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Continued proof of ??. We now know there is a unique fixed point R of our isometry given by τQ ◦ ρθ.
We then have that τ−R ◦ τQ ◦ ρθ ◦ τR is a rotation about the origin. Why? It’s an orientation-preserving

isometry that fixes the origin, so the composition τQ′ ◦ ρθ′ ◦ (Id or r) cannot have Q′ 6= 0 or r.

Thus τQ ◦ ρθ is a rotation about R.

Now suppose the isometry reverses orientation, that is it equals τQ ◦ ρθ ◦ r.
Then all we need to understand is ρθ ◦ r, and show that this is a reflection through some line. Namely it’s

reflection through the line which passes through (0, 0) and is ρθ/2(x− axis).

Change coordinates to make this line be the x-axis, then we have τQ′ ◦ r, which is a reflection through a

horizontal line if Q′ is on the y-axis and a glide reflection otherwise.

Theorem .0.1

Every finite group of isometries of R2 is cyclic or dihedral.

Proof. We do this in a few simple steps

Step a) There are no nonidentity translations and there are no nonidentity glide reflections, because these

have infinite order.

Step b) All rotations in this group G have the same center. To show this, pick any point R0. We may then

form a new point R1 via:

R1 =
1

|G|
∑
g∈G

g(R)

We claim that R1 is fixed by each g′ ∈ G. If g′ is a linear transformation R2 → R2, then g′(R1) = R1

Why? Well:

g′(R1) =
1

|G|
∑
g∈G

g′(g(R)) =
1

|G|
∑
g∈G

(g′g)(R) =
1

|G|
∑
h∈G

h(R) = R1

The second to last equality is fundamental, and follows because g 7→ h = g′g is a bijection G→ G.

Also we have that τQ maps R1 to R1 +Q, why? Well:

τQ(R1) = Q+
1

|G|
∑
g∈G

g(R) =
1

|G|
∑
g∈G

[g(R) +Q] =
1

|G|
∑
g∈G

τQ(g(R1))

In fact, this means that every isometry maps the center of mass of a set of points to the center of

mass of the images of these points.

Because the set {g(R) | g ∈ G} and the image set {g′(g(R)) | g ∈ G} are the same, this means

that each g′ ∈ G fixes R1. Rotations have a unique fixed point which is their center, and so we’re

done.

Step c) Suppose G consists solely of rotations. They all have a common fixed point, we may as well assume

it is (0, 0) without loss of generality. Say the rotations are by angles 0 = θ1 < θ2 < . . . < θk < 2π.

We claim rotation by θ2 generates the group. Well we know each θi = niθ2 + δi for ni ∈ Z and

0 ≤ δ < θ2. But then this would imply that rotation by δi is in the group, showing that we must

have δi = 0 by minimality of θ2.

This finishes this piece!
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Step d) If we have a reflection, we can choose coordinates so it is through the x-axis, giving us the dihedral

group. Why? Well, we generate the dihedral group, and any two r1, r2 composed give a rotation ρθ,

so r1 = ρθ ◦ r−12 , showing that r1 must be in the dihedral group as well.
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