
Fall 2020 MATH 395 Zaher Hani

Handout 4

• Wish list for a measure function It would be grand to have a
measure function that tells us how big or small a subset of Rd is.
This would be a function from the set of subsets of Rd into [0,∞],
say m : P(Rd)→ [0,∞]. We would like this function to satisfy the
following properties:

a) If E1, E2, . . . is a countable collection of disjoint subsets of R,
then

m(∪∞n=1En) =
∞∑
n=1

m(En).

This is called Countable Additivity.

b) If E is congruent to F (i.e. F can be obtained from E by
applying rigid motions: translations, rotations, or a reflections)
then we should have that m(E) = m(F ).

c) m([0, 1)d) = 1.

The bad news is that no such function can exist, and here’s why (at
least when d = 1). Let us define an equivalence relation between
elements of [0, 1) as follows: We say x ∼ y if x − y is a rational
number. Let N be the subset of [0, 1) that contains exactly one
element of each equivalence relation (the existence of this N re-
quires invoking the axiom of choice). Now let R = [0, 1) ∩Q, and
for each r ∈ R define the set

Nr = {x+ r : x ∈ N ∩ [0, 1− r)} ∪ {x+ r− 1 : x ∈ N ∩ [1− r, 1)}.

(Basically Nr is just the translate of N by r units to the right,
except that we move the part that sticks out of the interval [0, 1)
one unit to the left).
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Figure 1: Banach-Tarski tells us that we can split the unit ball in R3 into finitely many
(actually 5 is sufficient) many disjoint pieces, apply rigid motions to those pieces and then
reassemble them to obtain two copies of the unit ball.

Q1) Show that [0, 1) is the disjoint union of Nr for r ∈ R.

Q2) Show that if a measure function satisfying a), b) and c) above
exists, then m(N) = m(Nr) for every r ∈ R.

Q3) Arrive at a contradiction.

Remark: One might think that possibly relaxing condition a) to cover
only finitely many disjoint sets En, i.e.

m(∪Nn=1En) =
N∑
n=1

m(En). (Finite Additivity)

would resolve the contradiction. Unfortunately, the Banach-Tarski
paradox (cf. Figure 1) tells us that this is not enough to resolve this
issue.
Conclusion: The problem with the above wishlist is that we insisted
on being able to measure every subset of Rd. We have shown that this
is impossible. The solution is to be content with a measure function
that is defined on some but not all subsets. Such subsets will be called
measurable subsets.

The Greek method

• Elementary measure. An interval I is a subset of R of the
form [a, b], [a, b), (a, b], or(a, b) where a, b ∈ R. The length of I is
defined to be |I| := b − a. A box in Rd is a Cartesian product
of intervals B = I1 × I2 × . . . Id and its volume is defined to be
|B| = |I1|. . . . .|Id|. An elementary set is any subset of Rd which is
the union of a finite number of boxes.
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Q4) Show that if E,F ⊂ Rd are elementary sets, then the union
E∪F , the intersection E∩F , the set theoretic difference E\F ,
and the symmetric difference E∆F = (E \ F ) ∪ (F \ E) are
also elementary. Also, if x ∈ Rd, then the translate E + x :=
{y + x : y ∈ E} is also elementary.

Q5) Show that E can be expressed as the finite union of disjoint
boxes. Hint: Start with d = 1. Then use this result to general-
ize it to higher dimensions.

• Definition. Let E be an elementary set. The above question
allows to write E = B1∪B2∪ . . . Bn where B1, . . . , Bn are disjoint.
We define the elementary measure of E as m(E) := |B1| + |B2| +
. . . + |Bn|.

Q6) Show that m(E) is well-defined in the sense that if E can be
expressed in two ways as a union of disjoint boxes B1, . . . Bn

and B′1, . . . B
′
m, then

|B1|+ |B2|+ . . . + |Bn| = |B′1|+ |B′2|+ . . . + |B′m|.

Hint: There’s more than one approach you can take. One is to
notice that for an interval I in R, there holds that

|I| = lim
N→∞

1

N
#

(
I ∩ 1

N
Z
)
.

(why?). And more generally for a box B,

|B| = lim
N→∞

1

Nd
#

(
B ∩ 1

N
Zd

)
.

Here 1
NZd = { k

N : k ∈ Zd}. Use this to give an alternative
definition of m(E) for an elementary set that does rely on its
decomposition into disjoint boxes .
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