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Announcements

• Final to be released on Monday December 14 in the afternoon, and due on

Tuesday early morning. Say 4pm-4am

• To be submitted through gradescope

Recalling Improper Integrals

Recall. For A an open set and f continuous on A. We defined the extended
∫
A f

as follows:

• If f ≥ 0 then we define: ∫
A
f = sup

D∈Jc
D⊆A

∫
D
f

Where Jc is the set of all compact Jordan measurable sets.

• For general f we write f = f+ − f− and define:∫
A
f :=

∫
A
f+ −

∫
A
f−

By convention if f is continuous and A is open then
∫
A f will mean the extended

integral.

Problem: If A is open and bounded and f is continuous and bounded, we have two

definitions for
∫
A f . The extended integral may exist without having the ordinary
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integral existing. We will see today that if the ordinary integral exists then the

extended integral exists and they are equal. We also proved the following

Lemma. If A ⊆ Rn is open then there exists a sequence C1, C2, . . . of elementary

sets (also compact Jordan measurable) such that:

Cn ⊆ C◦n+1

A =
∞⋃
j=1

Cj

Theorem. Let A ⊆ Rn be open and let f : A→ R be continuous. Choose a sequence

Cn ∈ Jc as in the above lemma. Then f is integrable on A (in the extended sense)

if and only if
∫
Cn
|f | is bounded (uniformly in n). In this case,∫

A
f = lim

n→∞

∫
Cn

f

In particular, f is integrable on A if and only if |f | is too.

Proof. We’ll do this in cases:

• Let f be non-negative. In this case
∫
Cn

f dx is a monotonically increasing

sequence of non-negative numbers, and as such it converges as n→∞ if and

only if it is uniformly bounded.

(⇒) Suppose that f is integrable over A. We want to show that
∫
Cn

f exists

and converges to
∫
A f as n→∞. Since f is continuous and Cn is compact,

then f is bounded on Cn, and hence
∫
Cn

f exists since Cn is Jordan

measurable.

Also: ∫
Cn

f ≤ sup
D⊆A
D∈Jc

∫
D
f =

∫
A
f

Therefore
∫
Cn

f is uniformly bounded in n. This implies that it converges,

now we need to show it converges to the right thing. We must also have

that:

lim
n→∞

∫
Cn

f ≤
∫
A
f
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Great!

(⇐) Suppose limn→∞
∫
Cn

f exists. Then
∫
Cn

f is uniformly bounded in n by

some constant M . Now take any D ⊆ A and D ∈ Jc. Then we know

that:

D ⊆
∞⋃
n=1

C◦j

By compactness of D there exists a finite subcover, and since Cj ⊆ C◦j+1

there exists some n♥ such that D ⊆ C◦n♥ . Therefore we know that:∫
D
f ≤

∫
Cn♥

f ≤M

And therefore we have a nonempty bounded set, so the supremum exists:∫
A
f = sup

D⊆A
D∈Jc

∫
D
f ≤M

Since M can be taken to be the limit as n → ∞ of
∫
Cn

f then we get

that: ∫
A
f ≤ lim

n→∞

∫
Cn

f

Combining these two inequalities from the if and only if we win and get the

equality: ∫
A
f = lim

n→∞

∫
Cn

f

Perfect!

• Let’s deal with general f : A → R that is continuous. f is integrable over A

if and only if f+ and f− are integrable if and only if
∫
Cn

f+ and
∫
Cn

f− are

bounded sequences by case one.

But this is if and only if
∫
Cn

f+ + f− is a bounded sequence, since f+, f− ≥ 0.

But since f+ + f− = |f | this is only when
∫
Cn
|f | is a bounded sequence.

Therefore applying case 1 this is if and only if
∫
A |f | exists.
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In this case we of course have:∫
Cn

f+ →
∫
A
f+∫

Cn

f− →
∫
A
f−∫

Cn

f =

∫
Cn

f+ −
∫
Cn

f−

→
∫
A
f+ −

∫
A
f−

=

∫
A
f

So we are done!

Theorem. Let A be a bounded open set in Rn and let f : A → R be a bounded

continuous function. Then:

a) The extended integral exists

b) If the ordinary integral exists, then the two integrals are equal.

Proof. • Let us first show that the extended integral exists. Let M be an upper

bound for |f | on A. If D ∈ Jc is a subset of A, then:∫
D
|f | ≤M

∫
D

1 = Mv(D) ≤Mv(B)

Where B is any box containing A. Therefore the set defining the extended

integral is bounded, and so the extended integral of |f | over A exists. This of

course implies that the extended integral of f over A exists by our previous

theorem.

