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Change of Variables Theorem

Theorem. We look at:∫
A
f(g(x)) |detDg(x)|dx =

∫
g(A)

f(u) du

Intuitively we have:

u = g(x)

du = |detDg| dx

x ∈ A, u ∈ g(A)

And so this holds whenever:

• g : A→ g(A) = B is a C1-diffeomorphism

• TODO

Example. We look at Polar Coordinate Integration. Let:

B = {(x, y) ∈ R2 | a2 < x2 + y2 < b2}

Then there are the polar coordinates:

g(r, θ) = (r cos(θ), r sin(θ))

Note that B = g(A) where A = {(r, θ) | a < r < b, 0 ≤ θ ≤ 2π}. Then let us
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introduce:

Ã := {(r, θ) | a < r < b, 0 < θ < 2π}

B̃ := g(Ã) = B \ (x-axis)

And so then we have:∫
B̃
f(x, y) dx dy =

∫
g(Ã)

f(x, y) dx dy

=

∫
Ã
f(g(r, θ)) · |detDg(r, θ)| dr dθ

And we know by previous homework that:

Dg(r, θ) =

(
cos θ −r sin θ

sin θ r cos θ

)
detDg(r, θ) = r > 0

Since we know that Dg is locally a C1-diffeomorphism via the inverse function

theorem and it is a bijection we know that it is a C1-diffeomorphism, which is great.

Now we apply Fubini:∫
B̃
f(x, y) dx dy =

∫ 2π

0

∫ b

a
f(r cos θ, r sin θ)r dr dθ

Now since the x-axis has Lebesgue measure zero in R2, we then know that:∫
B
f(x, y) dx dy =

∫
B̃
f(x, y) dx dy =

∫ 2π

0

∫ b

a
f(r cos θ, r sin θ)r dr dθ

We know this because for CN a nested sequence compact Jordan measurable set

contained in B and covering B we know:∫
B̃
f(x, y) dx dy = lim

N→∞

∫
CN\(x-axis)

f(x, y) dx dy

= lim
N→∞

∫
CN

f(x, y) dx dy

=

∫
B
f(x, y) dx dy
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Great!

Example. Now for Spherical coordinate integration! Suppose we have:

B = {(x, y, x) | x > 0, y > 0, z > 0, x2 + y2 + z2 < a2}

Suppose we want to evaluate
∫
B f(x, y, z) dx dy dz. Suppose we take the change of

coordinates:

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

And we’ll denote this by g(ρ, φ, θ). We aready calculated in previous homework that

detDg = ρ2 sinφ, and this is greater than 0 if ρ > 0 and 0 < φ < π. This happens

on the set:

A =
{

(ρ, φ, θ) : 0 < ρ < a, 0 < φ <
π

2
, 0 < θ <

π

2

}
And here we have g(A) = B. Therefore using that g is a C1 diffeomorphism from

A to B and using Fubini we have that:∫
B
f(x, y, z) dx dy dz =

∫
g(A)

f(x, y, z) dx dy dz

=

∫
A
f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dρdφ dθ

=

∫ a

0

∫ π
2

0

∫ π
2

0
f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dθ dφ dρ

Some mapping Properties of diffeomorphisms

Lemma. Let A ⊆ Rn be open and let g : A→ Rn be a C1 function. If E ⊆ A is a

set of Lebesgue measure zero, then g(E) also has Lebesgue measure zero.

Remark. This is not true if g is only assumed to be continuous. In fact, there

exists a continuous g : [0, 1] → [0, 1]2 that is onto. This is called Peano’s space

filling curve.

Proof. Let CN be a family of compact sets such that A =
⋃∞
N=1CN and CN ⊆ C◦N+1.
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The note that:

EN := E ∩ CN E =

∞⋃
N=1

EN

It is enough to show that each g(EN ) has Lebesgue measure zero.

Fix ε > 0 and let M := supCN+1
‖Dg‖op < ∞, since g ∈ C1 and CN+1 is

compact.

