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Recall: A linear representation of a group G is a homomorphism ρ : G → GL(V ) for some vector space

V . We say ρ is irreducible if V has no subrepresentations except {0} and V , where a subrepresentation is a

subspace V of V such that g ·W ⊆W for all g ∈ G (so that ρ induces a homomorphism G→ GL(W )).

1-dimensional representations have the form ρ : G→ GL(C) ∼= C×. But if G is finite then ρ(G) is a finite

subgroup of C×, hence is cyclic (|G|-th roots of unity). So ρ is a homomorphism from G to a cyclic group.

Theorem .0.1 (Maschke’s Theorem)

Every finite-dimensional complex representation of a finite group G can be written as a direct sum of

irreducible subrepresentations.

That is: given ρ : G → GL(V ) we can write V = W1 ⊕ · · · ⊕Wk with Wi subspaces of V such that

each (ρ,Wi) is an irreducible subrepresentation of (ρ, V ).

This follows from the following by induction

Theorem .0.2

If ρ : G → GL(V ) is a finite-dimensional complex representation of a finite group G and W is a

subrepresentation, then there is some subrepresentation W ′ of V such that V = W ⊕W ′.

Remark .0.1

Same proof works over any field K such that |G| is invertible in K.

Proof. Pick any “projection map” π : V → W , meaning a linear transformation V → W which restricts to

the identity map on W . This can be done by extending a basis of W to a basis on V , defining π to be the

identity on the basis of W and anything in W on the other basis elements for V .

We want to be able to take the kernel of π, but this won’t work because π is not a G-invariant map. We

have to somehow “fix” π.

Define

φ : V →W

v 7→ 1

|G|
∑
g∈G

g · π(g−1 · v).

This should fix our problem

Claim

φ is a G-invariant projection map V →W

Fix w ∈W . Then g−1 · w ∈W and we have:

φ(w) =
1

|G|
∑
g∈G

g · π(g−1 · w) =
1

|G|
∑
g∈G

g · g−1 · w =
1

|G|
∑
g∈G

w = w

It clearly maps into W . It is also linear since it is a linear combination of the linear transformations

v 7→ g · π(g−1 · v).

We now check that φ is G-invariant. Let h ∈ G and v ∈ V , then

h · φ(v) =
1

|G|
∑
g∈G

h · (g · π(g−1 · v))
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=
1

|G|
∑
g′∈G

g′ · π((g′)−1h · v)

= φ(h · v)

where we’ve made the subsitution g′ = hg (since g 7→ hg is a bijection G→ G).

This proves the claim. Now we need to show that W ′ := kerφ satisfies the desired properties.

W ′ will clearly be a subrepresentation of V because φ is G-invariant. Then because φ is a projection map,

V = W ⊕W ′. Why? Well v ∈ V has the form φ(v) + (v − φ(v)), φ(v) ∈ W , and v − φ(v) ∈ W ′. This is a

unique decomposition, as the intersection of W and W ′ is zero.

Great! This finishes the proof!

Theorem .0.3

If V is a finite-dimensional complex representation of a finite group G, then V can be written in

exactly one way as an (internal) direct sum

V = V1 ⊕ · · · ⊕ Vk

where each Vi is itself a direct sum of (one or more) copies of an irreducible subrepresentation Wi and

Wi �WJ for i 6= j.

This is a sort of generalization of eigenspaces. Said another way (more explicitly) if we write V =

U1 ⊕ · · · ⊕ U` and V = R1 ⊕ · · · ⊕ Rm with Ui, Rj irreducible subrepresentations, then they have the

same length, for each i the number of Uj ’s isomorphic to Ui equals the number of Rj ’s isomorphic to

Ui, and the direct sum of these Uj equals (not just isomorphic) the direct sum of these Rj .

Lemma .0.4

A homomorphism φ : V →W between irreducible G-representations ie either zero or an isomorphism.

Proof. kerφ is a subrepresentation of V . Thus kerφ = 0 or kerφ = V . If kerφ = V then we’re done.

imφ is a subrepresentation of W . Thus imφ = 0 or imφ = W . If imφ = 0 we’re done.

But if kerφ = 0 and imφ = W then the function is bijective, and we’re done.

Proof of Theorem .0.3. Now say V = U1⊕· · ·⊕U` = R1⊕· · ·⊕Rm with Ui, Rj irreducible subreprensetations

of V .

Consider Ui ↪→ V � Rj as inclusion then projection. This is a homomorphism of irreducible G-

representations, and so it is either zero or an isomorphism by the lemma. However it can’t be zero for

all j, because Ui 6= 0 and V =
⊕
Rj .

Thus there is some j such that Ui ↪→ V � Rj is an isomorphism of G-representations. We get that the

set of Ui’s, up to ∼=, equals the set of Rj ’s, up to ∼= (go the other way as well Rj → Ui).

We may then write V = Ua1
1 ⊕ · · ·U

ak

k and V = Rb1
1 ⊕ · · · ⊕ R

bk
k where ai, bi > 0, Ui

∼= Ri irreducible,

Ui � Uj for i 6= j.

Then consider that Ua1
1 ↪→ V � Rb2

2 ⊕ · · · ⊕R
bk
k is zero by the lemma. This shows Ua1

1 ⊆ R
b1
1 . Similarly

Rb1
1 ⊆ U

a1
1 . Comparing dimensions gives a1 = b1. Can do similarly for the rest.

2


