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More Inverse Function Theorem

Theorem (Inverse Function Theorem, IFT). Let f : A ⊆ Rn → Rn be a Cr-

function for r ≥ 1 and suppose Df(x0) is invertible where x0 ∈ A. Then f is a local

Cr-diffeomorphism around x0. In other words there are open neighborhoods U of x0

and V of f(x0) such that:

1) f is a bijection from U to V

2) The inverse function g : V → U is Cr and Dg(y) = [Df(x)]−1 where x ∈ U and

y = f(x).

Lemma. If f : A ⊆ Rn → Rn is C1 and Df(x0) is non-singular. Then f is locally

one-to-one around x0. More strongly there is an open neighborhood U around x0

such that for some α > 0 we have that for all x, y ∈ U :

|f(x)− f(y)| ≥ α |x− y|

Great!

Lemma. Suppose f : A ⊆ Rn → R (where A is open) is differentiable. If f admits

a local minimum (or maximum) at x0 ∈ A, then Df(x0) = 0.

Proof. Let u ∈ Rn be arbitrary and set φ(t) = f(x0 + tu) where t ∈ (−δ, δ) for δ

small enough so that x0 + tu is always in A. Since f has an extremum at x0, then

so does φ at 0. By the chain rule φ is differentiable on (−δ, δ). Therefore φ′(0) = 0,

but:

φ′(t) = Df(x0 + tu) · u

0 = φ′(0) = Df(x0) · u
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And this is true for any u ∈ Rn, so Df(x0) = 0.

Proof of the Inverse Function Theorem, IFT. By the first lemma there exists a neigh-

borhood U of x0 on which f is one-to-one. By shrinking U if necessary we may also

assume that Df(x) is non-singular for every x ∈ U . We may do this because f ∈ C1

and so Df varies continuously, meaning that since detDf(x0) 6= 0 we can shrink U

to get nonzero determinant all across U . Let V = f(U).

Step 1 We must show V is open in Rn. Take y ∈ V , we want to show that

there exists an ε > 0 such that B(y, ε) ⊆ V . Write y = f(x) for some x ∈ U .

Since U is open there is some δ > 0 so that B(x, δ) ⊆ U . Note that the boundary

∂B(x, δ) = {z ∈ Rn | |z − x| = δ} is a compact set, and so if we let Γ = f(∂B(x, δ))

we know that this is compact since f is continuous. Note that y 6∈ Γ because f

is one-to-one. Thus there is an ε > 0 such that B(y, 2ε) ⊆ Γc. We claim that

B(y, ε) ⊆ V . To show that, let c ∈ B(y, ε) and set:

φ : B(x, δ)→ R

z
φ7−→ |f(z)− c|2

Now since φ is a continuous function on a compact set it achieves its minimum value

at some point z? ∈ B(x, δ). We claim that z? 6∈ ∂B(x, δ), and so z ∈ B(x, δ). Why?

Well if z? ∈ ∂B(x, δ) then f(z?) ∈ Γ and so:

φ(z?) = |f(z?)− c|2 = |f(z?)− y + y − c|2

≥ (|f(z?)− y| − |y − c|)2 > (2ε− ε)2 = ε2

This is a problem since φ(x) = |y − c|2 < ε2, but this contradicts the fact that φ

has its minimum at z?. Therefore z? ∈ B(x, δ) since z ∈ B(x, δ) and z 6∈ ∂B(x, δ).

By Lemma 2 we must have that Dφ(z?) = 0 so we calculate the derivative.

Claim. To justify the above we look at the function g : Rn → R defined by g(x) = |x|2
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Consider that:

g(x1, . . . , xn) =

n∑
i=1

x2i

∂ig(x1, . . . , xn) = 2xi

Dg(x1, . . . , xn) = (2x1, . . . , 2xn) = 2x

So then setting F (z) = f(z)− c and so:

Dφ(z) = Dg(F (z)) ·DF (z) = 2F (z) ·Df(z) = 2(f(z)− c) ·Df(z)

This gives that:

0 = Dφ(z?) = 2(f(z?)− c)Df(z?)

SinceDf(z?) is invertible, this implies that f(z?)−c = 0, and so f(z?) = c. Therefore

c ∈ f(B(x, δ)) ⊆ f(U). And so B(y, ε) ⊆ f(U) = V as desired.

