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I. Introduction to Category Theory

I.1. The Motivation

Category Theory as a subject grows out of a need to study the relationships between different areas of

mathematics. Often this comes in the form of associating to every object in a certain area some object in

another area according to some rules. A classic example is the fundamental group, which associates a group

to every topological space (for more about algebraic topology, see [hatcher]).

To be able to formalize these types of mappings and their properties, we need a general setting for objects

and also for maps between them. These will be our categories.

In the process, we will be able to give nice descriptions of many familiar objects in more abstract settings.

The technique for doing so uses what are called universal properties. The advantage of these is that we can

prove many results about things like free groups, tensor products, cartesian products, direct sums, and many

more in extremely general settings. Such settings occur all throughout modern mathematics wherever groups

might not be enough structure.

Most importantly though, we will develop a new way of looking at mathematics and of looking at definitions.

This method of looking at things is sometimes appropriate and sometimes not. But it’s a crucial tool in my

mathematical toolbox, and one of the most elegant.

For my standard reference on this material see [ctContext]. For a more algebraic perspective see [aluffi]

I.2. The Basic Definitions

Lets go ahead and jump right into things!!!

Definition I.2.1

A category C has the following data:

• A class of objects Ob(C )

• For any two objects X,Y ∈ C a class of arrows (aka morphisms aka maps, lots of names)

HomC (X,Y ). We often write f : X → Y when the ambient category is clear to mean that

f ∈ HomC (X,Y ). Sometimes one writes MorC (X,Y ) in place of HomC (X,Y ).

• For any three objects X,Y, Z, a function ◦ : HomC (Y,Z)×HomC (X,Y )→ HomC (X,Z).

and it has the following structure:

• For every object X in C , there is an arrow IdX : X → X so that for all f : X → Y and

g : Z → X we have

f ◦ IdX = f IdX ◦g = g

• Composition is associative. That is for f : X → Y , g : Y → Z, and h : Z →W we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f

We say a category is small if it only has a set’s worth of arrows in total (note this implies it has a set’s

worth of objects as well)
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A category is locally small if it only has a set’s worth of arrows between any two objects. We will

mostly work with locally small categories.

One might ask what we can do that’s interesting with such a broad collection of objects. For those wondering,

remember how abstract groups are and how much structure they contain. Categories are not quite so well-

behaved, but they are an extremely good setting for defining many many many well-behaved and beautiful

things.

Example I.2.1

With this in mind, lets see some examples of categories. Many of these will be familiar to you!

Category Objects Morphisms

Set sets functions

Grp groups homomorphisms

Ab abelian groups homomorphisms

VectF vector spaces over F F -linear maps

R -Mod modules over R R-linear maps

Top spaces continuous maps

Haus Hausdorff spaces continuous maps

SmoothMan smooth manifolds smooth maps

Nat natural numbers ordering (a unique arrow a→ b if a ≤ b)

Notice that the collection of objects can be huge. This is why I specified a class of objects in the

definition.

Exercise I.2.2

Show that these are all categories.

We can also make some suggestive definitions which give us a whole class of examples.

Definition I.2.2

We say that an arrow f : X → Y in a category is invertible (or is an isomorphism) provided there

are arrows g, h : Y → X so that

g ◦ f = IdX f ◦ h = IdY

In this case we may in fact show g = h and that g is unique (exercise. . . ). When only g exists, g is

called a left inverse, and when only h exists, h is called a right inverse. We also say that X and Y are

isomorphic via the isomorphism f , which may be written as X ∼= Y or more specifically X
f∼= Y .

We call a category C a groupoid provided that all of its morphisms are invertible.

Example I.2.3

To give an idea of how useful the idea of an isomorphism is, we list here the different isomorphisms

in the above categories:
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Category Isomorphisms

Set bijections

Grp isomorphisms

Ab isomorphisms

F -Vect F -linear isomorphisms

R -Mod R-linear isomorphisms

Top homeomorphisms

Haus homeomorphisms

SmoothMan diffeomorphisms

Nat equality of naturals

As one should expect, groupoids get their name for a reason! Which we now verify.

Exercise I.2.4

Show that groups and groupoids with one object are exactly the same.

Definition I.2.3

There are a variety of nice names for particular types of morphisms. We list them here

• An endomorphism is an arrow f : X → X

• An automorphism is an invertible endomorphism

• A monomorphism is a morphism f : X → Y such that for all morphisms g, h : Z → X we

have

f ◦ g = f ◦ h =⇒ g = h

• An epimorphism is a morphism f : X → Y such that for all morphisms g, h : Y → Z we have

g ◦ f = h ◦ f =⇒ g = h

We can describe a morphism as being endo (auto, mono, epi) as shorthand.

Example I.2.5

Category Monomorphisms Epimorphisms

Set injections surjections

Haus continuous injection continuous maps with dense image

Nat any arrow any arrow

Note that in the category Haus there are arrows which are both mono and epi but which are not

isomorphisms. Consider the inclusion A ↪→ X of a dense subspace A in a space X.

We also make some convenient notation for talking about categorical concepts. Namely, we specify what

a commutative diagram is at an informal level. Later we will make this formal in order to talk about other

categorical concepts.

Definition I.2.4

A commutative diagram consists of drawn arrows and objects, and we specify that any way to get
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between two objects by composing morphisms are the same. A diagram simply removes the condition

that any composition of arrows is equivalent.

This is best explained via many examples. As the simplest example, saying the left diagram commutes

says that g ◦ f = h, and saying that the right diagram commutes specifies that p2 ◦ q1 = q2 ◦ p1:

X
f
//

h   

Y

g

��

Z

A
p1
//

q1

��

B

q2

��

C
p2
// D

An often useful concept in category theory is dualization. Formally, this consists of replacing a category

C by its “opposite” category C op

Definition I.2.5

Let C be some category. We define C op by Ob C op := Ob C op, and HomC op(X,Y ) = HomC (Y,X).

