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Continue Defining the Riemann Integral

Definition. Given a box B = [a1, b1]× · · · × [an, bn] which is closed and a function

f : B → R that is bounded. We defined a partition P = (P1, . . . , Pn) of B as a tuple

where each Pj is a partition of [aj , bj ]. We then let {Bj}Nj=1 be the set of sub-boxes

determined by the partition. We then defined the lower sum and upper sum of f

over a partition P :

mBj := inf
x∈Bj

f(x)

MBj := sup
x∈Bj

f(x)

L(f, P ) :=
N∑
j=1

mBjv(Bj)

U(f, P ) :=

N∑
j=1

MBjv(Bj)

Exercise. U(f, P ) = −L(−f, P ).

We then talked about refinements of a partition, saying that Q = (Q1, . . . , Qn)

is a refinement of P = (P1, . . . , Pn) if P1 ⊆ Q1, P2 ⊆ Q2, . . ..

We defined the common refinement of P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn)

as P ∪Q = (P1 ∪Q1, . . . , Pn ∪Qn).

Lemma. Let P be a partition of a box B and f : B → R be bounded. If Q is a
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refinement of P then:

L(f, P ) ≤ L(f,Q)

U(f, P ) ≥ U(f,Q)

Proof. We reduce first. Since U(f, P ) = −L(−f, P ), it is enough to prove the lemma

for lower sums.

Now sinceQ ca be obtained from P by successively adding points to the partition,

we can reduce to the case where Q is obtained from P = (P1, . . . , Pn) by adding a

single point. to Pk for some 1 ≤ k ≤ n.

By symmetry, we assume that k = 1. Suppose that B = [a1, b1]×· · ·×[an, bn] and

suppose that P1 consists of the points a1 = x0 < · · · < xk = b. Now Q is obtained

by adding the point q that lies in the interior of (xp−1, xp) for some 1 ≤ p ≤ k.

The sub-boxes determined by P are of the form [xi−1, xi]×S where S is a subbox

of [a2, b2]× · · · × [an, bn] determined by the partition (P2, . . . , Pn). Let us denote by

S the set of all such subboxes.

The sub-boxes determined by Q are of the form: [xi−1, xi]× S for 1 ≤ i ≤ p− 1

or p+ 1 ≤ i ≤ k and S ∈ S or [xp−1, q]× S or [q, xp]× S for S ∈ S . Therefore:

L(f, P ) =
k∑
i=1
S∈S

m[xi−1,xi]×S(f) · v([xi−1, xi]× S)

=
∑

i∈{1,...,p}∪{p+1,...,k}
S∈S

m[xi−1,xi]×S(f) · v([xi−1, xi]× S)

+
∑
S∈S

m[xp−1,xp]×S(f) · (xp − xp−1) · v(S)

The left sum appears in the definition of L(f,Q), and so we only consider the right

sum. The point is that the:

inf
x∈[xp−1,xp]×S

f(x) ≤ inf
x∈[xp−1,q]×S

f(x), inf
x∈[q,xp]×S

f(x)

This implies that:

m[xp−1,xp]×S(f) · (xp − xp−1) = m[xp−1,xp]×S(f) · (q − xp−1) +m[xp−1,xp]×S(f) · (xp − q)

≤ m[xp−1,q]×S(f) · (q − xp−1) +m[q,xp]×S(f) · (xp − q)
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But then:

L(f,Q) =
∑

i∈{1,...,p}∪{p+1,...,k}
S∈S

m[xi−1,xi]×S(f) · v([xi−1, xi]× S)

+
∑
S∈S

m[xp−1,q]×S(f) · (q − xp−1) +m[q,xp]×S(f) · (xp − q)

And so L(f, P ) ≤ L(f,Q) because:

L(f, P ) =
∑

i∈{1,...,p}∪{p+1,...,k}
S∈S

m[xi−1,xi]×S(f) · v([xi−1, xi]× S)

+
∑
S∈S

m[xp−1,xp]×S(f) · (xp − xp−1) · v(S)

And we know that:∑
S∈S

m[xp−1,xp]×S(f) · (xp − xp−1) · v(S)

≤
∑
S∈S

m[xp−1,q]×S(f) · (q − xp−1) +m[q,xp]×S(f) · (xp − q)

That was disgusting!!!

Corrolary. If P and P ′ are any two partitions of B then L(f, P ) ≤ U(f, P ′). The

proof was given last time.

Definition (Upper integrals, lower integrals, and Riemann integrability). Let B be

a box and let f : B → R be a bounded function.

a) We define the lower and upper integral of f over B respectively as:∫
B
f(x) dx = sup

P
L(f, P )∫

B
f(x) dx = inf

P
U(f, P )

These numbers exist because L(f, P ) is bounded above by (supx∈B f(x)) · v(B)

and U(f, P ) is bounded below by (infx∈B f(x)) · v(B)

b) We say that f is Riemann integrable over B provided that the lower and upper

integral agree. In this case we define the Riemann integral
∫
B f(x) dx as the
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common value, aka: ∫
B
f(x) dx :=

