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Definition .0.1

A Sylow p-subgroup is a subgroup of G of order pn where |G| = pnm with p - m.

Theorem .0.1

If G is a finite group, and pk | |G| where p is prime and k > 0 then G has a subgroup of order pk.

Furthermore

• Any two Sylow p-subgroups of G are conjugate.

• Any p-subgroup of G is contained in a Sylow p-subgroup of G.

• The # of Sylow p-subgroups divides |G| and is ≡ 1 mod p.

Proof. Say pk | |G| and write |G| = pnm for p - m. The proof proceeds via acting on a clever set.

Let S be the set of subsets of G of size pk. G acts on S by left multiplication.

g · T = {gt | t ∈ T}.

Goal: Show there exists a T ∈ T such that GT has order pk.

The first thing to notice is that this is the largest possible order of any stabilizer. Why? Well for any

t ∈ T ∈ S, we know GT · t ⊆ T . Thus because |GT · t| = |GT | we have |GT | ≤ |T | = pk.

Therefore by orbit-stabilizer we know

|OT | =
|G|
|GT |

this is divisible by pn−k, and this is the smallest power of p dividing |OT | (prime factorization). We want to

show there exists T such that |OT | is not divisible by pn−k+1.

Consider the orbits OT for varying T ’s. These form a partition of S. So we’ll show |S| is not divisible

by pn−k+1, and so we have to have some T so that |OT | is not divisible by pn−k+1. Thus pk | |G|T and

|GT | = pk.

Claim

The largest power of p dividing |S| is pn−k.

Well, we see that

|S| =
(
|G|
pk

)
=

(
pnm

pk

)
=

(pnm)(pnm− 1) · · · (pnm− pk + 1)

pk(pk − 1) · · · (pk − pk + 1)

= (pn−km)

pk−1∏
i=1

pnm− i

pk − i

If i = p`j for p - j then

pk − i = pk − p`j = p`(pk−` − j)

pnm− i = pnm− p`j = p`(pn−`m− j)

Both pk−` − j and pn−`m− j are coprime to p, so pk − i and pnm− i are divisible by exactly rhe same

powers of p. Thus |S| = pn−k · (some # coprime to p).
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This is an awful way to prove this fact. Lets do it in a better way. A better proof is that
(
pa
pb

)
is the

coefficient of xpb in (x + 1)pa. Thus in Z/pZ we have

(x + y)p = xp + yp

(x + 1)pa = (xp + 1)a.

Thus the coefficient of xpb is
(
a
b

)
. Therefore(

pa

pb

)
≡
(
a

b

)
mod p

This proves the existence of p-subgroups.

Now we prove that any two Sylow p-subgroups are conjugate and any p-subgroup of G is contained in a

Sylow p-subgroup of G. We first need a lemma.

Lemma .0.2

If H is a p-group acting on a set X then |X| = (# of fixed points of H) mod p.

X is a union of disjoint H-orbits, each H-orbit has size dividing |H|, so this size is a power of p. The

number of length-1 orbits is then equivalent to |X| mod p, and we’re done.

We now show that for any p-subgroup H of G and any Sylow p-subgroup J of G that there exists g ∈ G such

that g−1Hg ≤ J .

H acts on G/J by multiplication h · (gJ) = hgJ . Since J is a Sylow p-subgroup, |G/J | is coprime to p.

Thus the # of fixed points of H on G/J is nonzero (because it is coprime to p).

This says there exists a g ∈ G such that HgJ = gJ . Thus g−1HgJ = J . Therefore g−1Hg ⊆ J .

Finally we need to show that the number of Sylow p-subgroups divides |G| and is ≡ 1 mod p. Let A be

the set of all Sylow p-subgroups. G acts on A by conjugation. This action is transitive (i.e., has one orbit).

Pick a Sylow p-subgroup J . Then by orbit-stabilizer

|A| = |OJ | = [G : GJ ] =
|G|
|GJ |

Thus |A| | |G|. Furthermore, note that J ⊆ GJ , so pn | |G|J . Therefore |A| is coprime to p. Now we need to

see that it is ≡ 1 mod p.

Well, restrict the action so that J is acting on A. It then suffices to determine the fixed points, which we

claim is just J ∈ A. Well

J fixes some H ∈ S ⇐⇒ jHj−1 = H ∀ j ∈ J

⇐⇒ J ⊆ NG(H) (i.e., normalizer of H in G)

H and J are now Sylow p-subgroups of NG(H). Thus they are conjugate inNG(H). But wait! Then

J = xHx−1 = H for some x ∈ NG(H). Perfect!

Thus there is one fixed point, and by the lemma |A| ≡ 1 mod p.
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