Faye Jackson November 23rd, 2021 MATH 493 - .0

Theorem .0.1
Let p : G — GL(V) be an irreducible representation. If g € G has conjugacy class C, where |C] is
coprime to dim p, then either x,(g) = 0 or p(g) acts on V" as X -Idy for some A € C*
Note: p(g) = A-Idy if and only if p(g) = 1, with
G —= GL(V) — PGL(V).

N >

Where PGL(V) = GL(V)/{A\1dy | A € C*}.
We will use Theorem .0.1 to prove
Theorem .0.2
If |G| = p®q® with p, q distinct primes and a,b > 0 then G is not simple.

Claim

If G is any nontrivial finite group, and p # ¢ are primes dividing |G|, then there exists g € G\ {1}
and an irreducible nontirvial representation p : G — GL(V) such that x,(g) # 0 and p does not divide
the conjugacy class of G and ¢ { dim p.

Proof of Theorem .0.2. First find g # 1 such that p does not divide the conjugacy class of G.
If center of G is nontrivial, let g € Z(G) \ {1}. If Z(G) =1 then

Gl=>_IC|
c
|G|—1=Z\C|%—1 mod p

C#1

Thus there is some C' # 1 so that p{ |C|. Fix g € C.
Then the orthogonality of columns for 1 and g gives that

0=">> x(9x(1) = x(g)dimx

xirr.
1= x(g)-dimy
x#1
1 dim x
—5 = Z x(9) - q
x#1

Thus there exists a x # 1 such that x(g) # 0 and (dim x)/q is not an algebraic integer. Why? Well —1/¢
is not an algebraic integer, and x(g) is always an algebraic integer, so we must have some non-algebraic
integer part of the sum.

Since (dim x)/q € Q, this means that ¢ t dim x.

When |G| = pq® this implies that the size of the conjugacy class is coprime to dim p. Then Theorem .0.1
implies that g € kerp (where p = p/\ for some A € C*). Then kerp is a nontrivial normal subgroup of G,

and G is not simple unless kerp = G.
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But then p(h) acts as AIdy for fixed A € C*, implying that dim V' = 1 because p is irreducible.
Thus p is a homomorphism G — C*. We then have that

G/ ker p = im p = cyclic

But then p is nontrivial, so ker p # G. Thus if G is simple, ker p = 1, so G is cyclic, and clearly then G is

o
not simple. L 4
It remains to prove Theorem .0.1. Use
Theorem .0.3
Let c =)

when g, h are conjugate.

seG Cg€q in the group algebra C[G]. Assume that c lies in the cneter of C[G], i.e. ¢4 = ¢y,

Assume further that each ¢, is an algebraic integer. Then ¢ acts on any irreducible representation as

scalar multiplication by an algebraic integer

The action is for p: G — GL(V). ¢ maps V — V via
v Z cg(g-v)
9

Since cey = eq4c for all g, ¢ is a homomorphism of representations from p to p, so c is a scalar

multiple by Schur’s Lemma (see homework).

In particular, for g € G and any irreducible representation p : G — GL(V),

Xo(9) - 1C(9)|
dim p

is an algebraic integer. This is given by setting ¢ = ZhEC(g) ep.

Proof. The value of the scalar is

wo(©) = — 3 epxn(9).

dim p

We see that

D egx(g) =tr (Z cgp(g)> :

We then compute this trace which must be (dim p)w,(c) because c acts as a scalar.

Since this expresion in ¢ respects addition and scalar multiplication, it suffices to prove w,(c) is an algebraic
integer when ¢ =) geC €g for some conjugacy class C in G. That is we can assume each ¢, is zero or one.

Let e, € C[G] induce projection of any representation 6 : G — GL(V') onto its p-isotypic part. Then we
see that

c-e,=wpy(c) e,

so e, is an eigenvector of the action on C[G], with eigenvalue w,(c). To see this explicitly
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Consider the regular representation on C[G] given by 6, with e, = > 5 €0,9€g- Then necessarily
€ €= chgeph €gh) chgeph g)en) = ch(ﬂ(g)
g

Writing e; = ), ¥; + 4 where each 7; lies in a copy of C[G] isomorphic to p, and  lies in the complement

of the p-isotypic part of C[G]. Then

e, = ZCQ(G( e, e1) Z ch “ep - Uy)
= Z wp(yg = w,(g) €

because ) . ¥; = e, by definition. Perfect!

But C[G] — CI[G] given by x + cx can be represented as an integer matrix in terms of the basis eg,

= < E Cheh> e
heG
= E Ch€hg = E ch/ —1€p

heG heG

because

and each cp/4-1 is zero or one by assumption. The eigenvalues are the roots of the characteristic polynomial,

and this then proves that w,(c) is an algebraic integer. 4

Proof of Theorem .0.1. Suppose |C(g)| is coprime to dim p for an irreducible representation p : G — GL(V).
Then let ¢ =}, cc(y) €n- We then know that

i) = 1610100
imp

is an algebraic integer. If x,(g) # 0, then because |C(g)| and dim p are coprime this implies that x,(g) =
(dim p) - A for some algebraic integer A € C, as otherwise we will not be able to cancel the denominator of
dim p, and it will show up in any monic polynomial with integer coefficients (similar to the proof that if
a € Q is an algebraic integer then « € 7).

By using the relevant inequalities by which we showed that x,(g) = dim p if and only if p(g) is trivial, we
can then derive that all the eigenvalues of p(g) are equal, showing that p(g) acts by scalar multiplication just

. v Y
as desired. v

Theorem .0.4 (dimp | |G])
If p: G — GL(V) is an irreducible representation then dim p | |G|.

Proof. We know by orthonormality that

Gl= " Xp(9)x0(9)

geG

Gl Xo(9)
dlmp v dim p

“==Xp(9)
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G Xp(9) |C] ——
d|im|p - ii(imL Xp(9)
C(9)

where ZC( 9 is a sum over distinct conjugacy classes.
By ?? we know that the right hand side is an algebraic integer, and so because the left hand side is in Q

¢

we know that the left hand side lies in Z as desired.



