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Theorem. Let E be a subset of a metric space X. Then the following are equivalent:

1) E is compact

2) E is sequentially compact

3) E is complete and bounded.

We’ve already seen that in matric spaces compactness implies sequential compact-

ness. It remains to show:

(a) Sequential compactness implies compactness

(b) Sequential compactness implies totally bounded and complete

(c) Totally bounded and complete implies sequentially compact

We will prove (b) and (c) first and then (a). In fact, the proof of the theorem

follows from the following three lemmas

Lemma 1. A sequentially compact subset E of X is totally bounded and complete

Lemma 2. A totally bounded and complete subset E of X is sequentially compact

Lemma 3. A sequentially compact subset of a metric space is compact

Proof of Lemma 1, Totally Bounded. Note that if E = ∅ then we are done. Thus

let E 6= ∅ for the duration of this proof.

Let E be sequentially compact. To show it is totally bounded, fix an ε > 0.

Claim. Let A ⊆ E be a set of points of mutual distance ≥ ε. Then A has to be

finite
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Proof of claim. Suppose that A were infinite. Then we get a sequence of points

(xn) ∈ A such that d(xn, xm) ≥ ε for all n 6= m. But this means that no subsequence

of (xn) is Cauchy, and therefore no subsequence of (xn) is convergent, violating

sequential compactness.

Now let p1 ∈ E be arbitrary. If possible we pick p2 ∈ E such that d(p2, p1) ≥ ε.
If this is not possible then we stop. Then we pick p3 ∈ E such that d(p1, p3) ≥ ε

and d(p2, p3) ≥ ε. If this is not possible we stop

Now having picked p1, . . . , pn in this way such that d(pi, pj) ≥ ε for all 1 ≤ i 6=
j ≤ n, we pick pn+1 ∈ E such that d(pn+1, pi) ≥ ε for all 1 ≤ j ≤ n. If this is not

possible, then E ⊆
⋃n
i=1Nε(pj) and we are done.

The claim above tells us that we cannot continue this process forever, and thus

it must end after n steps for some n ∈ N. Therefore E is totally bounded

Proof of Lemma 1, Completeness. Let (xn) be a Cauchy sequence in E. Since E is

sequentially compact there is a convergent sequence (xnk
) such that xnk

converges

to some p ∈ E as k goes to infinity. Now let ε > 0, then there is some N ∈ N large

enough so that for k > N and n > N we know that:

d(xn, xnk
) <

ε

2

d(xnk
, p) <

ε

2

d(xn, p)
4
≤ d(xn, xnk

) + d(xnk
, p)

<
ε

2
+
ε

2
= ε

Thus (xn) converges to p ∈ E. Therefore E is complete!

Proof of Lemma 2. Assume that E is totally bounded and complete. Let (xn) be a

sequence in E. We want to show that it has a convergent subsequence. If the set of

all {xn} is finite, then we can find a constant subsequence and we are done. Assume

that {xn} is infinite.

Since E is totally bounded, one can cover E with finitely many 1
2 -neighborhoods.

One of these neighborhoods must contain infinitely many (xn) by the pigeonhole

principle. Thus we may call this resulting subsequence
(
x
(1)
n

)
Now cover E with finitely many 1

22
-neighborhoods. One of these neighborhoods

contains infinitely many of the
(
x
(1)
n

)
by the pigeonhole principle. This gives a
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subsequence
(
x
(2)
n

)
of
(
x
(1)
n

)
completely contained in a 1

22
-neighborhood. This is

also a subsequence of (xn) of course.

Inductively, we can define a successivesubsequence
(
x
(k)
n

)
such that

(
x
(k)
n

)
is a

subsequence of
(
x
(k−1)
n

)
and

(
x
(k)
n

)
is contained in a ball of radius 1

2k
.

Now set an = x
(n)
n . This is a subsequence of (xn) that satisfies:

d(an, am) = d
(
x(n)n , x(m)

m

)
If m ≥ n then

(
x
(m)
p

)
is a subeequence of

(
x
(n)
p

)
and

(
x
(n)
p

)
is contained in a ball

of radius 1
2n with some center, say c for concreteness. Thus:

d
(
x(n)n , x(m)

m

) 4
≤ d

(
x(n)n , c

)
+ d

(
x(m)
m , c

)
<

1

2n
+

1

2n
=

1

2n−1

Of course we can swap the role of n and m and so we always have:

d(an, am) ≤ 1

2min(n,m)−1

With this established it is clear that (an) is cauchy. By completeness of E, we

know (an) converges to a point p ∈ E as desired. Therefore (xn) has a convergent

subsequence

Lemma 4 (3’). Let E ⊆ X be sequentially compact. Let {Gα}α∈A be an open cover

of E. Then there exists an ε > 0 such that every ball of radius ε and center p ∈ E
is contained in one of Gα for some α ∈ A.

Proof. Suppose the statement is not true. Then for any integer n ≥ 1 there exists

a pn ∈ E such that N 1
n

(pn) is not contained in any of the {Gα}α∈A. By sequential

compactness, (pn) has a convergent subsequence (pnk
) converging to some p ∈ E.

Since p ∈ E there exists a α0 such that p ∈ Gα0 , and so there is some δ > 0 so

that Nδ(p) ⊆ Gα0 .

Since pnk
→ p, we may pick nk large enough so that:

d (pnk
, p) <

δ

2

1

nk
<
δ

2
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But then fixing x ∈ N 1
nk

(pnk
) we have:

d(x, p)
4
≤ d (x, pnk

) + d (pnk
, p) <

δ

2
+
δ

2
< δ

And so x ∈ Nδ(p) ⊆ Gα0 . This shows that N 1
nk

(pnk
) ⊆ Gα0 . Oops! ,

Proof of Lemma 3. Suppose that E is sequentially compact. Now let {Gα} be

any open cover of E. By Lemma 4 (3’), there exists an ε > 0 such that any ε-

neighborhood of a point in E is contained in one of the Gα. Since sequentially com-

pact implies totally bounded, E can be covered by finitely many ε-neighborhoods.

That is there is a list p1, . . . , pN ∈ E such that:

E ⊆
N⋃
j=1

Nε(pj)

Now for each pj with 1 ≤ j ≤ N there exists some αj such that Nε(pj) ⊆ Gαj by

construction of ε by lemma 3’. Therefore:

E ⊆
N⋃
j=1

Gαj

Thus, E is comapct as desired.
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