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• What is a topology on a set X? Let X be a set. A topology on X

is a collection T of subsets of X that are called open sets satisfying the
following three conditions:

C1) ∅ ∈ T and X ∈ T ,

C2) Given a collection Oα ∈ T of index sets, then ∪αOα ∈ T as well; We
say that T is closed under unions,

C3) Given a finite collection of open set O1, . . . , On, then ∩n1On ∈ T ; We
say that T is closed under finite intersections.

• A topology can be equivalently defined by specifying the collection of
closed sets which satisfy the same conditions as above except that we
switch unions ∪ with intersections ∩ in conditions C2) and C3). The
couple (X, T ) is called a topological space, or sometimes we just say X is
a topological space if we’re only playing with one agreed upon topology

• A space X can have more than one topology defined on it. A topology T1
is said to be finer or stronger than T2 if T2 ⊂ T1 (we say T2 is courser or
weaker). Notice that the trivial topology {∅, X} is the weakest topology
on X.

• One way to describe a topology on a set X is to define precisely all open
sets. This is what we did for metric spaces. Occasionally, we want to
define the smallest topology that designates a particular collection B of
subsets of X as open. This is done as follows:

Q1) Let B be the collection of subsets of X that contains the empty set,
X, as well as all sets obtained as finite intersections of elements of B.
Show that the collection T obtained by taking unions of elements of
B is a topology on X.
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Q2) Show that any other topology on X that contains B as open sets,
contains T . We call T the topology generated by B. It is the coarsest
topology containing B.

• (Product Topology) One example where this construction is useful is to
define a topology on the product of topological spaces. Suppose (Xα,Tα)
are topological spaces for α ∈ A (where A is an index set that could be
infinite). We would like to define a “natural” topology on

∏
αXα. One

reasonable requirement is that the cylindrical sets are open (cylindrical
sets are those of the form

∏
α Uα where all the Uα are open in Xα and

all but one of them is equal to Xα. The topology generated by this
collection is called the product or Tychonoff topology.

Q3) Consider the product topology on R2 = R×R as defined above. Why
is this the same as the standard topology on R2 defined in class.

• We saw in class that the interval [0, 1) is not open in R, but is open
relative to the half-line [0,∞) (taking the usual metric on R and [0,∞)]).
Let us try to formalize and generalize this.

Let (X, d) be a metric space and Y ⊂ X. Y is a metric space itself, by
restricting the metric d to Y × Y .

Q4) Let E ⊂ Y . We say that E is open relative to Y if it is open in the
metric space (Y, d). Untangle what this definition means in terms
of Nδ(p) neighborhood of a point p ∈ E. Deduce that if there is an
open subset G of X, then G ∩ Y is open relative to Y .

Q5) Show that E is open relative to Y if and only if there exists an open
subset G of X such that E = G ∩ Y .

Q6) Compactness on the other hand behaves better. Suppose that K ⊂
Y ⊂ X. Then K is compact relative to X if and only if it is compact
relative to Y .

Remark: As such, we always need to specify the ambient space when
we talk about open/closed sets (that’s why we always say “E is an open
subset of X”), but we can make statements like “K is compact (or a
compact metric space)” without the need to specify the ambient space.
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Exercise 1. Prove Q1

Proof. Let’s go!

• Note that ∅ ∈ B is in particular an element of the set T . Likewise X ∈ T

• Consider any collection {Uα}α∈A where each Uα is an element of T . Then for

each α there are basis sets {Bi}i∈Iα ⊆ B so that:

Uα =
⋃

i∈Iα

Bi

Therefore we have that:

⋃

α∈A
Uα =

⋃

α∈A

⋃

i∈Iα

Bi =
⋃

i∈
⋃
α∈A Iα

Bi

And therefore by definition of T we know the union of the {Uα} is an element

of T .

