgroups of G containing N .

15
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Theorem II.2.6 (The First Isomorphism Theorem)

Let f : G → G be some surjective homomorphism with kernel K. Then G/K ∼= G. Precisely, let

π : G � G/K be the quotient map. Then there is a unique isomorphism f : G/K → G which makes

the following diagram commute:

G
f
//

π
!!

G

G/K

f

OO

Proof. A function f : G/K → G such that f ◦ π = f is completely determined by f because π is surjective.

Namely for gK ∈ G/K, we know:

f(gK) = f(π(g)) = f(g)

We now just need to show that’s a well-defined isomorphism.

Say that gK = g̃K, then:

f(gK) = f(g)f(K) = f(g) = f(g̃) = f(g̃)f(K) = f(g̃K)

Great! Thus this function f : G/K → G is well-defined.

f is a homomorphism clearly because:

f((g1K)(g2K)) = f(g1g2K) = f(g1g2) = f(g1)f(g2) = f(g1K)f(g2K).

Furthermore f is surjective. Take g ∈ G, then g = f(g) for some g ∈ G, so:

f(π(g)) = f(g) = g

Finally, f is injective. To show this we show ker f = 1. Let gK ∈ ker f , then f(g) = 1, so g ∈ ker f = K,

and gK = K and we’re done!

Lets look at symmetries of a triangle:

• Rotation by 120 degrees around the center (order 3)

• Reflect through an angle bisector (order 2)

These generate S3.

In general, a regular n-gon has 2n symmetries by rotations/reflections. These are generated by the

reflections, as two reflections makes a rotation.

Definition II.2.3

The dihedral group of order 2n is the largest group generated by x, y satisfying the relations

x2 = y2 = (xy)n = 1

One can show that the elements are zixj for 0 ≤ i < n and 0 ≤ j ≤ 1.

This is a non-abelian group!

16
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Definition II.2.4

An isometry f : M → N between two metric spaces M,N is a function such that

d(x, y) = d(f(x), f(y)).

Lemma II.2.7

Every isometry R2 → R2 is invertible, and the inverse is an isometry.

Lemma II.2.7 is a consequence of

Lemma II.2.8

The isometries of the plane are precisely translations composed with rotations about the origin through

some angle composed with either the identity or a reflection about the x-axis.

Proof. It’s clear that these are isometries (and are invertible).

Conversely, given any isometry f , we peel off each piece in layers. Write f1(x) = f(x)− f(0). Then:

d(f1(x), f1(y)) = d(f(x)− f(0), f(y)− f(0)) = d(f(x), f(y)) = d(x, y)

This is then an isometry so that f1(0) = 0. We prove these isometries which fix 0 are rotations about the

origin composed with either the identity or a reflection about the x-axis

Now consider ‖f1(1, 0)‖ = ‖(1, 0)‖ = 1 must lie on the unit circle. Thus f1(1, 0) = (cos θ, sin θ) for some

θ ∈ [0, 2π). Simply set f2 to be f1 composed on the left with a rotation by −θ about the origin, to undo this.

Then f2(1, 0) = f2(1, 0) and f2(0) = 0. Furthermore this is an isometry, we prove isometries fixing the origin

and (1, 0) are either the identity or reflection through the x-axis.

The proof then goes by saying that (0, 1) is distance 1 from (0, 0) and distance
√

2 from (1, 0). Thus

f2(0, 1) lies on circles of distance 1 from (0, 0) and distance
√

2 from (1, 0). Circles only ever intersect at at

most two points, and so f2(0, 1) = (0, 1) or f2(0, 1) = (0,−1).

Thus write f3 = f2 or f3 = reflect ◦ f2. Thus f3 is an isometry fixing (0, 0), (1, 0), (0, 1). We show f3 is

the identity.

First we show the x-axis and y-axis are fixed. (x, 0) is the only point in R2 with distance |x| from (0, 0)

and distance (|x− 1| from (1, 0). Similarly, the y-axis is fixed. Then (x, y) is the unique point with distance

|y| from (x, 0), distance |x| from (y, 0) and distance
√
x2 + y2 from (0, 0).

Theorem II.2.9

The isometries are precisely

(1) Translations

(1) Rotation about some point through some angle

(1) Reflection through some line

(1) “Glide reflection,” reflect through a line ` and then translate by a nonzero vector along `.

Translations and rotations are orientation-preserving, and the reflections and glide reflections are

orientation-reversing. If we envision these as symmetries of a plane lying in R3 this is exactly talking

about preserving the “top” of the plane.
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Proof. Suppose f = τQ ◦ ρθ, a translation by a point Q and rotation counterclockwise about (0, 0) by

0 ≤ θ < 2π. If ρθ = Id we ’re done, so assume ρθ 6= Id.

We must show that f is a rotation about some point. Our first goal is to show f has one and only one

fixed point R (the point which it rotates about), and then to translate that point back to the origin via a

conjugation (by a translation). We then show that τ−1
R fτR = ρψ is rotation about the origin, proving the

claim that f = τRρψτ
−1
R is rotation about R (as the translation τR just changes coordinates).

We want f(R) = R, so that means we want (ρθ − Id)R = −Q for one and only one R. Thus we show

ρθ − Id is an invertible linear transformation. Well:

det(ρθ − I) =

∣∣∣∣∣
cos θ − 1 − sin θ

sin θ cos θ − 1

∣∣∣∣∣ = 2− 2 cos θ 6= 0

Because ρθ 6= Id, so cos θ 6= 1.

The rest of the proof is similar in flavor, and will be completed Thursday.

Continued proof of Theorem II.2.9. We now know there is a unique fixed point R of our isometry given by

τQ ◦ ρθ.
We then have that τ−R ◦ τQ ◦ ρθ ◦ τR is a rotation about the origin. Why? It’s an orientation-preserving

isometry that fixes the origin, so the composition τQ′ ◦ ρθ′ ◦ (Id or r) cannot have Q′ 6= 0 or r.

Thus τQ ◦ ρθ is a rotation about R.

Now suppose the isometry reverses orientation, that is it equals τQ ◦ ρθ ◦ r.
Then all we need to understand is ρθ ◦ r, and show that this is a reflection through some line. Namely it’s

reflection through the line which passes through (0, 0) and is ρθ/2(x− axis).

Change coordinates to make this line be the x-axis, then we have τQ′ ◦ r, which is a reflection through a

horizontal line if Q′ is on the y-axis and a glide reflection otherwise.

Theorem II.2.10

Every finite group of isometries of R2 is cyclic or dihedral.

Proof. We do this in a few simple steps

Step a) There are no nonidentity translations and there are no nonidentity glide reflections, because these

have infinite order.

Step b) All rotations in this group G have the same center. To show this, pick any point R0. We may then

form a new point R1 via:

R1 =
1

|G|
∑

g∈G
g(R)

We claim that R1 is fixed by each g′ ∈ G. If g′ is a linear transformation R2 → R2, then g′(R1) = R1

Why? Well:

g′(R1) =
1

|G|
∑

g∈G
g′(g(R)) =

1

|G|
∑

g∈G
(g′g)(R) =

1

|G|
∑

h∈G
h(R) = R1

The second to last equality is fundamental, and follows because g 7→ h = g′g is a bijection G→ G.
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Also we have that τQ maps R1 to R1 +Q, why? Well:

τQ(R1) = Q+
1

|G|
∑

g∈G
g(R) =

1

|G|
∑

g∈G
[g(R) +Q] =

1

|G|
∑

g∈G
τQ(g(R1))

In fact, this means that every isometry maps the center of mass of a set of points to the center of

mass of the images of these points.

Because the set {g(R) | g ∈ G} and the image set {g′(g(R)) | g ∈ G} are the same, this means

that each g′ ∈ G fixes R1. Rotations have a unique fixed point which is their center, and so we’re

done.

Step c) Suppose G consists solely of rotations. They all have a common fixed point, we may as well assume

it is (0, 0) without loss of generality. Say the rotations are by angles 0 = θ1 < θ2 < . . . < θk < 2π.

We claim rotation by θ2 generates the group. Well we know each θi = niθ2 + δi for ni ∈ Z and

0 ≤ δ < θ2. But then this would imply that rotation by δi is in the group, showing that we must

have δi = 0 by minimality of θ2.

This finishes this piece!

Step d) If we have a reflection, we can choose coordinates so it is through the x-axis, giving us the dihedral

group. Why? Well, we generate the dihedral group, and any two r1, r2 composed give a rotation ρθ,

so r1 = ρθ ◦ r−1
2 , showing that r1 must be in the dihedral group as well.

III. Group Actions

Groups most often arise in other fields of mathematics via the automorphisms of certain objects. As such,

it makes sense to study groups by looking in the opposite direction. Namely, for a group G, we can study

homomorphisms G → Aut(W ) for some automorphism group of some structure W . We call these maps

representations of a group, and we say that G acts on W .

The two most most common objects to consider for a group to act on are sets and vector spaces. These give

permutation representations and linear representations respectively, and these are given as homomorphisms

G→ Sym(S) and G→ GL(V ) respectively.

For notational reasons, we take the name group action to mean a permutation representation, and

representation by itself to mean a linear representation.

III.1. Permutation Representations

Definition III.1.1

Suppose G is a group and S is a set. We say that a group action of G on S is a homomorphism

ρ : G→ Sym(S)

Carrying around this homomorphism can clutter notation, so we often use the following equivalent defini-

tion

Definition III.1.2

Suppose G is a group and S is a set. We say that a group action is a map G × S → S, written by
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g · s, such that for all g1, g2 ∈ G and s ∈ S

g1 · (g2 · s) = (g1g2) · s

1 · s = s

We leave the fact that these are equivalent definitions as a simple exercise.

Definition III.1.3

Suppose G is group acting on a set S. We say that the kernel K of the action is the kernel of the

associated group homomorphism ρ, equivalently

K := {g ∈ G | ∀s ∈ S, g · s = s}

The kernel is then a normal subgroup of G

Definition III.1.4

Suppose G is a group acting on a set S, and that s ∈ S. We say that the stabilizer of s is the set

StabG(s) = {g ∈ G | g · s = s}

We sometimes also denote the stabilizer of s by Gs

Note that for G acting on S throug the homomorphism ρ, if H is the subgroup of Sym(S) which fixes s, then

Gs = ρ−1(H). In this way, we immediately see that Gs is a subgroup of G.

Definition III.1.5

Suppose G is a group acting on a set S, and let s ∈ S. We say that the orbit of s is the set

OrbG(s) = {g · s | g ∈ G} = {t ∈ S | ∃g ∈ G s.t. g · t = s}

We sometimes also denote the orbit of s by Os.

Lemma III.1.1 (Orbits partition)

Suppose G is a group acting on a set S. Then the set {Os}s∈S is a partition of S.

Proof. We see that the orbits cover S as for any s ∈ S we know s ∈ Os. Thus we just need to show these

are disjoint.

Fix r ∈ Os ∩ Ot. Now pick an arbitrary x ∈ Os. Then we know that there is some a, g, h ∈ G such that

r = g · s = h · t and x = a · s. Then

a · s = ag−1 · r = ag−1h · t

Thus x ∈ Ot, and Os ⊆ Ot. By symmetry, Ot ⊆ Os. We then see that these are equal sets, and we’re

done.

Sometimes we will pick a specific representative of an orbit to work with. However, this is really arbitrary

in nature, and we should understand what effect this choice has on us.
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Lemma III.1.2

Suppose G is a group acting on a set S. Then for s ∈ S and g ∈ G we have

Gg·s = gGsg
−1

Proof. This is simple logic

h ∈ Gg·s ⇐⇒ hg · s = g · s

⇐⇒ g−1hg · s = g−1g · s

⇐⇒ g−1hg · s = s

⇐⇒ g−1hg ∈ Gs
⇐⇒ h ∈ gGsg−1

The intuition is that if h fixes s, and if we relabel g · s to s, h will then fix g · s, and we do this relabeling

via conjugation.

Definition III.1.6

Suppose G is a group acting on a set S, we say that the action is transitive provided that there is

only one orbit Os = S for some s ∈ S.

Theorem III.1.3 (Orbit Stabilizer)

Supppose G is a group acting on the set S. Then, for arbitrary s ∈ S

[G : Gs] = |Os|

Proof. Fix arbitrary s ∈ S. Consider the map f : G→ Os given by f : g 7→ g · s. We see that f is surjective

by the definition of an orbit.

The structure of the theorem is the following

G Os

G/Gs

f

π f

In this case, as Gs need not be a normal subgroup of G, π is not a homomorphism, and G/Gs is only a set.

The function f which makes the diagram commute is essentially already defined for us. Why? Well

f ◦ π = f if and only if for all gGs ∈ G/Gs we have

f(gGs) = f(π(g)) = f(g) = g · s

This is well defined because if gGs = hGs then g−1h ∈ Gs and

f(gGs) = g · s = g(g−1h) · s = h · s = f(hGs)
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We see that f is injective as if f(gGs) = f(hGs) we conclude that g · s = h · s, so g−1h ∈ Gs, and then

gGs = hGs.

Finally, we see that f is surjective by surjectivity of f , f = f ◦ π.

Example III.1.1

If H is a subgroup of G, then G acts on G/H via g(g′H) = (gg′)H.

This gives a homomorphism G→ Sym(G/H).

GH = {g ∈ G | gH = H} = H

GgH = gHg−1

This action is transitive (i.e., there’s only one orbit). As G/H = OH .

Remark III.1.1

The orbits {Os}s∈S form a partition of S.

Remark III.1.2

Every transitive action of G on S is isomorphic to the left-multiplication action of G on G/Gs (for

any s ∈ S).

Actions of G on sets S and T are isomorphic if there is a bijection f : S → T such that gf(s) = f(gs).

