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3 Compactness on R?

Last time we proved the nested interval property on R, namely

Theorem (Nested Interval Property). Let I, = [an, by]| be a sequence of closed and
bounded intervals that is nested, aka I, O I,4+1. Then we have that:

()1 #0
n=1

Note that we need “closedness.” Take I, = (O7 %] In fact what we really need is
compactness.

Definition. A closed box in RY is a set of the form:

d
[ Ila;. 651
j=1

Corrolary (The nested box property of R?). Let B, be a sequence of closed and

nested boxes. Then:

N #0
n=1
Great!
Proof. Let:



B,, C B,41 implies for every 1 < j < d that the intervals [ ;n) = [ag-n),bg.n)} are

nested. By the previous theorem, for every 1 < j < d there exists some:

YIS ﬁ Ij(n)
n=1

Therefore:

oo
v=(@1.....an) € (] By

n=1

And so we win!

v

Definition. Define in a metric space for any subset E of a metric space X the

diameter when the following supremum exists:

diam E = sup d(z,y)
ryek

Great!

Exercise. Show that for any box B = H;l:l[aj, b;] that:

d 2

diam B = Z(b] — aj)2
j=1

Where we use the standard Euclidean metric on R?

Proof. We will do this with induction on d

generality take y > x. Then note that:

And so we win

b—a=0b-y+y-2)+@-a)zy-=z

e Suppose d = 1. We wish to prove that diam [a,b] = |b — a] = b — a. Note
that b — a is in the set we are taking a supremum over, and so we merely

need to show it is an upper bound. Fix z,y € [a,b]. Without loss of




e Suppose that the result holds for d € N. We must show it holds for d + 1.

Note then that a = (a1,...,a4+1) and b = (by,...,b4+1) are in B, and so:
d+1 2
d(a,b) = | > (b — a;)*
j=1

Is in the set we are taking a supremum over. We need only show that it
is a maximum. Fix z = (z1,...,2441) and y = (y1,...,Y4+1) in the box

B and without loss of generality assume y411 > T411.

Define 2/ = (x1,...,24) and ¥’ = (y1,...,yq). Then we have:

N

d d

d(gp”y/) <= diamH[ajvbj] — Z(bj _ aj)2

j=1 j=1

Now note that:

d(z, y) = \/(d(ﬂflaZ/»Q + (Z/d+1 - $d+1)2
= \/52 + (bay1 —agy,

d 2
= [D_(by =)’ | + (bas1 — aata)”
7=1
_ 1
d+1 2
=[S —a)?| = d(a,b)
[ 7=1

But this is exactly what we want ©

¢

Awesome!

Theorem. Every closed box in R? is compact.



Proof. Let B = H;lzl[aj, b;] be any closed box. Set:

=

d
0o := diam B = Z(bj — a;)?
j=1

Suppose for the sake of contradiction that {G,}aeca is an open cover of B that has

no finite subcover

Split B into 2% subboxes of equal size. That is let cj = @ Then the subboxes
are H;l:l I; where I; € {[a;, ¢j], [cj, bj]}.

Since B cannot be covered by any finite collection of the {Gq}aca, there must
exist a subbox, By such that By cannot be covered by any finite subcollection of the
{Ga}aca. Note also that diam By = W. Set 01 = diam Bj.

Continue inductively, having constructed B O By 2 By D --- 2 B, such that
diam B,, = §,, = dizrffB and B, cannot be covered by any finite collection of the
{Ga}aca. We construct B,y by splitting B, into 2¢ subboxes of equal size as in

the previous paragraph and noting that one of those subboxes cannot be covered by
any finite collection of the {G4}aca. Let By,y1 be this subbox of B,,. Also note:

diam B,  diam B
9 T 9n+l

diam B,41 =

This is a sequence of closed nested boxes. Applying the nested box property we
know that (2, B —n # 0.

Claim. (2, B, is a singleton .

Proof. Suppose z,y € (\,—,. Then z,y € B, for every n, and therefore d(z,y) <

diam

diam B,, = 55=. Letting n go to infinity we get d(z,y) =0 andsoz =y. =

Now x € B implies there exists an a; € A so that x € G,,. But then this
implies that there is an r > 0 so that N,(z) C Gq,.

