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Jordan measure and Riemann Integration

It turns out that the notion of Jordon measurability of sets is inti-
mately related (in a way essentially equivalent) to the notion of Rie-
mann integrability of functions. We will only display this relation in
dimension 1.

• Recall. To define the Riemann1 integral of a bounded function f

on an interval [a, b] ⊂ R, we first recall the notion of a partition P
which is a set of points x0 = a < x1 < x2 < . . . < xn = b, the norm
of the partition is ∆P = max1≤k≤n xk − xk−1, and we denote by
∆xk = xk − xk−1. For each such partition, we define to quantities:

L(f,P) =
n∑

k=1

f(x∗)∆xk, and U(f,P) =
n∑

k=1

f(x∗)∆xk,

where x∗ = inf [xk−1,xk] f and x∗ = sup[xk−1,xk] f .

Afterwards, we define the lower and upper Darboux integrals re-
spectively as

∫ b

a

f(x)dx = sup
P
L(f,P), and

∫ b

a

f(x)dx = inf
P
U(f,P).

where the extrema above are taken over all partitions of the inter-
val [a, b]. We say that f is Riemann integrable if the above two
numbers are equal. We define the common value as the Riemann
(or Darboux) integral of f .

1Strictly speaking, we are recalling here the notion of Darboux integral, but that is equivalent to the
notion of Riemann integrability that is often covered in introductory calculus classes.
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Q1) Let [a, b] be an interval and let f : [a, b] → R be a bounded
nonnegative function. Show that f is Riemann integrable if
and only if the set E := {(x, t) : x ∈ [a, b] : 0 ≤ t ≤ f(x)} is
Jordan measurable in R2.

Q2) Let [a, b] be an interval and let f : [a, b] → R be a bounded
function. Show that f is Riemann integrable if and only if the
sets E+ := {(x, t) : x ∈ [a, b] : 0 ≤ t ≤ f(x)} and E− :=
{(x, t) : x ∈ [a, b] : f(x) ≤ t ≤ 0} are Jordan measurable in R2.

Remark. The above results generalize to higher dimensions.

Where we are right now?

We have thus far discussed the classical theory of Jordan measure,
which went as follows

(i) We define the notion of a box and its volume |B| or v(B),

(ii) Then we defined the notion of an elementary set and its ele-
mentary measure,

(iii) Then we defined the notion of Jordan inner and outer measure
mJ(E) and mJ(E) and said that a set E is Jordan measurable
if those two concepts agree.

In particular, unwinding the definition of the Jordan outer mea-
sure, we have that for any set E

mJ(E) = inf
E⊂B1∪...∪Bk

|B1|+ . . .+ |Bk|

where the infimum is taken over all finite coverings of E by boxes
B1, . . . , Bk.

Q3) Show that a set E is Jordan measurable if and only if for every
ε > 0 there exists an elementary set U containing E such that
mJ(U \ E) < ε.

The notions of Lebesgue outer measure and Lebesgue measurability
are refinements of the Jordan ones as follows:
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– Lebesgue outer measure: We modify the notion of Jor-
dan outer measure by replacing the finite union of boxes by a
countable union of boxes, i.e.

m∗(E) = inf
E⊂∪∞j=1Bj

∞∑

j=1

|Bj|

where the union above is taken over boxes Bj ⊂ Rd.

Q4) Show that the Lebesgue outer measure m∗(E) is zero for
any countable set E. Contrast this to fact that the Jordan
outer measure of the rationals in [0, 1] was equal to 1.

– Lebesgue measurability A set E ⊂ Rd is said to be Lebesgue
measurable if for every ε > 0, there exists an open set U ⊂ Rd

containing E such that m∗(U \E) ≤ ε. If E is measurable, we
refer to m(E) = m∗(E) as the Lebesgue measure of E.

Remarks: Note that there is no need for E to be bounded for
this definition to make sense. Also, the notion of Lebesgue
measurability can be seen as a (finite to countably infinite)
generalization of that of Jordan measurability since it can be
shown that every open set is the countable union of closed
boxes.
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Where we are right now?

• We have thus far discussed the classical theory of Jordan measure,
which went as follows

(i) We define the notion of a box and its volume |B| or v(B),

(ii) Then we defined the notion of an elementary set and its ele-
mentary measure,

(iii) Then we defined the notion of Jordan inner and outer measure
mJ(E) and mJ(E) and said that a set E is Jordan measurable
if those two concepts agree.

