
Fall 2020 MATH 395 Zaher Hani

Handout 2

• Relatively Open, closed, and compact. We saw in class that the
interval [0, 1) is not open in R, but is open relative to the half-line [0,∞)
(taking the usual metric on R and [0,∞)]). Let us try to formalize and
generalize this.

Let (X, d) be a metric space and Y ⊂ X. Y is a metric space itself, by
restricting the metric d to Y × Y .

Q1) Let E ⊂ Y . We say that E is open relative to Y if it is open in the
metric space (Y, d). Untangle what this definition means in terms
of Nδ(p) neighborhood of a point p ∈ E (i.e. restate the condition
that E is open in Y in terms of the Nδ(p) neighborhoods of p ∈ E)
and compare it to the condition of E being open in X.

Q2) Deduce that if there is an open subset G of X, then G ∩ Y is open
relative to Y .

Q3) Show that E is open relative to Y if and only if there exists an open
subset G of X such that E = G ∩ Y .

Q4) Compactness on the other hand behaves better. Suppose that K ⊂
Y ⊂ X. Show that K is compact relative to X if and only if it is
compact relative to Y .

Conclusion: We always need to specify the ambient space when we talk
about open/closed sets (that’s why we always say “E is an open subset
of X”), but we can make statements like “K is compact (or a compact
metric space)” without the need to specify the ambient space.

• The Cantor set. Let us start with the interval C = [0, 1] and remove
the middle third open interval (13 ,

2
3). This leaves us with the set C1 =

[0, 13 ] ∪ [23 , 1] formed of 2 closed subintervals. Having constructed C1 ⊃
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C2 ⊃ . . . ⊃ Cn where Cn is the union of 2n subintervals each of length
1
3n , we construct Cn+1 as follows: To obtain Cn+1 we remove the middle
third of each of the 2n intervals that form Cn. This leaves us with a
union of 2n+1 intervals each of length 1

3n+1 .

Q5) Let C = ∩n=1∞Cn. Why is C non-empty? Is it compact?

Q6) Show that every point in C is a limit point. Hence C is a perfect
set.

Conclusion: From the homework (HW 2), we deduce that C is un-
countable, since any perfect subset of Rd is uncountable.

Q7) Show that C cannot contain any interval (a, b).

Conclusion: As such, C is totally disconnected (it has no nontrival
connected subset) and nowhere dense (the interior of its closure is
empty).

Q8) What is the total length of Cn? What would be a reasonable defini-
tion of the length of C?
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Proof of Q1. Let NY
δ (p) = {a ∈ Y | d(p, a) < δ} denote the δ-neighborhoods in Y

for p ∈ Y and let Nδ(p) denote the neighborhood relative to X. Now the definition of

an open set E ⊆ Y says that for all p ∈ E there exists a δ > 0 such that NY
δ (p) ⊆ E.

Note that:

NY
δ (p) = Nδ(p) ∩ Y

And so we must have that Nδ(p) ∩ Y ⊆ E.

If E were open in X then we would have a stronger condition, namely that the

whole neighborhood Nδ(p) ⊆ E.

Proof of Q2. Suppose that G is an open subset of X. Now consider some p ∈ G∩Y .

We know since p ∈ G that there exists some ε > 0 so that Nε(p) ⊆ G. But then we

know that:

NY
ε (p) = Nε(p) ∩ Y ⊆ G ∩ Y

By using facts from elementary set theory. This is great! We win now since this

must mean that G ∩ Y is open as a subset of Y .

Proof of Q3. The backward direction is exactly a consequence of Q2. We work

instead on the forward direction.

Suppose that E is open relative to Y . For each p ∈ Y there exists some δp > 0

so that:

NY
δp(p) = Nδp(p) ∩ Y ⊆ E
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Now consider the following union:

G :=
⋃
p∈E

Nδp(p)

Since each Nδp(p) is open in X we know that G must be open relative to X. We

will show that E = G ∩ Y .

(⊆) Fix p ∈ E. Then we know that p ∈ Y since E is a subset of Y , and further we

know that p ∈ Nδp(p), and so p ∈ G.

(⊇) Fix x ∈ G ∩ Y = Y ∩G. Then:

x ∈ Y ∩G = Y ∩
⋃
p∈E

Nδp(p) =
⋃
p∈E

(Y ∩Nδp(p))

And thus there exists some p so that:

x ∈ Nδp(p) ∩ Y = NY
δp(p) ⊆ E

Therefore x ∈ E just as desired! Great.

