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Part A. Introduction to Manifolds

In layman’s terms, a manifold is a topological space that looks locally like Euclidean space Rn. The
number n is called the dimension of the manifold, and it must be constant across the manifold, spaces like
the disjoint union of a sphere and a circle are not manifolds.

Here is what we mean by locally homeomorphic, we can unbend and strech the blue section into the right
hand side, which is a copy of R.

But to a topologist, a small section of a corner is like Rn. However, as an analyst, these is not diffeomorphic.
To a topologist the square is the same as a circle, but not to an analyst:

If we allow for such objects with corners, we obtain topological manifolds, that is spaces that are locally
homeomorphic to Rn.

However, we cannot do calculus on such manifolds. For this, we will need to introduce an additional
structure called a smooth structure to obtain a smooth manifold.

If we further would like to measure distance on such manifolds, another structure is needed. This is given
by a Riemannian metric, making the manifold into a Riemannian manifold

I. Topological Manifolds

I.1. The Basic Definition

Definition I.1.1
Suppose M is a topological space. We say M is a topological manifold of dimension n (or an

n-manifold) if it has the following properties:

(1) M is Hausdorff (i.e. if p 6= q ∈M then there exists disjoint neighborhoods U and V of p and q
respectively)

(2) M is second countable (i.e. there exists a countable basis of the topology)
A basis is a collection of open sets {Oi} such that if U is open in M and x ∈ U then there

exists some Oα so that x ∈ Oα ⊆ U .
(3) M is locally Euclidean of dimension n. I.e. every point p ∈M has a neighborhood U ⊆M that

is homeomorphic to an open subset of Rn.
More explicitly, for each p ∈ M there exists a homeomorphism φp : Up → Vp for some open

subset Up of M and some open subset Vp of Rn. The particular choice of homeomorphism is
not part of the data of the manifold, but it also doesn’t really matter if it were for topological
manifolds. This will come up however for smooth manifolds.

Remark I.1.1
Condition (3) is the main condition, (1) and (2) are added to avoid pathological behaviors. Some

books do not adopt both of them
(3) means that for each p ∈M there exists an open set V

3
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Definition I.1.2
A coordinate chart on a space M is a pair (U, φ) where U ⊆ M is open and φ : U → Û ⊆ Rn is a

homeomorphism.
U is often called the domain of the chart, and φ is called a local coordinate map since it gives

coordinates to every point q ∈ U via φ(q) = (x1(q), . . . , xn(q))

Further, if Û is a ball in Rn, then (U, φ) is called a coordinate ball.
A collection of coordinate charts (Uα, φα) such that {Uα} covers M is called an atlas, and such an

atlas makes M into a topological manifold.

Remark I.1.2
By definition, for a manifold M every point p ∈M belongs to the domain of a coordinate chart.

Definition I.1.3
Question Suppose (U, φ) and (V, ψ) are two coordinate charts such that U and V intersect.

This gives a map ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ). This map is a homeomorphism and we call this map
a transition map between the two coordinate systems on U ∩ V .

Example I.1.1 (Graphs of continuous functions)
Let U ⊆ Rn be open and let F : U → Rk be a continuous function. Then the graph

ΓF = {(x, y) ∈ U × Rk | y = F (x)} ⊆ Rn × Rk

is a topological manifold with the subspace topology. Clearly Γ is both Hausdorff and second countable
because it is a subspace of Rn which is both Hausdorff and second countable.

Let π1 : Rn × Rk → Rn be the projection π1(x, y) = x and let φ : Γ → U be the restriction of π1.
Then (ΓF , φ) is a coordinate chart, since the inverse given by φ−1(x) = (x, F (x)) is also continuous.

Therefore ΓF is a topological manifold and (Γ, φ) is a coordinate chart and an atlas.

Example I.1.2 (Spheres)
Let Sn ⊆ Rn+1 denote the unit sphere:

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x21 + x22 + · · ·+ x2n+1 = 1}
with the subspace topology.

Sn is in fact a topological manifold. Again, it is Hausdorff and second countable as in the previous
example. Define the open sets:

U+
i = {(x1, . . . , xn+1) ∈ Sn | xi > 0}

U−i = {(x1, . . . , xn+1) ∈ Sn | xi < 0}
Then simply note that U±i is the graph of the function:

xi = ±
√

1− (x21 + · · · x̂2i + xn+1)2

Here we use the notation:

(x1, x2, . . . , x̂i, . . . , xn+1) = (x1, x2, . . . , xi−1, xi+1, . . . , xn+1) ∈ Rn

4
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Hence, each U±i is locally Euclidean, and the coordinate maps φ±i : U±i → B(0, 1) given by φ±i :
(x1, . . . , x̂i, . . . , xn+1) give us coordinate charts (U±i , φ

±
i )

Therefore Sn is a topological manifold. Great ,

5
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I.2. Back to Manifolds

Last time, we defined topological manifolds in definition I.1.1. To remind us:

Definition I.2.1
Suppose M is a topological space. We say M is a topological manifold of dimension n (or an

n-manifold) if it has the following properties:

(1) M is Hausdorff (i.e. if p 6= q ∈M then there exists disjoint neighborhoods U and V of p and q
respectively)

(2) M is second countable (i.e. there exists a countable basis of the topology)
A basis is a collection of open sets {Oi} such that if U is open in M and x ∈ U then there

exists some Oα so that x ∈ Oα ⊆ U .
(3) M is locally Euclidean of dimension n. I.e. every point p ∈M has a neighborhood U ⊆M that

is homeomorphic to an open subset of Rn.
More explicitly, for each p ∈ M there exists a homeomorphism φp : Up → Vp for some open

subset Up of M and some open subset Vp of Rn. The particular choice of homeomorphism is
not part of the data of the manifold, but it also doesn’t really matter if it were for topological
manifolds. This will come up however for smooth manifolds.

Definition I.2.2
We call (U, φ) a coordinate chart where U is open in M and φ : U → Û is a homeomorphism onto an

open subset of Rn.
A collection of coordinate charts which cover M is called an atlas

One last example of topological manifolds!

Proposition I.2.1
Suppose that M1,M2, . . . ,Mk are topological manifolds of dimension n1, n2, . . . , nk. Then M1×M2×

· · · ×Mk is a topological manifold of dimension n1 + n2 · · ·+ nk.

Proof. Hausdorffness and second countability are not too hard to show.
If (U1, φ1), . . . , (Uk, φk) are coordinate charts on M1, . . . ,Mk then (U1×· · ·×Uk;φ1×· · ·φk) is a coordinate

chart on M1 × · · ·Mk.

Example I.2.1
In particular, the torus Tk = S1 × · · · × S1

︸ ︷︷ ︸
k times

is a topological manifold.

II. Smooth Manifolds

II.1. Motivation

One cannot make sense of derivatives on topological manifolds. To make sense of derivatives and to be able
to do calculus on manifolds, we need an extra structure. This structure will be called a “smooth structure”

To motivate the definition below: suppose we try to define a smooth (or differentiable) function on a

topological manifold M , say f : M → R. Naturally, we shall require that if φ : U → Û is a coordinate chart,

then f ◦ φ−1 : Û ⊆ Rn → R is smooth.
While this seems to be the only plausible definition, it is not well-defined on topological manifolds. Why?

Well suppose you have another coordinate chart (V, ψ) such that U and V intersect.

6
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Now note that φ and ψ are defined on U ∩ V . For x ∈ ψ(U ∩ V ) we have:

f ◦ ψ−1 = (f ◦ φ−1) ◦ (φ ◦ ψ−1)

Now φ ◦ ψ−1 : ψ(U ∩ V ) ⊆ Rn → φ(U ∩ V ) ⊆ Rn. But wait! If f ◦ φ−1 is required to be smooth, then the
only way to guarantee that f ◦ ψ−1 is smooth would be to guarantee that φ ◦ ψ−1 is a smooth map itself.
Otherwise, we get two different notions of smoothness with respect to (U, φ) and (V, ψ).

This condition is not necessarily true on topological manifolds, which only guarantee that φ ◦ ψ−1 is a
homeomorphism.

Conclusion: In order to define smooth functions on a topological manifold, we need the following:

II.2. Definitions

Definition II.2.1
If (U, φ) and (V, ψ) are two coordinate charts and U ∩ V is nonempty, then we require that the map

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ) is a diffeomorphism, noting that this is a map between open sets in Rn.
Note that a diffeomorphism is a smooth map with smooth inverse.

This condition is called smooth compatibility

Definition II.2.2
A smooth manifold is a topological manifold equipped with a particular atlas whose coordinate charts

are smoothly compatible. Such an atlas is called a smooth atlas. In other words, a topological space M
is called a smooth n-manifold provided that:

1) It is Hausdorff
2) It is second countable
3) It is locally Euclidean, i.e. for each p ∈M there exists an open neighborhood U ⊆M of p and

φ : U → Û ⊆ Rn a homeomorphism onto an open neighborhood Û . (U, φ) is called a coordinate
chart

4) We have a particular atlas on M such that if (U, φ) and (V, ψ) are two charts in the atlas such
that U ∩ V 6= ∅ then φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V ) is smooth. It is enough to just check
smoothness because it will be a diffeomorphism by switching the role of (U, φ) and (V, ψ).

We say (U, φ) and (V, ψ) are smoothly compatible. The atlas on M is then called a smooth
atlas

7
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Remark II.2.1
A Ck-manifold is defined exactly as above but replacing the word smooth by Ck. That is we require

the transition maps in the atlas to be Ck and we call such an atlas a Ck-atlas.

Definition II.2.3
Let M be a smooth (resp. Ck) manifold. A smooth (resp. Ck) function f : M → R is one that

satisfies the condition f ◦ φ−1 : Û → R is smooth (resp. Ck) for any coordinate chart (U, φ) on M such

that Û = φ(U) ⊆ Rn.
Thanks to smooth compatibility, this definition makes sense.

Remark II.2.2
The above definition of a smooth manifold says that a Hausdorff, second countable topological space

is a smooth manifold if and only if it admits a smooth atlas.
However, two smooth atlases might give the same notion of what a smooth function on the manifold

is, and in such cases we would like not to distinguish between between the resulting smooth manifold.

Example II.2.1
(Rd, Id) is a smooth atlas on Rd. Similarly, {B(x, 1), Id}x∈Rd . However they yield an equivalent

notion of smooth functions. We would like to consider these two smooth atlases to be the same

Definition II.2.4
We say that two smooth atlases A1 = (Uα, φα) and A2 = (Vβ , ψβ) are equivalent if their union atlas

A = A1 ∪ A2 is also a smooth atlas

Exercise II.2.2
This is equivalent to saying that (Uα, φα) and (Vβ , ψβ) are smoothly compatible for each α and β.
Furthermore, this is an equivalence relation on smooth atlases.

Definition II.2.5
This gives equivalence classes of smooth atlases on the same topological manifold M . Each such

equivalence class contains a unique maximal smooth atlas Amax (maximal = one that is not contained
in any strictly larger atlas). This means that if (U, φ) is a chart that is smoothly compatible with every
element of Amax then (U, φ) ∈ Amax¿ Such an atlas is called complete

As such, strictly speaking one should define a smooth manifold as a pair (M,A) where M is a
topological manifold and A is a maximal smooth atlas on M . A is called a “smooth structure” on M .

Example II.2.3
Another smooth structure on R. Consider the single chart (R, ψ) where ψ(x) = x3. This gives a

smooth atlas on R, and hence a smooth structure that is different than the standard structure given by
the chart (R, Id).

Indeed φ ◦ ψ−1(y) = y1/3 is not smooth with φ = Id, and so these smooth structures are different.

8
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Review

A smooth manifold M is a topological manifold equipped with a smooth atlas, that is a collection of
smoothly compatible charts (Uα, ϕα) that covers M .

(Uα, ϕα) and (Uβ , ϕβ) are smoothly compatible if:

The transition map ϕα ◦ ϕ−1β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) is a diffeomorphism. That is it’s smooth and it
has a smooth inverse. This covered automatically if it’s smooth when we’re talking about an atlas, because
we can just swap the role of α and β.

A topological manifold M may be equipped with different atlases A1 and A2 which give different smooth
manifolds (M,A1) and (M,A2).

We defined an equivalence relation on atlases. Namely A1 ∼ A2 whenever A1 ∪A2 is a smooth atlas. This
is equivalent to saying that if (U,ϕ) ∈ A1 and (V, ψ) ∈ A2 then (U,ϕ) and (V, ψ) are smoothly compatible.

For the purposes of this class we identify (M,A1) and (M,A2) when A1 and A2 are equivalent. Since
every equivalence class of a smooth element has a unique maximal element Amax, we can describe any smooth
manifold as a pair (M,Amax) where M is a topological manifold and Amax is a maximal smooth atlas. We
call such a maximal smooth atlas a smooth structure.

Exercise II.2.4 (Homework)
Show that every smooth atlas of M determines a unique maximal smooth atlas

Definition II.2.6 (Notational Convenience)
(U,ϕ) is called a smooth coordinate chart. U is called a smooth coordinate domain (a smooth

coordinate ball if Û ∈ Rn is a ball)
If p ∈ U , then ϕ = (x1, x2, . . . , xn) is called a local coordinate representation near p.

9
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II.3. Examples of Smooth Manifolds

Example II.3.1 (Trivial Examples)
Let’s find some very easy examples first:

(1) Zero dimensional topological manifolds are countable discrete spaces, since R0 is a singleton,
and so each point p has a neighborhood U which is homeomorphic to R0. U must be equal to
{p}. All charts on M are trivially smoothly compatible, so countable discrete spaces are also
smooth manifolds of dimension zero.

(2) Euclidean space Rn is a smooth manifold via the coordinate chart (Rn, Id). This single chart
gives us a smooth atlas on Rn since any single chart is trivially compatible with itself. Therefore
Rn is a smooth manifold.

Remark II.3.1
If a topological manifold can be covered by a single coordinate chart, then the smooth compatibility

condition is trivial, so it is automatically a smooth manifold.

Example II.3.2 (Less trivial examples)
Let’s find a bit more interesting examples!

(3) Finite dimensional vector spaces V over R are smooth manifolds. Let V be an n-dimensional
vector space. We saw in 395 that all norms on V determine the same topology. We just let
E1, . . . , En be a basis of V and let (V, ψ) be the coordinate chart defined by ψ : V → Rn:

ψ−1(x1, . . . , xn) =

n∑

j=1

xiEj =: xjEj

Where we have adopted the Einstein notation, which says that repeated indices that appear
once above and once below are summed from 1 to the dimension n. Note that this will be a
homeomorphism since ψ and ψ−1 are linear, and all linear maps between normed vector spaces
are continuous.

This gives a smooth atlas and hence a smooth structure on V . This structure is independent

of the choice of the basis. To see this let Ẽ1, . . . , Ẽn be any other basis and denote by ϕ : V → Rn
given by ϕ−1(x1, . . . , xn) =

∑n
j=1 x

iẼj . It is enough to check that (V, ψ) and (V, ϕ) are smoothly

compatible, but note that these are linear maps, so any composition ϕ ◦ ψ−1 : Rn → Rn or
ψ ◦ ϕ−1 : Rn → Rn will be linear, and all linear maps are smooth.

One could check this by hand by writing the following, adopting Einstein notation:

Ei =

n∑

j=1

Aji Ẽj = Aji Ẽj

ϕ ◦ ψ−1(x1, . . . , xn) = ϕ(xjEj) = ϕ(xjAkj Ẽk)

= ϕ

(
n∑

k=1

(xjAkj )Ẽk

)

= (xjA1
j , x

jA2
j , . . . , x

jAnj )

(4) Recall that we showed the sphere Sn is a topological manifold with charts (U±i , ϕ
±
i ) with:

U+
i = {(x1, . . . , xn) ∈ Sn | xi > 0}

U−i = {(x1, . . . , xn) ∈ Sn | xi < 0}
ϕ±i : U±i → B(0, 10 ⊆ Rn

ϕ±i = πi
∣∣
U±i

10
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Where we’ve taken πi : Rn+1 → Rn as the orthogonal projection in the direction of ei. Clearly
U+
i ∩ U−i = ∅ for all i. We only check on U+

i ∩ U+
j since the other cases are similar:

ϕ+
i ◦ (ϕ+

j )−1(y1, . . . , yn) = ϕ+
i (y1, . . . ,

√
1− |y|2

︸ ︷︷ ︸
j-th entry

, . . . , yn)

= (y1, . . . , ŷi, . . . ,

√
1− |y|2, . . . , yn)

Clearly this is smooth on B(0, 1). You can check it similarly for ϕ−i ◦ (ϕ−j )−1 and ϕ+
i ◦ (ϕ−j )−1.

Therefore (Ui, ϕi) is a smooth atlas which defines the standard smooth structure on Sn.

Remark II.3.2
In Einstein notation, we will also denote basis vectors with lower indices (like E1, . . . , En) and the

components of a vector with upper indices x1, . . . , xn, so that a vector is writtena s xiEi.

Example II.3.3
Let’s get some more examples!

(5) Let M be a smooth n-manifold and let U ⊆M be open. Now suppose that A is a smooth atlas
on M . THen define an atlas as follows:

AU = {(U ∩ V, ϕ
∣∣
U∩V ) | (V, ϕ) ∈ A}

This gives a smooth atlas on U since restrictions of smooth maps are smooth. This gives U a
smooth structure, with which U is called an open submanifold of M .

(6) We can have matrix manifolds! Let M(m×n,R) denote the vector space of (m×n) matrix with
real entries over R. This gives it a standard (vector space smooth structure. For convenience
we also write M(n,R) := M(n× n,R).

Furthermore any M(m× n,C) has complex (m× n) matrices which is a vector space over R
of dimension 2mn, so it is a 2mn dimensional manifold.

(7) The set of all invertible (n× n) matrices GL(n,R) is an open subset of M(n,R) and hence by
the above two examples it is a smooth manifold. Note that this is an open subset because the
determinant is continuous on M(n,R).

(8) Smooth product manifolds. If M1, . . . ,Mk are smooth manifolds of n1, . . . , nk, we saw that
M1 × · · · ×Mk is a topological manifolds with charts given by (U1 × · · · × Uk, ϕ1 × · · ·ϕk).

We then check compatibility given compatibility for the charts fromM1, . . . ,Mn. This is
because:

ϕ× · · · × ϕk(p1, . . . , pk) = (ϕ(p1), . . . , ϕ(pk))

(ψ1 × · · · × ψk) ◦ (ϕ× · · · × ϕk)−1 = (ψ1 ◦ ϕ−11 )× · · · × (ψk ◦ ϕ−1k )

And this is smooth in each coordinate.
(9) By the previous example the n-dimensional torus Tn = S1 × · · · × S1 is a smooth n-manifold.

11



Faye Jackson February 1st, 2021 MATH 396 - III.1

Back to Lecture!

We will continue our discussion of smooth manifolds. We recall the three conditions we need from these
in definition II.2.2:

(1) Hausdorff second countable topological spaces
(2) Locally Euclidean
(3) Equipped with an atlas such that all transition maps are smooth (diffeomorphisms)

These are C∞-manifolds. We cna also talk about Cr-manifolds (r ≥ 1) replace the smoothness condition for
transition maps by a Cr-condition.

Last time, we saw many exaples of smooth manifolds. This time we want to give one more example:

II.4. Submanifolds of Rm

Definition II.4.1
Let M ⊆ Rm. Suppose that for each p ∈M there exists an open set U ⊆M (in the subspace topology)

and a map ϕ : U → Rn such that:

a) ϕ is a homeomorphism from U onto Û = φ(U).

b) ϕ−1 : Û → Rm is of class Cr and Dϕ−1 has rank n
c) If (V, ψ) is another chart such that U ∩ V 6= ∅, then:

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

is a Cr-diffeomorphism

Then M is called a Cr-submanifold of Rm. If r =∞ then M is called a smooth submanifold of Rm

Remark II.4.1
We have a few nice properties:

1) Clearly by a) and c) any smooth (or Cr) submanifold of Rm is a smooth (or Cr manifold)
2) In fact, condition c) above is redundant. You can use a) and b) to prove c). Likewise you can

use a) and c) to prove b). We’ll discuss that when we talk about manifolds with boundary in
the next section. We’ll discuss that when we talk about manifolds with boundary in the next
section.

3) Consider the case when n = 2. The condition that ϕ−1 : Û → Rm satisfies Dϕ−1 has rank 2
means the following:

Set α = ϕ−1 : Û → Rm.

Dα having rank 2 means that ∂α
∂x and ∂α

∂y are independent vectors. Recall that ∂α
∂x is tangent to

the curve:

γ1(t) = α(a+ te1)

And ∂α
∂y is tangent to the curve γ2(t) = α(a + te2). Then ∂α

∂x and ∂α
∂y span a 2-dimensional

“tangent plane” to M at the point p = α(a).

12
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III. Manifolds with boundary

III.1. Definitions

We saw that an open subset of a manifold M (like Rn) is also a manifold. What about closed subsets?

For example, look at the closed unit ball B(0, 1):

Then if we pick x such that |x| < 1 then locally we look like and open subset of Rn. However for |x| = 1,
then locally near x, M does not look like an open neighborhood of Rn

In fact, what this looks like (standing at x) is an open subset of “half-space” (x1, x2, . . . , xn) with xn ≥ 0:

This motivates a few definitions:

Definition III.1.1
We define the closed n-dimensional upper half space

Hn ⊆ Rn = {(x1, . . . , xn) | xn ≥ 0}
IntHn = {(x1, . . . , xn) | xn > 0}
∂Hn = {(x1, . . . , xn) | xn = 0}

Great!

Definition III.1.2
A topological manifold with boundary is a Hausdorff, second countable topological space such that

each point p ∈M has a neighborhood U that is homeomorphic to a (relatively) open subset of Hn.

That is, there exists a homeomorphism ϕ : U → Û where Û ⊆ Hn is an open subset in the subspace
topology on Hn

(U,ϕ) is called a coordinate chart. If Û ⊆ IntHn, this is called an interior chart, and otherwise it is
a boundary chart.

Recall: Û is relatively open in Hn if and only if Û = V ∩Hn where V is open in Rn. Two cases:

• We can have an interior chart Û ∩ ∂Hn = ∅ then Û is open in Rn

• Otherwise we have a boundary chart when Û ∩ ∂Hn 6= ∅.
Warning: There can be points which have an interior and a boundary chart around them.

To define smooth structures on such manifolds with boundary we need to recall what it means for a

function on an open subset Û of Hn to be smooth. This is clear when Û is open in Rn (i.e. Û ∩ ∂H = ∅).
What about if Û ∩ ∂Hn 6= ∅.

Definition III.1.3
We say that a function f : Û → Rm is smooth (or Cr) on a relatively open set Û ⊆ Hn provided that

there exists an open set V ⊆ Rn that contains Û and a function f̃ : V → Rm that is smooth (or Cr)
which extends f . Aka:

f = f̃
∣∣∣
Û

In other words, f admits a smooth (or Cr) extension

13



Faye Jackson February 1st, 2021 MATH 396 - III.1

Exercise III.1.1
If f is smooth on Û if and only if f is smooth on Int Û and f and its derivatives are continuous on Û .

Where we take interior with respec to Rn.

Definition III.1.4 (Smooth manifold with boundary)
A smooth manifold with boundary is a topological manifold with boundary equipped with a smooth

atlas, i.e. a collection of charts (Uα, ϕα) that cover M and such that the transition map:

ϕα ◦ ϕ−1β : ϕβ(Uα ∩ Uβ)→ ϕ(Uα ∩ Uβ)

are smooth.

Remark III.1.1
As before, we identify manifolds with boundary that have equivalent atlases. Thus, strictly speaking,

a smooth manifold with boundary is a topological manifold with boundary equipped with a maximal
smooth atlas called a “smooth structure”

We recall that (Uα, ϕα), (Vβ , ψβ) are equivalent if and only their union is also an atlas, which holds
if and only if every (Uα, ϕα) and (Vβ , ψβ) are smoothly compactible.

Remark III.1.2
Every smooth submanifold (definition II.2.2) is a smooth manifold with boundary. Ultimately, this is

because Rn is diffeomorphic to IntHn via the map:

(x1, x2, . . . , xn) 7→ (x1, . . . , xn−1, ex
n

)

and hence any chart (U,ϕ) with ϕ(U) ⊆ Rn can be replaced by a chart (U, ϕ̃) such that ϕ̃(U) ⊆ IntHn.
This will form a smooth atlas for a manifold with boundary if we start with a smooth atlas for a manifold.

In other words, manifolds from the previous section are nothing but manifolds with boundary all of
whose charts are interior charts.

Definition III.1.5
A point p ∈ M is called a boundary point of M if its image under some smooth chart (U, φ) is in

∂Hn. We then call ∂M the set of boundary points.
On the other hand a point p ∈ M is called an interior point of M if its image under some smooth

chart (U, φ) is in IntHn. We then call IntM the set of interior points.
Here are some nice pictures of an interior point p ∈M and a boundary point q ∈M :

Exercise III.1.2
Let M be an n-manifold with boundary. Then IntM is a n-manifold without boundary. Here is a

picture to help with the proof:

14
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Exercise III.1.3
Show that the above definition is well-defined. That is, if you have an interior point (or boundary

point) with respect to some chart (U, φ) then it is an interior point (or boundary point) with respect to
any other chart (V, ψ). We will also do this next time!

15
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Last time we defined manifolds with boundary, and we can recall this at definition III.1.4
We also defined interior points, which we recall now at definition III.1.5.
In summary, we say:

Definition III.1.6
p ∈M is an interior point if there exists a chart (U,ϕ) such that ϕ(p) ∈ IntHn. Equivalently, there

exists a chart (U,ϕ) such that ϕ(U) ⊆ IntHn or in other words ϕ(U) is open in Rn.
We include pictures:

A point p ∈M is called a boundary point (we say p ∈ ∂M) if there exists a coordinate chart (U,ϕ)
such that ϕ(p) ∈ ∂Hn:

Remark III.1.3
These two definitions are mutually exclusive, in the sense that we cannot have two coordinate charts

(U,ϕ) and (V, ψ) such that p ∈ U ∩ V and ϕ(p) ∈ IntHn and ϕ(p) ∈ ∂Hn.

Proof. Why? As we discussed above, we may assume that ϕ(U) ⊆ IntHn by shrinking U as needed by the
above. Then look at ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V ). We see that ϕ(U ∩ V ) ⊆ ϕ(U) ⊆ IntHn will be open
in Rn since ϕ(U ∩ V ) is also open in Hn.

Since ψ◦ϕ−1 is a Cr diffeomorphism on an open subset O = ϕ(U ∩V ) of Rn and D(ψ,ϕ−1) is non-singular.
By the inverse function theorem we can conclude that (ψ ◦ ϕ−1)(O) is open in Rn. This in fact shows that
ψ(U ∩ V ) is open in Rn, so ψ(U ∩ V ) does not intersect the boundary of Hn. This leads to a contradiction if

ψ(p) lies on this boundary.

The conclusion is that a manifold M with boundary is the disjoint union of its interior and its boundary

Remark III.1.4
IntM and ∂M defined here might not be the same as the topological interior or boundary of M in

the case when M is a subset of another topological space.

Example III.1.4
Take M = B(0, 1) ⊆ Rn. In Homework 3 we will show that this is a manifold with boundary. In this

case we have ∂M = Sn−1
But if we regard M as a topological space by itself, then the topological boundary of M is the empty

set.
In other words, smooth manifolds have a more intrinsic notion of boundary than the one we get from

topology

Theorem III.1.1
Let M be a smooth n-manifold with boundary. Then IntM is a smooth n-manifold without boundary.

Similarly, if ∂M 6= ∅ then ∂M is a smooth (n− 1)-manifold without boundary.

16
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Proof. The statement about IntM we already proved by the picture above where we showed that if p is an
interior point then we can find some chart (U,ϕ) around p so that ϕ(U) is an open subset of Rn.

To show that ∂M is a smooth (n − 1) manifold we first note that it inherits the Hausdorff and second
countable properties from M . It remains to exhibit a smooth atlas.

Let (Uα, ϕα) be a smooth atlas of M . Consider the charts Uα such that Uα ∩ ∂M 6= ∅ (equivalently

Ûα ∩ ∂Hn 6= ∅.)
Let Vα = Uα ∩ ∂M . Obviously {Vα} covers ∂M . We note that ϕ : Uα → Û ⊆ Hn, and ϕα maps Vα to the

set Û ∩ ∂Hn = Ûα ∩ {xn = 0}. Therefore, we can write ϕα
∣∣
Vα

= (ψα, 0).

Claim
The collection of charts (Vα, ψα) is a smooth atlas for ∂M .

From the above we see that ψα : Vα → V̂α = ψα(Vα), and ψα(Vα) = Ûα ∩ {xn = 0}, and so since Ûα is open

in Hn we know that V̂α will be an open subset of Rn−1
ψα is continuous, since it is the restriction of a continuous function. Also note that ψ−1α is the restriction

of ϕ−1α to (V̂α, 0), and so it is also continuous, hence ψα is a homeomorphism.
It remains to show that for any α, β such that Vα∩Vβ 6= ∅ that the map ψα◦ψ−1β : ψβ(Vα∩Vβ)→ ψα(Vα∩Vβ)

is a smooth diffeomorphism. We note that:

ψ−1β = ϕ−1β

∣∣∣
(V̂β ,0)

ϕα ◦ ψ−1β ⊆ Ûα ∩ {xn = 0} = (V̂α, 0)

(ψα ◦ ψ−1β , 0) = ϕα ◦ ψ−1β = ϕα ◦ ϕ−1β
∣∣∣
(V̂β ,0)

Since ψ−1β (x) always lies in ∂M . This shows that ψα ◦ ψ−1β is the restriction of a smooth function, and

therefore it is smooth itself. The same holds for ψβ ◦ ψ−1α , and so ψα ◦ ψ−1β is a smooth diffeomorphism as

well.

III.2. Submanifolds of Rd with boundary

Definition III.2.1
Let M ⊆ Rd. We call M a Cr-submanifold of Rd with boundary of dimension n provided that that

for each p ∈M there exists an open set U ⊆M and a map ϕ : U → Hn so that:

a) ϕ is a homeomorphism from U onto Û = ϕ(U) which is an open subset of Hn

b) ϕ−1 : Û → Rd is of class Cr and Dϕ−1 has rank n
c) If (V, ψ) is another chart such that U ∩ V 6= ∅ then:

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

is a Cr (or smooth) diffeomorphism.

Great! Of course if we take r =∞ we get a smooth submanifold of Rd with boundary

Remark III.2.1
By part c) any Cr-submanifold of Rd is a Cr-manifold with boundary

The following propositions tells us that condition c) is actually redundant. In fact a), b) =⇒ c) and also
a), c) =⇒ b)

Proposition III.2.1
Suppose M ⊆ Rd satisfies conditions a) and b) in the above definition. Then condition c) is automat-

ically satisfied.

Proof. We have to show that if (V, ψ) and (U,ϕ) are two coordinate patches satisfying V ∩ U 6= ∅, then the
map:

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )
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Is a Cr-diffeomorphism. Since both ψ and ϕ are homeomorphisms we know that ψ ◦ϕ−1 is a homeomorphism.
It is then sufficient to show that ψ ◦ϕ−1 is of class Cr, since the same argument will apply to ϕ ◦ψ−1, which
is the inverse function, showing that ψ ◦ ϕ−1 is a Cr-diffeomorphism.

We will show this by working locally for every point lying in ϕ(U ∩ V ) there is an open neighborhood of
that point on which ψ ◦ ϕ−1 is a Cr function.

We know that ϕ−1 : Û → Rd is of class Cr. It is sufficient to show that for each p ∈ V there exists an open

neighborhood Ṽp ⊆ Rd and a Cr function ψ̃ : Ṽp → Rn such that ψ is the restriction of ψ̃ to the set V ∩ Ṽp.
This would imply that ψ ◦ ϕ−1 = ψ̃ ◦ ϕ−1, which will be a composition of two Cr functions, so it must have

been Cr. Here we have ψ ◦ ϕ−1 : φ(U ∩ V ∩ Ṽp)→ ψ(U ∩ V ∩ Ṽp). In this case, we know φ(U ∩ V ∩ Ṽp) will
be a neighborhood of p if p ∈ U ∩ V .

Here is a picture:

To prove that, we argue as follows. Let x0 = ψ(p). Since Dψ−1(x0) has rank n, then Dψ−1(x0) has n linearly
independent rows. Let us say, for the sake of concreteness, that these are the first n rows. Let π : Rd → Rn
be the projection on the first n coordinates. Consider then g = π ◦ ψ−1 : V̂ → Rn is a Cr-function such that
Dg(x0) is invertible, since it has the first n linearly independent rows of Dψ−1(x0). Here’s a nice picture
again:

By the inverse function theorem, there exists an open neighborhood V̂ ′ of x0 and a neighborhood S of π(p)

so that g is a Cr diffeomorphism from V̂ ′ → S. This means that g−1 : S → V̂ ′ exists and is Cr and also
ψ = g−1 ◦ π on V ∩ π−1(S). But g−1 ◦ π is defined as a smooth function on all of π−1(S), which is open in

Rd. Now taking Ṽp = π−1(S) and ψ̃ = g−1 ◦ π gives the needed claim.
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Back to Lecture!

We recall the definition of submanifolds of Rd given at Definition III.2.1. For convenience we restate this
definition:

Definition III.2.2
Let M ⊆ Rd. We call M a Cr-submanifold of Rd with boundary of dimension n provided that that

for each p ∈M there exists an open set U ⊆M and a map ϕ : U → Hn so that:

a) ϕ is a homeomorphism from U onto Û = ϕ(U) which is an open subset of Hn

b) ϕ−1 : Û → Rd is of class Cr and Dϕ−1 has rank n
c) If (V, ψ) is another chart such that U ∩ V 6= ∅ then:

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

is a Cr (or smooth) diffeomorphism.

Great! Of course if we take r = ∞ we get a smooth submanifold of Rd with boundary. We also have
that condition c) is redundant in the presence of a) and b).

Theorem III.2.2
Let O be an open subset of Rn and let f : O → R be of class Cr. Let M be the set of points

{x | f(x) = 0} and N be the set of points {x | f(x) ≥ 0}.
Now suppose that M is non-empty and Df(x) 6= 0 at each point x ∈M . Then N is an n-dimensional

Cr-submanifold of Rn with boundary and ∂N = M . In particular M is an (n − 1) dimensional Cr-
submanifold of Rn.

Example III.2.1
Let f(x) = 1− |x|2 : Rn → R. Then N = {f(x) ≥ 0} is nothing but the ball B(0, 1) and M = ∂N =

{x | f(x) = 0} = {x | |x| = 1} = Sn−1. This gives another manifestation of the smooth structure of
Sn−1 as an (n− 1)-submanifold of Rn.

Proof. Suppose p ∈ N is a point such that f(p) > 0. Then let U = {x | f(x) > 0}, which is open by
continuity of f . So we may consider the chart (U, Id), which clearly satisfies conditions a) and b), so we are
done.

Now we handle the other case and suppose that f(p) = 0. Since Df(p) 6= 0 there exists a coordinate xn

such that ∂f
∂xn (p) 6= 0. We then consider the function F : O → Rn given by:

F (x1, . . . , xn) = (x1, . . . , xn−1, f(x))

Then we have that:

DF (p) =

(
In−1 0
∂f

∂(x1,...,xn−1)
∂f
∂xn

)

This is nonsingular since detDF (p) = ∂f
∂xn (p) 6= 0¿ Hence by the inverse function theorem there is an open

set p ∈ A ⊆ Rn and another open set B ⊆ Rn such that F : A → B is a Cr-diffeomorphism. Notice that
A∩ = A ∩ {x | f(x) ≥ 0} is relatively open in N and contains p. Also with ϕ := F

∣∣
A∩N is a coordinate map

from A ∩N onto B ∩Hn.
Why? If q ∈ A ∩N then F (q) ∈ B and f(q) ≥ 0, so F (q) ∈ B ∩ {x | xn ≥ 0} = B ∩ Hn. Thus ϕ maps

A ∩ N into B ∩ Hn. ϕ is bijective since F is so. It also satisfies condition b) since ϕ−1 = F−1
∣∣
B∩Hn is of

class Cr since F is a Cr-diffeomorphism on A, and it satifies Dϕ−1 has rank n(since Dϕ−1 = DF−1 by the
above applicatin of the IFT).

