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[. Introduction to Category Theory
1.1. The Motivation

Category Theory as a subject grows out of a need to study the relationships between different areas of
mathematics. Often this comes in the form of associating to every object in a certain area some object in
another area according to some rules. A classic example is the fundamental group, which associates a group
to every topological space (for more about algebraic topology, see [hatcher]).

To be able to formalize these types of mappings and their properties, we need a general setting for objects
and also for maps between them. These will be our categories.

In the process, we will be able to give nice descriptions of many familiar objects in more abstract settings.
The technique for doing so uses what are called universal properties. The advantage of these is that we can
prove many results about things like free groups, tensor products, cartesian products, direct sums, and many
more in extremely general settings. Such settings occur all throughout modern mathematics wherever groups
might not be enough structure.

Most importantly though, we will develop a new way of looking at mathematics and of looking at definitions.
This method of looking at things is sometimes appropriate and sometimes not. But it’s a crucial tool in my
mathematical toolbox, and one of the most elegant.

For my standard reference on this material see [ctContext]. For a more algebraic perspective see [aluffi]
1.2. The Basic Definitions

Lets go ahead and jump right into things!!!
Definition I1.2.1
A category ¥ has the following data:

e A class of objects Ob(%)
e For any two objects X,Y € % a class of arrows (aka morphisms aka maps, lots of names)
Hom (X, Y). We often write f : X — Y when the ambient category is clear to mean that
f € Homg (X,Y). Sometimes one writes More (X,Y") in place of Homg (X,Y).
e For any three objects X, Y, Z, a function o : Hom¢ (Y, Z) x Homg (X,Y) — Home¢ (X, Z).
and it has the following structure:

e For every object X in ¥, there is an arrow Idx : X — X so that for all f : X — Y and

g:Z — X we have
foldx =f Idxog=g
e Composition is associative. That isfor f: X — Y, g:Y — Z, and h: Z — W we have
ho(gof)=(hog)of

We say a category is small if it only has a set’s worth of arrows in total (note this implies it has a set’s

worth of objects as well)
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A category is locally small if it only has a set’s worth of arrows between any two objects. We will
mostly work with locally small categories.
One might ask what we can do that’s interesting with such a broad collection of objects. For those wondering,
remember how abstract groups are and how much structure they contain. Categories are not quite so well-
behaved, but they are an extremely good setting for defining many many many well-behaved and beautiful
things.
Example 1.2.1

With this in mind, lets see some examples of categories. Many of these will be familiar to you!

Category Objects Morphisms
Set sets functions
Grp groups homomorphisms
Ab abelian groups homomorphisms
Vectp vector spaces over F' F-linear maps
R-Mod modules over R R-linear maps
Top spaces continuous maps
Haus Hausdorff spaces continuous maps
SmoothMan | smooth manifolds smooth maps
Nat natural numbers ordering (a unique arrow a — b if a < b)

Notice that the collection of objects can be huge. This is why I specified a class of objects in the

definition.

Exercise 1.2.2
Show that these are all categories.
We can also make some suggestive definitions which give us a whole class of examples.
Definition 1.2.2
We say that an arrow f : X — Y in a category is invertible (or is an isomorphism) provided there

are arrows g, h : Y — X so that
gOf:IdX fO}L:Idy

In this case we may in fact show g = h and that ¢ is unique (exercise...). When only ¢ exists, g is

called a left inverse, and when only h exists, h is called a right inverse. We also say that X and Y are
f

isomorphic via the isomorphism f, which may be written as X =Y or more specifically X 2 Y.

We call a category ¥ a groupoid provided that all of its morphisms are invertible.

Example 1.2.3
To give an idea of how useful the idea of an isomorphism is, we list here the different isomorphisms

in the above categories:




Faye Jackson MATH 493 - 1.2

Category Isomorphisms
Set bijections
Grp isomorphisms
Ab isomorphisms
F -Vect F-linear isomorphisms
R-Mod R-linear isomorphisms
Top homeomorphisms
Haus homeomorphisms
SmoothMan diffeomorphisms
Nat equality of naturals

As one should expect, groupoids get their name for a reason! Which we now verify.
Exercise 1.2.4
Show that groups and groupoids with one object are exactly the same.
Definition 1.2.3
There are a variety of nice names for particular types of morphisms. We list them here
e An endomorphism is an arrow f: X — X
e An automorphism is an invertible endomorphism
e A monomorphism is a morphism f : X — Y such that for all morphisms g,h : Z — X we
have

fog=foh = g=h

e An epimorphism is a morphism f: X — Y such that for all morphisms g,h:Y — Z we have
gof=hof = g=h

We can describe a morphism as being endo (auto, mono, epi) as shorthand.

Category ‘ Monomorphisms ‘ Epimorphisms
Set injections surjections
Example 1.2.5
Haus continuous injection | continuous maps with dense image
Nat any arrow any arrow

Note that in the category Haus there are arrows which are both mono and epi but which are not

isomorphisms. Consider the inclusion A < X of a dense subspace A in a space X.

We also make some convenient notation for talking about categorical concepts. Namely, we specify what
a commutative diagram is at an informal level. Later we will make this formal in order to talk about other
categorical concepts.

