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1 Introduction

• Office Hours

– Monday 8-9am

– Wednesday 4-5pm

– Beginning of Friday lecture

• First HW will be posted on Friday

• TAs are still not decided on

• Further info on the waitlist to come

2 Continuing Metric Spaces

2.1 Last Time

We defined metrics d : X ×X → [0,∞) with three special properties, and we saw

that this gave us a topology on X.

• Open sets, given p ∈ O we have some δ > 0 so that Nδ(p) ⊆ O.

• Closed sets are the complements of open sets

• Limit points, p is a limit point of E if every δ-neighborhood of p intersects E

in a point q 6= p

• Closed sets are exactly the sets where every limit point belongs to the set.
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2.2 Closures!

Definition. If X is a metric space and E ⊆ X we denote by E′ the set of limit

points of X. The closure of E is the set E = E ∪ E′.

Example. Here are some examples to look at!

• Let E = (0, 1] ⊆ R then E′ = [0, 1] = E

• Let E = (0, 1] ∪ {2} ⊆ R. Then E′ = [0, 1] and E = [0, 1] ∪ {2}.

Theorem. Let X be a metric space and E ⊆ X. Then:

a) E is closed

b) E = E if and only if E is closed.

c) If E ⊆ F and F is closed then E ⊆ F .

Proof. Let’s go!

a) Let q ∈ Ec. Then q 6∈ E′ ∪ E. Thus there exists a δ > 0 so that Nδ(q) ∩ E = ∅.
Since Nδ(q) is open we also know that Nδ(q) ∩E′ = ∅. Therefore Nδ(q) ∩E = ∅
and so

(
E
)c

is open as desired.

b) Easy exercise

c) If E ⊆ F and F is closed, then E′ ⊆ F because any limit point of E is also a

limit point of F . Therefore E ⊆ F .

Theorem. Let E be a nonempty set of real numbers which is bounded above. Then

y = supE is in E. Hence y ∈ E if E is closed.

Proof. If y ∈ E then we are done because E ⊆ E. If y 6∈ E then for any ε > 0 there

exists some x ∈ E so that:

y − ε < x < y

But this means that x ∈ Nε(y), and so Nε(y) ∩ E 6= ∅. This implies that y ∈ E′,
and so we are done since E′ ⊆ E.
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2.3 Compact subsets of metric spaces

Definition. We need a couple definitions!

• An open cover of a set E in a metric space X is a collection {Gα}α∈A of open

sets such that:

E j
⋃
α∈A

Gα

• A subset E ⊆ X is called compact provided that every open cover of E admits

a finite subcover. That is we can find a finite subcollection {Gαi}1≤i≤n of

{Gα}α∈A such that {Gαi}1≤i≤n covers E.

Theorem. Compact subsets of metric spaces are closed and bounded

Proof of Closed. Let K ⊆ X be compact and let q ∈ Kc. For each p ∈ K there

exists two subsets Up and Wp such that p ∈ Up, q ∈ Wp and Up ∩Wp = ∅. Here

we use that metric spaces are Hausdorff. We can concretely take Up = Nδ(p) and

Wp = Nδ(q) with δ < 1
2d(p, q).

Then in fact {Up}p∈K is an open cover of K. By compactness there exists a

finite subcover Up1 , . . . Upn that covers K. Then let:

W =
n⋂
i=1

Wpi

Then this W is open and W ∩ Upj = ∅ for all 1 ≤ j ≤ n. Thus we must have

W ∩K = ∅, meaning that W ⊆ Kc and Kc is open.

Proof of Boundedness. Let x ∈ X be arbitrary. The family of sets {Nn(x)}n∈N is

an open cover of E since N is unbounded. Thus by compactness E has a finite

subcover, and so E ⊆ Nk(x) for some k ∈ N.

The main question for the rest of this section: Is the converse true? If not, what

should be a workable criterion for compactness in metric spaces?

In fact it is true on Rn by Heine-Borel. But not the converse, particularly in

infinite dimensions!

Theorem. Closed subsets of compact sets are compact.
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Proof. Let C ⊆ K be a closed subset of a compact set K and let {Gα}α∈A be an

open cover of C. Then {Gα}α∈A ∪Cc is an open cover for K. Thus by compactness

of K there exists α1, . . . , αn such that:

K ⊆ Cc ∪
n⋃
i=1

Gαi

C ⊆
n⋃
i=1

Gαi

Therefore C is comapact.

Theorem (Finite intersection property). If {Kα}α∈A is a collection of compact sets

such that the intersection of any finite subcollection of {Kα}α∈A is nonempty. Then,

the intersection
⋂
α∈AKα is nonempty

Example. If En =
(
0, 1n

]
then En has the finite intersection property since they

are nested and each of them are nonempty. But
⋂
n∈NEn = ∅.

Proof. Suppose that
⋂
α∈AKα = ∅. Then

⋃
α∈AK

c
α = X, and so {Kc

α}α∈A is an

open cover for Kα? where α? ∈ A is arbitrary. This holds because compact subsets

of metric spaces are closed.

By compactness of Kα? there exists some α1, . . . , αn such that:

Kα? ⊆
n⋃
i=1

Kc
αi

Thus the finite intersection:

Kα? ∩
n⋂
i=1

Kαi = ∅

This contradicts the finite intersection property. Oops! We win.

Theorem 1 (Compactness =⇒ sequential compactness). Let K be a compact

set and let {xn}n∈N be a sequence of points in K. Then there exists a convergent

subsequence {xnk
}k∈N of {xn}n∈N that converges to a point in K.

Proof. Suppose that {xn} has no limit point in K. This means that for any p ∈ K,

there exists some δp such that Nδp(p) contains at most one point of the sequence

{xn}. The collection {Nδp(p)}p∈K is an open cover of K.
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By compactness we have some p1, . . . , pn such that:

K ⊆
n⋃
i=1

Nδpi
(pi)

But this must mean that K contains at most n points of the sequence {xn}. This

means that {xn} takes at most n values. Thus xn must take one value infinitely

many times, and so xn has a convergent subsequence.

On the other hand if {xn} has a limit point p ∈ K, then for every k ∈ N there

exists some xnk
such that d (xnk

, p) < 1
k . Clearly {xnk

} is a convergent subsequence

and so we win.

Remark. Is the converse true? Yes! But only in metric spaces.

3 Compactness in Rn

Theorem 2 (Nested interval property on R). Suppose that In = [an, bn] is a nested

sequence of closed intervals, that is In ⊇ In+1. Then
⋂∞
n=1 In is nonempty

Proof. We know {an} is an increasing sequence thta is bounded by bj . Let x =

supn∈N an. Then an ≤ x for all n.

Also {bn} is decreasing so an ≤ bn ≤ bm for all n ≥ m. Taking the supremum in

n we get x ≤ bm for all m. Therefore an ≤ x ≤ bn for all n ∈ N, giving us that:

x ∈
∞⋂
i=1

In
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