Therefore, N is an n-dimensional Cr-submanifold of Rn and ∂N = {f(x) = 0} = M .

Remark III.2.2
We are often interested in the set {x ∈ Rn | f(x) = 0} where f : Rn → R.. The theorem tells you

that this is an (n− 1)-dimensional Cr-submanifold provided thatDf(p) 6= 0 for every p ∈M .
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Example III.2.2
Let f(x, y) = x2 − y2 −m. The set M = {(x, y) ∈ R2 | x2 − y2 = m} is a 1-dimensional submanifold

of R2 provided that Df(x, y) = 2(x− y) 6= 0. I.e., provided that (x, y) = (0, 0) 6∈M .

You can also do f(x, y, z) = z2 − x2 − y2 −m and you get:

What about the intersection of such hyperboloids with spheres? Do I get a one-dimensional manifold
out of it? The intersection is the zero set of two functions f = 0 and g(x, y, z) = x2 + y2 + z2 − r2 = 0.

Equivalently, the question becomes the following: Suppose F : Rn → Rk is a Cr function. When does
the set {x ∈ Rn | F (x) = 0} define an (n− k)-dimensional Cr-submanifold? For the answer to that, see
HW4.

Non-Example III.2.3
We have F (x, y) = x3. Then DF (x, y) = (3x2, 0) = 0 at x = 0, but {(x, y) | F (x, y) = 0} is just the

y-axis, which is a manifold. I.e., the converse of the theorem does not hold.

IV. Smooth Maps

Some say that we define smooth manifolds in order to study smooth maps. This turns out to be the case

IV.1. Definitions and Whitney’s Embedding Theorem

Definition IV.1.1
Let M be a smooth n-manifold. A function f : M → Rk is said to be smooth if for every p ∈M there

existsa chart (V, ψ) for M whose domain contains p and such that f ◦ϕ−1 is smooth on the open subset

Û = ϕ(U) of Rn or Hn.

Similarly one defines a Cr-map from a Cr-manifold into Rk.
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Remark IV.1.1
Some nice things:

1) The map f̂ := f ◦ϕ−1 : Û → Rk is called the coordinate representation of f . I.e., f is smooth if
and only if its coordinate representation is smooth in some chart around each point.

2) If f : M → Rk is smooth, then f ◦ψ−1 : ψ(V )→ Rk is smooth for every chart (V, ψ) on M . I.e.,
smoothness is independent of the choice of coordinate chart.

Proof. We prove this locally, since smoothness is a local property. Let x0 ∈ V̂ = ψ(V ) and
p0 = ψ−1(x0). By the definition of smoothness there exists a coordinate chart (U,ϕ) around p0
such that f ◦ ϕ−1 : ϕ(U)→ Rk is smooth.

Note that p0 ∈ U ∩ V , implies that x0 ∈ ψ(U ∩ V ). For x ∈ ψ(U ∩ V ) we have:

f ◦ ψ−1 = (f ◦ ϕ−1) ◦ (ϕ ◦ ψ−1)

And so this is smooth via compatibility and composition of smooth functions. Then f ◦ ψ−1 is
smooth on ψ(U ∩ V ) which contains x0. Since smoothness is a local property we then also have

f ◦ ψ−1 is smooth on ψ(V ).

3) As a corollary, every coordinate chart (U,ϕ) where ϕ : U → Û ⊆ Rn is a smooth map on the
open submanifold U of M .

Example IV.1.1
Let f(x, y) = x2 + y2 on R2. Using polar coordinates on the open set U = {(x, y) | x > 0}, f has the

coordinate representation f(r, θ) = r2.

(Often we don’t distinguish f and f̂ and just say that f(r, θ) = r2 in polar coordinates on U)

Definition IV.1.2
Let M and N be smooth manifolds and let F : M → N be a map. We say F is a smooth map if for

every p ∈M , there exists a coordinate chart (U,ϕ) around p and a coordinate chart (V, ψ) on N with
f(p) ∈ V such that:

• f(U) ⊆ V
• ψ ◦ F ◦ ϕ−1 : ϕ(U)→ ψ(V ) is smooth.

Here’s the nice picture:
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Continue Discussion of Smooth Maps between Manifolds

Here’s a picture for our discussion:

We now recall Definition IV.1.2 of a smooth map.
Recall: A function F : M → N is said to be smooth provided that for every p ∈M we can find a coordinate

chart (U,ϕ) around p and another coordinate chart (V, ψ) on N such that F (U) ⊆ V and ψ◦F ◦ϕ−1 : Û → V̂
is smooth for every choice of charts around p and F (p).

Exercise IV.1.2
Show that F : M → N is smooth if and only if for each p ∈ M there exists a neighborhood U such

that F
∣∣
U

is smooth.

Proposition IV.1.1
Every smooth map is continuous.

Proof. Let (U,ϕ) and (V, ψ) be as in the definition. Then consider that

F
∣∣
U

= ψ−1 ◦ (ψ ◦ F ◦ ϕ−1︸ ︷︷ ︸
smooth

) ◦ ϕ

And so since F
∣∣
U

is continuous since it is a composition of continuous functions. Since continuity is a local

property this means that F is continuous.

Exercise IV.1.3
Let M,N , and P be smooth manifolds and F : M → N and G : N → P be smooth maps. Then

G ◦ F : M → P is also smooth.

Example IV.1.4
Consider the inclusion map ι : Sn → Rn+1. This is a smooth map because its coordinate representation

w.r.t. the charts (U±i , ϕ
±) looks like:

i ◦ (ϕ±i )−1(u1, . . . , un) = (u1, . . . , ui−1,±
√

1− |u|2, ui, . . . , un)

This is clearly a smooth map from B(0, 1) into Rn+1.

Example IV.1.5
The quotient map π : Rn+1 \ {0} → RPn is also smooth. Again, using the same charts as in HW1 for

RPn we have:

ϕi ◦ π(x1, . . . , xn+1) = ϕi([x
1, . . . , xn+1]) =

(x1, . . . , x̂i, . . . , x
n+1)

xi

This is obviously a smooth map from Rn+1 \ {xi = 0} to Rn so we’re done.
Therefore π is a smooth map
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Example IV.1.6
Let M be a submanifold of Rd. Consider the inclusion map ι : M → Rd. Then ι is smooth. Take a

point p ∈M and a coordinate patch (U,ϕ). Then ι ◦ ϕ−1 = ϕ−1. By our assumptions of a submanifold,

this is a smooth function Û → Rd, by part b) of the submanifold definition.

Example IV.1.7
The map π̃ : Sn → RPn given by π̃ = π

∣∣
Sn is also smooth. This holds because it can be expressed as

the composition of two smooth maps since π̃ = π ◦ ι where ι : Sn → Rn+1 is the inclusion map.

Definition IV.1.3
A diffeomorphism between two manifolds M and N is a smooth bijection whose inverse is also smooth.

We say that M and N are diffeomorphic provided that such a map exists.

Exercise IV.1.8
Show that if M is diffeomorphic to N , then dimM = dimN .

Example IV.1.9
Let F : B(0, 1) ⊆ Rn → Rn be given by F (x) = x

1−|x|2 . Then F is a diffeomorphism.

Clearly, F is smooth. To show that F is a bijection we show that the equationF (x) = y has a unique
solution for each y. This is clear for y = 0, so let y 6= 0. Write y = ρω1 where ρ = |y| > 0 and ω1 = y

|y| ,

and likewise let x = rω2 where r = |x| > 0 and ω2 = x
|x| . Then:

F (x) =
r

1− r2 · ω1 = ρ · ω2

Therefore ω1 = ω2, and r
1−r2 = ρ. Then note that the function r 7→ r

1−r2 is one-to-one and onto from

(0, 1) to (0,∞). Therefore F is a bijection.
It remains to show that F−1 is smooth via the inverse function theorem. We can see that DF (x) is

nonsingular for every x ∈ B(0, 1).

Differential topology deals with properties of manifolds that are invariant under diffeomorphisms. (i.e. if
M is diffeomorphic to N and M has property P , then N also has property P ).

Theorem IV.1.2 (Whitney’s Embedding Theorem)
Whitney’s embeding theorem tells us that for any abstract n-manifold M , there exists a submanifold

M̃ of Rd (with d ≤ 2n) such that M is diffeomorphic to M̃ .

Proof. Take 591.

We will mostly be restricting ourselves to studying submanifolds of Rd for the remainder of this course.
Whitney’s embedding theorem tells us that there is no loss of generality from a theoretical point of view.
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Part B. Differential Forms

V. Multilinear Algebra

V.1. Multilinear Forms

We develop the algebraic framework of differential forms first.

Definition V.1.1
Let V be a vector space over R and denote by V k = V × · · · × V︸ ︷︷ ︸

k-times

, and let W be a vector space.

(i) A function f : V k →W is said to be linear in the i-th variable provided that, given fixed vectors
vj for j 6= i, the function:

T : V →WT (v) = f(v1, . . . , vi−1, v, vi+1, . . . , vn)

is a linear transformation.
(ii) The function f is called multilinear provided that it is linaer in every variable. In the case where

W = R such functions are called k-tensors or tensors of order k

Remark V.1.1
We have a few interesting thigns to note:

1) A tensor of order 1 is also called a linear functional
2) The space of k-tensors will be denoted by L k(V ). Note that L 1(V ) = V ∗, the dual space of V .

More generally the space of k-multilinear functions from V k to W is denoted L k(V,W ).

Theorem V.1.1
We have a few nice things:

a) L k(V,W ) is always vector space over R if we define:

(f + g)(v1, . . . , vk) = f(v1, . . . , vk) + g(v1, . . . , vk)

(cf)(v1, . . . , vk) = cf(v1, . . . , vk)

b) let B = {a1, . . . , an} be a basis of V . If f, g : V k →W are two k-multilinear maps such that:

f(ai1 , . . . , aik) = g(ai1 , . . . , aik)

for every k-tuple (i1, . . . , ik) of integers from the set {1, . . . , n}, then we have f = g.
c) Let I = (i1, . . . , ik) be a fixed tuple of integers from the set {1, . . . , n}. Then there exists a

unique k-tensor ΦI such that:

ΦI(ai1 , . . . , aik) = 1

ΦI(aj1 , . . . , ajk) = 0

Whenever (j1, . . . , jk) 6= (i1, . . . , ik). The set of all such ΦI where I ranges over such k-tuples
is a basis of L k(V ). These are called elementary tensors relative to the basis B. In particular

L k(V ) has dimension nk.
We can use a similar technique to construct a basis for L k(V,W ).

Exercise V.1.1
Prove parts a) and b). We will give the proof of part c) in class.
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Last time, we defined k-tensors on a vector space V . A k-tensor is a function f : V k → R that is multilinear
(i.e. it is linear in each of the components when we fix all other components). See Definition V.1.1. We
denoted the spae of k-tensors by L k(V ), and so L 1(V ) is just the dual space V ∗. We stated Theorem V.1.1
last time, and left parts a) and b) as exercises:

Theorem V.1.2
We have a few nice things:

a) L k(V,W ) is always vector space over R if we define:

(f + g)(v1, . . . , vk) = f(v1, . . . , vk) + g(v1, . . . , vk)

(cf)(v1, . . . , vk) = cf(v1, . . . , vk)

b) let B = {a1, . . . , an} be a basis of V . If f, g : V k →W are two k-multilinear maps such that:

f(ai1 , . . . , aik) = g(ai1 , . . . , aik)

for every k-tuple (i1, . . . , ik) of integers from the set {1, . . . , n}, then we have f = g.
c) Let I = (i1, . . . , ik) be a fixed tuple of integers from the set {1, . . . , n}. Then there exists a

unique k-tensor ΦI such that:

ΦI(ai1 , . . . , aik) = 1

ΦI(aj1 , . . . , ajk) = 0

Whenever (j1, . . . , jk) 6= (i1, . . . , ik). The set of all such ΦI where I ranges over such k-tuples
is a basis of L k(V ). These are called elementary tensors relative to the basis B. In particular

L k(V ) has dimension nk.
We can use a similar technique to construct a basis for L k(V,W ).

Proof of part c). Let φ1, . . . , φn be the dual basis of V ∗ defined by:

φi(v) = φi




n∑

j=1

αjaj


 = αi

In other words, we have that:

φi(aj) = δij =

{
1 if i = j
0 if i 6= j

For k ≥ 2 if I = (i1, . . . , ik), then we set:

ΦI(v1, . . . , vk) = φi1(v1) · · ·φik(vk)

Clearly, this is a k-tensor that satisfies the conditions of the theorem.
To show that these ΦI form a basis of L k(V ), let g ∈ L k(V ) and for any k-tuple I = (i1, . . . , ik) from

the set {1, . . . , n}, let:

dI = g(ai1 , . . . , aik)

Then we define:

g̃ =
∑

I

dIΦ
I

Then g and g̃ satisfy the conditions of part b), and thus g = g̃. Thus the set {ΦI}I is a basis.

Now we just note that the number of k-tuples of {1, . . . , n} is n× n× · · · × n = nk.

Example V.1.2
Let V = Rn and e1, . . . , en be the standard basis, and let φ1, . . . , φn be the dual basis. Then given a

vector v = viei (Einstein notation). We have φj(v) = φj(viei) = viφj(ei) = viδji = vj .
Given I = (i1, . . . , ik) the elementary tensor ΦI satisfies:

ΦI(v1, . . . , vk) = φi1(v1) · · ·φik(vk)
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And so if v` = xi`ei then:

ΦI(v1, . . . , vk) = xi11 x
i2
2 · · ·xikk

This is a monomial of degree k in the components of v1, . . . , vk. Any general k-tensor is a linear
combination of such monomials. For example, a general 2-tensor looks like:

g(v, w) =

n∑

i,j=1

dijx
iyj

Where v =
∑
xiei and w =

∑
yjej .

V.2. The Tensor Product

Definition V.2.1
Let f be a k-tensor and g be an `-tensor on V . We define f ⊗ g as the (k + `)-tensor defined by:

(f ⊗ g)(v1, . . . , vk+`) = f(v1, . . . , vk)g(vk+1, . . . , vk+`)

Exercise V.2.1
Check that this is a tensor, and it defines a multilinear map L k(V )×L `(V )→ L k+`(V ).

Theorem V.2.1
Let f, g, h be tensors on V . Then the following holds:

(1) f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h
(2) (cf)⊗ g = c(f ⊗ g) = f ⊗ (cg)
(3) If f and g have the same order then (f + g)⊗ h = f ⊗ h+ g⊗ h and h⊗ (f + g) = h⊗ f + h⊗ g.
(4) Given a basis a1, . . . , an of V , then the elementary k-tensors ΦI satisfy:

ΦI = φi1 ⊗ φi2 ⊗ · · · ⊗ φik
With this, any k-tensor is a linear combination of tensor products of 1-tensors.

Exercise V.2.2
Proof is left as an exercise!

The action of a linear transformation

Definition V.2.2
Suppose we have a linear map T : V →W . T allows us to pull-back k-tensors on W into k-tensors on V

by composition. One can define a dual transformation (called pullback operation) T ∗ : L k(W )→ L k(V )
by defining for all f ∈ L k(W ):

T ∗f = f ◦ T
More explicitly, given (v1, . . . , vk ∈ V k we have:

T ∗f(v1, . . . , vk) = f(Tv1, . . . , T vk)

In yet other words, we have the following commutative diagram:

V × · · · × V T //

T∗f
((

W × · · · ×W
f

��

R
Great!

Proposition V.2.2
Let T : V → W be a linear transformation. Let T ∗ : L k(W ) → L k(V ) be the pullback operator,

then:

1) T ∗ is linear
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2) T ∗(f ⊗ g) = (T ∗f)⊗ (T ∗g)
3) If S : W → X is a linear transformation then:

(S ◦ T )∗f = T ∗S∗f

That is we have:

V
T //

S◦T
��

W

S
��

X

L k(V ) L k(W )
T∗oo

L k(X)

S∗

==

(S◦T )∗

``

And these diagrams both commute as desired

Exercise V.2.3
Prove this

V.3. Alternating Tensors

Definition V.3.1
Let k ≥ 2. A permutation of the set of integers {1, . . . , k} is a one-to-one and onto mapping from

{1, . . . , k} to itself. We denote the set of all permutations by Sk.
If σ and τ are elements of Sk, so are σ ◦ τ and σ−1. This makes Sk into a group, called the symmetric

group (or the permutation group). There are k! elements in this group.

Definition V.3.2
Given 1 ≤ i ≤ k, let ei be the element of Sk defined by setting ei(j) if j 6= i, i+ 1, ei(i) = i+ 1, and

ei(i+ 1) = i. We call ei an elementary permutation (it permutes i and i+ 1).

Lemma V.3.1
Any σ ∈ Sk is the composite of alternating permutations.

Exercise V.3.1 (On Homework)
Prove this

Definition V.3.3
Let σ ∈ Sk. Consider the set of all pairs of integers (i, j) from {1, . . . , k} such that i < j but

σ(i) > σ(j). The pair (i, j) is called an inversion of σ. Let p be the number of such couples. Then, the
sign of σ is defined as sgnσ = (−1)p.

If p is odd, we say that σ is an odd permutation, and if p is even, we sa that σ is an even permutation

Proposition V.3.2
Let σ, τ ∈ Sk. Then:

(a) If σ is the composite of m elementary permutations, then:

sgnσ = (−1)m

(b) sgn(σ ◦ τ) = sgnσ · sgn τ
(c) sgnσ−1 = sgnσ
(d) If i 6= j, and σ is the permutation that only exchanges i and j, leaving all other integers in
{1, . . . , k} fixed, then sgnσ = −1.

Exercise V.3.2 (On Homework)
Prove this.
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Definition V.3.4
Let f be an arbitrary k-tensor on V . If σ is a permutation of {1, . . . , k} we define:

fσ(v1, . . . , vk) = f(vσ(1), vσ(2), . . . , vσ(k))

Because f is linear in all of its arguments, so is fσ, so fσ is a k-tensor as well.
A k-tensor f is called symmetric provided that fσ = f for all σ ∈ Sk. It is said to be alternating

provided that fσ = sgnσ · f for all σ ∈ Sk. Equivalently fe = −f for any non-trivial elementary
permutation e ∈ Sk.

Definition V.3.5
Let V be a vector space. We denote the set of alternating tensors by Ak(V ). It is easy to check that

this is a subspace of L k(V ).
Since the condition that a 1-tensor be alternating is vacuous, we adopt that convention that A1(V ) =

L 1(V ) = V ∗.

Example V.3.3
We have the following nice examples:

1) Elementary tensors ΦI in general are not alternating. For example, if I = (1, 2) then ΦI(v, w) =
φ(v)φ2(w) = v1w2. Whereas Φ(2,1)(v, w) = v2w1. But of course Φ(2,1) 6= −Φ(1,2).

However, note that we can define:

Φalt = Φ(1,2) − Φ(2,1) = v1w2 − v2w1 = det

(
v1 v2

w1 w2

)

Which is alternating. Also note that φ(2,1) =
(
φ(1,2)

)σ
where σ is the swapping permutation of

(1, 2). This kind of construction will be generalized next time.

28



Faye Jackson February 17th, 2021 MATH 396 - V.3

Last time we were talking about alternating tensors. We’ve already seen an interesting example:

Example V.3.4
Let (a1, . . . , an) be a basis of V and set vi =

∑n
j=1 v

j
i aj = vji aj .

Then define:

φ(v1, . . . , vn) = det(vji )

Then φ is an alternating n-tensor by the properties of the determinant.

Lemma V.3.3
Let f ∈ L k(V ) be any k-tensor and let σ, τ ∈ Sk. Then:

(a) The transformation f 7→ fσ is a linear transformation on L k(V ) and (fσ)τ = fτ◦σ.
(b) If f is alternating and if vp = vq for som p 6= q then f(v1, . . . , vk) = 0.

Proof. Part a) is an exercise. For part b) the idea is to let σ be the permutation that switches p and q. Then:

f(v1, . . . , vk) = fσ(v1, . . . , vk) = −f(v1, . . . , vk)

And so f(v1, . . . , vk) = 0

Example V.3.5
Let us consider Ak(V ) with k > n. Take f ∈ Ak(V ), then we saw last time that f is completely

determined by its values on a basis {a1, , . . . , an} of V . Computing f(ai1 , . . . , aik) we see that one of
the ai must be repeated since k > n by the pigeonhole principle. By the lemma we then have that:

f(ai1 , . . . , aik) = 0

Therefore the only alternating k-tensor for k > n is the trivial tensor.

Lemma V.3.4
Let a1, . . . , an be a basis of V . If f and g are two alternating k-tensors that satisfy:

f(ai1 , . . . , aik) = g(ai1 , . . . , aik)

For any ascending k-tuple I = (i1, . . . , ik) from the set {1, . . . , n}. Then:

f = g

Remark V.3.1
Compare this to the analogous lemma for L k(V ).

Proof. Let J = (j1, . . . , jk) be a k-tuple. By the analogous lema for k-tensors, f = g if and only if:

f(aj1 , . . . ., ajk) = g(aj1 , . . . , ajk)

Therefore it is enough to show that this holds. If two of the indices in J are the same, then we are done by
the previous lemma, since both sides of this equation will be zero.

If no two indices of J are the same, let I be the ascending rearrangement of J by some permutation σ
such that I = (jσ(1), . . . , jσ(k))..

Then we have that:

f(ai1 , . . . , aik) = f(ajσ(1) , . . . , ajσ(k))

= fσ(aj1 , . . . , ajk)

= (sgnσ) · f(aj1 , . . . , ajk)
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Similarly we have:

g(ai1 , . . . , aik) = g(ajσ(1) , . . . , ajσ(k))

= gσ(aj1 , . . . , ajk)

= (sgnσ) · g(aj1 , . . . , ajk)

By the assumption we have that f(ai1 , . . . , aik) = g(ai1 , . . . , aik). Therefore:

f(aj1 , . . . , ajk) = g(aj1 , . . . , ajk)

And so we are done!

Theorem V.3.5 (Basis for Ak(V ))
Let V be a vector space with basis a1, . . . , an. Let I = (i1 . . . , ik) be tan ascending k-tuple from

the set {1, . . . , n}. Then there is a unique alternating k-tensor ΨI on V such that for every ascending
k-tuple J = (j1, . . . , j −K0 from {1, . . . , n} such that:

ΨI(aj1 , . . . , ajk) =

{
1 if I = J
0 if I 6= J

In fact, we take a “anti-symmetrization” of ΦI from before:

ΨI =
∑

σ∈Sn
(sgnσ) ·

(
ΦI
)σ

The tensors ΨI form a basis for Ak(V ). There are
(
n
k

)
of these tensors, since htere are

(
n
k

)
ascending

k-tuples. These are called the elementary alternating tensors corresponding to the basis {a1, . . . , an}.
Recall: We have the following:

ΦI = Φi1 ⊗ · · · ⊗ Φik

ΦI(a`1 , . . . , a`k) =

{
1 if I = (`1, . . . , `k)
0 if I 6= (`1, . . . , `k)

Proof. Uniqueness of the ΨI follows from the previous lemma. Take ΨI as given in the theorem:

ΨI =
∑

σ∈Sn
(sgnσ) ·

(
ΦI
)σ

We first show that this is alternating:
(
ΨI
)τ

=
∑

σ∈Sn
(sgnσ) ·

((
ΦI
)σ)τ

=
∑

σ∈Sn
(sgnσ) ·

(
ΦI
)τ◦σ

= sgn τ ·
∑

σ∈Sn
(sgn τ)(sgnσ) ·

(
ΦI
)τ◦σ

= sgn τ ·
∑

σ∈Sn
(sgn τ ◦ σ) ·

(
ΦI
)τ◦σ

= sgn τ ·
∑

µ∈Sn
(sgnµ) ·

(
ΦI
)µ

= (sgn τ) ·ΨI

And therefore ΨI ∈ Ak(V ).
Next let J = (j1, . . . , jk) be another ascending k-tuple. Look at:

ΨI(aj1 , . . . , ajk) =
∑

σ∈Sn
(sgnσ)(ΦI)σ(aj1 , . . . , ajk) =

∑

σ∈Sn
(sgnσ)(ΦI)(ajσ(1) , . . . , ajσ(k))
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And then this is 0 unless (jσ(1), . . . , jσ(k)) = I. Since I and J are both ascending this only happens when σ
is the identity and I = J :

ΨI(aj1 , . . . , ajk) =

{
(sgn Id)ΦI(ai1 , . . . , aiK ) if I = J
0 if I 6= J

=

{
1 if I = J
0 if I 6= J

To show that this is a basis let f ∈ Ak(V ) and let dI = f(ai1 , . . . , aik) for every ascending k-tuple
I = (i1, . . . , ik). Then we consider:

f̃ =
∑

I

dIΨ
I

Then f and f̃ satisfy the conditions of the previous lemma, which you should check, and then f = f̃ .
The uniqueness of this representation also follows from the previous lemma. If we have that:

∑

I

dIΨ
I = 0

Then necessarily for any ascending J = (j1, . . . , jk) we have:
∑

I

dIΨ
I(aj1 , . . . , ajk) = dJ · 1 = 0

So dJ = 0. This happens because all the terms where I 6= J are zero, and the term when I = J is dJ .

Remark V.3.2
A1(V ) has dimension n and An(V ) has dimension 1. In particular, any alternating n-tensor is a

multiple of the determinant tensor discussed in a previous example.

Just like general k-tensors, alternating tensors can be pulled back by linear transformations as follows.

Theorem V.3.6
Let T : V → W be a linear transformation. If f is an alternating tensor on W , then T ∗f is an

alternating tensor on V .

Proof left as an Exercise. Recall T ∗f(v1, . . . , vk) = f(Tv1, . . . , T vk).

V.3.1. The space Ak(Rn)

By the aboe, An(Rn) has dimension 1, and we already saw that the tensor defined by:

Ψ(x1, . . . , xn) = det[x1 | · · · | xn]

is an alternating n-tensor thanks to the properties of the determinant function. If I = (1, . . . , n) then ΨI = cΨ
for some constant c ∈ R. In fact ΨI = Ψ. We see this because:

1 = ΨI(e1, . . . , en) = cΨ(e1, . . . , en) = cdet In = c

This has a generalization for k < n

Theorem V.3.7
Let ΨI be an elementary alternating tensor on Rn corresponding to the standard basis, where

I = (i1, . . . , ik) is an ascending k-tuple from {1, . . . , n}.
Then given x1, . . . , xk ∈ Rn, let X be the (n× k) matrix X = [x1 | · · · | xk]. Then we have:

ΨI(x1, . . . , xk) = detXI

Where XI is the (k × k) matrix whose successive rows are the rows i1, . . . , ik of X.
This holds for 1 ≤ k ≤ n. Recall that if k > n then Ak(Rn) = 0.
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Remark V.3.3
Any k-form on Rn is a linear combination of detXI for different (k × k) submatrices of the (n× k)

matrix X.

Proof. Compute ΨI(x1, . . . , xk). Then:

ΨI(x1, . . . , xk) =
∑

σ∈Sn
(sgnσ) · (ΦI)σ(x1, . . . , xk)

=
∑

σ∈Sn
(sgnσ) · ΦI(xσ(1), . . . , xσ(K))

=
∑

σ∈Sn
(sgnσ) · xi1σ(1) · · ·x

in
σ(n) = detXI

Great! This is exactly what we wanted.
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V.4. The Wedge Product

The wedge product for alternating tensors is the analogue of the tensor product for general tensors. Recall
that if f ∈ L k(V ) and g ∈ Lm(V ), then f ⊗ g ∈ L k+m(V ) is defined by:

[f ⊗ g](v1, . . . , vk+m) = f(v1, . . . , vk)g(vk+1, . . . , vk+m)

Clearly if f ∈ Ak(V ) and g ∈ Am(V ). Then f ⊗ g might not be alternating. (Take the case k = m = 1, then
(f ⊗ g)(v1, v1) = f(v1)g(v1) may not be zero, which must hold for alternating tensors).

Lemma V.4.1
Let V be a vector space. There exists a linear transformation A : L k(V ) → Ak(V ) (called the

ănti-symmetrization map) given by:

Af =
∑

σ∈Sk
(sgnσ)fσ

For every f ∈ L k(V ). Moreover A is onto and satisfies Af = k!f when f ∈ Ak(V ).

Remark V.4.1
For all practical purposes, A can be considered a projection onto Ak(V ), and in fact 1

k! ·A should
be such a projection.

Proof. Clearly A is linear because (f + g)σ = fσ + gσ. To show that Af is actually alternating, notice that:

(Af)τ =
∑

σ∈Sk
(sgnσ) · (fσ)τ =

∑

σ∈Sk
(sgnσ) · fτ◦σ

= (sgn τ) ·
∑

σ∈Sk
(sgn τ) · (sgnσ) · fτ◦σ = (sgn τ) ·

∑

σ∈Sk
sgn(τ ◦ σ) · fτ◦σ

= (sgn τ) ·
∑

µ∈Sk
(sgnµ) · fµ = (sgn τ) ·Af

Finally, if f ∈ Ak(V ) then:

Af =
∑

σ∈Sk
(sgnσ) · fσ =

∑

σ∈Sk
(sgnσ)2f = f

∑

σ∈Sk
1 = k!f

Awesome!

Definition V.4.1
Let V be a vector space and let f ∈ Ak(V ) and g ∈ A`(V ). We define f ∧ g ∈ Ak+`(V ) to be given

by:

f ∧ g =
1

k!`!
A(f ⊗ g)

This alternating k + ` tensor is called the wedge product of f and g:

Remark V.4.2
The factor 1

k!`! is introduced to retain some nice properties of the wedge product (namely

associativity). Sometimes it is defined with 1
(k+`)! instead, but it doesn’t really matter that much.

Theorem V.4.2 (Properties of the wedge product)
Let V be a vector space. The wedge product satisfies the following properties:

(1) Associativity, (f ∧ g) ∧ k) = f ∧ (g ∧ k).
(2) Homogeneity, (cf) ∧ g = c(f ∧ g) = f ∧ (cg)
(3) Distributivity, if f and g have the same order, then we have:

(f + g) ∧ h = f ∧ h+ g ∧ h
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h ∧ (f + g) = h ∧ f + h ∧ g
(4) Anti-commutativity, if f and g have orders k and ` respectively, then:

f ∧ g = (−1)k` · g ∧ f
In particular, if f has odd order, then f ∧ f = 0.

(5) Given a basis a1, . . . , an of V , let φi be the dual basis of V ∗ (equivalently, φi is the basis of
L 1(V ) = A1(V )). Then let ΨI denote the elementary alternating tensor where I = (i1, . . . , ik)
is an ascending k-tuple from {1, . . . , n}. Then we have:

ΨI = φi1 ∧ φi2 ∧ · · · ∧ φik

(6) If T : V →W is a linear transformation, then T ∗(f ∧ g) = (T ∗f) ∧ T ∗(T ∗g).
(7) The product ∧ is the unique operation satisfying properties (1)-(5).

Proof. The proof of (1) will be outlined in HW5. (2) and (3) follow from the corresponding results for tensor
product and the linearity of A, for example:

(f + g) ∧ h =
1

k!`!
A((f + g)⊗ h) =

1

k!`!
A(f ⊗ h+ g ⊗ h)

=
1

k!`!
A(f ⊗ h) +

1

k!`!
A(g ⊗ h) = f ∧ h+ g ∧ h

(4), that is anti-commutativity, will follow by showing that A(f ⊗ g) = (−1)k`A(g ⊗ f) for any fL k(V ) and
g ∈ L `(V ). To see this, consider π ∈ Sk+` given by (π(1), . . . , π(k + `) = (k + 1, . . . , k + `, 1, . . . , k). Then
by counting the inversions we see that sgnπ = (−1)k` (check!).

But then we see that:

(g ⊗ f)π(v1, . . . , vk+`) = (g ⊗ f)(vk+1, . . . , vk+`, v1, . . . , vk) = (f ⊗ g)(v1, . . . , vk+`)

Great! This is the key, that (g ⊗ f)π = (f ⊗ g). We write:

A(f ⊗ g) =
∑

σ∈Sk
(sgnσ)(f ⊗ g)σ =

∑

σ∈Sk
(sgnσ)((g ⊗ f)π)σ

=
∑

σ∈Sk
(sgnσ)(g ⊗ f)σ◦π = (sgnπ) ·

∑

σ∈Sk
(sgnσ) · (sgnπ) · (g ⊗ f)σ◦π

= (−1)k` ·
∑

σ∈Sk
sgn(σ ◦ π) · (g ⊗ f)σ◦π = (−1)k`A(g ⊗ f)

Perfect!
Now for (5) recall that the elementary alternating tensors ΨI are defined for I = (i1, . . . , ik) as:

ΦI = φi1 ⊗ · · · ⊗ φik

ΨI =
∑

σ∈Sk
(sgnσ)(ΦI)σ = A(ΦI)

This will follow once we show that if f1, . . . , fk are 1-tensors, then:

A(f1 ⊗ · · · ⊗ fk) = f1 ∧ · · · ∧ fk (?)

From Homework 5, we know that if g ∈ A`(V ) and f ∈ L k(V ) then:

A(f ⊗ g) =
1

`!
· (Af) ∧ g (??)

To prove (?) we induct on k. For k = 1 this is trivially true. In general, assuming that:

A(f1 ⊗ · · · ⊗ fk) = f1 ∧ · · · ∧ fk
Then we know by associativity that since fk+1 will be an alternating tensor we can use (??) to get:

A(f1 ⊗ · · · ⊗ fk ⊗ fk+1) = A(f1 ⊗ · · · fk) ∧ fk = f1 ∧ · · · fk ∧ fk+1

Therefore (?) is true by induction, and the result follows.
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For propert (6) we consider that:

T ∗(f ∧ g) =
1

k!`!
T ∗(A(f ⊗ g))

=
1

k!`!

∑

σ∈Sk
(sgnσ) · T ∗((f ⊗ g)σ)

=
1

k!`!

∑

σ∈Sk
(sgnσ) · [T ∗((f ⊗ g))]σ

Why? Well T ∗ is linear and also:

T ∗(Fσ)(v1, . . . , vm) = Fσ(Tv1, . . . , T vm) = F (Tvσ(1), . . . , T vσ(m)

= T ∗F (vσ(1), . . . , vσ(m)) = (T ∗F )σ(v1, . . . , vm)

Then:
1

k!`!

∑

σ∈Sk
(sgnσ) · [T ∗((f ⊗ g))]σ =

1

k!`!

∑

σ∈Sk
(sgnσ) · [T ∗f ⊗ T ∗g]σ =

1

k!`!
A(T ∗f ⊗ T ∗g) = T ∗f ∧ T ∗g

Awesome! (7) will be part of Homework 6

VI. Tangent Vectors and the Tangent Space

VI.1. Definitions

Here’s the picture which we will try to formalize. We want to pick a point p ∈M and describe the set of
manifolds that are tangent to the manifold at p:

Let us start with the easy case when M = Rn.

Definition VI.1.1
Given x ∈ Rn, we define a tangent vector to Rn at x to be the pair (x;~v) (sometimes denoted ~vx

where ~v ∈ Rn. That is we attach a vector ~v ∈ Rn to a point x ∈ Rn.
The set of all tangent vectors to Rn at x is denoted TxRn, and is called the tangent space to Rn at x.

This is a vector space with the operations:

(x;~v) + (x; ~w) = (x;~v + ~w)

c(x;~v) = (x; c~v)

Notice that of course TxRn ∼= Rn as vector spaces.

Remark VI.1.1
Let ~vx ∈ TxRn be a tangent vector at x. Then there exists a smooth curve γ : (−ε, ε) → Rn such

that γ(0) = x and γ′(0) = ~vx. Namely, the curve γ(t) = x + tv is such a curve. In other words, the
tangent space to Rn at x is exactly the set of tangents γ′(0) to curves γ(t) with γ(0) = x.
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Last time, we defined tangent vectors and the tangent space to Rn (Definition VI.1.1). For each p ∈ Rn,
we defined the tangent vectors as the pair (p,~v) where ~v ∈ Rn, we sometimes write this as ~vp. We had the
following notes:

• Then TpRn is the tangent space to Rn at p, and it is isomorphic to Rn.
• We also saw that TpRn is exactly the set of velocity vectors γ′(0) of smooth curves γ : (−ε, ε)→ Rn

satisfying γ(0) = p.

