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Last time, we proved that:

Theorem. Let A be an n× n matrix and h : Rn → Rn be given by h(x) = A · x. If

S is Jordan measurable then h(S) is Jordan measurable and:

vol(h(S)) = |detA| · vol(S)

Corrolary. Let a1, . . . , an be n linearly independent vectors of Rn. Let A = [a1, . . . , an]

be the n×n matrix whose columns are a1, . . . , an and let P be the parallelopiped given

by:

P =
{∑

ciai | 0 ≤ ci ≤ 1
}

Then v(P ) = |detA|

Proof. Let h(x) = Ax, then h takes the unit cube in Rn to P . Therefore:

vol(P ) = vol(h(S)) = |detA| · vol([0, 1]n) = |detA|

Orientations

Definition. Let β = (a1, . . . , an) be a basis of Rn. We call this basis right-handed

if det(a1, . . . , an) > 0 and left-handed if det(a1, . . . , an) < 0.

On a general vector space V . Let β = (v1, . . . , vn) and β′ = (w1, . . . , wn) be two

bases of V . Let wj = aj1v1 + · · · + ajnvn. Then the matrix A = (ajk) is invertible
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since:

A = β′ [Id]β

is a change of basis matrix. We say that β and β′ have the same orientation if

detA > 0 and opposite orientation if detA < 0.

Remark. The choice of notation is motivated by the 2D and 3D cases in which we

have the right-hand rule

Exercise. Show that:

1) This gives an equivalence relation on the set of bases of V with two equivalence

classes.

2) Another way to define this equivalence relation is as follows. Pick T : Rn → V

a linear isomorphism. Any basis β of V can be writte as {Ta1, . . . , Tan} where

(a1, . . . , an) is a basis of Rn. So given two bases β = {Ta1, . . . , Tan} and β′ =

{Tb1, . . . , T bn}.

β and β′ have the same orientation if and only if (a1, . . . , an and (b1, . . . , bn)

have the same orientation in Rn.

Theorem. Let C be a non-singular n× n matrix and let h : Rn → Rn be given by

h(x) = Cx. Let (a1, . . . , an) be a basis in Rn. Then the two bases (a1, . . . , an) and

(h(a1), . . . , h(an)) have the same orientation if and only if detC > 0.

Proof. Let bj = h(aj). Then C[a1, . . . , an] = [b1, . . . , bn]. But then:

detC · det(a1, . . . , an) = det(b1, . . . , bn)

And so detC > 0 if and only if det(a1, . . . , an) and det(b1, . . . , bn) have the same

sign, which is exactly when they have the same orientation.

Isometries of Rn

Definition. Let h : X → Y be a map between metric spaces (X, dX) and (Y, dY ).

We say that h is an isometry provided that:

dY (h(x1), h(x2)) = dX(x1, x2) (x1, x2 ∈ X)
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Remark. Isometries are always one-to-one, but they might not be onto. For exam-

ple h : R→ R2 where h(x) = (x, 0).

Here we will discuss isometries from Rn → Rn with the same Euclidean metrix

Example. Lets grab some examples!

1) Consider h : Rn → Rn where h(x) = x− a for a constant a ∈ Rn, since:

h(x)− h(y) = x− a− y + a = x− y =⇒ ‖h(x)− h(y)‖ = ‖x− y‖

2) Let h : Rn → Rn where h(x) = Ax and A is an orthogonal matrix. Then h is an

isometry:

Recall. A is orthogonal means ATA = AAT = Id. In other words:

〈Ax,Ay〉 = 〈ATAx, y〉 = 〈x, y〉

That is A preserves inner products

But then we know that:

‖Ax−Ay‖2 = 〈Ax−Ay,Ax−Ay〉

= 〈A(x− y), A(x− y)〉

= 〈x− y, x− y〉 = ‖x− y‖2

And therefore h is an isometry.

The interesting fact is that these are the only two examples of isometries on Rn

Theorem. Let h : Rn → Rn be a map such that h(0) = 0. Then:

a) h is an isometry if and only if h preserves inner products

b) h is an isometry if and only if h = Ax where A is an orthogonal matrix.

Proof. Let’s go!

a) Consider that:

‖h(x)− h(y)‖2 = 〈h(x)− h(y), h(x)− h(y)〉

= 〈h(x), h(x)〉 − 2〈h(x), h(y)〉+ 〈h(y), h(y)〉
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And:

‖x− y‖2 = 〈x− y, x− y〉

= 〈x, x〉 − 2〈x, y〉+ 〈y, y〉

Now we can do this. Therefore if h preserves inner products we must have

‖h(x)− h(y)‖ = ‖x− y‖, and so h is an isometry.

On the other hand, if h is an isometry and h(0) = 0 then:

〈h(x), h(x)〉 = |h(x)|2 = |h(x)− h(0)|2 = |x− 0|2 = 〈x, x〉

We also know for every x, y ∈ Rn that |h(x)− h(y)|2 = |x− y|2 and so using the

above two equations again we see that:

2〈h(x), h(y)〉 = 2〈x, y〉 =⇒ 〈h(x), h(y)〉 = 〈x, y〉

b) The backwards implication was discussed in the previous direction. For the for-

ward direction consider {h(e1), h(e2), . . . , h(en)} where e1, . . . , en is the standard

basis of Rn. Since h preserves inner products {h(e1), . . . , h(en)} is an orthonor-

mal set, which implies that it is an orthonormal basis.

Therefore for any x ∈ Rn we can express:

h(x) =
n∑
j=1

αj(x)h(ej)

And then we know that:

〈h(x), h(ek)〉 =

〈
n∑
j=1

αj(x)h(ej), h(ek)

〉

=

n∑
j=1

αj(x) · 〈h(ej), h(ek)〉

=
n∑
j=1

αj(x) · 〈ej , ek〉

= αk(x)
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But then we have that:

αk(x) = 〈h(x), h(ek)〉 = 〈x, ek〉 = xk

And therefore:

h(x) =
n∑
j=1

xjh(ej) = Ax

where A = [h(e1), . . . , h(en)]. Since this is an orthonormal basis, A is orthogonal

and so we are done.

Corrolary. Let h : Rn → Rn. Then:

1) h is an isometry if and only if it is an orthogonal transformation followed by a

translation. I.e. h(x) = Ax+ p where A is an orthogonal matrix and p ∈ Rn.

2) If h is an isometry, then h preserves volumes as well. That is if S is Jordan

measurable, then h(S) is Jordan measurable and:

v(h(S)) = v(S)

Proof. This is pretty cool!

1) Let h̃(x) = h(x) − h(0). Then h is an isometry if and only if h̃ is an isometry

with h̃(0) = 0, and this holds by the previous theorem if and only if h̃(x) = Ax

for A some orthogonal matrix.

Then by rearrangement h is an isometry if and only if:

h(x) = h̃(x) + h(0) = Ax+ h(0)

For some orthogonal matrix A.

2) We know that A ·S is Jordan measurable with volume |detA| · v(S) = v(S) since

|detA| = 1 when A is orthogonal. Of course A · S + p has the same measure as

A · S, and so h(S) = A · S + p, and therefore v(h(S)) = v(S) as desired!!!

Great!
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