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Characterization of Riemann Integrability

Definition. Let A ⊆ Rn. We say that A has Lebesgue measure zero in Rn if for

every ε > 0 there exists a covering of A by a countable collection B1, B2, . . . of boxes

such that:

∞∑
j=1

v(Bj) < ε

We’ll call this `-measure zero for convenience.

Proposition. Some properties of measure-zero sets:

a) If B ⊆ A and A has `-measure zero, then B has `-measure zero

b) If A =
⋃∞
j=1Aj and Aj has `-measure zero for all j, then A has `-measure zero.

c) A set A has `-measure zero if and only if for every ε > 0 there exists a covering

of A by a countable collection of open boxes B1, B2, . . . such that:

∞∑
j=1

v(Bj) < ε

Aka, we may replace the boxes in the definition by open boxes

d) If B is a box, then ∂B has `-measure zero

e) If v(B) 6= 0 then B does not have `-measure zero

Proof. Let’s go!
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a) (a) is direct

b) Fix some ε > 0. Then since Aj has `-measure zero there are boxes Bj1, Bj2, . . .

such that:

Aj ⊆
∞⋃
k=1

Bjk

∞∑
k=1

v(Bjk) <
ε

2j

And then:

A ⊆
∞⋃
j=1

⊆
∞⋃
j=1

∞⋃
k=1

Bjk

∞∑
j=1

∞∑
k=1

v(Bjk) <
∞∑
j=1

ε

2j
= ε

Therefore A has `-measure zero.

c) The converse direction is immediate. We handle the forward direction. Let

A ⊆ Rn have `-measure zero. Fix ε > 0. We know that there is a collection of

boxes B1, B2 . . . such that:

A ⊆
∞⋃
j=1

Bj

∞∑
j=1

v(Bj) <
ε

2n+1

Then for each Bj with v(Bj) 6= 0, let B̃j be the open box that is obtained from

Bj by dilating it (around its center), by a factor of 2. If v(Bj) = 0 then let B̃j
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be an open box containing Bj with v(B̃j) <
ε

2j+1 . Then clearly:

A ⊆
∞⋃
j=1

Bj ⊆
∞⋃
j=1

B̃j

∞∑
j=1

v(B̃j) =
∞∑
j=1

v(Bj)=0

v(B̃j) + 2n
∞∑
j=1

v(Bj)6=0

v(Bj)

<
ε

2
+
ε

2
= ε

Great! Thus A has `-measure zero.

d) Let B = [a1, b1]× · · · × [an, bn]. Then ∂B is the union of the faces of B given by:

[a1, b1]× [aj−1, bj−1]× ξj × [aj+1, bj+1]× · · · × [an, bn]

Where 1 ≤ j ≤ n and ξj ∈ {aj , bj}. Let us denote this ace by Fj . Then:

Fj ⊆ Bj = [a1, b1]× · · · × [ξj − δ/2, ξj + δ/2]× · · · × [an, bn]

v(Bj) = δ
∏
i 6=j

bj − aj

We can make this arbitrarily small by choosing δ to be small, and so Fj has

`-measure zero, showing that ∂B has `-measure zero by part (b).

e) Now suppose that v(B) 6= 0 and B has `-measure zero for the sake of ontradiction.

We know that B = B ∪ ∂B and so by part (b) we know that B has `-measure

zero, and also v(B) 6= 0 since B ⊆ B. Now take ε = 1
2v(B) and let B1, B2, . . . be

a countable collection of open boxes such that:

B ⊆
∞⋃
i=1

Bj

∞∑
j=1

v(Bj) < ε

Since B is compact, there exists a finite subcollection, say B1, . . . , Bk such taht
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B is a subset of B1 ∪ · · · ∪Bk. Then:

v(B) ≤
k∑
j=1

v(Bj) < ε =
1

2
v(B)

Since v(B) 6= 0 this gives a contradiction!

Great!

Example. The set of rational numbers in [0, 1] has `-measure zero, because it is the

countable union of singletons, and every singleton has `-measure zero. Recall that

this set is not Jordan measurable.

