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I. Wrap-Up

I.1. Representations of Cn

Let Cn = 〈g〉. Then

ρ : Cn → GLk(C)

g 7→ ρ(g) = M

where Mn = Idk.

What are the subrepresentations? Well M is diagonalizable

Theorem I.1.1

General Fact: A k × k matrix A (over F ) is diagonalizable over a field F if and only if h(A) = 0 for

some monic degree-d h(x) ∈ F [x] which has d distinct roots in F .

Theorem I.1.2 (Cayley-Hamilton)

A matrix A satisfies its characteristic polynomial.

Because M is diagonalizable, Ck = V1⊕· · ·⊕Vr where Vi are eigenspaces fro M with eigenvalue λi (where

λi are pairwise distinct element of C×). What are all subrepresentations? They’re all W1 +⊕+Wr with Wi

a subspace of Vi.

Theorem I.1.3 (Brouwer’s Theorem)

Every (complex finite-dimensional) character of every finite group G is a Z-linear combination of

characters that are induced from degree-1 characters of “elementary” subgroups.

Elementary subgroups are direct products of cyclic groups with p-groups, Cm × P , where P is a

p-group for some prime p.

I.2. Products of Conjugacy Classes

Suppose G is a finite group and C1, . . . , Ck are conjugacy classes in G. What can you say about the

multiset C1C2 · · ·Ck? It’s a (Z≥0)-linear combination of conjugacy classes.∑
conj. class

C

nCC

where nC ∈ Z≥0 are called the “structure constants of G.”

In terms of the group algebra, define eC :=
∑
g∈C eg. Then we are examining

eC1eC2 · · · ecK =
∑

conj. class
C

nCeC

We define

N (C1, . . . , Ck) := # of (g1, . . . , gk) ∈ C1 × · · · × Ck s.t. g1 · · · gk = 1
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If k = 1, then

N (C1) =

{
1 if C1 = {1}
0 otherwise

.

For k = 2, we have

N (C1, C2) =

{
|C1| if C1 = C−12

0 otherwise

secretly this is the column orthogonality relation for characters.

For k = 3, we have

N (C1, C2, C3) = #{(g1, g2) ∈ C1 × C2 | g1g2 ∈ C−13 }

this doesn’t tell us much. . .

The answer! Representation Theory!

Theorem I.2.1 (Frobenius’s Theorem)

We have that

N (C1, . . . , Ck) =
|C1| · · · |Ck|
|G|

∑
irr.
χ

χ(C1) · · ·χ(Ck)

χ(1)k−2

We should verify it for small k. If k = 1, this reads as

N (C1) =
|C1|
|G|

∑
χ

χ(C1)

χ(1)−1

=
|C1|
|G|

∑
χ

χ(C)χ(1)

=

{
1 if C = {1}
0 otherwise

by the column orthogonality relation. For k = 2, this reads as

N (C1, C2) =
|C1| |C2|
|G|

∑
χ

χ(C1)χ(C2)

χ(1)0

= |C1| ·
∣∣C−12

∣∣
|G|

∑
χ

χ(C1)χ(C−12 )

=

{
|C1| if C1 = C−12

0 otherwise

Proof of Theorem I.2.1. If C is a conjugacy class of G, define

eC :=
∑
g∈C

eg ∈ C[G]
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for all representations ρ : G → GL(V ), any element f ∈ C[G] of the group algebra acts on V . Formally if

f =
∑
g fgeg we have Lf given by

Lf : V → V

v 7→
∑
g∈G

fg(ρ(g)v)

which is a C-linear map. We simplify notation by writing LC = LeC . It turns out that LC is a representation

of homomorphisms

LCρ(h)v =
∑
g∈C

ρ(gh)v =
∑
g∈C

ρ(hgh−1h)v =
∑
g∈C

ρ(hg)v = ρ(h)LCv

If ρ is irreducible, then Schur’s Lemma implies that LC is a scalar multiple by some constant ωρ(C). Taking

traces, we see that

ωρ(C) · dim ρ = tr(LC) = tr

∑
g∈C

ρ(g)

 =
∑
g∈C

χ(g) = |C|χ(C) = |C|ωρ(C).

Therefore

ωρ(C) =
|C|χ(C)

χ(1)

We now compute the action eC1
· · · eCk

on C[G] =
⊕

irr.
Vi

(dimVi)Vi by the regular representation. On one

hand we have

eC1
· · · eCk

=
∑
gi∈Ci

eg1···gk

tr(eC1
· · · eCk

) =
∑
gi∈Ci

{
|G| if g1g2 · · · gk = 1

0 otherwise

= |G| N (C1, . . . , Ck)

But also eC1
· · · eCk

acts on Vi as scalar multiplication by ωρi(C1) · · ·ωρi(Ck). Then

tr(eC1
· · · eCk

) =
∑
i

n2iωρi(C1) · · ·ωρ(Ck)

where ni = dimVi = χi(1) where χi is the character of ρi. We may then just substitute

tr(eC1
· · · eCk

) =
∑
i

n2i

k∏
j=1

|Cj |χi(Cj)
χi(1)

=
∑
i

k∏
j=1

|Cj |χj(Cj)
χi(1)k−2
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