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Continue Differentiability in higher dimensions
We first recalled the definition of the derivative for ¢ : R — R

S (a) — 1im 2P = 6()

h—0 h

But we cannot divide by h if h € R?. We reinterpreted the definition saying that
¢'(z) exists if and only if:

L 19+ B) = 6(z) — ¢/ ()]
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Reinterpreting this for ¢ : R™ — R™ we ask for a linear transformation D¢(x) :
R™ — R™ such that:
_|[¢(z +h) — ¢(z) — Do(z) - A

1
hs 1]

This recalls the best linear approximation interpretation of the derivative. If we

write:

Then we ask for ”Tl(}?”)” — 0 as h — 0. We write this as ||r(h)|| = o(]|h||) That is

|lr(R)|| < ||| as b — 0.

Definition. Let £ C R" be open and let f : E — R™. We say that f is differ-
entiable at x € E provided that there is a linear transformation D f(z) : R — R™




such that:

o @+ B) = £(@) = Df@) - bl _
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We can of course think of D f(z) as an m x n matriz. If f is differentiable at every

x € E we say that f is differentiable in E. In this case we have the total derivative:

Df : E — Hom(R",R™)

Remark. We have some comments

e We need z to be an interior point of E so that x + h € E for small h, so that

f(z + h) makes sense. When F is open this is automatic.

e The numerator in the difference quotient above is in R™ whereas the denom-

inator is in R™.

e Defining r(h) = f(x + h) — f(x) — Df(z) - h, we have that r(h) = o(h). That

1S:

e (M)l
1 =
h—0 || h|| 0

Note then that Df(x) - h = O(h), that is there is a constant C' € R so that
|Df(z) - h| < C| k]|, but this is different than r(h) = o(h).

e This definition of derivative only makes sense if D f(x) is unique when it exists.

Proposition 1. Let E, f, and « € E be as in the above definition. Suppose that

A; and Ay are two linear transformations such that (x%) holds. Then A; = A,
Proof. Let rj(h) = f(x+h)— f(x)—Ajh for j = 1,2. Then we have that % — 0.
Let w € R™ be arbitrary and nonzero and take h = tu for ¢t > 0, then we can divide

by |[tu]| to get:

T1 (tu) — T‘Q(tu) = (A2 — Al)(tu) = t(AQ — Al)u
[(A2 = Av)u _ [[ra(tu) — ra(tu)|]
il tllul
[ri(Ew)l | [Ir2(tw)]
— it [t




Thus W — 0 as t — 0. Therefore (Az — A1)u = 0, so Aju = Asu. Note

that clearly A1 -0 = Ay - 0. Taking these together we know A; = As. v

Example. Let f(x) = a + Bz where a € R™ and and B € Hom(R",R™) where
f:R™ = R™. Then to compute D f(x) note that:

f(x+h)— f(x) = Bh
fx+h)— f(x)—Bh=0

Therefore we know clearly that:

i (@ +h) = fz) = Bh|| _

h—0 Rl 0

Therefore D f(x) = B for any = € R".

Remark. Of course, if f is differentiable at z, then it must be continuous there.
Why? Continuity is equivalent to ||f(x+ h) — f(z)|| — 0 as h — 0. Differentiability
is equivalent to ||f(x) + f(z) — Df(x)h| = ||r(h)|| = o(||h]). In particular this
implies that:

1f+h) — F@)] = IDF()h +r(h)]
< D@ + ()]

But both of these go to 0 as h — 0. Therefore:

lim ||z + ) = /()] = 0

Directional and Partial Derivatives, computing the deriva-
tive

Definition. Let A C R" be open and let f : A — R™. Suppose x € A and u € R"
with uw # 0. We define the directional derivative D, f(z) as the limit:

fla+tu) = f@) o

D)= i T



Note that this just means that:

d
Duf(@) = 5| fla+tw)

Example. Let f: R? — R bed efined as sin(z122). Then let u = (1,0):

Dy f(z1,22) = sin((z1 + t)x2)
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= (cos(z1w2 + tao) - 2],

= cos(z1x2) - T2

Theorem. Let A CR"™ be open and f : A — R™ be differentiable at x € A. THen

all directional derivatives Dy, f(x) exist at xo and:
Dyf(x) = Df(z) - u
In particular D, f(x) is linear in u.
Proof. From the definition of D f(x) we have for any u € R™\ {0}

Nf(@+tu) — f(z) = Df(x) - tul|

lim 0
0 |ltul|
L ) = (@) — (D) W
0 ||tul|
This implies that:
flz+tu) — f(x) —t-Df(x) u=r(tu)
Therefore % — 0 as t — 0. Dividing by ¢ we get that:
Hat )= 1) pypi, 7o
Therefore:
T+ tu) — f(x r(tu r(tu
[t 10) _ ] - el e
t 2] [[tull



As t — 0. Therefore:

| f (@ 4 tu) = f(x) _
%g% , —Df(x)ul| =0
Duf (o) =t PO ZID gy

¢

Caution We will see next time that the converse is not true. Namely, the directional
derivatives might exist at = without f being differntiable at x. In that case D, f(z)

might not even be a linear function of w.

Partial Derivatives

Since D, f(z) = Df(z) - u, we can determine D f(x) by letting u range over the

standard basis vectors.

Definition. Let f : A CR"™ — R™ where A is open. The j-th partial derivative of
f at x is defined as:

of

d
5 (@) = Dy () = S| J@tte)

Example. When m = 1 we know f : R" — R then:

af d
%('xlv"' 7$n) = &’t_of(xlv"' y Lj +t_77 . 'axn)
j =
d
= — f(xl,...,1‘j_1,8,1‘j+1,...,$n)
ds S=xj
= ¢'(x;)
Where ¢(s) = f(x1,...,2j-1,5,Zj4+1,--.,Tp). This just means that % is computed
by pretending that x1,...,2j_1,2;41,..., 27, are constant and differentiating with

respect to x;.



