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Continuing the characterization of Jordan Measurability

Theorem. Let S be a bounded subset of Rn. The following are equivalent:

1) S is Jordan measurable

2) The constant function 1 is Riemann Integrable on S

3) ∂S has Lebesgue measure zero

4) ∂S has Jordan outer measure zero.

Proof. Let’s go!

1 =⇒ 2) Suppose S is Jordan measurable. We need to show that:

fS(x) = 1S =

{
1 if x ∈ S

0 if x 6∈ S

is Riemann integrable on some box B containing S. Now let ε > 0 be arbitrary

and pick two elementary sets E1 ⊆ S ⊆ E2 such that m(E2\E1) < ε. Without

loss of generality, by dilating the component boxes of E2 we may assume that

S ⊆ E◦2 .

Choose B to be some box containing E2. Now let P be a partition B that

contains the endpoints of the intervals defining the boxes whose union is E1

and E2. Let R1, . . . , Rm be some enumeration of the sub-boxes determined by
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this partition. Then:

U(1S , P ) =
m∑
i=1

MRi(1S)v(Ri)

=
∑

Ri∩S 6=∅

MRi(1S)v(Ri)

≤
∑

Ri⊆E2

MRi(1S)v(Ri)

≤
∑

Ri⊆E2

v(Ri) = m(E2)

Similarly, we can show that L(1S , P ) ≥ m(E1). But then:

U(1S , P )− L(1S , P ) ≤ m(E2)−m(E1) = m(E2 \ E1) < ε

Great! Therefore 1S is integrable and:

m(E1) ≤ L(1S , P ) ≤
∫
S

1 dx ≤ U(1S , P ) ≤ m(E2)

and:

m(E1) ≤ m(S) ≤ m(E2)

Gives us that: ∣∣∣∣∫
S

1 dx−m(S)

∣∣∣∣ < ε

For any ε > 0, and therefore:

m(S) =

∫
S

1 dx

2 =⇒ 1) Let B be a box which contains S and take ε > 0 to be arbitrary. Since 1S is

integrable on B, there exists a partition P of B such that:

U(1S , P )− L(1S , P ) < ε

Let R1, . . . , Rm be an enumeration of the sub-boxes determined by P . Now
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set:

E1 =
⋃

Ri⊆S
Ri ⊆ S

E2 =
⋃

Ri∩S 6=∅

Ri ⊇ S

And then we see that:

U(1S , P ) =
m∑
i=1

MRi(1S)v(Ri)

=
∑

Ri∩S 6=∅

MRi(1S)v(Ri)

=
∑

Ri∩S 6=∅

v(Ri) = m(E2)

L(1S , P ) =

m∑
i=1

mRi(1S)v(Ri)

=
∑
Ri⊆S

mRi(1S)v(Ri)

=
∑
Ri⊆S

v(Ri) = m(E1)

Therefore!

m(E2 \ E1) = m(E2)−m(E1) = U(1S , P )− L(1S , P ) < ε

Since ε > 0 was arbitrary, we conclude that S is Jordan measurable.

2 ⇐⇒ 3) This is straightforward using our characterization of integrability and the fact

that 1S is discontinuous exactly at the points on the boundary of S.

3 =⇒ 4) Let ε > 0. Since ∂S has Lebesgue measure zero there is a collection of boxes

B1, B2, . . . such that ∂S ⊆
⋃∞

j=1Bj and
∑

v(Bj) < ε
2 . Dilate each Bj into a

larger open box B̃j such that Bj ⊆ B̃j and v(B̃j) < 2v(Bj).

Now note that the B̃j forms an open cover of the closed and bounded set ∂S.
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By compactness there is a finite sub-cover B̃j1 , . . . , B̃jk of ∂S. But then:

k∑
i=1

v(B̃jk) ≤
∞∑
j=1

v(B̃j) < 2
∞∑
j=1

v(Bj) < ε

Great! This shows that ∂S has Jordan outer measure zero.

4 =⇒ 3) follows trivially.

Improper Integrals

Up until now in the discussion of
∫
S f we restricted to the case where f and S are

both bounded. In this section we relax these assumptions a bit to include any open

set S and any continuous function f .

Remark . The ultimate dispensing of those two restrictions on S and f comes

through the theory of Lebesgue integration.

Before we proceed, we introduce some notation:

• Let J denote the family of Jordan measurable subsets of Rn.

