
Taylor’s Theorem on Rd

Lemma (The multinomial lemma). Let x = (x1, . . . , xn). We would like to look at:

(x1 + · · ·+ xn)k =
∑
|α|=k

k!

α!
xα

With:

|α| = α1 + · · ·αn
α! = α1! · · ·αn!

xα = xα1
1 · · ·x

αn
n

This generalizes the binomial theorem.

Proof. The proof proceeds by induction on n. The binomial theorem gives the case

n = 2. Suppose that the multinomial theorem holds up to n− 1. We want to show

it holds for n, where n ≥ 3. So then we write:

(x1 + x2 + · · ·+ xn)k = (x1 + (x2 + · · ·+ xn))k =
∑
a+b=k

k!

a!b!
xa1(x2 + · · ·+ xn)b

=
∑
a+b=k

k!

a!b!
xa1
∑
|β|=b

b!

β!
(x2, . . . , xn)β

=
∑
a+b=k

∑
|β|=b
β∈Nn−1

0

k!

a!β!
xa1x

β1
2 · · ·x

βn−1
n

Now set α = (a, β). Then:

(x1 + x2 + · · ·+ xn)k =
∑
a+b=k

∑
|β|=b
β∈Nn−1

0

k!

a!β!
xa1x

β1
2 · · ·x

βn−1
n

=
∑
|α|=k
α∈Nn

0

k!

α!
xα

Therefore the result follows by induction. Great!!!
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Lemma (Higher order product rule). For any α ∈ Nn0 and f, g : Rn → C we have:

∂α(fg) =
∑

β+γ=α
β,γ∈Nn

0

α!

β!γ!
∂βf∂γg

Whenever f and g are differentiable up to order |α|. This generalizes Leibniz Rule.

Recall. We take as notation:

∂aj f = ∂axjf =
∂af

∂xaj

For convenience

Proof. Again the proof is by induction on n. For n = 1, let α = k ∈ N0, we want to

show that:

∂k(fg) =
∑
p+q=k

k!

p!q!
∂pf∂qg =

k∑
p=0

k!

p!(k − p)!
∂pf∂k−pg

This is part of your homework. Press F to pay respects. THerefore the result is true

when n = 1. Now assume the result is true for n− 1, we will show it holds for n.

Take f, g : Rn → C and take α ∈ Nn0 . Write α = (a, θ) where a ∈ N0, θ ∈ Nn−10 ,

and x = (x1, x
′) where x1 ∈ R and x′ ∈ Rn−1. Then:

∂αx (fg) = ∂ax1∂
θ
x′(fg) = ∂αx1

 ∑
µ+ν=θ

µ,ν∈Nn−1
0

θ!

µ!ν!
∂µx′f∂

ν
x′g


=

∑
µ+ν=θ

µ,ν∈Nn−1
0

θ!

µ!ν!
∂αx1
[
∂µx′f∂

ν
x′g
]

=
∑

µ+ν=θ

µ,ν∈Nn−1
0

θ!

µ!ν!

∑
m+k=a

a!

m!k!
∂mx1∂

µ
x′f∂

k
x1∂

ν
x′
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So then we may write:

∂αx (fg) =
∑

µ+ν=θ

µ,ν∈Nn−1
0

∑
m+k=a

a!θ!

(µ!m!)(ν!k!)
∂mx1∂

µ
x′f∂

k
x1∂

ν
x′

=
∑

β+γ=α

α!

β!γ!
∂βf∂γg

The result now follows by induction. Great! Here we take:

Recall . We recall Taylor’s Theorem for single-variable functions. Suppose f :

[a, b]→ R is Ck([a, b]) and ∂kf : (a, b)→ R is differentiable. Then for any a ≤ x ≤ b
then:

f(x) = Ra,k(x) +
k∑
j=0

(x− a)j · f (j)(a)

j!

Ra,k(x) =
(x− a)k+1

(k + 1)!
f (k+1)(c)

For some a ≤ c ≤ x.

We will study the generalization of this theorem for functions f : Rn → Rm.

Recall. If f = (f1, . . . , fm) and α is a multi-index then:

∂αf =

∂αf1

· · ·
∂αfm


Thus we only need to consider the case m = 1

Definition. We call a subset G ⊆ Rn convex provided that for every x, y ∈ G and

every t ∈ [0, 1] we have tx+ (1− t)y ∈ G.

The Plan: We would like to derive the Taylor Expansion of f at some point a of

its domain (which should be open and convex). At order k this should give us a

polynomial in x1, . . . , xn of degree ≤ k that approximates the function near a.
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The General Statement and Proof

Theorem (Taylor’s Theorem). Let G ⊆ Rn be an open convex set. Suppose that

f : G→ C is of class Ck+1. If a ∈ G, then for any x ∈ G we have:

f(x) = Ra,k(x) +
∑
|α|≤k
α∈Nn

0

1

α!
(x− a)α∂αf(a)

where we have:

Ra,k(x) =
∑
|α|=k+1
α∈Nn

0

1

α!
(x− a)α∂αf(c)

For some c ∈ G on the line segment connecting a and x, that is c = ta + (1 − t)x
for some t ∈ [0, 1].

Recall. Recall the following formula

Duf(x+ tu) =
d

ds

∣∣∣
s=0

f(x+ tu+ su) =
d

ds

∣∣∣
s=0

f(x+ (t+ s)u) =
d

dr

∣∣∣
r=t
f(x+ ru)

Duf(x+ tu) =
d

dt
f(x+ tu)

Which is nice

Proof. To avoid confusion, let us denote x by x0. We will deduce this result from

the single-variable case. To do so we will look at the restriction of f along the line

segment connecting a and x0, by convexity this line segment belongs to G. Set:

φ : [0, 1]→ C

t
φ7−→ f(ta+ (1− t)x0)

Notice that φ(0) = f(a) and φ(1) = f(x0), furthermore note that φ ∈ Ck+1([0, 1])

since f ∈ Ck+1(G). By Taylor’s Formula in one dimension at t = 0 we know:

φ(1) = R0,k(1) +

k∑
p=0

φ(p)(0) · 1p

p!

R0,k =
φk+1(c)

(k + 1)!
· 1k+1
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What is φ(p)(0)? For p = 0 we know φ(0)(0) = φ(0) = f(a). For p = 1 we have

φ(1)(t) = φ′(t) =
d

dt
f(a+ t(x0 − a))

= Df(a+ t(x0 − a)) · (x0 − a) = Duf(a+ tu)

Where u = x0 − a. But then this is equal to:

φ′(t) =

(
u1

∂

∂x1
+ · · ·+ un

∂

∂xn

)
f(a+ tu)

So then we know that:

φ′(0) =

(
u1

∂

∂x1
+ · · ·+ un

∂

∂xn

)
f(a)

Now for p = 2:

φ′′(t) =
d

dt

 n∑
j=1

uj
∂

∂xj

 f(a+ tu)

=

 n∑
j=1

uj
∂

∂xj

Duf(a+ tu) =

 n∑
j=1

uj
∂

∂xj

2

f(a+ tu)

Think of these as operators on functions that we’re manipulating and consider:

d

dt
u1

∂f

∂x1
(a+ tu) = u1Du

(
∂f

∂x1

)
(x+ tu)

And so in general we want to think about:

φ(p)(t) =

 n∑
j=1

uj
∂

∂xj

p

f(a+ tu)

φ(p)(0) =

 n∑
j=1

uj
∂

∂xj

p

f(a)
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