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Characterization of Riemann Integrability

Definition. Let A C R". We say that A has Lebesque measure zero in R™ if for

every € > 0 there exists a covering of A by a countable collection B1, Bs, ... of bozes
such that:

oo

> w(B)) <e

j=1

We’ll call this £-measure zero for convenience.

Proposition. Some properties of measure-zero sets:

a) If BC A and A has (-measure zero, then B has {-measure zero

b) If A= U;’il Aj and A; has (-measure zero for all j, then A has {-measure zero.

c) A set A has {-measure zero if and only if for every e > 0 there ezists a covering

of A by a countable collection of open boxes By, Ba, ... such that:
[e.e]
ZU(Bj) <e
j=1
Aka, we may replace the boxes in the definition by open boxes
d) If B is a box, then OB has {-measure zero
e) If v(B) # 0 then B does not have {-measure zero

Proof. Let’s go!



2)
b)

(a) is direct

Fix some € > 0. Then since A; has /-measure zero there are boxes Bj1, Bja, . . .
such that:

And then:

Therefore A has ¢/-measure zero.

The converse direction is immediate. We handle the forward direction. Let
A C R"™ have f-measure zero. Fix ¢ > 0. We know that there is a collection of
boxes B, By ... such that:

j=1

9

J=1

Then for each B;j with v(B;) # 0, let B; be the open box that is obtained from
B; by dilating it (around its center), by a factor of 2. If v(B;) = 0 then let Ej



be an open box containing B; with v(éj) < 5771~ Then clearly:
oo

v(B;)+2" > w(B))
j=1 j=1
(Bj)=0 v(B;)#0
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Great! Thus A has ¢-measure zero.

d) Let B =[a1,b1] X - -+ X [an, by]. Then 0B is the union of the faces of B given by:
a1, b1] X [aj—1,bj-1] X & X [aj1,b541] X -+ X [an, bn]
Where 1 < j <n and & € {aj,b;}. Let us denote this ace by Fj. Then:

F; € Bj = [a1,b1] x -+ x [§5 —0/2,& 4+ 6/2] X -+ X [an, by]

Bj):(SHbj—aj

i#]

We can make this arbitrarily small by choosing § to be small, and so F} has

(-measure zero, showing that 0B has ¢-measure zero by part (b).

e) Now suppose that v(B) # 0 and B has f-measure zero for the sake of ontradiction.
We know that B = B U8B and so by part (b) we know that B has /-measure
zero, and also v(B) # 0 since B C B. Now take ¢ = $v(B) and let By, B, ... be

a countable collection of open boxes such that:
o0
B U B
i=1
o0
> w(Bj) <e
j=1

Since B is compact, there exists a finite subcollection, say By, ..., By such taht



B is a subset of By U---U By,. Then:

v(B) < Zv(Bj) <e= %’U(P)
j=1

Since v(B) # 0 this gives a contradiction!
Great! =

Example. The set of rational numbers in [0, 1] has /-measure zero, because it is the
countable union of singletons, and every singleton has ¢-measure zero. Recall that

this set is not Jordan measurable.

Theorem (Characterization of Riemann integrability). Let B C R? be a box and
f B — R be a bounded function. Let & be the set of points in B at which f is
discontinuous. Then f is Riemann integrable on B if and only if & has {-measure

zero.
Example. Consider the following function:

f(x):]0,1] = R

xbi> 1 ifze@Q
0 ifzgQ

Then 2 = [0, 1], which does not have f-measure zero. Therefore f is not Riemann

integrable.
Proof. Choose M such that |f(x)| < M for all z € B:

(<) Suppose that the set Z has f-measure zero. Let € > 0 be given. We shall
exhibit a partitioon P of B such that:

U(f,P)—L(f,P)SC&“

where C' is a constant independent of ¢ and P. By the Riemann criterion,

this implies that f is Riemann integrable. Since 2 has f-measure zero. There



exists open boxes Bi, Bs, ... such that:

2< B
j=1
ZU(BJ') <e
j=1

For each x € 2, f is continuous at x, and so there exists an open box @,

centered at x such that:

fy) = F)| <e (Vy,y' € Qz N B)

Let Cp = (Q2 N B)? which is a box. The collection {B;} and {C,} is an open

cover of B which is compact. Therefore there exists a finite subcover:
BiU---UB,UCy U---UCy,

Rename Cy := C,,. We have thus obtained that:

o))

Z U(Bk) <e€

k=1
vy € Co = |fy) — fY)] <e¢

Let P be the partition of B that contains all of the endpoints of the component
intervals of the boxes { By} and {Q,}. Then each By and each @y is the union

of sub-boxes is the union of sub-boxes determined by P.

We split the sub-boxes R determined by P into two groups, which we will call
1 and Xo. 9 is the sub-boxes that are contained in By, for some 1 < k < p,
then %5 are the sub-boxes contained in @)y for some 1 < /¢ < gq.



We then estimate:
U(f,P) = L(f,P) = > [Mg(f) — mr(f)] - v(R)
R
< D [MR(f) =mr(f)]-o(R) + Y [Mr(f) —mr(f)] - o(R)

RE:QI RGQQ

<2M- > w(R)+e- Y v(R)

Retr Re%>

gzM.zp: > w(R) +e-> v(R)

k=1 Re% R
RC By

P
=2M - ZU(Bk) +e-v(B)
k=1

<(2M+wv(B))-e=C-¢
And this finishes this part of the proof!

(=) We now show that if f is integrable then 2 has f-measure zero. We need to

introduce the notion of the oscillation of a function at a point:

Definition. With g : A C R™ — R bounded and for x € A we define the

oscillation of g at x:
oscsg(z) == sup  [g(y) — g(¥/)]
y,y'€ANB(x,9)

osc g(x) := inf oscs g(x
9(z) = inf osc g(x)
Exercise. Show the following properties of the oscillation function:

a) oscs g(T) = SUPp(gs)na) 9 — INfBs)na g > 0.
b) oscs g(x) is increasing in 9§, i.e. if 6 < &' then oscsg(x) < oscy g(x).
This follows because the supremum over a smaller set is smaller than the

supremum over a bigger set
¢) Then we have that osc g(x) = limgs_,g 0scs g(x).

d) f is continuous at x if and only if osc f(z) = 0.



The rest of this direction will be done in next section

¢



