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3 Compactness on Rd

Last time we proved the nested interval property on R, namely

Theorem (Nested Interval Property). Let In = [an, bn] be a sequence of closed and

bounded intervals that is nested, aka In ⊇ In+1. Then we have that:

∞⋂
n=1

In 6= ∅

Note that we need “closedness.” Take In =
(
0, 1n

]
. In fact what we really need is

compactness.

Definition. A closed box in Rd is a set of the form:

d∏
j=1

[aj , bj ]

Corrolary (The nested box property of Rd). Let Bn be a sequence of closed and

nested boxes. Then:

∞⋂
n=1

6= ∅

Great!

Proof. Let:

Bn =
d∏
j=1

[
a
(n)
j , b

(n)
j

]
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Bn ⊆ Bn+1 implies for every 1 ≤ j ≤ d that the intervals I
(n)
j =

[
a
(n)
j , b

(n)
j

]
are

nested. By the previous theorem, for every 1 ≤ j ≤ d there exists some:

xj ∈
∞⋂
n=1

I
(n)
j

Therefore:

x = (x1, . . . , xd) ∈
∞⋂
n=1

Bn

And so we win!

Definition. Define in a metric space for any subset E of a metric space X the

diameter when the following supremum exists:

diamE = sup
x,y∈E

d(x, y)

Great!

Exercise. Show that for any box B =
∏d
j=1[aj , bj ] that:

diamB =

 d∑
j=1

(bj − aj)2
 1

2

Where we use the standard Euclidean metric on Rd

Proof. We will do this with induction on d

• Suppose d = 1. We wish to prove that diam [a, b] = |b− a| = b− a. Note

that b− a is in the set we are taking a supremum over, and so we merely

need to show it is an upper bound. Fix x, y ∈ [a, b]. Without loss of

generality take y ≥ x. Then note that:

b− a = (b− y) + (y − x) + (x− a) ≥ y − x

And so we win
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• Suppose that the result holds for d ∈ N. We must show it holds for d+ 1.

Note then that a = (a1, . . . , ad+1) and b = (b1, . . . , bd+1) are in B, and so:

d(a, b) =

d+1∑
j=1

(bj − aj)2
 1

2

Is in the set we are taking a supremum over. We need only show that it

is a maximum. Fix x = (x1, . . . , xd+1) and y = (y1, . . . , yd+1) in the box

B and without loss of generality assume yd+1 ≥ xd+1.

Define x′ = (x1, . . . , xd) and y′ = (y1, . . . , yd). Then we have:

d(x′, y′) ≤ δ := diam

d∏
j=1

[aj , bj ] =

 d∑
j=1

(bj − aj)2
 1

2

Now note that:

d(x, y) =
√

(d(x′, y′))2 + (yd+1 − xd+1)2

≤
√
δ2 + (bd+1 − a2d+1

=

 d∑
j=1

(bj − aj)2
+ (bd+1 − ad+1)

2

 1
2

=

d+1∑
j=1

(bj − aj)2
 1

2

= d(a, b)

But this is exactly what we want ,

Awesome!

Theorem. Every closed box in Rd is compact.
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Proof. Let B =
∏d
j=1[aj , bj ] be any closed box. Set:

δ0 := diamB =

 d∑
j=1

(bj − aj)2
 1

2

Suppose for the sake of contradiction that {Gα}α∈A is an open cover of B that has

no finite subcover

Split B into 2d subboxes of equal size. That is let cj =
aj+bj

2 . Then the subboxes

are
∏d
j=1 Ij where Ij ∈ {[aj , cj ], [cj , bj ]}.

Since B cannot be covered by any finite collection of the {Gα}α∈A, there must

exist a subbox, B1 such that B1 cannot be covered by any finite subcollection of the

{Gα}α∈A. Note also that diamB1 = diamB
2 . Set δ1 = diamB1.

Continue inductively, having constructed B ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bn such that

diamBn = δn = diamB
2n and Bn cannot be covered by any finite collection of the

{Gα}α∈A. We construct Bn+1 by splitting Bn into 2d subboxes of equal size as in

the previous paragraph and noting that one of those subboxes cannot be covered by

any finite collection of the {Gα}α∈A. Let Bn+1 be this subbox of Bn. Also note:

diamBn+1 =
diamBn

2
=

diamB

2n+1

This is a sequence of closed nested boxes. Applying the nested box property we

know that
⋂∞
n=1B − n 6= ∅.

Claim.
⋂∞
n=1Bn is a singleton x.

Proof. Suppose x, y ∈
⋂∞
n=1. Then x, y ∈ Bn for every n, and therefore d(x, y) ≤

diamBn = diamB
2n . Letting n go to infinity we get d(x, y) = 0 and so x = y.

Now x ∈ B implies there exists an αx ∈ A so that x ∈ Gαx . But then this

implies that there is an r > 0 so that Nr(x) ⊆ Gαx .

