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Last time a, b ∈ Z not both zero, then aZ + bZ = dZ where d = gcd(a, b). So d = am + bn with m,n ∈ Z.

A consequence is then that if c | a and c | b then c | d (since c | am + bn).

If p is prime and p - a then gcd(a, p) = 1. Thus 1 = am + pn, where m,n ∈ Z. Also, 1 = am mod p

( −am + 1 ∈ pZ ). This implies that Z/pZ \ {0} is a group under multiplication (this in fact makes Z/pZ a

field).

This type of multiplicative group is often denoted by (Z/nZ)∗ = (Z/nZ)× = {a ∈ Z/nZ | gcd(a, n) = 1}
is a group under multiplication.

Definition .0.1

For any group G and any subgroup H define an equivalence relation on G by

g1 ∼ g2 ⇐⇒ g−1
1 g2 ∈ H ⇐⇒ g1H = g2H

It’s a standard check that this is an equivalence relation. Furthermore the conditions above are equivalent

as:

g−1
1 g2 ∈ H ⇐⇒ g−1

1 g2H = H ⇐⇒ g2H = g1H

Note how the condition g−1
1 g2 ∈ H matches the condition from modular arithmetic that a = b mod n

provided that −a + b ∈ nZ (which we saw above).

Also note that H → gH given by h 7→ gh is a bijection. Further g1H and g2H are either equal or disjoint.

We now recall ??

**

Extremely Useful Idea: Think of G as inducing permutations on G/H, the set of cosets of H, where g ∈ G

maps g1H 7→ gg1H.

Corollary .0.1

If a group G has prime order then it is cyclic.

Proof. If g ∈ G isn’t 1G then g generates a subgroup 〈g〉 of G. |〈g〉| divides the prime |G|, but |〈g〉| isn’t one.

Thus |〈g〉| = |G|, so 〈g〉 = G.

We now begin to relate groups to each other via particular nice types of functions.

Definition .0.2

A homomorphism f : G1 → G2 between groups G1, G2 is a function such that

f(xy) = f(x)f(y)

for all x, y ∈ G1.

Lemma .0.2

If f : G1 → G2 is a homomorphism then f(1G1
) = 1G2

and f(g−1) = f(g)−1.

Furthermore f(G1) is a subgroup of G2.
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Proof. We prove these by simple algebraic manipulation:

f(1G1) = f(1G1 · 1G1) = f(1G1) · f(1G1)

f(1G1
) = 1G2

We also may write:

f(g)f(g−1) = f(gg−1) = f(1) = 1

f(g−1) = f(g)−1

The fact that f(G1) is a subgroup immediately follows, as it contains the identity, inverses, and is closed

under multiplication

Example .0.1

det : GLn(R) → R×, where GLn(R) are the invertible matrices under multiplication and R× is the

nonzero reals under multiplication.

exp : R+ → R×, where R+ is the group of reals under addition. We also have |·| : C× → R×.

The trivial homomorphism G1 → G2 which takes everything to 1, as g 7→ 1.

We now generalize a definition from linear algebra that turns out to be extremely extremely useful.

Definition .0.3

Let f : G1 → G2 be some homomorphism. Then define the kernel of f to be

ker f := {g ∈ G1 | f(g) = 1}.

This will be a subgroup of G1 (exercise!), and it will satisfy some very nice properties. Namely if b ∈ ker f

and a ∈ G1 then aba−1 ∈ ker f .

f(aba−1) = f(a)f(b)f(a)−1 = f(a)f(a)−1 = 1

Definition .0.4

Define a normal subgroup N of G to be a subgroup such that gng−1 ∈ N for all n ∈ N and g ∈ G.

We notation this as N E G.

So, if f : G1 → G2 is a homomorphism then ker(f) is a normal subgroup of G1. Later we will show

the converse, if N is a normal subgroup of G then N is the kernel of some homomorphism G→ G̃ (in

fact, as a set G̃ = G/N).

If f : G1 → G2 is a homomorphism, then

f(x) = f(y) ⇐⇒ f(x)−1f(y) = 1 ⇐⇒ f(x−1)f(y) = f(x−1y) = 1

⇐⇒ x−1y ∈ ker f ⇐⇒ x ker(f) = y ker(f)

This implies that for any g ∈ f(G1),
∣∣f−1(g)

∣∣ = |ker(f)|.

Corollary .0.3

For a group homomorphism f , f is injective if and only if ker(f) = {1}.
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