For n large enough we know B,, C N,(z). In fact if 4,, < r then B,, C N,(z).
Thus since 6, — 0 we know 6,, < r eventually. But then obviously B, is covered by

a finite collection of the {Gy}aca. Oops! The box B must then be compact. @



Theorem (Heine-Borel). A subset K of R? is compact if and only if it is closed

and bounded.
Proof. Let’s go!
(=) We already showed this direction in general metric spaces.

(<) If K is bounded then K is contained in some large closed box B which is
compact. Therefore K is a closed subset of a compact set. This implies that

K is compact (we showed this last time in Hausdorff spaces).

v

4 Compactness in Metric Spaces

It turns out that being closed and bounded is not sufficient to guarantee compactness

in infinite-dimensional metric spaces.

Example. Let (*°(N) denote the set of bounded sequences (a,)nen. The metric on
¢>°(N) is defined as:

d((an), (bn)) = sup lan — by

Consider the set B = {(ay,) € ¢*°(N) | sup,,ey |an| < 1}.

Exercise. This set is closed and bounded (check V).

Proof. To note that it’s bounded consider that:

d((an)ao) = Sup |an| <1
neN
So this is trivial. Now consider a sequence of sequences (ag )) . which are all
j€

in B which converges to some (a,)nen. We will show 1 is an upper bound for

the set {|an|}nen, and so:

sup lan| < 1
neN




Fix n € N. Now fix € > 0. We know there is some large j € N so that:

d((a@) ,(an)> = ilelg an, —ag)‘ <e

Now note that:

an, —ag)

A .
|an| < agj) +

<l+e¢

¢

And so since this holds for all € > 0 we must have |a,| < 1 as desired.

Claim. This set B is not compact!

Proof. Consider the sequence of sequences:

1 ifn=k
O B
0 otherwise
Therefore:

(6. (0) =1

(k)

Thus this sequence of sequences (an ) can have no convergent subsequence.

And thus B is not sequentially compact, and so B is not compact. v

How do we fix this? It turns out we need to strengthen our conditions
e Replace closed by Cauchy Complete
e Replace bounded by total boundedness

Definition. A subset E of a metric space X is totally bounded if for every e > 0
there is a finite cover of E by balls of radius € > 0.

Exercise. Show that:



o On R% we have boundedness if and only if total boundedness

— Totally bounded implies bounded on every metric space
— For bounded implies totally bounded. Since any box B of the form [~N, N]¢

can be split into finitely many subboxes of diameter less than €, and each

sub-box is contained in a ball of radius €.

e On R% we have closed if and only if Cauchy complete. Of course Cauchy
complete implies closed, and for the other direction we just use Cauchy com-

pleteness of RY.

e On (*(N) we have that total boundedness is stronger than boundedness. In
fact:

Exercise. Show that the set B in the above is bounded but not totally bounded.

Use the exact same sequence as in the example and use pigeonhole principle.

Proof. We've already proved it is bounded. Let € = % and suppose for
the sake of contradiction that we have a finite cover by balls of radius ¢.
Call these balls By,...,By. Without loss of generality assume we have
(aq(f)) € Bj for each 1 < k < N where we have:

(a k)) _ 1 ifn=k
" 0 otherwise

Now consider the sequence (aﬁ{”)) where we set m := N + 1. We know

there is some k so that (a,(qm)) € Byj. But then letting (xgﬁ)> be the
center of the ball B;, we have that:

t=a (o) (o)) S (o) (o)) + a (o0 (o))

<1+1—1
2 2

¢

Oops! We win ©

Theorem. Let X be a metric space and E C X. The following are equivalent:

1) E is compact



2) E is sequentially compact
3) E is complete and totally bounded.

Remark. If X is a complete metric space then 3) above can be replaced by closed

and totally bounded.
Lemma. Completeness of E C X implies E is closed.

Proof. Let E be complete and z,, € E such that x,, — x € X. Since (x,) converges
it must be Cauchy, and so since E is compelte we know (z,) converges to some

point in E. But limits are unique in metric spaces so « € F, so F is closed!!! =



