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Continue Defining the Riemann Integral

Definition. Given a box B = [a1,b1] X - -+ X [an, by] which is closed and a function
[+ B — R that is bounded. We defined a partition P = (Py, ..., P,) of B as a tuple
where each P; is a partition of [aj,b;]. We then let {Bj}é\/:l be the set of sub-bozes
determined by the partition. We then defined the lower sum and upper sum of f

over a partition P:

mp, = xlenéj f(zx)
Mpg; = sup f(z)
xij

N
L(f,P) = mp,v(B;)
j=1

N
U(f,P):=Y _ Mpu(B;)
j=1

Exercise. U(f,P) = —L(—f,P).

We then talked about refinements of a partition, saying that Q = (Q1,...,Qn)
is a refinement of P = (Py,...,P,) if PL C Q1,P, C Qo,....

We defined the common refinement of P = (P1,...,P,) and Q = (Q1,...,Qn)
as PuQ = (P1UQ1,...,P,UQy).

Lemma. Let P be a partition of a box B and f : B — R be bounded. If Q) is a



refinement of P then:

L(f,P)
U(f,p)

IN

L(f,Q)
U(f,Q)

v

Proof. We reduce first. Since U(f, P) = —L(—f, P), it is enough to prove the lemma
for lower sums.

Now since @ ca be obtained from P by successively adding points to the partition,
we can reduce to the case where @ is obtained from P = (Pi,..., P,) by adding a
single point. to Py for some 1 < k < n.

By symmetry, we assume that k = 1. Suppose that B = [a1, b1] X - - X[ap, by] and
suppose that P; consists of the points a1 = g < --- < 2, = b. Now @ is obtained
by adding the point ¢ that lies in the interior of (z,_1,x,) for some 1 < p < k.

The sub-boxes determined by P are of the form [x;_1, x;] X S where S is a subbox
of [ag,ba] X -+ X [ap, by] determined by the partition (P,..., P,). Let us denote by
. the set of all such subboxes.

The sub-boxes determined by @ are of the form: [z;_1,2;] x S for 1 <i<p-—1
orp+1<i<kand S €. or[ry,_1,q] xS orguz xS for Se.”. Therefore:

k

L(fa P) = Z m[mifl,xi]XS(f) ’ U([$i—17$i] X S)

=1
%

- > M,y 2i)xs(f) - v([@io1, 23] x )

1€ {1 pYU{p+1,.. k)
Ses

+ Z m[xpflva}XS(f) ’ ($P - xp—l) : U(S)

Ses

N,

The left sum appears in the definition of L(f,Q), and so we only consider the right
sum. The point is that the:

inf flz) < inf f(z), inf  f(x)

T€[Tp—1,2Tp) XS x€[Tp—1,9]XS z€[q,xp| xS

This implies that:

m[xpfl,xp}xS(f) ) (xp - xpfl) = m[xpfhzvp]xS(f) ) ((] - xpfl) + m[aopfha:p]xS(f) ’ (:Up - Q)

<My 1 g xs(F) (@ = Tp—1) + Mgz )xs(f) - (2p —q)



But then:

L(f,Q) = > Mg,z x5 (f) - v([Tim1, i) X S)

1€ {1 pYU{p+ 1.k}
Ses

+ Z m[:pp,l,q}xs(f) (g - xp—l) + m[q,zp]XS(f) ) (xp —q)
Ses

And so L(f, P) < L(f,Q) because:

L(f,P) = > Mg,y a)xs(f) - v([zio1, 2] X 5)
ie{l,...,p}U{p+1,....k}
Ses
+ Z m[xp_l,zp}XS(f) ) (xp - xp—l) ’ U(S)
Ses

And we know that:

Z m[mpflvxp}XS(f) ’ ($P - $p_1) : U(S)

Ses
< Z Mg, 1 .qxs(f) (@ = 2p-1) + Mgz 1xs(f) - (xp — )
Ses
That was disgusting!!! 3

Corrolary. If P and P’ are any two partitions of B then L(f, P) < U(f,P’). The

proof was given last time.

