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1 Metric Spaces

1.1 Definition

Definition. A set X is called a metric space provided that it is equipped with a

function d : X ×X → [0,∞) such that

1. For all p, q ∈ X we have d(p, q) = 0 if and only if p = q

2. d(p, q) = d(q, p) for all p, q ∈ X.

3. For all p, q, r ∈ X we have

d(p, q) ≤ d(p, r) + d(r, q)

We call d the metric on X. Formally we might write that (X, d) is a metric space,

since a set X may admit many different metrics on it.

Example. Let X = Rn for some n ∈ N. If p = (p1, . . . , pn) and q = (q1, . . . , qn)

then we define:

d2(p, q) =

 n∑
j=1

(qj − pj)2
 1

2

= ‖p− q‖ = 〈q − p, q − p〉
1
2

This is commonly called the `2 metric on Rn. The triangle inequality follows from

Cauchy-Schwartz. Setting x = p− r and y = r − q, then x = y = p− q and we also
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have:

‖x+ y‖2 ≤ (‖x‖+ ‖x‖)2

‖x‖2 + ‖y‖2 + 2〈x, y〉 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖

But since we know from Cauchy-Schwarz that 〈x, y〉 ≤ ‖x‖‖y‖, so we win!

We can put another metric on Rn, namely the `s metric for any 1 ≤ s <∞:

ds(p, q) =

 n∑
j=1

|qj − pj |s
 1

s

This is called the `s metric. There is also the `∞ metric denoted as:

d∞(p, q) = max
1≤j≤n

|qj − pj |

1.2 Topology on metric spaces

Definition. A topology on a set X is some collection of subsets T ⊆ P (X), which

we will call the open subsets of X, such that:

• ∅ and X are both open.

• Given any arbitrary family of open sets {Ui}i∈I , their union
⋃

i∈I Ui is an open

set

• Given any finite collection of open sets, U1, . . . , Un, then their intersection⋂n
i=1 Ui is open.

Definition. Let (X, d) be a metric space. We define a topology on X as follows:

• For x0 ∈ X and ε > 0 we define the ε-neighborhood of x0 as:

Nε(x0) := {x ∈ X | d(x, x0) < ε}

• A subset U ⊆ X is called open provided that for every p ∈ U there exists some

ε > 0 so that Nε(p) ⊆ U .

Proof that this is a topology. The first property follows nearly trivially.
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• Fix some arbitrary family of open sets {Ui}i∈I . Fix some p ∈
⋃

i∈I Ui, then

there exists some j ∈ I so that p ∈ Uj . Since Uj is open there exists some

ε > 0 so that:

Nε(p) ⊆ Uj ⊆
⋃
i∈I

Ui

And so we are done ,

• Let p ∈
⋂n

i=1 Ui for some finite collection of open sets U1, . . . , Un. Then p ∈ Uj

for all 1 ≤ j ≤ n, and so there exists an rj > 0 for each j such that:

Nrj (p) ⊆ Uj

Take r = min(r1, . . . , rn. Then for all j we have Nr(p) ⊆ Nrj (p) ⊆ Uj . And

so:

Nr(p) ⊆
n⋂

i=1

Ui

just as desired.

Remark. This third property is not true for infinite collections! What part of the

proof breaks and provide a counter-example.

With this we are done.

Exercise. Also, as an exercise, show that for any r > 0 we have Nr(p) is open.

Definition. We say a subset C ⊆ X of a topological space is closed provided that

its complement X \ C is open.

Remark. By Demorgan’s laws we get three properties of closed sets:

• ∅ and X are both closed

• If {Ci}i∈I is a collection of closed sets then
⋂

i∈I Ci is closed

• If C1, . . . , Cn is a finite collection of closed sets then
⋃n

i=1Ci is a closed set.

The proof is left as an exercise ,
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1.3 Limit Points / Accumulation Points

Definition. A point p is called a limit point of a set E provided that every neigh-

borhood of p contains a point q 6= p such that q ∈ E.

Example. Let E = [0, 1) ∪ {2}. Then 1 is a limit point of E (note that 1 6∈ E),

and also 2 is not a limit point of E even though 2 ∈ E.

Definition. When p ∈ E is not a limit point of E, p is called an isolated point of

E.

Definition. An interior point of E is a point p ∈ E such that there exists r > 0 so

that Nr(p) ⊆ E. Thus a set is open exactly when all its points are interior points.

The set of all interior points of a set E is often denoted by E̊, this is called the

interior of E.

Example. This depends on the entire metric space

• Let E = [0, 1) ∪ {2} and X = [0,∞). Then 0 is an interior point of E (since

Nr(0) = [0, r) ⊆ E is r is small enough). Thus E̊ = [0, 1).

• Let E = [0, 1) ∪ {2} and X = R. Then 0 is not an interior point of E, since

any neighborhood of 0 will contain negative numbers, which are not contained

in E.

Thus we conclude that the notion of interior (open or closed) depends on the ambient

space.

Definition. A set E is bounded provided that there eixsts a point x ∈ X and a

number M > 0 such that E ⊆ NM (x).

Definition. A set E ⊆ X is dense provided that every point of X is either a limit

point of E or an element in E.

Example. Let X = [0, 1)∪{π} then X ∩Q∪{π} is dense in X. Notice that X ∩Q
is not dense in X.

Theorem. If p is a limit point of a set E, then every neighborhood of p contains

infinitely many points of E.

Exercise. Prove this

Corrolary. A finite set can have no limit points
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Theorem. A set E is closed if and only if every limit point of E is contained in E.

Proof. Let’s do it! We will use X as our ambient space.

(⇒) Let E be closed and suppose p is a limit point of E. If p 6∈ E then p ∈ X \E,

which is open, and so there exists an r > 0 such that Nr(p) ⊆ X \E. Therefore

Nr(p) ∩E = ∅, but this contradicts the fact that p is a limit point. Therefore

p ∈ E as desired.

(⇐) Suppose that every limit point belongs to E and take p ∈ X \ E. Since p is

not a limit point of E there must exist some r > 0 such that Nr(p) ∩ E = ∅.
But then Nr(p) ⊆ X \ E. Therefore X \ E is open, and E is closed.

Awesome! We win ,

Definition. A set E is called perfect if E is closed and every point of E is a limit

point. In other words, E consists exactly of its limit points.

Example. [0, 1] is perfect in R, but [0, 1] ∪ {π} is not.

Example. Let X = R2 = C. Consider the following sets

a) The set of all complex numbers |z| < 1

b) The set of all complex numbers |z| ≤ 1

c) A finite set F ⊆ C

d) The set of all integers {(n, 0) | n ∈ N}

e) The set zn = 1
n where n ∈ N

f) The set of all complex numbers

g) The line segment (a, b) for a, b ∈ R. That is the set of points z ∈ C such that

Im(z) = 0 and a < Re(z) < b

Closed Open Bounded Perfect

a) 7 3 3 7

b) 3 7 3 3

c) 3 7 3 7

d) 3 7 7 7

e) 7 7 3 7

f) 3 3 7 3

g) 7 7 3 7
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