Theorem (Characterization of Riemann integrability). Let B ⊆ Rd be a box and

f : B → R be a bounded function. Let D be the set of points in B at which f is

discontinuous. Then f is Riemann integrable on B if and only if D has `-measure

zero.

Example. Consider the following function:

f(x) : [0, 1]→ R

x
f7−→

{
1 if x ∈ Q
0 if x 6∈ Q

Then D = [0, 1], which does not have `-measure zero. Therefore f is not Riemann

integrable.

Proof. Choose M such that |f(x)| ≤M for all x ∈ B:

(⇐) Suppose that the set D has `-measure zero. Let ε > 0 be given. We shall

exhibit a partitioon P of B such that:

U(f, P )− L(f, P ) ≤ Cε

where C is a constant independent of ε and P . By the Riemann criterion,

this implies that f is Riemann integrable. Since D has `-measure zero. There
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exists open boxes B1, B2, . . . such that:

D ⊆
∞⋃
j=1

Bj

∞∑
j=1

v(Bj) < ε

For each x 6∈ D , f is continuous at x, and so there exists an open box Qx

centered at x such that:∣∣f(y)− f(y′)
∣∣ < ε (∀y, y′ ∈ Qx ∩B)

Let Cx = (Qx ∩B)o which is a box. The collection {Bj} and {Cx} is an open

cover of B which is compact. Therefore there exists a finite subcover:

B1 ∪ · · · ∪Bp ∪ Cx1 ∪ · · · ∪ Cxq

Rename C` := Cx` . We have thus obtained that:

B =

(
p⋃

k=1

Bk

)
∪

(
q⋃
`=1

C`

)
p∑

k=1

v(Bk) < ε

y, y′ ∈ C` =⇒
∣∣f(y)− f(y′)

∣∣ < ε

Let P be the partition of B that contains all of the endpoints of the component

intervals of the boxes {Bk} and {Q`}. Then each Bk and each Q` is the union

of sub-boxes is the union of sub-boxes determined by P .

We split the sub-boxes R determined by P into two groups, which we will call

R1 and R2. R1 is the sub-boxes that are contained in Bk for some 1 ≤ k ≤ p,
then R2 are the sub-boxes contained in Q` for some 1 ≤ ` ≤ q.
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We then estimate:

U(f, P )− L(f, P ) =
∑
R

[MR(f)−mR(f)] · v(R)

≤
∑
R∈R1

[MR(f)−mR(f)] · v(R) +
∑
R∈R2

[MR(f)−mR(f)] · v(R)

≤
∑
R∈R1

2M · v(R) +
∑
R∈R2

ε · v(R)

≤ 2M ·
∑
R∈R1

v(R) + ε ·
∑
R∈R2

v(R)

≤ 2M ·
p∑

k=1

∑
R∈R1
R⊆Bk

v(R) + ε ·
∑
R

v(R)

= 2M ·
p∑

k=1

v(Bk) + ε · v(B)

< (2M + v(B)) · ε = C · ε

And this finishes this part of the proof!

(⇒) We now show that if f is integrable then D has `-measure zero. We need to

introduce the notion of the oscillation of a function at a point:

Definition. With g : A ⊆ Rn → R bounded and for x ∈ A we define the

oscillation of g at x:

oscδ g(x) := sup
y,y′∈A∩B(x,δ)

[g(y)− g(y′)]

osc g(x) := inf
δ>0

oscδ g(x)

Exercise. Show the following properties of the oscillation function:

a) oscδ g(x) = supB(x,δ)∩A) g − infB(x,δ)∩A g ≥ 0.

b) oscδ g(x) is increasing in δ, i.e. if δ < δ′ then oscδ g(x) ≤ oscδ′ g(x).

This follows because the supremum over a smaller set is smaller than the

supremum over a bigger set

c) Then we have that osc g(x) = limδ→0 oscδ g(x).

d) f is continuous at x if and only if osc f(x) = 0.

6



The rest of this direction will be done in next section
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