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A Small Digression

Last time we showed that compactness in a metric space is equivalent to sequential

compactness is equivalent to totally bounded and complete.

It is clear then that if the total space is complete then compactnes in that space

is equivalent to closed and totally bounded

How is this useful in mathematics?

When solving an ODE or a PDE, we can often recast the problem as solving an

equation of the form:

F (x) = 0

for some continuous function F : X → X and some metric space X, which will be a

space of functions. Suppose we are able to find a sequence of approximate solutions

to this equation, for example a sequence xn such that:

F (xn) = εn

Where we have ‖εn‖X → 0 as n→∞. If we can then show that the sequence (xn)

belongs to a compact subset of X, then it must have a convergent subsequence.

This convergent subsequence will converge to some x0, and necessarily we will have

F (x0) = 0 as desired.
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3 Continuous functions on metric spaces

Definition. Let X and Y be metric spaces. We say that a function f : X → Y is

continuous at x0 ∈ X provided that for every ε > 0 there exists a δ = δε,x0 such that

whenever d(y, x0) < δ we have d(f(y), f(x0)) < ε.

In other words, f maps BX(x0, δ) into BY (f(x0), ε). We say in particular that

f is continuous when f is continuous at every point x0 ∈ X

Proposition. f : X → Y is continuous if and only if the inverse image of every

open set U ⊆ Y is open in X.

Proof. Let’s go!

(⇒) Fix x ∈ f−1(U). Then since f(x) ∈ U , we know that there is an ε > 0 so

that BY (f(x), ε) ⊆ U . By continuity there exists some δ > 0 so that f maps

BX(x, δ) into BY (f(x), ε. Therefore:

BX(x, δ) ⊆ f−1(BY (f(x), ε)) ⊆ f−1(U)

Therefore f−1(U) is open.

(⇐) Fix x ∈ X. Now fix ε > 0. Note that BY (f(x), ε) is an open set in Y . Thus

f−1(BY (f(x), ε)) is open in X. Since x is in this set in particular, we know

there exists a δ > 0 so that:

BX(x, δ) ⊆ f−1(BY (f(x), ε))

f(BX(x, δ)) ⊆ BY (f(x), ε)

Therefore f is continuous at x. Since x ∈ X was arbitrary, f is continuous.

Theorem. Let X be a compact metric space and let f : X → Y be continuous, then

f(X) is compact

Proof. Let {Gα} be an open cover of f(X). Then {f−1(Gα)} is an open cover of

X. By compactness of X, there exists α1, . . . , αn such that {f−1(Gαi)}1≤i≤n is an

open cover of X. But then {Gαi}1≤i≤n is an open cover of f(X).

Corrolary 1 (Extreme Value Theorem). Let f : X → R be a continuous function.

If f is compact, then f has a maximum and a minumum value.
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Proof. f(X) is compact in R. Therefore f(X) is closed and bounded. Since it

is bounded, inf f and sup f exist. Furthermore, since it is closed, we know that

inf f, sup f ∈ f(X). This shows that these are in fact a minimum and a maximum,

as desired.

Definition. Let X and Y be metric spaces. We say that f : X → Y is uniformly

continuous if for every ε > 0 there exists a δ = δ(ε) such that if dX(x, y) < δ then

dY (f(x), f(y)) < ε

Clearly uniform continuity implies continuity.

Theorem. Let X be a compact metric space and Y be any metric space. If f : X →
Y is continuous then it is in fact uniformly continuous.