Definition VI.1.2
Let M be an n-dimensional smooth manifold and let p ∈ M . Suppose that (U,ϕ) is a coordinate

chart near p where ϕ : U → Û ⊆ Rn with ϕ(p) = x ∈ Rn. A tangent vector to M at p consists of a
smooth curve γ : (−ε, ε)→ U such that γ(0) = p. We consider two such curves γ, δ to be equivalent as
tangent vectors whenever (ϕ ◦ γ)′(0) = (ϕ ◦ δ)′(0), and we denote the equivalence class of such a curve
as [γ], this is a tangent vector. The set of such tangent vectors is called the tangent space of M at p
and is denoted TpM . We define a vector space structure on TpM by defining:

c[γ] = [t 7→ γ(ct)]

[γ] + [δ] = [t 7→ ϕ−1(ϕ(γ(t)) + ϕ(δ(t)))]

We of course must restrict the domains of these maps to be smaller neighborhoods (−ε, ε) for this to
work out, but that’s fine.

Really, this just translates the vector space structure of Rn to TpM . In a miracle, TpM does not
depend on the chart U chosen. It turns out that TpM ∼= Rn, and this is given by the linear isomorphism
[γ]→ (ϕ ◦ γ)′(0).

We now give a simpler definition for submanifolds, which is what we will be dealing with in this course

Definition VI.1.3
Let M be an n-dimensional smooth submanifold of Rd and let p ∈ M . Suppose that (U,ϕ) is a

coordinate chart near p where ϕ : U → Û ⊆ Rn with ϕ(p) = x ∈ Rn. Let α = ϕ−1 : Û → Rd. We define
the pushforward of α as α∗ : TxRn → TpRd as:

α∗(~vx) = Dα(x) · ~vx
Since Dα(x) is a d× n matrix. Here is the picture:

Remark VI.1.2
Notice that by the chain rule α∗(~vx) is the velocity or tangent vector γ′(0) of the curve:

γ(t) = α(x+ t~vx) : (−ε, ε)→M

which satisfies γ(0) = p.

In another nice picture:
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Definition VI.1.4
With the same notation as in the above definition. The following set TpM is the tangent space to M

at p:

TpM := imα∗ = {α∗(vx) | vx ∈ TxRn}
Where α is the inverse to some chart around p as in the previous definition. A tangent vector to M at

p is just a member of this tangent space. TpM is a subspace of TpRd, since it is the image of a linear
transformation:

This definition does not depend on the coordinate chart ,

In what follows, we will show the following for the submanifold definition:

(A) TpM is independent of the choice of coordinate chart (U,ϕ) (and hence α)
(B) TpM is an n-dimensional subspace of TpRd
(C) With α as above, α∗ : TxRn → TpM is a vector space isomorphism.

In fact, (B) and (C) are not that hard to show, since TpM is the range of α∗ which is a linear transformation
TxRn → TpRd given by matrix multiplication by Dα(x). But this matrix has rank n, which means that its
image is n-dimensional. Furthermore, α∗ : TxRm → TpM is an isomorphism since it’s onto and the dimension
of TxRn and TpM agree (they are both n-dimensional).

There is more than one way to show (A). One is direct, and the other will follow from the characterization
of TpM using curves in M passing through p.

Direct proof of (A). Let (U,ϕ) be the coordinate chart used in the definition with α = ϕ−1. Let (V, ψ) be
another coordinate patch neat p ∈M such that ψ(p) = y, and denote β = ψ−1.

We know that ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is a Cr-diffeomorphism, which means that D(ψ ◦ α) is an
invertible matrix. Now note that α = ψ−1 ◦ ψ ◦ α = β ◦ ψ ◦ α. Therefore by the chain rule:

Dα(x) = Dβ(y) ◦D(ψ ◦ α)(x) (?)
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This gives that =Dα(x) = =Dβ(y). In other words α∗(TxRn) = β∗(TyRn). This is because we have:

TpRd

TxRn

α∗

>>

(ψ◦ϕ−1)∗

// TyRn

β∗
``

Thus TpM is well-defined. In more concrete terms:

α∗(TxRn) = β∗([ψ ◦ ϕ−1]∗(TxRn) = β∗(TyRn)

Great!

Remark VI.1.3
Notice that from (?) we have the following. If zp ∈ TpM is such that zp = α∗(vx) = β∗(wy). The

question is then what is wy in terms of vx? Well, we see via (?) that:

zp = Dα(x) · vx = Dβ(y) · (D(ψ ◦ α)(x) · vx) = Dβ(y) · wy
Therefore since Dβ(y) is injective from previous work, we see that:

wy = D(ψ ◦ α)(x) · vx
In other words, the coordinate representation of zp in the ψ coordinates (wy) is given by applying the
derivative of the transition map from ϕ coordinates to ψ coordinates (D(ψ ◦ ϕ−1)) to the coordinate
representation of zp in the ϕ coordinates (vx).

Theorem VI.1.1 (Characterization of TpM using curves through p)
This theorem links our concrete definition for submanifolds to the definition for abstract manifolds.

Let M be an n-dimensional submanifold of Rd. Suppose that p ∈M \ ∂M , and zp ∈ TpRd.
Then zp ∈ TpM if and only if there exists a smooth curve γ(t) : (−ε, ε) → Rd such that im γ ⊆ M

(aka γ lies in M), γ(0) = p, and γ′(0) = zp.
In other words, TpM is the set of velocity vectors to the curves in M passing through p.

Proof. If zp ∈ TpM , then by definition zp = Dα(x) · vx for some vx ∈ TxRn (using the same notation from
earlier). We may then take γ to be the curve:

γ : (−ε, ε)→ U ⊆M
t 7→ α(x+ tvx)

noting that x+ tvx belongs to Û is ε > 0 is small enough. Then by the chain rule:

γ′(t) = Dα(x+ tvx) · vx =⇒ γ′(0) = Dα(x) · vx = zp

This takes care of one direction of the proof.
Conversely, suppose that γ : (−ε, ε)→ Rd is smooth and im γ ∈M , γ(0) = p, and γ′(0) = zp ∈ TpRd. We

wish to show that zp ∈ TpM . Let γ̃(t) = ϕ ◦ γ : (−ε, ε)→ Rn. This is a curve in Û .
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Then γ = ϕ−1 ◦ γ̃ = α ◦ γ̃. Hence, provided that γ̃ can be shown to the smooth, we have by the chain rule
that:

γ′(0) = Dα(x) · γ̃′(0)

So zp = α∗(γ̃′(0)) ∈ TpM . We now prove that γ̃ is smooth (we cannot use composition of smooth maps,

because ϕ : U → Û is not a map from an open set of Rd)
To show that γ̃ is a smooth curve, recall that we showed in Lecture 5 that ϕ : U → Rn extends to a

smooth map Φ : U♥ → Rn where U♥ is an open subset of Rd containing U which agrees with ϕ on M . But
then γ̃ = Φ ◦ γ is smooth being the composite of two smooth maps.

The case when p ∈ ∂M is similar and is left to the homework.
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Last time we defined for an inverse chart α : Û → U for a submanifold M a push-forward map α∗ :
TxRn → TpRd, and then TpM was the image of this map:

α∗(vx) = Dα(x) · vx
This image TpM = imα∗ was called the tangent space to M at p, and this was an n-dimensional subspace
isomorphic to TxRn via α∗.

We then showed that zp ∈ TpM if and only if there exists a smooth curve γ : (−ε, ε) → Rd such that
γ(t) ∈M , γ(0) = p, γ′(0) = zp.

Remark VI.1.4
Suppose that M = Rd, and let f : Û ⊆ Rn → Rd then:

f∗(vx) = Df(x) · vx
Then the right interpretation of Df(x) is as a linear transformation TxRn → TpRd where p = f(x).

VI.2. Vector Fields and the tangent bundle

We saw that if M = Rn then TpM ∼= Rn for every p ∈M .

Definition VI.2.1
We define the tangent bundle of Rn, denoted TRn as

⋃
p∈Rn TpRn and give it the topology of Rn×Rn.

This means that (p, v) ∈ TRn = Rn×Rn corresponds to the point p ∈ Rn along with the tangent vector
v at p.

Definition VI.2.2 (Tangent Bundle)
Let M be a smooth n-dimensional submanifold of Rd. The tangent bundle TM is defined as the

smooth submanifold of TRd = Rd × Rd given by:

TM = {(p, v) ∈ Rd × Rd | p ∈M,v ∈ TpM}
This submanifold is 2n dimensional, and its submanifold structure defined as follows:

Suppose that (Uj , ϕj) is a coordinate atlas of M , and denote αj := ϕ−1j : Ûj → Rd as usual.

Define Λj : Ûj × Rn → TRd as follows:

Λj(x, v) = (αj(x), Dαj(x) · v) = (αj(x), (αj)∗(vx))

This gives an atlas for TM . This will be homework. Thus TM is a 2n-dimensional submanifold of TRd.

Definition VI.2.3 (Tangent vector fields)
Let M be a smooth n-submanifold of Rd. Then:

(a) A Ck vector field X on M is a Ck map from M → TRd such that X(p) ∈ TpRd for every p ∈M .
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(b) A Ck tangent vector field X on M is a Ck map from M → TM such that X(p) ∈ TpM for every
p ∈M .

Example VI.2.1
The wind velocity at each point p on the surface of the earth is a vector field.

Exercise VI.2.2
Let F : Rd → Rd be any smooth function. Then F can be regarded as a vector field as follows. Define:

F : x 7→ (x, F (x)) ∈ TxRd

Example VI.2.3
Let F : S2 → R3 be given by F (x) = ~x for every x ∈ S2. Then F gives a vector field on S2 via the

identification F :

F : x 7→ (x, x) ∈ TxR3

Pictorially we have a vector field:
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This is called the normal field to S2.

Example VI.2.4
Let G : S2 → R3 be defined by G(x1, x2, x3) = (−x2, x1, 0). Then one can easily see that (x,G(x)) ∈

TxS2. This gives a smooth tangent vector field on S2.

VI.3. The Pushforward Map

Lemma VI.3.1
Let F : M → N be some map. F is a smooth map if and only if F admits local extensions near every

point p ∈M as a smooth map from an open set O ⊆ Rd1 into Rd2 .
More precisely, for every p ∈M , there exists a neighborhood O of p such that O is open in Rd1 and

there exists a smooth map F : O → Rd2 such that:

F
∣∣
O∩M = F

Proof. Let’s go!

(⇐) Trivial–from Hani.
(⇒) Fix some p ∈M , and by the definition of smoothness pick charts (U,ϕ) around p and (V, ψ) around

F (p) such that ψ ◦ F ◦ ϕ−1 is smooth and F (U) ⊆ V .

Then by lecture 5, there exists an open O ⊆ Rd1 and a function Φ : O → Û such that Φ is smooth
and Φ

∣∣
O∩M = ϕ.

Then for each q ∈ U , q = ϕ−1 ◦Φ(q), so F (q) = F ◦ϕ−1 ◦Φ(q). Then let F : O → Rd be given by
F = F ◦ ϕ−1 ◦ Φ. Then F

∣∣
O∩M = M .

What remains is to show that F is smooth. Note that since F (x) ∈ V , then:

ψ−1 ◦ ψ ◦ F = F

Therefore:

F = ψ−1 ◦ (ψ ◦ F ◦ ϕ−1) ◦ Φ

These are all smooth functions defined open subsets of some R`, and so F is smooth.

Definition VI.3.1 (General Pushforward)
Let M be an n-dimensional submanifold of Rd1 and N be a k-dimensional submanifold of Rd2 . Then

let F : M → N be some smooth map. We have the following picture in charts:
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Figure 1. The charts for the pushforward map

Recall that a function F : M → N is smooth if ψ ◦ F ◦ ϕ−1 : Û → V̂ is smooth for some coordinate
charts (U,ϕ) and (V, ψ) on M and N respectively such that p ∈ U , F (U) ⊆ V .

Let Xp be some tangent vector in TpM . Then there exists a curve γ(t) : (−ε, ε) → M such that
γ(0) = p and γ′(0) = Xp. Then define γ̃ = F ◦ γ : (−ε, ε)→ N .

Note that γ̃ is also smooth (since γ̃ = F ◦ γ where F is the lcoal smooth extension of F given by
Lemma VI.3.1).

Then γ̃′(0) ∈ TF (p)N . This vector is called F∗Xp. The push forward of Xp by F .

Proposition VI.3.2
Let M,N be as above, and let F : M → N be a smooth map. For p ∈M , the push-foward map:

F∗ : TpM → TF (p)N

defined above, is a well-defined linear transformation. Moreover, let (U,ϕ) be local coordinates near p

with α = ϕ−1 : Û → U , (V, ψ) local coordinates near F (p) with β = ψ−1 : V̂ → V .

If Xp ∈ TpM is given by α∗(vx) where vx ∈ TxÛ and if F̃ = ψ◦F ◦ϕ−1 is the coordinate representation
of F , then:

wy := DF̃ (x) · vx (y = ψ(F (p)))

F∗(Xp) = β∗(wy)
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Recall Figure 1 for a nice picture. In a commutative diagram:

TpM
F∗ //

(α∗)
−1

��

TF (p)N

(β∗)
−1

��

TxRn

α∗

OO

F̃∗

// TyRn
β∗

OO

Basically, all that the proposition is saying is that this diagram commutes.

Proof. Linearity of F∗ follows from the coordinate representation above. Let X
(1)
p , X

(2)
p ∈ TpM , then

X
(j)
p = α∗(v

(j)
x ) where v

(j)
x ∈ TxRn for j = 1, 2.

Then:

X(1)
p + cX(2)

p = α∗(v
(1)
x + cv(2)x )

F∗(X
(1)
p + cX(2)

p ) = β∗(DF̃ (x) · (v(1)x + cv(2)x ))

= β∗DF̃ (x) · v(1)x + cβ∗DF̃ (x) · v(2)x
= F∗(X

(1)
p ) + cF∗(X

(1)
p )

Similarly, one can use this coordinate representation to check that F∗(Xp) is well-defined, which we’ll leave
as an exericse.

It then suffices to prove the coordinate representation.
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Last time we defined the pushforward map (Definition VI.3.1). This definition gave us for F : M → N a
smooth function between submanifolds a map F∗TM → TN , or at points F∗ : TpM → TF (p)N . In pictures
this looked like

In particular, given Xp ∈ TpM , we know that there is a curve γ : (−ε, ε) → M such that γ(0) = p and
γ′(0) = Xp. Then we let γ̃ = F ◦ γ and then γ̃′(0) is a tangent vector to N at F (p). So F∗(Xp) = γ̃′(0).

Properties of the pushforward map:

a) It is well-defined (i.e. F∗Xp is independent of the choice of γ)
b) F∗ is a linear transformation from TpM into TF (p)N .
c) The coordinate representation of F∗ with the charts and notation given above we have a commutative

diagram:

TpM
F∗ //

(α∗)
−1

��

TF (p)N

(β∗)
−1

��

TxRn

α∗

OO

F̃∗

// TyRn
β∗

OO

At points this just looks like:

Xp
� F∗ //

_

(α∗)
−1

��

F∗(Xp)_

(β∗)
−1

��
vx

_
α∗

OO

�
F̃∗

// wy
_
β∗

OO

In pictures this is:
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And so if Xp = α∗(vx) then F∗(Xp) = β∗(wy) where wy = DF̃∗(vx) = DF̃ (x) · vx.

Exercise VI.3.1
Question: What if F has a smooth extension F : U → N ⊆ Rd2 where U is an open subset of Rd1

(where dimM = d1, dimN = d2) such that F (p) = F (p) for all p ∈M .
In that case, the natural thing happens F∗(Xp) = DF (p) ·Xp.

Remark VI.3.1
fF U ⊆ Rn is open and V ⊆ Rk is open, then F : U → V , then F∗ = DF . More precisely,

F∗(Xp) = DF (p) ·Xp. That is it’s a linear transformation between the tangent spaces TpU to TF (p)V .
F∗ can also be regarded as a map from TM → TN as follows:

(p,Xp) 7→ (F (p), F∗(Xp))

Proof of Coordinate Representation of F∗. Let Xp ∈ TpM , then Xp = α∗(vx) where vx ∈ TxRn. Take
γ(t) = α(x+ tv), which satisfies γ(0) = p and γ′(0) = Xp = Dα(x) · v.

Then we compute:

γ̃(t) = (F ◦ γ)(t) = (F ◦ α)(x+ tv)| = (F ◦ ϕ−1)(x+ tv)

= (ψ−1 ◦ ψ ◦ F ◦ ϕ−1)(x+ tv)

= (ψ−1 ◦ F̃ )(x+ tv)

= (β ◦ F̃ )(x+ tv)

These are smooth functions on open subsets of euclidean space and so by the chain rule:

γ̃′(0) = Dβ(y) ·DF̃ (x) · vx
F∗Xp = β∗(DF̃ (x) · vx)

which is exactly what we wanted to show.

Special Important case: N = R
Let f : M → R be smooth. Then f∗ : TpM → Tf(p)R = R is a linear transformation from TpM → R. In

fact:

f∗(Xp) =
d

dt

∣∣∣
t=0

f ◦ γ(t)

where γ is any curve such that γ(0) = p and γ′(0) = Xp.
This linear transformation is also denoted by dfp and one can regard it as an element of the dual space

T ∗pM := (TpM)∗, which is often called the cotangent space at p (see Definition VII.1.2).

46



Faye Jackson March 8th, 2021 MATH 396 - VI.4

VI.4. Basis for the tangent space

Let M be an n-dimensional submanifold of Rd and let (U,ϕ) be a coordinate chart near p ∈ M and set

α = ϕ−1 : Û → U and x = ϕ(p). Then we know that TpM = α∗(TxRn) = Dα(TxRn). Then since Dα has
rank n, the vectors Dα(e1), Dα(e2), . . . , Dα(en) are n linearly independent vectors in TpM , forming a basis
for this space.

Notation: Suppose ϕ(p) = (x1(p), . . . , xn(p)). Then α∗(ej) is often denoted by ∂
∂xj (p). That is:

∂

∂xj
(p) = Dα(ϕ(p)) · (ej) =

∂α

∂xj
(ϕ(p))

Each ∂
∂xj is a tangent vector field to M defined for p ∈ U .

Lemma VI.4.1
Suppose that (U,ϕ) and (V, ψ) are two coordinate charts on M and let p ∈ U ∩ V . Denote α = ϕ−1

and β = ψ−1.
Let ϕ = (x1, . . . , xn) and ψ = (y1, . . . , yn). Then the vector fields ∂

∂xi and ∂
∂yj for 1 ≤ i ≤ n and

1 ≤ j ≤ n coexist on the set U ∩ V . If we denote G = ϕ ◦ ψ−1, then we have that:

∂

∂yi
(p) = (α∗)x(G∗)y(ei) =

n∑

j=1

∂Gj

∂yi
∂

∂xj
(p)

Where Gj(y) = (xj ◦ ψ−1)(y). In a picture:

Abusing notation, we can write ∂Gj

∂yi = ∂xj

∂yi . And then by einstein summation notaton:

∂

∂yi
=
∂xj

∂yi
∂

∂xj

Proof. For p ∈ U ∩ V , we have that β(y) = ψ−1(y) = ϕ−1 ◦ ϕ ◦ ψ−1(y) = α ◦G(y). By the chain rule then:

β∗(vy) = Dβ(y) · vy = Dα(x)DG(y)vy = (α∗)x · (G∗)y(vy)

Setting vy = (ei)y we see that:

∂

∂yi
= (α∗)x((G∗)y(ei)) = Dα(x) ·DG(y) · ei

DG(y) =
∂G

∂yi
=

n∑

j=1

∂Gj

∂yi
(ej)x
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∂

∂yi
=

n∑

j=1

∂Gj

∂yi
α∗(ej) =

n∑

j=1

∂Gj

∂yi
∂

∂xj

Proposition VI.4.2
Let X be a vector field on M (i.e. X is a map from M to TM such that Xp ∈ TpM).
X is smooth if and only if for every coordinate chart (U,ϕ), there exist smooth functions f1, . . . , fn :

U → R such that:

Xp =

n∑

i=1

f i(p)
∂

∂xi
(p)
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Basis for TpM . If x = ϕ(p) then {e1, . . . , en} is a basis for TxRn = TxÛ .
THen a basis of TpM is given by Dα(x) · e1, . . . , Dα(x) · en (since Dα(x) has rank n).

Notation: If we denote ϕ(p) = (x1(p), . . . , xn(p)) then Dα(ϕ(p)) · ej is often denoted by ∂
∂xj (p). In effect,

each ∂
∂xj gives us a locally defined vector field on U .

Caution: Those n vector fields are only defined on U and they depend on the choice of coordinates on U .
In fact, last time we showed that if (V, ψ) is another coordinate system near p and we denote ψ = (y1, . . . , yn),
then we have on U ∩ V that:

∂

∂yi
=

n∑

j=1

∂xj

∂yi
∂

∂xj

Here we what we really mean by ∂xj

∂yi is the i-th partial derivative of of of y 7→ xj ◦ ψ−1(y). Essentially we’re

conflating xj with xj ◦ ψ−1 in an abuse of notation.

Proposition VI.4.3
Let X be a vector field on M (i.e. X is a map from M to TM such that Xp ∈ TpM).
X is smooth if and only if for every coordinate system (U,ϕ) there exist smooth functions f1, . . . , fn :

U → R such that:

Xp =

n∑

i=1

f i(p) · ∂

∂xi
(p)

Proof. Suppose that X : M → TM is a vector field. Let (U,ϕ) be a coordinate chart on M , and take the
corresponding coordinate chart on TM . In pictures:

Since ∂
∂x1 , . . . ,

∂
∂xn is a basis of TpM . For all p ∈ U , there exist f1(p), . . . , fn(p) such that:

Xp =

n∑

i=1

f i(p)
∂

∂xi
(p)
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We have that X is smooth if and only if Φ ◦X ◦ ϕ−1 : Û → Û × Rn is smooth. This holds if and only if:

Φ ◦
(

n∑

i=1

f i(p)
∂

∂xi
(p)

)
◦ ϕ−1 is smooth

⇐⇒ Φ ◦
[

n∑

i=1

f i(ϕ−1(x))
∂

∂xi
(ϕ−1(x))

]
is smooth

A ⇐⇒
(
x,

n∑

i=1

f i(ϕ−1(x))ei

)
is smooth

⇐⇒ f i(ϕ−1(x)) is smooth ∀ 1 ≤ i ≤ n
⇐⇒ f i(p) is smooth ∀ 1 ≤ i ≤ n

Perfect!

VII. Differential Forms

VII.1. Definitions and Operations on k-forms

From now on, saying M is an n-manifold means that M is an n-dimensional submanifold of
Rd for some d

Given any vector space V , we define and manipulate tensors on this vector space, k-tensors L k(V ) (the
space of k-tensors). In particular, we are concerned with the alternating k-tensors Ak(V ).

In differential topology, the vector space V is taken to be the tangent space TpM to a manifold at a point
p ∈M .

Definition VII.1.1
Let M be a smooth manifold with or without boundary

(a) A k-tensor field h on M is a function which assigns to each p ∈M a k-tensor h(p) on the tangent

space TpM ; i.e. h(p) ∈ L k(TpM).
(b) A k-form is an alternating k-tensor field; i.e. it is a function ω that assigns to each p ∈ M ,

ω(p) ∈ Ak(TpM).

Operations on k-forms

a) Two k-forms ω1 and ω2 may be added to create a new k-form, and we can also take scalar multiples
of ω by c ∈ R:

(ω1 + ω2)(p) = ω1(p) + ω2(p)

(cω)(p) = cω(p)

b) (Wedge product). If ω is a k-form and θ is an `-form on M ¡ then the (k + `)-form ω ∧ θ is given by:

(ω ∧ θ)(p) = ω(p) ∧ θ(p)
We recall the anti-commutativity of the wedge product, which says that ω ∧ θ = (−1)k`θ ∧ ω.

Convention: Smooth functions f : M → R are identified with 0-forms.

VII.1.1. Understanding 1-forms

Let’s try to understand 1-forms. Let ω be a 1-form on M . Then ω(p) ∈ A1(TpM) = L 1(TpM). I.e. ω(p)
is a linear transformation TpM → R, that is ω(p) ∈ (TpM)∗.

Definition VII.1.2
For a manifold M and a point p ∈M , we call (TpM)∗ the cotangent space at p

Suppose we are given a vector field X on M (i.e. X(p) ∈ TpM for every p ∈ M) and a 1-form ω. Then
the function p 7→ (ω(p))(X(p)) ∈ R is denoted by ω(X).
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The main example of 1-forms comes from taking the derivative (or pushforward map) of a smooth function
φ : M → R. (i.e. derivatives of 0-forms).

Definition VII.1.3
Let φ : M → R be a 0-form (aka a smooth function). We defined previously the push-forward map

φ∗ : TpM → Tφ(p)R = R via:

φ∗(v) =
d

dt
φ(γ(t))

∣∣∣
t=0

where γ(t) is any smooth curve into M satisfying γ(0) = p and γ′(0) = v. We showed that this was a
linear transformation from TpM → Tφ(p)R = R. Therefore φ∗ gives us a 1-form!!! Great!

This linear transformation from TpM → R is also denoted by dφ(p) and it generalizes the notion of
the derivative to real-valued functions on manifolds. We call dφ the 1-form φ∗.

Remark: We were given a 0-form φ on M and we defined out of it a 1-form dφ by taking a derivative of φ.
In the next section, we will define a generalization of this operation which will taken in a k-form and give
out a (k + 1)-form.

VII.1.2. Understanding k-forms on open subsets of Rn

Let us consider an open subset U of Rn. The coordinate functions x1, . . . , xn are smooth functions from
U → R. I.e. they are 0-forms.

At each point p ∈ Rn we have a basis e1, e2, . . . , en of TpRn. Now dx1, . . . ,dxn are 1-forms on U . We
want to understand these forms more precisely. Given a vector v ∈ TpU , then:

dxj(p)(v) =
d

dt

∣∣∣
t=0

xj(p+ tv) =
d

dt

∣∣∣
t=0

(pj + tvj) = vj

But wait! this means that dxj(p) is the standard basis of (TpU)∗ (i.e. the dual basis of e1, e2, . . . , en). More
generally from our discussion on linear algebra, this means that there is a basis on Ak(TpU) given by taking
increasing sequences I = (i1, . . . , ik) from {1, . . . , n} and then considering the basis vectors

dxI := dxi1 ∧ dxi2 ∧ · · · ∧ dxik

Awesome! This will allow us to fully understand these k-forms on U .
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Let f : M → N be a smooth map. We defined before the pushforward map f∗ : TpM → Tf(p)N . We
define this map by taking a tangent vector vp ∈ TpM and finding a smooth curve γ representing vp, aka so
that γ lies in M , γ(0) = p, and γ′(0) = vp. We then say that f∗(vp) = (f ◦ γ)′(0) ∈ Tf(p)N , noting that
f ◦ γ is a smooth curve lying in N and (f ◦ γ)(0) = f(γ(0)) = f(p). We showed that this is an unambiguous
definition that generalizes the notion of a derivative.

Sometimes we write this linear transformation as Df(p) = f∗ : TpM → Tf(p)N (some books use df(p),
etc.)

Last time, we defined the notion of a k-form ω as a function which assigns to each p ∈M an alternating
k-tensor ω(p) on the tangent space TpM . We also said 0-forms are just functions f : M → R. We also
understood 1-forms ω, so that ω(p) ∈ A1(TpM) = L 1(TpM), aka ω(p) is a linear map from TpM into R.
That is ω(p) ∈ (TpM)∗, which is the cotangent space.

The most important example of 1-forms are derivatives of 0-forms. Let φ : M → R be a smooth function
(i.e. a 0-form). Then Dφ(p) : TpM → Tφ(p)R ∼= R is a linear transformation. Therefore Dφ (often written
dφ) is a 1-form on M . Given ~v ∈ TpM we have that:

dφp(v) =
d

dt

∣∣∣
t=0

φ(γ(t))

Where γ(t) is any smooth curve in M such that γ(0) = p and γ′(0) = v
Check: On Rd we have dφp(v) = Dφ(p) · v, that is the directional derivative of φ at p in the direction of v.
Also last time we investigated k-forms on open subsets of Rn. Let U ⊆ Rn be open and let x1, . . . , xn

denote the standard coordinate functions. These are smooth, so dx1, . . . , dxn are 1-forms on U . We saw that
dx1, . . . ,dxn is actually the dual basis to the basis e1, . . . , en of TpU ∼= Rn. Therefore a basis for Ak(TpM)
is given by taking wedge products:

dxI = dxi1 ∧ · · · ∧ dxik

Where I = (i1, . . . , iK) is an ascending index set from {1, . . . , n}.
Proposition VII.1.1

Every k-form on an open subset U ⊆ Rn can be uniquely expressed as a linear combination as below:

ω =
∑

I

fI dxI

Where the sum is taken over all ascending index sets I = (i1, . . . , ik) and fI is a function U → R, and
dxI is given as above.

Definition VII.1.4
We say that a k-form on an open subset U of Rn is smooth provided that every fI in the expansion

ω =
∑
I fI dxI is smooth.

Example VII.1.1
Let φ : M → R. We just defined the 1-form dφ. This means:

dφ =

n∑

i=1

fi dxi

What is fi? Well:

dφp(v
1, . . . , vn) =

d

dt

∣∣∣
t=0

φ(p+ tv)

= Dφ(p) · v

=

n∑

i=1

∂φ

∂xi
(p) · vi

=

n∑

i=1

∂φ

∂xi
(p) · dxi(v)
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Therefore:

dφp =

n∑

i=1

∂φ

∂xi
(p) dxi

dφ =

n∑

i=1

∂φ

∂xi
dxi

This is an important formula!

VII.2. Pullback on k-forms

Two things to recall:

(1) If T : V →W is a linear transformation between vector spaces and if ω is a k-tensor on W then T ∗ω
is a k-tensor on V defined by:

T ∗ω(v1, . . . , vk) = ω(Tv1, . . . , T vk)

(2) Given f : M → N smooth, we have a natural linear transformation Df(p) : TpM → Tf(p)N

Combining these two points, we arrive at the following definition:

Definition VII.2.1
Let f : M → N be a smooth map between two smooth manifolds. Denote by Df(p) the linear

transformation from TpM into Tf(p)N given by the pushforward map.
Given a k-form ω on N , we define the pullback of ω by f , denoted f∗ω, to be the k-form defined by

the formula:

f∗ω(p) = [Df(p)]∗ω(f(p))

f∗ω(p)(v1, . . . , vk) = ω(f(p))(Df(p) · v1, . . . , Df(p) · vk)

Remark VII.2.1
We pushforward tangent vectors, but we pullback cotangent vectors and more generally k-forms using

smooth functions f : M → N .

Proposition VII.2.1
Suppose f : M → N and h : N → K are smooth. Let ω1, ω2 be k-forms on N and θ be an `-form on

N .

(1) f∗(ω1 + ω2) = f∗(ω1) + f∗(ω2)
(2) f∗(ω1 ∧ θ) = f∗ω ∧ f∗θ
(3) (f ◦ h)∗ω = h∗f∗ω

Proof. The first piece is an exercise. For the second part, write y = f(p) and see:

f∗(ω ∧ θ)p(v1, . . . , vk+`) = (ω ∧ θ)y(f∗v1, . . . , f∗vk+`)

=
∑

σ∈Sk+`
(sgnσ)(ωy ⊗ θy)(Df(p) · vσ(1), . . . , Df(p) · vσ(k+`))

=
∑

σ∈Sk
(sgnσ)[Df(p)]∗ωy ⊗ [Df(p)]∗θy(vσ(1), . . . , vσ(k+`))

= [Df(p)]∗ωy ∧ [Df(p)]∗θy(v1, . . . , vk+`)

= f∗ωp ∧ f∗θp(v1, . . . , vk+`)
Therefore f∗(ω ∧ θ) = f∗ω ∧ f∗θ.

(3) is also an exercise, using the following theorem
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Theorem VII.2.2 (Chain rule on manifolds)
et f : M → N and g : N → O be smooth. Then g ◦ f : M → O is smooth, and furthermore:

(g ◦ f)∗ = g∗ ◦ f∗
Or equivaently:

D(g ◦ f)(p) = Dg(f(p)) ◦Df(p)

Proof. Homework!

Remark VII.2.2
For (3) in the proposition, what we use is that for linear maps T : V →W , S : W → X, then:

(S ◦ T )∗ = T ∗ ◦ S∗

We use this and the theorem above to give the proof of (3).

VII.2.1. Pullback operation on Rn in coordinates

Let V ⊆ R` and U ⊆ Rn be open, and let f : V → U be smooth. The question is what is f∗ω in
coordinates. Let x1, . . . , xn be the standard coordinates on U and y1, . . . , y` the standard coordinates on V .

Write the k-from ω as ω =
∑
I aI dxI as before where I = (i1, . . . , ik) ranges over all ascending index sets

and aI : U → R is a function (aka 0-form) and dxI = dxi1 ∧ · · · ∧ dxik .
Then we see that:

f∗ω = f∗
(∑

I

aI dxI

)

=
∑

I

f∗(aI dxI)

=
∑

I

f∗(aI)f
∗(dxi1 ∧ · · · ∧ dxik)

=
∑

I

f∗(aI)f
∗(dxi1) ∧ · · · ∧ f∗(dxik)

Where we’ve used the fact that since aI is a 0-form that aI dxI = aI ∧ dxI . Now the question is what is
f∗(aI) and f∗(dxj)? Well then f∗(aI) is the pullback of the 0-form aI which is f∗(aI) = aI ◦ f .
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Let M,N be manifolds and f : M → N be a smooth map. Given a k-form ω on N , we can define the
pullback of ω by f as:

f∗ωp(v1, . . . , vk) = ωf(p)(f∗v1, . . . , f∗vk) = ωf(p)(Df(p) · v1, . . . , Df(p) · vk)

We have some nice properties of pullback of k-forms given in Proposition VII.2.1. We copy them here:

(1) f∗(ω1 + ω2) = f∗(ω1) + f∗(ω2)
(2) f∗(ω1 ∧ θ) = f∗ω ∧ f∗θ
(3) (f ◦ h)∗ω = h∗f∗ω

Also for 0-forms on N , aka functions of the form N → R, we define f∗ via the simple formula f∗φ = φ ◦ f ,
which pulls back φ to a function M → R.

Last time we were trying to understand pullback on open subsets of euclidean space. Namely if we have
open sets V ⊆ R` and U ⊆ Rm, a smooth map f : V → U , and a k-form ω on U . Then:

ω =
∑

I

aI dxI

Where I = (i1, . . . , ik) is an ascending index set from {1, . . . , n}, aI : U → R, and:

dxI = dxi1 ∧ · · · ∧ dxik

Since dxI(p) is a basis for Ak(TpU). Our questions is what is f∗ω in the standard coordinates y1, . . . , y` on
V .

By the given properties of the pullback discussed above, we may compute that:

ω =
∑

I

aI dxI

f∗ω = f∗
(∑

I

aI dxI

)
=
∑

I

f∗(aI dxI)

=
∑

I

f∗(aI dxI) =
∑

I

f∗(aI)f
∗(dxI)

=
∑

I

(aI ◦ f)f∗(dxI)

So now we reach the natural question (where we stopped last time), what is f∗(dxI). Well we know:

f∗(dxI) = (f∗ dxi1) ∧ · · · ∧ (f∗ dxik)

Wel what is f∗ dxi? Let z ∈ V and vz ∈ TzV . Then we write:

f∗ dxiz(vz) = dxif(z)(Df(z) · vz)

= dxif(z)


∑̀

j=1

vjz
∂f

∂yi


 =

∑̀

j=1

dxif(z)

(
vjz
∂f

∂yi

)

=
∑̀

j=1

∂f i

∂yj
vjz =

∑̀

j=1

∂f i

∂yj
dyj(vz)

f∗ dxi =
∑̀

j=1

∂f i

∂yj
dyj

Another way to write this is:

f∗ dxi = df∗xi = d(xi ◦ f) = df i
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This identity here is general. We’ll prove this on the current homework that f∗(dφ) = d(f∗φ) = d(φ ◦ f).
Then of course we have:

df I = df i1 ∧ · · · ∧ df ik

f∗ω = f∗
(∑

I

aI dxI

)
=
∑

I

f∗(aI dxI)

=
∑

I

f∗(aI dxI) =
∑

I

f∗(aI)f
∗(dxI)

=
∑

I

(aI ◦ f)f∗(dxI)

=
∑

I

(aI ◦ f) df I

Corollary VII.2.3
Suppose that ω =

∑
I aI dxI is a smooth k-form on an open subset U ⊆ Rn (i.e. the functions

aI : U → R are smooth). Then let f : V → U be a smooth map where V ⊆ R` is open. Then f∗ω is
smooth as well.

