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The Proof of the Implicit Function Theorem

Continued Proof of the Implicit Function Theorem. We had an A ⊆ Rk+n and an

f : A → Rn of class Cr with r ≥ 1. We also had f(a, b) = 0 and ∂f
∂y (a, b) is

nonsingular. We model this with the picture:

y ∈ Rn

x ∈ Rk
a

b
f(x, y) = 0

We constructed a neighborhood B around a, a neighborhood V around b, and a

function g : B → V satisfying g(a) = b and f(x, y) = 0 if and only if y = g(x) for

(x, y) ∈ B × V . We did this with the following steps:

1) We defined an auxiliary function F (x, y) = (x, f(x, y)) : A→ Rk+n. We showed

that DF (a, b) is invertible since ∂f
∂y (a, b) is invertible. We then applied the Inverse

Function Theorem. This gave us the following picture
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y ∈ Rn

x ∈ Rk

f(x, y) = 0

U

V

a

b
F

G

z ∈ Rn

x ∈ Rk(a, 0)

W

We then showed the inverse function G(x, z) must be given as (x, h(x, z)) where

h ∈ Cr.

2) We then defined g with a neighborhood B ⊆ U such that B × {0} ⊆ W . We

then defined g : B → V as g(x) = h(x, 0). This satisfies the desired conditions.

3) We showed the Uniqueness of g. We supposed that g′ : B → V was another

continuous function such that g′(a) = b and f(x, g′(x)) = 0. We defined S =

{x ∈ B | g′(x) = g(x)}. We want to show that S = B. Using the connectedness

of B we simply need to show that S is a nonempty subset of B that is both open

and closed in B.

S is clearly nonempty since g′(a) = g(a), and thus a ∈ S. We know S is closed

since g, g′ are both continuous, and we can rewrite S = (g − g′)−1({0}). It

remains to show that S is open

Let’s show this! Let x0 ∈ S, then g′(x0) = g(x0) ∈ V is open. There must exist

a neighborhood B′ of x0 such that g′(B′) ⊆ V using the fact that g′ is continuous.

But then:

f(x, g′(x)) = 0 x ∈ B′ ⊆ B g′(x) ∈ V

But then this must mean that:

F (x, g′(x)) = (x, f(x, g′(x))) = (x, 0)

(x, g′(x)) = G(x, 0) = (x, h(x, 0)) = (x, g(x))

This of course implies that g′(x) = g(x) for all x ∈ B′. Therefore S is open in B,

and we win!!!! Yay ,
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How to Apply the Implicit Function Theorem

Suppose that f : A ⊆ R5 → R2 is a function in Cr and the equation f(x, y, z, u, v) =

0 gives us two equations in five unknowns, and thus by dimension counting, the

solution set is a set parameterized in three variables. We expect (under appropriate

conditions) that we can solve for two of the variables in terms of the others.

Suppose one wishes to solve for (y, v) in terms of (x, z, u) near a point (x0, y0, z0, u0, v0 =

0. All we need to check is that ∂f
∂(y,v) is nonsingular at (x0, y0, z0, u0, v0). The implicit

function theorem then tells us that we can write y = φ(x, z, u) and v = ψ(x, z, u)

(y, v)

(x, z, u)
(x0, z0, u0)

(y0, v0)
f = 0

B

V

Moreover by implicit differentiation:

∂(φ, ψ)

∂(x, z, u)
(x0, z0, u0) = −

[
∂f

∂(y, v)(x0, y0, z0, u0, v0)

]−1 ∂f
∂x

(x, g(x))

Example. Show that the system of equations:

x3 − y3 + z2 = 0

z cos(πx) + sin(πy) = 0

admits a one-parameter family of solutions around the point (1, 1, 0)

Define f : R3 → R2 by:

f(x, y, z) =

(
x3 − y3 + z2

z cosπx+ sinπy

)
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Then f(1, 1, 0) = 0 and:

Df =

(
3x2 −3y2 2z

−πz sinπx π cosπy cosπx

)

Df(1, 1, 0) =

(
3 − 0

0 −π −1

)
=

∂f

∂(x, y, z)

∂f

∂(x, z)
=

(
3 0

0 −1

)

This is of course a non-singular matrix, and so we can solve for (x, z) in terms

of y near the point y = 1. That is there are functions φ, ψ : B → R2 where B

is an open neighborhood of y = 1 such that f(φ(y), y, ψ(y)) = 0 for all y ∈ B.