Also since CN ⊆ C◦N+1 there exists a δ > 0 such that the δ-neighborhood of CN

is a subset of C◦N+1.

Since EN has Lebesgue mreasure zero we can cover EN by countably many boxes

Bj such that
∑
v(Bj) < ε. In fact, we can assume Without Loss of Generality that

all the Bj are cubes and have diameter < δ by covering them with cubes of diameter

< δ.

Then g(EN ) is a subset of
⋃
g(Bj) where Bj is a cube of diameter less than δ

Claim. diam g(Bj) ≤M diamBj.

Proof. Let x, x′ ∈ Bj . By the Mean Value Theorem for some c on the line

segment between x and x′:

g(x)− g(x′) = Dg(c)(x− x′)∣∣g(x)− g(x′)
∣∣ ≤ ‖Dg(c)‖op

∣∣x− x′∣∣
≤M diamBj

Great!

Therefore g(Bj) is contained in a ball of radius M diamBj which is then contained

in a cube of Q̃j of side length 2M diamBj . Also:∑
j

v(Qj) =
∑
j

(2M)n · (diamBj)
n

=
∑
j

(2M)n · (v(Bj))
n · C

For some constant C, since the Bj are cubes, and so their diameter is proportional
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to their volume. But then:∑
j

(Qj) = C(2M)n ·
∑
j

v(Bj) < (2M)n · C · ε

But then since (2M)n · C is a constant, we can take ε → 0 and we will be done.

This finishes the proof.

Corrolary. Let g : A → B be a diffeomorphism betweeen two open sets A and B.

Let K ⊆ A be compact. Then:

a) g(K◦) = (g(K))◦ and g(∂K) = ∂g(K)

b) If K is Jordan measurable, then so is g(K).

These results hold if K is not compact provided that ∂K ⊆ A and ∂g(K) ⊆ B.

Proof. Let’s go!

a) This takes some work!

• Since g−1 is continuous, then g is open. Therefore if B(x, δ) ⊆ K then

g(B(x, δ)) is an open subset of g(K), which implies that g(B(x, δ)) ⊆
(g(K))◦. And so g(K◦) ⊆ (g(K))◦.

• Also g(A \K) ⊆ B \ g(K) since g is one-to-one. Let y ∈ ∂g(K). Then there

exists an x ∈ A such that y = g(x). We know that x 6∈ K◦ since then y

would belong to (g(K))◦.

We also know x 6∈ A \K since otherwise y ∈ B \ g(K) which also does not

intersect ∂g(K) since g(K) is closed. Therefore x ∈ ∂K, and so ∂g(K) ⊆
g(∂K).

• Apply the same argument to g−1 and g(K) to obtain that:

g−1((g(K))◦) ⊆ K◦

∂K ⊆ g−1(∂g(K))

And therefore:

(g(K))◦ ⊆ g(K◦)

g(∂K) ⊆ ∂g(K)

5



Combining this with the previous part gives part (a)

b) Note that if K is Jordan measurable, then ∂K has Lebesgue measure zero. Since

g is C1 we then know that g(∂K) = ∂g(K) has Lebesgue measure zero, and so

g(K) is Jordan measurable.

Volumes and Determinants

Theorem. Let A be an n × n matrix and let h : Rn → Rn be the transformation

h(x) = Ax. Let S be a Jordan measurable set in Rn and T := h(S). Then:

v(T ) = |detA| v(S)

Proof. T is Jordan measurable by the above corollary. Therefore when |detA| 6= 0

we have by the change of variables that:

v(T ) = v(T ◦) =

∫
T ◦

1 dx

=

∫
h(S◦)

=

∫
S◦
|detA| dy

= |detA| v(S◦) = |detA| v(S)

In Case 2, when detA = 0 we know that the range of h is a subspace V of Rn os

dimension p < n. Since V has Lebesgue measure zero (check!), we are done, since

then T ⊆ V will have Lebesgue measure zero.
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