The composition is then defined for f : X
op−→ Y, g : Y

op−→ Z by

g ◦op f = f ◦op g

Identities remain the same as they are in the original category.

I.3. Functors and Natural Transformations

The natural question to ask in algebraic or categorical subjects when given a collection of objects is

whether they form a category, that is what is the appropriate notion of a “morphism” between such objects.

This of course extends to categories themselves.

Definition I.3.1

Given two categories C ,D , a functor F : C → D consists of the following data

• For every object X ∈ Ob C a unique object F (X) ∈ D

• For every arrow f : X → Y in C a unique arrow F (f) : F (X)→ F (Y ) in D

satisfying the functoriality laws

• F (IdX) = IdF (X)

• For f : X → Y and g : Y → Z in C we have

F (g ◦ f) = F (g) ◦ F (f).

A functor F : C op → D might be called a contravariant functor from C to D , whereas F : C → D is

called covariant. A contravariant functor satisfies for f : X → Y , g : Y → Z in C that

F (g ◦ f) = F (f) ◦ F (g).

Example I.3.1

Say C = Grp and D = Set. Then there is a functor from C to D given by taking a group G and

“forgetting” the group structure to obtain a mere set G. The action on group homomorphisms is to

“forget” that they respect the group operation.
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There is also a functor Set→ Grp, which associates a set S to the “free group” on S. Formally, this

consists of all words in the language S ∪S−1 (where S−1 is a formal copy of S, where we take s−1 ∈ S−1

if s ∈ S). Two words are considered equivalent via the reduction rule which deletes pairs ss−1, s−1s,

and the operation on words is concatenation. (The empty word being the identity element)

These two functors are intimately related, and we will discover they are “adjoint” in ??

Example I.3.2

There is a functor π0 : Top→ Set given on objects by taking a topological space X and mapping it

to the set of path components of X (that is the largest subspaces of X which are path-connected).

Given a continuous map f : X → Y , π0(f) is given by consdering some path component U of X, then

f(U) is path-connected and non-empty, so it belongs to a unique path component V of Y . We then set

[π0(f)](U) = V .

Generally, there are many techniques to associate sets, groups, rings, and other algebraic structures

to spaces. This is the realm of algebraic topology, and almost always these associations are functorial. In

fact the notation π0 suggests the corresponding π1, π2, . . .. In this case π1 : Top→ Grp, and for n > 1

we have πn : Top→ Ab.

For more on this subject, [hatcher] is the standard reference, and [may] is a more concise and modern

treatment.

Example I.3.3

Given two categories C ,D one can form the product category C ×D in the natural way. Then for

locally small categories there is a functor

HomC : C op × C → Set .

On objects this agrees with the notation we have previously established, so that Hom(X,Y ) is the set

of arrows from X to Y in C . On arrows, if we have f : X ′ → X and g : Y → Y ′ in C (seeing that

fop : X → X ′ in C op) we have the function

Hom(f, g) : Hom(X,Y )→ Hom(X ′, Y ′)

h 7→ g ◦ h ◦ f

Functoriality may be easily verified. As we should expect, the Hom functor carries a lot of the information

about C , as it encodes composition in the category.

We also have for fixed X ∈ Ob C that Hom(X,−),Hom(−, X) are contravariant/covariant functors

respectively from C → Set, as one should expect.

Exercise I.3.4

Prove that Hom is functorial.

Exercise I.3.5

There is a functor Vectop → Vect given by taking a vector space V to its dual V ∗.

Work out the details of how this functor acts on linear maps and why it is functorial.
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Exercise I.3.6

Show that, informally (that is without regards to set-theoretic size issues), define the category of all

categories Cat.

The next natural question to ask is what are the arrows between functors themselves?

Definition I.3.2

A natural transformation η : F ⇒ G between two functors F,G : C → D is a collection of maps

ηX : F (X) → G(X) for each X ∈ ObC satisfying the following commutative diagram for each arrow

f : X → Y

F (X) F (Y )

G(X) G(Y )

F (f)

ηX ηY

G(f)

This is called the naturality condition or naturality square.

Exercise I.3.7

For fixed categories C ,D , define a category [C ,D ] whose objects are functors C → D and whose

arrows are natural transformations.

Exercise I.3.8

Show that the “double dual” functor taking V to (V ∗)∗ from Vect → Vect is naturally isomorphic

(that is isomorphic in [Vect,Vect]) to the identity functor IdVect.

Fortunately, this marks the “end of the line” for standard category theory. At higher levels of category

theory, we can define higher morphisms, but for most mathematical purposes this level is sufficient.

Exercise I.3.9

Try to come up with a cohesive definition of arrows between two natural transformations η, µ : F ⇒ G.

Exercise I.3.10

Given η : F ⇒ G, where F,G : C → D and µ : F ′ ⇒ G′ where F ′, G′ : D → E define

η · µ : F ′ ◦ F ⇒ G′ ◦G

this is called the “horizontal composition” of natural transformations, whereas the other composition is

called the “vertical composition” and written η ◦ η′. Show that where it makes sense we have

(η ◦ η′) · (µ ◦ µ′) = (η · µ) ◦ (η′ · µ′).

This is called the interchange law.

Functors / Natural Transformations

I.4. Presheaves and the Yoneda Lemma

I.5. Adjoint Functors

Write a Category Theory Appendix with Good References
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TODOS:

o Functors / Natural Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

o Write a Category Theory Appendix with Good References . . . . . . . . . . . . . . . . . . . . . 6
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