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Last time a,b € Z not both zero, then aZ + bZ = dZ where d = ged(a,b). So d = am + bn with m,n € Z.
A consequence is then that if ¢ | @ and ¢ | b then ¢ | d (since ¢ | am + bn).

If p is prime and p { a then ged(a,p) = 1. Thus 1 = am + pn, where m,n € Z. Also, 1 = am mod p

() This implies that Z/pZ \ {0} is a group under multiplication (this in fact makes Z/pZ a

field).

This type of multiplicative group is often denoted by (Z/nZ)* = (Z/nZ)* = {a € Z/nZ | ged(a,n) = 1}
is a group under multiplication.

Definition .0.1

For any group G and any subgroup H define an equivalence relation on G by

gi~g = g g€ H| < g H=gH

It’s a standard check that this is an equivalence relation. Furthermore the conditions above are equivalent

as:
91 g2 €H < g'g2H=H < gH=gH

Note how the condition g; g5 € H matches the condition from modular arithmetic that ¢ = b mod n
provided that (which we saw above).

Also note that H — gH given by h — gh is a bijection. Further g; H and g2 H are either equal or disjoint.

We now recall 77
kk

Extremely Useful Idea: Think of G as inducing permutations on G/H, the set of cosets of H, where g € G
maps g1 H — gg1 H.
Corollary .0.1

If a group G has prime order then it is cyclic.

Proof. If g € G isn’t 1¢ then g generates a subgroup (g) of G. |(g)| divides the prime |G|, but |(g)| isn’t one.
o
Thus [{(g)| = |G], so (g) = G. v

We now begin to relate groups to each other via particular nice types of functions.
Definition .0.2

A homomorphism f : G; — G2 between groups Gy, G is a function such that

flzy) = f(z)f(y)
for all z,y € G;.

Lemma .0.2
If f: Gy — Gy is a homomorphism then f(lg,) = 1g, and f(g71) = f(g)~ .
Furthermore f(G) is a subgroup of Gs.
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Proof. We prove these by simple algebraic manipulation:

f(]-G1) = f(1G1 : ]-G1) = f(1G1) : f(]‘Gl)
f(1G1) =lg,

We also may write:

The fact that f(G1) is a subgroup immediately follows, as it contains the identity, inverses, and is closed
o
under multiplication v

Example .0.1

det : GL,(R) — R*, where GL,,(R) are the invertible matrices under multiplication and R* is the
nonzero reals under multiplication.

exp : RT — R*, where R™ is the group of reals under addition. We also have || : CX — R*.

The trivial homomorphism G; — G2 which takes everything to 1, as g — 1.

We now generalize a definition from linear algebra that turns out to be extremely extremely useful.
Definition .0.3
Let f: G1 — G5 be some homomorphism. Then define the kernel of f to be

ker fi={g e G1 | flg) =1}.

This will be a subgroup of Gy (exercise!), and it will satisfy some very nice properties. Namely if b € ker f

and a € G then aba™! € ker f.

flaba™) = f(a) f(0)f(a)™" = f(a)f(a)™" =1

Definition .0.4

Define a normal subgroup N of G to be a subgroup such that gng=' € N foralln € N and g € G.
We notation this as N < G.

So, if f: G; — G4 is a homomorphism then ker(f) is a normal subgroup of G;. Later we will show
the converse, if N is a normal subgroup of G then IV is the kernel of some homomorphism G — G (in

fact, as a set G = G/N).

If f: Gy — G5 is a homomorphism, then

fl@)=fly) <= @) fly) =1 = fa)f(y) = faly) =
— 2 'y ckerf <= zker(f) = yker(f)
This implies that for any g € f(G1), |f~*(9)| = [ker(f)!.

Corollary .0.3
For a group homomorphism f, f is injective if and only if ker(f) = {1}.