Definition (Upper integrals, lower integrals, and Riemann integrability). Let B be
a box and let f : B — R be a bounded function.

a) We define the lower and upper integral of f over B respectively as:

/f(x) dz = sup L(f, P)
JB P
/Bf(x) dox = i%fU(f, P)

These numbers exist because L(f,P) is bounded above by (sup,cp f(x)) - v(B)
and U(f, P) is bounded below by (inf,cp f(z)) - v(B)

b) We say that f is Riemann integrable over B provided that the lower and upper

integral agree. In this case we define the Riemann integral fB f(x)dx as the

3



common value, aka:

/Bf(a:)dx = /Bf(a;)d:c:/Bf(x)da;

Remark. Strictly speaking, this is the definition of Darboux integrability. The
precise definition of Riemann integrability is: A bounded function f is Riemann
integrable with integral A on the box B if for every € > 0 there exists a § > 0 such
that if P is a partition of B with mesh < §, then for any choice of x, € B,, where
B, are the sub-boxes determined by P:

<e€

Y f(@a)v(Ba) — A
Ba

We will prove these are equivaelnt on Homework 9. F

Remark. Suppose that f : B C R? — R is a non-negative function. Then L(f, P)
is the total volume of a bunch of boxes under the graph of f whereas the upper sum

is the total volume of a bunch of boxes that are circumscribed

Exercise. Show that if f : B C R®™ — R is non-negative and bounded. Then f is
Riemann integrable if and only if the region in R™! under the graph of f given by:

R={(2,0n11) € R" xR |0 < 211 < f(2)}

is Jordan measurable with m(R) = [5 f(x)d.
Example. Let f: [0,1]> — R be defined as:

0 if x and y are rationally dependent
fla,y) =

1 otherwise

We call  and y rationally dependent provided that there exists (kq, k2) € Z? such
that (k1,k2) # 0 and kiz + koy = 0.
Now let P be any partition of B = [0, 1]2. For any subbox R resulting from the

partition we have:

mp(f) =inf f =0

Mpg(f) =sup f =1
R



Since for any subbox of [0, 1]2 with non-empty interior, there exists (z,y) € R such
that both x and y are rational numbers, and so they are rationally dependent. For
the second statement, since for any sub-box of [0, 1]? with non-empty interior, there
exists (z,y) € R such that x is a non-zero rational and y is irrational. This implies
that =,y are rationally independent.

Therefore:
L(f,P)=0 U(f,P)=1

For any partiton P of [0,1]?. And therefore:

/Bf(x)dx:O /Bf(:c)dle

Therefore, f is not integrable

Theorem 1 (The Riemann Condition). Let B be a box in R™ and let f: B — R be

a bounded function. Then:
a) We always have that [, f(z)dz < Ef(a:) dz

b) f is integrable if and only if for every e > 0 there exists a partition P of B for
which U(f,P) — L(f,P) < e.

Remark. Reminiscient of the exercise in our discussion sections that E is Jordan
measurable if for any € > 0 there eixsts elementary sets A C E C B such that
m(B\ A) < e.

Proof. Part (a) is trivial since we saw that L(f, P) < U(f,P’) for any P and P’
Taking the sup over P and the inf over P’ gives the result.

For (b), there are two directions:

(=) Suppose f is integrable and € > 0. Choose a partiton P; such that:

€
|L(f,P1)/ f’ <§
B
and another partition P» such that:
€
vt - [ 1] <
B



Then we know that U(f, P») — L(f,P1) < €. Take P to be the common
refinement of P; and P,. Then we know that:

This means that U(f, P) — L(f,P) < U(f, P») — L(f, P1) < . Thus we win!

(<) Let € > 0 be arbitrary. Choose a partition P such that U(f, P) — L(f, P) < e.
Then:

/Bf_/BfSU(f’P)—L(f,P)<g

Since we know that:

/st U(f, P)
| =)

Since € > 0 is arbitrary, we can take ¢ — 0 and so we must have that the

upper and lower integrals agree. Therefore f is integrable.

¢

With this we win! ©

Proposition. Let B be a box. Denote by R(B) the set of all Riemann integrbale
functions on B. Then:

1) R(B) is a vector space. That is if f,g € R(B) then f+cg € R(B) for all c € R.
Furthermore, fB is a linear function from R(B) to R. That is:

/Bf+cg=/Bf+C/Bg

2) Every constant function f(x) = c is integrable, and in particular has integral

fo:C‘U(B)

3) If P is any partition of B then:



Which is the sum taken over all sub-boxes determined by P

4) Let By,...,By be a collection of bozes that cover B, then:

v(B) <Y v(By)
j=1
Proof. Let’s go!

1) We leave this as an exercise

2 & 3) For any partition P note that:

L(f,P)=c) v(@Q) =U(f.P)
Q
And therefore by the Riemann condition, f is integrable. And furthermore:

/Bc:cgv(Q)

Taking P to be the trivial partition we have that [ ¢ = c-v(B)

4) Let B be a box containing By, ..., Bi. Now let P be a partition of B that
contains all the endpoints that define By,..., By and B. By the above:

¢



