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Continue proving the equality of mixed partials

Theorem. If f ∈ C2(A) where A ⊆ Rd then for each x0 ∈ A we have:

∂2f

∂xk∂xj
(x0) =

∂2f

∂xj∂xk
(x0)

Corrolary. Equality of mixed partials of order r when f ∈ Cr(A).

Proof. We began by reducing to the case where d = 2, since in general all variables

different from k, j are frozen when taking these partial derivatives. Thus assume

f : A ⊆ R2 → R is C2. Instead of referring to x1, x2 we’ll refer to x, y.

Now lets consider our intuition. We know that ∂f
∂x measures ∆xf

h = f(x0+h,y)−f(x0,y)
h .

And then:

∂2f

∂y∂x
≈ ∆y∆xf

hk
=

∆xf(x, y + h)−∆xf(x, y)

hk

=
1

hk
[f(x+ h, y + k)− f(x, y + k)− f(x+ h, y) + f(x, y)]

Similarly:

∂f

∂y
≈ ∆yf

k
=
f(x, y + k)− f(x, y)

k

∂2f

∂x∂y
≈ ∆x∆yf

hk
=

∆yf(x+ k, y)−∆yf(x, y)

hk

=
1

hk
[f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y)]

Notice that ∆y∆xf = ∆x∆yf . Thus the equality of this discrete version of the

partials that we expect the partials to be the same.
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Now for the real proof. Let (x0, y0) ∈ A and Q be the rectangle with vertices

(x0, y0), (x0 + h, y0), (x0, y0 + k), (x0 + h, y + k). Since A is open, we can take h

and k to be small enough so that Q ⊆ A. Now let:

G(h, k) = f(x0 + h, y0 + k)− f(x0 + k, y0)− f(x0, y0 + k) + f(x0, y0)

We will show that:

G(h, k) = hk
∂2f

∂x∂y
(p) = hk

∂2f

∂y∂x
(q)

For some p, q ∈ Q. To show the first equality. Let us use G(h, k) = ∆y∆xf and

let φ(y) = f(x0 + h, y) − f(x0, y) for y between y0 and y0 + k. We know that φ

is continuous on [y0, y0 + k] since f itself is. Also φ is differentiable on (y0, y0 + k)

since f is C1. Therefore by the Mean Value Theorem there exists a y? between y0

and y0 + k so that:

φ(y0 + k)− φ(y0) = φ′(y?)k

Notice then that:

G(h, k) = φ(y0 + k)− φ(y0)

φ′(y) =
∂f

∂y
(x0 + h, y)− ∂f

∂y
(x0, y)

G(h, k) = k

[
∂f

∂y
(x0 + h, y?)−

∂f

∂y
(x0, y?)

]
Now we know that ∂f

∂y (x, y?) is continuous on the closed interval between x0 and

x0 + h and differentiable on the open interval. By the MVT there is a x? between

x0 and x0 + h so that:

G(h, k) = kh
∂2f

∂x∂y
(x?, y?) = k

[
∂f

∂y
(x0 + h, y?)−

∂f

∂y
(x0, y?)

]
Note that (x?, y?) ∈ Q so we have the first equality. To show the other equality, we

argue similarly using the fact that G(h, k) = ∆x∆yf . More precisely instead of φ

above we introduce:

ψ(x) = f(x, y0 + k)− f(x, y0)
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By MVT we can get a x♥ such that:

G(h, k) = ψ(x0 + h)− ψ(x0) = hψ′(x♥)

G(h, k) = h

[
∂f

∂x
(x♥, y0 + k)− ∂f

∂x
(x♥, y0)

]
By applying the mean value theorem again we get y♥ between y0 and y0 +k we get:

G(h, k) = hk
∂2f

∂y∂x
(x♥, y♥)

This is exactly the same moves as in the proof for x. Then:

G(h, k)

hk
=

∂2f

∂x∂y
(x?, y?) =

∂2

∂y∂x
(x♥, y♥)

By letting h, k → 0 both (x?, y?) = p → (x0, y0) and (x♥, y♥) = q → (x0, y0). By

continuity of ∂2f
∂x∂y and ∂2f

∂y∂x at (x0, y0) we obtain the desired equality that:

∂2f

∂x∂y
(x0, y0) =

∂2f

∂y∂x
(x0, y0)
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The Chain Rule and Taylor’s Formula in Higher Dimen-

sions

Recall. For f : A ⊆ R → R and g : B ⊆ R → R such that f(A) ⊆ B we have

g ◦ f : A ⊆ R→ R. We have:

d

dx
[g ◦ f ](x) = g′(f(x)) · f ′(x)

provided that f ′(x) and g′(f(x)).