Proof. We write

f∗ω =
∑

I

(aI ◦ f) df I

df i =
∑̀

j=1

∂f i

∂yj
dyj

f∗ω =
∑

I=(i1,...,ik)

(aI ◦ f)

k∧

m=1


∑̀

j=1

∂f im

∂yj
dyj




Then since aI ◦ f is always smooth and ∂fim

∂yi is always smooth, we know that this will break down into a

linear combination of smooth functions for the coefficients. Thus f∗ω is a smooth k-form on V .

Special important case
Suppose we have open sets U, V ⊆ Rn and a smooth map f : V → U . Then let ω = dx1 ∧ · · · ∧ dxn. Then

we have that:

f∗ωy = df1 ∧ · · · ∧ dfn

So we recall that:

df i =

n∑

j=1

∂f i

∂yj
dyj

df iy(ej) =
∂f i

∂yj
(y)
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And this allows us to compute:

f∗ωy(e1, . . . , en) = (df1 ∧ · · · ∧ dfn)(e1, . . . , en)

=
∑

σ∈Sn
(sgnσ) df1 ⊗ · · · ⊗ (eσ(1), . . . , eσ(n)) =

∑

σ∈Sn
(sgnσ)

∂f1

∂yσ(1)
· · · ∂fn

∂yσ(n)

= det




∂f1

∂y1 · · · ∂f1

∂yn

...
. . .

...
∂fn

∂y1 · · · ∂fn

∂yn


 = det[Df(y)]T = detDf(y)

But then f∗ωy is an alternating multilinear n-form on TyV ∼= Rn. So then:

f∗ωy = cdy1 ∧ · · · ∧ dyn

To determine c, we compute:

detDf(y) = f∗ωy(e1, . . . , en) = cdy1 ∧ · · · ∧ dyn(e1, . . . , en) = cdet I = c

therefore, we get the following formula:

f∗ωy = (detDf(y)) dy1 ∧ · · · ∧ dyn

Theorem VII.2.4
Let f : V → U be a smooth map for open subsets V,U ⊆ Rn. Let x1, . . . , xn be the standard

coordinates on U and y1, . . . , yn the standard coordinates on V . Then we have that for y ∈ V :

f∗(dx1 ∧ · · · ∧ dxn)y = (detDf(y)) dy1 ∧ · · · ∧ dyn

The above calculation gives the proof

Remark VII.2.3
In other words, a change of coordinates from y ∈ V to f(y) ∈ U gives a multiplicative factor of

detDf(y) = ∂(f1,...,fn)
∂y1···∂yn . This is the same multiplicative factor (up to signs) that appears in the change

of coordinates theorem for integration last semester.

VII.3. Smooth Forms on Manifolds

Definition VII.3.1
Let ω be a k-form on an n-dimensional manifold M . We say that ω is a smooth k-form provided that

for every coordinate chart (U,ϕ) on M , where ϕ : U → Û ⊆ Rn and α := ϕ−1 : Û → U ⊆ Rd, we have

that α∗ω is a smooth form on Û ⊆ Rn.
Smooth forms are also called differential forms

Remark VII.3.1
Of course, to check that a k-form ω on M is smooth, it is enough to show that for some atlas (Uγ , ϕγ)

of M , there holds that α∗γω is smooth for every γ where αγ = ϕ−1γ .

Here is an equivalent way to phrase the definition of smoothness for a k-form:

Proposition VII.3.1
Let (U,ϕ) be given as ϕ = (x1, . . . , xn), were each xi : U → R is a smooth function. Then we have n

1-forms dx1, . . . ,dxn defined on U . Recall that the vector fields ∂
∂x1 , . . . ,

∂
∂xn give a basis for TpM for

every p ∈ U .

a) There holds dxjp
(
∂
∂xi (p)

)
= δji =

{
1 if i = j
0 if i 6= j

In other words dx1p, . . . ,dx
n
p is the basis of (TpM)∗ dual to ∂

∂x1 (p), . . . , ∂
∂xn (p).

b) With α = ϕ−1 we have that α∗(dxi) = dyi where dy1, . . . ,dyn are the standard 1-forms on Rn.
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Proof. Let α = ϕ−1 and recall that ∂
∂xi (p) = α∗(ei) = Dα(y) · ei, where y = ϕ(p). Using that ϕ ◦ α = Id we

have that:

ϕ ◦ α(y) = y

xi ◦ α(y) = yi

Now then we have that:

dxj(p)

(
∂

∂xi
(p)

)
=

d

dt

∣∣∣
t=0

xj(γ(t))

Where γ is any curve in M such that γ(0) = p and γ′(0) = ∂
∂xi . One such curve is γ(t) = α(y + tei). Then

we have:

dxj(p)

(
∂

∂xi
(p)

)
=

d

dt

∣∣∣
t=0

xj(α(y + tei))

=
d

dt

∣∣∣
t=0

(yj + δji ) = δji

This gives part (a). Now for part (b) we use Homework 8 to write that:

α∗(dx
i) = d(α∗xi) = d(xi ◦ α) = dyi

This finishes the proof ,.

Next time, we will formulate an equivalent definition of the smoothness of a k-form ω in terms of the
forms dx1, . . . ,dxn defined above.
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Proposition VII.3.2
Let ω be a k-form defined on M . ω is smooth if and only if for every coordinate patch (U,ϕ) where

ϕ = (x1, . . . , xn) the coefficients functions fI : U → R in the below expression are smooth:

ω =
∑

I

fI dxI

Proof. ω is smooth if and only if α∗ is smooth on Û ⊆ Rn where α = ϕ−1 : Û → U for every chart (U,ϕ).
Using dy1, . . . ,dyn to denote the standard 1-forms on Rn, we have:

α∗ω =
∑

I

gI dyI

for some gI : Û → R. Thus ω is smooth if and only if each gI are smooth

Claim
fI(p) = gI ◦ ϕ(p)

The claim gives the the result since fI is smooth on U if and only if fI ◦ ϕ−1 is smooth on Û if and only if
gI is smooth if and only if ω is smooth.

To prove this claim, we note that:

α∗ω = α∗
(∑

I

fI dxI

)
=
∑

I

α∗(fI dxI)

=
∑

I

α∗(fI)α
∗(dxI) =

∑

I

(fI ◦ α)α∗(dxi1 ∧ · · · ∧ dxik)

=
∑

I

(fI ◦ α)α∗(dxi1) ∧ · · · ∧ α∗(dxik) =
∑

I

(fI ◦ α) dyi1 ∧ · · · ∧ dyik

=
∑

I

(fI ◦ α) dyI

And thus gI = fI ◦ α = fI ◦ ϕ−1. With this fI = gI ◦ ϕ as desired.

VIII. The Exterior Derivative

We already saw that if φ : M → R is a smooth 0-form (i.e., a smooth function), then we obtain a 1-form
dφ defined as:

dφp(v) = φ∗(v) =
d

dt

∣∣∣
t=0

(φ ◦ γ)(t)

Where γ(t) is a smooth curve in M such that γ(0) = 0 and γ′(0) = v. Intuitively this is “the directional
derivative of φ at p in the direction of v.”

In this section, we generalize this to k-forms. We start on Euclidean Space

VIII.1. Exterior Derivative on Euclidean Spaces

Definition VIII.1.1
Let U ⊆ Rn be open and suppose that ω is a differential k-form on U . Then:

ω =
∑

I

aI dxI

where aI : U → R are smooth. We define the exterior derivative f ω to be the following (k + 1)-form:

dω =
∑

I

daI ∧ dxI
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Example VIII.1.1
Suppose f : Rn → R is a 0-form. Then in last section we established that:

df =

n∑

j=1

∂f

∂xj
dxj

Example VIII.1.2
Consider the 1-form on R3 given by ω = f1 dx1 + f2 dx2 + f3 dx3. Then:

dω = df1 ∧ dx1 + df2 ∧ dx2 + df2 ∧ dx2

df1 ∧ dx1 =

(
∂f1
∂x1

dx1 +
∂f1
∂x2

dx2 +
∂f1
∂x3

dx3
)
∧ dx1

=
∂f1
∂x1

dx1 ∧ dx1 +
∂f1
∂x2

dx2 ∧ dx1 +
∂f1
∂x3

dx3 ∧ dx1

= − ∂f1
∂x2

dx1 ∧ dx2 − ∂f1
∂x3

dx1 ∧ dx3

df2 ∧ dx2 =
∂f2
∂x1

dx1 ∧ dx2 − ∂f2
∂x3

dx2 ∧ dx3

df3 ∧ dx3 =
∂f3
∂x1

dx1 ∧ dx3 +
∂f3
∂x2

dx2 ∧ dx3

dω =

(
∂f2
∂x1
− ∂f1
∂x2

)
dx1 ∧ dx2

+

(
∂f1
∂x3
− ∂f3
∂x1

)
dx3 ∧ dx1

+

(
∂f3
∂x2
− ∂f2
∂x3

)
dx2 ∧ dx3

= g1 dx2 ∧ dx3 + g2 dx3 ∧ dx1 + g3 dx1 ∧ dx2

If we stare at this for a while, we realize it is eerily similar to the curl of (f1, f2, f3).

g = (g1, g2, g3) = curl(f1, f2, f3)

As we see:

curl(f1, f2, f3) =

∣∣∣∣∣∣

î ĵ ĵ
∂
∂x1

∂
∂x2

∂
∂x3

f1 f2 f3

∣∣∣∣∣∣

=

(
∂f3
∂x2
− ∂f2
∂x3

)
î−
(
∂f3
∂x1
− ∂f1
∂x3

)
ĵ +

(
∂f2
∂x1
− ∂f1
∂x2

)
k̂

Example VIII.1.3
On R3 any 2-form can be written as:

ω = f1 dx2 ∧ dx3 + f2 dx3 ∧ dx1 + f3 dx1 ∧ dx2

Then in fact we will have that:

dω =
∂f1
∂x1
· dx2 ∧ dx3 ∧ dx1 +

∂f2
∂x2
· dx3 ∧ dx1 ∧ dx2 +

∂f3
∂x3
· dx1 ∧ dx2 ∧ dx3

=

(
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

)
· dx1 ∧ dx2 ∧ dx3

Theorem VIII.1.1
Let U ⊆ Rn be open. The exterior differentiation operator d defined on smooth forms ω on U satisfies

the following properties
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a) Linearity: d(ω1 + ω2) = dω1 + dω2

b) Multiplication Law: If ω is a k-form and θ any `-form:

d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ

c) The cocycle condition. d(dω) = 0

Furthermore, this is the only operator on k-forms that exhibits these properties and agrees with the
previous definition of df for smooth functions f : U → R

Proof. a) is left as an exercise.
For b). Write ω =

∑
I1
aI1 dxI1 and θ =

∑
I2
bI2 dxI2 . Then we have that:

ω ∧ θ =
∑

I1,I2

aI1bI2 dxI1 ∧ dxI2

d(ω ∧ θ) =
∑

I1,I2

d(aI1bI2) ∧ dxI1 ∧ dxI2

Now we use that for smooth functions f, g : U → R that by the product rule:

d(fg) = g df + f dg

Then we get that:

d(ω ∧ θ) =
∑

I1,I2

(bI2 daI1 + aI1 dbI2) ∧ dxI2

=
∑

I1,I2

bI2 daI1 ∧ dxI1 ∧ dxI2 +
∑

I1,I2

aI1 dbI2 ∧ dxI1 ∧ dxI2

=
∑

I2

bI2

(∑

I1

daI1 ∧ dxI1

)
∧ dxI2 +

∑

I2

aI1
[
(−1)k dxI1 ∧ dbI2

]
∧ dxI2

=
∑

I2

bI2 dω ∧ dxI2 + (−1)k
∑

I1

aI1 dxI1 ∧
(∑

I2

dbI2 ∧ dxI2

)

= dω ∧
(∑

I2

bI2 ∧ dxI2

)
+ (−1)k

(∑

I1

aI1 dxI1

)
∧ dθ

= dω ∧ θ + (−1)kω ∧ dθ

c) is left as a homework. It’s a similar proof to part (b).
To show uniqueness, suppose that D is another operator satisfying a), b), and c) so that Df = df for

smooth functions f : U → R. We observe that by b) and c):

D(dxI) = D(dxi1 ∧ · · · ∧ dxik)

=
∑
±dxi1 ∧ · · · ∧ (D dxij ) ∧ · · · ∧ dxik

D(dxk) = D(Dxk) = 0

D(dxI) = 0

Now if ω =
∑
I aI dxI is any k-form, then we compute by a) and b) that:

Dω =
∑

I

D(aI dxI)

=
∑

I

D(aI) ∧ dxI + (−1)kaI ∧D(dxI)

=
∑

I

D(aI) ∧ dxI =
∑

I

daI ∧ dxI = dω

61



Faye Jackson March 29th, 2021 MATH 396 - VIII.2

Last time, we defined the exterior derivative on Euclidean space (Definition VIII.1.1).

Corollary VIII.1.2
Suppose that g : V → U is a diffeomorphism of open subsets of Rn (or Hn). Then for every k-form ω

on U , we have

d(g∗ω) = g∗(dω)

Remark VIII.1.1
We will show later that this is actually true for any smooth g.

Proof. Let ω be a k-form on U , then:

(g−1)∗g∗ω = ω

Since by HW8: f∗g∗ω = (g ◦ f)∗ω.
To show the corollary, it is enough to show that (g∗)−1 d(g∗ω) = dω.
Let D = (g−1)∗ dg∗. Then D is an operator on differential k-forms that satisfies the defining properties of

the exterior derivative (see Theorem VIII.1.1). Furthermore, for any smooth function f : U → R we have:

Df = (g−1)∗ d(g∗f) = (g−1)∗ d(f ◦ g)

= d(g−1)∗f ◦ g) = d(f ◦ g ◦ g−1) = df

Therefore D = d by the uniqueness property of the exterior derivative.

VIII.2. The Exterior Derivative on Manifolds

The relation dg∗ = g∗ ◦ d that we just proved on Euclidean space is exactly what we need to extend the
definition of d to smooth manifolds.

Definition VIII.2.1
Suppose that ω is a smooth k-form on a manifold M (with or without boundary). We define dω

locally as follows.
Let (U,ϕ) be a coordinate chart on M , and let α = ϕ−1. Define:

dω = ϕ∗ dα∗ω

Remark VIII.2.1
We need to check some things:

1) This is a definition using coordinates, so we need to prove that it is well-defined (see the next
proposition)

2) ϕ∗ is just the inverse of α∗ : TxRn → TpM by the chain rule on manifolds. This implies that ϕ∗

is the inverse of α∗ : Ak(TpM)→ Ak(TxRn).

Proposition VIII.2.1
The above definition makes sense. If (V, ψ) is another coordinate chart such that β = ψ−1 and

V ∩ U 6= ∅, then on U ∩ V we have that:

φ∗ dα∗ω = ψ∗ dβ∗ω

Proof. Here is the picture:
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Let g := ϕ ◦ ψ−1, then this is a diffeomorphism on open subsets of Rn, we have by the previous corollary
that:

g∗ d(α∗ω) = d(g∗α∗ω)

= d((α ◦ g)∗ω)

= d(β∗ω)

Therefore we have that:

(ψ−1)∗ϕ∗ d(α∗ω) = d(β∗ω)

ϕ∗ d(α∗ω) = ψ∗ d(β∗ω)

since (ψ∗)−1 = (ψ−1)∗. This is what we wanted to show!

Theorem VIII.2.2
The exterior derivative of k-forms on manifolds enjoys the following properties

1) d(ω1 + cω2) = dω1 + cdω2 for c ∈ R.
2) d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ whenever ω is a k-form and θ is an `-form
3) d(dω) = 0.
4) If f is a smooth function, then df agrees with the previous definition.

Such an operator is in fact unique

Proof. 1) is direct. 2) follows because:

α∗(ω ∧ θ) = (α∗ω) ∧ (α∗θ)

dα∗(ω ∧ θ) = d(α∗ω) ∧ α∗θ + (−1)kα∗ω ∧ d(α∗θ)

ϕ∗ dα∗(ω ∧ θ) = ϕ∗
(
d(α∗ω) ∧ α∗θ + (−1)kα∗ω ∧ d(α∗θ)

)

= ϕ∗ d(α∗ω) ∧ ϕ∗α∗θ + (−1)kϕ∗α∗ω ∧ ϕ∗ d(α∗θ)

= dω ∧ θ + (−1)kω ∧ dθ

3) is similar, and 4) works because:

ϕ∗ d(α∗f) = ϕ∗ d(f ◦ α)

= d(f ◦ α ◦ ϕ) = df

Remark VIII.2.2
An equivalent way to define dω is as follows. Let ϕ = (x1, . . . , xn) be a local coordinate system, then

63



Faye Jackson March 29th, 2021 MATH 396 - IX.0

we can write ω as:

ω =
∑

I

fI dxI

Where I is an ascending k-tuple and fI : U → |R are smooth. Then by the above theorem (or from the
definition) we have that:

dω =
∑

I

dfI ∧ dxI + fI d(dxI)

=
∑

I

dfI ∧ dxI

This is really just another way to write the original definition.

Theorem VIII.2.3
Let g : N →M be any smooth map between manifolds with boundary. Then for every form ω on M ,

d(g∗ω) = g∗(dω) (??)

Proof. We go in steps.
Step 1: (??) holds if ω is a 0-form by Homework 8.
Step 2: (??) holds if ω = df for some smooth function f . In this case, dω = d(df = 0), and so the RHS

of (??) is zero. The LHS of (??) is given by:

dg∗(df) = d(dg∗f) = 0

Step 3: Let ω be any k-form on M , then ω can be represented in a local coordinate system (U,ϕ) where
ϕ = (x1, . . . , xn) as follows:

ω =
∑

I

fI dxI

g∗ω =
∑

I

(g∗fI)(g
∗ dxi1 ∧ · · · g∗ dxik)

d(g∗ω) =
∑

I

d(g∗fI) ∧ (g∗ dxi1 ∧ · · · g∗ dxik)

+
∑

I

±(g∗fI)(g
∗ dxi1) ∧ · · ·d(g∗ dx`) ∧ · · · ∧ g∗ dxik

=
∑

I

d(g∗fI) ∧ (g∗ dxi1 ∧ · · · g∗ dxik)

=
∑

I

g∗(dfI) ∧ (g∗ dxi1 ∧ · · · g∗ dxik)

= g∗
(∑

I

dfI ∧ dxI

)

= g∗ dω

Part C. Integration of Forms on Smooth Manifolds

IX. Orientable Manifolds

Recall from 395 that we called a basis {a1, . . . , an} right-handed (or positive) if det(a1, . . . , an) > 0. More
generally, for any n-dimensional vector space V , we defined an equivalence relation on bases of V as follows:
Given two basis B1 = (v1, . . . , vn) and B2 = (w1, . . . , wn), we say that B1 ∼ B2 (or B1, B2 have the same
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orientation) if the change of coordinate matrix B2
[IdV ]B1

defined by the matrix Aji where:

wi =

n∑

i=1

Ajivj

satisfies det(Aji ) > 0. Clearly, there are only two equivalence classes. An orientation of V is a choice of one
of those two equivalence classes We then can say that a basis is positive or right-handed if it belongs to the
chosen equivalence class.

Example IX.0.1
On Rn we chose the equivalence class containing the standard basis (e1, . . . , en) to give the standard

orientation defined above.
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Definition IX.0.1
Let g : A→ B be a diffeomorphism of open sets in Rn. We say g is orientation preserving if detDg > 0

on A and orientation reversing if detDg < 0.

Remark IX.0.1
Some relevant notes:

a) If A is connected, then either detDg > 0 for all x ∈ A or detDg < 0 for all x ∈ A, since
A+ = {x ∈ A | detDg > 0} and A− = {x ∈ A | detDg < 0} are two disjoint open subsets
covering A (since detDg 6= 0 everywhere).

b) Recall that Dg(x) is interpreted as the pushforward map Dg(x) = g∗ : TxRn → Tg(x)Rn. Then
g is orientation preserving if and only if for every x ∈ A, g∗ is orientation preserving if and only
if for every x ∈ A we have g∗(e1), . . . , g∗(en) is a positively oriented basis.

Definition IX.0.2 (Orientable Manifolds)
Let M be a smooth n-manifold (possibly abstract).

a) Given two coordinate charts (U,ϕ) and (V, ψ) on M , we say that the two charts overlap positively
if U ∩ V 6= ∅ and the transition map ϕ ◦ ψ−1 is orientation preserving. i.e. detD(ϕ ◦ ψ) > 0.

b) If M can be covered by a collection of coordinate charts, each pair of which overlap positively or
don’t overlap at all, then M is said to be orientable. If this is not possible, M is non-orientable

c) Suppose M is orientable and choose a collection of coordinate charts covering M that overlap
positively (or don’t overlap t all).

Let us adjoin to this collection all other smooth coordinate charts on M that overlap these
patches positively. It is easy to check that this expanded collection also overlaps itself positively.

This expanded collection defines an orientation on M . A manifold M together with an
orientaiton is called an oriented manifold

Remark IX.0.2
In short an orientation of M is a choice of atlas like the one in b).

Example IX.0.2
We saw that any vector space V is an n-manifold. The two notions of orientation here are the same.

Note that V is orientable, since it can be covered by one coordinate parameterization

(x1, . . . , xn) ∈ Rn 7→
n∑

j=1

xjvj

For any choice of basis v1, . . . , vn of V .
Given such a basis the orientation of V defined in part c) of the above definition includes all coordinate

charts

(y1, . . . , yn) ∈ Rn 7→
n∑

i=1

yiwi

Where w1, . . . , wn is a basis with the same orientation as v1, . . . , vn according to the equivalence relation
defined last class between bases on V .

Thus the two notions of orientation agree.

Suppose we are given an atlas {(Uγ , ϕγ)} of M that defines the orientation. THen we can give an
orientation to every TpM as follows. A basis v1, . . . , vn of TpM is positively oriented if it has the same

orientation as ∂
∂x1 (p), . . . , ∂

∂xn (p) for some coordinate chart (U,ϕ) around p with ϕ = (x1, . . . , xn).
To show that this orientation of TpM is well-defined, we need to show that if (V, ψ) is another chart

containing p with ψ = (y1, . . . , yn) then ∂
∂y1 (p), . . . , ∂

∂yn (p) has the same orientation as ∂
∂x1 (p), . . . , ∂

∂xn (p).

But this follows since U and V overlap positively. This works from homework, since the change of coordinates
matrix between these two bases is given by D(ϕ ◦ ψ−1), and so its determinant is greater than 0.
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We see this another way, since if α = ϕ−1, β = ψ−1, x = ϕ(p), and y = ψ(p) this is equivalent to having

ψ∗α∗(x)e1, . . . , ψ∗α∗(x)en

In TyRn positively oriented. But this is just (ψ ◦ α)∗ = (ϕ ◦ ψ−1)∗, and tehrefore this basis is positively
oriented becuase det(ϕ ◦ ψ−1)∗(p) = detD(ϕ ◦ ψ−1)(p) > 0.

Here we have implicitly used that if T : V →W is a linaer map between two oriented vector
spaces. Then if T is orientation preserving then T−1 is also orientation preserving

Theorem IX.0.1 a) An orientation of a manifold M gives a smooth choice of orientation for
TpM for eahc p ∈M . By smooth choice we mean that for each p ∈M there exists a coordinate
chart (U,ϕ) such that with α = ϕ−1 we have α∗(x) maps the basis e1, . . . , en of TxRn into a

positively oriented basis of Tα(x)M for every x ∈ Û = ϕ(U).
b) The converse holds as well, M is orientable if and only if there exists a smooth choice of

orientation for each TpM .

Proof. a), which is the forward direction of b), is what we just proved.
We just need to show the backward implication in b). Suppose we have a smooth choice of orientation for

each TpM . THen this means that for each p ∈M there exists a coordinate chart (U,ϕ) such that if α = ϕ−1

and x ∈ Û = ϕ(U), then α∗(x)e1, . . . , α∗(x)en is positively oriented in Tα(x)M .
Let {(Uγ , ϕγ)}. denote the collection of all such charts. We show that this gives an orientation on M , aka

that this is a positively overlapping atlas. I.e. we must show that detD(ϕγ′ ◦ϕ−1γ ) > 0 for all γ, γ′. But this
follows from noticing that the two bases:

(αγ)∗e1, . . . , (αγ)∗en (αγ′)∗e1, . . . , (αγ)∗en

are both positively oriented bases of TpM . This means exactly that the change of coordinates matrix between
them has positive determiant, but by homework this change of coordinates matrix is exactly D(ϕγ′ ◦ ϕ−1γ ).

Thus we have the desired property.
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Last time we defined orientable in two different ways Definition IX.0.2 and Theorem IX.0.1

Definition IX.0.3
Let f : M → N be a diffeomorphism between two oriented manifolds. We say f is orientation

preserving if f∗ : TpM → Tf(p)N is orientation preserving (i.e. it maps a positively oriented basis into a
positively oriented bases)

Definition IX.0.4
For 0-manifolds, which are discrete collections of points, an orientation is just a choice of +1 or −1

at each point. This implies that all zero dimensional manifolds are orientatable.

Theorem IX.0.2
We need a theorem to verify some intuition about oriented manifolds

a) Let M be an oriented manifold. Then M admits a reverse orientation that we denote by −M
that assigns the opposite orientation for every tangent space TpM

b) If M is a conneted orientable manifold then M admits exactly two orientations

Proof. We prove a) and leave b) as homework. This is clear for zero-dimensional manifolds. For n-dimensional
manifolds, given an orientation provided by an atlas (Uγ , ϕγ) consider the atlas (Uγ , ϕ̃γ} where:

ϕ̃γ = A ◦ ϕγ
A : Hn → Hn

A(x1, . . . , xn) = (−x1, x2, . . . , xn)

So then we have ϕ̃−1γ = ϕ−1γ ◦A−1 = ϕγ ◦A.

This reverses the orientation of TpM from that given by {α|ast(x)e1, . . . , α∗(x)en} where α = ϕ−1γ to that
given by {−α∗(x)e1, . . . , α∗(x)en} which has the opposite orientation.

It is easy to check that (Uγ , ϕ̃γ) is still positively overlapping since:

ϕ̃−1γ ◦ ϕ̃γ = ϕ̃−1γ ◦A−1 ◦A ◦ ϕγ
= ϕ−1γ ◦ ϕγ

Caveat: When n = 1, A does not map H1 into H1 but rather into L1 = {x ∈ R | x ≤ 0}. To solve this caveat,
we allow for coordinate charts of 1-dimensional manifolds to map into H1 or L1. THis does not change the

class of smooth manifolds with boundary in 1D.

IX.1. Oriented manifolds in Rd of dimensions 1, d− 1, and d

IX.1.1. Manifolds of dimension 1

Definition IX.1.1
Let M be an oriented 1-dimensional manifold in Rd. We define the unit tangent vector field T on M

as follows: Given p ∈M , choose a coordinate chart (U,ϕ) containing p in the orientation of M and let

|alpha : Û → Rd by α = ϕ−1.

Then we define T (p) = Dα(t0)·1
|Dα(t0)·1| = α′(t0)

|α′(t0)| where α(t0) = p.

Exercise IX.1.1
T is well-defined and smooth

T is called the unit tangent vector field corresponding to the orientaiton of M . This allows us to think
of M as a directed curve.

Remark IX.1.1
Note that if M has boundary like below
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We have to allow for one of the parameterizations of the two boundary points above to be from L1

instead of H1. In fact if α : Û →M is a paramaterization such that Û ⊆ H1 and α(0) = p, then the unit
tangent vector at p has to point into M .

The same argument would apply at q as well, but this would give you disagreeing orientations to be
from L1 instead of H1.

IX.1.2. (d− 1) manfiolds of Rd

Let M be a (d− 1)-manifold in Rd. If p ∈M , let ~np be a unit normal vector to TpM in TpRd (since TpM
has codimension 1 in TpRd, there are only two choices).

Then ~np is uniquely determine up to sign.
Given an orientation of M , choose a coordinate chart (U,ϕ) in the orientation such that α = ϕ−1 and

x = ϕ(p), and {α∗(x)e1, . . . , α∗(x)ed−1} is a positively oriented basis of TpM . Then we specify the sign of
~np by requiring that the basis of TpRd given by {~np, α∗(x)e1, . . . , α∗(x)ed−1} is a positively oriented basis.

Since α∗(x)ej = ∂α
∂xj , this is equivalent to asking that the matrix

[
~n Dα(x)

]
given below has positive

determinant.

Exercise IX.1.2 (Homework)
This vector field ~n is well-defined and smooth. It is called the unit normal vector field to M .

Conversely, given a smooth (or continuous) unit normal vector field ~n to a (d−1)-dimensional submanifold
of Rd, this gives an orientation of M as follows.

If {v1, . . . , vd−1} is a basis for TpM , we declare this basis for be positively oriented if {n, v1, . . . , vd−1} is
a positively oriented basis of TpRd = Rd.
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Remark IX.1.2
If M is given by a level set La = {x ∈ Rd | f(x) = a} of a function f : Rd → R and if ∇f 6= 0 for all

x ∈M , then ~n = ∇f
|∇f | is a smooth normal vector field to M , which implies that M is orientable.

Example IX.1.3 (Not all manifolds are orientable)
Consider the 2-manifold in R3 depicted below, which is called the Mobius band:

We cannot have a continuous normal vector field to M , because as you travel along the curve continuously,
you eventually come around to the same point, but on the oppsoite side, meaning you will orient the
normal vector with two different signs at that point. Intuitively, the mobius band has no “inside” or
“outside,” and a choice of orientation is a choice of inside and outside.

Another example of a non-orientable manifold is the Klein bottle (it contains a copy of the mobius
band).
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IX.1.3. d-dimensional submanifolds in Rd

IX.2. Boundary Orientation

Theorem IX.2.1
Let n ≥ 1. If M is an orientable n-manifolds iwth non-empty boundary then ∂M is orientable.

Proof. If n = 1, then ∂M is zero dimensional, so it is always orientable. For the remainder of this proof let

n > 1, let p ∈ ∂M , and let (U,ϕ) be a coordinate chart near p on M such that ϕ(U) = Û ⊆ Hn.

We saw previously this gives a coordinate chart for ∂M given by (U♥, ϕ♥) where U♥ = U∩∂M and ϕ♥ = ϕ
∣∣
U♥

.

Then Û♥ = ϕ(U♥) = Û ∩ {xn = 0}, which we can regard as an open subset of Rn−1.
Let α♥ = ϕ−1♥ = α

∣∣
U♥×{0}. Such coordinate charts cover ∂M .

Given an orientation of M given by a positively overlapping atlas will restrict to a positively overlapping
atlas on ∂M .

We only need to show that if (U,ϕ) and (V, ψ) are two positively overlapping charts on M , then (U♥, ϕ♥)

and (V♥, ψ♥) are positively overlapping on ∂M .
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We continue the proof of Theorem IX.2.1

Proof. We just needed to show that if (U,ϕ) and (V, ψ) are two positively overlapping charts on M , then the
restricted charts (U♥, ϕ♥) and (V♥, ψ♥) are positively overlapping on ∂M .

That is, we need to show that detD(ψ♥ ◦ ϕ−1♥ )(x♥) > 0 for all x♥ ∈ ϕ(U♥ ∩ V♥). But note that:

(ψ♥ ◦ ϕ−1♥ )(x) = π(ψ(ϕ−1(x, 0)))

where π is the projection from Hn onto Rn−1 which gives the first n−1 coordinates. Therefore D(ψ♥◦ϕ−1♥ )(x♥)

is nothing but the (n− 1)× (n− 1) submatrix of D(ψ ◦ ϕ−1)(x♥, 0) obtained by removing the last row and
the last column In other words if g = ψ ◦ ϕ−1):

Dg(x♥, 0) =

(
D(ψ♥ ◦ ϕ−1♥ (x♥) 0

∂g
∂(x1,...,xn−1)

∂gn
∂xn

)

Why do we have the upper right being zero? Well note that for any x ∈ ϕ(U♥ ∩V♥) we have ϕ−1(x, 0) ∈ ∂M
so g(x, 0) = ψ(ϕ−1(x, 0)) = 0. Therefore ∂gn

∂xi (x♥, 0) = 0 for 1 ≤ i ≤ n− 1.
Also gn(x, t) ≥ 0 for all (x, t) ∈ ϕ(U ∩ V ). This means that as g increases in the direction of xn at (x♥, 0),

and so ∂gn
∂xn (x♥, 0) ≥ 0.

Therefore:

0 < detDg(x♥, 0) = detD(ψ♥ ◦ ϕ−1♥ )(x♥) · ∂gn
∂xn

(x♥, 0)

And so since the right piece is greater than or equal to zero, we must have that:

detD(ψ♥ ◦ ϕ−1♥ )(x♥) > 0

This completes the proof

Definition IX.2.1 (∂ Orientation)
Let M be an orientable manifold with nonempty ∂ and dimension ¿ 1. Given an orientation of M ,

the corresponding induced boundary orientation on ∂M is defined as follows:

a) If n is even, it is exactly the orientation obtained by restricting coordinate charts in the orientation
on M to ∂M as in the proof of Theorem IX.2.1

b) If n is odd, we take the opposite orientation.

If dimM = 1, the boundary orientation is defined as follows. Well ∂M consists of discrete points because
it is a zero-dimensional manifold. We give a point p ∈ ∂M the orientation +1 if p belongs to a coordinate
chart (U,ϕ) such that ϕ(U) ⊆ L1 and orientation −1 if it belongs to a chart (U,ϕ) with ϕ(U) ⊆ H1.
Consider the picture below:

So then it’s kinda like + on the endpoint and −1 on the starting point.
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Remark IX.2.1
This choice of induced orientation is so that Stoke’s Theorem can be stated properly. On

Homework 11, you will show that this choice of orientaiton for 1D manifolds is well-defined.

We have an alternative and equivalent definition of ∂ orientation. Let M be an oriented n-manifold. At
every point p ∈ ∂M we will give an orientation of Tp∂M .

a) Tp(∂M) has codimension 1 inside TpM . Therefore, there are two unit vectors in TpM that are
orthogonal to Tp(∂M) (using the inner product on the ambient space Rd). One is the negative
of the other.

More precisely, let (U,ϕ) be a chart near p and α := ϕ−1 : Û ⊆ Hn → U such that x = ϕ(p).
Then α∗(x) = Dα(x) is an isomorphism of TxHn and TpM , whose inverse is ϕ∗(p) = [α∗(x)]−1.

b) The inward unit normal is the normal vector whose image under ϕ∗(p) belongs to Hn and the
outward unit normal is the one whose image belongs to −Hn.

This distinction between the unit normals is independent of the choice of (U,ϕ) in the same
orientation of M (Homework 11).

c) We orient Tp(∂M) by declaring that a basis ~v1, . . . , ~vn−1 in Tp∂M if:

{~nout, ~v1, . . . , ~vn−1}
is positively oriented in TpM .

We will check int he homework that this is a smooth choice of orientations on the tangent spaces, and it
is the same orientation as the one we defined using restrictions of coordinate charts.

Example IX.2.1
Consider the closed unit ball B2 in R2. It inherits from R2 the standard orientation at each p since

TpB
2 = TpR2 = R2. Then we orient the boundary as below via the right-hand rule.
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~v is positively oriented in Tp∂B if and only if {~nout, ~v} is positively orineted in R2 = TpB
2, which means

that ~v must be oriented counterclockwise.

