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Theorem. Let E be a subset of a metric space X. Then the following are equivalent:
1) E is compact

2) E is sequentially compact

3) E is complete and bounded.

We've already seen that in matric spaces compactness implies sequential compact-

ness. It remains to show:

(a) Sequential compactness implies compactness

(b) Sequential compactness implies totally bounded and complete
(c) Totally bounded and complete implies sequentially compact

We will prove (b) and (c) first and then (a). In fact, the proof of the theorem
follows from the following three lemmas

Lemma 1. A sequentially compact subset E of X is totally bounded and complete
Lemma 2. A totally bounded and complete subset E of X is sequentially compact
Lemma 3. A sequentially compact subset of a metric space is compact

Proof of Lemma 1, Totally Bounded. Note that if E = () then we are done. Thus
let E # () for the duration of this proof.
Let E be sequentially compact. To show it is totally bounded, fix an € > 0.

Claim. Let A C FE be a set of points of mutual distance > . Then A has to be
finite



Proof of claim. Suppose that A were infinite. Then we get a sequence of points
(zn,) € A such that d(x,,, z,,) > ¢ for all n # m. But this means that no subsequence

of (x,) is Cauchy, and therefore no subsequence of (x,) is convergent, violating

sequential compactness. v

Now let p; € E be arbitrary. If possible we pick ps € E such that d(ps,p1) > €.
If this is not possible then we stop. Then we pick ps € E such that d(pi,p3) > ¢
and d(p2,ps) > e. If this is not possible we stop

Now having picked p1,...,py, in this way such that d(p;,p;) > € for all 1 < i #
Jj < n, we pick ppy1 € E such that d(pp41,p;) > € for all 1 < j < n. If this is not
possible, then E C |J; N-(p;) and we are done.

The claim above tells us that we cannot continue this process forever, and thus
it must end after n steps for some n € N. Therefore F is totally bounded —
Proof of Lemma 1, Completeness. Let (x,) be a Cauchy sequence in E. Since E is
sequentially compact there is a convergent sequence (z, ) such that z,, converges
to some p € F as k goes to infinity. Now let € > 0, then there is some N € N large

enough so that for £ > N and n > N we know that:

€
d(zp, xn,) < 2
€
JAN
d(IL‘n,p) < d(gjnv xnk) + d(xnk’p)
< = + Z= €
2 2
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Thus (z,,) converges to p € E. Therefore E is complete!

Proof of Lemma 2. Assume that F is totally bounded and complete. Let (z,) be a
sequence in E. We want to show that it has a convergent subsequence. If the set of
all {z,,} is finite, then we can find a constant subsequence and we are done. Assume
that {z,} is infinite.

Since F is totally bounded, one can cover E with finitely many %—neighborhoods.
One of these neighborhoods must contain infinitely many (z,) by the pigeonhole
principle. Thus we may call this resulting subsequence (a:?(ll))

Now cover E with finitely many %—neighborhoods. One of these neighborhoods

contains infinitely many of the <x£11)> by the pigeonhole principle. This gives a



subsequence (x?) of (m?) completely contained in a %—neighborhood. This is
also a subsequence of (z,) of course.

Inductively, we can define a successivesubsequence (x%k)) such that (a:%k)> is a

subsequence of (az%kil)> and (:m(f)) is contained in a ball of radius 2%

Now set a,, = x%”). This is a subsequence of (x,,) that satisfies:

d(ay,am) =d <x7(1"),$(m))

m

If m > n then (gc](gm)> is a subeequence of (a:](gn)) and (ml(,n)) is contained in a ball

1

of radius 5 with some center, say c for concreteness. Thus:

d (x%"), :L'S,f[”) é d (x%"), c) +d (acgg"”), c)

on T o0 T g

Of course we can swap the role of n and m and so we always have:

1
d(arn am) <

— 9min(n,m)-1

With this established it is clear that (a,) is cauchy. By completeness of E, we
know (a,) converges to a point p € E as desired. Therefore (x,) has a convergent

subsequence v

Lemma 4 (3’). Let E C X be sequentially compact. Let {Ga}aca be an open cover
of E. Then there exists an € > 0 such that every ball of radius € and center p € E

is contained in one of G, for some o € A.

Proof. Suppose the statement is not true. Then for any integer n > 1 there exists
a pp € E such that Ni(py,) is not contained in any of the {G,}aca. By sequential
compactness, (pp) has & convergent subsequence (pp, ) converging to some p € E.

Since p € E there exists a ag such that p € G,,, and so there is some § > 0 so
that N5(p) € Gay-

Since py, — p, we may pick n; large enough so that:
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But then fixing © € N 1 (py,, ) we have:
"k
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And so x € N§(p) C Gq,. This shows that N1 (p,,) € Ga,. Oops! ®
"k

Proof of Lemma 3. Suppose that E is sequentially compact. Now let {G,} be

any open cover of E. By Lemma 4 (3’), there exists an € > 0 such that any e-

neighborhood of a point in F is contained in one of the G,. Since sequentially com-

pact implies totally bounded, E can be covered by finitely many e-neighborhoods.
That is there is a list p1,...,pny € E such that:

N

EC U Na(pj)
j=1

Now for each p; with 1 < j < N there exists some o such that N.(p;) C Gao, by

construction of € by lemma 3’. Therefore:

N
EcC |Gy
j=1

]

Thus, FE is comapct as desired.