G acts on G by conjugation:

g · h = ghg−1

This gives a homomorphism G→ Aut(G) ≤ Sym(G) as we’ve discussed before.

The kernel is exactly the center of G. We know that

Gh = {g ∈ G | ghg−1 = h} = {g ∈ G | gh = hg} := CG(h)

where CG(h) denotes the “centralizer of h in G.” Then the center of G is Z(G) =
⋂
h∈H CG(h), which is the

same as the kernel
⋂
h∈H Gh.

Applying orbit stabilizer gets us that

|conjugacy class of h ∈ G| = [G : CG(h)]

A corollary, the size of the conjugacy class divides the size of the group. Since G is the (disjoint) union of

its conjugacy classes, it follows that if we have representatives h1, . . . , hk of all the distinct conjugacy classes

then

k∑

i=1

[G : CG(hi)]

This is called the class equation of G.
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Example III.1.2

If G = S5 then the representatives of conjugacy classes are

hi CG(hi) size [S5 : CG(hi)]

(1) S5 120 1

(12) C2 × S3 12 10

(123) C3 × S2 6 20

(1234) C4 4 30

(12345) C5 5 24

(12)(34) D4 8 15

(12)(345) C2 × C3 6 20

120

IV. Sylow’s Theorems and p-groups

Definition IV.0.1

A p-group (if p is prime) is a group of order pn for some n > 0.

Theorem IV.0.1

Every p-group has nontrivial center.

Proof. The class equation tells us that

pn =

k∑

i=1

[G : CG(hi)]

Where hi are representatives of the distinct conjugacy classes in G. h ∈ Z(G) if and only if CG(h) = G if

and only if [G : CG(h)] = 1 if and only if the conjugacy class of h is {h}.
Since |G| = pn, [G : CG(hi)] are all powers of p (since they divide |G|). This is then either one of a multiple

of p. Modding out by p on both sides of the class equation gives:

0 ≡ |Z(G)| mod p

Because 1 ∈ Z(G), we know the right hand side has at least one element. Therefore it has at leas tP elements

because it is divisible by p. Thus there is more than one element in the center and we’re done!

Proposition IV.0.2

All groups of order p2 (for p a prime) are abelian.

Proof. Note that Z(G) is nontrival, so |Z(G)| = p or |Z(G)| = p2 by Lagrange’s theorem. If |Z(G)| = p2

then Z(G) = G and we’re done. Thus we just need to see that something goes wrong if |Z(G)| = p.

Take some element g ∈ G \ Z(G), we know that g commutes with itself and commutes with Z(G). Thus

CG(g) ⊇ 〈Z(G), g〉 ) Z(G). Because |CG(g)| | |G| = p2 and |CG(g)| > p, we then know that |CG(g)| = p2.

Thus g ∈ Z(G). Contradiction!
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Definition IV.0.2

A Sylow p-subgroup is a subgroup of G of order pn where |G| = pnm with p - m.

Theorem IV.0.3

If G is a finite group, and pk | |G| where p is prime and k > 0 then G has a subgroup of order pk.

Furthermore

• Any two Sylow p-subgroups of G are conjugate.

• Any p-subgroup of G is contained in a Sylow p-subgroup of G.

• The # of Sylow p-subgroups divides |G| and is ≡ 1 mod p.

Proof. Say pk | |G| and write |G| = pnm for p - m. The proof proceeds via acting on a clever set.

Let S be the set of subsets of G of size pk. G acts on S by left multiplication.

g · T = {gt | t ∈ T}.

Goal: Show there exists a T ∈ T such that GT has order pk.

The first thing to notice is that this is the largest possible order of any stabilizer. Why? Well for any

t ∈ T ∈ S, we know GT · t ⊆ T . Thus because |GT · t| = |GT | we have |GT | ≤ |T | = pk.

Therefore by orbit-stabilizer we know

|OT | =
|G|
|GT |

this is divisible by pn−k, and this is the smallest power of p dividing |OT | (prime factorization). We want to

show there exists T such that |OT | is not divisible by pn−k+1.

Consider the orbits OT for varying T ’s. These form a partition of S. So we’ll show |S| is not divisible

by pn−k+1, and so we have to have some T so that |OT | is not divisible by pn−k+1. Thus pk | |G|T and

|GT | = pk.

Claim

The largest power of p dividing |S| is pn−k.

Well, we see that

|S| =
(|G|
pk

)
=

(
pnm

pk

)
=

(pnm)(pnm− 1) · · · (pnm− pk + 1)

pk(pk − 1) · · · (pk − pk + 1)

= (pn−km)

pk−1∏

i=1

pnm− i
pk − i

If i = p`j for p - j then

pk − i = pk − p`j = p`(pk−` − j)

pnm− i = pnm− p`j = p`(pn−`m− j)

Both pk−` − j and pn−`m− j are coprime to p, so pk − i and pnm− i are divisible by exactly rhe same

powers of p. Thus |S| = pn−k · (some # coprime to p).
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This is an awful way to prove this fact. Lets do it in a better way. A better proof is that
(
pa
pb

)
is the

coefficient of xpb in (x+ 1)pa. Thus in Z/pZ we have

(x+ y)p = xp + yp

(x+ 1)pa = (xp + 1)a.

Thus the coefficient of xpb is
(
a
b

)
. Therefore

(
pa

pb

)
≡
(
a

b

)
mod p

This proves the existence of p-subgroups.

Now we prove that any two Sylow p-subgroups are conjugate and any p-subgroup of G is contained in a

Sylow p-subgroup of G. We first need a lemma.

Lemma IV.0.4

If H is a p-group acting on a set X then |X| = (# of fixed points of H) mod p.

X is a union of disjoint H-orbits, each H-orbit has size dividing |H|, so this size is a power of p. The

number of length-1 orbits is then equivalent to |X| mod p, and we’re done.

We now show that for any p-subgroup H of G and any Sylow p-subgroup J of G that there exists g ∈ G such

that g−1Hg ≤ J .

H acts on G/J by multiplication h · (gJ) = hgJ . Since J is a Sylow p-subgroup, |G/J | is coprime to p.

Thus the # of fixed points of H on G/J is nonzero (because it is coprime to p).

This says there exists a g ∈ G such that HgJ = gJ . Thus g−1HgJ = J . Therefore g−1Hg ⊆ J .

Finally we need to show that the number of Sylow p-subgroups divides |G| and is ≡ 1 mod p. Let A be

the set of all Sylow p-subgroups. G acts on A by conjugation. This action is transitive (i.e., has one orbit).

Pick a Sylow p-subgroup J . Then by orbit-stabilizer

|A| = |OJ | = [G : GJ ] =
|G|
|GJ |

Thus |A| | |G|. Furthermore, note that J ⊆ GJ , so pn | |G|J . Therefore |A| is coprime to p. Now we need to

see that it is ≡ 1 mod p.

Well, restrict the action so that J is acting on A. It then suffices to determine the fixed points, which we

claim is just J ∈ A. Well

J fixes some H ∈ S ⇐⇒ jHj−1 = H ∀ j ∈ J

⇐⇒ J ⊆ NG(H) (i.e., normalizer of H in G)

H and J are now Sylow p-subgroups of NG(H). Thus they are conjugate inNG(H). But wait! Then

J = xHx−1 = H for some x ∈ NG(H). Perfect!

Thus there is one fixed point, and by the lemma |A| ≡ 1 mod p.

IV.1. Applications of Sylow’s Theorems
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Proposition IV.1.1

We have the following applications of Sylow’s theorems

(1) If p, q are distinct primes with p > q, then no group of order paq can be simple (a > 0).

(2) There are no simple groups of order 12

(3) If |G| = 28 and G has a normal Sylow 2-subgroup then G is abelian.

(4) There are no simple groups G of order 120.

Proof of (1). Let H be a Sylow p-subgroup, so |H| = pa. The number of Sylow p-subgroups is ≡ 1 mod p

and divides q. Because p > q this implies that the number of Sylow p-subgroups is one.

Thus H is normal in this group, and it is not simple.

Proof of (2). Consider the # of Sylow 3-subgroups divides 4 and is 1 mod 3. Thus it’s 1 or 4. If there is 1

then the Sylow 3-subgroup is normal and G is not simple.

If there are 4 Sylow 3-subgroups, then since these groups have prime order and have trivial intersection, G

has 4 · 2 = 8 order three elemenets. This leaves three elements of G having order not 1 or 3. But any Sylow

2-subgroup of G contains 3 elements having order not 1 or 3. Thus there is exactly on Sylow 2-subgroup,

and it is normal.

Proof of (3). The # of Sylow 7-subgroups divides 4 and is 1 mod 7, so there is only one Sylow 7-subgroup.

Thus we have a normal Sylow 2-subgroup N and a normal Sylow 7-subgroup H. Their orders are coprime

so N ∩H = 1. Thus from homework

G = 〈N,H〉 = NH ∼= N ×H.

All groups of order 4 and order 7 are abelian, and direct products of abelian groups are abelian. Thus G is

abelian.

Proof of (4). The # of Sylow 5-subgroups divides 24 and is 1 mod 5, so it’s 1 or 6. If it’s one then G is not

simple.

So assume the # of Sylow 5-subgroups is 6. G acts transitively by conjugation on these 6 Sylow 5-subgroups.

This yields a homomorphism ϕG→ S6. Under the assumption that G is simple, the kernel must be trivial

(as G doesn’t fix the Sylow 5-subgroups).

Thus G ∼= imϕ. Since A6 E S6 we know that ϕ(G) ∩A6 E ϕ(G). But then we have

[ϕ(G) : ϕ(G) ∩A6] ≤ 2.

Thus ϕ(G) ⊆ A6, or else we would have that ϕ(G) ∩A6 is a nontrivial normal subgroup.

But then by comparing sizes [A6 : ϕ(G)] = 3. Then A6 acts by left multiplication on A6/ϕ(G), which

gives a homomorphism A6 → S3. Because A6 is bigger than S3, this has a nontrivial kernel. Thus the kernel

must be A6 beause A6 is simple. But the left-multiplicaiton action is transitive, so it can’t be trivial.

Definition IV.1.1

Say a subgroup G of Sn is k-transitive (for k ≤ n) if G acts transitively on the set of k-tuples of

pairwise distinct elements of {1, . . . , n}.
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For example, if G is 2-transitive, this means G is transitive on the set of pairs {(i, j) ∈ {1, . . . , n}2 | i 6=
j}. I.e. for all i, j, k, ` ∈ {1, . . . , n} with i 6= j and k 6= ` there exists a g ∈ G with g · i = k and g · j = `.

Here are some theorems about k-transitivity, all of which rely on the classification of finite simple groups.

Theorem IV.1.2

If G ≤ Sn is 6-transitive (or k-transitive for any k ≥ 6), then G = An (n ≥ 8) or Sn (n ≥ 6).

Note that An is (n− 2)-transitive and Sn is n-transitive.

If G ≤ Sn is 5-transitive then G = An (n ≥ 7), or Sn (n ≥ 5), or M23 (n = 23), or M11 (n = 11).

These M− are some sporadic simple groups discovered by Matthew.

If G ≤ Sn is 4-transitive then G = An (n ≥ 6), Sn (n ≥ 4), and four small groups in low degree.

For 3-transitive and 2-transitive groups there are infinite families but the list is small enough to be

tractable. Namely for 2-transitive groups we have if G ≤ Sn is 2-transitive

• G = An (n ≥ 4)

• G = Sn (n ≥ 2)

• PSLd(q) ≤ G ≤ Aut(PSLd(q)) acting on Pd(Fq) for n = qd−1
q−1

• Similar description with PSU3(q0 for n = q3 + 1.

• Similar description with PSp2k(2) for n = 22k−1 ± 2k−1

• Two other small families.

• Seven sporadic small simple groups.

• A few others

If G is a transitive subgroup of Sp (for p prime) then G = Sp or Ap or

G ≤ AGL1(p) = {x 7→ ax+ b | a, b ∈ Z/pZ, a 6= 0}

unless p = 11, 23, qd−1
q−1 for d ≥ 2 or q a prime power.

Then also the doubly transitive ones.

Claim

GL2(Z/pZ) has a cyclic subgroup of order p2 − 1.

Proof. Idea: construct a field Fp2 of order p2 and identify Fp2 with (Z/pZ)2. Then GL1(Fp2) ≤ GL2(Z/pZ)

and GL1(Fp2) ∼= Cp2−1 so we’re done.

For p = 3 we set F9 = (Z/3Z) + (Z/3Z)i where i2 = −1. Also, lets denote Z/pZ by Fp. Another way to

see this is

F9 = F3[x]/(x2 + 1)F3[x]

We will prove in 494 that if k is a field and p(x) is an irreducible polynomial then k[x]/p(x)k[x] is a field.

The key ideas are the same as the ideas used to prove Z/pZ is a field–the division algorithm!!!

In general, if p is odd then the squaring map Fp → Fp is not injective because (−1)2 ≡p 12, and so it

cannot be surjective. Pick some d ∈ Fp without a square root. Then of course x2 − d is an irreducible

polynomial (as it has no roots). We then take

Fp2 := Fp[x]/(x2 − c)Fp[x]
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Every f ∈ Fp[x] can be written in exactly one way as

f(x) = q(x) · (x2 − d) + r(x)

where q, r ∈ Fp[x] and deg r ≤ 1. Then each coset contains exactly one polynomial of degree ≤ 1. There are

then p2 ways to pick the coefficients and
∣∣Fp2

∣∣ = p2. (Note: Fp2 ∼= Cp × Cp as a group under addition).