• Let Jc denote the collection of compact Jordan measurable sets

• For a function f : S → R we define the positive part and negative part of f

as:

f+(x) = max(f(x), 0) f−(x) = max(−f(x), 0)

It is easy to veritfy that:

– f = f+ − f−

– f+, f− ≥ 0

– |f | = f+ + f−.

– If f is continous then both f+ and f− are continuous.

Definition. Let A be an open subset of Rn and let f : A → R be a continuous

function
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• If f is non-negative on A we define the (extended) integral of f over A as:∫
A
f = sup

D⊆A
D∈Jc

∫
D
f

provided that this supremum exists.

• If f is an arbitrary continuous function on A, write f = f+− f−, where these

are the positive and negative part of f . Provided that f+ and f− are integrable

on A in the extended sense we say f is also integrable and let:∫
A
f =

∫
A
f+ −

∫
A
f−

Remark. We now have two difference definitons of
∫
A f when A is open and bounded

and f is continuous and bounded. We shall see later that these two definitions are

equivalent if both integrals exist. The extended integral might exist without having

the traditional integrals existince Why?

Notice that if B ⊆ A are both open then if the extended integral of f over A

exists then the extended integral of f over B exists and:∫
B
f ≤

∫
A
f

However if f = 1 then
∫
B 1 exisrts only when B is Jordan measurable, and tehre

are bounded open sets that are not Jordan measurable (we’ll see an example in our

Friday sessions)

Convention: If A is open and f is continuous then
∫
A f will always denote the

extended integral

Lemma. Let A ⊆ Rn be open. There exists a sequence of C1, C − 2, . . . of compact

Jordan measurable sets such that A =
⋃∞

i=1Cj and Cj ⊆ C◦j+1. In fact, Cj can be

taken to be elementary

Proof. Define:

DN = {x ∈ Rn | d(x,Ac) ≥ 1

N
, |x| ≤ N}

Thus DN is bounded and closed since x 7→ d(x,Ac) and x 7→ |x| are both continuous

5



functions. Now consider:

AN+1 = {x ∈ Rn | d(x,Ac) >
1

N + 1
, |x| < N + 1}

And then AN+1 is open and:

DN ⊆ AN+1 ⊆ DN+1

This implies that:

DN ⊆ D◦N+1

We clearly have by the fact that A is open that:

A =

∞⋃
N=1

DN

The sets DN may not be Jordan measurable. To fix this, note that for x ∈ DN there

exists a closed cube centered at x and contained in D◦N+1. The interior of these

cubes is an open cover of DN and hence by compactness there is a fintie subcover.

Define CN to be the elementary set given by the finite union of such a finite subcover

of DN made up of closed cubes. Thus CN is closed and bounded, and furthermore:

DN ⊆ C◦N ⊆ CN ⊆ D◦N+1 ⊆ C◦N+1

Therefore we see that CN is compact and Jordan measurable as well as the fact that⋃∞
N=1CN = A. Great! This finishes the proof.

Theorem. Let A ⊆ Rn be open and let f : A → R be a continuous function.

Choose a sequence CN ∈ Jc such that A =
⋃∞

N=1CN and CN ⊆ C◦N+1 as in the

above lemma. Then f is integrable over A if and only if
∫
CN
|f | is bounded by a

constant which does not depend on N . In this case,∫
A
f = lim

N→∞

∫
CN

f

In particular, f is integrable over A if and onl if |f | is too.

We’ll prove this theorem next time. In the meantime, here are some properties

of the extended integral. For setup let A ⊆ Rn be open and let f, g : A → R be
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continuous functions such that
∫
A f and

∫
A g exist:

a) f + cg is integrable for any c ∈ R and:∫
A
f + cg =

∫
A
f + c

∫
A
g

b) If f ≤ g then: ∫
A
f ≤

∫
A
g

In particular: ∣∣∣∣∫
A
f

∣∣∣∣ ≤ ∫
A
|f |

c) If A and B are both open and A ⊆ B then if f is integrable over B then f is

integrable over A. Furthermore if f is non-negative on B then:∫
A
f ≤

∫
B
f

d) If A and B are open and f is continuous on A ∪ B, then if f is integrable on A

and B then f is integrable on A ∪B and A ∩B. Furthermore we have:∫
A∪B

f =

∫
A
f +

∫
B
f −

∫
A∩B

f
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