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More Inverse Function Theorem

Theorem (Inverse Function Theorem, IFT). Let f : A C R" — R" be a C"-
function for r > 1 and suppose D f(zg) is invertible where xo € A. Then f is a local
C"-diffeomorphism around xy. In other words there are open meighborhoods U of xg
and V' of f(xo) such that:

1) f is a bijection from U to V

2) The inverse function g : V — U is C" and Dg(y) = [Df(z)]"" where z € U and
y=flz).

Lemma. If f : ACR" — R" is C' and D f(xq) is non-singular. Then f is locally

one-to-one around xg. More strongly there is an open neighborhood U around xg

such that for some a > 0 we have that for all x,y € U:

[f(@) = fy)| = oz =y

Great!

Lemma. Suppose f: A CR"™ — R (where A is open) is differentiable. If f admits

a local minimum (or mazimum) at o € A, then D f(xo) = 0.

Proof. Let u € R™ be arbitrary and set ¢(t) = f(zo + tu) where t € (—4,9) for §
small enough so that x¢ + tu is always in A. Since f has an extremum at xg, then
so does ¢ at 0. By the chain rule ¢ is differentiable on (—§,6). Therefore ¢/'(0) = 0,
but:

&' (t) = Df(xo +tu) - u
0=¢(0)=Df(xg) - u



And this is true for any u € R™, so Df(xg) = 0. 3

Proof of the Inverse Function Theorem, IFT. By the first lemma there exists a neigh-
borhood U of zy on which f is one-to-one. By shrinking U if necessary we may also
assume that D f(x) is non-singular for every 2 € U. We may do this because f € C*
and so D f varies continuously, meaning that since det D f(xg) # 0 we can shrink U
to get nonzero determinant all across U. Let V = f(U).

Step 1 We must show V' is open in R". Take y € V, we want to show that
there exists an ¢ > 0 such that B(y,e) C V. Write y = f(x) for some x € U.
Since U is open there is some ¢ > 0 so that B(x,d) C U. Note that the boundary
0B(z,0) ={z € R"| |z — x| = §} is a compact set, and so if we let I' = f(0B(x,d))
we know that this is compact since f is continuous. Note that y ¢ T" because f
is one-to-one. Thus there is an € > 0 such that B(y,2¢) C I'°. We claim that
B(y,e) C V. To show that, let ¢ € B(y,¢) and set:

¢:B(z,0) > R
2% |f(2) — of?

Now since ¢ is a continuous function on a compact set it achieves its minimum value
at some point z, € B(z,0). We claim that z, ¢ 0B(x,¢), and so z € B(z,d). Why?
Well if z, € 0B(z,0) then f(z,) € I' and so:

O(z) = |f(z) = e = |f(z) =y +y — ¢
> (1f(z) —yl =y =)’ > (2c —e)* = ¢°
This is a problem since ¢(z) = |y — ¢|*> < &2, but this contradicts the fact that ¢

has its minimum at z,. Therefore z, € B(x,d) since z € B(x,6) and z ¢ 0B(z,0).

By Lemma 2 we must have that D¢(z,) = 0 so we calculate the derivative.

Claim. To justify the above we look at the function g : R™ — R defined by g(x) = |:L'|2



Consider that:

n

g(x1, ... xp) :fo

=1
Dg(.’El,. . .,l‘n) - (21‘1,.. . ,2{1}‘n) =2

So then setting F'(z) = f(z) — ¢ and so:

D¢(z) = Dg(F(2)) - DF(2) = 2F(2) - Df(2) = 2(f(2) = ¢) - Df(2)

This gives that:

0= D(z) = 2(f () — )Df(z)

Since D f(z,) is invertible, this implies that f(z,)—c = 0, and so f(z,) = ¢. Therefore
c € f(B(z,9)) C f(U). And so B(y,e) C f(U) =V as desired.

Great! The conclusion of Step 1 is that f : U — V is one-to-one, onto, and
U,V are open. Therefore there exists an inverse function ¢ : V' — U such that
fog=Idyand go f =1dy.

Step 2: We must show g is continuous. We need to show that ¢~(U’) is open
for every open U’ C U. This is equivalent to showing that f(U’) is open for any
open U’ C U. But wait! This is exactly what we did in Step 1 by replacing U by
U’

Step 3: We show that g is differentiable. To do this. Let y € V' where y = f(x)
for some x € U. Now let E = D f(x), by hypothesis E is invertible. We will show
that:

gy +k)—gly) — E~1(k)

—0ask—0
Al

This result implies that g is differentiable at y and Dg(y) = [Df (x)]_l where y =
f(z). We know that if |k| is small enough then B(y, |k|) € V by openness. Thus
there exists some h such that y+k = f(x+h) for some z+h € U. And so we know

k= f(x+h)— f(z). Now note that h = g(y + k) — g(y) and so h — 0 as k — 0 by



continuity of g. By the differentiability of f at x we know that:

r(h):= f(zx+h) — f(x) — Eh
=k—Fh
r(h)

——= —0as |[h| =0
Id

Now we know that:

EYr(h)=E %k —h=E"Yk—gly+k) +g(y)

—E7'r(h) _gly+k)—gly) - E'k
K] k|

'r(h)

It then suffices to show that limj_,q % r(h)

= 0. It suffices to show that lim;_,q o=

0, since E~! is linear. Writing then:

r(h) _ r(h) ]
L
Since % — 0 as |h| — 0 and since |h| — 0 as |k| — 0 it suffices to show that % is
bounded by some C' > 0 for nonzero but small enough k. Recall that:
h=E"'k—E'r(h)
(Al = |E~(k — r(h)]
<EYI- [k = r(h)]
<ETHE - (k] + Ir(B)])
Now since r|(:|) — 0 as |h| — 0 if |h| is small enough we get:
Rl 1
[ 7 2B
Therefore if |k| is small enough then |h| is small enough so that |r(h)| < %



And therefore:

) |
W< B (w«r L
MET]

i
= 1B 1]+ 5
1] < 2] B 14
LI
<2||E™
i <2E7

Pulling this all together:

gly+k)—gly) —E"'k| _|E"'r(k)
' k| ‘ ’ A '

And we know that:

7"(h)‘: (M [R] _
14 (Al Ikl

<oz o a5 h o0
A
And so since h — 0 as k — 0 and E~! is linear, we are done, g is differentiable.
Step 4: We need to check that ¢ € C"(V). We have shown that Dg(y) =
[Df(z)]~! where y = f(z). We can write this as:

Dg=[Df] 'og

By Cramer’s rule [D f]_1 is a rational function (a polynomial over a polynomial) of

the partlalb a
Recall. Cramer’s rule gives you a formula for the inverse of a matrix C, namely:

L1

e -[Adj C]

We have that det C is a polynomial in entries of C' and:
(Adj 0)ij = det(CY)

Where C’ij is the same as C except that we replace the i-th column with €. Of

course these are all polynomials in terms of the entries of C.

This implies that [D f]~! belongs to C" ! if f € C" because D f belongs to C™ 1.



Now consider that:

Dg=[Df] ' og (*)

Now we know that g € C? and so since [Df]~! € C° we get Dg € C°. But then
g € C!. Feeding this into (x) again we get that Dg € C! if r > 2, and so g € C2.
We may do this r times to obtain that g € C". <



