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1 The Catalan Numbers

These counts super important things, and they count a lot of things. They’re super

cool.

Example. Let c0 = 1 and let cn+1 =
∑n

i=0 cicn−i for n ≥ 0.

Consider the generating function of this thing:

C(x) =
∑
n≥0

cnx
n

Now let’s consider:

[C(x)]2 =

∑
n≥0

cnx
n

∑
n≥0

cnx
n

 =
∑
n≥0

(
n∑

i=0

cicn−i

)
xn

=
∑
n≥0

cn+1x
n

So then we have:

xC(x)2 =
∑
n≥0

cn+1x
n+1 = C(x)− c0x

0 = C(x)− 1

xC(x)2 = C(x)− 1
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We solve this by completing the square:

xC(x)2 − C(x) + 1 = 0

x2C(x)2 − xC(x) + x = 0(
xC(x)− 1

2

)2

− 1

4
+ x = 0(

xC(x)− 1

2

)2

=
1

4
− x

xC(x)− 1

2
= ±
√

1− 4x

2

= −
√

1− 4x

2

C(x) =
1−
√

1− 4x

2x

Note that we get the − from the ± by plugging in 0 to line five. By homework we

know that:

C(x) =
∑
n≥0

(
2n

n

)
xn

n + 1

These are the Catalan Numbers cn =
(
2n
n

)
· 1
n+1

If we write this out in factorials it looks like:

cn =
1

n + 1

(
2n

n

)
=

(2n)!

n!(n + 1)!
=

1

2n + 1

(
2n + 1

n

)

n cn

0 1

1 1

2 2

3 5

4 14

5 42

6 132

7 429

8 1430

9 4862
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2 Catalan Numbers: What Do They Count?

2.1 Answer #1: Rooted Binary Trees

Every node is either a branch, if it has children, and a leaf if it doesn’t. Further

every branch has two children. The root is always drawn at the top.

These look similar to binary choices. Let an be the number of binary rooted

trees with n branches. Checking ti for Some values we have

Example. Note n = 0 has a0 = 1 because it’s just a root. n = 1, a1 = 1.

n = 2. a2 = 2.
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n = 3, a3 = 5.

We want to show that these satisfy the linear recurrence:

an+1 =
n∑

i=0

aian−i

That is we want to make big trees out of two smaller trees. Well, chop the tree at

the root. If we have a tree with n branches, then the left tree will have i branches

and the right tree will have j branches, with i + j = n + 1.

Consider this as:
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Splits into:

This gives a bijection between binary trees with n+1 branches and ordered pairs

of (T,U) of binary trees with T and U together having n branches. Then we clearly

have the recurrence and so:

Theorem 1. an = cn

2.2 Answer #2: Polygon Triangulations

Theorem 2. The number of triangulations of a convex (n + 2)-gon is cn.

Let Dn be the number of such triangulations of an (n + 2)-gon

Example. For n = 0 we set D0 = 1 by convention.

For n = 1 we have D1 = 1 trivially since it’s just a triangle.

For n = 2 we can go along either diagonal of the square so D2 = 2.

For n = 3 we actually have 5 triangulations so D3 = 5.

In fact for n = 4 we actually have D4 = 14 for a hexagon. . . whoo. This is hard

to Latex

Proof. Consider tiling a (n + 3)-gon, from Dn+1.

Well we can choose an edge, and then that edge must be in some triangle. But if

we delete that edge, then the rest of the triangulation corresponds to a triangulation

of an (i + 2)-gon and a (n− i + 2)-gon, because we count rotations differently!

Thus there’s a bijection from triangulations of an (n+ 3)-gon and ordered pairs

of triangulations of a (i+2)-gon and na (n− i+2)-gon for all i. The bijection in the

other direction comes from gluing together two triangulations at a point and then

filling in the “special” wedge that’s missing with one edge.
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So:

Dn+1 =
∑
n≥0

DiDn−i

And thus cn = Dn for all n ∈ N ∪ {0} since they agree at 0.

In fact there’s a bijection between binary rooted trees and triangulations. The

idea is to view each triangle as rooms with “doors,” and draw a node of the tree

inside each triangle, where edges represent sharing a boundary, and except at the

root we can “go outside” the “palace.” We distinguish a root because orientation

matters in these triangulations.

This bijection also tells us something about what it would mean to “rotate”

binary trees since the triangulations have a natural operation of rotation.

2.3 Answer #3: Dyck Paths

Corresponds to a walk in the Cartesian Plane from (0, 0), but only in two directions,

one unit to the right or one unit up, ending at (n, n) and that never go strictly above

y = x.

Let Pn denote those walks.

Example. For n = 0, there is only one path so P0 = 1.

For n = 1 we have to go from (0, 0) to (1, 1) so P1 = 1.

For n = 2 we have to go from (0, 0) to (2, 2). There are two ways to do this,

“stay away from crocodiles” or “get up close”, so P2 = 2

For n = 3 we have to go from (0, 0) to (3, 3). It turns out there are five such

paths so P3 = 5.

Proof. OUT OF TIME.
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