In particular, unwinding the definition of the Jordan outer mea-
sure, we have that for any set E

mJ(E) = inf
E⊂B1∪...∪Bk

|B1|+ . . .+ |Bk|

where the infimum is taken over all finite coverings of E by boxes
B1, . . . , Bk.

Q0) Show that a set E is Jordan measurable if and only if for every
ε > 0 there exists an elementary set U containing E such that
mJ(U \ E) < ε.

Lebesgue outer measure

The notions of Lebesgue outer measure and Lebesgue measurability
are refinements of the Jordan ones as follows:

• Lebesgue outer measure: We modify the notion of Jordan outer
measure by replacing the finite union of boxes by a countable union
of boxes, i.e.

m∗(E) = inf
E⊂∪∞j=1Bj

∞∑

j=1

|Bj|
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where the union above is taken over boxes Bj ⊂ Rd.

Q1) Show that m∗(E) ≤ mJ(E) where m̄J is the Jordan outer
measure.

Q2) Show that in the definition above the countable cover by boxes
in the definition of m∗(E) can be restricted to closed boxes or
open boxes.

Q3) Show that the Lebesgue outer measure m∗(E) is zero for any
countable set E. Contrast this to fact that the Jordan outer
measure of the rationals in [0, 1] was equal to 1.

• Lebesgue measurability A set E ⊂ Rd is said to be Lebesgue
measurable if for every ε > 0, there exists an open set U ⊂ Rd

containing E such that m∗(U \ E) ≤ ε. If E is measurable, we
refer to m(E) = m∗(E) as the Lebesgue measure of E.

Remarks:

(i) Note that there is no need for E to be bounded for this defini-
tion to make sense.

(ii) The notion of Lebesgue measurability can be seen as a (finite
to countably infinite) generalization of that of Jordan measura-
bility since it can be shown that every open set is the countable
union of closed boxes.

Q4) Show that m∗(∅) = 0.

Q5) (Monotonicity) Show that if E ⊂ F ⊂ Rd, then m∗(E) ≤
m∗(F ).

Q6) (Countable subadditivity) If E1, E2, . . . ⊂ Rd is a countable
sequence of sets, then m∗ (∪∞n=1En) ≤∑∞n=1m

∗(En).
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Exercise 0. Show that a set E is Jordan measurable if and only if for every ε > 0

there exists an elementary set U containing E such that mJ(U \ E) < ε.

Proof. TODO

Exercise 1. Show that m∗(E) ≤ mJ(E) where mJ is the Jordan outer measure

Proof. Fix some elementary set A which contains E and write it as the disjoint

union of a finite collection of boxes B1, . . . , Bn that cover E. Then note that:

m∗(E) = inf
E⊆

⋃∞
j=1 Cj

∞∑

j=1

|Cj | ≤
n∑

j=1

|Bj | = m(A)

And so taking the infimum over all elementary sets A containing E we obtain:

m∗(E) ≤ mJ(E)

Just as desired.

Exercise 2. Show that in the definition above the countable cover by boxes in the

definition of m∗(E) can be restriced to closed boxes or open boxes
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Proof. We deal with closed boxes first. Consider the sets:

S =




∞∑

j=1

|Bj | | E ⊆
∞⋃

j=1

Bj





Sc =




∞∑

j=1

|Bj | | E ⊆
∞⋃

j=1

Bj , Bj closed





So =




∞∑

j=1

|Bj | | E ⊆
∞⋃

j=1

Bj , Bj open





We know that m∗(E) = inf S and we wish to show that inf S = inf Sc = inf So.

Now note that of course So, Sc ⊆ S, and so inf S ≤ inf Sc, inf So, therefore it only

remains to show that inf S ≥ inf Sc, inf So.

To do so, by definition of greatest lower bound, it suffices to show that inf Sc

and inf So are both lower bounds for S. We handle each of these:

• Take some countable collection of boxes B1, B2, . . . such that their union con-

tains E, giving us an element
∑ |Bj | of S. Then we may consider the collection

of their closures B1, B2, . . .. Since Bj ⊆ Bj we know that the union of all these

contains E. So then
∑∣∣Bj

∣∣ ∈ Sc. But then we are in a great spot! We know∣∣Bj

∣∣ = |Bj |. So then we may write:

inf Sc ≤
∞∑

j=1

∣∣Bj

∣∣ ≤
∞∑

j=1

|Bj |

And so inf Sc is a lower bound for S, and so inf Sc ≤ inf S as desired.