∫
B
f(x) dx =

∫
B
f(x) dx

Remark. Strictly speaking, this is the definition of Darboux integrability. The

precise definition of Riemann integrability is: A bounded function f is Riemann

integrable with integral A on the box B if for every ε > 0 there exists a δ > 0 such

that if P is a partition of B with mesh ≤ δ, then for any choice of xα ∈ Bα, where

Bα are the sub-boxes determined by P :∣∣∣∣∣∑
Bα

f(xα)v(Bα)−A

∣∣∣∣∣ < ε

We will prove these are equivaelnt on Homework 9. F

Remark. Suppose that f : B ⊆ R2 → R is a non-negative function. Then L(f, P )

is the total volume of a bunch of boxes under the graph of f whereas the upper sum

is the total volume of a bunch of boxes that are circumscribed

Exercise. Show that if f : B ⊆ Rn → R is non-negative and bounded. Then f is

Riemann integrable if and only if the region in Rn+1 under the graph of f given by:

R = {(x, xn+1) ∈ Rn × R | 0 ≤ xn+1 ≤ f(x)}

is Jordan measurable with m(R) =
∫
B f(x) dx.

Example. Let f : [0, 1]2 → R be defined as:

f(x, y) =

{
0 if x and y are rationally dependent

1 otherwise

We call x and y rationally dependent provided that there exists (k1, k2) ∈ Z2 such

that (k1, k2) 6= 0 and k1x+ k2y = 0.

Now let P be any partition of B = [0, 1]2. For any subbox R resulting from the

partition we have:

mR(f) = inf
R
f = 0

MR(f) = sup
R
f = 1
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Since for any subbox of [0, 1]2 with non-empty interior, there exists (x, y) ∈ R such

that both x and y are rational numbers, and so they are rationally dependent. For

the second statement, since for any sub-box of [0, 1]2 with non-empty interior, there

exists (x, y) ∈ R such that x is a non-zero rational and y is irrational. This implies

that x, y are rationally independent.

Therefore:

L(f, P ) = 0 U(f, P ) = 1

For any partiton P of [0, 1]2. And therefore:∫
B
f(x) dx = 0

∫
B
f(x) dx = 1

Therefore, f is not integrable

Theorem 1 (The Riemann Condition). Let B be a box in Rn and let f : B → R be

a bounded function. Then:

a) We always have that
∫
Bf(x) dx ≤

∫
Bf(x) dx

b) f is integrable if and only if for every ε > 0 there exists a partition P of B for

which U(f, P )− L(f, P ) < ε.

Remark. Reminiscient of the exercise in our discussion sections that E is Jordan

measurable if for any ε > 0 there eixsts elementary sets A ⊆ E ⊆ B such that

m(B \A) < ε.

Proof. Part (a) is trivial since we saw that L(f, P ) ≤ U(f, P ′) for any P and P ′.

Taking the sup over P and the inf over P ′ gives the result.

For (b), there are two directions:

(⇒) Suppose f is integrable and ε > 0. Choose a partiton P1 such that:∣∣∣∣L(f, P1)−
∫
B
f

∣∣∣∣ < ε

2

and another partition P2 such that:∣∣∣∣U(f, P2)−
∫
B
f

∣∣∣∣ < ε

2

5



Then we know that U(f, P2) − L(f, P1) < ε. Take P to be the common

refinement of P1 and P2. Then we know that:

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2)

This means that U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1) < ε. Thus we win!

(⇐) Let ε > 0 be arbitrary. Choose a partition P such that U(f, P )−L(f, P ) < ε.

Then: ∫
B
f −

∫
B
f ≤ U(f, P )− L(f, P ) < ε

Since we know that: ∫
B
f ≤ U(f, P )∫

B
f ≥ L(f, P )

Since ε > 0 is arbitrary, we can take ε → 0 and so we must have that the

upper and lower integrals agree. Therefore f is integrable.

With this we win! ,

Proposition. Let B be a box. Denote by R(B) the set of all Riemann integrbale

functions on B. Then:

1) R(B) is a vector space. That is if f, g ∈ R(B) then f + cg ∈ R(B) for all c ∈ R.

Furthermore,
∫
B is a linear function from R(B) to R. That is:∫

B
f + cg =

∫
B
f + c

∫
B
g

2) Every constant function f(x) = c is integrable, and in particular has integral∫
B f = c · v(B)

3) If P is any partition of B then:

v(B) =

∫
B

1 =
∑
Q

v(Q)
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Which is the sum taken over all sub-boxes determined by P

4) Let B1, . . . , Bk be a collection of boxes that cover B, then:

v(B) ≤
k∑
j=1

v(Bj)

Proof. Let’s go!

1) We leave this as an exercise

2 & 3) For any partition P note that:

L(f, P ) = c
∑
Q

v(Q) = U(f, P )

And therefore by the Riemann condition, f is integrable. And furthermore:∫
B
c = c

∑
Q

v(Q)

Taking P to be the trivial partition we have that
∫
B c = c · v(B)

4) Let B be a box containing B1, . . . , Bk. Now let P be a partition of B that

contains all the endpoints that define B1, . . . , Bk and B. By the above:

v(B) =
∑
Q⊆B

v(Q) ≤
k∑
j=1

∑
Q⊆Bi

v(Q) =

k∑
j=1

v(Bj)
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