Great! The conclusion of Step 1 is that f : U → V is one-to-one, onto, and

U, V are open. Therefore there exists an inverse function g : V → U such that

f ◦ g = IdV and g ◦ f = IdU .

Step 2: We must show g is continuous. We need to show that g−1(U ′) is open

for every open U ′ ⊆ U . This is equivalent to showing that f(U ′) is open for any

open U ′ ⊆ U . But wait! This is exactly what we did in Step 1 by replacing U by

U ′.

Step 3: We show that g is differentiable. To do this. Let y ∈ V where y = f(x)

for some x ∈ U . Now let E = Df(x), by hypothesis E is invertible. We will show

that:

g(y + k)− g(y)− E−1(k)

|h|
→ 0 as k → 0

This result implies that g is differentiable at y and Dg(y) = [Df(x)]−1 where y =

f(x). We know that if |k| is small enough then B(y, |k|) ⊆ V by openness. Thus

there exists some h such that y+k = f(x+h) for some x+h ∈ U . And so we know

k = f(x+ h)− f(x). Now note that h = g(y + k)− g(y) and so h→ 0 as k → 0 by
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continuity of g. By the differentiability of f at x we know that:

r(h) := f(x+ h)− f(x)− Eh

= k − Eh
r(h)

|h|
→ 0 as |h| → 0

Now we know that:

E−1r(h) = E−1k − h = E−1k − g(y + k) + g(y)

−E−1r(h)

|k|
=
g(y + k)− g(y)− E−1k

|k|

It then suffices to show that limk→0
E−1r(h)
|k| = 0. It suffices to show that limk→0

r(h)
|k| =

0, since E−1 is linear. Writing then:

r(h)

|k|
=
r(h)

|h|
|h|
|k|

Since r(h)
|h| → 0 as |h| → 0 and since |h| → 0 as |k| → 0 it suffices to show that |h||k| is

bounded by some C > 0 for nonzero but small enough k. Recall that:

h = E−1k − E−1r(h)

|h| =
∣∣E−1(k − r(h)

∣∣
≤ ‖E−1‖ · |k − r(h)|

≤ ‖E−1‖ · (|k|+ |r(h)|)

Now since r(h)
|h| → 0 as |h| → 0 if |h| is small enough we get:

|r(h)|
|h|

≤ 1

2‖E−1‖

Therefore if |k| is small enough then |h| is small enough so that |r(h)| ≤ |h|
2‖E−1‖ .
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And therefore:

|h| ≤ ‖E−1‖
(
|k|+ |h|

2‖E−1‖

)
= ‖E−1‖ |k|+ |h|

2

|h| ≤ 2‖E−1‖ |k|
|h|
|k|
≤ 2‖E−1‖

Pulling this all together:∣∣∣∣g(y + k)− g(y)− E−1k
|k|

∣∣∣∣ =

∣∣∣∣E−1r(k)

|h|

∣∣∣∣
And we know that:∣∣∣∣r(h)

|k|

∣∣∣∣ =
|r(h)|
|h|

· |h|
|k|
≤ 2‖E−1‖|r(h)|

|h|
→ 0 as h→ 0

And so since h→ 0 as k → 0 and E−1 is linear, we are done, g is differentiable.

Step 4: We need to check that g ∈ Cr(V ). We have shown that Dg(y) =

[Df(x)]−1 where y = f(x). We can write this as:

Dg = [Df ]−1 ◦ g

By Cramer’s rule [Df ]−1 is a rational function (a polynomial over a polynomial) of

the partials ∂fi
∂xj

, and this rational function has nonzero denominator

Recall. Cramer’s rule gives you a formula for the inverse of a matrix C, namely:

C−1 =
1

detC
· [AdjC]

We have that detC is a polynomial in entries of C and:

(AdjC)ij = det(Cji )

Where Cji is the same as C except that we replace the i-th column with ~ej . Of

course these are all polynomials in terms of the entries of C.

This implies that [Df ]−1 belongs to Cr−1 if f ∈ Cr because Df belongs to Cr−1.
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Now consider that:

Dg = [Df ]−1 ◦ g (?)

Now we know that g ∈ C0 and so since [Df ]−1 ∈ C0 we get Dg ∈ C0. But then

g ∈ C1. Feeding this into (?) again we get that Dg ∈ C1 if r ≥ 2, and so g ∈ C2.

We may do this r times to obtain that g ∈ Cr.
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