Theorem (Chain Rule). Let A ⊆ Rn and B ⊆ Rm and suppose that f : A ⊆ Rm

and g : B ⊆ Rk. with f(A) ⊆ B. Suppose that x0 is an interior point of A and

y0 = f(x0) is an interior point of B. Furthermore suppose that f is differentiable

at x0 and g is differentiable at y0. Then g ◦ f is differentiable at x0 and:

D[g ◦ f ](x0) = Dg(y0) ◦Df(x0) = Dg(f(x0)) ·Df(x0)

Proof. Since y0 is an interior point of B there exists a ε > 0 such that B(y0, ε) ⊆ B.

Since f is continuous at x0 there exists a δ > 0 so that f(B(x0, δ)) ⊆ B(y0, ε). So

we can define g ◦ f : B(x0, δ → Rk. Let ‖h‖ < δ for h ∈ Rn and define:

Rf (h) =
f(x0 + h)− f(x0)−Df(x0) · h

‖h‖
(h 6= 0)

Rf (h) = 0 (h = 0)

By differentiability of f at x0 we have Rf (h)→ 0 as ‖h‖ → 0. Similarly if ‖k‖ < ε

and k ∈ Rm we define:

Rg(k) =
g(y0 + k)− g(y0)−Dg(y0) · k

‖k‖
(k 6= 0)

Rg(k) = 0 (k = 0)

By differentiability we know that Rg(k) → 0 as ‖k‖ → 0. To show that g ◦ f is

differentiable at x0 we must show that there exists an A ∈ Hom(Rn,Rk) such that:

Rg◦f (h) =
[g ◦ f ](x0 + h)− [g ◦ f ](x0)−Ah

‖h‖
→ 0 as ‖h‖ → 0
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Rewrite as the following:

[g ◦ f ](x0 + h)− [g ◦ f ](x0) = g(f(x0 + h))− g(f(x0))

= g(f(x0) + f(x0 + h)− f(x0))− g(f(x0))

= g(y0 + k)− g(y0)

Where we call k = f(x0 + h)− f(x0). From Rg(k) we know that for any k ∈ Rm:

g(y0 + k)− g(y0) = Dg(y0) · k + ‖k‖Rg(k)

Furthermore k = f(x0 + h)− f(x0) = Df(x0) + ‖h‖Rf (h). Therefore:

g(y0 + k)− g(y0) = Dg(y0)[Df(x0)h+ ‖h‖Rf (h)] + ‖k‖Rg(k)

= Dg(y0)Df(x0) · h+ ‖h‖Dg(y0)Rf (h) + ‖k‖Rg(k)

Set A = Dg(y0) ·Df(x0) This gives that for h 6= 0 that:

Rg◦f (h) =
[g ◦ f ](x0 + h)− [g ◦ f ](x0)−Ah

‖h‖

= Dg(y0)Rf (h) +
‖k‖
‖h‖

Rg(k)

We know that Rf (h) → 0 as ‖h‖ → 0. It remains to show that ‖k‖‖h‖Rg(k) → 0 as

‖h‖ → 0. We know that:

‖k‖ = ‖Df(x0) · h+ ‖h‖Rf (h)‖

≤ ‖Df(x0) · h‖+ ‖h‖‖Rf (h)‖

≤ C‖h‖+ ‖h‖ ≤ (C + 1)‖h‖

This follows since ‖Rf (h)‖ ≤ 1 if ‖h‖ is small enough. Also we kow since Df(x0) is

linear we know ‖Df(x0) · h‖ ≤ C‖h‖ for some constant C by 296 / linear algebra.

Therefore: ∥∥∥∥‖k‖‖h‖Rg(k)

∥∥∥∥ ≤ (C + 1)
‖h‖
‖h‖
‖Rg(k)‖ ≤ (C + 1)‖Rg(k)‖

Therefore as ‖h‖ → 0 we know that ‖k‖ → 0 since ‖k‖ ≤ (C + 1)‖h‖ and hence

Rg(k)→ 0. Therefore ‖k‖‖h‖Rg(k)→ 0 as h→ 0 and so this finishes the proof.
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Taylor’s Theorem in several variables

Recall the multi-index notation from last time.

Lemma (The multinomial lemma). For any ~x = (x1, . . . , xn) ∈ Rn and any positive

integer k we have:

(x1 + x2 + · · ·+ xn)k =
∑
|α|=k

k!

α!
xα
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