X. Integration of n-forms

X.1. Integrating n-forms on Rn

Recall the change of variables theorem for integration. Let g : V → U be a diffeomorphism of open subsets
of Hn and suppose a : U → R is integrable on U , then:∫

U

a(y) dy =

∫

V

a(g(x)) |detDg(x)|dx =

∫

V

g∗a |detDg(x)|dx (∗)

In particular, ∫

U

a(y) dy 6=
∫

V

g∗a(x) dx

Equality here is needed to define
∫
U
a in a coordinate-independent way (and hence to define the integral of a

function on a manifold). Here g is understood as a transition map between two coordinate charts. We say
integration of functions on Rn is not coordinate invariant.

However, looking at (∗), we recall that if ω is an n-form on U given by ω = a(y) ∧ dy1 ∧ · · · ∧ dyn then
g∗ω = g∗ag∗(dy1 ∧ · · · ∧ dyn), and so from before:

g∗(dy1 ∧ · · · ∧ dyn)(x) = detDg(x) · dx1 ∧ · · · ∧ dxn

g∗ω(x) = a(g(x)) · detDg(x) · dx1 ∧ · · · ∧ dxn

= a(g(x)) · |detDg(x)| · dx1 ∧ · · · ∧ dxn

provided that g is orientation preserving. This motivates the following definition:

Definition X.1.1
Suppose that ω is an n-form on an open subset U of Hn. Then ω(y) = a(y) dy1 ∧ · · · ∧ dyn for some

a : U → R. Suppose that a : U → R is integrable on U , then we say that ω is integrable on U and define:∫

U

ω =

∫

U

a(y) dy

The above computation gives that:

Proposition X.1.1 (Coordinate Invariance of
∫
ω)

Suppose ω is an integrable n-form on an open set U ⊆ Hn, and let g : V → U be an orientation-
preserving diffeomorphism. Then g∗ω is integrable on V , and:∫

U

ω =

∫

V

g∗ω

Proof. The key point is that for ω = ady1 ∧ · · · ∧ dyn as in the definition of integration, we have:

g∗ω(x) = a(g(x)) |detDg(x)|dx1 ∧ · · · ∧ dxn

So then the result follows from the change of variables formula:∫

U

ω =

∫

U

a(y) dy =

∫

V

a(g(x)) |detDg(x)|dx =

∫

V

g∗ω

Remark X.1.1
The key point was that g∗(dy1 ∧ · · · ∧ dyn) = detDg(x) dx1 ∧ · · · ∧ dxn which came from the anti-

commutativity dx1 ∧ dx2 = − dx2 ∧ dx1.
The whole apparatus of alternating forms on manifolds exists so that this coordinate invariance holds.
This coordinate invariance of

∫
U
ω allows us to define integration on manifolds
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Last time, we define
∫
U
ω when U is an open subset of Hn and ω is an n-form on U . How? Write

ω = a(y) dy1 ∧ dy2 ∧ · · · ∧ dyn. Just define: ∫

U

ω :=

∫

U

a(y) dy

provided that a is integrable.

Remark X.1.2
There is no need for ω to be a smooth n-form in order to define this integral. Continuity is sufficient,

and not even necessary.

We showed that this definition was invariant under orientation-preserving changes of coordinates, see Propo-
sition X.1.1. This is exactly the property that will allow the extension of this integration theory to manifolds.

X.2. Intgrating n-forms on Oriented n-Manifolds

Definition X.2.1
Let M be a smooth oriented manifold with boundary. Let n = dimM , and ω be an n-form on M

(continuity of ω is sufficient, but not necessary).
The support of ω (denoted suppω) is defined to be the closure of the set {p ∈M | ωp 6= 0}. We shall

assume that suppω is compact. The definition of
∫
M
ω is done in two steps:

(Step 1) Suppose first that suppω is contained in some chart (U,ϕ) which is in the orientation on M .

Then let α := ϕ−1 : Û → U . Then Û ⊆ Hn is open, and defin∫

M

ω :=

∫

Û

α∗ω

Note that α∗ω is a compactly supported continuous n-form on Û , so it is integrable.

Exercise X.2.1
Suppose ϕ = (x1, . . . , xn), then ω = f dx1 ∧ · · · ∧ dxn. Then:∫

M

ω =

∫

Û

f(α(x)) dx

This definition makes sense, once we show that it does not depend on the chart chosen. Let
(V, ψ) be another coordinate chart on M in the orientation such that suppω ⊆ V , and let

β := ψ−1 : V̂ → V . That is we must show:∫

V̂

β∗ω =

∫

Û

α∗ω

For this, we let g := ψ ◦ α−1 = ψ ◦ α, then g : ϕ(U ∩ V ) → ψ(U ∩ V ) is an orientation
preserving diffeomorphism. Note that supp(α∗ω) ⊆ ϕ(U ∩ V ) and supp(β∗ω) ⊆ ψ(U ∩ V )
because suppω ⊆ U ∩ V .
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Now note that α∗ω = (β ◦ g)∗ω = g∗(β∗ω) on ϕ(U ∩ V ). Therefore by invariance under change
of coordinates (Proposition X.1.1) we have:∫

Û

α∗ω =

∫

ϕ(U∩V )

α∗ω =

∫

ϕ(U∩V )

g∗(β∗ω)) =

∫

ψ(U∩V )

β∗ω =

∫

V̂

β∗ω

Thus
∫
M
ω is well-defined when suppω is a subset of a coordinate chart in the orientation.

(Step 2) Now we integrate arbitrary compactly supported continuous n-forms. We simply use a partition
of unity to break up ω into finitely many pieces ωi such that each ω =

∑
i ωi and suppωi is

always a subset of some coordinate chart in the orientation.
More precisely, using the partition of unity theorem (see IBL), we first cover tsuppω by

finitely many coordinate charts (Uk, ϕk) in the orientation and obtain a smooth partition of
unity subordinate to this covering, namely smooth functions ρi : M → R such that:
• ∑i ρi = 1 on suppω
• supp ρi ⊆ Uk for some k.

Therefore, we have that ω =
∑
i ρiω, and supp ρiω ⊆ Uk for some k. We can then define
∫

M

ω =
∑

i

∫

M

ρiω

Where the latter integral was defined in the previous step. For this definition to make sense, we
need to show that this does not depend on charts or the partition of unity chosen.

Support first that suppω ⊆ U , where (U,ϕ) si a coordinate chart in the orientation. Step 1
gives us one definition of the integral, and step 2 gives us another definition. We need to show
these definitions are the same. Writing ω =

∑
i ρiω, then we have that for α := ϕ−1:

α∗ω =
∑

i

α∗(ρiω)

∫

Û

α∗ω =
∑

i

∫

Û

α∗(ρiω)

∫

M

ω =
∑

i

∫

M

ρiω

Great! The two definitions agree as desired.
Now suppose that (V`, ψ`) are another finite collection of charts in the orientation covering

suppω and we have a partition of unity ρ′j here so that
∑
j ρ
′
j = 1 on suppω and supp ρ′j ⊆ V`

for soem `.
Let ωi = ρiω. Then ωi =

∑
j ρ
′
jωi and then:
∫

M

ωi =
∑

j

∫

M

ρ′jωi

=
∑

j

∫

M

ρ′jρiω

∑

i

∫

M

ωi =
∑

i

∑

j

∫

M

ρ′jρiω

=
∑

j

∑

i

∫

M

ρiρ
′
jω

=
∑

j

∫

M

ρ′jω

Perfect! This is exactly what we wanted to show ,
Amazing! This gives us a definition of integration on manifolds.
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Remark X.2.1
It is trivial from the definition to check that the integral

∫
M

satisfies the linearity properties. That is
for a scalar c ∈ R, and two compactly supported continuous n-forms ω1, ω2 we have:∫

M

(cω1 + ω2) = c

∫

M

ω1 +

∫

M

ω2

Theorem X.2.1
Let g : N →M be an orientation-preserving diffeomorphism between oriented n-manifolds, and let ω

be a compactly supported continuous n-form on M . Then we have that:∫

M

ω =

∫

N

g∗ω

Proof. Homework (See final problem set).

Exercise X.2.2
Let ω = f1 dx1 + f2 dx2 + f3 dx3 be a 1-form on R3. Suppose that γ : [0, 1]→ R3 be a diffeomorphism

of the unit interval and a smooth curve C = γ([0, 1]) which is a 1-manifold with boundary. C is naturally
oriented by γ. In fact, γ gives us an atlas for C. Take (U1, ϕ1) and U2, ϕ2 such that:

U1 = C \ {γ(1)} U2 = C \ {γ(0)}
ϕ−11 = γ

∣∣
[0,1)

ϕ−12 = γ(−+ 1)
∣∣
(−1,0]

This gives the ∂ orientation for ∂C as γ(1) has +1 orientation and γ(0) has −1 orientation.
Thenn we have by the above theorem that:∫

C

ω =

∫

[0,1]

γ∗ω

γ∗ω = γ∗
3∑

j=1

fj dxj =

3∑

j=1

γ∗(fj dxj)

=

3∑

j=1

(fj ◦ γ) d(γ∗xj)

=

3∑

j=1

(fj ◦ γ)
dγj

dt
dt

Let ~F = (f1, f2, f3). Then γ∗(ω) = ~F (γ(t))~γ′(t) dt. That is:
∫

C

ω =

∫

[0,1]

γ∗ω =

∫ 1

0

~F (γ(t)) · ~γ′(t) dt

This is sometimes called the line integral of ~F over C.

X.3. Stokes’ Theorem

Stokes’ theorem is the generalization of the fundamental theorem of calculus to manifolds. To see this, we
start by reinterpreting the Fundamental Theorem of Calculus using our new langauge:

∫ b

a

f ′(t) dt = f(b)− f(a)

Consider the 1-manifold M = [a, b] with its natural orientation from a to b. Then ∂M = {a, b} has an
induced orientation +1 for b and −1 for a. Let f(t) be a 0-form on M , then df = f ′(t) dt is a 1-form on M ,
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which we can integrate. Then we have:
∫

M

df =

∫

[a,b]

f ′(t) dt =

∫ b

a

f ′(t) dt

∫

∂M

f = f(b)− f(a)

Thus the Fundamental Theorem of Calculus is equivalent to the statement that:∫

M

df =

∫

∂M

f

This is true for any 0-form on the 1-manifold M = [a, b] given. We picked the induced orientation of ∂M
exactly so that this would hold.

Theorem X.3.1 (The Generalized Stokes’ Theorem)
Let M be an oriented n-manifold and let ω be a smooth compactly supported (n − 1)-form on M .

Then! We have something amazing: ∫

M

dω =

∫

∂M

ω

Here, ∂M is given its induced boundary orientation, and if ∂M = ∅ then
∫
∂M

ω = 0 by convention.

Remark X.3.1
It will be clear from the proof that one actually only needs that ω is a C1-form, i.e. its coefficients in

any smooth coordinate system ϕ = (x1, . . . , xn) are ω =
∑
I fI dxI where fI ∈ C1(U).
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We wish to prove Theorem X.3.1!!! Let’s go!

Proof of Stoke’s Theorem. Since both sides of Stokes’ theorem are linear in ω, we may assume without loss
of generality (using a partition of unity) that suppω ⊆ U where (U,ϕ) is a coordinate chart in the orientation

of M . As usual, we set Û := ϕ(U) ⊆ Hn open and α : Û → U = ϕ−1.
There are two cases:

(Case 1) Suppose that Û ∩ ∂Hn = ∅, i.e. Û is open in Rn. Then of course ω is zero on ∂M so:∫

∂M

ω = 0

So then we want to show that: ∫

M

dω = 0

That is, we want to show the following:∫

M

dω =

∫

Û

α∗(dω) =

∫

Û

d(α∗ω) =

∫

Û

dν

Where we have set ν = α∗ω. So then we have to show that if ν is an (n− 1)-form on the open set Û

such that supp ν is a compact set contained in Û , then:∫

Û

dν = 0

We may write ν in the following way since it is an (n− 1)-form on Û ∈ Rn:

ν =
∑

I

gI dxI =
∑

i = 1n(−1)i−1fi dx1 ∧ · · · d̂xi ∧ · · · ∧ dxn

Where d̂xi means that the term dxi is omitted from the product, and the signs (−1)i−1 are just there

to make the proof cleaner. Also note that the fi ∈ C1(Û) and supp fI is a compact subset of Û .
Then we have the following:

dν =

n∑

i=1

(−1)i−1 dfi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

n∑

i=1

(−1)i−1




n∑

j=1

∂fi
∂xj

dxj


 ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

n∑

i=1

(−1)i−1
∂fi
∂xi

dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

n∑

i=1

∂fi
∂xi

dx1 ∧ · · · ∧ dxn

We then write that:
∫

Û

=

∫

Û

(
n∑

i=1

∂fi
∂xi

)
dx1 . . . dxn

Extending fi to all of Rn to be 0 outside of Û by using that supp fi is a compact subset of Û and

using bump functions, we can then take a box B =
∏n
j=1[aj , bj ] so that Û ⊆ B, and no point in Û
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has coordinates aj , bj , just by taking aj , bj sufficiently large. Then we necessarily have that:
∫

Û

dν =

∫

B

(
n∑

i=1

∂fi
∂xi

)
dx1 . . . dxn

=

n∑

i=1

∫

B

∂fi
∂xi

dx1 . . . dxn

=

n∑

i=1

∫

B′i

(∫ bi

ai

∂fi
∂xi

dxi

)
dx′i

where x′i = (x1, . . . , xi, . . . , xn), and B′i = [a1, b1]× · · · × [̂ai, bi]× · · · × [an, bn]. By the fundamental
theorem of calculus, we see that:

∫ bi

ai

∂fi
∂xi

(xi, x′i) dxi = fi(bi, x
′
i)− fi(ai, x′i) = 0− 0 = 0

since (bi, x
′
i), (ai, x

′
i) 6∈ Û ⊇ supp fi for all x′i ∈ Rn−1 by how we chose B.

Thus we have that: ∫

Û

dν = 0

just as needed. Perfect!
(Cbse 2) Now suppose that U ∩ ∂M 6= 0. We argue similarly to the above, but we take B to be the box

B =
∏n
j=1[aj , bj ] with an = 0. This is given in the below picture, where B is in green:

And we can also choose things so that:

supp fi ⊆ Û ⊆
n−1∏

j=1

[aj − 1, bj − 1]× [0, bn − 1]

As before, we extend fi to all of B by setting it to be zero outside of Û . We then apply Fubini and
the Fundamental Theorem of Calculus to see that:

∫

Û

dν =

n∑

i=1

∫

B

∂fi
∂xj

dx1 . . . dxn

=

n∑

i=1

∫

B′i

(∫ bi

ai

∂fi
∂xi

dxi

)
dx′i

Where that with x′i = (x1, . . . , x̂i, . . . , xn) and B′i = [a1, b1]× · · · × [̂ai, bi]× · · · × [an, bn]. Then we
see for 1 ≤ i ≤ n− 1 that

∫

B′i

∫ bi

ai

∂fi
∂xi

(xi, x′i) dxi = fi(bi, x
′
i)− f(ai, x

′
i) = 0− 0 = 0
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Just as before. Then for i = n we just have:
∫

Û

dν =

∫

B′n

(∫ bn

0

∂fn
∂xn

dxn

)
dx′n

=

∫

B′n

[fn(x′n, bn)− fn(x′n, 0)] dx′n

= −
∫

B′n

fn(x′n, 0) dx′n

where B − n′ = Bn ∩ {xn = 0}. Great! This is exactly what we need. We then have our identity:∫

M

dω =

∫

Û

dν = −
∫

B′n

fn(x′n, 0) dx′n (Identity 1)

We now see what is
∫
∂M

ω.
Since we’re given ∂M the induced boundary orientation in which the restricted chart (U,ϕ) is

positively oriented if and only if n is even where U = U ∩ ∂M , ϕ = ϕ
∣∣
U

and ϕ : U → Û ⊆ Rn−1 is

open. Then α = ϕ−1 = α
∣∣
(Û,0)

These charts can be pictured as:

Where π(x1, . . . , xn) = (x1, . . . , xn−1) and ι(x1, . . . , xn−1) = (x1, . . . , xn−1, 0). So α = α ◦ ι. We then
may write: ∫

∂M

ω = (−1)n
∫

Û

α∗ω

Where the (−1)n term comes out because (U,ϕ) has positive orientation if and only if n is even.
Now recall that:

α∗ω = ν =

n∑

i=1

(−1)i−1fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

We then have because α = α ◦ ι that α∗ = ι∗α∗, so:

α∗ω = ι∗α∗ω = ι∗ν

Therefore, we may write:

α∗ω = ι∗ν =

n∑

i=1

(−1)n−1ι∗fi(ι
∗ dx1) ∧ · · · ∧ ι̂∗ dxi ∧ · · · (ι∗ dxn)
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Now note that ι∗fi = fi ◦ ι, that is the restriction of fi to (Û , 0). But then, we see that:

ι∗ dxj = d(ι∗xj) = d(xj ◦ ι) = dxj (j 6= n)

ι∗ dxn = d(ι∗xn) = d(xn ◦ ι) = 0

Therefore, we see that:

α∗ω = ι∗ν =

n∑

i=1

(−1)i−1ι∗fi(x
′, 0) dx1 ∧ · · · ∧ d̂xi ∧ · · · 0

= (−1)n−1fn(x′, 0) dx1 ∧ · · · ∧ dxn−1

Because all terms in the sum with i 6= n vanish. Therefore:∫

∂M

ω =

∫

Û

ω = (−1)n
∫

Û

(−1)n−1fn(x′, 0) dx1 . . . dxn−1 = −
∫

B′
fn(x′n, 0) dx′n

Using (Identity 1), we get that; ∫

∂M

ω =

∫

M

dω

This proves the result in this case.

With this we’re done! Perfect!

Corollary X.3.2 (Green’s Formula in R2)
Let W be a compact 2-dimensional submanifold of R2 and denote by C = ∂W .
Then we have that: ∫

C

(f dx+ g dy) =

∫

W

(
∂g

∂x
− ∂f

∂y

)
dxdy

for any f, g ∈ C1(W ).

Remark X.3.2
As we saw in the last section,

∫

C

f dx+ g dy =

∫

C

~F · d~s =

∫ b

a

~F (γ(s)) · γ′(s) ds

Where ~F = (f, g) and γ : [a, b]→ R2 is a curve parameterizing C, that is the line integral of ~F along C.
The RHS of Green’s formula is the integral:

∫

W

(
∂g

∂x
− ∂f

∂y

)
dxdy =

∫

W

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy

since W is a 2-manifold in R2, so you can use itself as a coordinate chart.

Also, the quantity ∂g
∂x −

∂f
∂y is called curl ~F = ∇ × ~F , which is a scalar if ~F : R → R2. Therefore

Green’s Formula has the form: ∫

C

~F · d~s =

∫

W

(curl ~F ) dxdy

Proof. Let ω = f dx+ g dy. Then:

dω = df ∧ dx+ dg ∧ dy

=

(
∂f

∂x
dx+

∂f

∂y
dy

)
∧ dx+

(
∂g

∂x
dx+

∂g

∂y
dy

)
∧ dy

=

(
∂g

∂x
− ∂f

∂y

)
dx ∧ dy

Then Stokes’ theorem on W gives the result.
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Part D. Riemannian Metrics and the Volume Form

All objects we have thus introduced (forms, integrals on n-forms, Stokes’ theorem) are purely topological
or differential objects.

In particular, they do not distinguish between a manifold M and a diffeomorphic copy of M (like the open
unit ball and all of Rn).

Now, we introduce a geometric structure to our differentiable manifolds, namely a Riemannian metric.

Definition X.3.1 (Riemannian Metrics and Manifolds)
Let M be a differentiable manifold. A Riemannian metric g on M is a smooth, symmetric, 2-tensor

that is positive definite at each point p ∈M . The pair (M, g) is called a Riemannian manifold.
Let’s unwind this definition a bit.
Recall a symmetric 2-tensor. For each point p ∈ M , gp is a 2-tensor on TpM , that is gp(−,−) :

TpM × TpM → R is bilinear, and gp(v, w) = gp(w, v).
Positive-definite means gp(v, v) > 0 for every v 6= 0 lying in TpM .
For smoothness of a 2-tensor: Let (U,ϕ) be a coordinate chart such that ϕ = (x1, . . . , xn). Then for

each p ∈ U , we have dx1, . . . , dxn is a basis for (TpM)∗ and dxi⊗dxj is a basis for L 2(TpM) (2-tensors
on TpM). Therefore we can write that:

gp =
∑

1≤i,j≤m
gij(p) dxi ⊗ dxj

So the claim that g is smooth is that the functions gij : M → R are smooth. g being symmetric is
equivalent to saying gij = gji.

Exercise X.3.1
Show that g is smooth if and only if for any two smooth vector fields X,Y on M , there holds that

g(X,Y ) : M → R is smooth, where this function is given by p 7→ gp(Xp, Yp).
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Recall from Definition X.3.1 that a metric g on M is a smooth symmetric 2-tensor that is positive definite
at each point p ∈M . We call (M, g) a Riemannian manifold.

If (U,ϕ) is a coordinate chart, then since dx1, . . . , dxn is a basis for (TpM)∗¿ Then for p ∈ U we have for
p ∈ U :

g(p) =
∑

i,j

gij(p) dxi ⊗ dxj

With gij : U → R satisfying gij = gji. And in fact:

gij(p) = g(p) ·
(

∂

∂xi
,
∂

∂xj

)
=

〈
∂

∂xi
,
∂

∂xj

〉

g

If M is a k-submanifold of Rd, then it inherits the Euclidean metric from Rd. We call this the induced

Euclidean metric on M . That is for v, w ∈ TpM ⊆ TpRd = Rd:
gp(v, w) = 〈v, w〉Rd

X.4. The Volume Form

We know from last Friday’s discussion that if (M, g) is an oriented Riemannian manifold, then there exists
a smooth orthonormal frame (ONF) {E1, . . . , En} in a neighborhood of each point p ∈M .

By replacing E1 by −E1 if needed, we may assume that this orthonormal frame is positively oriented.

Theorem X.4.1 (The volume form on oriented Riemannian manifolds)
Let (M, g) be an oriented Riemannian n-manifold. Then:

a) There is a unique smooth n-form Ω on M such that:

Ω(E1, . . . , En) = 1

for any positively oriented orthonormal frame {E1, . . . , En} on M . Ω is denoted by dVg or dVM
(or dA if n = 2 or ds if n = 1).

Caution: This notation does not mean that dVM is exact (that is VM is just notation, not an
(n− 1)-form), in fact it is not

b) Let (U,ϕ) be a coordinate chart in the orientation of M , and suppose that ϕ = (x1, . . . , xn).
Then:

dVM =
√
|g|dx1 ∧ · · · ∧ dxn

where:

|g| = det(gij) > 0

Where gij are the components of g in these coordinates (x1, . . . , xn).

This unique smooth n-form is called the volume form on (M, g).

Proof. First we show uniqueness. Suppose that such an n-form Ω exists. Then let E1, . . . , En be a smooth
positively oriented orthonormal frame on some open set U ⊆M . Let ε1(p), . . . , εn(p) be the basis of (TpM)∗

dual to E1(p), . . . , En(p). The 1-forms ε1, . . . , εn are called the dual coframe to E1, . . . , En. We showed on
Friday that in coordinates we have:

εi = gijEj

However, we won’t use this for our proof.
Then we know that:

Ω(p) = f(p) · ε1 ∧ · · · ∧ εn

for some smooth function f : U → R. This holds because dim A n(TpM) = 1. But then:

1 = Ω(E1, . . . , En) = f(p) · (ε1 ∧ · · · ∧ εn)(E1, . . . , En) = f(p)

Therefore Ω = ε1 ∧ · · · ∧ εn. This implies that Ω is unique because it has this very precise form.
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Now for existence. Since for every p ∈ M , there exists an open neighborhood U of p and a positively
oriented orthonormal frame {E1, . . . , En} on U , we define Ω(p) = ε1 ∧ · · · ∧ εn where ε1, . . . , εn is the dual
coframe to E1, . . . , En.

To show that this definition makes sense, we need to show that it does not depend on the positively

oriented orthonormal frame chosen. Let Ẽ1, . . . , Ẽn be another positively oriented orthonormal frame near p
on a neighborhood V of p. Let ε̃1, . . . , ε̃n be its dual coframe. Then we must show that:

ε1 ∧ · · · ∧ εn = ε̃1 ∧ · · · ∧ ε̃n

To see this, write Ẽi(q) = Aji (q)Ej(q) for all q ∈ U ∩ V for some matrix Aji of smooth Aji : U ∩ V → R.

The fact that both frames are orthonormal means that Aji (q) is an orthogonal matrix (linear algebra).

Therefore detAji (q) = ±1. Since both frames are positively oriented , then detAji (q) > 0, so detAji (q) = 1
for all q ∈ U ∩ V

Then we may write:

Ω = ε1 ∧ · · · ∧ εn Ω̃ = ε̃1 ∧ · · · ∧ ε̃n

Then we may write that:

Ω(Ẽ1, . . . , Ẽn) = (ε1 ∧ · · · ∧ εn)(Ẽ1, . . . , Ẽn)

= det[εj(Ẽi)] = det(Aji ) = 1

= ε̃1 ∧ · · · ∧ ε̃n(Ẽ1, . . . , Ẽn)

= Ω̃(Ẽ1, . . . , Ẽn)

Therefore Ω and Ω̃ agree on a basis, and so Ω = Ω̃.
Now for the proof of part (b). Let (U,ϕ) be some coordinate chart with ϕ = (x1, . . . , xn). Then in those

coordinates we have dVM can be given as:

dVM (p) = f(p) · dx1 ∧ · · · ∧ dxn

for some smooth function f : U → R. To compute f(p) we let E1, . . . , En be a positively oriented orthonormal
frame defined on U and let ε1, . . . , εn be its dual coframe. Then we may write that:

∂

∂xj
=
∑

BjiEj

Then applying the above equality to ∂
∂x1 , . . . ,

∂
∂xn we obtain that:

f(p) = dVM (p)

(
∂

∂x1
, . . . ,

∂

∂xn

)
= (ε1 ∧ · · · ∧ εn)

(
∂

∂x1
, . . . ,

∂

∂xn

)

= det

[
εj · ∂

∂xi

]
= det[Bji ]

On the other hand, we may write with Einstein Summation notation:

gij := g

(
∂

∂xi
,
∂

∂xj

)
= g(Bki Ek, B

`
jE`)

= Bki B
`
jg(Ek, E`) = Bki B

`
jδk` =

n∑

k=1

Bki B − jk = (BTB)ij

Therefore we have that:

det(gij) = det(BTB) = (detB)2 > 0

|g| = det(gij) > 0

detB = ±
√
|g|

But then both E1, . . . , En and ∂
∂x1 , . . . ,

∂
∂xn and positively oriented, so detB > 0. Thus detB =

√
|g|. Great!

This then tells us that:

dVM (p) = f(p) · dx1 ∧ · · · ∧ dxn = (detB) · dx1 ∧ · · · ∧ dxn =
√
|g| · dx1 ∧ · · · ∧ dxn
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This is exactly what we wanted to show.

Example X.4.1
Let M be a submanifold of Rd and let g be the induced Euclidean metric on M .
Let (U,ϕ) be a coordinate chart onM and suppose ϕ = (ϕ1, . . . , ϕn) and α = ϕ−1 and set. Then gij

is just:

gij = g

(
∂

∂ϕi
,
∂

∂ϕj

)
=

∂α

∂xi
· ∂α
∂xj

= α∗(ei) · α∗(ej)

gij = (DαT (x) ·Dα(x))ij

Why? Well suppose that A has columns v1, . . . , vn. Then AT has rows vT1 , . . . , v
T
n . But then:

(ATA)ij = vTi vj = vi · vj
This means that the volume form dVM on U is given by:

dVM (p) =
√
|g| · dϕ1 ∧ · · · ∧ dϕn

=
√

det [DαT (x) ·Dα(x)] · · dϕ1 ∧ · · · ∧ dϕn

where x = ϕ(p)

Definition X.4.1
Let (M, g) be an oriented Riemanian manifold, and let f : M → R be continuous and compactly

supported. Then the integral of f over M is defined as
∫
M
f dVM .

Also, the volume of M is defined as V (M) =
∫
M

1 dVM when M is compact

Exercise X.4.2
Check that V (M) > 0.

Exercise X.4.3
If we reverse the orientation of M , then

∫
M
f dV does not change

Example X.4.4
Let C be a 1-dimensional submanifold of Rd and let γ : (a, b) → C be a parameterization of C (i.e.

C = γ(a, b). We denote dVC = ds. Then:

ds =
√
γ′T (t)γ′(t) dt =

√
|γ′(t)|2 dt = |γ′(t)|dt

If f : C → R is continuous and compactly supported, then:
∫

C

f ds =

∫ b

a

f(γ(t)) |γ′(t)|dt

the length of C is then just:
∫

C

ds =

∫ b

a

|γ′(t)|dt

Example X.4.5
Let S ⊆ Rd be a surface (i.e. a 2-dimensional submanifold) and let α : U → Rd be its parameterization,

i.e. S = α(U). Denote dVS = dA and let du1 ∧ du2 be the coordinate form given by α (i.e. if ϕ = α−1

then dui = dϕi as before).
Then we have that:

dA =
√

detDαT (u)Dα(u) du1 ∧ du2

DαT (u)Dα(u) =

(
∂α
∂u1 · ∂α∂u1

∂α
∂u1 · ∂α∂u2

∂α
∂u2 · ∂α∂u1

∂α
∂u2 · ∂α∂u2

)

88



Faye Jackson MATH 396 - X.4

We may then write:

detDαT (u)Dα(u) =

∣∣∣∣
∂α

∂u1

∣∣∣∣
2 ∣∣∣∣
∂α

∂u2

∣∣∣∣
2

−
(
∂α

∂u1
· ∂α
∂u2

)2

|g| =
∣∣∣∣
∂α

∂u1

∣∣∣∣
2 ∣∣∣∣
∂α

∂u2

∣∣∣∣
2

−
(
∂α

∂u1
· ∂α
∂u2

)2

dA =
√
|g|du1 ∧ du2

If d = 3, then recall that:
∣∣∣∣
∂α

∂u1

∣∣∣∣
2 ∣∣∣∣
∂α

∂u2

∣∣∣∣
2

−
(
∂α

∂u1
· ∂α
∂u2

)2

=

∣∣∣∣
∂α

∂u1

∣∣∣∣
2 ∣∣∣∣
∂α

∂u2

∣∣∣∣
2

(1− cos2 θ) =

∣∣∣∣
∂α

∂u1
× ∂α

∂u2

∣∣∣∣
In this case, we see that:

∫

S

f dA =

∫

U

f(α(u)) ·
∣∣∣∣
∂α

∂u1
× ∂α

∂u2

∣∣∣∣ · du1 du2
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Remark X.4.1
Last time, we saw that if M is an orientable Riemannian manifold, then we could define a unique

volume form dVM and then we used that for integrate functions on M as:∫

M

f dVM

In coordinates, if supp f ⊆ (U,ϕ) then if Û = ϕ(U) and α = ϕ−1 we have:∫

M

f dVM =

∫

Û

f(α(x))
√
|g| (x) dx (?)

where |g| (x) = detDαT (x)Dα(x) when (M, g) is the induced Euclidean metric.
I the geeral case, we use a partition of unity to ue the above formula on each coordinate chart.
M does not need to be orientable to define this integral using (?). To see this, we can check that (?)

is indeendent of the choice of coordinates.
We often use the notation

∫
M
f |dVM | for the left hand side of (?). |dVM | is called a Riemannian

density.

XI. Theorems of vector calculus

Here we shall prove the divergence theorem and the classical Stokes’ theorem.

Definition XI.0.1
Given an alternating k-form ω on a vector space V (ω ∈ A k(V )) and a vector x ∈ V , we define iXω

(called the interior multiplication) as the (k − 1)-form:

ix(ω)(v1, . . . , vk−1) = ω(x, v1, . . . , vk−1)

Exercise XI.0.1
Show that ix(ω) ∈ A k−1(V )

We will use this notation when ω = dVRn is the volume form on Rn. Then ix dVRn is an (n− 1)-form for
any x ∈ TpRn. It is given by:

iX dVRn(v1, . . . , vk−1) = dVRn(X, v1, . . . , vk−1)

=

n∑

i=1

Xi dVRn(ei, v1, . . . , vn−1)

=

n∑

i=1

Xi det(ei, v1, . . . , vn−1)

=

n∑

i=1

Xi(−1)i+1 det(v̂1, . . . , v̂n−1)

where v̂j ∈ Rn−1 in the above formula is obtained from vj by dropping the i-th coordinate. Then we know:

iX dVRn(v1, . . . , vn−1) =

n∑

i=1

(−1)i+1Xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn(v1, . . . , vn−1)

iX dVRn =

n∑

i=1

(−1)i+1Xi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

Proposition XI.0.1
Let (M, g) be an oriented (n− 1)-dimensional submanifold of Rn (aka a hypersurface), and let g be

the induced Euclidean metric on M . Let ~N be the smooth unit normal vector to M corresponding to
its orientation.
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(recall that this means that {v1, . . . , vk−1} is positively orinted inTpM if and only if { ~N, v1, . . . , vn−1}
is positively oriented in TpRn)

Then in fact:

dVM = iNdVRn
∣∣
M

Proof. Let E1, . . . , En−1 be any positively oriented orthonormal frame on U ⊆M open. Then we know:

iN dVRn(E1, . . . , En−1 = dVRn(N, e1, . . . , En−1) = 1

And this holds for every such orthonormal frame. However this is just the definition of the volume form by

uniqueness. Therefore dVM = iNdVRn
∣∣
M

.

Proposition XI.0.2
With the same notation as above, let X be any vector field along M (not necessarily tangent to M),

then we have:

iXdVRn
∣∣
M

= 〈X,N〉dVM

Proof. Write X = XT +X⊥ where X⊥ = 〈X,N〉N ∈ (TpM)⊥ and XT = X −X⊥ ∈ TpM .
Then we have:

iX dVRn = iX⊥ dVRn + iXT dVRn

= i〈X,N〉N dVRn + iXT dVRn

Therefore we may write:

iXdVRn
∣∣
M

= 〈X,N〉iNdVRn
∣∣
M

+ iXT dVRn
∣∣
M

But then we just need to notice that iXT dVRn
∣∣
M

= 0. Why? Wel if v1, . . . , vn−1 ∈ TpM then:

iXT dVRn
∣∣
M

(v1, . . . , vn−1) = dVRn(XT , v1, . . . , vn−1) = det(XT , v1, . . . , vn−1) = 0

Because TpM is an (n− 1)-dimensional subspace, so the vectors given above cannot be linearly independent.
Therefore as claimed above:

iXdVRn
∣∣
M

= 〈X,N〉dVM

Theorem XI.0.3 (The Divergence Theorem)
Let M be an n-dimensional submanifold of Rn with its induced Euclidean metric and orientation.

Let ~N be the outward unit normal vector to ∂M .
Suppose that F is a smooth (C1 is enough) vector field on M . Then F = F (1, . . . , Fn) where

F i : M → R.
Then we have that: ∫

∂M

〈F,N〉dV∂M =

∫

M

(divF ) dVRn

WHere divF =
∑n
i=1

∂F i

∂xi

Remark XI.0.1
The integral

∫
∂M
〈F,N〉dV∂M is called the flow of F through ∂M .

