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Ramsey Theory §13

Proposition 1. Suppose that the edges of K6 have been colored two colors, then

there are three vertices such that all edges connecting them are the same color [see

HW1 #5]

Proof. Let v be a vertex in K6, note deg(v) = 5. By PHP three of the edges incident

to v have the same color, say red. Call the other endpoints of these edges v1, v2, v3.

If there is a red edge connecting any two of these vertices then along with v this

forms a red triangle. If not, then the three edges connecting v1, v2, v3 form a blue

triangle.

Example. This is not true for K5. Color the outside C5 red and the inner pentagram

blue.

Definition. Let a, b be positive integers. The Ramsey number R(a, b) is the

smallest n such that any coloring of the edges of Kn in two colors (say red and blue)

must contain either a red Ka or a blue Kb.

Example. The proposition ⇐⇒ R(3, 3) ≤ 6, the example coloring of K5 shows

R(3, 3) > 5, and so R(3, 3) = 6.

How do we know that there is a complete graph so that this is true? How do we

prove that the Ramsey Number’s even exist???

Convention: R(a, 1) = R(1, b) = 1.

Example. For n ≥ 2 what is R(n, 2)?

Well R(n, 2) ≤ n, because Kn will either have a blue edge (a blue K2), or it will

be a red Kn. And it’s greater than n− 1, just color Kn−1 all red. So by symmetry

R(n, 2) = R(2, n) = n, noting that R(a, b) = R(b, a).
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These numbers are hard to compute, for example all we know about R(5, 5) is

that it is somewhere between 43 and 48. These are ridiculously hard, let’s prove

they even exist!!

Theorem 1. For all positive integers a, b, R(a, b) exists and:

R(a, b) ≤
(
a + b− 2

a− 1

)
Lemma 1. Let a, b ≥ 2 and assume R(a− 1, b) and R(a, b− 1) exist. Then R(a, b)

exists and:

R(a, b) ≤ R(a− 1, b) + R(a, b− 1)

Proof. Let p = R(a− 1, b) and q = R(a, b− 1). We need to show that any red/blue

coloring of the edges of Kp+q has either a red Ka or a blue Kb.

Pick a vertex v in Kp+q, which has degree p + q − 1. Among the edges incident

to v there are either at least p red edges or at least q blue edges by PHP.

If we have p red edges incident to v, consider the induced subgraph on the other

endpoints of those edges, it is isomorphic to Kp. Then since p = R(a−1, b) we have

either a red Ka−1 or a blue Kb. If we have a blue Kb then we’re done. If we have a

red Ka−1 we just add the vertex v to obtain a red Ka.

If we have q blue edges incident to v, consider the induced subgraph on the other

endpoints of those edges, it is isomorphic to Kq. Then since q = R(a, b− 1) we have

either a red Ka or a blue Kb−1. If we have a red Ka we are done. Then if we have

a blue Kb−1 we can add in v to obtain a blue Kb.

Theorem 2. For all positive integers a, b, R(a, b) exists and:

R(a, b) ≤
(
a + b− 2

a− 1

)
Proof by double induction. First, if a = 1 then R(1, b) = 1, and if b = 1 then

R(a, 1) = 1 and we get the equality:

R(1, b) = 1 ≤
(
b− 1

0

)
R(a, 1) = 1 ≤

(
a− 1

a− 1

)
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Now, let a, b ≥ 2 and assume R(a−1, b) and R(a, b−1) exist. Then also assume:

R(a− 1, b) ≤
(
a + b− 3

a− 2

)
R(a, b− 1) ≤

(
a + b− 3

a− 1

)

By the lemma, R(a, b) must also exist, and R(a, b) ≤ R(a− 1, b) + R(a, b− 1). But

then we can write:

R(a, b) ≤ R(a− 1, b) + R(a, b− 1)

≤
(
a + b− 3

a− 2

)
+

(
a + b− 3

a− 1

)
=

(
a + b− 2

a− 1

)
Using Pascal’s Recurrence. We win!

Example. What is R(4, 3)? By lemma R(4, 3) ≤ R(3, 3) + R(4, 2) = 6 + 4 = 10.

And by Theorem:

R(4, 3) ≤
(

4 + 3− 2

4− 1

)
=

(
5

3

)
= 10

But actually R(4, 3) ≤ 9.

Color the edges of K9 by red and blue,

Claim. There exists a vertex that does not have exactly 5 red edges incident to it.

Otherwise the subgraph of red edges would have 9·5
2 edges, and this is impossible!

So let v be a vertex such that there are not exactly 5 red edges incident to it.

There are two cases:

• If v is incident to ≤ 4 red edges, then since it has degree 8 there are at least

4 blue edges incident to it.

Consider the edges connecting the other four endpoints. If they are all red we

have a red K4 and we’re done. If not then we can form a blue triangle with v

and a blue edge.
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• In case two, v is incident to ≥ 6 red edges. Look at the other six endpoints of

these six edges, they form a K6, and K6 always has a monochromatic triangle.

If it’s a blue triangle then we’re done. If it’s a red triangle then we can form

a K4 by adjoining v to the red triangle.

In fact R(4, 3) > 8. There is a coloring of K8 that has no blue K3 and no red K4.

See lecture notes because drawing graphs is hard.

One can show in the book that R(4, 4) = 18.

Let’s look at something interesting

Definition. Let G = (V,E) be a simple graph. I ⊆ V is independent if the

induced subgraph on I has no edges.

A set Q ⊆ V is a clique if the induced subgraph on Q is a complete graph.

Definition. R(a, b) is the smallest n for which any simple graph on n vertices

contains either a clique of size a or an independent set of b vertices.

Note: Simple graphs on n vertices may be viewed as subgraphs of Kn, that

means it can also be seen as a red-blue coloring of Kn. With this in mind think

about why the above definition is equivalent to the one we gave before.

Theorem 3 (A Multicolor Ramsey Theorem). Let n1, . . . , nk ∈ Z>0 then there is

a smallest positive integer N = R(n1, . . . , nk) such that if we color the edges of KN

by k (fixed) colors, there is a Kni-subgraph whose edges are colored by i.
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