Now we need the multiplication, both that it’s well-defined and it is invertible. Start with

f1(x) ≡ f2(x) mod x2 − dg1(x) ≡ g2(x) mod x2 − d

where f1, f2, g1, g2 ∈ Fp[x]. Then we should show that f1(x)g1(x) ≡ f2(x)g2(x) mod x2 − d. To do this we

see that for some A,B ∈ Fp[x] we have

f1(x) = f2(x) + (x2 − d)A(x)

g1(x) = g2(x) + (x2 − d)B(x)

f1(x)g1(x) = f2(x)g2(x) + (x2 − d)(f2(x)B(x) +A(x)g2(x)) + (x2 − d)2A(x)B(x)

And thus the multiplication is well-defined, commutative, associative, distributes with respect to addition,

and has an identity element 1 because these hold in Fp[x].

Now we show it has multiplicative inverses. This is clear for nonzero elements of Fp. Now we want to find

the inverse of c+ x, where x is the image of x in Fp2 . Well

(c+ x)(c− x) = c2 − x2 = c2 − d ∈ Fp

and this is nonzero as d is not a square in Fp. We then have that

(c+ x) · c− x
c2 − d = 1

Similarly, a+ bx has an inverse in Fp2 for b 6= 0, as we can multiply by b−1 and then multiply by the inverse

of a
b + x.

Proposition IV.1.3

If k is a finite field with n elements then k× is a cyclic group of order n− 1.

Proof. Fact: In k[x] for any field k a degree-n polynomial has at most n roots. The reason being that for c a

root

f(x) = (x− c)g(x) + r

where r ∈ Fp, this implies since f(c) = 0 that r = 0. Then if c 6= c′ and f(c) = f(c′) then

f(c′) = (c′ − c)g(c′)

And so g(c′) = 0, and we can factor it as well. Because degrees add when multiplying this implies the fact.

In Cn−1 all elements have order dividing n − 1, and the # of elements of order dividing d (for any d

dividing n− 1) is d.
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In k×, all elements have order dividing n− 1, and if d | n− 1 then every c ∈ k× of order dividing d is a

root of xd − 1. But this means there are at most d elements of order dividing d in k×.

Now we just compare.

Cn−1 Both k×

size = n− 1

all elements have order

dividing n− 1

exactly d elements of at most d elements of

order dividing d order dividing d

It follows that Cn−1 and k× have the same number of elements of each order. Thus k× has an element of

order n− 1 and hence is cyclic.

V. Midterm Review

There is a good list of review problems located at

http://www.math.kent.edu/ white/qual/list/group.pdf

For these review problems you should know the following definitions.

Definition V.0.1

For two elements g, h ∈ G, their commutator [g, h] = ghg−1h−1. If [g, h] = 1 then g, h commute. The

commutator subgroup [G,G] = G′ of G is generated by the commutators. This is the smallest normal

subgroup of G so that G/G′ is abelian.

Theorem V.0.1 (Jordan-Hölder)

If G is a group and N0 = G D N1 D N2 · · · D Nk = 1 is a chain so that Ni+1 is a maximal

normal subgroup in Ni, then the successive quotients Ni/Ni+1 are simple. Furthermore, the sequence

N0/N1, N1/N2, . . . , Nk−1/Nk = Nk−1 depends only on the group G (up to reordering).

This should be thought of as an analogue of

Definition V.0.2

A group G is called solvable if the simple groups coming from the Jordan-Hölder Theorem are all

cyclic groups of prime order.

V.1. Some Cool Stuff

Theorem V.1.1 (From Homework)

Let G be a finite group, then every minimal (nontrivial) normal subgroup of G is isomorphic to

L× · · · × L for some simple group L.

A consequence: every minimal normal subgroup of a minimal normal subgroup of G is simple.

Fact: if a subgroup G of Sn is doubly transitive (i.e., G acts transitively on {(i, j) | i 6= j 1 ≤ i, j ≤ n}),
then G has exactly one minimal normal subgroup N , which is either (Cp)

k
or a nonabelian simple group.
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We have ρ : G → Aut(N) by conjugation whose kernel K is a normal subgroup of G. If K = 1, then ρ

is injective and it induces an isomorphism G→ ρ(G) ≤ Aut(N), so we can understand G by understanding

subgroups of Aut(N).

If N is nonabelian, then K = 1. Why? If K 6= 1, then K is a nontrivial normal subgroup of G, so it

contains the minimal normal subgroup N . But then this would show N is abelian.

If G is doubly transitive then either L ≤ G ≤ AutL for some nonabelian simple L, or N ∼= Ckp . In this

case, Fkp ≤ G ≤ AGLk(Fp). Where

AGLk(Fp) = {~x 7→ A~x+~b | ~A ∈ GLk(Fp),~b ∈ Fkp}

V.2. Main Takeaways

Here are some of the main takeaways from the class.

• Subgroups of Z and cyclic groups Definition II.1.6.

• Subgroups and Cosets. See Definition II.1.3 and Definition II.1.4.

• Lagrange’s Theorem: H ≤ G =⇒ |H| |G/H| = |G| (cosets). See Theorem II.1.2

• Normal subgroups + kernels are the same. Normal subgroups ∼ factors. See Definition II.1.12,

Definition II.1.11

• Simple groups. See Definition II.1.13.

• Quotient Groups, Correspondence Theorem, first isomorphism theorem. See Theorem II.2.5 and

Theorem II.2.6

• Actions and Orbit-Stabilizer (action by conjugation, action on the cosets, etc.). See Definition III.1.1,

Definition III.1.5, Definition III.1.4, and Theorem III.1.3

• Sylow’s Theorems, including Cauchy’s theorem (order p elements). See Theorem IV.0.3

• Direct and semidirect products (see homework).

• Second and Third Isomorphism Theorem. See Piazza Post.

The idea of semi-direct products

• Internal: G is the internal semi-direct product of N E G by H ≤ G (written G = N oH) if N is

normal in G, H is a subgroup of G, N ∩H = 1, and G = 〈N,H〉.
In this case G = NH, and the action ϕ : H → Aut(N) by conjugation provides all the information

about how to multiply elements of N and H together.

• External: If H,N are groups and ϕ : H → Aut(N) is homomorphism, then there is a group G

(unique up to isomorphism) with subgroups N ∼= N , H ∼= H, such that G = N oH = N oϕH where

H → Aut(N) by conjugation is identified with ϕ via N ∼= N , H ∼= H.

• Morally/How to Use: If N E G,H ≤ G,N ∩ H = 1, G = 〈N,H〉, then we can understand G

entirely by understanding the action H → Aut(N) by conjugation. We may also understand it by

understanding all homomorphisms ϕ : H → Aut(N), since G ∼= N oϕ H (external) for some ϕ. This

is often used to classify things.

Note: N oϕH ∼= N oψH (external) if imϕ and imψ are conjugates. Many people proved this on Homework

#5 and Homework #6. This is fully citeable.
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Idea of semi-direct products: If N E G, H ≤ G, N ∩H = 1, G = 〈N,H〉 then (internal semidirect product)

G = NoH = NH. This tells us we can understand G by understanding the actions H → Aut(N) (internally

by conjugation, externally more generally, say when classifying).

VI. Applications of Group Theory

VI.1. Polynomials

If f(x) ∈ C[x] has degree n, then the function f : C→ C is n-to-1 over all but finitely many values (since

f(x)− c has n distinct roots unless c is a critical value of f(x)).

For each critical value c, let Ef (c) be the collection (multiset) of multiplicities of the roots of f(x) − c.
I.e.,

f(x)− c = α ·
k∏

i=1

(x− γi)ei

with γi 6= γj , ei > 0, then Ef (c) = [e1, e2, . . . , ek]. Note that
∑
i ei = n.

Thus Ef (c) is a partition of n, and Ef (c) 6= [1, 1, . . . , 1] if and only if c is a critical value of f .

Questions:

(1) For a degree n f(x) ∈ C[x], what are the possibilities for the collection of pairs

(c1, Ef (c1)), . . . , (c`, Ef (c`))

where c1, . . . , c` are the critical values of f .

There is no known algebraic proof of this.

(2) For a given choice of this data (the collection of pairs), how many corresponding f ’s are there.

(3) The analogous questions for rational functions are open.

Definition VI.1.1

For f(x) ∈ C[x] \ C, and a ∈ C. Define ma(f) (the “multiplicity of a as a root of f(x)”) to be the

largest integer k ≥ 0 such that (x− a)k divides f(x).

Equivalently this says that ma(f) is the largest k such that f(a), f ′(a), . . . , f (k−1)(x) = 0, or equiva-

lently that this is the smallest k ≥ 0 such that f (k)(a) 6= 0.

Theorem VI.1.1 (Riemann-Hurwitz)

If f(x) ∈ C[x] has degree n, then n− 1 =
∑
c∈C(n− |Ef (c)|) =

∑
c∈C(n−

∣∣f−1(c)
∣∣).

Proof. We count in two ways

n− 1 = deg(f ′(x)) =
∑

a∈C
ma(f ′(x))

=
∑

a∈C
(ma(f(x)− f(c))− 1)

=
∑

c∈C

∑

a∈f−1(c)

(ma(f(x)− c)− 1)

=
∑

c∈C
(deg(f(x)− c)−

∣∣f−1(c)
∣∣) =

∑

c∈C
(n−

∣∣f−1(c)
∣∣).
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Great!

Answers to questions ??.

(1) Answered by Thom. Exactly the collections (c1, P1), . . . , (c`, P`) where c1, . . . , c` ∈ C are distinct,

P1, . . . , P` are partitions of n, P1 6= [1, 1, . . . , 1] for all i such that

n− 1 =
∑̀

i=1

(n− |Pi|).

(2) Given distinct c1, . . . , c` ∈ C and partitions P1, . . . , P` of n satisfying Pi 6= [1, 1, . . . , 1] and n− 1 =
∑`
i=1(n − |Pi|), then the # of degree n f(x) ∈ C[x] with Ef (ci) = Pi, up to f(x) ∼ f(ax + b)

(a ∈ C×, b ∈ C), that is up to linear changes of variable, is

the # of equivalence claseses of tuples (g1, . . . , g`) of elements o Sn such that Pi is the collection of

cycle lengths of gi and g1g2 · · · g` is an n-cycle, where (g1, . . . , g`) ∼ (σg1σ
−1, . . . , σg`σ

−1) for σ ∈ Sn.

For rational functions if f(x) ∈ C(x) has degree n then

2n− 2 =
∑

c∈C∞
(n− |Ef (c)|) =

∑

c∈C∞
(n−

∣∣f−1(c)
∣∣)

People believe that this is the main constraint, but it is not true that it is the only contraint.

But it’s not true that P1, . . . , P` are partitions of n such that
∑`
i=1(n− |Pi|) = 2n− 2 then ∃ f(x) such

that Ef (ci) = Pi.

e.g. [2, 2], [2, 2], [1, 3] doesn’t occur.

Fact: Given distinct c1, . . . , c` ∈ C∞ and partitions P1, . . . , P` of n such that

2n− 2 =
∑̀

i=1

(n− |Pi|),

Then the # of f(x) ∈ C(x) such that Ef (ci) = Pi for all i modulo the equivalence relation f ∼ f ◦µ, degµ = 1

is exactly the # of (g1, . . . , g`) elements of Sn such that

• Pi is the collection of cycle lengths of gi.

• g1 · · · g` = 1.

• The group generated by the gi is transitive.

VII. Representation Theory

We will study groups via their actions on vector spaces over C. Namely via group homomorphisms

G→ GL(V ), where V is some vector space over C.

VII.1. Review of Linear Algebra (over C)

Definition VII.1.1

A vector space V is an abelian group (under +) with an operation (c, v) 7→ cv for c ∈ C and v ∈ V
such that

c(dv) = (cd)v
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c(v + w) = cv + cw

(c+ d)v = cv + dv

1v = v

Example VII.1.1

V = Cn under the standard rules of the game.

Definition VII.1.2

A subspace of V is a subset of V which is a vector space under the induced +, ·. That is a subgroup

of (V,+) which is preserved by multiplication by C.

Definition VII.1.3

A sequence v1, . . . , vn of vectors in a vector space V is linearly independent if

c1v1 + · · ·+ cnvn = 0 ⇐⇒ c1, . . . , cn = 0

Definition VII.1.4

A sequence v1, . . . , vn of vectors in V spans V provided that

V = {c1v1 + · · ·+ cnvn | c1, . . . , cn ∈ C}.

Definition VII.1.5

v1, . . . , vn is a basis of V if v1, . . . , vn is linearly independent and spans V (i.e., every v ∈ V can be

written as a linearly combination of v1, . . . , vn in exactly one way).

Proposition VII.1.1

Any two bases of V have the same size which we call the “dimension of V ” and write dimV . Moreover

any linearly independent sequence in V can be extended to yield a basis of V . Likewise any spanning

sequence then some subsequence is a basis.

Definition VII.1.6

A linear transformation T : V →W between two vector spaces V,W is a homomorphism of additive

groups which respects scalar multiplication. That is for v, w ∈ V and c ∈ C we have

T (cv) = cT (v)

T (v + w) = T (v) + T (w).

Naturally we have notions of kernel and image, these turn out to be vector subspaces (as they should

be).

Definition VII.1.7

nullity T := dim ker(T ) (i.e., the nullity of T ) and rank(T ) := dim im(T ) (i.e., the rank of T )
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Theorem VII.1.2 (Rank-Nullity)

We have for any linear transformation T : V →W that

rank(T ) + nullity(T ) = dimV.

A linear transformation T : Cn → Cm has the form v 7→ Av for some m × n matrix A in C. This holds

because a linear transformation is exactly determined by the values it takes on a basis, and Cn has a standard

basis

(ei)j = δij =

{
1 if i = j

0 otherwise

That is ei has a 1 in the i-th position and zeroes elsewhere

e2 = (0, 1, 0, . . . , 0).