Proof. Pick some ε > 0. Let ε′ := ε
2 . Then for each x ∈ X we know there is some

δx > 0 so that f(Bδx(x)) ⊆ Bε′(f(x)) by continuity. Let δ′x := 1
2δx. Now note that

X is covered by these balls {Bδ′x(x)}x∈X . So in particular since X is compact we

have x1, . . . , xn and δ′1, . . . , δ
′
n > 0 such that X is covered by {Bδ′i(xi)}1≤i≤n. Note

that we’ve notated δ′i := δ′xi and δi := δxi for convenience. Set:

δ := min
1≤i≤n

δ′i

Now let x, y ∈ X so that d(x, y) < δ. We know that there is some 1 ≤ i ≤ n so that

x ∈ Bδ′i(xi). Then in particular:

d(xi, y)
4
≤ d(xi, x) + d(x, y) < δ′i + δ

≤ δ′i + δ′i = δi

Therefore since δ′i < δi it is clear that x, y ∈ Bδi(xi). Great! Then we must have

that f(x), f(y) ∈ Bε′(f(x)). Which gives:

d(f(x), f(y))
4
≤ d(f(x), f(xi)) + d(f(xi), f(y)) < ε′ + ε′ = ε

Awesome! We win! f is uniformly continuous. See Hani’s notes for an equivalent

way to do this with Lemma 3’ from previous lecture (it is a similar idea).
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Part II

Differentiation on Rd

1 Definition of the derviative

1.1 Recollection

Recall. For φ : I → R where I is an open subset of R, we call φ differentiable at

x0 ∈ I provided that the limit

lim
h→0

φ(x0 + h)− φ(x0)

h

exists. If so we call this limit φ′(x0).

We call φ differentiable in I if it is differentiable at every point x ∈ I¿ If I is

not open, then we say φ is differentiable on I if there exists an extension Φ of φ to

some open set J ⊇ I such that Φ = φ on I and Φ is differentiable on J .

1.2 Generalization Steps

How do we generalize this? We would like to look at functions φ : Rn → Rm for

n,m ∈ N. If n = 1 and m ≥ 1 then the same definition works:

φ′(x0) = lim
h→0

φ(x0 + h)− φ(x0)

h

Exercise. Show that φ = (φ1, . . . , φm) : I → Rm where I ⊆ R where I ⊆ R is

differentiable at x0 if and only if φj is differentiable at x0 ofor every 1 ≤ j ≤ m and

moreover:

φ′(x0) = (φ′1(x0), . . . , φ
′
m(x0))

We run into trouble when n ≥ 1 we run into trouble because we cannot divide
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by a vector. Let’s reinterpret the case where n = 1 to deal with this. Note that:

lim
h→0

φ(x0 + h)− φ(x0)

h
− φ′(x0) = 0

lim
h→0

φ(x0 + h)− φ(x0)− φ′(x0) · h
h

= 0

lim
h→0

|φ(x0 + h)− φ(x0)− φ′(x0)h|
|h|

= 0

The final definition of differntiability at x0 makes much better since for φ : Rn → Rm,

since |h| is a nonzero real number. But we need to properly interpret φ′(x0)h.

Note that for φ : R → Rm, then φ′(x0) provides the best linear approximation

to φ(x0 + h)− φ(x0). Namely if ∆hφ(x0) = φ(x0 + h)− φ(x0) then the definition of

φ′(x0) tells us that:

r(h) := ∆hφ(x0)− φ′(x0)h

Satisfies |r(h)||h| → 0 as h→ 0. Essentially, this means that φ′(x0)h takes the increment

h in x and gives us the best linear approximation to ∆hφ(x0). This means that φ′(x0)

can be interepted as a linear transformation from R to Rm

1.3 The Correct Generalization

Definition. Let E ⊆ Rn be open and let f : E → Rm. We say that f is differen-

tiable at x ∈ E provided that there exists a linear transformation Df(x) : Rn → Rm

such that:

lim
‖h‖→0

‖f(x+ h)− f(x)− [Df(x)](h)‖
‖h‖

= 0

We can think of Df(x0) as an m × n matrix by linear alegbra. We will prove that

Df(x) is unique next lecture, justifying the notation.

Note that the f increment is ∆hf(x) = f(x + h) − f(x). How good is the

approximation, namely r(h) = ∆hf(x)−Df(x)h for a fixed x ∈ E. Then:

lim
‖h‖→0

‖r(h)‖
‖h‖

= 0
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