Taylor’s Theorem on R

Lemma (The multinomial lemma). Let x = (z1,...,x,). We would like to look at:
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This generalizes the binomial theorem.

Proof. The proof proceeds by induction on n. The binomial theorem gives the case
n = 2. Suppose that the multinomial theorem holds up to n — 1. We want to show

it holds for n, where n > 3. So then we write:
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Therefore the result follows by induction. Great!!!



Lemma (Higher order product rule). For any o € Nj and f,g : R" — C we have:
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Whenever f and g are differentiable up to order |a|. This generalizes Leibniz Rule.

Recall. We take as notation:
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For convenience

Proof. Again the proof is by induction on n. For n =1, let « = k € Ny, we want to
show that:
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This is part of your homework. Press F to pay respects. THerefore the result is true
when n = 1. Now assume the result is true for n — 1, we will show it holds for n.

Take f,g: R™ — C and take a € Nj. Write a = (a,6) where a € Ny, 0 € Ng_l,
and z = (z1,2') where 1 € R and 2’ € R*~!. Then:
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So then we may write:
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The result now follows by induction. Great! Here we take: =

Recall. We recall Taylor’s Theorem for single-variable functions. Suppose f :
[a,b] — R is C*([a,b]) and 0¥ f : (a,b) — R is differentiable. Then for any a < x < b
then:
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For some a < ¢ < x.
We will study the generalization of this theorem for functions f : R™ — R™.

Recall. If f = (f1,..., fm) and « is a multi-index then:
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Thus we only need to consider the case m =1

Definition. We call a subset G C R™ convex provided that for every x,y € G and
every t € [0,1] we have tz + (1 —t)y € G.

The Plan: We would like to derive the Taylor Expansion of f at some point a of
its domain (which should be open and convex). At order k this should give us a

polynomial in 1, ...,x, of degree < k that approximates the function near a.



The General Statement and Proof

Theorem (Taylor’s Theorem). Let G C R™ be an open convex set. Suppose that
f:G — C is of class C**. If a € G, then for any x € G we have:
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where we have:
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For some ¢ € G on the line segment connecting a and z, that is ¢ = ta + (1 — t)x
for some t € [0, 1].

Recall. Recall the following formula
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Which is nice

Proof. To avoid confusion, let us denote x by zg. We will deduce this result from
the single-variable case. To do so we will look at the restriction of f along the line

segment connecting a and x(, by convexity this line segment belongs to GG. Set:
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Notice that ¢(0) = f(a) and ¢(1) = f(xg), furthermore note that ¢ € C**+1([0,1])

since f € C*+1(@). By Taylor’s Formula in one dimension at ¢ = 0 we know:
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What is ¢?)(0)? For p = 0 we know ¢ (0) = ¢(0) = f(a). For p =1 we have
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Where u = zg — a. But then this is equal to:
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Now for p = 2:
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Think of these as operators on functions that we’re manipulating and consider:
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And so in general we want to think about:

o 1) = (Z “a?;) flat 1)
i=1 /

¢