In fact we can do a similar thing for any linear transformation T : V → W given finite bases v, w of the

domain and codomain.

If v1, . . . , vn is a basis of Cn, and T : v 7→ Av is a linear transformation Cn → Cn then the matrix for T

with respect to the basis v1, . . . , vn is C−1AC where C =
[
v1 v2 · · · vn

]
.

usual coords Cv ACvv coords v TvA

C−1Ac

This is referred to as “change-of-basis.”

Definition VII.1.8

If A is an m× n matrix then the tranpose AT of A is a n×m matrix defined by

(AT )ij = Aji.

Definition VII.1.9

There is a unique function det : {n× n matrices} → C such that

• det(Id) = 1

• det is linear in each individual row of the matrix. (aka multilinear in the rows).

• det(A) = 0 if two adjacent rows of A are equal.

This is called the determinant.

This has the following key properties

det(AB) = (detA)(detB)

if A,B are n× n matrices. It follows that

det(C−1AC) = detA
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if C is invertible. Therefore detT for T : V →W is well-defined for a linear transformation T : V →W . A

useful property is that

det




a11 ∗ ∗ ∗
0 a22 ∗ ∗

0 0
. . .

...

0 0 · · · ann




= a11a22 · · · ann

We also have the cofactor expansion formula, which says that if

A =




a11 · · · a1n

...
. . .

...

an1 · · · ann


 .

then

ACT = (detA) · Idn .

where C is the cofactor matrix and CT is its transpose. C’s ij-th entry is (−1)i+j ·detMij with Mij a matrix

gotten from A by removing the i-th row and j-th column.

This shows us that A is invertible if and only if detA 6= 0.

Definition VII.1.10

If T : V → V is a linear transformation then an eigenvector for T is some nonzero v ∈ V such that

Tv = λv

for some λ ∈ C. Then λ is called an eigenvalue.

Eigenvectors with distinct eigenvalues are automatically linearly independent.

If v = (v1, . . . , vn) is a basis of V then the matrix of T : V → V with respect to this basis v is




λ1 · · · 0
...

. . .
...

0 · · · λn




if and only if T (vi) = λivi (i.e., each vi is an eigenvector with eigenvalue λi). This is called an eigenbasis of

V for T .

Definition VII.1.11

The characteristic polynomial of a linear transformation T : V → V is det(T − λ IdV ) for λ ∈ C.

The eigenvalues are precisely the roots of this polynomial. There are n roots counting with multiplicity

by the Fundamental Theorem of Algebra, as this will be a degree n polynomial.

Theorem VII.1.3 (Cayley-Hamilton)

A linear transformation T : V → V (likewise an n × n matrix A) satsifies its own characteristic

polynomial (aka yields zero as a linear transformation [or n× n matrix]).
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If the characteristic polynomial of A (an n× n matrix) has n distinct roots, then there is an eigenbasis

for A.

Thus there exists an invertible n× n matrix C such that C−1AC is a diagonal matrix.

note also that if Av = λv then Akv = λkv.

.

VII.2. The Basics

Definition VII.2.1

A linear representation of a group G on a vector space V is a homomorphism ρ : G→ GL(V ) (where

GL(V ) is the group of invertible linear transformations V → V ).

This is also sometimes called a G-representation.

Definition VII.2.2

If ρ : G→ GL(V ) is a linear representation then deg ρ := dim ρ := dimV .

Example VII.2.1

Here are a few simple examples

• The trivial representation g
ρ7−→ IdV .

• Representation of C3 on V = C3 mapping

(123) 7→




0 0 1

1 0 0

0 1 0


 .

• For any action of G on a finite set S, let V be a vector space with basis in bijection with S. Say

the basis is es (s ∈ S). Where ρ(g) maps es 7→ eg·s. For example S3 → GL3(C) via the action

of S3 on {1, 2, 3}. As another example, D4 → GL4(C) via the action of D4 on the vertices of a

square.

• D4 → GL2(R) via the action of D4 on a square geometrically (center the square at (0, 0)), as

reflections about a line through the origin and rotations about the origin are linear transforma-

tions.

• The sign representation of Sn is ρ : Sn → GL1(C) given by σ 7→ sgn(σ).

Definition VII.2.3

The regular representation is the representation associated to the action of G on itself by left multi-

plication (dimension is |G|).

Definition VII.2.4

If V is a G-representation then a sub-representation of V is a subspace W of V which is G-invariant,

that is g ·W ⊆W .

A subspace W of V is a subrepresentation if and only if ρ : G→ GL(V ) factors as
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G GL(V )

{ψ ∈ GL(V ) | ψ(W ) ⊆W}

ρ

Example VII.2.2

The following

• The trivial representation of G on V acts as the trivial representation of G on V acts as the

trivial representation on every subspace of V

• The action of D4 on R2 via rotations, but there is no 1-dimensional subspace of R2 which is

D4-invariant because of rotations.

• If G acts on a set S, then the linear representation of G on some V with basis S has a 1-

dimensional invariant subspace

V1 := C

(∑

s

es

)
.

It induces the trivial representation on this subspace. There is also a (|S| − 1)-dimensional

invariant subspace given by

V|S|−1 := V ⊥1 =

{
~v ∈ V |

∑

s

vses = 0

}
.

Note that the direct sum of these is all of V . All of the interesting behavior happens in V ⊥1 .

• If G = D4, S = {1, 2, 3, 4}, and V = C4. Then V3 has a G-invariant subspace W = span(e1 −
e2 + e3 − e4). We can take the orthogonal complement of W in V3 which is

W⊥ :=
{
c1e1 + · · ·+ c4e4 |

∑
ci = 0, c1 − c2 + c3 − c4 = 0

}

This W⊥ has no 1-dimensional G-invariant subspace (check!).

Definition VII.2.5

If V,W are G-representations then so is V ⊕W via g · (v, w) = (g · v, g ·w). In terms of matrices, for

ρV : G→ GL(V ) and ρW : G→ GL(W ) then

g 7→
[
ρ1(g) 0

0 ρ2(g)

]

.

Example VII.2.3

We have

ρ1 : C2 → C×

g 7→ 1

ρ−1 : C2 → C×

g 7→ sgn(g).
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Then ρ1 ⊕ ρ2 is also a linear representation

ρ1 ⊕ ρ−1 : g 7→
[

1 0

0 sgn(g)

]

Example VII.2.4

For any n-th root of unity ζ ∈ C (that is ζn = 1), we have a representation ρζ : Z/nZ→ C× given by

i 7→ ζi.

Definition VII.2.6

A representation is irreducible if it has no proper positive dimensional subrepresentations.

Definition VII.2.7

Two representations ρV : G→ GL(V ), ρW : G→ GL(W ) are called isomorphic provided that there

is an isomorphism T : V →W of vector spaces making the following diagram commute

G

GL(V ) GL(W )

ρV ρW

T◦−◦T−1

Put another way for every g ∈ G we have

g · T (v) = T (g · v).

Or in other words a commutative diagram

V V

W W

T

ρV (g)

T

ρW (g)

Recall: A linear representation of a group G is a homomorphism ρ : G → GL(V ) for some vector space

V . We say ρ is irreducible if V has no subrepresentations except {0} and V , where a subrepresentation is a

subspace V of V such that g ·W ⊆W for all g ∈ G (so that ρ induces a homomorphism G→ GL(W )).

1-dimensional representations have the form ρ : G→ GL(C) ∼= C×. But if G is finite then ρ(G) is a finite

subgroup of C×, hence is cyclic (|G|-th roots of unity). So ρ is a homomorphism from G to a cyclic group.

Theorem VII.2.1 (Maschke’s Theorem)

Every finite-dimensional complex representation of a finite group G can be written as a direct sum of

irreducible subrepresentations.

That is: given ρ : G → GL(V ) we can write V = W1 ⊕ · · · ⊕Wk with Wi subspaces of V such that

each (ρ,Wi) is an irreducible subrepresentation of (ρ, V ).

This follows from the following by induction

Theorem VII.2.2

If ρ : G → GL(V ) is a finite-dimensional complex representation of a finite group G and W is a

subrepresentation, then there is some subrepresentation W ′ of V such that V = W ⊕W ′.
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Remark VII.2.1

Same proof works over any field K such that |G| is invertible in K.

Proof. Pick any “projection map” π : V → W , meaning a linear transformation V → W which restricts to

the identity map on W . This can be done by extending a basis of W to a basis on V , defining π to be the

identity on the basis of W and anything in W on the other basis elements for V .

We want to be able to take the kernel of π, but this won’t work because π is not a G-invariant map. We

have to somehow “fix” π.

Define

φ : V →W

v 7→ 1

|G|
∑

g∈G
g · π(g−1 · v).

This should fix our problem

Claim

φ is a G-invariant projection map V →W

Fix w ∈W . Then g−1 · w ∈W and we have:

φ(w) =
1

|G|
∑

g∈G
g · π(g−1 · w) =

1

|G|
∑

g∈G
g · g−1 · w =

1

|G|
∑

g∈G
w = w

It clearly maps into W . It is also linear since it is a linear combination of the linear transformations

v 7→ g · π(g−1 · v).

We now check that φ is G-invariant. Let h ∈ G and v ∈ V , then

h · φ(v) =
1

|G|
∑

g∈G
h · (g · π(g−1 · v))

=
1

|G|
∑

g′∈G
g′ · π((g′)−1h · v)

= φ(h · v)

where we’ve made the subsitution g′ = hg (since g 7→ hg is a bijection G→ G).

This proves the claim. Now we need to show that W ′ := kerφ satisfies the desired properties.

W ′ will clearly be a subrepresentation of V because φ is G-invariant. Then because φ is a projection map,

V = W ⊕W ′. Why? Well v ∈ V has the form φ(v) + (v − φ(v)), φ(v) ∈ W , and v − φ(v) ∈ W ′. This is a

unique decomposition, as the intersection of W and W ′ is zero.

Great! This finishes the proof!

Theorem VII.2.3

If V is a finite-dimensional complex representation of a finite group G, then V can be written in
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exactly one way as an (internal) direct sum

V = V1 ⊕ · · · ⊕ Vk

where each Vi is itself a direct sum of (one or more) copies of an irreducible subrepresentation Wi and

Wi �WJ for i 6= j.

This is a sort of generalization of eigenspaces. Said another way (more explicitly) if we write V =

U1 ⊕ · · · ⊕ U` and V = R1 ⊕ · · · ⊕ Rm with Ui, Rj irreducible subrepresentations, then they have the

same length, for each i the number of Uj ’s isomorphic to Ui equals the number of Rj ’s isomorphic to

Ui, and the direct sum of these Uj equals (not just isomorphic) the direct sum of these Rj .

Lemma VII.2.4

A homomorphism φ : V →W between irreducible G-representations ie either zero or an isomorphism.

Proof. kerφ is a subrepresentation of V . Thus kerφ = 0 or kerφ = V . If kerφ = V then we’re done.

imφ is a subrepresentation of W . Thus imφ = 0 or imφ = W . If imφ = 0 we’re done.

But if kerφ = 0 and imφ = W then the function is bijective, and we’re done.

Proof of Theorem VII.2.3. Now say V = U1 ⊕ · · · ⊕U` = R1 ⊕ · · · ⊕Rm with Ui, Rj irreducible subreprense-

tations of V .

Consider Ui ↪→ V � Rj as inclusion then projection. This is a homomorphism of irreducible G-

representations, and so it is either zero or an isomorphism by the lemma. However it can’t be zero for

all j, because Ui 6= 0 and V =
⊕
Rj .

Thus there is some j such that Ui ↪→ V � Rj is an isomorphism of G-representations. We get that the

set of Ui’s, up to ∼=, equals the set of Rj ’s, up to ∼= (go the other way as well Rj → Ui).

We may then write V = Ua11 ⊕ · · ·Uakk and V = Rb11 ⊕ · · · ⊕ Rbkk where ai, bi > 0, Ui ∼= Ri irreducible,

Ui � Uj for i 6= j.

Then consider that Ua11 ↪→ V � Rb22 ⊕ · · · ⊕Rbkk is zero by the lemma. This shows Ua11 ⊆ Rb11 . Similarly

Rb11 ⊆ Ua11 . Comparing dimensions gives a1 = b1. Can do similarly for the rest.

VII.3. Characters: The Power of the Trace

First a warning

For the remainder of representation theory we will work almost always with

finite-dimensional complex representations over a finite group G

unless otherwise specified, this is assumed.

Definition VII.3.1

If A = n× n matrix then the trace of A (denoted tr(A)) is the sum of the diagonal entries of A.

Key properties

• tr(AB) = tr(BA)

• tr(C−1AC) = tr(ACC−1) = tr(A).

• tr(A+B) = tr(A) + tr(B).

Thus the trace of a linear map V → V is defined.
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Definition VII.3.2

Given a representation ρ : G→ GL(V ), its character χ = tr ◦ρ, that is

χ : G→ C

g 7→ tr(ρ(g)).

An irreducible character is a character of an irreducible representation

Fact: χ(hgh−1) = χ(g) because

χ(hgh−1) = tr(ρ(h)ρ(G)ρ(h)−1) = tr(ρ(g)) = χ(g).

. Thus χ is a “class function,” meaning a function G→ C which is constant on each conjugacy class of

G.

Further, ρi : G → GL(Vi) (i = 1, 2) then the character of ρ1 ⊕ ρ2 is exactly χ1 + χ2. Thus the

character of any finite-dimensional representation is the sum of the characters of finitely many irreducable

characters.

Amazing Fact: We lose no information by replacing a finite-dimensional complex representation ρ : G→
GL(V ) of a finite group G with its character χ : G→ C. Formally

Proposition VII.3.1

Two representations ρ1, ρ2 are isomorphic if and only if their characters are equal (as functions

G→ C).

