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Recall: A linear representation of a group G is a homomorphism p : G — GL(V) for some vector space
V. We say p is irreducible if V' has no subrepresentations except {0} and V', where a subrepresentation is a
subspace V of V such that g - W C W for all g € G (so that p induces a homomorphism G — GL(W)).

1-dimensional representations have the form p: G — GL(C) = C*. But if G is finite then p(G) is a finite

subgroup of C*, hence is cyclic (|G|-th roots of unity). So p is a homomorphism from G to a cyclic group.
Theorem .0.1 (Maschke’s Theorem)
Every finite-dimensional complex representation of a finite group G can be written as a direct sum of
irreducible subrepresentations.
That is: given p : G — GL(V) we can write V.= W; @ --- ® Wy, with W; subspaces of V such that

each (p, W;) is an irreducible subrepresentation of (p, V).

This follows from the following by induction
Theorem .0.2
If p: G — GL(V) is a finite-dimensional complex representation of a finite group G and W is a

subrepresentation, then there is some subrepresentation W’ of V' such that V. =W & W'.

Remark .0.1

Same proof works over any field K such that |G| is invertible in K.

Proof. Pick any “projection map” 7 : V — W, meaning a linear transformation V' — W which restricts to
the identity map on W. This can be done by extending a basis of W to a basis on V', defining 7 to be the
identity on the basis of W and anything in W on the other basis elements for V.

We want to be able to take the kernel of 7, but this won’t work because 7 is not a G-invariant map. We
have to somehow “fix”

Define

¢:V—>W
Zgw L),
|G|£]€G

This should fix our problem
Claim

¢ is a G-invariant projection map V — W

Fix w € W. Then ¢! - w € W and we have:
(w) Q Z 9- ) G Z 9 WG Z w=uw
el | el | &2 1G] %,
It clearly maps into W. It is also linear since it is a linear combination of the linear transformations
v g-m(gTtv).
We now check that ¢ is G-invariant. Let h € G and v € V, then
h- (v |G|Zh g-m(g~"v))
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1
= @ Z 9 -m((g) 'h v)
g'eG
= ¢(h-v)
where we’ve made the subsitution ¢’ = hg (since g — hg is a bijection G — G).

This proves the claim. Now we need to show that W’ := ker ¢ satisfies the desired properties.

W' will clearly be a subrepresentation of V' because ¢ is G-invariant. Then because ¢ is a projection map,
V=WaeW’'. Why? Well v € V has the form ¢(v) + (v — ¢(v)), ¢(v) € W, and v — ¢(v) € W’. Thisis a
unique decomposition, as the intersection of W and W’ is zero.

Great! This finishes the proof! .v‘

Theorem .0.3
If V is a finite-dimensional complex representation of a finite group G, then V can be written in

exactly one way as an (internal) direct sum
V=Wo oV

where each V; is itself a direct sum of (one or more) copies of an irreducible subrepresentation W; and
W, 2 Wy for i # j.

This is a sort of generalization of eigenspaces. Said another way (more explicitly) if we write V' =
Ui®---0oUpand V = Ry @ --- @ Ry, with U;, R; irreducible subrepresentations, then they have the
same length, for each i the number of U;’s isomorphic to U; equals the number of R;’s isomorphic to

Ui, and the direct sum of these U; equals (not just isomorphic) the direct sum of these R;.

Lemma .0.4

A homomorphism ¢ : V' — W between irreducible G-representations ie either zero or an isomorphism.

Proof. ker ¢ is a subrepresentation of V. Thus ker ¢ = 0 or ker ¢ = V. If ker ¢ =V then we’re done.
im ¢ is a subrepresentation of W. Thus im¢ = 0 or im¢ = W. If im ¢ = 0 we’re done.

o
But if ker ¢ = 0 and im ¢ = W then the function is bijective, and we’re done. 4

Proof of Theorem .0.5. Nowsay V =U,®---®Up = R1®---® Ry, with U;, R; irreducible subreprensetations
of V.

Consider U; — V — R; as inclusion then projection. This is a homomorphism of irreducible G-
representations, and so it is either zero or an isomorphism by the lemma. However it can’t be zero for
all j, because U; # 0 and V = P R;.

Thus there is some j such that U; — V — R; is an isomorphism of G-representations. We get that the
set of U;’s, up to =2, equals the set of R;’s, up to = (go the other way as well R; — U;).

We may then write V =U" @ ---U* and V = R?l O D RZ’“ where a;,b; > 0, U; & R; irreducible,
Ui 2U; fori # j.

Then consider that U™ <V — R2 @ --- @ RZ’“ is zero by the lemma. This shows U C R, Similarly

" Y
Rll’1 C Uy*. Comparing dimensions gives a; = b;. Can do similarly for the rest. L 4



