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Continue Differentiability in higher dimensions

We first recalled the definition of the derivative for φ : R→ Rd:

φ′(x) = lim
h→0

φ(x+ h)− φ(x)

h

But we cannot divide by h if h ∈ Rd. We reinterpreted the definition saying that

φ′(x) exists if and only if:

lim
h→0

|φ(x+ h)− φ(x)− φ′(x)h|
|h|

= 0

Reinterpreting this for φ : Rn → Rm we ask for a linear transformation Dφ(x) :

Rn → Rm such that:

lim
h→0

‖φ(x+ h)− φ(x)−Dφ(x) · h‖
‖h‖

This recalls the best linear approximation interpretation of the derivative. If we

write:

∆φ(h) = φ(x+ h)− φ(x)

r(h) = ∆φ(h)−Dφ(x) · h

Then we ask for ‖r(h)‖‖h‖ → 0 as h → 0. We write this as ‖r(h)‖ = o(‖h‖) That is

‖r(h)‖ � ‖h‖ as h→ 0.

Definition. Let E ⊆ Rn be open and let f : E → Rm. We say that f is differ-

entiable at x ∈ E provided that there is a linear transformation Df(x) : Rn → Rm
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such that:

lim
‖h‖→0

‖f(x+ h)− f(x)−Df(x) · h‖
‖h‖

= 0 (∗∗)

We can of course think of Df(x) as an m×n matrix. If f is differentiable at every

x ∈ E we say that f is differentiable in E. In this case we have the total derivative:

Df : E → Hom(Rn,Rm)

Remark. We have some comments

• We need x to be an interior point of E so that x+ h ∈ E for small h, so that

f(x+ h) makes sense. When E is open this is automatic.

• The numerator in the difference quotient above is in Rm whereas the denom-

inator is in Rn.

• Defining r(h) = f(x+ h)− f(x)−Df(x) · h, we have that r(h) = o(h). That

is:

lim
h→0

‖r(h)‖
‖h‖

= 0

Note then that Df(x) · h = O(h), that is there is a constant C ∈ R so that

‖Df(x) · h‖ ≤ C‖h‖, but this is different than r(h) = o(h).

• This definition of derivative only makes sense if Df(x) is unique when it exists.

Proposition 1. Let E, f , and x ∈ E be as in the above definition. Suppose that

A1 and A2 are two linear transformations such that (∗∗) holds. Then A1 = A2

Proof. Let rj(h) = f(x+h)−f(x)−Ajh for j = 1, 2. Then we have that
‖rj(h)‖
‖h‖ → 0.

Let u ∈ Rn be arbitrary and nonzero and take h = tu for t > 0, then we can divide

by ‖tu‖ to get:

r1(tu)− r2(tu) = (A2 −A1)(tu) = t(A2 −A1)u

‖(A2 −A1)u

‖u‖
=
‖r1(tu)− r2(tu)‖

t‖u‖

≤ ‖r1(tu)‖
‖tu‖

+
‖r2(tu)‖
‖tu‖
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Thus ‖(A2−A1)u‖
‖u‖ → 0 as t → 0. Therefore (A2 − A1)u = 0, so A1u = A2u. Note

that clearly A1 · 0 = A2 · 0. Taking these together we know A1 = A2.

Example. Let f(x) = a + Bx where a ∈ Rm and and B ∈ Hom(Rn,Rm) where

f : Rn → Rm. Then to compute Df(x) note that:

f(x+ h)− f(x) = Bh

f(x+ h)− f(x)−Bh = 0

Therefore we know clearly that:

lim
h→0

‖f(x+ h)− f(x)−Bh‖
‖h‖

= 0

Therefore Df(x) = B for any x ∈ Rn.

Remark. Of course, if f is differentiable at x, then it must be continuous there.

Why? Continuity is equivalent to ‖f(x+h)− f(x)‖ → 0 as h→ 0. Differentiability

is equivalent to ‖f(x) + f(x) − Df(x)h‖ = ‖r(h)‖ = o(‖h‖). In particular this

implies that:

‖f(x+ h)− f(x)‖ = ‖Df(x)h+ r(h)‖
4
≤ ‖Df(x)h‖+ ‖r(h)‖

But both of these go to 0 as h→ 0. Therefore:

lim
h→0
‖f(x+ h)− f(x)‖ = 0

Directional and Partial Derivatives, computing the deriva-

tive

Definition. Let A ⊆ Rn be open and let f : A → Rm. Suppose x ∈ A and u ∈ Rn

with u 6= 0. We define the directional derivative Duf(x) as the limit:

Duf(x) := lim
t→0

f(x+ tu)− f(x)

t
∈ Rm

Duf(x) := lim
t→0

f(x+ tu)− f(x)

t
∈ Rm
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Note that this just means that:

Duf(x) =
d

dt

∣∣∣
t=0

f(x+ tu)

Example. Let f : R2 → R bed efined as sin(x1x2). Then let u = (1, 0):

Duf(x1, x2) =
d

dt

∣∣∣
t=0

sin((x1 + t)x2)

=
d

dt

∣∣∣
t=0

sin(x1x2 + tx2)

= (cos(x1x2 + tx2) · x2]t=0

= cos(x1x2) · x2

Theorem. Let A ⊆ Rn be open and f : A → Rm be differentiable at x ∈ A. THen

all directional derivatives Duf(x) exist at x0 and:

Duf(x) = Df(x) · u

In particular Duf(x) is linear in u.

Proof. From the definition of Df(x) we have for any u ∈ Rn \ {0}

lim
t→0

‖f(x+ tu)− f(x)−Df(x) · tu‖
‖tu‖

= 0

lim
t→0

‖f(x+ tu)− f(x)− t · (Df(x) · u)‖
‖tu‖

= 0

This implies that:

f(x+ tu)− f(x)− t ·Df(x) · u = r(tu)

Therefore ‖r(tu)‖‖tu‖ → 0 as t→ 0. Dividing by t we get that:

f(x+ tu)− f(x)

t
−Df(x)u =

r(tu)

t

Therefore:∥∥∥∥f(x+ tu)− f(x)

t
−Df(x)u

∥∥∥∥ =
‖r(tu)‖
‖t‖

= ‖u‖ · ‖r(tu)‖
‖tu‖

→ 0
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As t→ 0. Therefore:

lim
t→0

∥∥∥∥f(x+ tu)− f(x)

t
−Df(x)u

∥∥∥∥ = 0

Duf(x) = lim
t→0

f(x+ tu)− f(x)

t
= Df(x) · u

Caution We will see next time that the converse is not true. Namely, the directional

derivatives might exist at x without f being differntiable at x. In that case Duf(x)

might not even be a linear function of u.

Partial Derivatives

Since Duf(x) = Df(x) · u, we can determine Df(x) by letting u range over the

standard basis vectors.

Definition. Let f : A ⊆ Rn → Rm where A is open. The j-th partial derivative of

f at x is defined as:

∂f

∂xj
(x) = Dejf(x) =

d

dt

∣∣∣
t=0

f(x+ tej)

Example. When m = 1 we know f : Rn → R then:

∂f

∂xj
(x1, . . . , xn) =

d

dt

∣∣∣
t=0

f(x1, . . . , xj + tj , . . . , xn)

=
d

ds

∣∣∣
s=xj

f(x1, . . . , xj−1, s, xj+1, . . . , xn)

= φ′(xj)

Where φ(s) = f(x1, . . . , xj−1, s, xj+1, . . . , xn). This just means that ∂f
∂xj

is computed

by pretending that x1, . . . , xj−1, xj+1, . . . , xn are constant and differentiating with

respect to xj .
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