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Handout 9

Jordan measure and Riemann Integration

It turns out that the notion of Jordon measurability of sets is inti-
mately related (in a way essentially equivalent) to the notion of Rie-
mann integrability of functions. We will only display this relation in
dimension 1.

• Recall. To define the Riemann1 integral of a bounded function f

on an interval [a, b] ⊂ R, we first recall the notion of a partition P
which is a set of points x0 = a < x1 < x2 < . . . < xn = b, the norm
of the partition is ∆P = max1≤k≤n xk − xk−1, and we denote by
∆xk = xk − xk−1. For each such partition, we define to quantities:

L(f,P) =
n∑

k=1

f(x∗)∆xk, and U(f,P) =
n∑

k=1

f(x∗)∆xk,

where x∗ = inf [xk−1,xk] f and x∗ = sup[xk−1,xk] f .

Afterwards, we define the lower and upper Darboux integrals re-
spectively as∫ b

a

f(x)dx = sup
P
L(f,P), and

∫ b

a

f(x)dx = inf
P
U(f,P).

where the extrema above are taken over all partitions of the inter-
val [a, b]. We say that f is Riemann integrable if the above two
numbers are equal. We define the common value as the Riemann
(or Darboux) integral of f .

1Strictly speaking, we are recalling here the notion of Darboux integral, but that is equivalent to the
notion of Riemann integrability that is often covered in introductory calculus classes.
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Q1) Let [a, b] be an interval and let f : [a, b] → R be a bounded
nonnegative function. Show that f is Riemann integrable if
and only if the set E := {(x, t) : x ∈ [a, b] : 0 ≤ t ≤ f(x)} is
Jordan measurable in R2.

Q2) Let [a, b] be an interval and let f : [a, b] → R be a bounded
function. Show that f is Riemann integrable if and only if the
sets E+ := {(x, t) : x ∈ [a, b] : 0 ≤ t ≤ f(x)} and E− :=
{(x, t) : x ∈ [a, b] : f(x) ≤ t ≤ 0} are Jordan measurable in R2.

Remark. The above results generalize to higher dimensions.

Where we are right now?

We have thus far discussed the classical theory of Jordan measure,
which went as follows

(i) We define the notion of a box and its volume |B| or v(B),

(ii) Then we defined the notion of an elementary set and its ele-
mentary measure,

(iii) Then we defined the notion of Jordan inner and outer measure
mJ(E) and mJ(E) and said that a set E is Jordan measurable
if those two concepts agree.

In particular, unwinding the definition of the Jordan outer mea-
sure, we have that for any set E

mJ(E) = inf
E⊂B1∪...∪Bk

|B1|+ . . .+ |Bk|

where the infimum is taken over all finite coverings of E by boxes
B1, . . . , Bk.

Q3) Show that a set E is Jordan measurable if and only if for every
ε > 0 there exists an elementary set U containing E such that
mJ(U \ E) < ε.

The notions of Lebesgue outer measure and Lebesgue measurability
are refinements of the Jordan ones as follows:
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– Lebesgue outer measure: We modify the notion of Jor-
dan outer measure by replacing the finite union of boxes by a
countable union of boxes, i.e.

m∗(E) = inf
E⊂∪∞j=1Bj

∞∑
j=1

|Bj|

where the union above is taken over boxes Bj ⊂ Rd.

Q4) Show that the Lebesgue outer measure m∗(E) is zero for
any countable set E. Contrast this to fact that the Jordan
outer measure of the rationals in [0, 1] was equal to 1.

– Lebesgue measurability A set E ⊂ Rd is said to be Lebesgue
measurable if for every ε > 0, there exists an open set U ⊂ Rd

containing E such that m∗(U \E) ≤ ε. If E is measurable, we
refer to m(E) = m∗(E) as the Lebesgue measure of E.

Remarks: Note that there is no need for E to be bounded for
this definition to make sense. Also, the notion of Lebesgue
measurability can be seen as a (finite to countably infinite)
generalization of that of Jordan measurability since it can be
shown that every open set is the countable union of closed
boxes.
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