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Theorem (Taylor’s Theorem). Let G be open and convex. Let f : G→ C be Ck+1

and a ∈ G. Then:

f(x) = Ra,k(x) +
∑
|α|≤k

∂αf(a)

α!
(x− a)α

Ra,k(x) =
∑
|α|=k+1

∂αf

α!
(c)(x− a)α

Where c is on the line segment connecting a and x

Continued Proof of Taylor’s Theorem. We’ll fix some x0 ∈ G. Then set φ(t) =

f(a+ t(x0 − a)) where φ : [0, 1]→ C. By taylor’s theorem in one dimension:

f(x0) = φ(1) = R0,k(1)

k∑
p=0

φ(p)(0)

p!
1p

R0,k(1) =
φ(k+1)(θ)

(k + 1)!
1k+1

For some 0 ≤ θ ≤ 1. We need a formula for φ(p)(t). Let u = (x0 − a). Then by the

chain rule:

φ′(t) = Df(a+ tu) · u = Duf(a+ tu) =

(
n∑
k=1

uk
∂f

∂xk

)
(a+ tu)
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So then if we call f1 = Duf then we have that:

φ′′(t) = Duf1(a+ tu) = [Du(Duf)](a+ tu)

= D2
uf(a+ tu) =

(
n∑
k=1

uk
∂

∂xk

)2

f(a+ tu)

So then by induction we can obtain that:

φ(j)(x) = Dj
uf(a+ tu) =

(
n∑
k=1

uk
∂

∂xj

)j
f(a+ tu)

Where this holds for 0 ≤ j ≤ k + 1, since f is differentiable k + 1 times. And so for

0 ≤ j ≤ k we have:

φ(j)(0) = Dj
uf(a) =

(
n∑
k=1

uk
∂

∂xk

)j
f(a)

φ(k+1)(θ) = Dk+1
u f(a) =

(
n∑
k=1

uk
∂

∂xk

)k+1

f(a+ θu)

Consider that as operators we can show—using linearity—similarly to how we

showed the multinomial lemma, we have:(
n∑
k=1

uk
∂

∂xk

)p
=
∑
|α|=p

p!

α!
uα∂α

This gives us that:

φ(p)(0) =
∑
|α|=p

p!

α!
uα∂αf(a)

φ(k+1)(θ) =
∑
|α|=k+1

(k + 1)!

α!
uα∂αf(a+ θu)

Set c = a+ θu which is on the line segment between a and x0, so then we must have
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that:

f(x0) = φ(1) =
φ(k+1)

(k + 1)!
+

k∑
p=0

φ(p)(a)

p!

=
1

(k + 1)!

∑
|α|=k+1

(k + 1)!

α!
uα∂α(c)

+
k∑
p=0

1

p!

p! ∑
|α|=p

1

α!
uα∂αf(a)


=
∑
|α|≤k

∂αf(a)

α!
uα +

∑
|α|=k+1

∂α(c)

α!
uα

This is exactly what we want to show!

Example . Let f(x, y) = sin(x2 + y) where f : R2 → R. Find the 3rd degree

polynomial that best approximates f near (0, 0).

This is simply:

P (x, y) =
∑
|α|≤3

∂αf(0)

α!
(x, y)α

Let’s go!

• For |α| = 0 we have α = (0, 0) and so ∂αf(0) = f(0) = 0, and α! = 1.

• For |α| = 1 then α = (1, 0) or α = (0, 1). Call these αx and αy respectively, in

either case αx! = αy! = 1 and then:

∂αxf(0) =
∂f

∂x
(0) = 2x · cos(x2 + y)

∣∣∣
0

= 0

∂αyf(0) =
∂f

∂y
(0) = cos(x2 + yy2)

∣∣∣
0

= 1

• For |α = 2| we have αxx = (2, 0) where αx,x! = 2 and αxy = (1, 1) and αxy! = 1.
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And then αyy = (0, 2) where αyy! = 2. Now:

∂αxxf(0) =
∂2f

∂x2
(0) = 2 cos(x2 + y)− 4x2 sin(x2 + y)

∣∣∣
0

= 2

∂αxy =
∂2f

∂x∂y
(0) = −2x sin(x2 + y)

∣∣∣
0

= 0

∂αyyf(0) =
∂2f

∂y2
(0) = − sin(x2 + y)

∣∣∣
0

= 0

• We omit the case where |α| = 3 because we cannot deal. WTF

So then:

P (x, y) =
∂(0,1)f(0)

(0, 1)!
(x, y)(0,1) +

∂(2,0)f(0)

(2, 0)!
(x, y)(2,0) +

∂(0,3)f(0)

(0, 3)!
(x, y)(0,3)

= y +
2

2
x2 − 1

6
y3 = x2 + y − 1

6
y3

In the following picture. The blue is our polynomial and the purple is f :

Cool!
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Inverse Function Theorem

The inverse function theorem gives a necessary and sufficient condition for a function

f : Rn → Rn to be locally invertible with a C1 inverse.

Definition. Let f : A ⊆ Rn → Rm where A is open, and let x0 ∈ A. We say that

f is locally invertible around x0 provided that there is some open neighborhood U of

x0 so that f
∣∣
U

: U → f(U) is one-to-one, and f(U) is open in Rm This defines an

inverse function g : f(U)→ U .

• We say that f is a local homeomorphism around x0 provided that both f and

g are continuous.

• We say that f is a local diffeomorphism around x0 provided that both f and g

are differentiable.

• We say that f is a local Cr-diffeomorphism for r ≥ 1 provided that both f and

g are Cr-functions.

• We say that f is a locally invertible (resp. homeomorphism, diffeomorphism,

Cr-diffeomorphism) provided that it is locally invertible (resp.) around every

x0 ∈ A.

Remark. Soon we will give an example that is a local diffeomorphism on an open

set A but is not a diffeomorphism of A.

Our goal is to find a condition for a function to be a local diffeomorphism. This is

easy in one dimension.
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The Key Idea

Key Figure

x0 x1

y0

y1

Being a local diffeomorphism neat x is equivalent to being able to express x as

a function of y. This means that the graph of y = f(x) can also be regarded as a

function x = g(y). This can be done when df
dx (x0) 6= 0. If df

dx (x1) = 0, we might get

multiple intersections of lines parallel to the x-axis neat y = f(x1), which means

that the graph cannot define a function x = g(y). The inverse function theorem will

generalize this intuition to higher dimensions.

Necessity that Df(x0) is invertible

Proposition. Suppose that f : A ⊆ Rn → Rn where A is open. Let x0 ∈ A and

suppose f is differentiable in A. Assume that f is a local diffeomorphism around x0

and suppose g : O ⊆ Rn → B(x0, δ) where O is open containing y = f(x0) is the

inverse function. Then Df(x0) is invertible and:

Dg(y0) = [Df(x0)]
−1

Proof. Consider that:

g ◦ f : B(x0, δ)→ B(x0, δ)

And (g ◦ f)(x) = x. Deriving both sides and using the chain rule:

Dg(f(x0))Df(x0) = Dg(y0)Df(x0) = Id
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And so Df(x0) is invertible and Dg(y0) = [Df(x0)]
−1.

x0
•

y0•

f

g

Remark. The above proposition shows us that we cannot have a local diffeomor-

phism as defined from A ⊆ Rn → Rm.

One can ask if this is also the case for local homeomorphism. The answer is

yes. However, the proof is more involved and uses tools from algebraic topology

(Brouwer’s invariance of domain theorem)
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