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1 Introduction

e Office Hours

— Monday 8-9am
— Wednesday 4-5pm

— Beginning of Friday lecture

First HW will be posted on Friday

TAs are still not decided on

Further info on the waitlist to come

2 Continuing Metric Spaces

2.1 Last Time

We defined metrics d : X x X — [0, 00) with three special properties, and we saw
that this gave us a topology on X.

e Open sets, given p € O we have some § > 0 so that Ns(p) C O.

Closed sets are the complements of open sets

Limit points, p is a limit point of E if every d-neighborhood of p intersects F
in a point ¢ # p

Closed sets are exactly the sets where every limit point belongs to the set.



2.2 Closures!

Definition. If X is a metric space and E C X we denote by E' the set of limit
points of X. The closure of E is the set E = E U FE.

Example. Here are some examples to look at!
e Let E=(0,1] CR then E' =[0,1]=F
e Let E=(0,1]U{2} CR. Then E' = [0,1] and E = [0,1] U {2}.
Theorem. Let X be a metric space and E C X. Then:
a) E is closed
b) E=FE if and only if E is closed.
¢c) If ECF and F is closed then E C F.

Proof. Let’s go!

=
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a) Let g € E°. Then ¢ ¢ E' U E. Thus there exists a § > 0 so that Ns(q) N 0
Since Nj(q) is open we also know that Ns(q) N E’ = ). Therefore Ns(q) N E = ()

and so (E)c is open as desired.
b) Easy exercise

¢) If E C F and F is closed, then E' C F because any limit point of F is also a
limit point of F. Therefore E C F.

v
Theorem. Let E be a nonempty set of real numbers which is bounded above. Then

y=supkE isin E. Hencey € E if E is closed.

Proof. If y € E then we are done because E C E. If y ¢ E then for any ¢ > 0 there

exists some z € E so that:
y—e<z<y

But this means that z € N.(y), and so N.(y) N E # (. This implies that y € F’,

and so we are done since E/ C E. v



2.3 Compact subsets of metric spaces

Definition. We need a couple definitions!

o An open cover of a set E in a metric space X is a collection {Ga}taca of open

sets such that:

o A subset E C X is called compact provided that every open cover of E admits
a finite subcover. That is we can find a finite subcollection {Gqo,}1<i<n of
{Ga}aca such that {Gq, }r<i<n covers E.

Theorem. Compact subsets of metric spaces are closed and bounded

Proof of Closed. Let K C X be compact and let ¢ € K¢. For each p € K there
exists two subsets U, and W), such that p € Uy, ¢ € W, and U, N W, = (. Here
we use that metric spaces are Hausdorff. We can concretely take U, = Ns(p) and
W, = Ns(q) with § < 3d(p, q).

Then in fact {Up}pek is an open cover of K. By compactness there exists a
finite subcover Uy, ... U, that covers K. Then let:

Then this W is open and W N Uy, = () for all 1 < j < n. Thus we must have
W N K = (), meaning that W C K¢ and K¢ is open. 4

Proof of Boundedness. Let x € X be arbitrary. The family of sets {N,(x)}nen is
an open cover of F since N is unbounded. Thus by compactness E has a finite

subcover, and so E C Ni(x) for some k € N. 7

The main question for the rest of this section: Is the converse true? If not, what
should be a workable criterion for compactness in metric spaces?
In fact it is true on R™ by Heine-Borel. But not the converse, particularly in

infinite dimensions!

Theorem. Closed subsets of compact sets are compact.



Proof. Let C' C K be a closed subset of a compact set K and let {G}aca be an
open cover of C. Then {Gy}aca UCC is an open cover for K. Thus by compactness

of K there exists aq, ..., a, such that:

¢

Therefore C' is comapact.

Theorem (Finite intersection property). If {Kqy}aca is a collection of compact sets
such that the intersection of any finite subcollection of { Ko }aca is nonempty. Then,

the intersection (e Ko s nonempty

Example. If E,, = (0, %] then E, has the finite intersection property since they

are nested and each of them are nonempty. But (), En = 0.

Proof. Suppose that ((,cy Ko = 0. Then J,c0 K5 = X, and so {KS}aca is an
open cover for K, where a, € A is arbitrary. This holds because compact subsets
of metric spaces are closed.

By compactness of K,, there exists some aj, ..., a, such that:
n
Ko, C|JKS,
i=1
Thus the finite intersection:

n
Ko, N[ Ko, =0
=1

This contradicts the finite intersection property. Oops! We win. 3

Theorem 1 (Compactness = sequential compactness). Let K be a compact
set and let {x,}nen be a sequence of points in K. Then there exists a convergent

subsequence {xy, tren of {xntnen that converges to a point in K.

Proof. Suppose that {z,,} has no limit point in K. This means that for any p € K,
there exists some 4, such that Ns, (p) contains at most one point of the sequence

{zn}. The collection {Ns,(p)}per is an open cover of K.

4



By compactness we have some p,...,p, such that:

K C | Ns,, (pi)

-

=1

But this must mean that K contains at most n points of the sequence {z,}. This
means that {z,} takes at most n values. Thus x, must take one value infinitely
many times, and so x,, has a convergent subsequence.

On the other hand if {x,} has a limit point p € K, then for every k € N there
exists some @, such that d (z,,,p) < +. Clearly {z,, } is a convergent subsequence

and so we win. v

Remark. Is the converse true? Yes! But only in metric spaces.

3 Compactness in R”

Theorem 2 (Nested interval property on R). Suppose that I,, = [ay,by] is a nested

sequence of closed intervals, that is I, D Ini1. Then (\o—; I, is nonempty

Proof. We know {ay,} is an increasing sequence thta is bounded by b;. Let z =
Sup,cn an- Then a, < z for all n.
Also {b,} is decreasing so a, < b, < by, for all n > m. Taking the supremum in

n we get x < by, for all m. Therefore a, <z < b, for all n € N, giving us that:

(0.0
S ﬂ[n
i=1

¢