Great Fact: The irreducable characters of a finite group G form a basis for the space of class functions

on G. This implies that the number of irreducible representations of G (up to ∼=) equals the # of conjugacy

classes on G.

Definition VII.3.3

We can define an inner product on functions ϕ,ψ : G→ C via

〈ϕ,ψ〉 :=
1

|G| ·
∑

g∈G
ϕ(g)ψ(g)

where z is the complex conjugate of z ∈ C. This is linear in the first component and antilinear in the

second component as desired.

Furthermore 〈ϕ,ϕ〉 ∈ R≥0 and 〈ϕ,ϕ〉 = 0 ⇐⇒ ϕ = 0.

Greater Fact: This basis of irreduciable characters for the space of class functions is orthonormal with

respect to the above inner product.

Before we prove these facts we’ll do some applications and examples

VII.3.1. Applications + Examples of Characters

If G acts on a finite set S, then the corresponding linear representation ρ : G→ GL(C|S|) has character χ

where

χ(g) = The # of fixed points of g on S.
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The character of the regular representation (that is G acting on G by left multiplication) is exactly

χ(g) =

{
0 if g 6= 1

|G| if g = 1

We will prove that every irreducible character occurs in the decomposition of the regular representation, and

that the multiplicity says something about the dimension.

Example VII.3.1

The irreducible representations/characters of S3 are

• The trivial representation G→ C× mapping g 7→ 1 has χ0 = 1.

• The sign representation G→ C× given by g 7→ sgn(g). Then

χs : (123) 7→ 1

(12) 7→ −1

(1) 7→ 1.

• A two-dimensional representation G→ GL(V ) for V = {(a, b, c) ∈ C3 | a+ b+ c = 0}, where G

permutes the coordinates in V .

This character χ satisfies χ+ 1 = χσ, where χσ is the permutation representation of S3 via

the action on {1, 2, 3}. Thus

χ : (123) 7→ −1

(12) 7→ 0

(1) 7→ 5 = |S3| − 1

We may then check that

〈χ0, χ0〉 =
1

|G|
∑

g∈G
1 = 1

〈χ, χ〉 =
1

6
(2(−1 · −1) + 3(0) + 1(4)) = 1

〈χ0, χ〉 =
1

|6| (2(−1) + 3(0) + 1(2)) = 0

〈χs, χs〉 =
1

6
(2(1) + 3(−1 · −1) + 1(1)) = 1

〈χs, χ〉 =
1

6
(2(−1) + 3(0) + 1(2)) = 0

There was a file system error erasing my notes for this day. Before I retype them, I do still have the pdf.

Here it is!
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Lemma .0.1

If ρ : G→ GL(V ) is a finite-dimensional C-representation of a finite group G and χ is the character of

ρ, then the multiplicity of the trivial representation in any decomposition of ρ as the sum of irreducible

representations is (χtriv, χ) = 1
|G|
∑
g∈G χ(g)

Using this, if ρ, χ is nontrivial/irreducible then
∑
g∈G χ(g) = 0.

Proof. Let V G = {v ∈ V | g · v = v ∀g ∈ G}. This is the subspace of V on which ρ acts as the trivial

representation.

Consider the G-equivariant projection π : V → V G given by

v 7→ 1

|G|
∑

g∈G
g · v.

This is a G-equivariant linear projection V → V G, by the reindexing trick.

Thus V = (kerπ)⊕ V G. We see that tr(π) = dimV G by block matrices. We can also compute the trace

in terms of characters

tr(π) =
1

|G|
∑

g∈G
χ(g).

Theorem .0.2

If ρ : G → GL(V ) and ρ′ : G → GL(W ) are irreducible representations of G with characters χ and

χ′, then

(χ, χ′) =

{
1 if ρ ∼= ρ′

0 otherwise

Proof. This says that

1

|G|
∑

g∈G
χ(g)χ′(g) =

{
1 if ρ ∼= ρ′

0 otherwise

Note from homework that χχ′ is the character of the induced representation on Hom(V,W ). Thus we

are looking for the number of copies of the trivial representation present in the induced representation on

Hom(V,W ). Namely

v
g·ϕ7−−→ g · ϕ(g−1 · v)

ϕ is fixed by G when for all g ∈ G we have g ·ϕ(g−1 · v) = ϕ(v). That is ϕ(g−1 · v) = g−1 ·ϕ(v). That is ϕ is

fixed by G exactly when ϕ is a homomorphism of G-representations.

From homework, we know that because V,W are irreducible ϕ is either zero or an isomorphism (in which

case it is a scalar times the identity). If ρ � ρ′ then ϕ = 0 so (χ, χ′) = 0 as desired. If ρ ∼= ρ′, then

dim(space of ϕ) = 1 because we are only varying the scalar.

This proves the claim!
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Lemma .0.3

Let f : G → C be a class function (i.e. a function which is constant on each conjugacy class of G.

Let ρ : G→ GL(V ) be a representation. Let ϕ : V → V be ϕ =
∑
g∈G f(g)ρ(g).

If ρ is irreducible of deg n with character χ then ϕ is always scaling by 1
n

∑
g∈G f(g)χ(g) = |G|

n (f, χ).

Proof. ϕ is C − linear and G-invariant. Clearly ϕ is linear. To show invariance Consider that

ρ(g?) ◦ ϕ =
∑

g∈G
f(g)ρ(g?g) =

∑

h∈G
f(g−1? h)ρ(h)

ϕ ◦ ρ(g?) =
∑

g∈G
f(g)ρ(gg?) =

∑

h∈G
f(hg−1? )ρ(h)

Because f(g−1? h) = f(hg−1? ) we have G-equivariance.

Thus ϕ is a homomorphism of G-representations from V → V so it must be scaling by some constant α.

We then see that

tr(ϕ) = α dimV

tr(ϕ) =
∑

g∈G
f(g) tr(ρ(g)) =

∑

g∈G
f(g)χ(g) = |G| (χ, f).

Thus α = |G|
n (χ, f) as desired.

Theorem .0.4

The characters χ1, . . . , χn of the non-isomorphic irreducible representations of G form an orthonormal

basis of the space of class functions on G.

Proof. Just need to show that χi’s span the space of class functions by previous work. Pick any class function

f .

We can replace f by f −∑n
i=1(f, χi)χi to asume f is orthogonal to every χi. Then we wish to show f = 0.

By the lemma, for all i the ϕi corresponding to χi is zero. By Maschke’s theorem, for every representation

ρ the ϕ coming from ρ is zero.

We now apply this to the regular representation. Let {vg}g∈G be a basis for the regular representation.

Then we have that

ϕ(v1) =
∑

g∈G
f(g)vg·1 = 0.

Therefore f(g) = 0 for all g. This finishes the problem!

Proposition .0.5

For g ∈ G, let C(G) be the size of the conjugacy class of G. Then if χ1, . . . , χn are the irreducible

characters of G then

n∑

i=1

χi(g)χi(g) =
|G|
C(g)

= |ZG(g)| .
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where ZG(g) is the centralizer of g ∈ G. Furthermore if g′ ∈ G is not conjugate to g

n∑

i=1

χi(g)χi(g
′) = 0

Proof. Let f : G → C be the indicator function for the conjugacy class C(g) (that is 1 on this conjugacy

class, and 0 elsewhere).

Then we have that

f =
n∑

i=1

(f, χi)χi

(χi, f) =
1

|G|
∑

g′∈G
χi(g′)f(g′) =

1

|G|
∑

g′∈C(g)

χi(g′) =
|C(g)|
|G| Gχi(g)

f =
n∑

i=1

|C(g)|
|G|

n∑

i=1

χi(g)χi

f(g′) = 1 =
|C(g)|
|G|

n∑

i=1

χi(g)χi(g
′) (g′ ∈ C(g))

f(g′) = 0 =
|C(g)|
|G|

n∑

i=1

χi(g)χi(g
′) (g′ 6∈ C(g))

This proves the result.

Example .0.1

Consider the following “character table” of S3, considering representatives (1), (12), (123) of each

conjugacy class with size 1,3,2 respectively

1 3 2

(1) (12) (123)

χ1 1 1 1

χsgn 1 -1 1

χ 2 0 -1

3
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The character table of G determines

• Recover the position of 1 because
∑
χ χ(1)2 is maximal among

∑
χ |χ(g)|2, and {χ(1)}χ contains

only integers.

• Size of the group, |G| = ∑χ χ(1)2

• Sizes of conjugacy classes of G |G| /C(g) =
∑
χ |χ(g)|2.

• Sizes of the normal subgroups of G (and their intersections).

If ρ : G→ GL(V ) is a representation, then

ker(ρ) = {g ∈ G | ρ(g) = IdV } = {g ∈ G | χ(g) = dimV } = {g ∈ G | χ(g) = χ(1)}

where χ is a character of ρ by diagonalization. The ⊇ inclusion follows from the fact that a sum

of n roots of unity which is literally n implies that each root of unity is 1.

Further ker(ρ1 ⊕ ρ2) = ker ρ1 ∩ ker ρ2. Thus the kernels of all representations come from

intersecting kernels of irreducible characters (which we can read off the character tables).

For any normal subgroup N E G, N is the kernel of the homomorphism G � G/N . Let

ρ : G→ GL(C|G/N |) be the associated linear representation (by left multiplication). The kernel

of this representation is N . Well

ker ρ = {g ∈ GeghN = ehN ∀h ∈ G}

= {g ∈ G | ghN = hN ∀h ∈ G} = N.

By setting h = 1 for ⊆, and by simple algebra for ⊇.

For an example of a fabulous representation theory result

Theorem VII.3.2 (Gowers, Nikolav-Pyber)

Let G be a nontrivial finite group. Let r be the smallest dimension of a nontrivial irreducible

representation of G.

For any subsets A,B,C of G such that |A||B||C||G|3 > 1
r , then we have G = ABC (as sets).

Corollary VII.3.3

For G = SL2(Z/pZ) for an odd prime p we have that r = (p− 1)/2.

Thus for A a subset of SL2(Z/pZ) with

|A|
|SL2(Z/pZ)| >

(
2

p− 1

)1/3

Then for all g ∈ SL2(Z/pZ) we have a, b, c ∈ A with g = abc.

VII.4. Representations of Sn

Conjugacy classes of Sn are in bijection with partitions of n (i.e., expresions n = λ1 + · · · + λk, λi ∈ Z,

λ1 ≤ · · · ≤ λk) via a correspondence consisting of all g ∈ Sn whose cycle lengths are λ1, . . . , λn.
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Call the number of such partitons p(n). A result of Ramanujan tells us that

p(n) ∼ 1

4
√

3n
e

2π√
6

√
n

as n→∞

Now: produce an irreducible representation of Sn from a partition λ = (λ1, . . . , λn) of n. Given λ, first

maake the “Young diagram,” which looks like this for λ = (1, 2, 3, 5).

Next make a λ-tableau by filling in each box with a # in {1, . . . , n} with no repetitions. So for all λ there

are n! such λ-tableaux.

Say two λ-tableaux are equivalent if, ∀i, the i-th row of one tableau is a permutation of the i-th row of

the other tableau.

A λ-tabloid is an equivalence class of a λ-tableaux.

The # of λ-tabloids is
(

n

λ1, . . . , λk

)
=

n!

λ1! · · ·λk!
.

Sn acts on the λ-tableaux in the natural way, and this descends to an action on the set of λ-tabloids.

This yields a linear representation of the above dimension. Consider the subrepresentation on the subspace

generated by the following, where t is a λ-tableaux

et =
∑

σ∈Sn
σ permutes the columns of t

= sgn(σ)(σ · t).

Theorem VII.4.1

This is an irreducible representation, and these are all of the irreducible representaitons of Sn.

Goal: Show that every rational # in the character table is an integer.

Definition VII.4.1

An algebraic integer is a complex number α which is a root of a monic polynomial in Z[x].

Lemma VII.4.2

The algebraic integers in Q are precisely Z.

Proof. Suppose α ∈ Q is a root of xn + c1x
n−1 + · · ·+ cn with ci ∈ Z.

Write α = a/b for a, b coprime integers. Then we see that

0 =
an

bn
+ c1

an−1

bn−1
+ · · ·+ cn. =

an + b (some integer)

bn

=
(integer coprime to b)

bn
.

But 0 is coprime to b if and only if b = ±1. Thus α ∈ Z
The other direction is trivial, if z ∈ Z consider the polynomial x− z.
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Proposition VII.4.3

If α1, α2 are algebraic integers then α1 + α2 and α1α2 are algebraic integers.

Lemma VII.4.4

For α ∈ C, α is an algebraic integer if and only if α is an eigenvalue of a square integer matrix.

Proof. If α is an eigenvalue of A ∈ Mn×n(Z) then α is a root of the characteristic polynomial of A, i.e.,

of det(x Idn−A), which is a monic polynomial in Z[x] with integer coefficients (since the determinant is a

polynomial in the entries).

Conversely, let α be an algebraic integer, say α isa root of xn + c1x
n−1 + · · ·+ cn with ci ∈ Z.

This polynomial is the characteristic polynomial of



0 · · · 0 −cn
1 0 · · · 0 −cn−1

1 0 · · · 0 −cn−2

. . .
. . .

...
...

. . . 0 −cn−1

1 −cn




so α is an eigenvalue of this matrix.

Proof of Proposition VII.4.3. Let α1, α2 be eigenvalues of A1 ∈Mm×m(Z) and A2 ∈Mn×n(Z) respectively.

We can then consider A1 ⊗A2, defined by the following block form

A1 ⊗A2 =




a11A2 a12A2 · · · a1mA2

...
...

