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1 Announcements

• Today: Quiz, Ch.7 Inclusion Exclusion

• Tuesday: Quiz, Review in Groups

• Thursday: Exam (info TBA on Canvas)

• Office Hours:

– Monday 4-5:30

– Tuesday 11:30-1

• HW7 Due Wednesday

2 Let’s Go!

2.1 Statement and Proof

Recall. The Addition Principle. If A1, . . . , An are disjoint finite sets, then:∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai|

Example. |A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2| for all finite sets.

Example.

|A1 ∪A2 ∪A3| = |A1|+|A2|+|A3|−|A1 ∩A2|−|A1 ∩A3|−|A2 ∩A3|+|A1 ∩A2 ∩A3|
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Theorem 1 (The Principle of Inclusion Exclusion). Let A1, A2, . . . , An be finite

sets, then: ∣∣∣∣∣
n⋃

k=1

Ai

∣∣∣∣∣ =
n∑

k=1

∑
(???)

(−1)k−1

∣∣∣∣∣
k⋂

r=1

Aik

∣∣∣∣∣
(? ? ?) stands for 1 ≤ i1 < i2 < · · · < ik ≤ n

If we look at the example again

Example.

|A1 ∪A2 ∪A3| =

k = 1 |A1|+ |A2|+ |A3|

k = 2 + (− |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|)

k = 3 + |A1 ∩A2 ∩A3|

Proof. We show the RHS counts every element of
⋃n

i=1Ai exactly once.

Let x ∈ A1 ∪ A2 ∪ · · · ∪ An. And let S = {i ∈ [n] | x ∈ Ai}. Then notice

that x ∈ Ai1 ∩ · · · ∩ Aik if and only if {i1, . . . , ik} ⊆ S. So the number of k-fold

intersections containing x is exactly the number of of k-element subsets of S, that

is
(|S|
k

)
.

The contribution from x on the RHS is then:

n∑
k=1

(−1)k−1
(
|S|
k

)
=

|S|∑
k=1

(−1)k−1
(
|S|
k

)
+

n∑
k=|S|+1

(−1)k−1
(
|S|
k

)

=

|S|∑
k=1

(−1)k−1
(
|S|
k

)
+

n∑
k=|S|+1

(−1)k−10

=

|S|∑
k=1

(−1)k−1
(
|S|
k

)

= 1 +

|S|∑
k=0

(−1)k−1
(
|S|
k

)
= 1 + 0 = 1

Thus the right hand side counts every element fof the union A1 ∪ · · · ∪ An exactly

once and nothing else.
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Example. How many n-letter words in the alphabet {1, 2, 3} contain at least one

1, at least one 2, AND at least one 3. Assume n ≥ 3.

Let’s count the words that DON’T contain at least one 1, at least one 2, and

at least one 3. Let U be the set of n-letter words in {1, 2, 3}. For i ∈ {1, 2, 3} let

Ai = {w ∈ U | w doesn’t contain i}. We want:

|U | − |A1 ∪A2 ∪A3|

= |U | − [ |A1|+ |A2|+ |A3| − |A1 ∩A3| − |A2 ∩A3| − |A1 ∩A2|+ |A1 ∩A2 ∩A3| ]

= 3n − [2n + 2n + 2n − 1− 1− 1 + 0] = 3n − 3 · 2n − 3

2.2 Let’s Use It!

Theorem 2. The number of partitions of n into odd parts is equal to the number

of partitions of n into distinct parts.

Equivalently the number of partitions of n whose parts are not all odd is equal

to the number of partitins of n whose parts are not all distinct.

Proof. Let Ai = {partitions of n with a part = 2i} for 1 ≤ i ≤
⌊
n
2

⌋
.

Let Bi = { partitions of n with at least two parts = i} for 1 ≤ i ≤
⌊
n
2

⌋
Note that:

|Ai| = p(n− 2i) = |Bi|

|Ai1 ∩Ai2 | = p(n− 2i1 − 2i2) = |Bi1 ∩Bi2 |

For 1 ≤ i1 < · · · < ik < n :

|Ai1 ∩ · · · ∩Aik | = p(n− 2i1 − · · · − 2ik) = |Bi1 ∩ · · · ∩Bik |
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Thus since we know that:

# of partitions of n with an even part =
∣∣∣A1 ∪ · · · ∪Abn2 c

∣∣∣
=

bn2 c∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤bn2 c
|Ai1 ∩ · · · ∩Aik |

=

bn2 c∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤bn2 c
p
(
n−

∑
2ij

)

=

bn2 c∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤bn2 c
|Bi1 ∩ · · · ∩Bik |

=
∣∣∣B1 ∪ · · · ∪Bbn2 c

∣∣∣
# of partitions of n with an even part = # of partitons of n with a repeated part

And so we win!
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3 Stirling Numbers of the Second Kind Redux

3.1 The Thing we Missed before

Theorem 3 (Unfinished from Jan. 30). For m,n ∈ Z>0 we have:

mn =
n∑

k=1

S(n, k)(m)k =
n∑

k=1

S(n, k)k!

(
m

k

)
=

min{n,m}∑
k=1

S(n, k)k!

(
m

k

)

The second equality holds because S(n, k) = 0 if k > n and
(
m
k

)
= 0 if k > m.

Combinatorial Proof. The LHS counts the number of ways to color the set [n] with

m colors (equivalent to functions f : [n]→ [m]).

Alternatively, for the RHS, we can count in cases by how many colors we actually

use, fix 1 ≤ k ≤ min{n,m}. First choose the colors which we will use, there are(
m
k

)
ways to pick k colors. Now S(n, k) counts the number of partitions of our n

elements into k blocks. Then we multiply by k! to assign each color to each block

bijectively. This gives us exactly S(n, k)k!
(
m
k

)
. And so this matches the right hand

side:

Done! Great ,

A similar argument says there are k!S(n, k) surjections from [n]→ [k].

Proposition 1. Let n ≥ k > 0. Then:

k!S(n, k) =
k∑

`=0

(−1)`
(
k

`

)
(k − `)n =

k∑
`=0

(−1)k−`
(
k

`

)
`n

Combinatorial Proof. The LHS counts surjections [n] → [k]. Let’s find a way to

count surjections that looks like the right hand side. Let’s do this using inclusion

exclusion. For i ∈ [k], let Ai = {f : [n] → [k] | i 6∈ range(f)}. Equivalently

we can think of this as the set of functions Ai ↔ {f : [n] → [k] \ {i}}. For

1 ≤ i1 < · · · < i` ≤ k. We then have:

|Ai1 ∩ · · ·Ai` | = |{f : [n]→ [k] \ {i1, . . . , i`}}| = (k − `)n
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Then by inclusion exclusion, the number of surjective functions is equal to:

(# functions [n]→ [k])− |A1 ∪ · · · ∪Ak|

= kn −
k∑

`=1

(−1)`−1
∑

1≤i1<···<i`≤k
|Ai1 ∩ · · · ∩Ai` |

= kn −
k∑

`=1

(−1)`−1
∑

1≤i1<···<i`≤k
(k − `)n

= kn −
k∑

`=1

(−1)`−1
(
k

`

)
(k − `)n

= kn +

k∑
`=1

(−1)`
(
k

`

)
(k − `)n

=

k∑
`=0

(−1)`
(
k

`

)
(k − `)n

So we are done!
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