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1 Introduction

1.1 Stuff

• Quiz (5 min.) Remember to justify

• Today is Linear Recurrences

• HW4 due Wednesday

2 Linear Recurrencese (Homogeneous / Non-Homogeneous)

(8.2-8.5)

2.1 Fibonacci Numbers

Example. Suppose you have an infinite supply of two types of tile: squares and

dominoes (dominoes are twice as long as squares).

Question: How many ways are there to arrange these tiles into a row of some

fixed length?

Answer: Let Rn be the number of ways to arrange these tiles into a row of length

n ∈ N. Let’s look at examples

R0 = 1 R1 = 1

R2 = 2 R3 = 3

R4 = 5 R5 = 8
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In general if Rn is the number of ways to tile a row of length n ∈ N,

Rn = Rn−1 + Rn−2 for n ≥ 2

A tiling of length n is a tiling of length n − 1 with a square added or a tiling of

length n− 2 with a domino added.

Theorem 1 (Binet’s Formula).
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We let F0 = 0 and Fn = Rn−1, then this satisfies Fn = Fn−1 + Fn−2.

Note a combinatorial proof of this is quite impossible. We have to use other

tools. Let’s build them!

2.2 Linear Recurrence in General, a Definition

Definition 1. A sequence of numbers a0, a1, a2, . . . satisfies a homogeneous linear recurrence

if it satisfies:

an + r1an−1 + r2an−2 + · · ·+ rkan−k = 0

For k fixed and n ≥ k. The ri are constants, and rk 6= 0.

A non-homogeneous linear recurrence satisfies:

an + r1an−1 + r2an−2 + · · ·+ rkan−k = h(n)

For some constant funtion h : N→ N.

Goal: Find a Formula for an:

Example. Fn − Fn−1 − Fn−2 = 0 with k = 2, r1 = r2 = −1.

Example. Define a sequence a0, a1, a2, . . . by setting a0 = 1, a1 = 1, a2 = 4, and:

an = 3an−2 + 2an−3 for n ≥ 3

a3 = 3a1 + 2a0 = 5

a4 = 3a2 + 2a1 = 12 + 2 = 14

Write this as:

an − 0an−1 − 3an−2 − 2an−3 = 0
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Gives this as a homogeneous linear recurrence with k = 3, r1 = 0, r2 = −3, r3 = −2.

Example. Let a0 = 3, a1 = 9, and:

an = an−1 + 2an−2 − 4n

This is a clear non-homogeneous linear recurrence with h(n) = −4n.

Non-Example. Let a0 = 1 and an = nan−1. Well this is:

a0 = 1 a1 = 1

a2 = 2 a3 = 3 · 2

a4 = 4 · 3 · 2 a5 = 5 · 4 · 3 · 2

We have a guess that an = n!. We can prove it using a counting argument and

induction. We know a0 = 1 = 0!. Assume an = n!, we must show an+1 = (n + 1)!,

but this is simply by definition an+1 = (n + 1)an = (n + 1)n! = (n + 1)!.

In general we need stronger tools to study non-linear recurrence

2.3 The Characteristic Equation Approach

Definition 2. Given a homogeneous linear recurrence:

an + r1an−1 + · · ·+ rkan−k = 0

We write a polynomial associated to it called the characteristic polynomial:

qk + r1q
k−1 + · · ·+ rk = 0
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Theorem 2. Let k be a positive integer, and let the r1, . . . , rk ∈ R, let q1, q2, . . . , qk

be k distinct roots of the characteristic polynomial.

Then for any an + r1an−1 + · · · + rkan−k = 0. We have that the n-th term has

the following form:

an =
k∑

i=1

ciq
n
i for some constants ci

Sketch of Proof. Morally this is like a generalized antiderivative: i.e. if we know the

initial conditions a0, a1, . . . , ak−1, then we could solve for all of the ci. Like the +C

in an antiderivative

(1) Consider the set V of all real-valued sequences (a0, a1, a2, . . .) which satisfy the

recurrence. BUT not necessarily the same initial conditions.

V = {(a0, a1, . . .) | an + r1an−1 + · · · rkan−k = 0 ∀n ≥ k}

• Because of homogeneity note then that V is a vector space over R.

• There’s a map

T : V → Rk

(a0, a1, . . .)
T7−→
∼


a0

a1
...

ak−1


Furthermore this map is an isomorphism, We can uniquely recover the

sequence (a0, a1, . . .) from the first k terms using the linear recurrence.

• This tells us the dimension of our vector space V , k.

(2) If q 6= 0 then the geometric sequence defined by an = qn satisfies the linear

recurrence if and only if q is a root of the characteristic polynomial.

In particular, consider k distinct roots q1, . . . , qk of the characteristic polynomial
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(which are nonzero since rk 6= 0). Then the geometric sequence:

s1 = (1, q1, q
2
1, . . .)

...

sk = (1, qk, q
2
k, . . .)

Are solutions of the linear recurrence. Thus for each 1 ≤ i ≤ k we have si ∈ V .

(3) We want to make s1, s2, . . . , sk a basis for V .

Proof. We just need them to be linearly independent. Suppose they were not.

Then we would have:

c1s1 + c2s2 + · · ·+ cksk = 0

with ci 6= 0 for some i. We can just look at the first k terms:

1 1 · · · 1

q1 q2 · · · qk

q21 q22 · · · q2k
...

...
. . .

...

qk−11 qk−12 · · · qk−1k


On HW1 Problem 3 we proved that this matrix is invertible, so we proved that

we cannot have: 

1 1 · · · 1

q1 q2 · · · qk

q21 q22 · · · q2k
...

...
. . .

...

qk−11 qk−12 · · · qk−1k




c1

c2
...

ck

 =


0

0
...

0



Unless (c1, c2, . . . , ck) = (0, 0, . . . , 0).
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Example. [Fibonacci Redux] The characteristic polynomial for the Fibonacci

recurrence is q2 − q − 1 = 0. It has roots:

q1 =
1 +
√

5

2

q2 =
1−
√

5

2

We then know that:

Fn = c1q
n
1 + c2q

n
2

For some c1, c2 ∈ R by F0 = 0 = c1 + c2 and F1 = 1 = c1q1 + c2q2. So then we must

have that:

1 = c1(q1 − q2)

c1 =
1

q1 − q2
=

1
1+
√
5

2 − 1−
√
5

2

=
1√
5

c2 = − 1√
5

Which gives that:

Fn =
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5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

Example. Say we have:

an + 0an−1 − 3an−2 − 2an−3 = 0

Which gives the associated charateristic polynomial:

q3 − 3q − 2 = 0

(q + 1)2(q − 2) = 0

But now we have a root with multiplicity! How do we deal with it.
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Theorem 3. Let k be a positive integer, and let the r1, . . . , rk ∈ R, let q1, q2, . . . , qd

be distinct roots of the characteristic polynomial with d ≤ k and multiplicities

m1,m2, . . . ,md.

qk + r1q
k−1 + · · · = rk−1q + rk = 0

Then for any recurrence of the form an + r1an−1 + · · ·+ rkan−k = 0. We have that

the n-th term has the following form:

an =
d∑

i=1

mi∑
j=1

ci,jn
j−1qni for some constants ci,j

This has to do with derivatives.

Proof Omitted. The idea is a root with multiplicity is a root of the derivatives.
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