. . .
...

am1A2 am2A2 · · · ammA2




where A1 = (aij). If Ai~vi = αi~vi then write ~v1 = (d1, . . . , dm)T then write ~w = (d1~v2, . . . , dm~vm)T .

Then of course (A1 ⊗A2)~w = α1α2 ~w by explicit computation.

α1 + α2 is an eigenvalue of

(A1 ⊗ Idn) + (Idm⊗A2).

This can be computed explicitly, or via the tensor properties

((A1 ⊗ Idn) + (Idm⊗A2))(v1 ⊗ v2) = A1v1 ⊗ v2 + v1 ⊗A2v2

= α1(v1 ⊗ v2) + α2(v1 ⊗ v2)

= (α1 + α2)(v1 ⊗ v2).

Fact: If χ is the character of an n-dimensional representation of Ck, then

∑

g=generator of Ck

|χ(g)|2 ≥ # of generatos of Ck = ϕ(k).
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where ϕ(k) is the number of integers less than k which are coprime to k. UNLESS χ(g) = 0 for all generators

g of Ck.

Note: Everything from last time works over any ring.

Definition VII.4.2

A ring R is an abelian group under + equipped with a multiplication · which is associative, has an

identity, and distributes over addition.

Example VII.4.1

Given any abelian group G, then the set of endomorphisms End(G) := Hom(G,G) is naturally a

group under addition and becomes a ring when equipped with composition.

Rings will be the first thing we study next semester.

Definition VII.4.3

An algebra over a field K is a vector space A over K with the structure of a ring such that for vectors

a, b ∈ A and scalars c, d ∈ K we have

(ca) · (db) = (cd)(a · b).

This product is bilinear.

Definition VII.4.4

Let G be a finite group. Then C[G] is the group algebra.

As a vector space this is C-linear combinations of a basis {eg}g∈G. For convenience we identify c ∈ C
with ce1. Another way to see this as as {functions G→ C, g 7→ cg}.

Recall that G acts on C[G] by the regular representation

h ·


∑

g∈G
cgeg


 =

∑

g∈G
cgehg.

Define then a ring structure on C[G] by the following for all g, h ∈ G and c ∈ C

eheg = ehg ceg = egc.

Secretly the above formula is

ceg = eg(ce1).

What is the center of C[G] (under multiplication)? This is the set of all θ ∈ C[G] with θx = xθ for all

x ∈ C[G]. Equivalently θeg = egθ for all g ∈ G.

Write θ =
∑
h∈G cheh. Then what this means is

θeg =
∑

hinG

chehg =
∑

h∈G
chegh = egθ.

Reindexing then gives

∑

h∈G
chehg =

∑

h∈G
che(ghg−1)g =

∑

h′∈G
cg−1h′geh′g
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Therefore ch = cg−1hg for every h ∈ G. This means that

center of C[G] =

{∑

h∈G
cheh | ch = cg−1hg ∀ g ∈ G

}

=

{∑

h∈G
cheh | c− : G→ C is a class function

}

= the class functions on G

=

{
C-linear combinations of

∑

h∈C
eh ∀ conjugacy classes C ⊆ G

}

Definition VII.4.5

If ρ : G→ GL(V ) is a representaiton and π is an irreducible representation, then we can decompose

V by Maschke’s Theorem into a direct sum of subspaces on which ρ acts isomorphically to irreducibles.

Collecting all the subspaces on which ρ acts as π into a direct sum gives the π-isotypic part of V .

This is well-defined by Machke’s Theorem.

Recall VII.4.2

If ρ : G→ GL(V ) is a representation, and π is an irreducible representation of G, then the projection

of V onto its π-isotypic part (aka a direct sum of things isomorphic to π) is

v 7→ dimπ

|G|
∑

g∈G
χπ(g−1)(g · v).

In group algebra language (when ρ is the regular representation), this projection is multiplication of

each element in C[G] by

eπ :=
dimπ

|G|
∑

g∈G
χπ(g−1)eg.

Lemma VII.4.5

Let π be an irreducible representation of G. Let s =
∑
g cgeg lie in the center of C[G]. Define

ωπ(s) :=
1

dimπ

∑

g∈G
cgχπ(g).

Then s 7→ ωπ(s) is a homomorphism (linearly, and multiplicatively) from Center(C[G])→ C.

Theorem VII.4.6 (Burnside)

Let ρ : G→ GL(V ) be an irreducible representation of a finite group G. If g ∈ G and the size of the

conjugacy class of g is coprime to dimV then either χ(g) = 0 or g is in the kernel of G
ρ−→ GL(V ) �

PGL(V ), where PGL(V ) = GL(V )/{c · IdV | c 6= 0}.
That is either χ(g) = 0 or ρ(g) = c IdV for some c 6= 0.

Theorem VII.4.7 (Burnside)

Let s =
∑
h∈G cheh ∈ C[G] where each ch is an algebraic integer. If s is in the center of C[G] then
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s acts on any irreducible representation ρ : G → GL(V ) as multiplication by a scalar ωρ(s), and even

better, this scalar is also an algebraic integer.

In particular, for any g ∈ G,

χρ(g) · (size of conjugacy class of g)

dim ρ

is an algebraic integer.

Proof of very last part. Apply the first part to s =
∑
h∈C eh, where C is the conjugacy class of g. Then

ωρ(s) =
1

dim ρ

∑

h∈C
χρ(h) =

χρ(g) · |C|
dim ρ

.

This is then an algebraic integer.

Next time: Proofs!!!

Theorem VII.4.8

Let ρ : G → GL(V ) be an irreducible representation. If g ∈ G has conjugacy class C, where |C| is

coprime to dim ρ, then either χρ(g) = 0 or ρ(g) acts on V as λ · IdV for some λ ∈ C×

Note: ρ(g) = λ · IdV if and only if ρ(g) = 1, with

G GL(V ) PGL(V ).
ρ

ρ

Where PGL(V ) = GL(V )/{λ IdV | λ ∈ C×}.

We will use Theorem VII.4.8 to prove

Theorem VII.4.9

If |G| = paqb with p, q distinct primes and a, b > 0 then G is not simple.

Claim

If G is any nontrivial finite group, and p 6= q are primes dividing |G|, then there exists g ∈ G \ {1}
and an irreducible nontirvial representation ρ : G→ GL(V ) such that χρ(g) 6= 0 and p does not divide

the conjugacy class of G and q - dim ρ.

Proof of Theorem VII.4.9. First find g 6= 1 such that p does not divide the conjugacy class of G.

If center of G is nontrivial, let g ∈ Z(G) \ {1}. If Z(G) = 1 then

|G| =
∑

C

|C|

|G| − 1 =
∑

C 6=1

|C| ∼= −1 mod p

Thus there is some C 6= 1 so that p - |C|. Fix g ∈ C.
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Then the orthogonality of columns for 1 and g gives that

0 =
∑

χirr.

χ(g)χ(1) =
∑

χ

χ(g) dimχ

−1 =
∑

χ 6=1

χ(g) · dimχ

−1

q
=
∑

χ 6=1

χ(g) · dimχ

q

Thus there exists a χ 6= 1 such that χ(g) 6= 0 and (dimχ)/q is not an algebraic integer. Why? Well −1/q

is not an algebraic integer, and χ(g) is always an algebraic integer, so we must have some non-algebraic

integer part of the sum.

Since (dimχ)/q ∈ Q, this means that q - dimχ.

When |G| = paqb this implies that the size of the conjugacy class is coprime to dim ρ. Then Theorem VII.4.8

implies that g ∈ ker ρ (where ρ = ρ/λ for some λ ∈ C×). Then ker ρ is a nontrivial normal subgroup of G,

and G is not simple unless ker ρ = G.

But then ρ(h) acts as λ IdV for fixed λ ∈ C×, implying that dimV = 1 because ρ is irreducible.

Thus ρ is a homomorphism G→ C×. We then have that

G/ ker ρ ∼= im ρ = cyclic

But then ρ is nontrivial, so ker ρ 6= G. Thus if G is simple, ker ρ = 1, so G is cyclic, and clearly then G is

not simple.

It remains to prove Theorem VII.4.8. Use

Theorem VII.4.10

Let c =
∑
g∈G cgeg in the group algebra C[G]. Assume that c lies in the cneter of C[G], i.e. cg = ch

when g, h are conjugate.

Assume further that each cg is an algebraic integer. Then c acts on any irreducible representation as

scalar multiplication by an algebraic integer

The action is for ρ : G→ GL(V ). c maps V → V via

v 7→
∑

g

cg(g · v)

Since ceg = egc for all g, c is a homomorphism of representations from ρ to ρ, so c is a scalar

multiple by Schur’s Lemma (see homework).

In particular, for g ∈ G and any irreducible representation ρ : G→ GL(V ),

χρ(g) · |C(g)|
dim ρ

is an algebraic integer. This is given by setting c =
∑
h∈C(g) eh.
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Proof. The value of the scalar is

ωρ(c) =
1

dim ρ

∑

g

cgχρ(g).

We see that

∑

g

cgχ(g) = tr

(∑

g

cgρ(g)

)
.

We then compute this trace which must be (dim ρ)ωρ(c) because c acts as a scalar.

Since this expresion in c respects addition and scalar multiplication, it suffices to prove ωρ(c) is an algebraic

integer when c =
∑
g∈C eg for some conjugacy class C in G. That is we can assume each cg is zero or one.

Let eρ ∈ C[G] induce projection of any representation θ : G→ GL(V ) onto its ρ-isotypic part. Then we

see that

c · eρ = ωρ(c) · eρ

so eρ is an eigenvector of the action on C[G], with eigenvalue ωρ(c). To see this explicitly

Consider the regular representation on C[G] given by θ, with eρ =
∑
g eρ,geg. Then necessarily

c · eρ =
∑

g

∑

h

cgeρ,h(egh) =
∑

g

∑

h

cgeρ,h(θ(g)eh) =
∑

g

cg(θ(g) · eρ).

Writing e1 =
∑
i ~vi+ ~w where each ~vi lies in a copy of C[G] isomorphic to ρ, and ~w lies in the complement

of the ρ-isotypic part of C[G]. Then

c · eρ =
∑

g

cg(θ(g) · eρ · e1) =
∑

g

∑

i

cg(ρ(g) · eρ · ~vi)

=
∑

i

(ωρ(g)~vi) = ωρ(g) · eρ

because
∑
i ~vi = eρ by definition. Perfect!

But C[G] → C[G] given by x 7→ cx can be represented as an integer matrix in terms of the basis eg,

because

ceg =

(∑

h∈G
cheh

)
eg

=
∑

h∈G
chehg =

∑

h′∈G
ch′g−1eh′

and each ch′g−1 is zero or one by assumption. The eigenvalues are the roots of the characteristic polynomial,

and this then proves that ωρ(c) is an algebraic integer.

Proof of Theorem VII.4.8. Suppose |C(g)| is coprime to dim ρ for an irreducible representation ρ : G →
GL(V ).
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Then let c =
∑
h∈C(g) eh. We then know that

ωρ(c) =
χρ(g) · |C(g)|

dim ρ

is an algebraic integer. If χρ(g) 6= 0, then because |C(g)| and dim ρ are coprime this implies that χρ(g) =

(dim ρ) · λ for some algebraic integer λ ∈ C, as otherwise we will not be able to cancel the denominator of

dim ρ, and it will show up in any monic polynomial with integer coefficients (similar to the proof that if

α ∈ Q is an algebraic integer then α ∈ Z).

By using the relevant inequalities by which we showed that χρ(g) = dim ρ if and only if ρ(g) is trivial, we

can then derive that all the eigenvalues of ρ(g) are equal, showing that ρ(g) acts by scalar multiplication just

as desired.

Theorem VII.4.11 (dim ρ | |G|)
If ρ : G→ GL(V ) is an irreducible representation then dim ρ | |G|.

Proof. We know by orthonormality that

|G| =
∑

g∈G
χρ(g)χρ(g)

|G|
dim ρ

=
∑

g∈G

χρ(g)

dim ρ
χρ(g)

|G|
dim ρ

=
∑

C(g)

χρ(g) |C|
dim ρ

χρ(g)

where
∑
C(g) is a sum over distinct conjugacy classes.

By ?? we know that the right hand side is an algebraic integer, and so because the left hand side is in Q
we know that the left hand side lies in Z as desired.

VII.5. Representations of Infinite Groups

We now look at finite-dimensional representations of infinite groups. Unfortunately, there are too many

to be useful, as an example

Example VII.5.1

Consider the group R with addition, and we’re going to look at its 1-dimensional representations.

These are just the homomorphisms R → C×. How many of these are there? We see that R contains

a direct sum of uncountably many copies of Z. One can map the generators of each copy of Z to an

arbitrary element of C×. This is larger than even the number of real numbers!

The moral of the story is that R has more structure than just being a group, and we should instead

analyze representations that respect some other structure (for example the analytic structure).

Say we require that the maps R→ C× are continuous.

Lemma VII.5.1

Every continuous group homomorphism χ : R→ C× is χs(t) = est for some fixed s ∈ C.
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Proof. If χ is differentiable then

χ′(t) = lim
∆t→0

χ(t+ ∆t)− χ(t)

∆t

= lim
∆t→0

χ(t)χ(∆t)− χ(t)

∆t

= χ(t) · lim
∆t→0

χ(∆t)− 1

∆t

= χ(t) · χ′(0)

Writing s := χ′(0), this satisfies χ′(t) = sχ(t), which implies that χ(t) = C · esx for some constant C, but

χ(0) = 1, so C = 1.

We can justify this with the following manipulations. Letting ψ(t) :− χ(t)/est, then ψ satisfies

ψ′(t) =
χ′(t)− sχ(t)

est
= 0

Thus ψ is a constant C.

