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More Implicit Function Theorem

Problematic: We have f : A ⊆ Rk+n → Rn with f = f(x, y) with x ∈ Rk and

y ∈ Rn. We are interested in the level set L = {f(x, y) = 0}.

y ∈ Rn

x ∈ Rk
a

b
f(x, y) = 0

Suppose that (a, b) is on the level set, that is f(a, b) = 0. Now the equation f = 0

gives us n-equations in x

Question: Can we write the condition that {f(x, y) = 0} near (a, b) as the graph

of a function y = g(x), i.e. (x, y) ∈ L if and only if y = g(x). In other words, can

we solve the system of equations f(x, y) = 0 near (a, b) for y in terms of x? In yet

other words, does the equation {f = 0} define y implicitly in terms of x

Roughly speaking, the implicit function theorem says that the answer is yes

provided that ∂f
∂y = ∂(f1,...,fn)

∂(y1,...,yn)
is non-singular.

Before stating the theorem precisely, let’s state an easier result about the deriva-

tive of the implicit function:

Theorem (Implicit Differentiation). Let A ⊆ Rk+n be open and f : A → Rn be

differentiable and write f = f(x, y) with x ∈ Rk and y ∈ Rn. Now suppose that the

equation f(x, y) = 0 defines y implicitly, i.e. there exists a function g : B → Rn
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defined on an open subset B of Rk such that (x, g(x)) ∈ A and f(x, g(x)) = 0 for

all x ∈ B.

THEN, for x ∈ B we have:

∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x)) ·Dg(x) = 0

In particular, if ∂f
∂y (x, g(x)) is invertible, then:

Dg(x) = −
[
∂f

∂y
(x, g(x))

]−1 ∂f
∂x

(x, g(x))

Proof. Then let h : B → Rk+n be the function h(x) = (x, g(x)) then f ◦ h = 0 by

supposition. Take the derivative of this expression, and so by the chain rule:

Df(h(x)) ·Dh(x) = 0

Dh(x) =

(
Ik

Dg

)∣∣∣
x

Df =
(

∂f
∂x

∂f
∂y

)
Df(h(x))Dh(x) =

(
∂f
∂x

∂f
∂y

)∣∣∣
h(x)
·

(
Ik

Dg

)∣∣∣
x

=
∂f

∂x
(h(x)) +

∂f

∂y
(h(x))Dg(x) = 0

And this is what we wished to show.

The implicit function theorem tells us that the invertibility of ∂f
∂y is sufficient for

the condition of the above theorem to hold
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Theorem (Implicit Function Theorem). Let A ⊆ Rk+n be open and f : A → Rn

be of class Cr with r ≥ 1. Write f in the form f(x, y) with x ∈ Rk and y ∈ Rn.

Suppose that (a, b) ∈ A such that f(a, b) = 0.

y ∈ Rn

x ∈ Rk
a

b
f(x, y) = 0

If ∂f
∂y (a, b) is non-singular, then there exists a neighborhood B ⊆ Rk of a and a

unique continuous function g : B → Rn such that g(a) = b and f(x, g(x)) = 0 for

x ∈ B. The function g will in fact be of class Cr. In fact inside the green window,

f(x, y) = 0 if and only if y = g(x).

Remark. Of course, the variables y for which we solve for in terms of x don’t have

to be the last n coordinates. They can be any n of the (n + k) coordinates.

Proof. Step 1 (An Auxiliary Function): Consider the auxiliary function:

F : A ⊆ Rk+n → Rk+n

(x, y)
F7−→

(
x

f(x, y)

)

DF (x, y) =


DF1

DF2

...

DFk+n

 =

(
Ik

Df

)

=

(
Ik 0
∂f
∂x

∂f
∂y

)

3



Therefore using block matrices you can check that:

detDF (x, y) = det Ik det

(
∂f

∂y

)
= det

(
∂f

∂y

)
But we know that ∂f

∂y is nonsingular at (a, b) and so:

detDF (a, b) = det
∂f

∂y
(a, b) 6= 0

Thus DF (a, b) is nonsingular, and so by the inverse function theorem there exists a

neighborhood U ×V of (a, b) such that a ∈ U is open in Rk and b ∈ V is open in Rn

as well as a neighborhood W of (a, 0) ∈ Rk+n such that F is a Cr-diffeomorphism

from U × V onto W .

y ∈ Rn

x ∈ Rka

b
f(x, y) = 0

U

V F

G

z ∈ Rn

x ∈ Rk(a, 0)

W

Let G : W → U × V be the the inverse function of F . I.e. (x, y) = G(x, f(x, y)).

for all (x, y) ∈ U × V and (x, z) = F ◦ G(x, z) for (x, z) ∈ W . This tells us that

G is the identity on its first k coordinate functions. Let h : W → V be defined

as h(x, z) = (Gk+1, Gk+2, . . . , Gk+n), h is clearly Cr since G is Cr by the inverse

function theorem.

Step 2 (Definition of g): Let B be a ball around a such that B ⊆ U and B×{0} ⊆
W . Now notice that (x, y) ∈ B×V satisfies f(x, y) = 0 if and only if F (x, y) = (x, 0)

if and only if (x, y) = G(x, 0) = (x, h(x, 0)). Defining g(x) = h(x, 0) for x ∈ B we

have that (x, y) ∈ B × V satisfying f(x, y) = 0 if and only if y = g(x) for x ∈ B.

Clearly g is Cr since h is Cr.

Also note that (a, b) = G(a, 0) = (a, h(a, 0)), and so b = h(a, 0) = g(a) as

desired.

Step 3 (Uniqueness of g): Suppose that g′ : B → R is another continuous func-
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tion that satisfies the conclusions of the theorem. Let S = {x ∈ B | g(x) = g′(x)}.
Clearly since g and g′ are continuous, S is closed relative to B. Also, we must have

that a ∈ S, since b = g(a) = g(a′). We will show that S is also open in B, which

would mean that S = B, since B is connected. This will finish the proof. We’ll

leave this until next time
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