• Now suppose that the ordinary integral
∫
A f exists and that f ≥ 0. Then let

B be a box containing A, then:

(ord)

∫
A
f =

∫
B
fA
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Now let D ⊆ A and D ∈ Jc then we must have that:∫
D
f =

∫
D
fA ≤

∫
B
fA = (ord)

∫
A
f

Therefore taking a sup over all D we get that:

(ext)

∫
A
f ≤ (ord)

∫
A
f

To show the reverse inequality, let P be any partition of B and let R1, . . . , Rm

denote the sub-boxes of this partition. Now let D =
⋃

Ri⊆ARi. Then D ⊆ A

and D ∈ Jc. Therefore:

L(fA, P ) =
m∑
i=1

mRi(fA)v(Ri)

=
∑
Ri⊆A

mRi(fA)v(Ri)

≤
∑
Ri⊆A

∫
Ri

f =

∫
D
f

≤ (ext)

∫
A
f

Take the supremum over all such P and we obtain:

(ord)

∫
A
f = sup

P
L(fA, P ) ≤ (ext)

∫
A
f

These two inequalities imply that the ordinary and extended integrals agree

as desired to give (b) when f ≥ 0.

• Write f = f+−f− as usual. Since f is integrable over A in the ordinary sense,

so are f+ = max(f, 0) and f− = max(−f, 0). Therefore:

(ord)

∫
A
f = (ord)

∫
A
f+ − (ord)

∫
A
f−

= (ext)

∫
A
f+ − (ext)

∫
A
f−

= (ext)

∫
A
f

And this finishes the proof
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Corrolary. Let S be any bounded set and f : S → R be a bounded continuous

function. If f is integrable on S in the ordinary sense, then:

(ord)

∫
S
f = (ext)

∫
S◦

f

Proof. Recall that if
∫
S f =

∫
S◦ f , then apply the previous theorem.

This corollary is useful to translate results for extended integrals to ordinary

integrals (like the change of variable formula in the next section).

The Change of Variables Formula

Recall. THe change of variable formula in 1D, otherwise known as u-substitution.

Letting f, g : [a, b] → R be functions with g C1 and f continuous. Then letting

u = g(x) and du = g′(x) dx we have:∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f(u) du

There’s a nuance, we are using
∫ b
a f to denote the signed integral which is defined

as: ∫ b

a
f =

{ ∫
[a,b] f if a ≤ b

−
∫
[b,a] f if b < a

This u-substitution holds basically due to the chain rule, since if F is an antideriva-

tive for f then (F ◦ g)′ = f(g(x)) · g′(x)

Integrating from a to b then gives u-substitution by the Fundamental Theorem

of Calculus.

There is no notion of signed integrals in higher dimensions, so we first need

to formulate this theorem without signed integrals. For this note that g([a, b]) =

[g(a), g(b)] if g is increasing, i.e. g′ ≥ 0. And also g([a, b]) = [g(b), g(a)] if g is

decreasing, i.e. g′ ≤ 0.
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If g is increasing then we can write:∫
[a,b]

f(g(x)) · g′(x) =

∫
g([a,b])

f(u) du

And if g is decreasing then we can write:∫
[a,b]

f(g(x))g′(x) dx = −
∫
g([a,b])

f(u) du

That is: ∫
[a,b]

f(g(x))(−g′(x)) dx =

∫
g([a,b])

f(u) du

In either case, we may write that if g is monotone, then:∫
[a,b]

f(g(x))
∣∣g′(x)

∣∣dx =

∫
g([a,b])

f(u) du

This is the formula that generalizes easily to higher dimensions.

So we look at this genralizing this via the correspondence:

1D higher dimension

[a, b] set A

g([a, b]) g(A)

g is monotone and C1 g is a C1 diffeomorphism

u = g(x) u = g(x)

du = |g′(x)| dx du = |detDg|dx

And so we have something like:∫
A
f(g(x)) |detDg|dx =

∫
g(A)

f(u) du

And we use this in the same way with:

u = g(x)

du = |detDg| dx

Definition. Let A be open in Rn and let g : A → Rn be a one-to-one function of

class Cr such that detDg(x) 6= 0 for x ∈ A. We call such a g a change of variables
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on A

Remark. Recall that a Cr diffeomorphism is a one-to-one and onto function such

that g and g−1 are in Cr

The inverse function theorem tells us that g−1 ∈ Cr if g ∈ Cr and detDg(x) 6= 0.

A change of variables on A is then nothing but a Cr diffeomorphism from A to

g(A)

Theorem (Change of Variables Theorem). Let g : A→ B be a C1-diffeomorphism

of open sets in Rn and let f : B → R be a continuous function. Then f is integrable

over B if and only if f(g(x)) · |detDg(x)| is integrable over A, and:∫
A
f(g(x)) · |detDg(x)|dx =

∫
B
f(u) du
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