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1 Introduction

1.1  Stuff
e Quiz (5 min.) Remember to justify
e Today is Linear Recurrences

e HW4 due Wednesday

2 Linear Recurrencese (Homogeneous / Non-Homogeneous)
(8.2-8.5)

2.1 Fibonacci Numbers

Example. Suppose you have an infinite supply of two types of tile: squares and
dominoes (dominoes are twice as long as squares).

Question: How many ways are there to arrange these tiles into a row of some
fixed length?

Answer: Let R,, be the number of ways to arrange these tiles into a row of length

n € N. Let’s look at examples

Ry =1 R =1
Ry =2 R3=3
Ry=5 Rs =8



In general if R, is the number of ways to tile a row of length n € N,
R,=R,_1+ R,_o forn>2

A tiling of length n is a tiling of length n — 1 with a square added or a tiling of
length n — 2 with a domino added.

Theorem 1 (Binet’s Formula).
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We let Fy =0 and F,, = R,_1, then this satisfies Fy, = Fr,_1 + F_o.

Note a combinatorial proof of this is quite impossible. We have to use other
tools. Let’s build them!

2.2 Linear Recurrence in General, a Definition

Definition 1. A sequence of numbers ag, a1, as, . . . satisfies a homogeneous linear recurrence
if it satisfies:

ap + 71101 + 712052+ - + Ty =0

For k fized and n > k. The r; are constants, and ry # 0.

A non-homogeneous linear recurrence satisfies:

an + T10p—1 + 12an-2 + - + TRan_k = h(n)

For some constant funtion h : N — N.
Goal: Find a Formula for a,:
Example. F,, — F,, 1 — F, o =0with k=2, r =ry = —1.
Example. Define a sequence ag, a1, ao, ... by setting ag = 1,a1 = 1,a2 = 4, and:
ap, = 3ap—2 + 20,3 forn >3

as = 3a1 + 2ap =5
ag =3as +2a1 =12+2 =14

Write this as:

an —0ap_1 —3a,_9 — 2a,_3=20



Gives this as a homogeneous linear recurrence with k =3, r1 =0, ro = =3, r3 = —2.
Example. Let ag = 3,a; = 9, and:
Ay = Ap—1 + 20520 — 4n

This is a clear non-homogeneous linear recurrence with h(n) = —4n.

Non-Example. Let ag = 1 and a,, = na,_1. Well this is:

(10:1 a1:1
ay = 2 a3 =3-2
ag=4-3-2 a5 =5-4-3-2

We have a guess that a, = n!l. We can prove it using a counting argument and
induction. We know ap = 1 = 0!. Assume a,, = n!, we must show a,+1 = (n + 1)!,
but this is simply by definition a,+1 = (n+ 1)a, = (n+ 1)n! = (n+ 1)\

In general we need stronger tools to study non-linear recurrence

2.3 The Characteristic Equation Approach

Definition 2. Given a homogeneous linear recurrence:
an +1rian—1+ -+ rgap_ =0
We write a polynomial associated to it called the characteristic polynomial:

qk+rlqk*1+~~+r;€20



Theorem 2. Let k be a positive integer, and let the ri,..., 1. € R, let q1,qo, ..., qk
be k distinct roots of the characteristic polynomial.

Then for any an + rian—1 + -+ + rgan—r = 0. We have that the n-th term has
the following form:

k
Ay = E ciqzn for some constants ¢;
i=1

Sketch of Proof. Morally this is like a generalized antiderivative: i.e. if we know the

initial conditions ag, a1, ...,ar_1, then we could solve for all of the ¢;. Like the +C

in an antiderivative

(1) Consider the set V' of all real-valued sequences (ag, ay, ag, ...) which satisfy the

recurrence. BUT not necessarily the same initial conditions.
V ={(ap,a1,...) | an + mapn—1+ - -rran_r =0 Yn >k}

e Because of homogeneity note then that V is a vector space over R.

e There’s a map

T:V — RF

ag

a1
(ao,al, .. ) '%)

ak—1
Furthermore this map is an isomorphism, We can uniquely recover the
sequence (ag, ay, ...) from the first k£ terms using the linear recurrence.
e This tells us the dimension of our vector space V, k.
(2) If ¢ # 0 then the geometric sequence defined by a,, = ¢" satisfies the linear
recurrence if and only if g is a root of the characteristic polynomial.

In particular, consider k distinct roots ¢, . . ., gi of the characteristic polynomial



(which are nonzero since 7, # 0). Then the geometric sequence:

S1 = (qua(J%v .. )

S = (17 4k, ql%a . )
Are solutions of the linear recurrence. Thus for each 1 <7 < k we have s; € V.

(3) We want to make s1,s2, ..., a basis for V.

Proof. We just need them to be linearly independent. Suppose they were not.

Then we would have:
181 +casa+ -+ cpsp =0

with ¢; # 0 for some 7. We can just look at the first k terms:

q Q2 G
@ @G 4
_qlf—1 gl qll:—l_

On HW1 Problem 3 we proved that this matrix is invertible, so we proved that

we cannot have:

1 1 1
C1 0

q1 q2 o 4k

2 2 2 2 0

q7 qs 9k | =

_ _ - Ck 0

_qlf 1 q12<: 1 qz’i 1_
Unless (c1,¢2,...,¢c,) = (0,0,...,0). O



Example. [Fibonacci Redux] The characteristic polynomial for the Fibonacci

recurrence is g2 — ¢ — 1 = 0. It has roots:

145

q1 = 5
1-+/5

q2 = 5

We then know that:
F, = c1q1 + c2q3

For some ¢1,c0 € Rby Fp =0=c1+co and F}; = 1 = ¢1¢q1 + ¢c2g2. So then we must
have that:

Which gives that:

Example. Say we have:
an + 0ap_1 —3ay_9 —2a,_3 =0
Which gives the associated charateristic polynomial:

¢ —3¢-2=0
(¢+1)*(¢—2)=0

But now we have a root with multiplicity! How do we deal with it.



Theorem 3. Let k be a positive integer, and let the r1,...,1. € R, let q1,q2,...,q4
be distinct roots of the characteristic polynomial with d < k and multiplicities
mi,mo,...,Mdq.

1

¢+t =g+ =0

Then for any recurrence of the form ay + r16n—1+ -+ + rgan—r = 0. We have that

the n-th term has the following form:

d my

ap, = 2 : § :Ci,jn]_lqzn for some constants c; ;
i=1 j=1

This has to do with derivatives.

Proof Omitted. The idea is a root with multiplicity is a root of the derivatives. [



