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Continue proving the equality of mixed partials
Theorem. If f € C?(A) where A C R? then for each xo € A we have:
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Corrolary. Equality of mized partials of order r when f € C"(A).

Proof. We began by reducing to the case where d = 2, since in general all variables
different from k,j are frozen when taking these partial derivatives. Thus assume

f:ACR? - Ris C?. Instead of referring to x, o we’'ll refer to x,y.

Now lets consider our intuition. We know that % measures % = f(:co-i-h,y})b—f(xo,y)‘

And then:
f AN Apf(zy+h) = Auf(z,y)
oydx ~  hk hk
= f by R~ fy k) — S hy) + )
Similarly:
g ~ Ayf o f(.’L',y-Fk') _f<$7y)
oy~ k k
PF  NA S A f(x+ky) — Ay f(x,y)
oxdy ~  hk hk

Notice that AyA,f = AzAyf. Thus the equality of this discrete version of the

partials that we expect the partials to be the same.



Now for the real proof. Let (zo,y0) € A and @ be the rectangle with vertices
(z0,v0), (xo + h,y0), (zo,y0 + k), (xo + h,y + k). Since A is open, we can take h
and k to be small enough so that @ C A. Now let:

G(h,k) = f(xzo+ h,yo + k) — f(zo + k,y0) — f(xo,y0 + k) + f(z0,0)

We will show that:
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G(h, k) = hk@x@y (p) = g0z (9)

For some p,q € Q. To show the first equality. Let us use G(h,k) = AyA,f and
let ¢(y) = f(xo + h,y) — f(zo,y) for y between yo and yo + k. We know that ¢
is continuous on [yo, yo + k] since f itself is. Also ¢ is differentiable on (yo, yo + k)
since f is C'. Therefore by the Mean Value Theorem there exists a v, between yo
and yg + k so that:

d(yo + k) — d(yo) = ¢'(ys)k

Notice then that:

G(h, k) = ¢(yo + k) — d(v0)

B B
(y) = aim +hy) - agm,y)
G(h’7 k) =k |:g.£($0 + ha y*) - g.zf/.(x07y*):|

Now we know that %(w,y*) is continuous on the closed interval between xy and
xzo + h and differentiable on the open interval. By the MVT there is a x, between
zo and xg + h so that:

0% f
oxdy

(20ry) = k [ggju oy - gim,y»}

G(h, k) = kh

Note that (2., yx) € Q so we have the first equality. To show the other equality, we
argue similarly using the fact that G(h, k) = AzA,f. More precisely instead of ¢

above we introduce:

Y(x) = f(x,y0 + k) — f(z,90)



By MVT we can get a x¢ such that:

G(h, k) = p(xo + h) — Y(x0) = W' (z0)

Gl k) =h | 9 (w050 +K) — 9L (w0, 0)

o
By applying the mean value theorem again we get yo between yo and yg + k we get:
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This is exactly the same moves as in the proof for x. Then:

2 2
G(h,k) _ O°f (20,) = ) (20, 40)
hk 0xdy 0yox

By letting h,k — 0 both (z.,y«) = p — (20,%0) and (z0,y0) = ¢ — (zo0,¥0). By
92 f 92 f

I and dyom At (z0,yo) we obtain the desired equality that:
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The Chain Rule and Taylor’s Formula in Higher Dimen-

sions

Recall. For f : ACR — R and g : B C R — R such that f(A) C B we have
gof:ACR — R. We have:

d

e @) =g (f(x))- f'(2)

provided that f'(z) and ¢'(f(z)).

Theorem (Chain Rule). Let A C R"™ and B C R™ and suppose that f : A C R™
and g : B C R¥. with f(A) C B. Suppose that xq is an interior point of A and
yo = f(xg) is an interior point of B. Furthermore suppose that f is differentiable
at xo and g s differentiable at yo. Then go f is differentiable at ro and:

Dlg o f](z0) = Dg(yo) o Df(x0) = Dg(f(x0)) - Df(x0)

Proof. Since yo is an interior point of B there exists a € > 0 such that B(yp,¢) C B.
Since f is continuous at x there exists a § > 0 so that f(B(zo,0)) C B(yo,€). So
we can define g o f : B(xg,6 — R¥. Let ||h]| < 6 for h € R" and define:

_ flwo+h) — f(zo) = Df (o) - h
]

By differentiability of f at xo we have Ry(h) — 0 as ||h|| — 0. Similarly if ||k|| < e
and k € R™ we define:

g(yo + k) — gﬁ@}ﬁﬁ — Dg(yo) - k (k #0)

Ry(k) =0 (k =0)

Rg(k') =

By differentiability we know that R4(k) — 0 as ||k|| = 0. To show that go f is
differentiable at 2y we must show that there exists an A € Hom(R",R¥) such that:

g 0 f1(x0 + ) = [g o fl(z0) — Ah
|7l

Ryo(h) = —0as k] =0



Rewrite as the following:

[9 0 fl(zo+h) = [g o fl(xo) = g(f(zo + D)

Where we call k = f(xo+ h) — f(x0). From R,(k) we know that for any k € R™:

g(yo + k) — g(yo) = Dg(yo) - k + || k|| Ry(k)

Furthermore k = f(xo+ h) — f(x0) = Df(xo) + ||h||Rs(h). Therefore:

9(yo + k) — g(yo) = Dg(yo)[Df(xo)h + ||k Ry (h)] + ||| Ry (k)
= Dg(yo) D f(wo) - b+ ||kl Dg(yo) Ry (h) + ||k|| Ry(k)

Set A = Dg(yo) - Df(xo) This gives that for h # 0 that:

[g o fl(zo+h)—[go fl(xo) — Ah
IRl
Il

= Dg(yo) Ry (h) + WR q(k)

Ryoy (h) =

We know that R¢(h) — 0 as ||h|| = 0. It remains to show that %Rg(k:) — 0 as
||h]] — 0. We know that:

1Bl = [[Df(z0) - b+ [[Al[ Ry (R)]]
< |IDf (o) - bl + [[Rll| 24 (Rl
< Cl[pll+lIpll < (€ + DA

This follows since ||Ry(h)|| < 1 if ||h]| is small enough. Also we kow since D f(xg) is
linear we know ||Df(zg) - h|| < C||h]| for some constant C' by 296 / linear algebra.

Therefore:

17]

H 5] ([ Bs Il < (C+ 1By R

i | < €+ Dy

Therefore as ||h|| — 0 we know that ||k|| — 0 since |k|| < (C + 1)||h|| and hence

R,y (k) — 0. Therefore HhH Ry(k) — 0 as h — 0 and so this finishes the proof. v



Taylor’s Theorem in several variables

Recall the multi-index notation from last time.

Lemma (The multinomial lemma). For any & = (x1,...,x,) € R™ and any positive

integer k we have:

k!
(@1 +az+ ot = Y —ac

laf=k