It remains to show that every continous homomorphism χ : R → C× is differentiable. Define ψ(t) :=
∫ t

0
χ(x) dx. Then ψ′(t) = χ(t). Then

ψ(t+ r) =

∫ t+r

0

χ(x) dx =

∫ x

0

χ(x) dx+

∫ t+r

t

χ(x) dx

l = ψ(t) +

∫ r

0

χ(t+ u) du = ψ(t) + χ(t)ψ(r)

We know ψ′(0) = χ(0) = 1 is nonzero, so ψ is not identically zero. Thus there is some r so that ψ(r) 6= 0.

Fix one, then

χ(t) =
ψ(t+ r)− ψ(t)

ψ(r)
.

But then χ is a combination of differentiable functions, and so χ is differentiable.

Definition VII.5.1

A topological group is a group G which is also a topological space where the relevant maps are

continuous

G×G G

(g, h) gh

G G

g g−1

A great example is GLn(R), GLn(C).

Definition VII.5.2

Direct sums and tensor pro A continuous represention of a topological group G is a continuous

homomorphism ρ : G→ GLn(C).

Note: Cn has an inner product, so lets restrict to representations ρ : G→ GLn(C) where each ρ(g) (with

g ∈ G) preserves this inner product. That is

〈v, u〉 = 〈ρ(g)v, ρ(g)u〉
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Definition VII.5.3

Say θ ∈ GLn(C) is unitary if θ preserves the inner product on Cn.

Say a representation ρ : G→ GLn(C) is unitary if ρ(g) is unitary for each g ∈ G.

Lemma VII.5.2

If G is a topological group, and ρ : G→ GLn(C) is a continuous unitary representation, then

• Any subrepresentation of ρ and any restriction of ρ to H ≤ G is continuous and unitary.

• Direct sums and tensor products of (continuous) unitary representations are (continuous) unitary.

Npote that if θ ∈ GLn(C) is unitary, then all eigenvalues of θ have absolute value 1. Why? Well if

θ(v) = λv, then

|λ|2 ‖v‖2 = 〈θv, θv〉 = 〈v, v〉 = ‖v‖2.

Great!

Proposition VII.5.3

Let ρ : G→ GL(V ) be a unitary (continuous) representation of a topological group G.

Then any subrepresentation W has a complementary subrepresentation W⊥ with V = W ⊕W⊥.

Proof. Let W⊥ be the orthogonal complement of W . Then we see that if w⊥ ∈W⊥ then

〈g · w⊥, w〉 = 〈w⊥, g−1 · w〉 = 0.

For every g ∈ G and w ∈W (because g−1 ·w ∈W ). Thus g ·w⊥ ∈W⊥, making W⊥ a subrepresentation.

Last time we showed that the 1-dimensional continuous representations of R are

ρs : R→ GL1(C) = C×

x 7→ esx

for all s ∈ C.

A 2-dimensional continuous representation of R

R→ GL2(R) ⊆ GL2(C)

x 7→
[

1 x

0 1

]
.

The vector (1, 0)T is fixed by these matrices, so its span W := span((1, 0)T ) is an isomorphic copy of the

trivial representation.

But R2 (or C2) is not W ⊕W ′ for any subrepresentation W ′ of R. This means that Maschke’s Theorem

fails for this representation. The problem is that the matrices in the image are not unitary.

Last time: if ρ : G→ GLn(C) is a continuous representation of a topological space whose image ρ(G) is

contained in the set of unitary matrices in GLn(C), then Maschke’s Theorem holds.

Observation: From any 1-dimensional representation of

θ : S1 ∼= R/Z→ C×
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we get a representation of R

R� R/Z θ−→ C×

Which representations ρs : R→ C× arise in this way? But we see that

R R/Z C×

1 0 1

and thus es = 1. Therefore s = (2πi)n for some n ∈ Z.

Schur’s Lemma didn’t require G to be finite (and most of it works over any field). Namely if L : V →W is a

homomorphism of representations between two irreducible representations, then L is either zero or invertible.

Lemma VII.5.4 (Schur’s Lemma)

Suppose ρ : G → GL(V ) and ρ′ : G → GL(W ) are two irreducible representations (even infinite-

dimensional), and let L : V →W be a homomorphism of G-representations.

That is the following commutes for all g ∈ G
V V

W W

L

ρ(g)

L

ρ′(g)

.

Then either L is an isomorphism or zero.

Proof. kerL is a subrepresentation of ρ, so kerL = 0 or kerL = V by irreducibility. Thus L is injective or

L = 0.

imL is a subrepresentation of ρ′. Thus ρ′ is irreducible, and either imL = 0 or imL = W . Thus L = 0 or

L is surjective.

Therefore if L 6= 0 then L is bijective. We may then check that its inverse on the level of sets is an

isomorphism

If we work over a finite-dimensional vector space over C (or any algebraically closed field), it is easy to

then derive that if L : V → V then L = λ IdV for some λ ∈ C (by finding an eigenvalue).

Proof. Let ~v be an eigenvector for L with L~v = λ~v for some λ.

Then ~v ∈ ker(L− λ IdV ) is also a subrepresentation of V .

Since V is irreducible, ker(L− λ IdV ) = V , and so L = λ IdV .

Corollary VII.5.5

If G is abelian any (finite-dimensional) irreducible representation of G (over C) is 1-dimensional.

Proof. For all g ∈ G, ρ(g) is an invertible linear map V → V . We claim that it is a homomorphism of

G-representations. This is precisely the statement that for any g′ ∈ G and v ∈ V

g · (g′ · v) = g′ · (g · v).

Clearly this holds when G is abelian. By Schur’s Lemma (Lemma VII.5.4), we know for all g ∈ G there is a

λ such that ρ(g) = λ IdV .
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We then know that ρ(g) maps every 1-dimensional subspace of V to itself. So each such subspace is a

subrepresentation. Because ρ is irreducible, this implies any such subspace must be all of V .

VII.6. Compact Groups (namely S1 ∼= R/Z)

Let G = {x ∈ C× | |x| = 1} = S1. Then G is a compact topological group. Furthermore

R/Z
∼=−→ G

x 7→ e2πix

is an isomorphism of topological groups. G is abelian, so the irreducible representations ofG are 1-dimensional.

Earlier, we showed that the 1-dimensional representations are

ρ : R/Z→ GL1(C) ∼= C×

x 7→ e2πinx

for some n ∈ Z, and these are of course unitary.

Thus the finite-dimensional unitary representations of these are the direct sums of copies of the above

representations.

Decomposing a representation into irreducibles turns into the problem of writing a function as a combina-

tion of these ρ’s.

For any integrable function ϕ, the fourier series of ϕ is

∑

n∈Z
cne

2πinx =
∑

n∈Z
cnρn(x)

such that cn ∈ R. Furthermore the cn is given in terms of an integral.

cn =

∫

R/Z
ϕ(x)e2πinx dx

VIII. Review for Midterm II

If you have a finite group G and any inner product 〈−,−〉bad you can upgrade it to a G-invariant inner

product via

〈v, w〉 :=
1

|G|
∑

g∈G
〈g · v, g · w〉bad

The big theorems for finite-dimensional representations of finite groups over C

(1) Every (finite-dimensional complex) representation of a finite group is the direct sum of irreducible

subrepresentations [thm:maschke-exist].

(2) If V = V1 ⊕ · · · ⊕ Vk = W1 ⊕ · · · ⊕W` (internal direct sums) where V is a G-representation, and

Vi’s, Wj ’s are irreducible then k = ` and after relabeling the Wi’s we can make Vi ∼= Wi for all i.

Furthermore, for any irreducible representation ψ of G,

⊕

Vi∼=ψ
Vi =

⊕

Wj
∼=ψ

Wj

See [thm:maschke-unique]. This is called the ψ-isotypic part of V .
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(3) Given a representation ρ : G → GL(V ), ρ′ : G → GL(W ), get representations of G acting on

V ∗,Hom(V,W ), V ⊕W,V ⊗W . This also has a nice action on characters

• χV ∗ = χV

• χHom(V,W ) = χV χW

• χV⊗W = χV χW

• χV⊕W = χV + χW .

(4) Given a finite-dimensional representation ρ : G→ GL(V ), the character is

χ : G→ C

g 7→ tr(ρ(g)).

Properties of characters

• Two representions have the same character ⇐⇒ they’re ∼=.

• Characters are class functions, that is χ(ghg−1) = χ(h) for all g, h ∈ G. If C is a conjugacy class

then we can unambiguously write χ(C) := χ(g) for any g ∈ C.

• The irreducible characters form an orthonormal basis for the space of class functions under the usual

inner product on CG

(α, β) =
1

|G|
∑

g∈G
α(g)β(g)

This means that every class function f : G→ C satisfies

f =
∑

irr char
χ

(f, χ)χ

It also tells you that the # of irreducible characters equals the # of conjugacy classes of G.

• If ρ is a representation and ρirr is an irreducible representation then

〈χirr, χρ〉

is the number of copies of ρirr in the decomposition of ρ into irreducibles.

• We also have orthogonality of columns, that is given two distinct conjugacy classes C,C ′

1

|G|
∑

irr char
χ

χ(C)χ(C ′) = 0

1

|G|
∑

irr char
χ

χ(C)χ(C) =
1

|C|

Here is a proof of this fact

If C is a conjugacy class of h in G, then let

fC : G→ C
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g 7→
{

1 if g ∈ C
0 otherwise

thus fC =
∑

irr χ(fC , χ)χ, but we know (fC , χ). Namely

(fC , χ) =
1

|G|
∑

g∈C
χ(g) =

|C|χ(C)

|G| .

Therefore

fC =
∑

irr χ

|C|
|G| · χ(C) · χ.

Evaluating at some g we see that if g ∈ C then

1 =
|C|
|G| ·

∑

irr χ

χ(g)χ(g)

and if g 6∈ C then

0 =
|C|
|G| ·

∑

irr χ

χ(C)χ(g)

• If ρ : G → GL(V ) is a representation, where n := dimV , then χρ(g) is a sum of n (order of g)-th

roots of unity. This can be useful for finding the order of elements from a character table.

• If ρ1, . . . , ρn are the irreducible representations, with χ1, . . . , χn their characters, then

|G| =
n∑

i=1

(dim ρi)
2 =

n∑

i=1

χi(1).

• If ρ is an irreducible representation with character χ then

ker ρ = {g ∈ G | χ(g) = χ(1) = dim ρ}

is a normal subgroup of G. Furthermore, every normal subgroup is an intersection of subgroups of

this form.

• Fact: If ρ is an irreducible representation of G then dim ρ | |G|.
Note: if |G| is odd, then dim ρ is odd, so because an odd number squared is 1 mod 8, we have

|G| ≡ (# conjugacy classes of G) mod 8

• If ρ =
∑k
i=1 eiρi with ρi non-isomorphic irreducibles and ei ∈ Z>0 then

(χρ, χρ) =

k∑

i=1

e2
i

Information we should be able to recover from a character table.

• Orders of elements from a conjugacy class

• Normal subgroups as unions of conjugacy classes based on kernels of the irreducible representations

(and then their intersections)

• Be able to fill in a partial character table
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Some representations you should know

• Representations of Cn, D5, S3.

• Representations of group actions

character of regular representation =
∑

irr. χ

(dimχ)χ

IX. Wrap-Up

IX.1. Representations of Cn

Let Cn = 〈g〉. Then

ρ : Cn → GLk(C)

g 7→ ρ(g) = M

where Mn = Idk.

What are the subrepresentations? Well M is diagonalizable

Theorem IX.1.1

General Fact: A k × k matrix A (over F ) is diagonalizable over a field F if and only if h(A) = 0 for

some monic degree-d h(x) ∈ F [x] which has d distinct roots in F .

Theorem IX.1.2 (Cayley-Hamilton)

A matrix A satisfies its characteristic polynomial.

Because M is diagonalizable, Ck = V1⊕· · ·⊕Vr where Vi are eigenspaces fro M with eigenvalue λi (where

λi are pairwise distinct element of C×). What are all subrepresentations? They’re all W1 +⊕+Wr with Wi

a subspace of Vi.

Theorem IX.1.3 (Brouwer’s Theorem)

Every (complex finite-dimensional) character of every finite group G is a Z-linear combination of

characters that are induced from degree-1 characters of “elementary” subgroups.

Elementary subgroups are direct products of cyclic groups with p-groups, Cm × P , where P is a

p-group for some prime p.

IX.2. Products of Conjugacy Classes

Suppose G is a finite group and C1, . . . , Ck are conjugacy classes in G. What can you say about the

multiset C1C2 · · ·Ck? It’s a (Z≥0)-linear combination of conjugacy classes.

∑

conj. class
C

nCC

where nC ∈ Z≥0 are called the “structure constants of G.”

In terms of the group algebra, define eC :=
∑
g∈C eg. Then we are examining

eC1
eC2
· · · ecK =

∑

conj. class
C

nCeC
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We define

N (C1, . . . , Ck) := # of (g1, . . . , gk) ∈ C1 × · · · × Ck s.t. g1 · · · gk = 1

If k = 1, then

N (C1) =

{
1 if C1 = {1}
0 otherwise

.

For k = 2, we have

N (C1, C2) =

{
|C1| if C1 = C−1

2

0 otherwise

secretly this is the column orthogonality relation for characters.

For k = 3, we have

N (C1, C2, C3) = #{(g1, g2) ∈ C1 × C2 | g1g2 ∈ C−1
3 }

this doesn’t tell us much. . .

The answer! Representation Theory!

