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Theorem (Fubini). Given a box Q = A×B where A ⊆ Rk and B ⊆ R` are boxes.

Let f : Q → R be a bounded function, and we write it as f(x, y) where x ∈ A and

y ∈ B.

If f is integrable over Q, then the functions:

x 7→
∫
B
f(x, y) dy x 7→

∫
B
f(x, y) dy

are both integrable over A, and furthermore:∫
Q
f =

∫
A

∫
B
f(x, y) dy dx =

∫
A

∫
B
f(x, y) dy dx

Remark. The drawback is that the iterated integrals are in terms of lower and

upper integrals rather than having
∫
B f(x, y) dy. We cannot guarantee that these

agree

Corrolary. With the same assumptions as above, there holds the following:

a)
∫
B f(x, y) dy exists for almost every x ∈ A, that is, it exists except on a set

of Lebesgue measure zero. In other words x 7→
∫
B f(x, y) dy is defined for all

x ∈ A \N where N has Lebesgue measure zero.

b) If we further assume that
∫
B f(x, y) dy exists for all x ∈ A, then we have Fubini’s

Theorem as we would like it:∫
Q
f =

∫
A

∫
B
f(x, y) dy dx

c) Let Q = I1 × · · · × In where Ik = [ai, bi] ⊆ R. Then if f : Q → R is continuous
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then: ∫
Q
f =

∫
I1

· · ·
∫
In

f(x1, . . . , xn) dxn · · · dx1

Proof of Corollary. By Fubini’s:∫
Q
f =

∫
A

∫
B
f(x, y) dy dx =

∫
A

∫
B
f(x, y) dy dx

0 =

∫
A


∫
B
f(x, y) dy −

∫
B
f(x, y) dy︸ ︷︷ ︸

≥0 and integrable

 dx

Therefore by previous work:∫
B
f(x, y) dy −

∫
B
f(x, y) = 0

except possibly on a set of measure zero. This gives part a).

Part b) is exactly from Fubini’s theorem, and part c) follows because continuous

functions are always integrable.

Proof of Fubini. Let us define the following:

I(x) =

∫
B
f(x, y) dy I(x) =

∫
B
f(x, y) dy

We need to show that if
∫
Q f exists then I(x) and I(x) are both integrable over A,

and their integrals are both
∫
Q f .

Let P be any partition of Q and write P = (PA, PB) are partitions of A and B.

Any sub-box R determined by P can be written as R = RA × RB where RA and

RB are sub-boxes of A and B determined by PA and PB respectively.

Now note that for any x ∈ RA:

mR(f) = inf
R

f(x, y) ≤ inf
y∈RB

f(x, y)

mR(f) ≤ mRB
(f(x,−))
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Multiplying by v(RB) and summing over all sub-boxes RB we get for every x ∈ RA:∑
RB

mR(f) · v(RB) ≤
∑
RB

mRB
(f(x,−))v(RB)

= L(f(x,−), PB) ≤ I(x)

Then if we take the infimum over x ∈ RA we obtain:∑
RB

mR(f)v(RB) ≤ mRA
(I)

We then multiply by v(RA) and sum over all such RA:∑
RA,RB

mR(f)v(RB)v(RA) ≤
∑
RA

mRA
(I)v(RA)

L(f, P ) ≤ L(I, PA)

An exactly similar argument establishes that:

U(f, P ) ≥ U(I, PA)

Given these two inequalities, we will be able to finish the proof. Note that because

I ≤ I we have:

L(f, P ) ≤ L(I, PA) ≤ U(I, PA) ≤ U(I, PA) ≤ U(f, P )

L(f, P ) ≤ L(I, PA) ≤ L(I, PA) ≤ U(I, PA) ≤ U(f, P )

These inqualities hold for any partition P . Let ε > 0 be arbitrary and choose P so

that U(f, P )− L(f, P ) < ε. Therefore from the above inequalities and a squeezing

argument:

U(I, PA)− L(I, PA) < ε

U(I, PA)− L(I, PA) < ε
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This gives that I and I are both integrable on A. Now we get that:

L(f, P ) ≤
∫
Q
f ≤ U(f, P )

L(f, P ) ≤ L(I, P ) ≤
∫
A
I ≤ U(I, P ) ≤ U(f, P )

L(f, P ) ≤ L(I, P ) ≤
∫
A
I ≤ U(I, P ) ≤ U(f, P )

Therefore we get that:∣∣∣∣∫
Q
f −

∫
A
I

∣∣∣∣ < ε

∣∣∣∣∫
Q
f −

∫
A
I

∣∣∣∣ < ε

And so since ε > 0 was chosen arbitrarily, we must have that:∫
Q
f =

∫
A
I =

∫
A
I

Which is exactly what we wanted to show!
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Integral over a bounded set

Up until now, we have been integrating functions on boxes. What if we want to

integrate a function over a region S ⊆ Rn that is not a box.

Definition. Let S ⊆ Rn be a bounded set and suppose that f : S → R is a bounded

function. We define fS(x) = f(x) when x ∈ S and fS(x) = 0 when x 6∈ S. Then fS

is defined on all of Rn, that is fS : Rn → R
Choose a box Q which contains S, then we define the integral of f over S as:∫

S
f(x) dx =

∫
Q
fS(x) dx

provided that the integral on the right hand side exists.

For this definition to make sense, we should get the same answer if we change

the box Q. This is guaranteed by the following lemma:

Lemma. Let Q and Q′ be two boxes in Rn and let f : Rn → R be a function that is

supported inside Q ∩Q′. That is f = 0 outside Q ∩Q′.∫
Q
f =

∫
Q′

f

Included in the statement is that f is integrable over Q if and only if f is integrable

over Q′.

Proof. Let’s go!

Case 1) Suppose that Q ⊆ Q′. Then f is supported in Q.

Note that f is integrable on Q if and only if the set of discontinuities of f

in Q has Lebesgue measure zero, we call this set D . But wait! The set of

discontinuities of f in Q′, which we call D ′, is equal to D ∪A, where A ⊆ ∂Q,

because f is constant on Q′ \Q. Since ∂Q has Lebesgue measure zero, and so

A has Lebesgue measure zero, we know D ′ has Lebesgue measure zero if and

only if D has Lebesgue measure zero. Therefore:

f is integrable over Q′ ⇐⇒ f is integrable over Q

Now let P be a partition of Q′ and let P̃ be the refinement of P obtained

from P by adding in the endpoints of Q. Then Q is the union of some sub-
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boxes determined by P̃ . Write Q =
⋃

B∈S where S is the family of sub-boxes

determined by P̃ such that B ⊆ Q.

Now if B is determined by P̃ and B 6∈ S then f(x) = 0 for some x ∈ B.

Therefor if B 6∈ S then mB(f) ≤ 0 ≤MB(f). Therefore:

L(f, P ) ≤ L(f, P̃ ) ≤
∑
B∈S

mB(f)v(B) ≤
∫
Q
f

U(f, P ) ≥ U(f, P̃ ) ≥
∑
B∈S

MB(f)v(B) ≥
∫
Q
f

This holds for any P . Taking suprema and infima in P :∫
Q′

f = supL(f, P ) ≤
∫
Q
f∫

Q′
f = inf U(f, P ) ≥

∫
Q
f

And therefore
∫
Q′ f =

∫
Q f

Case 2) Pick Q′′ to be a sufficiently large box containing both Q and Q′. Then:∫
Q
f =

∫
Q′′

f =

∫
Q′

f

Just by applying Case 1 twice, and of course existence of these integrals if and

only if one of them exists.
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