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1 Metric Spaces

1.1 Definition

Definition. A set X is called a metric space provided that it is equipped with a

function d : X x X — [0,00) such that
1. For all p,q € X we have d(p,q) =0 if and only if p = q

2. d(p,q) = d(q,p) for all p,q € X.

3. For all p,q,r € X we have

d(p,q) < d(p,r) + d(r,q)
We call d the metric on X. Formally we might write that (X, d) is a metric space,
since a set X may admit many different metrics on it.

Example. Let X = R"” for some n € N. If p = (p1,...,pn) and ¢ = (q1,---,qn)

then we define:

N|=

n

1
da(p,q) = | (a5 —p))*| =lp—al=(a—p.a—p)?
J=1

This is commonly called the ¢? metric on R”. The triangle inequality follows from

Cauchy-Schwartz. Setting x =p —r and y = r — ¢, then x =y = p — ¢ and we also



have:

lz +yl* < (llll + [l])?
] + Iyl + 2(z, y) < ll=* + Iyl + 2/l ]yl

But since we know from Cauchy-Schwarz that (z,y) < ||z|/||y||, so we win!

We can put another metric on R", namely the ¢° metric for any 1 < s < oo:

n
ds(p,q) = | > laj —pjl°
j=1
This is called the ¢% metric. There is also the ¢*° metric denoted as:

doo (P, @) = max |g; — pj|

1.2 Topology on metric spaces

Definition. A topology on a set X is some collection of subsets 7 C P(X), which
we will call the open subsets of X, such that:

e () and X are both open.

o Given any arbitrary family of open sets {U; }icr, their union | J;c; Us is an open

set

e Given any finite collection of open sets, Uy,..., Uy, then their intersection

Ni—, Ui is open.
Definition. Let (X,d) be a metric space. We define a topology on X as follows:

o For xg € X and € > 0 we define the e-neighborhood of x¢ as:

N:(zg) :={x € X | d(z,z0) < e}

o A subset U C X is called open provided that for every p € U there exists some
e >0 so that N.(p) CU.

Proof that this is a topology. The first property follows nearly trivially.



e Fix some arbitrary family of open sets {U;}icr. Fix some p € |J;c; Ui, then
there exists some j € I so that p € U;. Since U; is open there exists some

€ > 0 so that:

N.(p) € U; € | JUs

And so we are done ©

e Let p € (), U; for some finite collection of open sets Uy, ..., U,. Then p € U;
for all 1 < j < n, and so there exists an r; > 0 for each j such that:

Nrj (p) - Uj

Take r = min(ry,...,r,. Then for all j we have N,(p) C Ny, (p) € U;. And

SO:

just as desired.

Remark. This third property is not true for infinite collections! What part of the

proof breaks and provide a counter-example.

With this we are done. —
Exercise. Also, as an exercise, show that for any r > 0 we have N,(p) is open.

Definition. We say a subset C C X of a topological space is closed provided that

its complement X \ C' is open.
Remark. By Demorgan’s laws we get three properties of closed sets:
e () and X are both closed
o If {C;}icr is a collection of closed sets then (,.; C; is closed
o If Cy,...,Cy is a finite collection of closed sets then (J;' ; C; is a closed set.

The proof is left as an exercise ®



1.3 Limit Points / Accumulation Points

Definition. A point p is called a limit point of a set E provided that every neigh-
borhood of p contains a point ¢ # p such that q € E.

Example. Let £ = [0,1) U {2}. Then 1 is a limit point of £ (note that 1 ¢ E),
and also 2 is not a limit point of E even though 2 € E.

Definition. When p € E is not a limit point of E, p is called an isolated point of
E.

Definition. An interior point of E is a point p € E such that there exists v > 0 so
that N, (p) C E. Thus a set is open exactly when all its points are interior points.
The set of all interior points of a set E is often denoted by E, this is called the

interior of E.
Example. This depends on the entire metric space

e Let E=10,1)U{2} and X = [0,00). Then 0 is an interior point of E (since
N,(0) = [0,7) C E is r is small enough). Thus £ = [0,1).

e Let £ =1[0,1)U{2} and X = R. Then 0 is not an interior point of E, since
any neighborhood of 0 will contain negative numbers, which are not contained
in E.

Thus we conclude that the notion of interior (open or closed) depends on the ambient

space.

Definition. A set E is bounded provided that there eixsts a point x € X and a
number M > 0 such that E C Ny (z).

Definition. A set E C X is dense provided that every point of X is either a limit

point of E or an element in E.

Example. Let X = [0,1)U {7} then X NQU{x} is dense in X. Notice that X NQ

is not dense in X.

Theorem. If p is a limit point of a set E, then every neighborhood of p contains

infinitely many points of E.
Exercise. Prove this

Corrolary. A finite set can have no limit points



Theorem. A set E is closed if and only if every limit point of E is contained in E.
Proof. Let’s do it! We will use X as our ambient space.

(=) Let E be closed and suppose p is a limit point of E. If p ¢ F then p € X \ E,
which is open, and so there exists an r > 0 such that N, (p) C X\ E. Therefore
N,(p) N E = (), but this contradicts the fact that p is a limit point. Therefore
p € E as desired.

(<) Suppose that every limit point belongs to F and take p € X \ E. Since p is
not a limit point of E there must exist some r > 0 such that N,.(p) N E = 0.
But then N,(p) C X \ E. Therefore X \ E is open, and F is closed.

Awesome! We win ©® —
Definition. A set E is called perfect if E is closed and every point of E is a limit
point. In other words, E consists exactly of its limit points.

Example. [0,1] is perfect in R, but [0,1] U {7} is not.

Example. Let X = R? = C. Consider the following sets

a) The set of all complex numbers |z| < 1
b) The set of all complex numbers |z| <1
¢) A finite set ' C C

e) The set z, = % where n € N

f

)
)
)
d) The set of all integers {(n,0) | n € N}
)
) The set of all complex numbers

)

g) The line segment (a,b) for a,b € R. That is the set of points z € C such that
Im(z) =0 and a < Re(z) < b

Closed | Open | Bounded | Perfect
a) X v v X
b) v X 4 v
c) v X 4 X
d) v X X X
e) X X v X
f) v v X v
g) X X 4 X