Definition 1.2.4

A commutative diagram consists of drawn arrows and objects, and we specify that any way to get
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between two objects by composing morphisms are the same. A diagram simply removes the condition
that any composition of arrows is equivalent.
This is best explained via many examples. As the simplest example, saying the left diagram commutes

says that g o f = h, and saying that the right diagram commutes specifies that ps o ¢; = g2 0 p1:

f D1

X —Y A—— B
\J{g lhl Jiﬁ
h
Z C——D
b2

An often useful concept in category theory is dualization. Formally, this consists of replacing a category
% by its “opposite” category % °P
Definition 1.2.5
Let € be some category. We define €°P by Ob ¢°P := Ob %°P, and Homyoer (X,Y) = Home (Y, X).
The composition is then defined for f: X 2%V, g: YV 2 Z by

goopf:foopg

Identities remain the same as they are in the original category.

1.3. Functors and Natural Transformations

The natural question to ask in algebraic or categorical subjects when given a collection of objects is
whether they form a category, that is what is the appropriate notion of a “morphism” between such objects.

This of course extends to categories themselves.
Definition 1.3.1
Given two categories ¢, 7, a functor F : € — Z consists of the following data

e For every object X € Ob% a unique object F(X) € 2

e For every arrow f: X — Y in ¢ a unique arrow F(f): F(X) —» F(Y) in
satisfying the functoriality laws

o F(ldy) = Tdp(x)

e For f: X —Y and g:Y — Z in € we have

F(go f)=F(g)o F(f).

A functor F': €°P — 2 might be called a contravariant functor from ¢ to 2, whereas F' : ¢ — 2 is

called covariant. A contravariant functor satisfies for f: X — Y, ¢g:Y — Z in € that
F(go f) = F(f)o F(g).

Example 1.3.1
Say ¢ = Grp and 2 = Set. Then there is a functor from € to Z given by taking a group G and

“forgetting” the group structure to obtain a mere set G. The action on group homomorphisms is to

“forget” that they respect the group operation.
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There is also a functor Set — Grp, which associates a set S to the “free group” on S. Formally, this
consists of all words in the language SUS™! (where S~ is a formal copy of .S, where we take s~ € S~!
if s € S). Two words are considered equivalent via the reduction rule which deletes pairs ss~!, s~ s,
and the operation on words is concatenation. (The empty word being the identity element)

These two functors are intimately related, and we will discover they are “adjoint” in ?7?

Example 1.3.2

There is a functor 7 : Top — Set given on objects by taking a topological space X and mapping it
to the set of path components of X (that is the largest subspaces of X which are path-connected).

Given a continuous map f : X — Y, mo(f) is given by consdering some path component U of X, then
f(U) is path-connected and non-empty, so it belongs to a unique path component V of Y. We then set
[ro(FI(U) = V.

Generally, there are many techniques to associate sets, groups, rings, and other algebraic structures
to spaces. This is the realm of algebraic topology, and almost always these associations are functorial. In
fact the notation my suggests the corresponding 7y, 7, .... In this case m; : Top — Grp, and for n > 1
we have 7, : Top — Ab.

For more on this subject, [hatcher] is the standard reference, and [may] is a more concise and modern

treatment.

Example 1.3.3
Given two categories ¥, Z one can form the product category ¥ x & in the natural way. Then for

locally small categories there is a functor
Homeg : €°P x € — Set.

On objects this agrees with the notation we have previously established, so that Hom(X,Y") is the set
of arrows from X to Y in €. On arrows, if we have f : X’ = X and g : Y — Y’ in € (seeing that
foP: X — X’ in €°P) we have the function

Hom(f, g) : Hom(X,Y) — Hom(X',Y")
h—gohof

Functoriality may be easily verified. As we should expect, the Hom functor carries a lot of the information
about ¥, as it encodes composition in the category.
We also have for fixed X € Ob% that Hom(X, —), Hom(—, X) are contravariant/covariant functors

respectively from & — Set, as one should expect.
Exercise 1.3.4
Prove that Hom is functorial.
Exercise 1.3.5
There is a functor Vect®® — Vect given by taking a vector space V to its dual V*.

Work out the details of how this functor acts on linear maps and why it is functorial.




Faye Jackson MATH 493 - 1.5

Exercise 1.3.6
Show that, informally (that is without regards to set-theoretic size issues), define the category of all

categories Cat.

The next natural question to ask is what are the arrows between functors themselves?
Definition 1.3.2

A natural transformation 7 : F = G between two functors F,G : ¥ — Z is a collection of maps
nx : F(X) = G(X) for each X € ObC satistying the following commutative diagram for each arrow
f:X—=Y

| |

G(X) 57 GOY)

This is called the naturality condition or naturality square.
Exercise 1.3.7
For fixed categories €, 2, define a category [¢, 2] whose objects are functors ¥ — 2 and whose

arrows are natural transformations.

Exercise 1.3.8
Show that the “double dual” functor taking V' to (V*)* from Vect — Vect is naturally isomorphic
(that is isomorphic in [Vect, Vect]) to the identity functor Idyect.

Fortunately, this marks the “end of the line” for standard category theory. At higher levels of category
theory, we can define higher morphisms, but for most mathematical purposes this level is sufficient.
Exercise 1.3.9

Try to come up with a cohesive definition of arrows between two natural transformations n, p : F' = G.

Exercise 1.3.10
Given n: F'= G, where F,G : 4 — % and p: F' = G’ where F',G' : 9 — & define

n-p:FoF=G oG

this is called the “horizontal composition” of natural transformations, whereas the other composition is

called the “vertical composition” and written o n'. Show that where it makes sense we have

(mon')-(wopu')=(n-p)om - u).

This is called the interchange law.

I.4. Presheaves and the Yoneda Lemma

1.5. Adjoint Functors

6
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