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The Elementary measure (Continued)

• Recall from last time that an interval I is a subset of R of the
form [a, b], [a, b), (a, b], or(a, b) where a, b ∈ R. The length of I is
defined to be |I| := b − a. A box in Rd is a Cartesian product
of intervals B = I1 × I2 × . . . Id and its volume is defined to be
|B| = |I1|. . . . .|Id|. An elementary set is any subset of Rd which is
the union of a finite number of boxes.

• Definition. Let E be an elementary set. Last time we saw that
we can write E = B1 ∪ B2 ∪ . . . Bn where B1, . . . , Bn are disjoint.
We define the elementary measure of E as m(E) := |B1| + |B2| +
. . . + |Bn|.

Q1) Show that m(E) is well-defined in the sense that if E can be
expressed in two ways as a union of disjoint boxes B1, . . . Bn

and B′1, . . . B
′
m, then

|B1|+ |B2|+ . . . + |Bn| = |B′1|+ |B′2|+ . . . + |B′m|.
Hint: There’s more than one approach you can take. One is to
notice that for an interval I in R, there holds that

|I| = lim
N→∞

1

N
#

(
I ∩ 1

N
Z
)
.

(why?). And more generally for a box B,

|B| = lim
N→∞

1

Nd
#

(
B ∩ 1

N
Zd

)
.
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Here 1
NZd = { k

N : k ∈ Zd}. Use this to give an alternative
definition of m(E) for an elementary set that does rely on its
decomposition into disjoint boxes.

• Properties of Elementary measure. Show that the following
holds

Q2) Show that if E1, . . . , En are disjoint elementary sets, then

m(E1 ∪ . . . ∪ En) =
n∑

i=1

m(Ei)

Recall that this is called finite additivity.

Q3) Show that if E ⊂ F are two elementary sets, then

m(E) ≤ m(F ).

This property is called monotonicity.

Q4) Show that if E1, E2, . . . , En is an arbitrary finite collection of
elementary sets, then

m(E1 ∪ . . . En) ≤ m(E1) + . . . + m(En).

This is called finite subadditivity.

• Why is this unsatisfactory? Of course, the main problem with
this measure is that we can only measure relatively simple sets
(namely the elementary sets). For example, we cannot measure the
area of a disc. One might be tempted to generalize this measure
naively as follows: For an arbitrary set E ⊂ Rd, define

mpixel(E) = lim
N→∞

1

Nd
#

(
E ∩ 1

N
Zd

)
.

However, this is not a particurlary satisfactory definition for (at
least) the following two reasons:

Q5) Find a subset E of R for which this limit does not exist.

Q6) Find a subset E of R such that both mpixel(E) and mpixel(E+x)
exist, but mpixel(E) 6= mpixel(E + x) for some x ∈ R.
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Proof of Q1.

Lemma. For any interval I in R we have that:

|I| = lim
N→∞

1

N
·#
(
I ∩ 1

N
Z
)

Proof. Consider that the following sets are in bijection:

f : I ∩ 1

N
Z→ NI ∩ Z

x 7→ N · I

This maps its domain into the codomain by definition, since N · I = {N ·
x | x ∈ I} and 1

NZ =
{

1
N ·m | m ∈ Z

}
. We also know since N > 0 that this

is an injection from linear algebra. We also know surjectivity as well by quick

definition from the sets. Now say I has endpoints a ≤ b, then NI has endpoints

aN and bN .

Now note that the cardinality #(NI ∩ Z) is between bN − aN − 5 and

bN − aN + 5. So then note that:

bN − aN − 5 ≤ #(NI ∩ Z) ≤ bN − aN + 5

b− a− 5

N
≤ 1

N
#

(
I ∩ 1

N
Z
)
≤ b− a +

5

N

b− a ≤ lim
N→∞

1

N
#

(
I ∩ 1

N
Z
)
≤ b− a

By squeeze theorem! We win! This limit is equal to |I| = b− a.
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Lemma. For any box B ⊆ Rd, we have:

|B| = lim
N→∞

1

Nd
#

(
B ∩ 1

N
Zd

)

Proof. First write B =
∏d

k=1 Ik for intervals Ik and note that:

B ∩ 1

N
Zd =

(
d∏

k=1

Ik

)
∩

d∏

k=1

1

N
· Z =

d∏

k=1

(
Ik ∩

1

N
· Z
)

#

(
B ∩ 1

N
Zd

)
= #

(
d∏

k=1

(
Ik ∩

1

N
· Z
))

=

d∏

k=1

#

(
Ik ∩

1

N
· Z
)

So now we write that:

lim
N→∞

1

Nd
#

(
B ∩ 1

N
Zd

)
= lim

N→∞

1

Nd

d∏

k=1

#

(
Ik ∩

1

N
· Z
)

=
d∏

k=1

lim
N→∞

1

N
#

(
Ik

1

N
Z
)

=

d∏

k=1

|Ik| = |B|

And therefore the lemma is proved!

We prove one final lemma, and then the result will fall out!

Lemma. Suppose that we have two disjoint sets X,Y ⊆ Rd and the limits:

lim
N→∞

1

Nd
#

(
X ∩ 1

N
Zd

)
lim

N→∞

1

Nd
#

(
Y ∩ 1

N
Zd

)

both exist, then:

lim
N→∞

1

Nd
#

(
(X ∪ Y ) ∩ 1

N
Zd

)
= lim

N→∞

1

Nd
#

(
X ∩ 1

N
Zd

)
+ lim

N→∞

1

Nd
#

(
Y ∩ 1

N
Zd

)
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Proof. This is fairly simple to prove. Note that:

(X ∪ Y ) ∩ 1

N
Zd =

(
X ∩ 1

N
Zd

)
∪
(
Y ∩ 1

N
Zd

)

And since these are disjoint:

#

(
(X ∪ Y ) ∩ 1

N
Zd

)
= #

((
X ∩ 1

N
Zd

)
∪
(
Y ∩ 1

N
Zd

))

= #

(
X ∩ 1

N
Zd

)
+ #

(
Y ∩ 1

N
Zd

)

We then know that we can take the limit as N → ∞ on either side by real

analysis and we must get the same limit as desired in the lemma

Now fix an elementary set E ⊆ Rd and let it be the union of disjoint boxes

B1, . . . , Bn. By applying the lemmas multiple times:

m(E) =
n∑

k=1

|Bk| =
n∑

k=1

lim
N→∞

1

Nd
#

(
Bk ∩

1

N
Zd

)

= lim
N→∞

1

Nd
#

((
n⋃

k=1

Bk

)
∩ 1

N
Zd

)

= lim
N→∞

1

Nd

(
E ∩ 1

N
Zd

)

Now note that the limit does not depend on the choice of disjoint boxes B1, . . . , Bn,

so if we choose another choice of disjoint boxes B′
1, . . . , B

′
m that union to E then we

know:

n∑

k=1

|Bk| = lim
N→∞

1

Nd

(
E ∩ 1

N
Zd

)
=

m∑

k=1

∣∣B′
k

∣∣

And so the measure of E is well-defined.
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