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The Chromatic Polynomial

Definition 1. For a simple graph G and nonnegative integer k, define pg(k) the
be the number of proper vertex colorings of G using (< )k colors. We assume the k

colors are fized and swapping two colors gives different colorings.
Example. (1) If G is a connected bipartite graph then pg(2) = 2.
(2) k < x(G) if and only if pg(k) = 0, for k € Z>¢.

(3) if G = K, and k > n then:
pic, (k) =k(k—1)(k—2)- - (k—n+1) = <k>n'

(4) If G has no edges and n vertices then pg(k) = k™.

Proposition 1. If G = (V, E) is a tree, then:
pa (k) = k(k — 1)V

Proof. We prove by induction on |V|.

If |V| =1 then pg(k) = k' = k, since we can have no edges in such a tree.

Now let n be a positive integer, and assume that every tree with n vertices
satisfies the above formula. Let G = (V| E) be a tree with n + 1 vertices. Let v € V
be a leaf. By removing v and the edge incident to it, we obtain a tree G’ with n

vertices. By inductive hypothesis:

par (k) = k(k — 1)



Given a k-coloring of G’, there are k — 1 ways to extend this to a coloring of G by
coloring v, since there is only one vertex adjacent to GG. This gives us all of our

colorings of G uniquely. Therefore:
pa(k) = (k= Dpar (k) = (k = Dk(k = )" = k(k - 1)"

Just as desired. With this we win! O

Note: If G has connected components G, ..., Gy, then:

pa(k) = pe, (k)pa, (k) - - - pa,, (k)

To color G, we just pick a coloring of each component.

Example. Suppose G is a forest with m trees on vertices Vi,...,V,,. Then a

k-coloring for G would be:

pa(k) = [T k(k = )V = k7 (k — 1) 2l = e g - )V
i=1

Example. Let G = C4 (a 4-cycle). Let u and v be vertices opposite each other.
Either u and v have the same color, or u and v have different colors.

If they have the same color, the other two vertices cannot be that one color, but
there are no further restrictions. So in this case we have k choices for v and v and

k — 1 choices each for the other two vertices, giving:
k(k —1)?

If v and v have different colors, the other two vertices can’t be either of these

colors and we get:
k(k—1)(k —2)
Thus in total:
pa(k) = k(k —1)* + k(k — 1)(k — 2)?

Let G = (V, E) be a simple graph and let e € E.



Definition 2. The deletion of e is the graph
G—e=(V,E\{e})

The contraction is the graph G /e obtained from G — e by merging the endpoints of

e.

Note: G is not necessarily simple, but has no loops, so pg /e(kz) makes sense and:
pase(k) = per (k)

where G’ is a simple graph obtained by removing multiple edges.

Example. Let G = Cy. Fix an edge e, this is G

The deletion G — e is:

This is a tree, so: And the contraction G/e is:

VAN

Writing down the colorings we see that:

pG—e(k) = k(k = 1) = k(k - 1)°
paye(k) = k(k —1)(k —2)
pa(k) = k(k —1)? + k(k —1)(k —2)?

Proposition 2. [Deletion/Contraction Formula] For any simple graph G = (V, E)



and edge e € £ we have:

pc(k) = pa—e(k) — paye(k)

Proof. In each proper coloring of k-coloring of G — e, the (former) endpoints of e

either have the same color or not.

e If they have the same color, this is a k-coloring for G /e, since their neighbors

will not have that color.

e If they do not have the same color, this is a k-coloring for G since the edge e

will not effect anything.

So then:

pG—-e(k) = paye(k) + pa(k)
This gives us a recursive/inductive way of computing colorings. O

Definition 3. Viewing pg as a function of k, we call pg(k) the chromatic polyno-

mial

Theorem 1. For any simple graph G = (V, E), pa(k) is a monic polynomial in k

of degree |V'|. In other words there exist constants ag, . . ., ajy|—1 such that:
pc(k) =ao+ark +---+ a|V|,1k|V|71 + KV

Proof. We will induct on |E| using the previous proposition.

If G has no edges and |V| vertices then pg(k) = kIV!. This is indeed a monic
polynomial whose degree is the number of vertices.

Fix n a nonnegative integer, and assume that any simple graph with < n edges
has a monic chromatic polynomial of degree its number of vertices. Let G = (V, E)
be a simple graph with n + 1 edges. Fix an edge e € E.

The deletion G —e is a simple graph with |V| vertices and n edges. Thus pg_.(k)
is a monic polynomial with degree |V].

The contraction G/e has chromatic polynomial equal to that of a simple graph
(remove any multiple edges) with |V| — 1 vertices and < n edges so by induction

PG/e(k) is a monic polynomial in K with degree [V| — 1.



So then by deletion/contraction:

pc(k) = pa—e(k) — paye(k)
is a monic polynomial in K of degree |V|. O

Definition 4. Let pg(m) be the number of proper colorings of G using ezxactly m
colors.
Note that pg(m) = 0 unless x(G) < m < |V|.

Proposition 3. For a simple graph G:

pa(k) = m;‘;@ pa(m) (::;)

We will not write out a proof for this, but the partition should be clear.

Example. Let G = Cy, then x(G) = 2, and so:

pe(k) = pa(2) (S) + Pa(3) (g) + Pe(4) (Z)

SEREOR(

Pc(2) = 2, since this is a bipartite graph, pg(3) = 2 - 3!, because it’s two pairs can

have the same color and then you distribute 3 colors among 3 things.
Other properties of pg(k):

(1) The coefficients alternate in sign, you can prove this by induction on edgse.

That is we can write:
pa(k) = k" — a1 k"N ap_ok™ %+ (=1)"ag
where ag,...,ap—1 € Z>o.
(2) an-1 = || (HW?)

(3) ag,...,ap—1,1is “unimodal”



Furthermore it is “log-concave”
a; = a;—1Qi+1

these inequalities are hard to prove. This was conjectured in 1968 and proven
in 2012. It was proven by June Huh, a PhD UM-14, he proved both of them.

Remark. If G is a tree, then pg(k) = k(k—1)""!, and the coefficients are binomial
if you “forget” the sign. Like when n = 3 we get:

k—2k® + k3
When n = 4 we get:
—k + 3k% — 3K> + k*

In fact this gives you Pascal’s Triangle.
If G=K,, pa(k) =k(k—1)---k(n—1+1), and this is the generating function
for stirling #s of the first kind, so these are the coefficients. When n = 3:

2%k — 3k% + k3
When n = 4:

—6k + 11k% — 6k3 + k4