• Take some countable collection of boxes B1, B2, . . . whose union contains E,

giving us an element
∑ |Bj | of S. We will show for any ε > 0 that:

inf So ≤ ε +
∞∑

j=1

|Bj |

And so taking ε→ 0 we see that inf So is a lower bound for S and so inf So ≤
inf S as desired.

Fix some such ε > 0, and consider the open box Cj obtained from Bj by

dilating Bj so that |Cj | ≤ |Bj |+ ε
2j

and Bj ⊆ Cj . Then
∑

Cj lies in So since
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the union of all the Cj contains E. But then:

inf So ≤
∞∑

j=1

|Cj | ≤
∞∑

j=1

ε

2j
+

∞∑

j=1

|Bj | = ε +

∞∑

j=1

|Bj |

Taking ε → 0 we see that inf So ≤
∑ |Bj |, and so inf So is a lower bound for

S, giving us that inf So ≤ inf S as desired.

With this we are done! m∗(E) = inf S = inf So = inf Sc. Great!

Exercise 3. Show that the Lebesgue outer measure m∗(E) is zero for any countable

set E. Cotnrast this to the face that the Jordan outer measure of the rationals in

[0, 1] was equal to 1

Proof. Let E be a countable set. Then consider that:

E ⊆
⋃

x∈E
{x}

exhibits E as a countable union of boxes, all of measure zero. Therefore:

0 ≤ m∗(E) ≤
∑

x∈E
|{x}}| = 0

Showing us that m∗(E) = 0.

Let’s look for another way of doing this! Write E as x1, x2, . . .. We will allow

repeats here, and if E is empty just repeat xn = 0. Fix ε >) and then take the box

whose volume is ε
2j

around every point xj = (xj1, . . . , xjd). In other words:

Bj =
d∏

k=1

[
xjk −

d
√
ε

2
d
√

2j
, xjk +

d
√
ε

2
d
√

2j

]

|Bj | =
d∏

k=1

d
√
ε

d
√

2j
=

ε

2j

∞∑

j=1

|Bj | =
∞∑

j=1

ε

2j
= ε
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Great! Since E ⊆ ⋃∞j=1Bj this means that:

0 ≤ m∗(E) ≤
∞∑

j=1

|Bj | = ε

Now taking ε→ 0 we get m∗(E) = 0.

Exercise 4. Show that m∗(∅) = 0.

Proof. Note that ∅ is a countable set, so this follows easily from Q3

Exercise 5. Show that if E ⊆ F ⊆ Rd then m∗(E) ≤ m∗(F ).

Proof. We will show that m∗(E) is a lower bound for the set defining m∗(F ), and

so by definition of infimum we have m∗(E) ≤ m∗(F ).

Fix some countable collection of boxes B1, B2, . . . containing F , then in particular

they contain E since F contains E, and so by definition of infimum:

m∗(E) ≤
∞∑

j=1

|Bj |

Taking the infimum on the right hand side we get:

m∗(E) ≤ m∗(F )

Great! This is exactly what we want!

Exercise 6. If E1, E2, . . . ⊆ Rd is a countable sequence of sets, then:

m∗

( ∞⋃

n=1

En

)
≤
∞∑

n=1

m∗(En)

Great!

Proof. Fix some ε > 0, we will show that:

m∗

( ∞⋃

n=1

En

)
≤ ε +

∞∑

n=1

m∗(En)

and so by taking ε→ 0 we will obtain the result. Take E =
⋃∞

n=1En for convenience.
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Consider some En, then by definition of infimum and the fact that ε
2n > 0 there

is some countable collection of boxes Bn1, Bn2, . . . containing En such that:

m∗(En) ≤
∞∑

j=1

|Bnj | ≤ m∗(En) +
ε

2n

We can then sum over all En to get:

∞∑

n=1

∞∑

j=1

|Bnj | ≤
∞∑

n=1

m∗(En) +
∞∑

n=1

ε

2n
= ε +

∞∑

n=1

m∗(En)

And so now consider the countable collection of all the {Bnj}. This will be countable

by 295, and also it will cover E, since for every x ∈ E we know x ∈ En for some n

and then by construction x ∈ Bnj for some j. But then by definition of infimum:

m∗(E) ≤
∞∑

n=1

∞∑

j=1

|Bnj | ≤ ε +

∞∑

n=1

m∗(En)

Since ε > 0 was chosen to be arbitrary, we can take ε→ 0 and we see that:

m∗

( ∞⋃

n=1

En

)
= m∗(E) ≤

∞∑

n=1

m∗(En)

Great! This is the desired result ,.
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