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Last time we showed that the 1-dimensional continuous representations of R are

ps : R = GL{(C) = C*

T e’*

for all s € C.

A 2-dimensional continuous representation of R
R — GL2(R) C GLy(C)

1 =z
0 1

T —

The vector (1,0)7 is fixed by these matrices, so its span W := span((1,0)7) is an isomorphic copy of the
trivial representation.

But R? (or C?) is not W @ W’ for any subrepresentation W’ of R. This means that Maschke’s Theorem
fails for this representation. The problem is that the matrices in the image are not unitary.

Last time: if p : G — GL,(C) is a continuous representation of a topological space whose image p(G) is
contained in the set of unitary matrices in GL,,(C), then Maschke’s Theorem holds.

Observation: From any 1-dimensional representation of
6:8'=2R/Z — C*
we get a representation of R
R - R/Z % C*

Which representations ps : R — C* arise in this way? But we see that

R —— R/Z —— C*

1+ 0 1
and thus e® = 1. Therefore s = (27mi)n for some n € Z.
Schur’s Lemma didn’t require G to be finite (and most of it works over any field). Namely if L : V — W is a
homomorphism of representations between two irreducible representations, then L is either zero or invertible.
Lemma .0.1 (Schur’s Lemma)
Suppose p : G — GL(V) and p' : G — GL(W) are two irreducible representations (even infinite-
dimensional), and let L : V — W be a homomorphism of G-representations.

That is the following commutes for all g € G

v p(9) %
r| Iz
W ——W
p'(9)
Then either L is an isomorphism or zero.

Proof. ker L is a subrepresentation of p, so ker L = 0 or ker L = V' by irreducibility. Thus L is injective or
L=0.
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im L is a subrepresentation of p’. Thus p’ is irreducible, and either im L = 0 or im L = W. Thus L =0 or
L is surjective.
Therefore if L # 0 then L is bijective. We may then check that its inverse on the level of sets is an

. . " Y
isomorphism v

If we work over a finite-dimensional vector space over C (or any algebraically closed field), it is easy to

then derive that if L: V — V then L = AIdy for some A € C (by finding an eigenvalue).

Proof. Let U be an eigenvector for L with Ly = A\¥ for some .
Then ¥ € ker(L — A\Idy) is also a subrepresentation of V.
Since V is irreducible, ker(L — AIdy) =V, and so L = A1dy.

¢

Corollary .0.2

If G is abelian any (finite-dimensional) irreducible representation of G' (over C) is 1-dimensional.

Proof. For all g € G, p(g) is an invertible linear map V' — V. We claim that it is a homomorphism of

G-representations. This is precisely the statement that for any ¢ € G and v € V

g- (g -v)=4g"(g-v).

Clearly this holds when G is abelian. By Schur’s Lemma (Lemma .0.1), we know for all g € G there is a A
such that p(g) = A1dy.
We then know that p(g) maps every 1-dimensional subspace of V' to itself. So each such subspace is a

o
subrepresentation. Because p is irreducible, this implies any such subspace must be all of V. v

.1. Compact Groups (namely S* =~ R/Z)
Let G={z € C* | |z| =1} = S'. Then G is a compact topological group. Furthermore

R/Z =5 G

T = 627719:

is an isomorphism of topological groups. G is abelian, so the irreducible representations of GG are 1-dimensional.

Earlier, we showed that the 1-dimensional representations are

p:R/Z — GL;(C) = C*

2minx

Tr—e

for some n € Z, and these are of course unitary.

Thus the finite-dimensional unitary representations of these are the direct sums of copies of the above
representations.

Decomposing a representation into irreducibles turns into the problem of writing a function as a combina-
tion of these p’s.

For any integrable function ¢, the fourier series of ¢ is

Z cneQTrinw — Z Cnpn(m)

nez nez
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such that ¢, € R. Furthermore the ¢, is given in terms of an integral.

Cn = / @(x)e2™" dx
R/Z
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