• Consider any finite collection U1, . . . , Un in T . For each 1 ≤ i ≤ n there are

basis sets {Bα}α∈Ai each in B. If any of the Bα for α ∈ Ai are the empty set

then they don’t effect Ui, and if any of them are the whole space then that

Ui = X and it doesn’t effect the whole intersection.
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Thus we can assume that there exists {Bj}1≤j≤mα in B such that:

Bα =

mα⋂

j=1

Bj

Ui =
⋃

α∈Ai

Bα

=
⋃

α∈Ai

mα⋂

j=1

Bj

Therefore we can write by Demorgan:

n⋂

i=1

Ui =
n⋂

i=1

⋃

α∈Ai

mα⋂

j=1

Bj

=
⋃

(α1,...,αn)∈
∏n
i=1 Ai

n⋂

i=1

mαi⋂

j=1

Bj

And since the finite intersection of finite intersections is a finite intersection

we win, this is open.

Exercise 2. Show Q2

Proof. Fix a topology T on X which contains each element of B. Fix some open

set U ∈ T . Then we know there is some collection {Bα}α∈A each in B such that:

U =
⋃

α∈A
Bα

Thus we merely just need to show that B ⊆ T since T is closed under arbitrary

unions:

• We know that ∅ and X are elements of T since T is a topology

• In the other case for B ∈ B we have that for some B1, . . . , Bn in B that:

B =

n⋂

i=1

Bi
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Since T contains each Bi and it is closed under finite intersection we then know

that B is in T as desired.

Thus we win! We have that T ⊆ T .

Exercise 3. Show Q3. That is show the product topology on R2 agrees with the

Euclidean topology on R2.

Proof. Call the product topology Tπ and the Euclidean topology TE . We proceed

by two-way containment.

(⊆) We know by Q2 that to show Tπ ⊆ TE it suffices to show that each cylindrical

set is an open set in the Euclidean topology. There are two cases:

– Suppose that U is open in R. We must show that U × R is open in R2

with the Euclidean topology. Fix (x, y) ∈ U × R. Then x ∈ U , so there

exists some ε > 0 so that Nε(x) ⊆ U . We claim that Nε(x, y) ⊆ U ×R.

Fix (v, w) ∈ Nε(x, y). Then we know that:

d(x, v) = |x− v| =
√

(x− v)2

≤
√

(x− v)2 + (y − w)2 = d((x, y), (v, w)) < ε

Therefore v ∈ Nε(x) ⊆ U . Since v ∈ U and w ∈ R we know that

(v, w) ∈ U × R as desired.

– Suppose that U is open in R. We must show that R × U is open in R2

with the Euclidean topology. Fix (x, y) ∈ R × R. Then y ∈ U , so there

exists some ε > 0 so that Nε(y) ⊆ U . We claim that Nε(x, y) ⊆ U ×R.

Fix (v, w) ∈ Nε(x, y). Then we know that:

d(y, w) = |y − w| =
√

(y − w)2

≤
√

(x− v)2 + (y − w)2 = d((x, y), (v, w)) < ε

Therefore w ∈ Nε(y) ⊆ U . Since w ∈ U and v ∈ R we know that

(v, w) ∈ R× U as desired.

(⊇) Fix some open set U ⊆ R2 with the Euclidean topology. Fix some (x, y) ∈ U .

Then there is an ε > 0 so that Nε(x, y) ⊆ U . Then set δ := ε√
2
. Consider
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then this open set in the product topology:

V(x,y) = (Nδ(x)× R) ∩ (R×Nδ(y)) = Nδ(x)×Nδ(y)

It is clear that (x, y) ∈ V(x,y). Now take (a, b) ∈ V(x,y). We then know that

|a− x| < ε√
2

and |y − b| < ε√
2
. We then must have the following:

(a− x)2 <
ε2

2

(b− y)2 <
ε2

2

(a− x)2 + (b− y)2 < ε2

d((a, b), (x, y)) < ε

Therefore (a, b) ∈ Nε(x, y) ⊆ U . This shows that V(x,y) ⊆ U . This lets us

write that:

U =
⋃

(x,y)∈U

V(x,y)

Thus since Tπ is a topology and each V(x,y) is open in Tπ we win! We have

that U is open in Tπ.

With this we win!
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