Theorem IX.2.1 (Frobenius’s Theorem)

We have that

N (C1, . . . , Ck) =
|C1| · · · |Ck|
|G|

∑

irr.
χ

χ(C1) · · ·χ(Ck)

χ(1)k−2

We should verify it for small k. If k = 1, this reads as

N (C1) =
|C1|
|G|

∑

χ

χ(C1)

χ(1)−1

=
|C1|
|G|

∑

χ

χ(C)χ(1)

=

{
1 if C = {1}
0 otherwise

by the column orthogonality relation. For k = 2, this reads as

N (C1, C2) =
|C1| |C2|
|G|

∑

χ

χ(C1)χ(C2)

χ(1)0

= |C1| ·
∣∣C−1

2

∣∣
|G|

∑

χ

χ(C1)χ(C−1
2 )

=

{
|C1| if C1 = C−1

2

0 otherwise

Proof of Theorem IX.2.1. If C is a conjugacy class of G, define

eC :=
∑

g∈C
eg ∈ C[G]
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for all representations ρ : G → GL(V ), any element f ∈ C[G] of the group algebra acts on V . Formally if

f =
∑
g fgeg we have Lf given by

Lf : V → V

v 7→
∑

g∈G
fg(ρ(g)v)

which is a C-linear map. We simplify notation by writing LC = LeC . It turns out that LC is a representation

of homomorphisms

LCρ(h)v =
∑

g∈C
ρ(gh)v =

∑

g∈C
ρ(hgh−1h)v =

∑

g∈C
ρ(hg)v = ρ(h)LCv

If ρ is irreducible, then Schur’s Lemma implies that LC is a scalar multiple by some constant ωρ(C). Taking

traces, we see that

ωρ(C) · dim ρ = tr(LC) = tr


∑

g∈C
ρ(g)


 =

∑

g∈C
χ(g) = |C|χ(C) = |C|ωρ(C).

Therefore

ωρ(C) =
|C|χ(C)

χ(1)

We now compute the action eC1
· · · eCk on C[G] =

⊕
irr.
Vi

(dimVi)Vi by the regular representation. On one

hand we have

eC1
· · · eCk =

∑

gi∈Ci
eg1···gk

tr(eC1
· · · eCk) =

∑

gi∈Ci

{
|G| if g1g2 · · · gk = 1

0 otherwise

= |G| N (C1, . . . , Ck)

But also eC1
· · · eCk acts on Vi as scalar multiplication by ωρi(C1) · · ·ωρi(Ck). Then

tr(eC1
· · · eCk) =

∑

i

n2
iωρi(C1) · · ·ωρ(Ck)

where ni = dimVi = χi(1) where χi is the character of ρi. We may then just substitute

tr(eC1
· · · eCk) =

∑

i

n2
i

k∏

j=1

|Cj |χi(Cj)
χi(1)

=
∑

i

k∏

j=1

|Cj |χj(Cj)
χi(1)k−2

Appendix A. Introduction to Category Theory
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A.1. The Motivation

Category Theory as a subject grows out of a need to study the relationships between different areas of

mathematics. Often this comes in the form of associating to every object in a certain area some object in

another area according to some rules. A classic example is the fundamental group, which associates a group

to every topological space (for more about algebraic topology, see [2]).

To be able to formalize these types of mappings and their properties, we need a general setting for objects

and also for maps between them. These will be our categories.

In the process, we will be able to give nice descriptions of many familiar objects in more abstract settings.

The technique for doing so uses what are called universal properties. The advantage of these is that we can

prove many results about things like free groups, tensor products, cartesian products, direct sums, and many

more in extremely general settings. Such settings occur all throughout modern mathematics wherever groups

might not be enough structure.

Most importantly though, we will develop a new way of looking at mathematics and of looking at definitions.

This method of looking at things is sometimes appropriate and sometimes not. But it’s a crucial tool in my

mathematical toolbox, and one of the most elegant.

For my standard reference on this material see [4]. For a more algebraic perspective see [1]

A.2. The Basic Definitions

Lets go ahead and jump right into things!!!

Definition A.2.1

A category C has the following data:

• A class of objects Ob(C )

• For any two objects X,Y ∈ C a class of arrows (aka morphisms aka maps, lots of names)

HomC (X,Y ). We often write f : X → Y when the ambient category is clear to mean that

f ∈ HomC (X,Y ). Sometimes one writes MorC (X,Y ) in place of HomC (X,Y ).

• For any three objects X,Y, Z, a function ◦ : HomC (Y,Z)×HomC (X,Y )→ HomC (X,Z).

and it has the following structure:

• For every object X in C , there is an arrow IdX : X → X so that for all f : X → Y and

g : Z → X we have

f ◦ IdX = f IdX ◦g = g

• Composition is associative. That is for f : X → Y , g : Y → Z, and h : Z →W we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f

We say a category is small if it only has a set’s worth of arrows in total (note this implies it has a set’s

worth of objects as well)

A category is locally small if it only has a set’s worth of arrows between any two objects. We will

mostly work with locally small categories.
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One might ask what we can do that’s interesting with such a broad collection of objects. For those wondering,

remember how abstract groups are and how much structure they contain. Categories are not quite so well-

behaved, but they are an extremely good setting for defining many many many well-behaved and beautiful

things.

Example A.2.1

With this in mind, lets see some examples of categories. Many of these will be familiar to you!

Category Objects Morphisms

Set sets functions

Grp groups homomorphisms

Ab abelian groups homomorphisms

VectF vector spaces over F F -linear maps

R -Mod modules over R R-linear maps

Top spaces continuous maps

Haus Hausdorff spaces continuous maps

SmoothMan smooth manifolds smooth maps

Nat natural numbers ordering (a unique arrow a→ b if a ≤ b)

Notice that the collection of objects can be huge. This is why I specified a class of objects in the

definition.

Exercise A.2.2

Show that these are all categories.

We can also make some suggestive definitions which give us a whole class of examples.

Definition A.2.2

We say that an arrow f : X → Y in a category is invertible (or is an isomorphism) provided there

are arrows g, h : Y → X so that

g ◦ f = IdX f ◦ h = IdY

In this case we may in fact show g = h and that g is unique (exercise. . . ). When only g exists, g is

called a left inverse, and when only h exists, h is called a right inverse. We also say that X and Y are

isomorphic via the isomorphism f , which may be written as X ∼= Y or more specifically X
f∼= Y .

We call a category C a groupoid provided that all of its morphisms are invertible.

Example A.2.3

To give an idea of how useful the idea of an isomorphism is, we list here the different isomorphisms

in the above categories:
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Category Isomorphisms

Set bijections

Grp isomorphisms

Ab isomorphisms

F -Vect F -linear isomorphisms

R -Mod R-linear isomorphisms

Top homeomorphisms

Haus homeomorphisms

SmoothMan diffeomorphisms

Nat equality of naturals

As one should expect, groupoids get their name for a reason! Which we now verify.

Exercise A.2.4

Show that groups and groupoids with one object are exactly the same.

Definition A.2.3

There are a variety of nice names for particular types of morphisms. We list them here

• An endomorphism is an arrow f : X → X

• An automorphism is an invertible endomorphism

• A monomorphism is a morphism f : X → Y such that for all morphisms g, h : Z → X we

have

f ◦ g = f ◦ h =⇒ g = h

• An epimorphism is a morphism f : X → Y such that for all morphisms g, h : Y → Z we have

g ◦ f = h ◦ f =⇒ g = h

We can describe a morphism as being endo (auto, mono, epi) as shorthand.

Example A.2.5

Category Monomorphisms Epimorphisms

Set injections surjections

Haus continuous injection continuous maps with dense image

Nat any arrow any arrow

Note that in the category Haus there are arrows which are both mono and epi but which are not

isomorphisms. Consider the inclusion A ↪→ X of a dense subspace A in a space X.

We also make some convenient notation for talking about categorical concepts. Namely, we specify what

a commutative diagram is at an informal level. Later we will make this formal in order to talk about other

categorical concepts.

Definition A.2.4

A commutative diagram consists of drawn arrows and objects, and we specify that any way to get
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between two objects by composing morphisms are the same. A diagram simply removes the condition

that any composition of arrows is equivalent.

This is best explained via many examples. As the simplest example, saying the left diagram commutes

says that g ◦ f = h, and saying that the right diagram commutes specifies that p2 ◦ q1 = q2 ◦ p1:

X
f
//

h   

Y

g

��

Z

A
p1
//

q1

��

B

q2

��

C
p2
// D

An often useful concept in category theory is dualization. Formally, this consists of replacing a category

C by its “opposite” category C op

Definition A.2.5

Let C be some category. We define C op by Ob C op := Ob C op, and HomC op(X,Y ) = HomC (Y,X).

The composition is then defined for f : X
op−→ Y, g : Y

op−→ Z by

g ◦op f = f ◦op g

Identities remain the same as they are in the original category.

A.3. Functors and Natural Transformations

The natural question to ask in algebraic or categorical subjects when given a collection of objects is

whether they form a category, that is what is the appropriate notion of a “morphism” between such objects.

This of course extends to categories themselves.

Definition A.3.1

Given two categories C ,D , a functor F : C → D consists of the following data

• For every object X ∈ Ob C a unique object F (X) ∈ D

• For every arrow f : X → Y in C a unique arrow F (f) : F (X)→ F (Y ) in D

satisfying the functoriality laws

• F (IdX) = IdF (X)

• For f : X → Y and g : Y → Z in C we have

F (g ◦ f) = F (g) ◦ F (f).

A functor F : C op → D might be called a contravariant functor from C to D , whereas F : C → D is

called covariant. A contravariant functor satisfies for f : X → Y , g : Y → Z in C that

F (g ◦ f) = F (f) ◦ F (g).

Example A.3.1

Say C = Grp and D = Set. Then there is a functor from C to D given by taking a group G and

“forgetting” the group structure to obtain a mere set G. The action on group homomorphisms is to

“forget” that they respect the group operation.
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There is also a functor Set→ Grp, which associates a set S to the “free group” on S. Formally, this

consists of all words in the language S ∪S−1 (where S−1 is a formal copy of S, where we take s−1 ∈ S−1

if s ∈ S). Two words are considered equivalent via the reduction rule which deletes pairs ss−1, s−1s,

and the operation on words is concatenation. (The empty word being the identity element)

These two functors are intimately related, and we will discover they are “adjoint” in ??

Example A.3.2

There is a functor π0 : Top→ Set given on objects by taking a topological space X and mapping it

to the set of path components of X (that is the largest subspaces of X which are path-connected).

Given a continuous map f : X → Y , π0(f) is given by consdering some path component U of X, then

f(U) is path-connected and non-empty, so it belongs to a unique path component V of Y . We then set

[π0(f)](U) = V .

Generally, there are many techniques to associate sets, groups, rings, and other algebraic structures

to spaces. This is the realm of algebraic topology, and almost always these associations are functorial. In

fact the notation π0 suggests the corresponding π1, π2, . . .. In this case π1 : Top→ Grp, and for n > 1

we have πn : Top→ Ab.

For more on this subject, [2] is the standard reference, and [3] is a more concise and modern treatment.

Example A.3.3

Given two categories C ,D one can form the product category C ×D in the natural way. Then for

locally small categories there is a functor

HomC : C op × C → Set .

On objects this agrees with the notation we have previously established, so that Hom(X,Y ) is the set

of arrows from X to Y in C . On arrows, if we have f : X ′ → X and g : Y → Y ′ in C (seeing that

fop : X → X ′ in C op) we have the function

Hom(f, g) : Hom(X,Y )→ Hom(X ′, Y ′)

h 7→ g ◦ h ◦ f

Functoriality may be easily verified. As we should expect, the Hom functor carries a lot of the information

about C , as it encodes composition in the category.

We also have for fixed X ∈ Ob C that Hom(X,−),Hom(−, X) are contravariant/covariant functors

respectively from C → Set, as one should expect.

Exercise A.3.4

Prove that Hom is functorial.

Exercise A.3.5

There is a functor Vectop → Vect given by taking a vector space V to its dual V ∗.

Work out the details of how this functor acts on linear maps and why it is functorial.
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Exercise A.3.6

Show that, informally (that is without regards to set-theoretic size issues), define the category of all

categories Cat.

The next natural question to ask is what are the arrows between functors themselves?

Definition A.3.2

A natural transformation η : F ⇒ G between two functors F,G : C → D is a collection of maps

ηX : F (X) → G(X) for each X ∈ ObC satisfying the following commutative diagram for each arrow

f : X → Y

F (X) F (Y )

G(X) G(Y )

F (f)

ηX ηY

G(f)

This is called the naturality condition or naturality square.

Exercise A.3.7

For fixed categories C ,D , define a category [C ,D ] whose objects are functors C → D and whose

arrows are natural transformations.

Exercise A.3.8

Show that the “double dual” functor taking V to (V ∗)∗ from Vect → Vect is naturally isomorphic

(that is isomorphic in [Vect,Vect]) to the identity functor IdVect.

Fortunately, this marks the “end of the line” for standard category theory. At higher levels of category

theory, we can define higher morphisms, but for most mathematical purposes this level is sufficient.

Exercise A.3.9

Try to come up with a cohesive definition of arrows between two natural transformations η, µ : F ⇒ G.

Exercise A.3.10

Given η : F ⇒ G, where F,G : C → D and µ : F ′ ⇒ G′ where F ′, G′ : D → E define

η · µ : F ′ ◦ F ⇒ G′ ◦G

this is called the “horizontal composition” of natural transformations, whereas the other composition is

called the “vertical composition” and written η ◦ η′. Show that where it makes sense we have

(η ◦ η′) · (µ ◦ µ′) = (η · µ) ◦ (η′ · µ′).

This is called the interchange law.

Functors / Natural Transformations

A.4. Presheaves and the Yoneda Lemma

A.5. Adjoint Functors

Write a Category Theory Appendix with Good References
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