For a small ball B, then
∫
∂B
〈F,N〉 dV∂B is how much F is pointing / flowing into B. If the ball has

radius ε then the right hand side is approximately divF (p)ε3 for p the center of the ball.
If F is the velocity of a liquid, then divF = 0, which means the liquid is incompressible which holds if

and only if the amount of fluid that enters a closed region is equal to the amount that exits that region.
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Proof. Let ω = iF dVRn . Then ω =
∑n
i=1(−1)i+1F i dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

So then we have that:

dω =

n∑

i=1

(−1)i+1 dF i ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

n∑

i=1

(−1)i+1

(
n∑

k=1

∂F i

∂xk
dxk

)
∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

n∑

i=1

(−1)i+1 ∂F
i

∂xi
dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

=

n∑

i=1

(−1)i+1(−1)i−1
∂F i

∂xi
dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn

=

(
n∑

i=1

∂F i

∂xi

)
dx1 ∧ · · · ∧ dxn

= (divF ) dx1 ∧ · · · ∧ dxn

Then we proceed from Stokes’ theorem. We know that:∫

M

dω =

∫

M

(divF ) dVRn

∫

∂M

ω =

∫

∂M

(iF dVRn)
∣∣
∂M

=

∫

∂M

〈F,N〉dV∂M

Recalling that the boundary orientation of ∂M is determined by the outward normal vector N . Great! We
then know: ∫

∂M

〈F,N〉dV∂M =

∫

∂M

ω =

∫

M

dω =

∫

M

(divF ) dVRn

This finishes the proof

Theorem XI.0.4 (The classical Stokes’ theorem)
Let M be an oriented 2-dimensional submanifold of R3 with its induced Euclidean metric.
Let N be the unit normal vector field to M corresponding to its orientation. Let F = (F 1, F 2, F 3)

be a C1-vector field defined in an open set containing M . Then:∫

∂M

F · ds =

∫

M

〈curlF,N〉dA

where dA = dVM and ds = dV∂M

Remark XI.0.2
This is the generalization of Green’s formula which deals with the case where M is a subset of the (x, y)

plane. In that case, curlF =
(

0, 0, ∂F2

∂x − ∂F1

∂y

)
and hence 〈curlF,N〉 = ∂F2

∂x − ∂F1

∂y because N = (0, 0, 1).

Proof. Let ω = F 1 dx1 + F 2 dx2 + F 3 dx3.
We have seen before that: ∫

∂M

F · ds =

∫

∂M

ω
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We also saw that:

dω = G1 dx2 ∧ dx3 −G2 dx1 ∧ dx3 +G3 dx1 ∧ dx2 =

3∑

i=1

Gi(−1)i−1 dx1 ∧ d̂xi ∧ dx3

where G = (G1, G2, G3) = curlF . Where of course:

curlF =

(
∂F 2∂y − ∂F 2

∂z
,
∂F 1

∂z
− ∂F 3

∂x
,
∂F 2

∂x
− ∂F 2

∂x
− ∂F 1

∂y

)

Hence dω = iG dVR3 and

dω
∣∣
M

= iGdVR3

∣∣
M

= 〈G,N〉dVM = 〈curlF,N〉dVM
But we also know that:

(dω)
∣∣
=

d(ω
∣∣
M

)

Why? Well if j : M → R3 is the inclusion then:

ω
∣∣
M

= j∗ω =⇒ d(ω
∣∣
M

) = dj∗ω = j∗ dω = (dω)
∣∣
M

By Stokes Theorem applied to ω
∣∣
M

we have:
∫

∂M

ω
∣∣
M

=

∫

M

d(ω
∣∣
M

) =

∫

M

(dω)
∣∣
M

∫

∂M

F · ds =

∫

M

〈curlF,N〉dA

This completes the proof
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Appendix

Appendix A. IBL: Measure Theory and Lebesgue Integration

This is the IBL section of the course. These problems are done in groups, and not all of them are completed
here. These problems are primarily in measure theory and the construction of the Lebesgue Integral
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Handout 1

Where did we learn in 395?

The notion of Lebesgue outer measure of a set E:

m∗(E) = inf
E⊂∪∞j=1Bj

∞∑

j=1

|Bj|

where the union above is taken over boxes Bj ⊂ Rd. A set E ⊂ Rd is
said to be Lebesgue measurable if for every ε > 0, there exists an open
set U ⊂ Rd containing E such that m∗(U \E) ≤ ε. If E is measurable,
we refer to m(E) = m∗(E) as the Lebesgue measure of E.

We have proven the following facts:

(i) Properties of the outer measure

• m∗(∅) = 0.

• (Monotonicity) If E ⊂ F ⊂ Rd, then m∗(E) ≤ m∗(F ).

• (Countable subadditivity) If E1, E2, . . . ⊂ Rd is a countable
sequence of sets, then m∗ (∪∞n=1En) ≤

∑∞
n=1m

∗(En).

(ii) If dist(E,F ) > 0, then m∗(E ∪ F ) = m∗(E) +m∗(F ).

(iii) If E is an elementary set, then m∗(E) = m(E) where m(E) is the
elementary measure of E defined before. More generally,

(iv) Let E = ∪∞n=1Bn be a countable union of almost disjoint boxes Bk

(this means that their interiors are disjoint) then

m∗(E) =
∞∑

k=1

|Bk|.

As such, Rd for example has infinite outer measure.

1



(v) Let E ⊂ Rd be an arbitrary set. There holds

m∗(E) = inf
E⊂U,U open

m∗(U).

This is called outer regularity.

Show the following (Warning: some of those questions are trivial
one-liners).

Q1) Every open set is Lebesgue measurable.

Q2 If E1, E2, E3, . . . ⊂ Rd are a sequence of Lebesgue measurable sets,
then the union ∪∞n=1En is Lebesgue measurable

Q3) Every closed set is Lebesgue measurable. Hint: Reduce to the
compact case. Then, use that any open set is the countable union
of almost disjoint closed cubes, as well as some of the properties
reviewed above.

Q4) Every set of Lebesgue outer-measure 0 is measurable (such sets are
called null sets).

Q5) the empty set ∅ is Lebesgue measurable.

Q6) If E ⊂ Rd is Lebesgue measurable, the so is its complement Rd\E.

Q7) If E1, E2, E3, . . . ⊂ Rd are a sequence of Lebesgue measurable sets,
then the intersection ∩∞n=1En is Lebesgue measurable.

Q8) A set E is measurable iff and only for every ε > 0 one can find an
open set U such that m∗(E∆U) ≤ ε (in other words E differs from
an open set by a set of outer measure ε.)

Q9) A set E is measurable iff and only for every ε > 0 one can find
a closed set F such that m∗(E∆F ) ≤ ε (in other words E differs
from a closed set by a set of outer measure ε.)

Q10) If E1, E2, . . . ⊂ Rd is a countable sequence of disjoint Lebesgue
measurable sets, then m(∪∞n=1En) =

∑∞
n=1m(En).
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I.1. IBL Week 1

Problem I-3
Every closed set is Lebesgue measurable. Hint: Reduce to the compact case. Then, use that any open

set is the countable union of almost disjoint closed cubes, as well as some of the properties

Solution. First we handle the case of a compact set C. Fix some ε > 0 and let U be an open set so that
C ⊆ U and m∗(U)−m∗(C) < ε

2 by outer regularity. Now we express the open set U \ C as the countable
union of almost disjoint closed cubes B1, B2, . . .. We wish to show that the following by property (iv):

m∗(U \ C) =

∞∑

k=1

|Bk| ≤
ε

2
< ε

To do so it suffices to show that any finite sum
∑N
k=1 |Bk| ≤ ε

2 .
To do this, note that Bk ⊆ U \ C so Bk ∩ C = ∅. We wish to show that dist(Bk, C) > 0 in order to use

property (ii). We prove a small lemma

Lemma I.1.1
For any two disjoint compact sets K1 and K2 we know that dist(K1,K2) > 0

Proof. Suppose that dist(K1,K2) = 0. Then construct sequences xn ∈ K1 and yn ∈ K2 such that d(xn, yn) <
1
n by definition of the distance.

Now by compactness is a convergent subsequence xnk of xn and ynk` of ynk . These converge to some
x ∈ K1 and some y ∈ K2 respectively. We show that x = y and so K1 and K2 are not disjoint. To do this
fix some ε > 0 and let ` ∈ N be so that 1

` <
ε
3 , d(xnk` , x) < ε

3 , and d(ynk` , y) < ε
3 . Then note that

d(x, y)
4
≤ d(x, xnk` ) + d(xnk` , ynk` ) + d(ynk` , y)

<
ε

3
+

1

nk`
+
ε

3

<
ε

3
+

1

`
+
ε

3

<
ε

3
+
ε

3
+
ε

3
= ε

And so x = y by taking ε→ 0. This shows that x ∈ K1 ∩K2 so K1 and K2 are not disjoint. With this we’ve

shown the contrapositive of the lemma.

Therefore since
⋃N
k=1Bk is compact since each Bk is compact and C is compact, we know that:

dist

(
N⋃

k=1

Bk, C

)
> 0

Now by property (ii) and monotonicity we know that:

m∗(C) +

N∑

k=1

|Bk| = m∗
(
C ∪

N⋃

k=1

Bk

)
≤ m∗(U)

N∑

k=1

|Bk| ≤ m∗(U)−m∗(C) <
ε

2

And so passing to the infinite case:

m∗(U \ C) =

∞∑

k=1

|Bk| ≤
ε

2
< ε

This shows that C is Lebesgue measurable just as desired.
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Now consider any closed set C. Now write Rn as a countable union of almost disjoint closed boxes
B1, B2, . . . by just taking points on the integer lattice as corners for these boxes. Then we know that:

C = C ∩ Rn = C ∩
( ∞⋃

k=1

Bk

)

=

∞⋃

k=1

C ∩Bk

Now since C ∩Bk is a closed subset of the compact set Bk we know that C ∩Bk is compact, and so by the
previous case it is Lebesgue measurable. But then by Question 2 we know that C is Lebesgue measurable

just as desired! Great!
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Handout 1

Where did we learn in 395?

The notion of Lebesgue outer measure of a set E:

m∗(E) = inf
E⊂∪∞j=1Bj

∞∑

j=1

|Bj|

where the union above is taken over boxes Bj ⊂ Rd. A set E ⊂ Rd is
said to be Lebesgue measurable if for every ε > 0, there exists an open
set U ⊂ Rd containing E such that m∗(U \E) ≤ ε. If E is measurable,
we refer to m(E) = m∗(E) as the Lebesgue measure of E.

We have proven the following facts:

(i) Properties of the outer measure

• m∗(∅) = 0.

• (Monotonicity) If E ⊂ F ⊂ Rd, then m∗(E) ≤ m∗(F ).

• (Countable subadditivity) If E1, E2, . . . ⊂ Rd is a countable
sequence of sets, then m∗ (∪∞n=1En) ≤

∑∞
n=1m

∗(En).

(ii) If dist(E,F ) > 0, then m∗(E ∪ F ) = m∗(E) +m∗(F ).

(iii) If E is an elementary set, then m∗(E) = m(E) where m(E) is the
elementary measure of E defined before. More generally,

(iv) Let E = ∪∞n=1Bn be a countable union of almost disjoint boxes Bk

(this means that their interiors are disjoint) then

m∗(E) =
∞∑

k=1

|Bk|.

As such, Rd for example has infinite outer measure.
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(v) Let E ⊂ Rd be an arbitrary set. There holds

m∗(E) = inf
E⊂U,U open

m∗(U).

This is called outer regularity.

Show the following (Warning: some of those questions are trivial
one-liners).

Q1) Every open set is Lebesgue measurable.

Q2 If E1, E2, E3, . . . ⊂ Rd are a sequence of Lebesgue measurable sets,
then the union ∪∞n=1En is Lebesgue measurable

Q3) Every closed set is Lebesgue measurable. Hint: Reduce to the
compact case. Then, use that any open set is the countable union
of almost disjoint closed cubes, as well as some of the properties
reviewed above.

Q4) Every set of Lebesgue outer-measure 0 is measurable (such sets are
called null sets).

Q5) the empty set ∅ is Lebesgue measurable.

Q6) If E ⊂ Rd is Lebesgue measurable, the so is its complement Rd\E.

Q7) If E1, E2, E3, . . . ⊂ Rd are a sequence of Lebesgue measurable sets,
then the intersection ∩∞n=1En is Lebesgue measurable.

Q8) A set E is measurable iff and only for every ε > 0 one can find an
open set U such that m∗(E∆U) ≤ ε (in other words E differs from
an open set by a set of outer measure ε.)

Q9) A set E is measurable iff and only for every ε > 0 one can find
a closed set F such that m∗(E∆F ) ≤ ε (in other words E differs
from a closed set by a set of outer measure ε.)

Q10) If E1, E2, . . . ⊂ Rd is a countable sequence of disjoint Lebesgue
measurable sets, then m(∪∞n=1En) =

∑∞
n=1m(En).
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I.2. IBL Week 2

Problem I-6
If E ⊆ Rd is Lebesgue measurable, then so is its complement Rd \ E

Solution. Fix some sequence U1, U2, . . . of open sets so that each Un contains E and:

m∗(Un \ E) ≤ 1

n
Now name the following set:

A =
⋃

n≥1
Rd \ Un

Here we know that each Rd \ Un is closed, so by Questions 2 and 3 A is measurable. We claim that A ⊆ Ec,
and we will show that Ec \A is Lebesgue measurable. With this we will see that:

Ec = (Ec \A) ∪A
So then Ec will be measurable. We’ll quickly show that A ⊆ Ec. Fix some a ∈ A, then a ∈ Rd \Un for some
n, and then a 6∈ Un, and Un contains E, so a 6∈ E, so a ∈ Ec. Great!

To show that Ec \A is Lebesgue measurable we will use Question 4, showing that it has measure zero:

Ec \A ⊆ Ec \ U cn = (Rd \ E) ∩ Un = Un \ E
So applying monotonicity we have for all n that:

m∗(Ec \A) ≤ m∗(Un \ E) ≤ 1

n

And so Ec \A has measure zero. Thus Ec \A is Lebesgue measurable and so Ec = (Ec \A)∪A is Lebesgue

measurable as desired!

Problem I-7
If E1, E2, E3, . . . are a sequence of Lebesgue measurable sets then the intersection

⋂∞
n=1En is Lebesgue

measurable

Solution. This is simple, note by by Problem 2 and Problem 6 since Ec1, E
c
2, . . . are all Lebesgue measurable

that
⋃∞
n=1E

c
n is Lebesgue measurable. Then we see that:

( ∞⋃

n=1

Ecn

)
=

∞⋂

n=1

(Ecn)
c

=

∞⋂

n=1

En

Must be Lebesgue measurable by Question 6.

Problem I-8
A set E is measurable if and only if for every ε > 0 one can find an open set U such that m∗(E4U) ≤ ε

(in other words E differs from an open set by a set of outer measure ε).

Solution. Let’s do this in each direction!

(⇒) Suppose that E is measurable and fix ε > 0. Then there is some open set U containing E so that
m∗(U \ E) ≤ ε. Since U contains E we know that E \ U = ∅, and so:

m∗(U \ E) = m∗(E4U) ≤ ε
And so we are done!

(⇐) Fix some ε > 0, and pick an open U such that:

m∗(E4U) ≤ ε

53
in particular we will have by monotonicity that:

m∗(E \ U) ≤ ε

53
m∗(U \ E) ≤ ε

53
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Now by outer regularity find some open set O containing E \ U so that:

m∗(O) ≤ m∗(E \ U) +
ε

53
≤ 2ε

53

Now take V = U ∪O. V is open and we claim that V contains E since O contains E \U and U will
necessarily contain the rest of E. Then we compute by monotonicity and subadditivity that:

m∗(V \ E) ≤ m∗(U \ E) +m∗(O \ E)

≤ ε

53
+m∗(O)

≤ 2ε

53
+m∗(E \ U) ≤ 3ε

53
< ε

And so since we can repeat this construction for any ε > 0 we see that E is Lebesgue measurable.

Great!

Problem I-9
A set E is measurable if and only if for every ε > 0 one can find a closed set F such that m∗(E4F ) ≤ ε

(in other words E differs from a closed set of outer measure ε).

Solution. We apply Question 6 and Question 8. Note that E is measurable if and only if Ec is measurable,
and so E is measurable if and only if for every ε > 0 one can find an open set U such that m∗(Ec4U) ≤ ε.
Now consider that if we set F = U c then:

Ec4U = Ec \ U ∪ U \ Ec = (Ec ∩ U c) ∪ (U ∩ E)

= (F \ E) ∪ (F c ∩ E) = (F \ E) ∪ (E \ F ) = E4F
Now note that since U is open if and only if F is closed and we see that:

m∗(Ec4U) = m∗(E4F )

It is clear that we can find an open set U such that m∗(Ec4U) ≤ ε if and only if we can find a closed set F

such that m∗(E4F ) ≤ ε.

Problem I-10
If E1, E2, . . . ⊆ Rd is a countable sequence of disjoint Lebesgue measurable sets, then m (

⋃∞
n=1En) =∑∞

n=1m(En).

Solution. We have the inequality in one way by countable subadditivity.

Claim
If a set E is measurable then for every ε > 0 we can find some closed set F contained in E so that

m∗(E \ F ) ≤ ε.

Proof. Fix ε > 0, and note that Ec is measurable by Question 6. Then there is some open set U
containing Ec so that m∗(U \ Ec) ≤ ε. Then take F = U c. We then F is closed and contains E, and
also:

m∗(E \ F ) = m∗(U ∩ E) = m∗(U \ Ec) ≤ ε

And so we’re done

Claim
If all Ej are compact then the statement is true. TODO

Proof. TODO
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Claim
If all Ej were bounded then the statement is true by approximating with the first claim, reducing to

the compact case. TODO

Proof. TODO

Now we finally handle the general case.
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Integration of Simple Functions

Definition 0.1 (Simple function). A (complex-valued) simple function
f : Rd → C is a finite linear combination

f = c11E1
+ . . .+ ck1Ek

of indicator functions 1Ei of Lebesgue measurable sets Ei ⊂ Rd. Here,
i = 1, . . . , k where k ≥ 1 is a natural number and c1, c2, . . . , ck ∈ C
are complex numbers. (Recall that the indicator function of set is the
function that is equal to 1 on this set and zero otherwise). Clearly, this
is a complex vector space.

An unsigned simple function f : Rd → [0,∞] is defined similarly but
the ci take their values in [0,∞] rather than C.

Definition 0.2 (Integral of an unsigned simple function). If f = c11E1
+

. . .+ ck1Ek is an unsigned simple function, the integral Simp
∫
Rd f(x)dx

is defined by the formula

Simp

∫

Rd
f(x)dx := c1m(E1) + . . .+ ckm(Ek). (1)

Thus Simp
∫
Rd f(x)dx takes values in [0,∞]. (Here we adopt the con-

vention that 0 · ∞ = 0 in doing computations with the extended non-
negative real numbers [0,∞]).

A simple function has different representations as a linear combina-
tion of indicator functions of measurable sets, so for the above definition
to make sense, we need to show that if

f = c11E1
+ . . .+ ck1Ek = c′11E′

1
+ . . .+ c′k′1E′

k′

then we get the same answer when applying the formula (1), i.e. that

c1m(E1) + . . .+ ckm(Ek) = c′1m(E ′1) + . . .+ c′k′m(E ′k).

1



Q1) Show this! Partition Rd into at most 2k+k
′
disjoint sets formed by

taking intersections of the k + k′ sets Ek and E ′k′and their com-
plements. Then write what needs to be proved in terms of those
disjoint sets.

In the following questions, let f, g : Rd → [0,∞] be simple unsigned
function.

Q2) (Unsigned Linearity) Show that

Simp

∫

Rd
f(x) + g(x)dx = Simp

∫

Rd
f(x)dx+ Simp

∫

Rd
g(x)dx

and for any c ∈ [0,∞]

Simp

∫

Rd
cf(x)dx = c Simp

∫

Rd
f(x)dx.

Q3) (Finiteness) Show that Simp
∫
Rd f(x)dx < ∞ if and only if f is

finite almost every where, and its support (defined here as the set
{f(x) 6= 0}) has finite measure.

Notation: A property P (x) of a point x ∈ Rd is said to hold almost
everywhere in Rd (or for almost every point x ∈ Rd) if the set of
x ∈ Rd for which P (x) fails has Lebesgue measure 0. For example,
two functions f and g agree almost everywhere if one has that
f(x) = g(x) for almost every x ∈ Rd.

Q4) We have Simp
∫
Rd f(x)dx = 0 if and only if f is 0 almost ev-

erywhere. In particular, f and g agree almost everywhere then
Simp

∫
Rd f(x)dx =Simp

∫
Rd g(x)dx.

Q6) If f(x) ≤ g(x) for almost every x ∈ Rd, then Simp
∫
Rd f(x)dx ≤Simp

∫
Rd g(x)dx.

Definition 0.3 (Absolutely convergent simple integral). A complex-
valued simple function f : Rd → C is said to be absolutely integrable
if

Simp

∫

Rd
|f(x)|dx <∞.

2



If f is absolutely integrable, the integral Simp
∫
Rd f(x)dx is defined for

real signed f by the formula

Simp

∫

Rd
f(x)dx := Simp

∫

Rd
f+(x)dx− Simp

∫

Rd
f−(x)dx

where f+ = max(f(x), 0) is the positive part of f , and f− = max(−f(x), 0)
is the negative part of f . Note that since f+, f− ≤ |f |, they have a finite
integral. Finally, for complex-valued f , we define

Simp

∫

Rd
f(x)dx := Simp

∫

Rd
Re f(x)dx+ i Simp

∫

Rd
Im f(x)dx

Q7) Show the linearity property of this integral as in Q2) (but with
c ∈ C). Hint: Start with establishing it for real-valued simple
functions.
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I.3. IBL Week 3

Problem I-1
Show this! Partition Rd into at most 2k+m disjoint sets formed by taking intersections of the k +m

sets Ei and E
′
j and their complements. Then write what needs to be proved in terms of those disjoint

sets

Solution. Start by writing Fj := E′j for convenience. Now write E0
j = Ej , E

1
j = Ecj , F

0
j = Fj , and F 1

j = F cj .

Now for εE ∈ {0, 1}k and εF ∈ {0, 1}m we take the following set:

A(εE , εF ) =

k⋂

i=1

E
εiE
i ∩

m⋂

j=1

F
εjF
j

These are disjoint since if we have (εE , εF ) 6= (δE , δF ) then either εiE 6= δiE or εjF 6= εjF , and so we intersected
A(εE , εF ) with A(δE , δF ) we would end up with something like Ei ∩ Eci or Fj ∩ F cj , which must be empty.

Furthermore they partition Rd since for any x ∈ Rd we may set εiE to be 0 if x ∈ Ei and 1 if x ∈ Eci , and

likewise εjF to be 0 if x ∈ Fi and 1 if x ∈ F ci . We can always do this, and by definition we will then have
x ∈ A(εE , εF ).

Now we note that if Ei ⊆ {0, 1}k is the subset where the i-th coordinate is 0 we see that:

Ei = Ei ∩ Rd = Ei ∩




⋃

εE∈{0,1}k
εF∈{0,1}m

A(εE , εF )




=
⋃

εE∈{0,1}k
εF∈{0,1}m

Ei ∩A(εE , εF ) =
⋃

εE∈Ei
εF∈{0,1}m

A(εE , εF )

Because either we intersect with a subset of Ei or we intersect with Ei and Eci . Likewise for Fj ⊆ {0, 1}m is
the subset where the j-th coordinate is 0 we see that:

Fj =
⋃

εE∈{0,1}k
εF∈Fj

A(εE , εF )

With this established we now write the sum, noting that since these are unions and intersections of Lebesgue
measurable sets they are Lebesgue measurable:

k∑

i=1

cim(Ei) =

k∑

i=1

ci
∑

εE∈Ei
εF∈{0,1}m

m(A(εE , εF ))

m∑

j=1

c′jm(Fj) =

m∑

j=1

c′j
∑

εE∈{0,1}k
εF∈Fj

m(A(εE , εF ))
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Integration of Simple Functions

Definition 0.1 (Simple function). A (complex-valued) simple function
f : Rd → C is a finite linear combination

f = c11E1
+ . . .+ ck1Ek

of indicator functions 1Ei of Lebesgue measurable sets Ei ⊂ Rd. Here,
i = 1, . . . , k where k ≥ 1 is a natural number and c1, c2, . . . , ck ∈ C
are complex numbers. (Recall that the indicator function of set is the
function that is equal to 1 on this set and zero otherwise). Clearly, this
is a complex vector space.

An unsigned simple function f : Rd → [0,∞] is defined similarly but
the ci take their values in [0,∞] rather than C.

Definition 0.2 (Integral of an unsigned simple function). If f = c11E1
+

. . .+ ck1Ek is an unsigned simple function, the integral Simp
∫
Rd f(x)dx

is defined by the formula

Simp

∫

Rd
f(x)dx := c1m(E1) + . . .+ ckm(Ek). (1)

Thus Simp
∫
Rd f(x)dx takes values in [0,∞]. (Here we adopt the con-

vention that 0 · ∞ = 0 in doing computations with the extended non-
negative real numbers [0,∞]).

Last time, we showed that this is integral is well-defined, and ex-
plored some properties of this integral (like linearity, monotonicity,
when it is finite, when it is zero). Then we used it to define

Definition 0.3 (Absolutely convergent simple integral). A complex-
valued simple function f : Rd → C is said to be absolutely integrable
if

Simp

∫

Rd
|f(x)|dx <∞.

1



If f is absolutely integrable, the integral Simp
∫
Rd f(x)dx is defined for

real signed f by the formula

Simp

∫

Rd
f(x)dx := Simp

∫

Rd
f+(x)dx− Simp

∫

Rd
f−(x)dx

where f+ = max(f(x), 0) is the positive part of f , and f− = max(−f(x), 0)
is the negative part of f . Note that since f+, f− ≤ |f |, they have a finite
integral. Finally, for complex-valued f , we define

Simp

∫

Rd
f(x)dx := Simp

∫

Rd
Re f(x)dx+ i Simp

∫

Rd
Im f(x)dx

Last time, we showed that this definition of integral is linear.

Q1) If f and g are two absolutely integrable simple functions that agree
almost everywhere, show that their integral is the same.

Definition 0.4 (Unsigned measurable functions). An unsigned func-
tion f : Rd → [0,∞] is said to be Lebesgue measurable if it is the
pointwise limit of unsigned simple functions, i.e. if there exists a se-
quence f1, f2, f3, . . . : Rd → [0,∞] of unsigned simple functions such
that fn(x)→ f(x) for every x ∈ Rd.

Q2) Show that the following are equivalent for an unsigned function
f : Rd → [0,∞]

(a) f is Lebesgue measurable.

(b) f is the supremum f(x) = supn fn(x) of an increasing sequence
0 ≤ f1 ≤ f2 ≤ . . . of unsigned simple functions fn, each of
which are bounded with finite measure support.

(c) For each λ ∈ [0,∞], the set {x ∈ Rd : f(x) > λ} is Lebesgue
measurable.

(d) For each λ ∈ [0,∞], the set {x ∈ Rd : f(x) ≥ λ} is Lebesgue
measurable.

2



(e) For each λ ∈ [0,∞], the set {x ∈ Rd : f(x) < λ} is Lebesgue
measurable.

(f) For each λ ∈ [0,∞], the set {x ∈ Rd : f(x) < λ} is Lebesgue
measurable.

(g) For every interval I ⊂ [0,∞), the set f−1(I) := {x ∈ Rd :
f(x) ∈ I} is Lebesgue measurable.

(h) For every (relatively) open subset U of [0,∞), the set f−1(U) is
Lebesgue measurable.

(i) For every (relatively) closed subset K of [0,∞), the set f−1(K)

is Lebesgue measurable.

Hints: The following are not so hard to prove b)⇒ a), and (c)⇔
(d) ⇔ (e) ⇔ (f) ⇔ (g) ⇔ (h) ⇔ (i). You can start with those.
Then one is left with proving that a) ⇒ c) and (c)− (i) ⇒ b). To
prove that a)⇒ c), use the identity

f(x) = lim
n→∞

fn(x) = lim sup
n→∞

fn(x) = inf
N>0

sup
n≥N

fn(x).

Finally to obtain (c)−(i)⇒ b), assume f obeys (c)−(i), and define
fn(x) to be the largest integer multiple of 2−n that is smaller than
min(f(x), n) when |x| < n and 0 otherwise. Verify that this is an
increasing sequence of simple functions that satisfy the conditions
of (b).

3
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I.4. IBL Week 4

Problem I-2
Show that the following are equivalent for an unsigned function f : Rd → [0,∞].

(a) f is Lebesgue measurable.
(b) f is the supremum f(x) = supn fn(x) of an increasing sequence 0 ≤ f1 ≤ f2 ≤ · · · of unsigned

simple functions fn, each of which are bounded with finite measure support
(c) For each λ ∈ [0,∞], the set {x ∈ Rd | f(x) > λ} is Lebesgue measurable
(d) For each λ ∈ [0,∞], the set {x ∈ Rd | f(x) ≥ λ} is Lebesgue measurable
(e) For each λ ∈ [0,∞], the set {x ∈ Rd | f(x) < λ} is Lebesgue measurable
(f) For each λ ∈ [0,∞], the set {x ∈ Rd | f(x) ≤ λ} is Lebesuge measurable
(g) For every interval I ⊆ [0,∞) the set f−1(I) := {x ∈ Rd | f(x) ∈ I} is Lebesgue measurable
(h) For every (relatively) open subset U of [0,∞), the set f−1(U) is Lebesgue measurable
(i) For every (relatively) closed subset K of [0,∞), the set f−1(K) is Lebesgue measurable

Solution. Let’s prove these duderinos:

b) =⇒ a)
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Measurable functions (Continued)

Definition 0.1 (Unsigned measurable functions). An unsigned func-
tion f : Rd → [0,∞] is said to be Lebesgue measurable if it is the
pointwise limit of unsigned simple functions, i.e. if there exists a se-
quence f1, f2, f3, . . . : Rd → [0,∞] of unsigned simple functions such
that fn(x)→ f(x) for every x ∈ Rd.

Last time, we showed that the following are equivalent definitions of
measurability for unsigned functions f : Rd → [0,∞]

(i) f is the supremum f(x) = supn fn(x) of an increasing sequence
0 ≤ f1 ≤ f2 ≤ . . . of unsigned simple functions fn, each of which
are bounded with finite measure support.

(ii) For each λ ∈ [0,∞], the set {x ∈ Rd : f(x) > λ} is Lebesgue
measurable.

(iii) For each λ ∈ [0,∞], the set {x ∈ Rd : f(x) ≥ λ} is Lebesgue
measurable.

(iv) For each λ ∈ [0,∞], the set {x ∈ Rd : f(x) < λ} is Lebesgue
measurable.

(v) For each λ ∈ [0,∞], the set {x ∈ Rd : f(x) ≤ λ} is Lebesgue
measurable.

(vi) For every interval I ⊂ [0,∞), the set f−1(I) := {x ∈ Rd : f(x) ∈
I} is Lebesgue measurable.

(vii) For every (relatively) open subset U of [0,∞), the set f−1(U) is
Lebesgue measurable.

(viii) For every (relatively) closed subset K of [0,∞), the set f−1(K) is
Lebesgue measurable.

1



Q1) Show that every continuous function f : Rd → [0,∞) is measur-
able.

Q2) Show that the supremum, infimum, limit superior, or limit inferior
of sequences of unsigned measurable functions is measurable.

Q3) Show that an unsigned function that is equal almost everywhere
to an unsigned measurable function, is itself measurable. Remark.
This means that one can define the concept of measurability for an
unsigned function that is only defined almost everywhere on Rd,
rather than everywhere on Rd, by extending that function arbi-
trarily (say setting it to be 0) on the null set where it is currently
undefined.

Q4) Show that if a sequence fn of unsigned measurable functions con-
verges pointwise almost everywhere to an unsigned limit f , then f
is also measurable.

Q5) If f : Rd → [0,+∞) is measurable and φ : [0,∞) → [0,∞) is
continuous, show that φ ◦ f : Rd → [0,∞) is measurable.

Q6) If f, g : Rd → [0,+∞] are measurable, show that f + g and fg are
measurable too.

We can now define the concept of measurability for complex-valued
functions. As discussed in the above remark, it is convenient to allow
for such function to be only defined almost everywhere, rather than ev-
erywhere, to allow for the possibility that the function becomes singular
or otherwise undefined on a set of measure zero.

Definition 0.2 (Complex measurability). An almost everywhere de-
fined complex-valued function f : Rd → C is Lebesgue measurable, or
measurable for short, if it is the pointwise almost everywhere limit of
complex-valued simple functions.

As before, there are several equivalent definitions:

2



Q7) Let f : Rd → C be an almost everywhere defined complex-valued
function. The the following are equivalent:

(a) f is measurable.

(b) The positive and negative parts of Ref and Imf are unsigned
measurable functions.

(c) f−1(U) is measurable for every open set U ⊂ C.

(d) f−1(K) is Lebesgue measurable for every closed set K ⊂ C.

Remark. Part (ii) above (or even the definition) shows that f
is measurable iff its real and imaginary parts are measurable, and
that a real-valued function is measurable if and only if its positive
and negative parts are measurable.

3
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I.5. IBL Week 5

Problem I-1
Show that every continuous function f : Rd → [0,∞) is measurable.

Solution. Note that if U is an open subset of [0,∞), then by definition of continuity f−1(U) is an open set,
and we know that open sets of Rd are Lebesgue measurable from previous work. Thus by definition (vii) we

know f is measurable.

Problem I-2
Show that the supremum, infimum, limit superior, or limit inferior of sequences of unsigned measurable

functions is measurable.

Solution. We will first show that the supremum / infimum of a sequence of functions is Lebesgue measurable.
Fix some sequence of functions (fn), and let f = sup fn and g = inf fn. We will use the definitions (iii) and
(v) for this. Namely we write that for any λ ∈ [0,∞]:

{x ∈ Rd | f(x) ≤ λ} =
⋂

n∈N
{x ∈ Rd | fn(x) ≤ λ}

{x ∈ Rd | g(x) ≥ λ} =
⋂

n∈N
{x ∈ Rd | fn(x) ≥ λ}

These holds since by definition of supremum f(x) ≤ λ if and only if λ is an upper bound of fn(x), that is
fn(x) ≤ λ for every n ∈ N. Similarly by definition of infimum g(x) ≥ λ if and only if λ is a lower bound of
fn(x), that is fn(x) ≥ λ for all n ∈ N. Great! Then since each fn is measurable we have written the above
sets as countable intersections of measurable sets, and so these are measurable as well. Thus by definitions
(iii) and (v) we have that f and g are measurable.

Now note that we have the following definitions of limit superior and limit inferior from 295/296:

lim sup fn = inf
N

sup
n≥N

fn

lim inf fn = sup
N

inf
n≥N

fn

Now notice that supn≥N fn ad infn≥N fn are infimums and supremums of the sequence fN , fN+1, . . ., and
we know that these must be measurable by the previous work we’ve done. But then lim sup fn is an infimum
of measurable functions and lim inf fn is a supremum of measurable functions, and so again by previous work

these are measurable, and so we are done.

Problem I-3
Show that an unsigned function that is equal almost everywhere to an unsigned measurable function,

is itself measurable.

Solution. Let f, g be usigned functions that agree almost everywhere, and let g be measurable. In particular,
suppose that A is the set on which f and g agree, so that m(Ac) = 0.

We invoke definition (ii), and consider that since f and g agree on A:

{x ∈ Rd | g(x) > λ} = ({x ∈ Rd | g(x) > λ} ∩A) ∪ ({x ∈ Rd | g(x) > λ} ∩Ac)
= ({x ∈ Rd | f(x) > λ} ∩A) ∪ ({x ∈ Rd | g(x) > λ} ∩Ac)

Now the left hand part of this union is measurable since f is measurable and A is the complement of a
measurable set. Likewise we know by monotonicity that:

m∗({x ∈ Rd | g(x) > λ} ∩Ac) ≤ m(Ac) = 0

And so since any outer measure zero set is Lebesgue measurable we know that this is measurable as well.
Since both parts of our union is measurable, {x ∈ Rd | g(x) > λ} is Lebesgue measurable, and so g is a

measurable function. Awesome!
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Problem I-4
Show that if a sequence fn of unsigned measurable functions converges pointwise almost everywhere

to an unsigned limit f , then f is also measurable.

Solution. This is not too hard. Note that since a limit supremum always exists we can take g = lim sup fn,
and by Question 2 this will be a measurable function. Now note that g and f agree on the set A where fn
converges to f , since when a limit exists it is equal to a limit supremum. Great! Then since Ac has measure
zero by the setup, we know that f and g agree almost everywhere, and so by Question 3 we know that f is

measurable. Awesome!

