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Today: Pigeonhole Principle (Ch. 1) Next Time: Basic Counting Prin-

ciples (Ch. 3)

Theorem 1 (The Pigeonhole Principle, PHP). If we have two positive in-

tegers with m > n, and if we have m pigeons to put into n pigeonholes, then

at least one pigeonhole contains more than one pigeon.

In other words, if you place m objects into n boxes, then at least one box

has more than one object in it.

In rigourous terms. Let M and N be finite sets with |M | > |N |. Then

any function f : M → N cannot be injective.

Example. Suppose that we select 11 different integers from the set {1, 2, 3 . . . 20}.
Prove that there will always be two among the selected integers, whose dif-

ference is two.

Proof. We construct ten boxes of the form:

{1, 3} {5, 7} {9, 11} {13, 15} {17, 19}

{2, 4} {6, 8} {10, 12} {14, 16} {18, 20}

Place the 11 integers into the 10 boxes above. By the Pigeonhole Principle

there is a box with two selected integers in it. By construction, these integers

have a difference of two.
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Theorem 2 (The Generalized Pigeonhole Principle, GPHP). Let m,n, r be

positive integers with m > nr. If we place m objects into n boxes, then at

least one box has more than r objects.

The Pigeonhole Principle is in the case where r = 1

Proof. Done by contradiction. We will assume the contrary, that is assume

that we can place m objects into n boxes such that every box contains at

most r objects.

Then the total number of objects (m) is at most r+r+r . . .+r, n times,

that is nr. And so, m ≤ nr. This contradicts the assumption that m > nr,

and so we are done.

Example. The Michigan stadium can hold up to 107,601 spectators. Prove

that, during a sell-out crowd, there is a group of 294 spectators with the

same birthday.

Proof. There are 366 days on which someone could have a birthday. These

are our boxes. Place the spectators into each of these boxes. We know

that 107, 601 > 107238 = 366 ∗ 293. Therefore, by the The Generalized

Pigeonhole Principle, there is a box with more than 293 people in it. That

is, there is a group of at least 294 people with the same birthday ,

Example. What is the minimum number of spectators necessary to ensure

100

99 · 366 + 1 = 36235. The proof is a quick generalization.

Example. Let k be a positive integer which is not divisible by 2 or 5. Prove

that k divides a number of the form 99 . . . 9 = 10N − 1, for some N .

Proof. Consider the remainders of:

101 − 1, 102 − 1, . . . 10k+1 − 1 (Objects)

after division by k. There are k possible remainders (0, 1 . . . , k− 1) [Boxes],

and there are k + 1 numbers.
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Therefore there are two such 1 ≤ m ≤ n ≤ k + 1 such that 10n − 1 and

10m − 1 have the same remainder upon dividing by k by the Pigeonhole

Principle.

Then k divides 10n − 10m = 10m(10n−m − 1). Since k is not divisible

by 2 or 5, 10m = 2m5m and k share no prime factors. Therefore k divides

10n−m − 1.

Theorem 3 (Erdős-Szekeres). Let n,m be positive integers. Any sequence

of nm+1 distinct real numbers contains either an increasing subsequence of

length n + 1 or a decreasing subsequence of length m + 1.

Example. Let n = 2 and m = 3,

5, 6, 3, 4, 1, 2, 7

This is 7 numbers. The underlined numbers are an increasing subse-

quence of length 2 + 1.

5, 6, 3 , 4,1, 2, 0

This is 7 numbers. The underlined numbers are a decreasing subsequence

of length 3 + 1

5, 6, 3, 4, 1, 2

This is six numbers with no increasing or decreasing subsequence of the

correct length

Proof. Let a1, a2, . . . anm+1 be our sequence of distinct real numbers. For

each 1 ≤ k ≤ nm + 1 define tk to be the length of the longest increasing

subsequence starting at ak.

If there is a k with tk > n, then we have found an increasing subsequence

of the right length and we are done.

So suppose not, that is assume tk ≤ n for all k. So tk ∈ {1, 2, . . . n}. By

the The Generalized Pigeonhole Principle, there are nm + 1 > nm of these

numbers, so there is a value attained by at least m + 1 of these numbers.

With the following:

{t1, t2, . . . , tnm+1} (Objects)

{1, 2, . . . , n} (Boxes)
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That is we have a subsequence ak1 , ak2 , . . . , akm+1 such that tki = tkj for

every 1 ≤ i, j ≤ m + 1. We want to show that:

ak1 > ak2 > . . . > akm+1

This follows from the claim given since these numbers are distinct.

Claim. If 1 ≤ k < ` ≤ nm + 1 and tk = t`, then ak > a`.

To prove the claim, suppose otherwise, that is assume ak < a` [not ≤
because these are distinct].

Then we could add ak to the beginning of the longest increasing sub-

sequence starting at a`, and we would have a subsequence of length t` + 1

starting at ak. This is impossible, because the longest subsequence starting

at ak is of length tk = t`. Oops ,.

Example. 51 of the 100 squares on a 10 × 10 checkerboard are marked.

Prove that there exists three marked squares which form three corners of a

2× 2 square.

Proof. So begin by tiling the checkerboard with squares that are 2×2, place

each of the marked squares in one of these boxes. Then since 51 > 2 ∗ 25,

where 25 is the number of boxes. Then there is a box with more than 2

marked squares in it. There are then at least three marked tiles and so we

are done! ,.
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