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Vertex Coloring

Question: A mapmaker wants to color countries on his maps so that any two coun-
teries which share a border have different colors. What is the fewest number of

colors needed to guarantee any map can be colored this way?

map — graph (simple planar)
countries — vertices

two countries share a border — two vertices adjacent

Definition. A proper vertex coloring of a graph G is a coloring of its vertices
such that any two adjacent vertices are colored differently

G is k-colorable if there is a proper vertex coloring which uses < k colors.

G is bipartite if it is 2-colorable.

The chromatic number x(G) is the smallest integer k for which G is k-

colorable.
We will assume our graphs are simple here
Example. Let’s get some examples.

(1) The complete bipartite graph K, ,, is in fact bipartite (as one would hope!) We

color the first m vertices with one color and the n vertices another color, look
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In fact x(Kp, ) = 2 whenever m,n > 1.

(2) Another bipartite graph we’ve seen is Gy, (grid)

In fact X(Gmpm) =2ifm>1orn>1

(3) If G has no edges then x(G) = 1. (i.e., G is k-colorable for every k € Z~).
For a simple graph, if G has at least one edge then x(G) > 1.
(4) x(IKn) = n.

Note that x(K,) < n because any graph on n vertices is n-colorable (color each

vertex a different color).

And x(K,) > n because any two vertices are adjacent, and so must have a

different color.

Restrict our Attention to Planar Graphs

The first thing we do is get an upper bound on the number of colors you need for

planar graphs.

Theorem 1 (The Six Color Theorem). Every simple planar graph is 6-colorable,
that is x(G) < 6 for every simple planar graph G.

Lemma 1. If G = (V, E) is a simple planar graph then there exists a vertex v € V
such that deg(v) < 5.



Proof. Similar to Homework 9. If not, every vertex has degree at least 6, so:

2|E| =) deg(v) 26|V
veV
And from Homework 9 #5:
|E| <3|V|—6

Multiplying through by two we get:
2|E| <6|V|—-12<6]|V]|

So we have a contradiction, 6 |[V| < 6 |V|. Oops!
O

Proof of 6-color Theorem. We induct on |V|. Note that a simple graph with 1 vertex
is 1-colorable, and hence 6-colorable. This is our base case.

Let n > 1 and assume every simple planar graph with n vertices is 6-colorable.

Let G = (V, E) be a simple planar graph with n + 1 vertices. By lemma there is
some v € V with deg(v) < 5. Consider the induced subgraph on V' \ {v}.

This is a simple planar graph with n vertices so by induction it is 6-colorable.
Given a 6-coloring of this subgraph, we can extend it to a 6-coloring of G by picking
a color for v.

Since deg(v) < 5, at least one of the six colors is not used on any of v’s neighbors.

Choose one of these unused colors for v. O
Let’s prove something even better.

Theorem 2 (The Five Color Theorem). Every simple planar graph is 5-colorable,
that is x(G) < 5 for every simple planar graph G.

Proof of 5-color Theorem. We induct on |V|. Note that a simple graph with 1 vertex
is 1-colorable, and hence 5-colorable. This is our base case.

Let n > 1 and assume every simple planar graph with n vertices is 5-colorable.

Let G = (V, E) be a simple planar graph with n+ 1 vertices. By lemma there is
some v € V with deg(v) < 5. Consider the induced subgraph on V' \ {v}.

This is a simple planar graph with n vertices so by induction it is 5-colorable.

Fix a 5-coloring of this subgraph.



If the neighbors of v use at most 4 colors, then we will win, because we can
extend the 5-coloring of G with the 5-th color

If not, then there are five vertices adjacent to v, each colored by a different color.

Fix a planar embedding of G and label v’s neighbors as vy, ve, v3, vg, v5 as they

appear in a clockwise order around v. Suppose v; has color .

U1

(O]

~
/\

Let Vi3 be the vertices colored by 1 and 3, and let G135 be the induced subgraph on
Vis.

e If v and vs lie in different connected components of G13 then we can swap the
two colors in the entire component containing v;. This yields a valid 5-coloring

and we may color v by 1.

e If not, then there is a path from v; to v3 using only vertices colored by 1 and
3. Name this path P;3. Let Vo4 be the vertices colored by 2 and 4 and let Goy

be the induced subgraph on V54. Follow similar motions as above

— If vg and w4 lie in different connected components of Go4 then we can
swap the two colors in the component containing vy. But then we can

color v by 2 to get a valid 5-coloring of G.

— If not, then there is a path P»4 from vy to v4 using only vertices colored
by 2 and 4. It is not possible for both of these paths to exist, P;3 and
Py since they cannot contain any of the same vertices, and they must
intersect. Draw the picture! Thus G could not be planar. Thus we must

fall into a different case where we win.

This concludes the proof of the 5-color theorem! O



Theorem 3 (The Four Color Theorem). Every simple planar graph is 4-colorable.
This is much much much harder. There is no known proof which does not use a

computer.

Determining the chromatic number of a graph (even a planar graph) G is very
very hard, even with computers, but we do have some properties, but showing

equalities in these is trickier.

(1) If G has n vertices then 1 < x(G) < n.

(2) If G’ is a subgraph of G then x(G’) < x(G). (a k-coloring of G restricts to a
k-coloring of G’

Example. Let C, be an n-cycle with n > 3.

But then:
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Thus:

2 if n even
C p—
X(Cn) { 3 ifnodd

Proposition 1. A simple graph with is bipartite if and only if every cycle has even

length.

Proof. Let’s go!

(=) We do this by contrapositive. Suppose G contains an odd length cycle. Con-
sider this graph as a subgraph G’, then 3 = x(G’) < x(G).
Thus G is not bipartite.

(<) It suffices to consider connected graphs because of connected components.

Assume G = (V| E) is connected and has no odd length cycles. Fix two

vertices v,w € V.



Either every path from v to w is even or every path from v to w is odd.
Otherwise we could concatenate the two paths to get an odd length cycle,

with a little bit of work. (Draw some pictures).

Choose a special vertex v € V. For any w € V color w RED if there is an

even path from v to w and BLUE if there is an odd path from v to w.

This coloring is well-defined because of the above work. You should show that

no two red vertices are adjacent and no two blue vertices are adjacent.



