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Ramsey Theory §13

Proposition 1. Suppose that the edges of Kg have been colored two colors, then
there are three vertices such that all edges connecting them are the same color [see
HW1 #5]

Proof. Let v be a vertex in Kg, note deg(v) = 5. By PHP three of the edges incident
to v have the same color, say red. Call the other endpoints of these edges v1, va, vs.
If there is a red edge connecting any two of these vertices then along with v this
forms a red triangle. If not, then the three edges connecting v, vs,v3 form a blue

triangle. 0

Example. This is not true for K5. Color the outside C5 red and the inner pentagram
blue.

Definition. Let a,b be positive integers. The Ramsey number R(a, b) is the
smallest n such that any coloring of the edges of K,, in two colors (say red and blue)

must contain either a red K, or a blue Kj.

Example. The proposition <= R(3,3) < 6, the example coloring of K5 shows
R(3,3) > 5, and so R(3,3) = 6.

How do we know that there is a complete graph so that this is true? How do we
prove that the Ramsey Number’s even exist???
Convention: R(a,1) = R(1,b) = 1.

Example. For n > 2 what is R(n,2)?

Well R(n,2) < n, because K,, will either have a blue edge (a blue K»), or it will
be a red K,,. And it’s greater than n — 1, just color K,,_; all red. So by symmetry
R(n,2) = R(2,n) = n, noting that R(a,b) = R(b,a).



These numbers are hard to compute, for example all we know about R(5,5) is
that it is somewhere between 43 and 48. These are ridiculously hard, let’s prove

they even exist!!

Theorem 1. For all positive integers a,b, R(a,b) exists and:

R(a’b)g<a+b—2>

a—1

Lemma 1. Let a,b > 2 and assume R(a —1,b) and R(a,b— 1) exist. Then R(a,b)
exists and:
R(a,b) < R(a—1,b) + R(a,b—1)

Proof. Let p= R(a—1,b) and ¢ = R(a,b — 1). We need to show that any red/blue
coloring of the edges of K, has either a red K, or a blue Kj.

Pick a vertex v in K4, which has degree p + ¢ — 1. Among the edges incident
to v there are either at least p red edges or at least ¢ blue edges by PHP.

If we have p red edges incident to v, consider the induced subgraph on the other
endpoints of those edges, it is isomorphic to K. Then since p = R(a—1,b) we have
either a red K,_1 or a blue K;. If we have a blue K} then we’re done. If we have a
red K,_1 we just add the vertex v to obtain a red K.

If we have ¢ blue edges incident to v, consider the induced subgraph on the other
endpoints of those edges, it is isomorphic to K,. Then since ¢ = R(a,b— 1) we have
either a red K, or a blue Kj_1. If we have a red K, we are done. Then if we have

a blue Kp_; we can add in v to obtain a blue Kj. ]

Theorem 2. For all positive integers a,b, R(a,b) ezists and:

Rla.b) < <a+b—2>

a—1

Proof by double induction. First, if a = 1 then R(1,b) = 1, and if b = 1 then
R(a,1) =1 and we get the equality:

R(l,b):1§<b61> R(a,1):1g<a_1>

a—1



Now, let a,b > 2 and assume R(a—1,b) and R(a,b—1) exist. Then also assume:

a+b—3

— <
R(a 1,b)_< .9 >
a+b—3

— <
R(a,b 1)_< a1 >

By the lemma, R(a,b) must also exist, and R(a,b) < R(a — 1,b) + R(a,b—1). But

then we can write:

R(a,b) < R(a—1,b) + R(a,b—1)
a+b—3 a+b—3
(00 ()
a+b—2
(.50)

Using Pascal’s Recurrence. We win! 0

IN

Example. What is R(4,3)7 By lemma R(4,3) < R(3,3) + R(4,2) =6+ 4 = 10.

And by Theorem:
4+3-2 5
4 < = =1
won = (T1207) = (5) -

But actually R(4,3) <9.
Color the edges of Kg by red and blue,

Claim. There exists a vertex that does not have exactly 5 red edges incident to it.

Otherwise the subgraph of red edges would have %2 edges and this is impossible!
So let v be a vertex such that there are not exactly 5 red edges incident to it.

There are two cases:

e If v is incident to < 4 red edges, then since it has degree 8 there are at least

4 blue edges incident to it.

Consider the edges connecting the other four endpoints. If they are all red we
have a red K4 and we’re done. If not then we can form a blue triangle with v

and a blue edge.



e In case two, v is incident to > 6 red edges. Look at the other six endpoints of
these six edges, they form a Kg, and Kg always has a monochromatic triangle.
If it’s a blue triangle then we’re done. If it’s a red triangle then we can form

a K4 by adjoining v to the red triangle.

In fact R(4,3) > 8. There is a coloring of Kg that has no blue K3 and no red Kjy.

See lecture notes because drawing graphs is hard.

One can show in the book that R(4,4) = 18.
Let’s look at something interesting

Definition. Let G = (V,E) be a simple graph. I C V is independent if the
induced subgraph on I has no edges.

A set Q CV is a clique if the induced subgraph on Q) is a complete graph.

Definition. R(a,b) is the smallest n for which any simple graph on n wvertices

contains either a clique of size a or an independent set of b vertices.

Note: Simple graphs on n vertices may be viewed as subgraphs of K, that
means it can also be seen as a red-blue coloring of K,. With this in mind think

about why the above definition is equivalent to the one we gave before.

Theorem 3 (A Multicolor Ramsey Theorem). Let ni,...,n; € Zso then there is
a smallest positive integer N = R(n1,...,ng) such that if we color the edges of K
by k (fized) colors, there is a Ky, -subgraph whose edges are colored by 1i.