Problem I-5
If f : Rd → [0,∞) is measurable and φ : [0,∞)→ [0,∞) is continuous, show that φ ◦ f : Rd → [0,∞)

is measurable

Solution. We use definition (vii), and this makes this very easy. Fix some open set U of [0,∞). Then
by definition of continuous we know φ−1(U) is open, and so by definition (vii) we know f−1(φ−1(U)) is
measurable. But this is great, because this is exactly (φ ◦ f)−1(U) by set theory / 295. And therefore, by

definition (vii) we know φ ◦ f is a measurable function.

Problem I-6
If f, g : Rd → [0,∞] are measurable, show that f + g and fg are measurable too.

Solution. This is fairly simple. By definition (i), fix some sequences f1 ≤ f2 ≤ · · · and 0 ≤ g1 ≤ g2 ≤ · · · of
unsigned simple functions (fn), (gn) which are all bounded with finite measure support such that f = supn fn
and g = supn gn. Then by 295/296 work with supremums since these are unsigned we know that:

f + g = sup
n
fn + sup

n
gn = sup

n
(fn + gn)

fg = sup
n
fn · sup

n
gn = sup

n
(fngn)

It now suffices to show that fn + gn and fngn are also going to be measurable functions by Question 2. In
particular, we will show that these are unsigned simple functions

TODO
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Unsigned Lebesgue Integrals

After defining the notion of measurability, both for unsigned func-
tions taking values in [0,∞] and complex-valued functions taking values
in C, we are now ready to start defining the Lebesgue integral of such
functions. As usual, we start with unsigned functions.

Definition 0.1 (Lower unsigned Lebesgue integral). Let f : Rd →
[0,∞] be an unsigned function (not necessarily measurable). We define
the lower unsigned Lebesgue integral

∫
Rdf(x)dx to be the quantity

∫

Rd
f(x)dx : sup

0≤g≤f ;g simple
Simp

∫

Rd
g(x)dx

where g ranges over all unsigned simple functions g : Rd → [0,∞] that
are pointwise bounded by f . One can also define the upper Lebesgue
integral as ∫

Rd
f(x)dx : inf

f≤h;h simple
Simp

∫

Rd
h(x)dx,

but we will use this integral very rarely.

In what follows, we establish some properties of the lower and upper
integrals. Let f, g : Rd → [0,∞] be unsigned functions (not necessarily
measurable)

Q1) If f is simple, then
∫
Rdf(x)dx =

∫
Rdf(x)dx = Simp

∫
Rd f(x)dx.

Q2) If f ≤ g pointwise almost everywhere, then we have that
∫
Rdf(x)dx ≤

∫
Rdg(x)dx and

∫
Rdf(x)dx ≤

∫
Rdg(x)dx.

Q3) If c ∈ [0,∞), then
∫
Rdcf(x)dx = c

∫
Rdf(x)dx.

1



Q4) If f, g agree almost everywhere, then
∫
Rdf(x)dx =

∫
Rdg(x)dx and

∫
Rdf(x)dx =

∫
Rdg(x)dx.

Q5) (Superadditivity of lower integral)
∫
Rdf(x)+g(x)dx ≥

∫
Rdf(x)dx+∫

Rdg(x)dx.

Q6) (Subadditivity of upper integral)
∫
Rdf(x) + g(x)dx ≤

∫
Rdf(x)dx+∫

Rdg(x)dx.

Q7) For any measurable set E, one has
∫
Rdf(x)dx =

∫
Rdf(x)1E(x)dx+∫

Rdf(x)1Ec(x)dx.

Q8) (Horizontal Truncation) As n → ∞,
∫
Rd min(f(x), n)dx converges

to
∫
Rdf(x)dx.

Q9) (Vertical Truncation) As n → ∞,
∫
Rdf(x)1|x|≤ndx converges to∫

Rdf(x)dx. Hint: Recall that one has that for any measurable set

E, m(E ∩B(0, n))→ m(E) as n→∞.

Q10) If f + g is a simple function that is bounded with finite mea-
sure support (i.e. it is absolutely integrable), then we have that

Simp
∫
Rd f(x) + g(x)dx =

∫
Rdf(x)dx+

∫
Rdg(x)dx.

Definition 0.2. If f : Rd → [0,∞] is measurable, we define the un-
signed Lebesgue integral

∫
Rd f(x)dx to equal the lower unsigned in-

tegral
∫
Rdf(x)dx. For unmeasurable functions, we leave the integral

undefined.

Q11) Let f be an unsigned measurable function that is bounded, and
vanishing outside a set of finite measure. Then, the lower and up-
per integrals agree. Hint: Start by showing that a unsigned mea-
surable function is bounded if and only if it is the uniform limit of
bounded simple functions.

2
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I.6. IBL Week 6

Problem I-7
For any measurable set E, one has

∫
Rdf(x) dx =

∫
Rdf(x)1E(x) dx+

∫
Rdf(x)1Ec(x) dx

Solution. We get that
∫
Rdf(x) dx ≥

∫
Rdf(x)1E(x) dx +

∫
Rdf(x)1Ec(x) dx directly from Problem 5 by the

fact that f = f1E + f1Ec .
For the other direction, we can use by the fact that this lower integral is a least upper bound of some set,

so we can show that the right hand side is an upper bound for that same set. To do this, fix g ≤ f to be
simple, and then g1E ≤ f1E and g1Ec ≤ f1Ec and g1E , g1Ec are both simple. Of course g = g1E + g1Ec ,
and so by linearity of the simple integral

Simp

∫

Rd
g(x) dx = Simp

∫

Rd
g(x)1E(x) dx+ Simp

∫

Rd
g(x)1Ec(x) dx ≤

∫

Rd
f(x)1E(x) dx+

∫

Rd
f(x)1Ec(x) dx

∫

Rd
f(x) dx ≤

∫

Rd
f(x)1E(x) dx+

∫

Rd
f(x)1Ec(x) dx

Great!!!
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Handout 5

Unsigned Lebesgue Integrals

After defining the notion of measurability, both for unsigned func-
tions taking values in [0,∞] and complex-valued functions taking values
in C, we are now ready to start defining the Lebesgue integral of such
functions. As usual, we start with unsigned functions.

Definition 0.1 (Lower unsigned Lebesgue integral). Let f : Rd →
[0,∞] be an unsigned function (not necessarily measurable). We define
the lower unsigned Lebesgue integral

∫
Rdf(x)dx to be the quantity

∫

Rd
f(x)dx : sup

0≤g≤f ;g simple
Simp

∫

Rd
g(x)dx

where g ranges over all unsigned simple functions g : Rd → [0,∞] that
are pointwise bounded by f . One can also define the upper Lebesgue
integral as ∫

Rd
f(x)dx : inf

f≤h;h simple
Simp

∫

Rd
h(x)dx,

but we will use this integral very rarely.

Last time, we established some properties of the lower and upper
integrals. Let f, g : Rd → [0,∞] be unsigned functions (not necessarily
measurable)

(i) If f is simple, then
∫
Rdf(x)dx =

∫
Rdf(x)dx = Simp

∫
Rd f(x)dx.

(ii) If f ≤ g pointwise almost everywhere, then we have that
∫
Rdf(x)dx ≤

∫
Rdg(x)dx and

∫
Rdf(x)dx ≤

∫
Rdg(x)dx.

(iii) If c ∈ [0,∞), then
∫
Rdcf(x)dx = c

∫
Rdf(x)dx.

1



(iv) If f, g agree almost everywhere, then
∫
Rdf(x)dx =

∫
Rdg(x)dx and

∫
Rdf(x)dx =

∫
Rdg(x)dx.

(v) (Superadditivity of lower integral)
∫
Rdf(x)+g(x)dx ≥

∫
Rdf(x)dx+∫

Rdg(x)dx.

(vi) (Subadditivity of upper integral)
∫
Rdf(x) + g(x)dx ≤

∫
Rdf(x)dx+∫

Rdg(x)dx.

(vii) For any measurable set E, one has
∫
Rdf(x)dx =

∫
Rdf(x)1E(x)dx+∫

Rdf(x)1Ec(x)dx.

(viii) (Horizontal Truncation) As n → ∞,
∫
Rd min(f(x), n)dx converges

to
∫
Rdf(x)dx.

(ix) (Vertical Truncation) As n → ∞,
∫
Rdf(x)1|x|≤ndx converges to∫

Rdf(x)dx.

(x) If f + g is a simple function that is bounded with finite mea-
sure support (i.e. it is absolutely integrable), then we have that

Simp
∫
Rd f(x) + g(x)dx =

∫
Rdf(x)dx+

∫
Rdg(x)dx.

Definition 0.2. If f : Rd → [0,∞] is measurable, we define the un-
signed Lebesgue integral

∫
Rd f(x)dx to equal the lower unsigned in-

tegral
∫
Rdf(x)dx. For unmeasurable functions, we leave the integral

undefined.

Q1) Show that an unsigned measurable function is bounded if and only
if it is the uniform limit of bounded simple functions.

Q2) Let f be an unsigned measurable function that is bounded, and
vanishing outside a set of finite measure. Then, the lower and
upper integrals agree.

Q3) (Finite Additivity of the Lebesgue Integral) Let f, g : Rd → [0,∞]
be measurable. Then

∫
Rd f(x) + g(x)dx =

∫
Rd f(x)dx+

∫
Rd g(x)dx.

2



Hint: Use Q2) Remark. One of the major theorems on Lebesgue
integrals is that this finite additivity can be improved to countable
additivity. This is known as the monotone convergence theorem,
which we will prove later.

Q4) (Translation Invariance) Let f : Rd → [0,∞] be measurable. Show
that

∫
Rd f(x+ v)dx =

∫
Rd f(x)dx for any v ∈ Rd.

Q5) (Linear change of variables) Let f : Rd → [0,∞] be measurable,
and let T : Rd → Rd be an invertible linear transformation. Show
that

∫
Rd f(T−1x)dx = | detT |

∫
Rd f(x)dx.

Hint: You will need to show that m(T (E)) = | detT |m(E) for any
measurable function. Start with the case when detT = 0, and then
deal with the invertible case.

Q6) (Compatibility with the Riemann Integral) Let f : [a, b] → [0,∞)
be Riemann integrable. If we extend f to R by declaring f to
equation 0 outside of [a, b], show that

∫
R f(x)dx =

∫ b
a f(x)dx.

3
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I.7. IBL Week 7

Problem I-1
Show that an unsigned measurable function is bounded if and only if it is the uniform limit of bounded

simple functions.

Solution. First we show the converse, since this is simpler, in fact the uniform limit of bounded functions is
always bounded. Let f1, f2, . . . : Rd → [0,∞] be a sequence of bounded functions converging uniformly to a
function f : Rd → [0,∞]. By uniform convergence, we may take some large enough n ∈ N so that for every
x ∈ Rd we have:

|f(x)− fn(x)| ≤ 1

Then since fn is bounded, we may let M ∈ R be its bound. Then:

|f(x)|
4
≤ |f(x)− fn(x)|+ |fn(x)| ≤M + 1

Great! This means that M + 1 is an upper bound for f , so f is bounded.
Awesome. Now we must prove the converse. Let f : Rd → [0,∞] be some bounded measurable function,

and say it is bounded by M ∈ N. First consider a set Dn(x) for any x ∈ Rd and n ∈ N:

Dn(x) = {k · 2−n | k ∈ N0, k · 2−n ≤ f(x)}
Then Dn(x) is a finite set, since we know that k · 2−n goes to infinity as k →∞, and so for some K ∈ N we
have K · 2−n > M ≥ f(x), and for any k ≥ K we know k · 2−n ≥ K · 2−n > f(x), so that k2̇−n 6∈ Dn(x).
Great! We also know that Dn(x) is nonempty since 0 · 2−n = 0 ≤ f(x). Therefore, 0 ∈ Dn(x). With this in
mind we may make the following definition:

fn(x) = maxDn(x)

First note that fn(x) is bounded above by f(x), which is bounded by M , namely because fn(x) ∈ Dn(x)
and for any y ∈ Dn(x) we have y ≤ f(x) ≤ M by definition. Thus fn ≤ f ≤ M . Also fn(x) ≥ 0 because
fn(x) = maxDn(x) = k · 2−n ≥ 0 for some k ∈ N0. This means that the fn are unsigned.

Furthermore, the sequence f1, f2, . . . increases (this isn’t relevant for this problem, but will be in Problem
2). Fix some n ∈ N. Then we claim first that Dn(x) ⊆ Dn+1(x). Why? Well fix some a = k · 2−n ∈ Dn(x).
Then we have that a = 2k · 2−(n+1), and 2k is integer, furthermore a ≤ f(x). Therefore a ∈ Dn+1(x). With
this in mind we know that maxDn(x) ≤ maxDn+1(x). Great! Thus fn(x) ≤ fn+1(x).

Now we verify that the sequence f1, f2, . . . converges uniformly to f . To do this, fix some ε > 0. Since
1
2n → 0 as n→∞, there is some N ∈ N so that if n ≥ N then 0 < 1

2n < ε. We claim that |f(x)− fn(x)| < ε

for all x ∈ Rd. Why? Well let fn(x) = k·2−n = maxDn(x) for some k ∈ N0 and suppose that |f(x)− fn(x)| ≥
ε > 1

2n . Then since f(x) ≥ fn(x) this gives that f(x)− fn(x) > 1
2n , and so f(x) > fn(x) + 1

2n . This is bad!

With this we see that fn(x) < fn(x) + 1
2n < f(x), and because fn(x) + 1

2n = (k + 1) · 2−n this means that
maxDn(x) is strictly less than some member of Dn(x). This is nonsense, and thus |f(x)− fn(x)| < ε for all
x ∈ Rd.

We now finally just need to verify that each fn is a simple function. Define the sets Enk for k ∈ N0 by the
following:

Enk = {x ∈ Rd | k · 2−n ≤ f(x) < (k + 1)2−n}
This set is exactly f−1([k · 2−n, (k + 1)2−n)) and so it is measurable since f is measurable. Therefore Enk is
measurable for all such k. Awesome! Now let K be the largest integer so that K · 2−n ≤M , this must exist
since the sequence k 7→ k · 2−n is monotonically increasing to ∞, and 0 · 2−n ≤M .

To show fn is simple we now claim that:

fn =

K∑

k=0

(k · 2−n) · 1Enk
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Fix x ∈ Rd. We need to show that:

maxDn(x) =

K∑

k=0

(k · 2−n) · 1Enk

First note that each Enk is disjoint, and that they cover Rd. Why? Well first to show they’re disjoint note
that if x ∈ Enk and x ∈ Enj , then k · 2−n ≤ f(x) and f(x) < (j + 1) · 2−n. Thus k ≤ 2nf(x) < j + 1, and so
k + 1 ≤ j + 1, so k ≤ j. We can carry out this argument in reverse as well, since k and j were arbitrary, and
so we get k ≥ j, so that k = j. Great! Now these cover Rd because for such x we know that f(x) ≤M and
so:

[0,∞] =

∞⋃

k=0

[k · 2−n, (k + 1)2−n)

Rd = f−1([0,∞]) = f−1
( ∞⋃

k=0

[k · 2−n, (k + 1)2−n)

)

Rd =
∞⋃

k=0

f−1([k · 2−n, (k + 1)2−n)

But for k > K we know that f−1([k · 2−n, (k+ 1)2−n) is empty, because f(x) ≤M < (K + 1) · 2−n ≤ k · 2−n.
Thus:

Rd =

K⋃

k=0

f−1([k · 2−n, (k + 1)2−n) =

K⋃

k=0

Enk

Great! Therefore we know that for any x ∈ Rd there is a unique 0 ≤ j ≤ K so that x ∈ Enj . With this in
mind we then have that:

K∑

k=0

(k · 2−n) · 1Enk = j · 2−n

It now suffices to show that maxDn(x) = j · 2−n. Note first that j · 2−n ∈ Dn(x). Why? Well consider that
that j · 2−n ≤ f(x) because x ∈ Enk = f−1([j · 2−n, (j + 1) · 2−n)). With this j · 2−n ∈ Dn(x). Now fix k > j.
Then k ≥ j + 1 and so k · 2−n ≥ (j + 1) · 2−n > f(x). Therefore k · 2−n 6∈ Dn(x). With this established, we
know that:

fn(x) = maxDn(x) = j · 2−n =

K∑

k=0

(k · 2−n) · 1Enk

This shows that fn is a simple function! Awesome! This verifies that a bounded unsigned measurable function
is a uniform limit of bounded simple functions. Combined with the previous proof of the other direction, we

have the desired statement of the problem ,.

Problem I-2
Let f be an unsigned measurable function that is bounded, and vanishing outside a set of finite

measure. Then, the lower and upper integrals agree.

Solution. Let f be such a unsigned measurable function which is bounded and vanishing outside a set of finite
measure. Let A be set so that f vanishes on Ac and m(A) <∞. In the previous problem, we constructed a
sequence of unsigned bounded simple functions f1 ≤ f2 ≤ f3, . . . which converged to f uniformly. Furthermore,
we had that each fn ≤ f . We claim the following equalities, which provide the result:

∫

Rd
f(x) dx = sup

n
Simp

∫

Rd
fn(x) dx =

∫

Rd
f(x) dx
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First note that we get both of the following by monotonicity of our integrals (noting that fn ≤ f) and how
supremums work from 295 (letting n ∈ N be arbitrary):

Simp

∫

Rd
fn(x) dx =

∫

Rd
fn(x) dx ≤

∫

Rd
f(x) dx

Simp

∫

Rd
fn(x) dx =

∫

Rd
fn(x) dx ≤

∫

Rd
f(x) dx

sup
n

Simp

∫

Rd
fn(x) dx ≤

∫

Rd
f(x) dx

sup
n

Simp

∫

Rd
fn(x) dx ≤

∫

Rd
f(x) dx

Therefore we just need to show the nontrivial sides of these inequalities, the ≥ side. To show these, we show
that for all ε > 0 we have:

sup
n

Simp

∫

Rd
fn(x) dx+ ε ≥

∫

Rd
f(x) dx

sup
n

Simp

∫

Rd
fn(x) dx+ ε ≥

∫

Rd
f(x) dx

By uniform convergence in the previous problem, there is some N ∈ N so that for n ≥ N we have that for all
x ∈ Rd, f(x)− fn(x) = |f(x)− fn(x)| < ε

m(A)+1 , noting that m(A) + 1 ≥ 1 > 0. Now we see that 1A(x) ≥ 0

for all x ∈ Rd, and also for x ∈ A and y ∈ Ac we have:

f(x) · 1A(x) = f(x) fn(x) · 1A(x) = fn(x)

f(y) · 1A(y) = 0 fn(y) · 1A(y) = 0

And for such y we know 0 = fn(y) ≤ f(y) = 0 so fn(y) = 0 as well. With this in mind. We now get
inequalities as follows, using linearity of the simple integral and the fact that fn1A + ε

m(A)+11A is simple

(being a product / sum of simple functions):

f1A ≤ fN1A +
ε

m(A) + 1
· 1A

∫

Rd
f(x)1A(x) dx ≤

∫

Rd
fN (x)1A(x) +

ε

m(A) + 1
· 1A(x) dx

= Simp

∫

Rd
fN (x)1A(x) +

ε

m(A) + 1
· 1A(x) dx

= Simp

∫

Rd
fN (x)1A(x) dx+ Simp

∫

Rd

ε

m(A) + 1
· 1A(x) dx

= Simp

∫

Rd
fN (x) dx+

ε ·m(A)

m(A) + 1

≤ sup
n

Simp

∫

Rd
fn(x) dx+ ε

∫

Rd
f(x) dx ≤ sup

n
Simp

∫

Rd
fn(x) dx+ ε

125



Faye Jackson February 26th, 2021 MATH 396 - I.7

And likewise:

f1A ≤ fN1A +
ε

m(A) + 1
· 1A

∫

Rd
f(x)1A(x) dx ≤

∫

Rd
fN (x)1A(x) +

ε

m(A) + 1
· 1A(x) dx

= Simp

∫

Rd
fN (x)1A(x) +

ε

m(A) + 1
· 1A(x) dx

= Simp

∫

Rd
fN (x)1A(x) dx+ Simp

∫

Rd

ε

m(A) + 1
· 1A(x) dx

= Simp

∫

Rd
fN (x) dx+

ε ·m(A)

m(A) + 1

≤ sup
n

Simp

∫

Rd
fn(x) dx+ ε

∫

Rd
f(x) dx ≤ sup

n
Simp

∫

Rd
fn(x) dx+ ε

This is exactly what we wanted to show. With this by taking ε→ 0 we get that:∫

Rd
f(x) dx ≤ sup

n
Simp

∫

Rd
fn(x) dx

∫

Rd
f(x) dx ≤ sup

n
Simp

∫

Rd
fn(x) dx

And thus with the other inequalities:∫

Rd
f(x) dx = sup

n
Simp

∫

Rd
fn(x) dx

∫

Rd
f(x) dx = sup

n
Simp

∫

Rd
fn(x) dx

This finishes the problem!

Problem I-3 (Finite Additivity of the Lebesgue Integral)
Let f, g : Rd → [0,∞] be measurable. Then:∫

Rd
f(x) + g(x) dx =

∫

Rd
f(x) dx+

∫

Rd
g(x) dx

Hint: Use Problem 2. Remark: One of the major theorems on Lebesgue integrals is that this finite
additivity can be improved to countable additivity. This is known as the monotone convergence theorem,
which we will prove later

Solution. First we note that the result holds for measurable functions f, g : Rd → [0,∞] which are bounded
and have finite measure support. Why? Well we know that for such functions by Problem 2 that their upper
and lower integrals agree. Then by superadditivity/sub-additivity of the lower/upper integrals respectively
we know that: ∫

Rd
f(x) + g(x) dx ≥

∫

Rd
f(x) dx+

∫

Rd
g(x) dx

∫

Rd
f(x) + g(x) dx ≤

∫

Rd
f(x) dx+

∫

Rd
g(x) dx

This gives the desired result in this case.
We now extend our result to bounded functions. Let f, g : Rd → [0,∞] be bounded measurable functions.

Now note that for any n ∈ N we have that f1
B(0,n)

and g1
B(0,n))

are unsigned bounded measurable functions

with finite measure support. Why? Well f1
B(0,n)

≤ f since 0 ≤ 1
B(0,n)

≤ 1, and f is bounded. Furthermore
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1
B(0,n)

is a simple function, so it is measurable, and the product of measurable functions is measurable.

Finally it has finite measure support because it is supported on at most B(0, n) and B(0, n) has finite measure.
Great! Then we apply vertical truncation along with the previous case to see that:∫

Rd
f(x) + g(x) dx = lim

n→∞

∫

Rd
(f(x) + g(x))1|x|≤n dx

= lim
n→∞

∫

Rd
f(x)1|x|≤n + g(x)1|x|≤n dx

= lim
n→∞

∫

Rd
f(x)1|x|≤n dx+ lim

n→∞

∫

Rd
g(x)1|x|≤n dx

=

∫

Rd
f(x) dx+

∫

Rd
g(x) dx

Finally we extend the result to general unsigned measurable functions. Let f, g : Rd → [0,∞] be such
unsigned measurable functions. Note that for any a ∈ [0,∞) that min(f, a) and min(g, a) are also unsigned
measurable functions by previous worksheets, and that they are bounded because min(f(x), a),min(g(x), a) ≤
a. Great! Now we note that for n ∈ N and x ∈ Rd:

min(f(x) + g(x), n) ≤ f(x) + g(x)

min(f(x) + g(x), n) ≤ n ≤ f(x) + n, n+ g(x), 2n

min(f(x) + g(x), n) ≤ min(f(x), n) + min(g(x), n)

Therefore we have by monotonicity, horizontal truncation, as well as the case for bounded functions that:∫

Rd
f(x) + g(x) dx = lim

n→∞

∫

Rd
min(f(x) + g(x), n) dx

≤ lim
n→∞

∫

Rd
min(f(x), n) + min(g(x), n) dx

= lim
n→∞

∫

Rd
min(f(x), n) dx+ lim

n→∞

∫

Rd
min(g(x), n) dx

=

∫

Rd
f(x) dx+

∫

Rd
g(x) dx

The other inequality follows directly from superadditivity of the lower integral and the fact that these are
defined as lower integrals, so we have both of the inequalities:∫

Rd
f(x) + g(x) dx ≤

∫

Rd
f(x) dx+

∫

Rd
g(x) dx

∫

Rd
f(x) + g(x) dx ≥

∫

Rd
f(x) dx+

∫

Rd
g(x) dx

Perfect! This means that the two quantities are equal, and so we’ve finished the problem ,.

Problem I-4 (Translation Invariance)
Let f : Rd → [0,∞] be measurable. Show that

∫
Rd f(x+ v) dx =

∫
Rd f(x) dx for any v ∈ Rd

Solution. First we show the statement for simple functions. This is fairly simple. Fix a simple function
g : Rd → [0,∞] and v ∈ Rd. Now write g as below for coefficients c1, . . . , ck ∈ [0,∞] and measurable sets
E1, . . . , Ek ⊆ Rd:

g =

k∑

i=1

ci1Ei
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We claim that x 7→ g(x+ v) is a simple function. Why? Well consider that:

g(x+ v) =

k∑

i=1

ci · 1Ei(x+ v) =

k∑

i=1

ci · 1Ei−v(x)

Why? Well if x+ v ∈ Ei, then clearly x ∈ Ei − v since x = (x+ v)− v. Then if x ∈ Ei − v then x = y − v
for some y ∈ Ei, so y = x+ v ∈ Ei¿ Thus 1Ei(x+ v) = 1Ei−v(x). Great! But then by translation invariance
of the Lebesgue measure from previous worksheets:

Simp

∫

Rd
g(x) dx =

k∑

i=1

ci ·m(Ei) =

k∑

i=1

ci ·m(Ei − v) = Simp

∫

Rd
g(x+ v) dx

Great! Since the simple integral agrees with the Lebesgue integral for simple functions this gives the result
in this case.

Now we prove the desired result. Let v ∈ Rd and f : Rd → [0,∞] be any function. Now fix some simple
function g so that 0 ≤ g ≤ f . Then of course for all x ∈ Rd we have 0 ≤ g(x+ v) ≤ f(x+ v). Therefore by
the above case and definitions:

Simp

∫

Rd
g(x) dx = Simp

∫

Rd
g(x+ v) dx ≤

∫

Rd
f(x+ v) dx

By the definition of supremum, we then have that:∫

Rd
f(x) dx ≤

∫

Rd
f(x+ v) dx

Perfect! This actually will give the result for all functions. Why? Well replace f with x 7→ f(x + v), and
then replace v with −v. This gives that:∫

Rd
f(x+ v) dx ≤

∫

Rd
f((x+ v)− v) dx =

∫

Rd
f(x) dx

And therefore combining the two inequalities we have that:∫

Rd
f(x) dx =

∫

Rd
f(x+ v) dx

Since the Lebesgue integral is defined to be the lower integral for measurable functions, this means that
we now just need to verify that if f : Rd → [0,∞] is measurable then x 7→ f(x + v) (which we’ll call
fv : Rd → [0,∞]) is measurable.

Why does this hold? Well fix any λ ∈ [0,∞]. We then consider that:

{x ∈ Rd | fv(x) ≥ λ} = {x ∈ Rd | f(x+ v) ≥ λ} = {y ∈ Rd | f(y) ≥ λ} − v
The last equality is the only one that is nontrivial. It holds since if x ∈ Rd such that f(x + v) ≥ λ then
x+ v ∈ {y ∈ Rd | f(y) ≥ λ}, and so x = (x+ v)− v ∈ {y ∈ Rd | f(y) ≥ λ} − v. For the other direction if we
have y ∈ Rd with f(y) ≥ λ then x = y − v ∈ Rd has the property that f(x + v) = f(y) ≥ λ. Great! Well
the right hand side is a translate of a measurable set since f is measurable, and so x 7→ fv(x) = f(x+ v) is
measurable as well. With this in mind, we may use the above equality and definitions to write the result:∫

Rd
f(x) dx =

∫

Rd
f(x+ v) dx

Perfect!
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Unsigned Lebesgue Integrals

After defining the notion of measurability, both for unsigned func-
tions taking values in [0,∞] and complex-valued functions taking values
in C, we are now ready to start defining the Lebesgue integral of such
functions. As usual, we start with unsigned functions.

Definition 0.1 (Lower unsigned Lebesgue integral). Let f : Rd →
[0,∞] be an unsigned function (not necessarily measurable). We define
the lower unsigned Lebesgue integral

∫
Rdf(x)dx to be the quantity

∫

Rd
f(x)dx : sup

0≤g≤f ;g simple
Simp

∫

Rd
g(x)dx

where g ranges over all unsigned simple functions g : Rd → [0,∞] that
are pointwise bounded by f . One can also define the upper Lebesgue
integral as ∫

Rd
f(x)dx : inf

f≤h;h simple
Simp

∫

Rd
h(x)dx,

but we will use this integral very rarely.

Last time, we established some properties of the lower and upper
integrals. Let f, g : Rd → [0,∞] be unsigned functions (not necessarily
measurable)

(i) If f is simple, then
∫
Rdf(x)dx =

∫
Rdf(x)dx = Simp

∫
Rd f(x)dx.

(ii) If f ≤ g pointwise almost everywhere, then we have that
∫
Rdf(x)dx ≤

∫
Rdg(x)dx and

∫
Rdf(x)dx ≤

∫
Rdg(x)dx.

(iii) If c ∈ [0,∞), then
∫
Rdcf(x)dx = c

∫
Rdf(x)dx.

1



(iv) If f, g agree almost everywhere, then
∫
Rdf(x)dx =

∫
Rdg(x)dx and

∫
Rdf(x)dx =

∫
Rdg(x)dx.

(v) (Superadditivity of lower integral)
∫
Rdf(x)+g(x)dx ≥

∫
Rdf(x)dx+∫

Rdg(x)dx.

(vi) (Subadditivity of upper integral)
∫
Rdf(x) + g(x)dx ≤

∫
Rdf(x)dx+∫

Rdg(x)dx.

(vii) For any measurable set E, one has
∫
Rdf(x)dx =

∫
Rdf(x)1E(x)dx+∫

Rdf(x)1Ec(x)dx.

(viii) (Horizontal Truncation) As n → ∞,
∫
Rd min(f(x), n)dx converges

to
∫
Rdf(x)dx.

(ix) (Vertical Truncation) As n → ∞,
∫
Rdf(x)1|x|≤ndx converges to∫

Rdf(x)dx.

(x) If f + g is a simple function that is bounded with finite mea-
sure support (i.e. it is absolutely integrable), then we have that

Simp
∫
Rd f(x) + g(x)dx =

∫
Rdf(x)dx+

∫
Rdg(x)dx.

Definition 0.2. If f : Rd → [0,∞] is measurable, we define the un-
signed Lebesgue integral

∫
Rd f(x)dx to equal the lower unsigned in-

tegral
∫
Rdf(x)dx. For unmeasurable functions, we leave the integral

undefined.

Q1) Show that an unsigned measurable function is bounded if and only
if it is the uniform limit of bounded simple functions.

Q2) Let f be an unsigned measurable function that is bounded, and
vanishing outside a set of finite measure. Then, the lower and
upper integrals agree.

Q3) (Finite Additivity of the Lebesgue Integral) Let f, g : Rd → [0,∞]
be measurable. Then

∫
Rd f(x) + g(x)dx =

∫
Rd f(x)dx+

∫
Rd g(x)dx.
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Hint: Use Q2) Remark. One of the major theorems on Lebesgue
integrals is that this finite additivity can be improved to countable
additivity. This is known as the monotone convergence theorem,
which we will prove later.

Q4) (Translation Invariance) Let f : Rd → [0,∞] be measurable. Show
that

∫
Rd f(x+ v)dx =

∫
Rd f(x)dx for any v ∈ Rd.

Q5) (Linear change of variables) Let f : Rd → [0,∞] be measurable,
and let T : Rd → Rd be an invertible linear transformation. Show
that

∫
Rd f(T−1x)dx = | detT |

∫
Rd f(x)dx.

Hint: You will need to show that m(T (E)) = | detT |m(E) for any
measurable set. It might be helpful to recall that every invertible
linear transformation is the composite of elementary transforma-
tions. You can also use previous results we proved similar to this
for Jordan measure in 395.

Q6) (Compatibility with the Riemann Integral) Let f : [a, b] → [0,∞)
be Riemann integrable. If we extend f to R by declaring f to
equation 0 outside of [a, b], show that

∫
R f(x)dx =

∫ b
a f(x)dx.

Q7) (Markov property) Let f : Rd → [0,+∞] be measurable. Then for
any 0 < λ <∞, we have

m({x ∈ Rd : f(x) > λ}) ≤ 1

λ

∫

Rd
f(x)dx.

Hint: Look at the indicator function of the {x ∈ Rd : f(x) > λ}.
Q8) Let f : Rd → [0,+∞] be measurable. Show that if

∫
Rd f(x)dx <

∞, then f is finite almost everywhere. Give a counterexample to
show that the opposite is not true.

Q9) Show that if
∫
Rd f(x)dx = 0 if and only if f is zero almost every-

where.
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Definition 0.3 (Absolute integrability). An almost everywhere defined
measurable function f : Rd → C is said to be absolutely integrable if
the unsigned integral

‖f‖L1(Rd) :=

∫

Rd
|f(x)|dx

is finite. We refer to this quantity as the L1(Rd) norm of f , and use
L1(Rd) to denote the space of absolutely integrable functions. If f
is real-valued and absolutely integrable, we define

∫
Rd f(x)dx by the

formula ∫

Rd
f(x)dx :=

∫

Rd
f+(x)dx−

∫

Rd
f−(x)dx,

where f+ = max(f, 0), f− = max(−f, 0) are the magnitudes of the posi-
tive and negative components of f (note that the two unsigned integrals
on the right-hand side are finite, as f+, f− are pointwise dominated by
|f |. If f is complex-valued and absolutely integrable, we define the
Lebesgue integral

∫
Rd by the formula

∫

Rd
f(x)dx :=

∫

Rd
Re f(x)dx+

∫

Rd
Im f(x)dx.

Q10) Show that this integral is a linear operation, i.e. it satisfies that if
f, g ∈ L1(Rd), then
∫

Rd
f(x)+g(x)dx =

∫

Rd
f(x)dx+

∫

Rd
g(x)dx,

∫

Rd
cf(x)dx = c

∫

Rd
f(x)dx.
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Problem I-1 (Markov property)
Let f : Rd → [0,∞] be measurable. Then for any 0 < λ <∞ we have:

m({x ∈ Rd | f(x) > λ}) ≤ 1

λ

∫

Rd
f(x) dx

Hint: Look at the indicator function of {x ∈ Rd | f(x) > λ}.

Solution. Take any measurable function f : Rd → [0,∞] and any λ with 0 < λ <∞. We will prove a slightly
stronger result, namely that:

m({x ∈ Rd | f(x) ≥ λ}) ≤ 1

λ

∫

Rd
f(x) dx

This is stronger because for any x ∈ Rd if f(x) > λ then f(x) ≥ λ, and so applying monotonicity along with
the fact that both of these are measurable sets by measurability of f , we know that:

m({x ∈ Rd | f(x) > λ}m({x ∈ Rd | f(x) ≥ λ}) ≤ 1

λ

∫

Rd
f(x) dx

Great!
Now call A = {x ∈ Rd | f(x) ≥ λ}. Since 0 < λ <∞ we know 0 < 1

λ <∞. By the unsigned linearity of
the lower integral combined with definitions, we wish to show that:

m(A) = m({x ∈ Rd | f(x) ≥ λ}) ≤ 1

λ

∫

Rd
f(x) dx =

∫

Rd

1

λ
· f(x) dx

But this follows by definition of the lower integral. Why? Well we know that if x ∈ A and y 6∈ A that:

1A(x) = 1 =
λ

λ
≤ f(x)

λ

1A(y) = 0 ≤ f(y)

λ
Great! Since A is measurable by measurability of f , this is a simple function. Thus we write by definition of
the lower integral:

m(A) = Simp

∫

Rd
1A(x) dx ≤

∫

Rd

1

λ
· f(x) dx

Great! This proves the desired result by tracing back through the above equalities ,.

