MATH 465 Notes

Faye Jackson

21 January, 2020

1 Today

1.1  Stuff
e Substitute Anna (Bibby is out)
e Quiz (Ch. 3 and 5.1)

e HW2 due Wednesday

1.2 Topics

e Binomial Theorem

e Combinatorial Proofs

2 Lets look at Binomial Coefficients again

2.1 4.2 Pascal’s Triangle

Recall. The binomial coefficient is:

(&)

We'll add the convention that (Z) =0ifk<Qork>n

Proposition 1. Let n, k € Z~g. Then:

()=o)

(n, ke ZZO)



We’ve already shown this one way, now lets do a combinatorial proof, i.e. we will

show that they count the same set.

Combinatorial Proof. Let S be an n-element set and fix x € S. THe Left Hand Side
counts the number of k-element subsets of S.

The Right Hand Side: By the addition principle, the number of k-element subsets
of S is the same as the number of k-element subsets which don’t contain z plus the

number of k-element subsets which do contain z. Lets count these:

e How many k-element subsets of S contain x. Well we are choosing from n — 1
things (S \ {z}) and we need k — 1 of them, that is (Zj)

e How many k-element subsets of S don’t contain x. Well we are choosing from
n — 1 things (S'\ {z}) and we need k of them, that is (”;1)

Thus we are done. O

The triangle looks like:

(o) 1

;)
(7)
G 6
© O 6

Some patterns:

()
(s)
(5)

() 1 4 6 4 1

5 5

@ G 1 5 10 10 5 1
e Symmetry gives us () = (,",) (we’ve already proved this)

e Sum of the n-th row is 2"

e Alternating sums of rows are always 0

Proposition 2. For n, k € Z>¢ we have the symmetry () = (,,",) and the sum of

0+ () e )=

2

each row is:



Proof. We observed symmetry on Thursday. We will use a combinatorial proof again
for the second claim.

We know that 2™ counts subsets of an n-element set S. We will break this down:

r—presy=3 resiisi=a-Y (%)
=0

1=0

Proposition 3. If n > 0 then:

Equivalently:

() +(2) =)+ ()

Bijective Proof. Let S be an n-element set. Notice that a subset of S has either an
even or odd cardinality, but not both.

Fix £ > 0 and for an T € S define a piecewise function:

) Tu{z} ifzgT
f(T)_{ T\{z} ifzeT

Note that T' is even if and only if f(7T') is odd:

fA{T Cc S| |T| iseven} — {T'C S| |T] is odd}
AT CS||T)isodd} = {T C S| |T| is even}

Omitting the restrictions. It is enough to show that f(f(7)) = T. Time for two

quick cases:

e Suppose x € T. Then f(f(T)) = f(T'\{z}) = (T'\{z})U{z} = T This works

since x € T.

e Suppose z ¢ T'. Compute f(f(T)):

FUHT) = f(TU{a}) = (TU{zp) \{z} =T

This works since z ¢ T.



The result follows easily since f is now a bijection. O

Theorem 1 (The Binomial Theorem). Let n be a non-negative integer and x,y be

“variables” (or complex numbers. .. or more). Then:

(+y)" = Zn: (Z) whynk

k=0

Example.

(z+y)Pl =1

(@+y) =z +y

(+y)' =zx +ay +yz+yy
=22 + 2zy + 1>

(:zc—l—y)3 = zxx + r2y + 2Yy* + Yrr + ryy + yry + yyr + yyy
= 2° + 32y + 3zy* + o

Idea: If we expand (z + y)", each term in this expansion corresponds to an
n-letter word in the alphabet {x,y}. The coefficient of z¥y"* is the number of n-
letter words with k x’s and n—k y’s. This is counted by (Z) This is a combinatorial

proof.

Proof by Pascal’s Recurrence and Induction. In the base case, n = 0, the formula

works since:

(z+y)°’=1= (0> 0"

Let n € Z>o. Assume that:

(z+y)" = Zn: (Z) ahyn*

k=0
(z+y)" = (z+y) <Z <Z> xkynk>
k=0
n+l _ (1 itk N (kL ek
(x+y) ;(k)x y +k§::0<k>:v y



Lets now do some clever reindexing;:

n n
(z +y)"H = Z <Z> ghHlyn—k <Z> g Lyn—h+1
k=0 k=0
k, n—k+1 k+1 n—k+1
-3 03
e ()

k=1

_ n+1+yn+1+z< 1) knk+1+z<> k—l—lnk-}—l

e £ () ()

By Z (n - 1>xky(n+1)—k
k

k=1

Jr
Z (” + 1) k, (n+1)—k
k=0

Thus the binomial theorem holds for n 4+ 1 and so by induction we’re done. O
Set r =y =1:
" /n
2" =
> (1)

Set x = —1 and y = 1.

Proposition 4.
Zn: n m _(n+m
k)J\t—k) l
k=0

Proof 1. Note that (z 4+ 1)"(z +1)™ = (x + 1)"*™, and then look at the coefficient
of xf.
We know then that:

(5 0) (S 0)) -5 0

Look for ways that k+¢= ¢, and so ¢ = £ — k. d



Combinatorial Proof. Take disjoint sets S, T such that |S| =n and |T'| = m.
Count the /-element subsets of the set S UT.

e The Right Hand Side surely counts this from thursday, (”7”)

e The Left Hand Side breaks into cases, let 0 < k < n. Let A be the set of

ways to select a k-element subset of S and an ¢ — k-element subset of T'.

These are separate events so by the multiplication principle so |Ag| = (Z) ( i k;)

Every f-element subset of S U T will be in exactly one of these, and so the

total number of ¢-element subsets of S U T by the addition principle is:

Sia=> (") = (5

k=0 k=0
O
Proposition 5.
n 2
Z n _ 2n
() - ()
k=0
Proof. Set £ = m = n, by the previous proposition:
Zk: n n _(n+n
E)J\n—k) n
k=0
By symmetry:
k 2
Z n _ 2n
() - ()
k=0
O

Proposition 6. > _k(}) =n2""'.
Proof 1. Use the binomial theorem:
" /n
(z+1)" = ( >wk
k
k=0
Take the derivative with respect to x.
" /n
n(z+ 1)1 = (k:) kakt
k=0

6



Then set x =1

O

Combo Proof. Count ways to choose a subset of an n-element set with a distin-
guished element (Pick a committee and its chair).

On the Left Hand Side we will split into cases based on the size of the subset:
There are (Z) ways to choose the committee, and then k choices for the chairperson.
So there are k(Z) to choose a k-element subset with a distinguished element.

On the Right Hand Side we will pick our chairperson first. There are n ways to
pick our chairperson, then we must choose from an n — 1-element set to fill out the
rest of our committee. There are 2"~ ! ways to fill out the committee. So this gives
us n2" 1.

And so we are done. O