For n large enough we know Bn ⊆ Nr(x). In fact if δn < r then Bn ⊆ Nr(x).

Thus since δn → 0 we know δn < r eventually. But then obviously Bn is covered by

a finite collection of the {Gα}α∈A. Oops! The box B must then be compact.
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Theorem (Heine-Borel). A subset K of Rd is compact if and only if it is closed

and bounded.

Proof. Let’s go!

(⇒) We already showed this direction in general metric spaces.

(⇐) If K is bounded then K is contained in some large closed box B which is

compact. Therefore K is a closed subset of a compact set. This implies that

K is compact (we showed this last time in Hausdorff spaces).

4 Compactness in Metric Spaces

It turns out that being closed and bounded is not sufficient to guarantee compactness

in infinite-dimensional metric spaces.

Example. Let `∞(N) denote the set of bounded sequences (an)n∈N. The metric on

`∞(N) is defined as:

d((an), (bn)) = sup
n∈N
|an − bn|

Consider the set B = {(an) ∈ `∞(N) | supn∈N |an| ≤ 1}.

Exercise. This set is closed and bounded (check 3).

Proof. To note that it’s bounded consider that:

d((an), 0) = sup
n∈N
|an| ≤ 1

So this is trivial. Now consider a sequence of sequences
(
a
(j)
n

)
j∈N

which are all

in B which converges to some (an)n∈N. We will show 1 is an upper bound for

the set {|an|}n∈N, and so:

sup
n∈N
|an| ≤ 1
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Fix n ∈ N. Now fix ε > 0. We know there is some large j ∈ N so that:

d
((
a(j)n

)
, (an)

)
= sup

n∈N

∣∣∣an − a(j)n ∣∣∣ < ε

Now note that:

|an|
4
≤
∣∣∣a(j)n ∣∣∣+

∣∣∣an − a(j)n ∣∣∣
< 1 + ε

And so since this holds for all ε > 0 we must have |an| ≤ 1 as desired.

Claim. This set B is not compact!

Proof. Consider the sequence of sequences:

(
a(k)n

)
=

{
1 if n = k

0 otherwise

Therefore:

d
((
a(k)n

)
,
(
a(k

′)
n

))
= 1

Thus this sequence of sequences
(
a
(k)
n

)
can have no convergent subsequence.

And thus B is not sequentially compact, and so B is not compact.

How do we fix this? It turns out we need to strengthen our conditions

• Replace closed by Cauchy Complete

• Replace bounded by total boundedness

Definition. A subset E of a metric space X is totally bounded if for every ε > 0

there is a finite cover of E by balls of radius ε > 0.

Exercise. Show that:
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• On Rd we have boundedness if and only if total boundedness

– Totally bounded implies bounded on every metric space

– For bounded implies totally bounded. Since any box B of the form [−N,N ]d

can be split into finitely many subboxes of diameter less than ε, and each

sub-box is contained in a ball of radius ε.

• On Rd we have closed if and only if Cauchy complete. Of course Cauchy

complete implies closed, and for the other direction we just use Cauchy com-

pleteness of Rd.

• On `∞(N) we have that total boundedness is stronger than boundedness. In

fact:

Exercise. Show that the set B in the above is bounded but not totally bounded.

Use the exact same sequence as in the example and use pigeonhole principle.

Proof. We’ve already proved it is bounded. Let ε = 1
2 and suppose for

the sake of contradiction that we have a finite cover by balls of radius ε.

Call these balls B1, . . . , BN . Without loss of generality assume we have(
a
(k)
n

)
∈ Bj for each 1 ≤ k ≤ N where we have:

(
a(k)n

)
=

{
1 if n = k

0 otherwise

Now consider the sequence
(
a
(m)
n

)
where we set m := N + 1. We know

there is some k so that
(
a
(m)
n

)
∈ Bk. But then letting

(
x
(k)
n

)
be the

center of the ball Bk we have that:

1 = d
((
a(m)
n

)
,
(
a(k)n

)) 4
≤ d

((
a(m)
n

)
,
(
x(k)n

))
+ d

((
x(k)n

)
,
(
a(k)n

))
<

1

2
+

1

2
= 1

Oops! We win ,

Theorem. Let X be a metric space and E ⊆ X. The following are equivalent:

1) E is compact

7



2) E is sequentially compact

3) E is complete and totally bounded.

Remark. If X is a complete metric space then 3) above can be replaced by closed

and totally bounded.

Lemma. Completeness of E ⊆ X implies E is closed.

Proof. Let E be complete and xn ∈ E such that xn → x ∈ X. Since (xn) converges

it must be Cauchy, and so since E is compelte we know (xn) converges to some

point in E. But limits are unique in metric spaces so x ∈ E, so E is closed!!!
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