MATH 465 Notes

Faye Jackson

23 January, 2020

1 Introduction
1.1  Stuff

e Quiz 4 Today

e Quiz 5 Tuesday

e HW3 due Wednesday

1.2 Today

e Finish Chapter 4
e Intro to Generating Functions (8.1)

e Next Time: Ch. 6 Permutations

1.3 Announcements

e No OH Monday
e Instead: 12-3 tomorrow or email
e Final Exam Thursday 4/30, 1:30-3:30pm

e Don’t Use Words like “Obviously” or “clearly” in Homework. Justify every-

thing. Also remember to assign pages/problems



2 Multinomial Theorem

Theorem 1 (Multinomial). For n € Z>o and m € N we have:
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Proof. You can prove by induction on m and in the inductive step you will use the

binomial theorem O

Proposition 1. For n € Z>q:
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Proof. Use multinomial Theorem with m = 3 and z1 = x9 = x3 = 1:
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Combinatorial Proof. There are 3" letter words in the alphabet {A, B,C'}. We can
also divide these n-letter words into categories where there are a A’s, b B’s, and ¢
C’s so that a + b+ ¢ = n. In each category there are (az’c) since this is the number
of n-letter words using a A’s, b B’s, and ¢ C’s. Thus we are done by addition

principle. O
Recall. We defined:
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So for o € C and k € Zx>( define:
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Further if k > n and n € Zx let (}) = 0.

Look at the binomial theorem with y = 1:
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Well what happens if we change n to «.. ..

Theorem 2 (Generalized Binomial Theorem). Let o € C.
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when it all makes sense. Holds as a “formal power series”

Proof. Omitted

Example. Let « = —n for n € Z~y. Then:
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What the Generalized Binomial Theorem then tells us =
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Which you know as a geometric series.



3 The (ordinary) Generating Functions of Sequences

Let ag, a1, as, ... be a sequence. The generating function is the formal power series:
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(z is a “symbolic variable,” we will not worry about convergence)
Really this is just a tool for counting.
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Example. = is the generating function of 1,1,1,...
And ﬁ is the generating function of (Zj), ("), (Zir%), .... Note that these
count weak compositions of k with n parts, (n:le)

For a finite sequence the generating function is a polynomial:

Example. (14 z)" is the generating function for (’8), (71’), (g), el (")

n
Formal power series behave just like polynomials with addition and multiplica-

tion:
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These form a ring if you know what that is. Also, we will relate these to the addition
and multiplication principles respectively.

Now lets do some stuff:
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Well (?) is just how many ways to pick n nonnegative integers which add up to k.

That is weak compositions of k& with n parts. And so:
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Example. Lets look at triangular numbers. Define T}:
Ty=14+24+...4+k

for k € Z~o and let Ty = 0. We know by induction:
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Note that we know:
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So then:
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Take the following:
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Example. Note then by the same reasoning:
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Example. Find a closed formula for the generating function for a;, = k2. Well:
2T — k= (k+ 1)k — k =k

We know the generating function of Tj. Let’s find the generating function of k:
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So then actually taking this derivative and multiplying by x:
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So lets look at this as:
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We can also look at T, + Ty = k2. This is interesting:



