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1 Today

1.1 Stuff

• Substitute Anna (Bibby is out)

• Quiz (Ch. 3 and 5.1)

• HW2 due Wednesday

1.2 Topics

• Binomial Theorem

• Combinatorial Proofs

2 Lets look at Binomial Coefficients again

2.1 4.2 Pascal’s Triangle

Recall. The binomial coefficient is:(
n

k

)
=

n!

k!(n− k)!
(n, k ∈ Z≥0)

We’ll add the convention that
(
n
k

)
= 0 if k < 0 or k > n

Proposition 1. Let n, k ∈ Z>0. Then:(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
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We’ve already shown this one way, now lets do a combinatorial proof, i.e. we will

show that they count the same set.

Combinatorial Proof. Let S be an n-element set and fix x ∈ S. THe Left Hand Side

counts the number of k-element subsets of S.

The Right Hand Side: By the addition principle, the number of k-element subsets

of S is the same as the number of k-element subsets which don’t contain x plus the

number of k-element subsets which do contain x. Lets count these:

• How many k-element subsets of S contain x. Well we are choosing from n− 1

things (S \ {x}) and we need k − 1 of them, that is
(
n−1
k−1

)
• How many k-element subsets of S don’t contain x. Well we are choosing from

n− 1 things (S \ {x}) and we need k of them, that is
(
n−1
k

)
.

Thus we are done.

The triangle looks like:(
0
0
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1

)
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0

) (
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2

)
(
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) (
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) (
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1
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) (
4
3
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(
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0
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Some patterns:

• Symmetry gives us
(
n
k

)
=
(

n
n−k

)
(we’ve already proved this)

• Sum of the n-th row is 2n

• Alternating sums of rows are always 0

Proposition 2. For n, k ∈ Z≥0 we have the symmetry
(
n
k

)
=
(

n
n−k

)
and the sum of

each row is: (
n

0

)
+

(
n

1

)
+ . . . +

(
n

n

)
= 2n
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Proof. We observed symmetry on Thursday. We will use a combinatorial proof again

for the second claim.

We know that 2n counts subsets of an n-element set S. We will break this down:

2n = |{T ⊂ S}| =
n∑

i=0

|{T ⊂ S | |S| = i}| =
n∑

i=0

(
n

i

)

Proposition 3. If n > 0 then:

n∑
k=0

(−1)k
(
n

k

)
= 0

Equivalently: (
n

0

)
+

(
n

2

)
+ · · · =

(
n

1

)
+

(
n

3

)
+ · · ·

Bijective Proof. Let S be an n-element set. Notice that a subset of S has either an

even or odd cardinality, but not both.

Fix x > 0 and for an T ∈ S define a piecewise function:

f(T ) =

{
T ∪ {x} if x 6∈ T

T \ {x} if x ∈ T

Note that T is even if and only if f(T ) is odd:

f : {T ⊂ S | |T | is even} → {T ⊂ S | |T | is odd}

f : {T ⊂ S | |T | is odd} → {T ⊂ S | |T | is even}

Omitting the restrictions. It is enough to show that f(f(T )) = T . Time for two

quick cases:

• Suppose x ∈ T . Then f(f(T )) = f(T \{x}) = (T \{x})∪{x} = T This works

since x ∈ T .

• Suppose x 6∈ T . Compute f(f(T )):

f(f(T )) = f(T ∪ {x}) = (T ∪ {x}) \ {x} = T

This works since x 6∈ T .
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The result follows easily since f is now a bijection.

Theorem 1 (The Binomial Theorem). Let n be a non-negative integer and x, y be

“variables” (or complex numbers. . . or more). Then:

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k

Example.

(x + y)0 = 1

(x + y)1 = x + y

(x + y)1 = xx + xy + yx + yy

= x2 + 2xy + y2

(x + y)3 = xxx + xxy + xyx + yxx + xyy + yxy + yyx + yyy

= x3 + 3x2y + 3xy2 + y3

Idea: If we expand (x + y)n, each term in this expansion corresponds to an

n-letter word in the alphabet {x, y}. The coefficient of xkyn−k is the number of n-

letter words with k x’s and n−k y’s. This is counted by
(
n
k

)
. This is a combinatorial

proof.

