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Posets Continued

Recall. In a poset a chain is a subset in which any two elements are comparable.

An antichain is a subset in which any two elements are incomparable. A chain (or

antichain) partition is a partition in which each block is a chain (or antichain)

Theorem 1 (Dilworth’s Theorem). In a fintie poset, the

width︷ ︸︸ ︷
maximum size of an antichain

is the minimum size of a chain partition.

Theorem 2 (Mirsky’s Theorem). In a fintie poset, the

height︷ ︸︸ ︷
maximum size of a chain is

the minimum size of an antichain partition.

Lemma 1. Let P be a finite poset. If {C1, . . . , Cn} is a chain partition of P and A

is an antichain, then |A| ≤ n.

Likewise if {A1, . . . , Am} is an antichain partition of P and C is a chain, then

|C| ≤ m.

Proof of Mirsky’s Theorem. Lemma shows that the maximum size of a chain is less

than or equal to the minimum size of an antichain partition. Thus, letting m be the

maximum size of a chain, it suffices to find an antichain partition with m blocks.

Say {x1, . . . , xm} is a chain with x1 < . . . < xm. For each 1 ≤ i ≤ m let

Ai = {x ∈ P | the max size of a chain with x at the top is i}

This is a partition of P into m nonempty blocks, xi ∈ Ai for each i. Moreover, each

Ai is an antichain: If x < y and the max size of a chain with x at the top is i, then

there is a chain with i + 1 elements and y at the top.
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Proof of Dilworth’s Theorem. Lemma gives that the maximum size of an antichain

is less than or equal to the minimum size of a chain partition. We will use Max-Flow

Min-Cut Theorem to find an antichain and a chain partition of the same size (then

we’re done)

Define a network G by taking two disjoint copies of P , call them (PL, PR) along

with the sourse s and sink t as vertices. And edges:

• x→ y if x < y

• s→ x if x ∈ PL

• y → t if y ∈ PR.

With all capacities c(e) = 1. The key is to relate flows in G and chain partitions in

P as follows:

Consider a flow f in G. Because all edge capacities are 1, if x ∈ PL with

f(s → x) 6= 0 there is a unique y ∈ PR such that x, y and f(x → y) 6= 0. Consider

the edges x → y with x ∈ PL and y ∈ PR such that f(x → y) 6= 0. This gives a

collection of pairs:

x1 < y1, . . . , x` < y`

Where the xi’s are distinct and the yi’s are distinct. These pairs bundle into pairwise

disjoint chains in P by stacking the pairs in which xi < yi = xj < yj . If any elements

in P do not appear in these chains, add it as a singleton block to obtain a chain

partition P = C1∪· · ·∪Cn. This chain partition constructed from a flow f satisfies:

|f | =
∑
x∈PL

f(s→ x) =

n∑
i=1

(|C|i − 1) = |P | − n

Equivalently n = |P | − |f |. In fact every chain partition can be constructed in this

way. Therefore the minimum size of a chain partition in P is equal to |P | minus the

maximum size of a flow in G.

Use Ford-Fulkerson algorithm to find a max flow f in G. Let (X,Y ) be the

corresponding minimum cut. Then let n be the maximum size of a chain partition,

then:

|f | = |P | − n = c(X,Y )
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By the proof of the Max-Flow Min-Cut Theorem there does not exist x ∈ PL ∩X

and y ∈ PR ∩ Y such that x→ y is an edge in G (i.e. x < y). This is because there

is no directed path from s to t in Gf by construction of f . Why?

Suppose x ∈ PL ∩X and y ∈ PR ∩ Y . Well then there is a directed path from s

to x in Gf but not one from s to y. Furthermore in Gf there is no edge x→ y, but

since x < y we know there is an edge between x and y in G. Thus there must be an

edge y → x in Gf . Thus f(x → y) = c(x → y) = 1. Therefore note that we must

have f(s → x) = 1 and so there has to be an edge x → s in Gf . Thus there exists

a y′ ∈ PR ∩ X such that y′ → x is in Gf . But then f(x → y′) = 1, contradicting

conservation at x:

f(s→ x) = 1 < 2 = f(x→ y) + f(x→ y′)

Define:

A = {p ∈ P | p ∈ PL ∩X and p ∈ PR ∩ Y }

We can’t have two comparable elements in this by the above claim. Moreover:

|P | − n = c(X,Y ) =
∑
x→y

x∈X,y∈Y

c(x→ y)

=
∑

y∈Y ∩PL

c(s→ y) +
∑

x∈X∩PR

c(x→ t) +
∑

x∈PL∩X
y∈PR∩Y

0

= |Y ∩ PL|+ |X ∩ PR|

≥ |P | − |A|

Thus |A| ≥ n. Therefore the maximum size of an antichain is ≥ n which is the

minimum size of a chain partition. We already have the other inequality.
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