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The Chromatic Polynomial

Definition 1. For a simple graph G and nonnegative integer k, define pG(k) the

be the number of proper vertex colorings of G using (≤)k colors. We assume the k

colors are fixed and swapping two colors gives different colorings.

Example. (1) If G is a connected bipartite graph then pG(2) = 2.

(2) k < χ(G) if and only if pG(k) = 0, for k ∈ Z≥0.

(3) if G = Kn and k ≥ n then:

pKn(k) = k(k − 1)(k − 2) · · · (k − n+ 1) =

(
k

n

)
n!

(4) If G has no edges and n vertices then pG(k) = kn.

Proposition 1. If G = (V,E) is a tree, then:

pG(k) = k(k − 1)|V |−1

Proof. We prove by induction on |V |.
If |V | = 1 then pG(k) = k1 = k, since we can have no edges in such a tree.

Now let n be a positive integer, and assume that every tree with n vertices

satisfies the above formula. Let G = (V,E) be a tree with n+ 1 vertices. Let v ∈ V
be a leaf. By removing v and the edge incident to it, we obtain a tree G′ with n

vertices. By inductive hypothesis:

pG′(k) = k(k − 1)n−1
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Given a k-coloring of G′, there are k − 1 ways to extend this to a coloring of G by

coloring v, since there is only one vertex adjacent to G. This gives us all of our

colorings of G uniquely. Therefore:

pG(k) = (k − 1)pG′(k) = (k − 1)k(k − 1)n−1 = k(k − 1)n

Just as desired. With this we win!

Note: If G has connected components G1, . . . , Gm, then:

pG(k) = pG1(k)pG2(k) · · · pGm(k)

To color G, we just pick a coloring of each component.

Example . Suppose G is a forest with m trees on vertices V1, . . . , Vm. Then a

k-coloring for G would be:

pG(k) =
m∏
i=1

k(k − 1)|Vi|−1 = km(k − 1)−m+
∑m

i=1|Vi| = km(k − 1)|V |−m

Example. Let G = C4 (a 4-cycle). Let u and v be vertices opposite each other.

Either u and v have the same color, or u and v have different colors.

If they have the same color, the other two vertices cannot be that one color, but

there are no further restrictions. So in this case we have k choices for u and v and

k − 1 choices each for the other two vertices, giving:

k(k − 1)2

If u and v have different colors, the other two vertices can’t be either of these

colors and we get:

k(k − 1)(k − 2)2

Thus in total:

pG(k) = k(k − 1)2 + k(k − 1)(k − 2)2

Let G = (V,E) be a simple graph and let e ∈ E.
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Definition 2. The deletion of e is the graph

G− e = (V,E \ {e})

The contraction is the graph G/e obtained from G − e by merging the endpoints of

e.

Note: G is not necessarily simple, but has no loops, so pG/e(k) makes sense and:

pG/e(k) = pG′(k)

where G′ is a simple graph obtained by removing multiple edges.

Example. Let G = C4. Fix an edge e, this is G

• e •

• •

The deletion G− e is:

• •

• •

This is a tree, so: And the contraction G/e is:

•

• •

Writing down the colorings we see that:

pG−e(k) = k(k − 1)4−1 = k(k − 1)3

pG/e(k) = k(k − 1)(k − 2)

pG(k) = k(k − 1)2 + k(k − 1)(k − 2)2

Proposition 2. [Deletion/Contraction Formula] For any simple graph G = (V,E)
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and edge e ∈ E we have:

pG(k) = pG−e(k)− pG/e(k)

Proof. In each proper coloring of k-coloring of G − e, the (former) endpoints of e

either have the same color or not.

• If they have the same color, this is a k-coloring for G/e, since their neighbors

will not have that color.

• If they do not have the same color, this is a k-coloring for G since the edge e

will not effect anything.

So then:

pG−e(k) = pG/e(k) + pG(k)

This gives us a recursive/inductive way of computing colorings.

Definition 3. Viewing pG as a function of k, we call pG(k) the chromatic polyno-

mial

Theorem 1. For any simple graph G = (V,E), pG(k) is a monic polynomial in k

of degree |V |. In other words there exist constants a0, . . . , a|V |−1 such that:

pG(k) = a0 + a1k + · · ·+ a|V |−1k
|V |−1 + k|V |

Proof. We will induct on |E| using the previous proposition.

If G has no edges and |V | vertices then pG(k) = k|V |. This is indeed a monic

polynomial whose degree is the number of vertices.

Fix n a nonnegative integer, and assume that any simple graph with ≤ n edges

has a monic chromatic polynomial of degree its number of vertices. Let G = (V,E)

be a simple graph with n+ 1 edges. Fix an edge e ∈ E.

The deletion G−e is a simple graph with |V | vertices and n edges. Thus pG−e(k)

is a monic polynomial with degree |V |.
The contraction G/e has chromatic polynomial equal to that of a simple graph

(remove any multiple edges) with |V | − 1 vertices and ≤ n edges so by induction

pG/e(k) is a monic polynomial in K with degree |V | − 1.
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So then by deletion/contraction:

pG(k) = pG−e(k)− pG/e(k)

is a monic polynomial in K of degree |V |.

Definition 4. Let p̂G(m) be the number of proper colorings of G using exactly m

colors.

Note that p̂G(m) = 0 unless χ(G) ≤ m ≤ |V |.

Proposition 3. For a simple graph G:

pG(k) =

|V |∑
m=χ(G)

p̂G(m)

(
k

m

)

We will not write out a proof for this, but the partition should be clear.

Example. Let G = C4, then χ(G) = 2, and so:

pG(k) = p̂G(2)

(
k

2

)
+ p̂G(3)

(
k

3

)
+ p̂G(4)

(
k

4

)
= 2

(
k

2

)
+ 2 · 3!

(
k

3

)
+ 4!

(
k

4

)
p̂G(2) = 2, since this is a bipartite graph, p̂G(3) = 2 · 3!, because it’s two pairs can

have the same color and then you distribute 3 colors among 3 things.

Other properties of pG(k):

(1) The coefficients alternate in sign, you can prove this by induction on edgse.

That is we can write:

pG(k) = kn − an−1kn−1 + an−2k
n−2 · · ·+ (−1)na0

where a0, . . . , an−1 ∈ Z≥0.

(2) an−1 = |E| (HW?)

(3) a0, . . . , an−1, 1 is “unimodal”

a0 ≤ a1 ≤ · · · ≤ ai ≥ ai+1 ≥ · · · ≥ an−1 ≥ 1
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Furthermore it is “log-concave”

a2i ≥ ai−1ai+1

these inequalities are hard to prove. This was conjectured in 1968 and proven

in 2012. It was proven by June Huh, a PhD UM-14, he proved both of them.

Remark. If G is a tree, then pG(k) = k(k−1)n−1, and the coefficients are binomial

if you “forget” the sign. Like when n = 3 we get:

k − 2k2 + k3

When n = 4 we get:

−k + 3k2 − 3k2 + k4

In fact this gives you Pascal’s Triangle.

If G = Kn, pG(k) = k(k− 1) · · · k(n− 1 + 1), and this is the generating function

for stirling #s of the first kind, so these are the coefficients. When n = 3:

2k − 3k2 + k3

When n = 4:

−6k + 11k2 − 6k3 + k4
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