Proof by Pascal’s Recurrence and Induction. In the base case, n = 0, the formula

works since:

(x + y)0 = 1 =

(
0

0

)
x0y0

Let n ∈ Z≥0. Assume that:

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k

(x + y)n+1 = (x + y)

(
n∑

k=0

(
n

k

)
xkyn−k

)

(x + y)n+1 =

n∑
k=0

(
n

k

)
xk+1yn−k +

n∑
k=0

(
n

k

)
xk+1yn−k+1
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Lets now do some clever reindexing:

(x + y)n+1 =
n∑

k=0

(
n

k

)
xk+1yn−k +

n∑
k=0

(
n

k

)
xk+1yn−k+1

=

n+1∑
k=1

(
n

k − 1

)
xkyn−k+1 +

n∑
k=0

(
n

k

)
xk+1yn−k+1

= xn+1 + yn+1 +

n∑
k=1

(
n

k − 1

)
xkyn−k+1 +

n∑
k=1

(
n

k

)
xk+1yn−k+1

= xn+1 + yn+1 +
n∑

k=1

((
n

k − 1

)
−
(
n

k

))
xkyn−k+1

= xn+1 + yn+1 +
n∑

k=1

(
n + 1

k

)
xky(n+1)−k

=

n+1∑
k=0

(
n + 1

k

)
xky(n+1)−k

Thus the binomial theorem holds for n + 1 and so by induction we’re done.

Set x = y = 1:

2n =
n∑

k=0

(
n

k

)
Set x = −1 and y = 1.

0 =

n∑
k=0

(
n

k

)
(−1)k

Proposition 4.
n∑

k=0

(
n

k

)(
m

`− k

)
=

(
n + m

`

)
Proof 1. Note that (x + 1)n(x + 1)m = (x + 1)n+m, and then look at the coefficient

of x`.

We know then that:(
n∑

k=0

(
n

k

)
xk

)(
n∑

i=0

(
m

i

)
xi

)
=

m+n∑
`=0

(
n + m

`

)
x`

Look for ways that k + i = `, and so i = `− k.
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Combinatorial Proof. Take disjoint sets S, T such that |S| = n and |T | = m.

Count the `-element subsets of the set S ∪ T .

• The Right Hand Side surely counts this from thursday,
(
n+m
`

)
• The Left Hand Side breaks into cases, let 0 ≤ k ≤ n. Let Ak be the set of

ways to select a k-element subset of S and an `− k-element subset of T .

These are separate events so by the multiplication principle so |Ak| =
(
n
k

)(
n

`−k

)
Every `-element subset of S ∪ T will be in exactly one of these, and so the

total number of `-element subsets of S ∪ T by the addition principle is:

n∑
k=0

|Ak| =
n∑

k=0

(
n

k

)(
n

`− k

)
=

(
n + m

`

)

Proposition 5.
n∑

k=0

(
n

k

)2

=

(
2n

n

)
Proof. Set ` = m = n, by the previous proposition:

k∑
k=0

(
n

k

)(
n

n− k

)
=

(
n + n

n

)

By symmetry:
k∑

k=0

(
n

k

)2

=

(
2n

n

)

Proposition 6.
∑n

k=0 k
(
n
k

)
= n2n−1.

Proof 1. Use the binomial theorem:

(x + 1)n =

n∑
k=0

(
n

k

)
xk

Take the derivative with respect to x.

n(x + 1)n−1 =

n∑
k=0

(
n

k

)
kxk−1
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Then set x = 1

n2n−1 =
n∑

k=0

(
n

k

)
k

Combo Proof. Count ways to choose a subset of an n-element set with a distin-

guished element (Pick a committee and its chair).

On the Left Hand Side we will split into cases based on the size of the subset:

There are
(
n
k

)
ways to choose the committee, and then k choices for the chairperson.

So there are k
(
n
k

)
to choose a k-element subset with a distinguished element.

On the Right Hand Side we will pick our chairperson first. There are n ways to

pick our chairperson, then we must choose from an n− 1-element set to fill out the

rest of our committee. There are 2n−1 ways to fill out the committee. So this gives

us n2n−1.

And so we are done.
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