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Note: Everything from last time works over any ring.

Definition .0.1

A ring R is an abelian group under + equipped with a multiplication · which is associative, has an

identity, and distributes over addition.

Example .0.1

Given any abelian group G, then the set of endomorphisms End(G) := Hom(G,G) is naturally a

group under addition and becomes a ring when equipped with composition.

Rings will be the first thing we study next semester.

Definition .0.2

An algebra over a field K is a vector space A over K with the structure of a ring such that for vectors

a, b ∈ A and scalars c, d ∈ K we have

(ca) · (db) = (cd)(a · b).

This product is bilinear.

Definition .0.3

Let G be a finite group. Then C[G] is the group algebra.

As a vector space this is C-linear combinations of a basis {eg}g∈G. For convenience we identify c ∈ C
with ce1. Another way to see this as as {functions G→ C, g 7→ cg}.

Recall that G acts on C[G] by the regular representation

h ·

∑
g∈G

cgeg

 =
∑
g∈G

cgehg.

Define then a ring structure on C[G] by the following for all g, h ∈ G and c ∈ C

eheg = ehg ceg = egc.

Secretly the above formula is

ceg = eg(ce1).

What is the center of C[G] (under multiplication)? This is the set of all θ ∈ C[G] with θx = xθ for all

x ∈ C[G]. Equivalently θeg = egθ for all g ∈ G.

Write θ =
∑
h∈G cheh. Then what this means is

θeg =
∑
hinG

chehg =
∑
h∈G

chegh = egθ.

Reindexing then gives ∑
h∈G

chehg =
∑
h∈G

che(ghg−1)g =
∑
h′∈G

cg−1h′geh′g
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Therefore ch = cg−1hg for every h ∈ G. This means that

center of C[G] =

{∑
h∈G

cheh | ch = cg−1hg ∀ g ∈ G

}

=

{∑
h∈G

cheh | c− : G→ C is a class function

}
= the class functions on G

=

{
C-linear combinations of

∑
h∈C

eh ∀ conjugacy classes C ⊆ G

}

Definition .0.4

If ρ : G→ GL(V ) is a representaiton and π is an irreducible representation, then we can decompose

V by Maschke’s Theorem into a direct sum of subspaces on which ρ acts isomorphically to irreducibles.

Collecting all the subspaces on which ρ acts as π into a direct sum gives the π-isotypic part of V .

This is well-defined by Machke’s Theorem.

Recall .0.2

If ρ : G→ GL(V ) is a representation, and π is an irreducible representation of G, then the projection

of V onto its π-isotypic part (aka a direct sum of things isomorphic to π) is

v 7→ dimπ

|G|
∑
g∈G

χπ(g−1)(g · v).

In group algebra language (when ρ is the regular representation), this projection is multiplication of

each element in C[G] by

eπ :=
dimπ

|G|
∑
g∈G

χπ(g−1)eg.

Lemma .0.1

Let π be an irreducible representation of G. Let s =
∑
g cgeg lie in the center of C[G]. Define

ωπ(s) :=
1

dimπ

∑
g∈G

cgχπ(g).

Then s 7→ ωπ(s) is a homomorphism (linearly, and multiplicatively) from Center(C[G])→ C.

Theorem .0.2 (Burnside)

Let ρ : G→ GL(V ) be an irreducible representation of a finite group G. If g ∈ G and the size of the

conjugacy class of g is coprime to dimV then either χ(g) = 0 or g is in the kernel of G
ρ−→ GL(V ) �

PGL(V ), where PGL(V ) = GL(V )/{c · IdV | c 6= 0}.
That is either χ(g) = 0 or ρ(g) = c IdV for some c 6= 0.

Theorem .0.3 (Burnside)

Let s =
∑
h∈G cheh ∈ C[G] where each ch is an algebraic integer. If s is in the center of C[G] then
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s acts on any irreducible representation ρ : G → GL(V ) as multiplication by a scalar ωρ(s), and even

better, this scalar is also an algebraic integer.

In particular, for any g ∈ G,

χρ(g) · (size of conjugacy class of g)

dim ρ

is an algebraic integer.

Proof of very last part. Apply the first part to s =
∑
h∈C eh, where C is the conjugacy class of g. Then

ωρ(s) =
1

dim ρ

∑
h∈C

χρ(h) =
χρ(g) · |C|

dim ρ
.

This is then an algebraic integer.

Next time: Proofs!!!
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