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I. Group Actions

Groups most often arise in other fields of mathematics via the automorphisms of certain objects. As such,

it makes sense to study groups by looking in the opposite direction. Namely, for a group G, we can study

homomorphisms G → Aut(W ) for some automorphism group of some structure W . We call these maps

representations of a group, and we say that G acts on W .

The two most most common objects to consider for a group to act on are sets and vector spaces. These give

permutation representations and linear representations respectively, and these are given as homomorphisms

G→ Sym(S) and G→ GL(V ) respectively.

For notational reasons, we take the name group action to mean a permutation representation, and

representation by itself to mean a linear representation.

I.1. Permutation Representations

Definition I.1.1

Suppose G is a group and S is a set. We say that a group action of G on S is a homomorphism

ρ : G→ Sym(S)

Carrying around this homomorphism can clutter notation, so we often use the following equivalent defini-

tion

Definition I.1.2

Suppose G is a group and S is a set. We say that a group action is a map G × S → S, written by

g · s, such that for all g1, g2 ∈ G and s ∈ S

g1 · (g2 · s) = (g1g2) · s

1 · s = s

We leave the fact that these are equivalent definitions as a simple exercise.

Definition I.1.3

Suppose G is group acting on a set S. We say that the kernel K of the action is the kernel of the

associated group homomorphism ρ, equivalently

K := {g ∈ G | ∀s ∈ S, g · s = s}

The kernel is then a normal subgroup of G

Definition I.1.4

Suppose G is a group acting on a set S, and that s ∈ S. We say that the stabilizer of s is the set

StabG(s) = {g ∈ G | g · s = s}

We sometimes also denote the stabilizer of s by Gs

Note that for G acting on S throug the homomorphism ρ, if H is the subgroup of Sym(S) which fixes s, then

Gs = ρ−1(H). In this way, we immediately see that Gs is a subgroup of G.
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Definition I.1.5

Suppose G is a group acting on a set S, and let s ∈ S. We say that the orbit of s is the set

OrbG(s) = {g · s | g ∈ G} = {t ∈ S | ∃g ∈ G s.t. g · t = s}

We sometimes also denote the orbit of s by Os.

Lemma I.1.1 (Orbits partition)

Suppose G is a group acting on a set S. Then the set {Os}s∈S is a partition of S.

Proof. We see that the orbits cover S as for any s ∈ S we know s ∈ Os. Thus we just need to show these

are disjoint.

Fix r ∈ Os ∩ Ot. Now pick an arbitrary x ∈ Os. Then we know that there is some a, g, h ∈ G such that

r = g · s = h · t and x = a · s. Then

a · s = ag−1 · r = ag−1h · t

Thus x ∈ Ot, and Os ⊆ Ot. By symmetry, Ot ⊆ Os. We then see that these are equal sets, and we’re

done.

Sometimes we will pick a specific representative of an orbit to work with. However, this is really arbitrary

in nature, and we should understand what effect this choice has on us.

Lemma I.1.2

Suppose G is a group acting on a set S. Then for s ∈ S and g ∈ G we have

Gg·s = gGsg
−1

Proof. This is simple logic

h ∈ Gg·s ⇐⇒ hg · s = g · s

⇐⇒ g−1hg · s = g−1g · s

⇐⇒ g−1hg · s = s

⇐⇒ g−1hg ∈ Gs

⇐⇒ h ∈ gGsg−1

The intuition is that if h fixes s, and if we relabel g · s to s, h will then fix g · s, and we do this relabeling

via conjugation.

Definition I.1.6

Suppose G is a group acting on a set S, we say that the action is transitive provided that there is

only one orbit Os = S for some s ∈ S.
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Theorem I.1.3 (Orbit Stabilizer)

Supppose G is a group acting on the set S. Then, for arbitrary s ∈ S

[G : Gs] = |Os|

Proof. Fix arbitrary s ∈ S. Consider the map f : G→ Os given by f : g 7→ g · s. We see that f is surjective

by the definition of an orbit.

The structure of the theorem is the following

G Os

G/Gs

f

π f

In this case, as Gs need not be a normal subgroup of G, π is not a homomorphism, and G/Gs is only a set.

The function f which makes the diagram commute is essentially already defined for us. Why? Well

f ◦ π = f if and only if for all gGs ∈ G/Gs we have

f(gGs) = f(π(g)) = f(g) = g · s

This is well defined because if gGs = hGs then g−1h ∈ Gs and

f(gGs) = g · s = g(g−1h) · s = h · s = f(hGs)

We see that f is injective as if f(gGs) = f(hGs) we conclude that g · s = h · s, so g−1h ∈ Gs, and then

gGs = hGs.

Finally, we see that f is surjective by surjectivity of f , f = f ◦ π.
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