In other words, the solution set near (1, 1, 0) is a one-parameter family of

solutions. We will later find out that this means it is a “manifold of dimension

one”

With this we have essentially finished differentiation!
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Riemann Integration in Higher Dimensions

Definition of the integral

The purpose os this section is to generalize the notion of the Riemann integral to

higher dimesnions

Definition. We will use some concepts from our Friday sections

1) Recall that we defined a box B ⊆ Rn to be the Cartesian product of n intervals

B = I1 × I2 × · · · × In. Generally I1, . . . , In can be closed, open, or half open.

However, in what follows, there will be no loss of generality in considering only

closed boxes. Thus to simplify notation, we will assume that all boxes are closed

unless stated otherwise

Given B = [a1, b1]× · · · × [an, bn] we set:

m(B) :=

n∏
i=1

(bi − ai)

2) Partitions

(n = 1) Given an interval I = [a, b] a partition of [a, b] is a finite collection P of

points x0 = a < x1 < x2 < · · · < xk = b. Each [xi−i, xi] has length

∆xi = xi − xi−1. We define the mesh (or norm) of P as:

‖P‖ = max
1≤i≤k

∆xi

(n ≥ 1) Given a box B = I1×· · ·× In, a partition P of B is an n-tuple (P1, . . . , Pn)

such that Pj is a partition of Ij for each j.

y

x
a1 b1

a2

b2
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Each partition Pj decomposes Ij into sub-intervals I
(1)
j , . . . , I

(kj)
j with dis-

joint interiors This gives a decomposition of B into sub-boxes of the form

J1 × · · · Jn where Jj ∈ {I(1)j , . . . , I
(kj)
j }.

Notice that the sub-boxes can only intersect at the boundary, that is they

have disjoint interiors. The mesh of a partition P = (P1, . . . , Pn) is ‖P‖ =

max1≤j≤n ‖Pj‖.

3) We now define Lower and upper sums. Let B be a box and f : B → R be bounded.

Let P be a partition of B and denote by B1, . . . , BN the resulting subboxes. Let

mBj (f) := inf
x∈Bj

f(x)

MBi(f) := sup
x∈Bj

f(x)

Then we may define the lower and upper sums respectively as:

L(f, P ) =
N∑
`=1

mB`
(f) · v(B`)

U(f, P ) =

N∑
`=1

MB`
(f) · v(B`)

In one dimension if f ≥ 0 then L(f, P ) is the sum of the green rectangles inscribed

by the region under the curve, and U(f, P ) is the area of the red rectangles

circumscribed by the region under the curve

2 4 6 8

1

2

3

4

4) We define now the Refinement of a partition Let B be a box and le tP =
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(P1, . . . , Pn) and Q = (Q1, . . . , Qn) be two partitions of B. We say that Q is

a refinement of P is Pj ⊆ Qj for every j.

Given two partitions P = (P1, . . . , Pn) and P ′ = (P ′1, . . . , P
′
n) the common refin-

ment is Q = (P1 ∪ P ′1, . . . , Pn ∪ P ′n).

Lemma. Refining a partition increases lower sums and decreases upper sums. In

other words, let P be a partition of a box B and f : B → R be bounded. If Q is a

refinement of P , then:

L(f, P ) ≤ L(f,Q) U(f,Q) ≤ U(f, P )

Before proving this lemma, let us state a corollary

Corrolary. Let B be a box and f : B → R be a bounded function. If P and P ′ are

any two partitions of B, then L(f, P ) ≤ U(f, P ′).

Proof of corollary. Clearly for any partition we have L(f,Q) ≤ U(f,Q). Le tQ be

the common refinement of P and P ′ and use the lemma to see that:

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ′)

Great!
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