Problem I-2
Let f : Rd → [0,∞] be measurable. Show that if

∫
Rd f(x) dx <∞ then f is finite almost everywhere.

Give a counterexample to show that the opposite is not true.

Solution. We prove the contrapositive. Fix a measurable function f : Rd → [0,∞] and let A be the set
{x ∈ Rd | f(x) ≥ ∞} = {x ∈ Rd | f(x) = ∞}. Now suppose that m∗(A) 6= 0, that is f is not finite almost
everywhere. Since f is measurable, we know that A is measurable, and so we have m(A) ≥ 0 and m(A) 6= 0.
Therefore m(A) > 0. Consider now the unsigned simple function ∞ · 1A. We show that ∞ · 1A ≤ f .

Fix some x ∈ A and some y 6∈ A. Then we compute that:

∞ · 1A(x) =∞ = f(x)

∞ · 1A(y) = 0 ≤ f(y)

Awesome! With this in mind we see by the definition of the unsigned lebesgue integral as the lower unsigned
integral that:

∞ =∞ ·m(A) = Simp

∫

Rd
∞ · 1A(x) dx ≤

∫

Rd
f(x) dx

Where the first equality follows from the fact that m(A) > 0. This proves the desired result! Perfect!
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Now we give the desired counterexample. Consider the indicator function 1Rd . Then we know that 1Rd is
finite everywhere because it only takes on the values 0 and 1. However:∫

Rd
1Rd(x) dx = m(Rd) =∞

And therefore it is not true that if the function is finite almost everywhere that its integral is finite.

Problem I-3
Show that

∫
Rd f(x) dx = 0 if and only if f is zero almost everywhere for a measurable function

f : Rd → [0,∞].

Solution. Let’s go! We show both directions:

(⇒) For this we’ll do the contrpositive. Let f be a measurable function which is not zero almost everywhere.
That is, let A = {x ∈ Rd | f(x) 6= 0} = {x ∈ Rd | f(x) > 0}. Then suppose that m∗(A) 6= 0. In this
case, since f is measurable we know that A is measurable, and so m(A) ≥ 0, and m(A) > 0. Great!

Now let An = {x ∈ Rd | f(x) > 1/n}. Each of these are measurable since f is a measurable
function. Then we claim the following set equality, which gives the below equalities by the properties
of the Lebesgue measure:

A =

∞⋃

n=1

An

0 < m(A) ≤
∞∑

n=1

m(An)

The set equality holds since if x ∈ Rd and there is an n ∈ N so that x ∈ An, aka f(x) > 1/n, then
since 1/n > 0 we know f(x) > 0 and x ∈ A. For the other direction if x ∈ A then f(x) > 0, then by
the Archimedean principle there is an n ∈ N so that f(x) > 1/n, so f(x) ∈ An.

Now by the above sum, since each m(An) ≥ 0 this implies that there is some n ∈ N so that
m(An) > 0, because otherwise each would be equal to 0 and so m(A) would be zero. Great! By the
Markov Property in Problem 7 we then have that:

m(An) ≤ 1
1
n

∫

Rd
f(x) dx

0 <
1

n
·m(An) ≤

∫

Rd
f(x) dx

Therefore
∫
Rd f(x) 6= 0, proving the contrapositive just as desired! Woot!

(⇐) Now suppose that f(x) = 0 almost everywhere and f : Rd → [0,∞] is any function. We actually
don’t need the measurability hypothesis for this direction, only for the fact that the integral is defined,
which it is as the lower unsigned integral. In this case, we know that

∫
Rdf(x) dx = supF where F is

defined as the set below:

F =

{
Simp

∫

Rd
g(x) dx | 0 ≤ g ≤ f, g simple

}

We show that F = {0}, and so supF = 0. This implies the result for measurable functions because
then: ∫

Rd
f(x) dx =

∫

Rd
f(x) dx = supF = 0

Great! To do this, let 0 ≤ g ≤ f where g is a simple function. Now we show that g is 0 almost
everywhere. Why? Well let A be the set on which f is not zero, and let B be the set on which g
is not zero. By definition of almost everywhere, m(A) = 0. Now suppose that x ∈ B, g(x) > 0, so
f(x) ≥ g(x) > 0, so x ∈ A. Therefore B ⊆ A, giving us that m∗(B) ≤ m(A) = 0, and so m∗(B) = 0,
showing by previous work that m(B) = 0.
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Therefore g is zero almost everywhere. By work with the simple integral, we showed that changing
a simple function on a set of measure zero does not change its simple integral. Therefore:

Simp

∫

Rd
g(x) dx = Simp

∫

Rd
0 dx = 0

Great! This shows that F = {0} as desired, and so tracing back we have the result via the equalities:∫

Rd
f(x) dx =

∫

Rd
f(x) dx = supF = 0

Now let’s tie the bow on this problem.

With this we’re done! Perfect ,.

Problem I-4
Show that this integral is a linear operation, i.e. it satisfies that if f, g ∈ L1(Rd) and c ∈ C then:∫

Rd
f(x) + g(x) dx =

∫

Rd
f(x) dx+

∫

Rd
g(x) dx

∫

Rd
cf(x) dx = c

∫

Rd
f(x) dx

Solution. Let f, g ∈ L1(Rd) and c ∈ C. First we claim that f + g ∈ L1(Rd) and cf ∈ L1(Rd), so this
is even well defined. This is clear since by the properties of the absolute value for any x ∈ Rd we have
|f(x) + g(x)| ≤ |f(x)|+ |g(x)| and |cf(x)| = |c| |f(x)|. We now may write by monotonicity and the unsigned
lienearity of the unsigned integral that:

‖f + g‖L1(Rd) =

∫

Rd
|(f + g)(x)|dx =

∫

Rd
|f(x) + g(x)|dx

≤
∫

Rd
|f(x)|+ |g(x)|dx =

∫

Rd
|f(x)|dx+

∫

Rd
|g(x)|dx

= ‖f‖L1(Rd) + ‖g‖L1(Rd) <∞

‖cf‖L1(Rd) =

∫

Rd
|cf(x)|dx =

∫

Rd
|c| |f(x)|dx

= |c|
∫

Rd
|f(x)|dx = |c| · ‖f‖L1(Rd) <∞

Great! Thus f + g, cf ∈ L1(Rd) as desired. We now tackle showing the linearity of this integral in pieces.

• TODO
• TODO
• TODO

Great! With these all put together we have the full result!
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Absolute Integrability

Q1) (Markov property) Let f : Rd → [0,+∞] be measurable. Then for
any 0 < λ <∞, we have

m({x ∈ Rd : f(x) > λ}) ≤ 1

λ

∫

Rd
f(x)dx.

Hint: Look at the indicator function of the {x ∈ Rd : f(x) > λ}.
Q2) Let f : Rd → [0,+∞] be measurable. Show that if

∫
Rd f(x)dx <

∞, then f is finite almost everywhere. Give a counterexample to
show that the opposite is not true.

Q3) Show that if
∫
Rd f(x)dx = 0 if and only if f is zero almost every-

where.

Definition 0.1 (Absolute integrability). An almost everywhere defined
measurable function f : Rd → C is said to be absolutely integrable if
the unsigned integral

‖f‖L1(Rd) :=

∫

Rd
|f(x)|dx

is finite. We refer to this quantity as the L1(Rd) norm of f , and use
L1(Rd) to denote the space of absolutely integrable functions. If f
is real-valued and absolutely integrable, we define

∫
Rd f(x)dx by the

formula ∫

Rd
f(x)dx :=

∫

Rd
f+(x)dx−

∫

Rd
f−(x)dx,

where f+ = max(f, 0), f− = max(−f, 0) are the magnitudes of the posi-
tive and negative components of f (note that the two unsigned integrals

1



on the right-hand side are finite, as f+, f− are pointwise dominated by
|f |. If f is complex-valued and absolutely integrable, we define the
Lebesgue integral

∫
Rd by the formula

∫

Rd
f(x)dx :=

∫

Rd
Re f(x)dx+ i

∫

Rd
Im f(x)dx.

Q4) Show that this integral is a linear operation, i.e. it satisfies that if
f, g ∈ L1(Rd), then
∫

Rd
f(x)+g(x)dx =

∫

Rd
f(x)dx+

∫

Rd
g(x)dx,

∫

Rd
cf(x)dx = c

∫

Rd
f(x)dx.

Q5) Show that ‖f + g‖L1 ≤ ‖f‖L1 + ‖g‖L1, and ‖cf‖L1 = |c|‖f‖L1.
(This makes L1 a seminorm on the space of absolutely integrable
functions. It is not a norm because of the following (fixable) small
caveat.

Q6) Show that ‖f‖L1 = 0 if and only if f is zero almost everywhere.

Q7) (The triangle inequality) Let f ∈ L1(Rd → C). Show that
∣∣∣∣
∫

Rd
f(x) dx

∣∣∣∣ ≤
∫

Rd
|f(x)| dx.

Hint: This is easy when f is real-valued, but one has to be a bit
more careful with the argument when f is complex-valued.

2
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Convergence Theorems-Part I

The main power of Lebesgue integration comes from the (much)
stronger convergence theorems that hold in its context. Let f1, f2, . . . :
Rd → [0,∞] be a sequence of measurable unsigned functions. Suppose
that as n → ∞, fn(x) converges pointwise to a measurable limit f . A
basic question in analysis is to determine the conditions under which
the pointwise convergence implies the convergence of the integral,

∫

Rd
fn(x)dx

?−→
∫

Rd
f(x)dx. (**)

or in other words can one interchange the order of the limits

lim
n→∞

∫

Rd
fn(x)dx =

∫

Rd
lim
n→∞

fn(x)dx?

Q1) Let E ⊂ Rd be a measurable set of finite measure. Suppose that
fn : E → [0,∞] is a sequence of unsigned measurable functions
that converge uniformly to f . Show that

∫
E fn(x) converges to∫

E f(x)dx.

Remark. : This statement is actually true for absolutely integrable
functions as well. It even holds for Riemann integrals! The con-
dition of uniform convergence such an overkill; we shall see that
much less is needed for Lebesgue integrals.

Q2) Give an example of a sequence of functions fn that violates (∗∗)
such that all fn are bounded and are supported on a set of measure
≤ 1.

Q3) Give an example of a sequence of functions fn that violates (∗∗)
such that all fn are bounded and are supported on a set of measure
≥ n.

1



Q4) Give an example of a sequence of functions fn that violates (∗∗)
such that all fn are supported on a set of En such that m(En)→ 0.

Remark. : The example in Q2), Q3), Q4) correspond to the sequence
(fn) doing the following three things respectively: escaping to horizontal
infinity, escaping to width infinity, escaping to vertical infinity. A deep
principle of analysis (whose formulation is well-beyond the scope of
this course) states that these are the only three avenues for (**) to fail.
The monotone convergence theorem below is one manifestation of this
principle.

Theorem 0.1 (The Monotone Convergence Theorem). Let 0 ≤ f1 ≤
f2 ≤ . . . be a monotone non-decreasing sequence of unsigned measur-
able function on Rd. Then we have

lim
n→∞

∫

Rd
fn(x)dx =

∫

Rd
lim
n→∞

f(x)dx.

Q5) Show the theorem when fn are indicator functions, i.e.: Let E1 ⊂
E2 ⊂ . . . ⊂ Rd be a countable nested sequence of measurable
sets. Show that m(∪∞n=1En) = limn→∞m(En). Hint: Use countable
additivity of Lebesgue measure.

Q6) Show that limn→∞
∫
Rd fn(x)dx ≤

∫
Rd limn→∞ f(x)dx.

As such, it remains to show that
∫
Rd f(x)dx ≤ limn→∞

∫
Rd fn(x)dx,

where f := limn→∞ fn(x).

Q7) Why is it enough to show that
∫

Rd
g(x)dx ≤ lim

n→∞

∫

Rd
fn(x)dx

for any simple function g that is bounded above by f and such
that g is finite everywhere.

2



Q8) Suppose that g is a function as above, and write g =
∑k

i=1 ci1Ai,
where 0 ≤ ci <∞ and Ai are disjoint. Let 0 < ε < 1 be arbitrary,
and let

Ai,n := {x ∈ Ai : fn(x) > (1− ε)ci}.
Show that limn→∞m(Ai,n) = m(Ai).

Q9) Show that

lim
n→∞

∫

Rd
fn(x)dx ≥ (1− ε)

k∑

i=1

cim(Ai) = (1− ε)
∫

Rd
g(x)dx.

This concludes the proof by letting ε→ 0.

3
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Partition of Unity

Theorem 0.1. Let X be an arbitrary subset of Rd. For each covering of
X by (relatively) open subsets {Uα}, there exists a sequence of smooth1

functions θi on X, called a partition of unity subordinate to the open
cover {Uα} with the following properties:

(i) 0 ≤ θi ≤ 1 for all x ∈ X and all i.

(ii) Each x ∈ X has a neighborhood on which all but finitely many
functions θi are identically zero.

(iii) Each function θi is identically zero except on some closed set con-
tained in one of a the Uα.

(iv) For each x ∈ X, ∑

i

θi(x) = 1

(Note that according to (ii), this sum is always finite).

Below, we present the proof of this result through a series of ques-
tions.

Q1) Write each Uα = X∩Wα where Wα is open in Rd. Set W = ∪αWα.
Show that there exists a nested sequence of compact sets Kj such
that

∪∞j=1Kj = W.

Q2) For each x ∈ K2, one can find a ball centered at x and whose
closure is contained in one of the Wα. Cover K2 by r such balls
B

(2)
1 , . . . , B

(2)
r (why is this possible?). Find r smooth functions

1Recall that a function on X is smooth if it admits a smooth extension to an open subset containing X.

1



η1, . . . , ηr such that ηk is 1 on B
(2)
k and zero outside another ball

contained in one of the Wα.

Hint: Given any two nested balls, the existence of a smooth η that
is 1 on the smaller ball and zero outside the outer one was part of
our Midterm.

Q3) Repeat the above step with Kj replaced by Kj \ IntKj−1 and W

replaced by W \ Kj−2, to obtain for each j, a finite collection of
functions ηi (that we add to the previous collection at step j);

each such function is to be equal 1 on a ball B
(j)
i and zero outside

a closed ball contained in both W \ Kj−2 and in one of the Wα.

The union of the B
(j)
i covers Kj \ IntKj−1.

Q4) Show that
∑

i ηi is finite in a neighborhood of every point of W ,
and at least one term of the sum is nonzero at any point of W .

Q5) Find the function θi and finish the proof.

Back to Lebesgue theory and convergence theorems

Theorem 0.2 (The Monotone Convergence Theorem). Let 0 ≤ f1 ≤
f2 ≤ . . . be a monotone non-decreasing sequence of unsigned measur-
able function on Rd. Then we have

lim
n→∞

∫

Rd
fn(x)dx =

∫

Rd
lim
n→∞

f(x)dx.

Q7) Let f1, f2, . . . : Rd → [0,∞] be a sequence of unsigned measurable
functions. Then one has

∫

Rd

∞∑

n=1

fn(x)dx =
∞∑

n=1

∫

Rd
fn(x)dx.

2



Q8) (Borel-Cantelli) Let E1, E2, . . . be a sequence of measurable sets
such that ∞∑

n=1

m(Bn) <∞

Show that the set of points contained in infinitely many of the En

has measure zero, in other words the measure of the set

∩∞n=1 ∪k≥n Ek

is zero.

3
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More convergence theorems

Theorem 0.1 (Fatou’s lemma). Let 0 ≤ f1, f2, . . . be a sequence of
unsigned measurable function on Rd. Then we have

∫

Rd
lim inf
n→∞

fn(x)dx ≤ lim inf
n→∞

∫

Rd
fn(x)dx.

Informally speaking, Fatou’s lemma tells us that when taking the
pointwise limit of unsigned functions fn, the mass

∫
X fndx can be de-

stroyed in the limit (as was the case of the three avenues of escape to
∞ we discussed in Worksheet 8) but it cannot be created in the limit.

Q1) Prove Fatou’s lemma. Recall first that lim infn→∞ an = limN→∞ infn≥N an.
Let FN(x) = infn≥N fn(x). Show that FN(x) is monotone, and ap-
ply the monotone convergence theorem to FN(x).

The third major convergence theorem for Lebesgue integrals is the
dominated convergence theorem.

Theorem 0.2 (Dominated Convergence Theorem). Let f1, f2, . . . :
Rd → C be a sequence of measurable functions that converge pointwise
almost everywhere to a measurable limit f : Rd → C. Suppose that
there is an unsigned absolutely integrable function G : Rd → [0,+∞]
such that |fn(x)| ≤ G(x) for almost every x ∈ Rd and every n. Then
we have

lim
n→∞

∫

Rd
fn dx =

∫

Rd
f dx.

Q3) Why can we reduce to the case when fn converges to f and fn ≤ G
everywhere and not almost everywhere.

1



Q4) Reduce to the case when fn are real-valued. Hence −G(x) ≤
fn(x) ≤ G(x) pointwise everywhere.

Q5) Apply Fatou’s lemma to the unsigned functions fn+G to conclude
that ∫

Rd
f(x) dx ≤ lim inf

n→∞

∫

Rd
fn dx.

Q6) Apply Fatou now to the unsigned function G − fn to finish the
proof of the theorem.

Q7) Under the hypothesis of the dominated convergence theorem, es-
tablish the stronger bound ‖fn − f‖L1 → 0 as n→∞.
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I.12. IBL Week 11

Problem I-1
Prove Fatou’s lemma. Recall first that lim infn→∞ an = limN→∞

∫
n≥N an. Let Fn(X) = infn≥N fn(x).

Show that FN (x) is monotone, and apply the monotone convergence theorem to FN (x)

Solution. Note that FN+1(x) =
∫
n≥N+1

fn(x) ≥ infn≥N fn(x) = FN (x) because FN (x) is a lower bound for

the set defining FN+1(x), from 295 work.
Furthermore, since f1, f2, . . . ≥ 0 we know that F1, F2, . . . ≥ 0. Therefore we can write the following by

the monotonic convergence theorem:∫

Rd
lim inf
n→∞

fn(x) dx =

∫

Rd
lim
n→∞

Fn(x) dx = lim
n→∞

∫

Rd
Fn(x) dx = lim inf

n→∞

∫

Rd
Fn(x) ≤ lim

n→∞

∫

Rd
fn(x) dx

Because each Fn ≤ fn.

Problem I-2
Why in the proof of the Dominated Convergence Theorem can we reduce to the case when fn converges

to f and |fn| ≤ G everywhere and not almost everywhere.

Solution. Let Df be the set where fn does not converge to f and DG to be the set where |fn(x)| is not less
than or equal to G(x). Define f ′n to be fn on (Df ∪DG)c and 0 on Df ∪DG, likewise defined f to be f on
(Df ∪DG)c and 0 on Df ∪DG. Since integrals only care about sets of non-zero measure and Df ∪Dg has
measure zero, we know that when either of these integrals exist:∫

Rd
f ′n(x) dx =

∫

Rd
fn(x) dx

∫

Rd
f ′(x) dx =

∫

Rd
f(x) dx

Then the limits also agree. Furthemore f ′n converges to f everywhere and |fn(x)| ≤ G(x) everywhere. We
then have the reduction.

Also note that under this reduction, the integrals always exist. Why? Well if f ′n converges to f ′, then |f ′n|
converges to |f ′|. With this we have that because |f ′n(x)| ≤ G(x) for all n and x ∈ Rd that |f ′(x)| ≤ G(x)
for all x ∈ Rd. Therefore we have that, since |f | agrees with |f ′| almost everywhere and |f ′n| agrees with |fn|
almost everywhere: ∫

Rd
|fn| (x) dx =

∫

Rd
|f ′n(x)|dx ≤

∫

Rd
G(x) dx <∞

∫

Rd
|f(x)|dx =

∫

Rd
|f ′(x)|dx ≤

∫

Rd
G(x) dx <∞

Perfect! This shows all the integrals are defined and the problem is well-posed.

Problem I-3
Reduce to the case when fn are real-valued. Hence −G(x) ≤ fn(x) ≤ G(x) pointwise everywhere.

Solution. Let fn(x) = un(x) + ivn(x) and f(x) = u(x) + iv(x) where un, vn, u, v : Rd → R. We know that
un and vn converge to u and v since fn converges to f . Likewise, we know that whenever |fn(x)| ≤ G(x)
that |un(x)| , |vn(x)| ≤ |fn(x)| ≤ G(x), and so un and vn are bounded by G.
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We then apply the result to un, vn:

lim
n→∞

∫

Rd
fn(x) dx = lim

n→∞

∫

Rd
un(x) dx+ i · lim

n→∞

∫

Rd
vn(x) dx

=

∫

Rd
u(x) dx+ i ·

∫

Rd
v(x) dx

=

∫

Rd
f(x) dx

Perfect! This demonstrates that the result reduces to the real-valued case.

Problem I-4
Apply Fatou’s lemma to the unsigned functions fn +G to conclude that:∫

Rd
f(x) dx ≤ lim inf

n→∞

∫

Rd
fn(x) dx

Solution. Note that since −G(x) ≤ fn(x) ≤ G(x) everwhere, we know that fn(x) + G(x) ≥ 0 everywhere.
Then these are unsigned measurable functions we know by Fatou’s Lemma that:∫

Rd
f(x) +G(x) dx =

∫

Rd
lim inf
n→∞

fn(x) +G(x) dx ≤ lim inf
n→∞

∫

Rd
fn(x) +G(x) dx

Now because G(x) is absolutely integrable, its integral is finite, so we can cancel on both sides as follows,
using that G(x) is constant in n:∫

Rd
f(x) dx+

∫

Rd
G(x) dx ≤ lim inf

n→∞

∫

Rd
fn(x) dx+

∫

Rd
G(x) dx

∫

Rd
f(x) dx ≤ lim inf

n→∞

∫

Rd
fn(x) dx

This is the result we wanted ,

Problem I-5
Apply Fatou now to the unsigned function G− fn to finish the proof of the theorem.

Solution. Now note that G(x)− fn(x) ≥ 0 everywhere since G(x) ≥ fn(x) everywhere. Therefore Gn − fn is
an unsigned measurable function. We then apply Fatou’s Lemma to write:∫

Rd
G(x)− f(x) dx =

∫

Rd
lim inf
n→∞

G(x)− fn(x) dx ≤ lim inf
n→∞

∫

Rd
G(x)− fn(x) dx

Again because G(x) is absolutely integrable, its integral is finite, so we can cancel on both sides as follows,
using that G(x) is constant in n:∫

Rd
G(x) dx−

∫

Rd
f(x) dx ≤

∫

Rd
G(x) dx+ lim inf

n→∞
−
∫

Rd
fn(x) dx

−
∫

Rd
f(x) dx ≤ lim inf

n→∞
−
∫

Rd
fn(x) dx

−
∫

Rd
f(x) dx ≤ − lim sup

n→∞

∫

Rd
fn(x) dx

∫

Rd
f(x) dx ≥ lim sup

n→∞

∫

Rd
fn(x) dx

Perfect! Then from the previous problem:∫

Rd
f(x) dx ≤ lim inf

n→∞

∫

Rd
fn(x) dx ≤ lim sup

n→∞

∫

Rd
fn(x) dx ≤

∫

Rd
f(x) dx
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Therefore the lim inf and the lim sup agree, and so the limit exists and we have:

lim
n→∞

∫

Rd
fn(x) dx =

∫

Rd
f(x) dx

Just as desired. Tracing through the previous questions we see that this special case of real-valued functions

where everything is pointwise everywhere generalizes to the full theorem.

Problem I-6
Under the hypothesis of the dominated convergence theorem, establish the stronger bound that

‖fn − f‖L 1 → 0 as n→∞

Solution. Note that since fn converges to f almost everywhere that |fn − f | converges to 0 almost everywhere.
Furthermore, |fn − f | is bounded above almost everywhere by the absolutely integrable function G + |f |,
since |f | was previously established to be absolutely integrable and G is absolutely integrable, the fact that
their sum is absolutely integrable follows from previous work. This holds from the triangle inequality, since
for almost every x ∈ Rd we have:

|fn(x)− f(x)| ≤ |fn(x)|+ |f(x)| ≤ G(x) + |f(x)|
Perfect! Then we apply the dominated convergence theorem to |fn − f | to see that:

lim
n→∞

‖fn − f‖L 1 = lim
n→∞

∫

Rd
|fn(x)− f(x)|dx =

∫

Rd
0 dx = 0

And therefore the result holds, namely that ‖fn − f‖L 1 → 0 as n→∞. Awesome ,
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Handout 11

Riemannian Manifolds

*Introduction and examples

Recall that we defined, in class, a Riemannian metric to be a symmtric
2-tensor that is positive definite at every point p ∈M (M is a differen-
tiable manifold). This 2-tensor gives us an inner product on each TpM
as follows: Given any two vectors v, w ∈ TpM , we set

〈v, w〉g := gp(v, w), gp = g(p).

Q1) Check that this is indeed makes TpM an inner product space.

Once this is set, one can define a bunch of geometric constructions on
a Riemannian manifold (M, g), such as:

• The length or norm of tangent vector X ∈ TpM is defined to be
|X|g =

√
〈X,X〉g =

√
gp(X,X).

• The angle between two nonzero tangent vectors X, Y ∈ TpM is the

unique θ ∈ [0, π] such that cos θ =
〈X,Y 〉g
|X|g|Y |g .

• Two tangent vectors are said to be orthogonal if 〈X, Y 〉g = 0.

• If γ : [a, b] → M is a continuous piece-wise smooth curve (this
means that there exists a partition a = x0 < x1 < . . . < xn = b
such that γ|[xi,xi+1] is smooth), the length of γ is defined by

Lg(γ) =

∫ b

a

|γ′(t)|gdt.

Since |γ′(t)|g is continuous at all but finitely many points, the in-
tegral is well-defined. It is not hard to check that this length
is independent of the parametrization. We won’t do that today
though.
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• If M is connected, then given two points p, q ∈ M , one can define
the distance between p and q as

dg(p, q) = inf
γ
Lg(γ),

where the infimum is taken over all piecewise-smooth curves con-
necting p to q. Again, one can show that this is indeed a metric on
M that makes M into a metric space (where the metric topology
coincides with the manifold topology of M). Also, we won’t check
that today.

The simplest example of a Riemannian manifold is Euclidean space Rn

with the metric ḡ defined by

ḡ(p) = δij dx
i ⊗ dxj, δii = 1, δij = 0 if i 6= j

where we are using the Einstein summation notation here. This means
for any two vectors ~v, ~w ∈ TpRn, then ḡ(~v, ~w) = ~v · ~w =

∑n
i=1 viwi.

Q2) Let M be a differentiable submanifold of Rd. Then M inherits
from Rd its Riemannian metric as follows: For any p ∈ M , and
any vectors ~v, ~w ∈ TpM ⊂ TpRd, we set g(p)(~v, ~w) = ~v · ~w. Show
that this is indeed a Riemannian metric on M . This is called the
induced Riemannian metric. In particular, since any (abstract)
differentiable manifold can be regarded as a submanifold of Rd,
one can put a metric on any differentiable manifold.

*Coordinate representation

Given a coordinate chart (U,ϕ) where ϕ = (x1, . . . , xn), we saw in
class that a metric g on a manifold M has the following coordinate
representation

g(p) = gij(p) dx
i ⊗ dxj

where gij : U → R are smooth functions (actually this is how defined
smoothness of g!).
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Q3) Now suppose that (V, ψ) is another coordinate chart such that
U∩V 6= ∅, and write ψ = (y1, . . . , yn), then g can also be expressed
as g(p) = g̃ij dy

i ⊗ dyj. What is the relation between the two

matrices gij and g̃ij? Hint: Recall that dyi =
∑n

k=1
∂yi◦ϕ−1(x)

∂xk
dxk

*Orthonormal Frames

Let (M, g) be a Riemannian n−manifold, and let U ⊂M be open. We
define an orthonormal frame for M on U to be collection of n−smooth
vector fields E1, E2, . . . , En on U such that for each p ∈ U , {E1(p), . . . , En(p)}
forms an orthonormal basis for TpM .

Q4) Check that the coordinate frame (∂/∂xi) is a global orthonormal
frame on Rn. Hint: Recall that ∂/∂xi(p) = ~ei.

Remark. The fact that the orthonormal frame is also a coordinate
frame is a very special property that generally cannot be achieved.
It is a reflection of the zero curvature on Rd. So, in general, we
don’t expect orthonormal frames to be coordinate frames.

Q5) (Existence of Orthonormal Frames) Show that for each p ∈ M ,
there is a smooth orthonormal frame on a neighborhood of p. Hint:
Gram-Schmidt to coordinate frame. Why is the resulting frame
smooth?

*The tangent-cotangent isomorphism

Q6) Let V be an inner product vector space. The inner product gives
an isomorphism between V and its dual space V ∗ as follows: Let
ω ∈ V ∗, show that there exists a unique v ∈ V such that ω(·) =
〈·, v〉. Check that the map L : V → V ∗ given by Lv = 〈·, v〉 is a
linear isomorphism.

Q7) We apply the above question to TpM of some Riemannian man-
ifold (M, g). Let (U,ϕ) be coordinate chart near p and let ϕ =
(x1, . . . , xn). Let X ∈ TpM be written as X = X i ∂

∂xi . Check that
L(X) defined in the above problem (using the inner product 〈·, ·〉g)

3



is given by

L(X) = Xidx
i, where Xi := gijX

j.

Therefore, gij is the matrix of the transformation L. For this rea-
son, applying the operator L is sometimes called lowering an index.

Q8) (Raising indices) As a result, the matrix of the transformation
L−1 : V ∗ → V is given by the inverse of the matrix (gij). Why
is gij invertible? The inverse matrix is usually denoted gij so that
the following holds using Einstein’s summation notation

gijgjk = gkjg
ji = δik.

Thus given a covector ω ∈ (TpM)∗ with ω = ωidx
i, then the vector

X = L−1ω is given by

X = ωi
∂

∂xi
, ωi = gijωj.

We say that applying L−1 amounts to raising an index.

Q9) The most important manifestation of this tangent-cotangent iso-
morphisms happens when we apply L−1 to the 1-form df(p) when
f : M → R is a smooth function. We call the resulting vector the
gradient of f at p or ∇f(p). Show that

∇f = gij
∂f

∂xi
∂

∂xj
,

∂f

∂xi
(p) :=

∂f ◦ ϕ−1
∂xi

(x), x = ϕ(p).

Hence, ∇f is a smooth vector field on M .

4
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I.13. IBL Week 12

Problem I-1
Check that 〈v, w〉g := gp(v, w) makes TpM into an inner product space

Solution. This follows directly, g being a symmetric 2-tensor means that gp is symmetric and bilinear, and

positive definiteness gives us the remaining properties of an inner-product.

Problem I-2
Let M be a differentiable submanifold of Rd. Then M inherits from Rd its Riemannian metric as

follows: For any p ∈M , and any vectors v, w : TpM ⊆ TpRd, we set gp(v, w) = v · w. Show that this is
indeed a Riemannian metric on M . This is called the induced Riemannian metric. In particular, since
any (abstract) differentiable manifold can be regarded as a submanifold of Rd, one can put a metric on
any differentiable manifold.

Solution. g as defined above is just a pullback under the smooth map ι : M → Rd of the smooth 2-tensor

(v, w) 7→ v · w on Rd, which is smooth.

Problem I-3
Now suppose that (V, ψ) is another coordinate chart such U ∩V 6= ∅ and write ψ = (y1, . . . , yn), then

g can also be expressed as gp = g̃ij dyi ⊗ dyj . What is the relation between the two matrices gij and g̃ij .

Hint: Recall that dyi =
∑n
k=1

∂[yi◦ϕ−1]
∂xk

dxk

Solution. We may write that:

gp =
∑

1≤i,j≤n
g̃ij dyi ⊗ dyj

=
∑

1≤i,j≤n
g̃ij ·

(
n∑

k=1

∂[yi ◦ ϕ−1]

∂xk
dxk

)
⊗
(

n∑

r=1

∂[yj ◦ ϕ−1]

∂xr
dxr

)

=
∑

1≤k,r≤n


 ∑

1≤i,j≤n

∂[yi ◦ ϕ−1]

∂xk
· ∂[yi ◦ ϕ−1]

∂xr
· g̃ij


dxk ⊗ dxr

So then because of the uniqueness of these expressions, we see that:

gkr =
∑

1≤i,j≤n

∂[yi ◦ ϕ−1]

∂xk
· g̃ij ·

∂[yj ◦ ϕ−1]

∂xr

Then define:

Aik =
∂[yi ◦ ϕ−1]

∂xk
A = D(ψ ◦ ϕ−1)

Then we have with Gkr = gkr a matrix representation of g at p and likewise G̃ij = gij that:

gkr =
∑

1≤i,j≤n
Aik · g̃ij ·Ajr

G = AT · G̃ ·A

Great!

Problem I-4
Check that the coordinate frame ∂

∂xi is a global orthonormal frame on Rn. Hint: Recall that ∂
∂xi (p) =

ei.
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Remark. The fact that the orthonormal frame is also a coordinate frame is a very special property
that generally cannot be achieved. It is a reflection of the zero curvature on Rd. So, in general, we don’t
expect orthonormal frames to be coordinate frames.

Solution. First note that by class since (Rn, Id) is a coordinate chart, ∂
∂x1 , . . . ,

∂
∂xn is a smooth global frame.

Then this is orthonormal because at each p we have this is just e1, . . . , en, which is orthonormal with respect

to the standard inner product.

Problem I-5 (Existence of Orthonormal Frames)
Show that for each p ∈ M , there is a smooth orthonormal frame on a neighborhood of p. Hint:

Gram-Schmidt to coordinate frame. Why is the resulting frame smooth?

Solution. Let (U,ϕ) be a coordinate chart around p with ϕ = (x1, . . . , xn). Then consider the smooth frame
on U given by ∂

∂x1 , . . . ,
∂
∂xn . We may apply Gram-Schmidt to this to get vector fields E1, . . . , En which is an

orthonormal frame. Furthermore, these are smooth because in Gram-Schmidt we only use the inner product
of vector fields, sums of vector fields, and scalar multiples of vector fields, which are all smooth operations

because the metric g is smooth.

Problem I-6
Let V be an inner product vector space. The inner product gives an isomorphism between V and

its dual space V ∗ as follows: Let ω ∈ V ∗, show that there exists a unique v ∈ V such that ω(·) = 〈·, v〉.
Check that the map L : V → V ∗ given by Lv = 〈·, v〉 is a linear isomorphism

Solution. First note that L is well-defined and a linear since for c ∈ R, v, v1, v2 ∈ V , w,w1, w2 ∈ V we have:

[L(v)](cw1 + w2) = 〈cw1 + w2, v〉 = c〈w1, v〉+ 〈w2, v〉 = c[L(v)](w1) + [L(v)](w2)

[L(cv1 + v2)](w) = 〈w, cv1 + v2〉 = c〈w, v1〉+ 〈w, v2〉
Great! Then L is injective because if v ∈ kerL then L(v) = 0, so 〈v, v〉 = 0, and then v = 0. Therefore since

V and V ∗ have the same dimension, L is a linear isomorphism, which proves the claim.

Problem I-7
We apply the above question to TpM of some Riemannian manifold (M, g). Let (U,ϕ) be a coordinate

chart near p and let ϕ = (x1, . . . , xn). Let X ∈ TpM be written as X = Xi ∂
∂xi . Check that L(X) defined

in the above problem (using the inner product 〈·, ·〉g) is given by:

L(X) = Xi dxi where Xi := gijX
j

Therefore, gij is the matrix of the transformation L. For this reason, applying the operator L is sometimes
called lowering an index

Solution. We apply both L(X) and Xi dxi to an element of the basis ∂
∂xk

. If they agree then we’re done
since linear maps are determined by where they send the basis. We then see that:

L(X) · ∂

∂xk
=

〈
X,

∂

∂xk

〉

g

= gij dxi(X) · dxj
(

∂

∂xk

)

= gijX
i · δjk = gikX

i = Xk

(Xi dxi) · ∂

∂xk
= Xi dxi

(
∂

∂xk

)

= Xiδ
i
k = Xk

As demonstrated, we get the same thing in either case, and so:

L(X) = Xi dxi
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Perfect!
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