With this we win ,

Proof of Q4. Suppose that K ⊆ Y ⊆ X. Now lets go in each direction

(⇒) Suppose that K is compact relative to X. Now fix an open cover {Uα}α∈A of

K relative to Y . By Q3 for each α ∈ A there exists a Gα which is open in X

so that Uα = Gα ∩ Y . Therefore:

K ⊆
⋃
α∈A

Uα =
⋃
α∈A

(Y ∩Gα) = Y ∩
⋃
α∈A

Gα

K ⊆
⋃
α∈A

Gα

Great! Thus the {Gα}α∈A cover K. Since K is compact in X we know there

exists a finite subcover Gα1 , . . . , Gαn . Then since K ⊆ Y and K ⊆ ⋃n
i=1Gαi

we know:

K ⊆ Y ∩
n⋃
i=1

Gαi =

n⋃
i=1

(Y ∩Gαi =

n⋃
i=1

Uαi
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And therefore Uα1 , . . . , Uαn is a finite subcover of {Uα}α∈A just as desired!

Great!!

(⇐) Suppose that K is compact relative to Y . Now fix an open cover {Gα}α∈A of

K relative to X. By Q2 we must have that Uα := Gα ∩ Y is open in Y for

each α ∈ A. Note then that since K ⊆ Y and K ⊆ ⋃α∈AGα we know:

K ⊆ Y ∩
⋃
α∈A

Gα =
⋃
α∈A

(Y ∩Gα) =
⋃
α∈A

Uα

And so {Uα}α∈A is an open cover of K in Y . Therefore there must exist a

finite subcover for it by compactness, which we will denote by Uα1 , . . . , Uαn .

Therefore:

K ⊆
n⋃
i=1

Uαi =
n⋃
i=1

(Y ∩Gαi) = Y ∩
n⋃
i=1

Gαi

K ⊆
n⋃
i=1

Gαi

And so Gα1 , . . . , Gαn is a finite subcover of {Gα}α∈A just as desired!!!

With this we win ,

Proof of Q5. For notational convenience denote for n ∈ N0:

Cn =
2n⋃
i=1

[ani , b
n
i ]

So that inductively for 1 ≤ i ≤ 2n:

C0 = [0, 1][
an+1
2i−1, b

n+1
2i−1

]
=

[
ani ,

2ani + bni
3

]
[
an+1
2i , bn+1

2i

]
=

[
ani + 2bni

3
, bni

]
Now lets tackle both of these questions!

• Note that a01 = 0 will always lie at the edge of an interval because supposeing
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an1 = 0 we know an+1
1 = an+1

2·1−1 = an1 = 0. Therefore since:

0 ∈ [an1 , b
n
1 ] ⊆ Cn

for each n ≥ 0 we must know that 0 ∈ C. A similar argument shows that

1 ∈ C.

• C is compact!!! Why? Note that for every n ≥ 0 we have that Cn is a

finite union of closed intervals, so each Cn is closed. Thus, C =
⋂∞
n=0Cn is

closed. Furthermore since C0 = [0, 1] is closed and bounded, that is compact.

Therefore since C ⊆ C0 is a closed subset of a compact set, C must be compact.

Perfect! We win!

Proof of Q6. Fix some point x ∈ C. Then x ∈ Cn for all n ≥ 0, and so for each

n ≥ 0 there exists some 1 ≤ in ≤ 2n so that x ∈
[
anin , b

n
in

]
. We claim that x`n := anin

is a sequence lying in C \ {x} that converges to x or xrn := anin is a sequence lying

in C \ {x} that converges to x. We tackle this in steps.

• First we show that for all n ≥ 0 and all 1 ≤ i ≤ 2n we have ani is in C. First

note that ani ∈ [ani , b
n
i ] ⊆ Cn, and thus for each 0 ≤ m < n we must have

ani ∈ Cn ⊆ Cm. Inductively we will show that for m ≥ n if we let jn = i and

jm+1 = 2jm − 1 then:

ani = amjm ∈ Cm

Note that it’s trivial for m = n. Now suppose that amjm = ani . Consider that:

am+1
jm+1

= am+1
2jm−1 = amjm = ani

And so we must have that this works! Great.

• Now we show that for all n ≥ 0 and all 1 ≤ i ≤ 2n we have bni is in C. First

note that bni ∈ [ani , b
n
i ] ⊆ Cn, and thus for each 0 ≤ m < n we must have

bni ∈ Cn ⊆ Cm. Inductively we will show that for m ≥ n if we let jn = i and

jm+1 = 2jm then:

bni = bmjm ∈ Cm
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Note that it’s trivial for m = n. Now suppose that bmjm = bni . Consider that:

bm+1
jm+1

= bm+1
2jm

= bmjm = bni

And so we must have that this works! Great.

• Now we show that for each n ≥ 0 and each 1 ≤ i ≤ 2n the interval [ani , b
n
i ] has

length 1
3n . TODO

Proof of Q7. TODO

Proof of Q8. TODO
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