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Continuing the characterization of Jordan Measurability

Theorem. Let S be a bounded subset of R™. The following are equivalent:
1) S is Jordan measurable

2) The constant function 1 is Riemann Integrable on S

3) 0S has Lebesgue measure zero

4) 0S has Jordan outer measure zero.

Proof. Let’s go!

1 = 2) Suppose S is Jordan measurable. We need to show that:

1 ifzeS

fs(x):]lsz{ 0 ifzgs

is Riemann integrable on some box B containing S. Now let ¢ > 0 be arbitrary
and pick two elementary sets £1 C S C Fj such that m(Ey\ Eq) < €. Without
loss of generality, by dilating the component boxes of Ey we may assume that
S C E3.

Choose B to be some box containing Fs. Now let P be a partition B that
contains the endpoints of the intervals defining the boxes whose union is Fj

and Fo. Let Rq,..., R, be some enumeration of the sub-boxes determined by



this partition. Then:

U(ls,P) = Mpg,(1s)v(R;)
=1

= Y Mg(1s)v(R)

RZHS;«EV)

< > Mg,(Ls)u(R;)
R;CE>

< Y (i) =m(Ey)
R;CE2

Similarly, we can show that L(1g, P) > m(E;). But then:
U(]lg, P) — L(ﬂs,P) < m(EQ) — m(El) = m(EQ \ El) <e€
Great! Therefore 1g is integrable and:

m(Ey) < L(1g, P) < /Sldx < U(lg, P) < m(Es)

and:

m(Er) <m(S) < m(Es)

Gives us that:

/Sld:c—m(S)‘ <e

For any € > 0, and therefore:

m(S) :/Sldm

2 = 1) Let B be a box which contains S and take ¢ > 0 to be arbitrary. Since 1g is
integrable on B, there exists a partition P of B such that:

U(]lg,P) —L(]ls,P) <€

Let Rq,..., R, be an enumeration of the sub-boxes determined by P. Now



set:

E| = U R, CS
R;,CS

R;NS#D

And then we see that:

U(ls,P) => Mg, (1s)v(R;)
=1

Therefore!
m(Ex \ Ev) = m(Es) —m(Er) = U(Lg, P) — L(1g, P) < ¢

Since € > 0 was arbitrary, we conclude that S is Jordan measurable.

2 <= 3) This is straightforward using our characterization of integrability and the fact

that 1g is discontinuous exactly at the points on the boundary of S.

3 = 4) Let € > 0. Since 0S5 has Lebesgue measure zero there is a collection of boxes
By, By, ... such that 95 C |J;2, Bj and } v(B;) < 5. Dilate each B; into a
larger open box Ej such that B; C Ej and v(éj) < 2v(Bj).

Now note that the Ej forms an open cover of the closed and bounded set 5.



By compactness there is a finite sub-cover Ejl, ceey Ejk of 3S. But then:
" o " oo

v(Bj,) < Zv(Bj) < QZU(Bj) <e

i=1 j=1 j=1

Great! This shows that 95 has Jordan outer measure zero.

4 = 3) follows trivially.

4

Improper Integrals

Up until now in the discussion of | g [ we restricted to the case where f and S are
both bounded. In this section we relax these assumptions a bit to include any open

set S and any continuous function f.

Remark. The ultimate dispensing of those two restrictions on S and f comes

through the theory of Lebesgue integration.
Before we proceed, we introduce some notation:
e Let J denote the family of Jordan measurable subsets of R™.
e Let J. denote the collection of compact Jordan measurable sets

e For a function f : S — R we define the positive part and negative part of f

f1(x) = max(f(x),0) f~(x) = max(—f(z),0)

It is easy to veritfy that:

~f=fi- 1
_f+7f—20
= [fl=f++ f-

— If f is continous then both f; and f_ are continuous.

Definition. Let A be an open subset of R™ and let f : A — R be a continuous

function



o If f is non-negative on A we define the (extended) integral of f over A as:

IS Y

€.

provided that this supremum exists.

o If f is an arbitrary continuous function on A, write f = fy — f_, where these
are the positive and negative part of f. Provided that f and f— are integrable

on A in the extended sense we say f is also integrable and let:

IREIR

Remark. We now have two difference definitons of [ 4 f when A is open and bounded
and f is continuous and bounded. We shall see later that these two definitions are
equivalent if both integrals exist. The extended integral might exist without having
the traditional integrals existince Why?

Notice that if B C A are both open then if the extended integral of f over A

exists then the extended integral of f over B exists and:

fr=]s

However if f = 1 then [ p 1 exisrts only when B is Jordan measurable, and tehre
are bounded open sets that are not Jordan measurable (we’ll see an example in our

Friday sessions)

Convention: If A is open and f is continuous then [ 4 f will always denote the

extended integral

Lemma. Let A C R"™ be open. There exists a sequence of C1,C — 2,... of compact
Jordan measurable sets such that A = J2, C; and C; C g+1 In fact, C;j can be

taken to be elementary

Proof. Define:
1
In ={x € R" | d(x, A°) > N |z| < N}

Thus 2y is bounded and closed since x +— d(z, A°) and x — |z| are both continuous



functions. Now consider:

Any1 ={z e R" | d(z, A®) >

1
N+1
ol <N+ 1)

And then Ayy1 is open and:
IN C Any1 © DN+
This implies that:
In C -%?Hrl

We clearly have by the fact that A is open that:

i () on
N=1

The sets Y may not be Jordan measurable. To fix this, note that for z € Py there
exists a closed cube centered at x and contained in %5, ,. The interior of these
cubes is an open cover of ¥y and hence by compactness there is a fintie subcover.
Define Cn to be the elementary set given by the finite union of such a finite subcover

of Zn made up of closed cubes. Thus Cjy is closed and bounded, and furthermore:
Dy SOy CCON C PN €O

Therefore we see that Cy is compact and Jordan measurable as well as the fact that

Ux—1 Cn = A. Great! This finishes the proof. v

Theorem. Let A C R" be open and let f : A — R be a continuous function.
Choose a sequence Cn € J. such that A = UJO\,O:1 Cy and Cyn C C’]O\,_H as in the
above lemma. Then f is integrable over A if and only if fCN |f| is bounded by a

constant which does not depend on N. In this case,

f= lim f
A N—o0 Cn

In particular, f is integrable over A if and onl if | f| is too.

We’ll prove this theorem next time. In the meantime, here are some properties
of the extended integral. For setup let A C R"™ be open and let f,g: A — R be



continuous functions such that [, f and [, g exist:

a) f+ cg is integrable for any ¢ € R and:

/Af+cg=/Af+6/Ag

b) If f < g then:

IREYK
'/Af‘g/Alf!

c) If A and B are both open and A C B then if f is integrable over B then f is

integrable over A. Furthermore if f is non-negative on B then:

Jr<]s

d) If A and B are open and f is continuous on A U B, then if f is integrable on A
and B then f is integrable on AU B and A N B. Furthermore we have:

Juw? =L+ Lo

In particular:



