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Recall. Let f : A ⊆ Rn → Rn with A open. Let x0 ∈ A. We say that f is lo-

cally invertible near x0 ∈ A provided that there eixsts U, V ⊆ Rn such that x0 ∈ U ,

f(x0) ∈ V , and f is bijective from U to V . Similarly we define local homeomorphism

and local diffeomorphisms.

Main Question: When is a function f a local diffeomorphism? If y = f(x) this

means, when can we express x as a function of y.

x0 x1

y0

y1

Then clearly we can only express x as a function of y in a neighborhood of y0 and

not y1. The reason for this difference is df
dx (x0) 6= 0 whereas df

dx (x1) = 0.

This geometric intuition turns out to be true in any dimension if we require

Df(x0) to be invertible instead of just non-zero. Of course this is equivalent to the

determinant of Df(x0) being nonzero.

Recall . Last time, we showed that if f is a local diffeomorphism near x0 and

g : U → V is the inverse function with x0 ∈ U and y = f(x0) ∈ V , then:

Dg(y0) = [Df(x0)]
−1

1



This shows the necessity of the condition Df(x0) being invertible for f to be a local

diffeomorphism near x0. The inverse function theorem (IFT) tells us that this is

sufficient

Theorem (Inverse Function Theorem, IFT). Let A ⊆ Rn be open and let f : A →
Rn be of class Cr with r ≥ 1. Suppose that x0 ∈ A and Df(x0) is invertible, then:

(1) There exists an open neighborhood U of x0 and an open neighborhood of V of

y0 = f(x0) such that f is a bijection from U to V

(2) The inverse function g : V → U is of class Cr as well, and Dg(y) = [Df(x)]−1

when y = f(x) for any x ∈ U .

Remark. Another interpretation of IFT is that it allows us to solve an equation:

y = f(x)

For x in terms of y locally around x0 when Df(x0) is invertible. Note that if the

funciton f is invertible then f(x) = Ax for some n×n matrix A, then the ability to

solve this equation is exactly the invertibility of A, but A = Df(x) for any x. Wow!

The IFT generalizes this to nonlinear functions using differentiability and we work

locally.

Remark. The IFT does not guarantee the existence of a global inverse function of

f : A→ Rn, but only a local inverse, even if Df(x) is invertible and continuous for

all x ∈ A.

The only exception is when n = 1, and A is connected. In that case if f ′(x) 6=
0 and f ′ is continuous then f ′(x) has a definite sign, and so f is either strictly

increasing or decreasing. This stops being true for n ≥ 2

Example. Here’s a concrete example. Let f : A = (1, 2) × (−π, 3π) → R2 where

f(r, θ) = (r cos(θ), r sin(θ)). Then:

Df(r, θ) =

(
cos(θ) −r sin(θ)

sin(θ) r cos(θ)

)

THen note that:

det(Df(r, θ)) = r ∈ (1, 2)
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And so Df(r, θ) is invertible on A. However f(r, 0) = (r, 0) = f(r, 2π). Thus f is

not globally injective, even though the IFT tells us that it is locally

Lemmas for the IFT

Lemma 1. Let A ⊆ Rn be open and let f : A → Rn be of class C1. If Df(x0) is

non-singular (that is invertible), then there exists an α > 0 and a neighborhood U

of x0 such that:

|f(x)− f(y)| ≥ α |x− y|

For any x, y ∈ U . In particular f(x) 6= f(y) if x 6= y. Therefore f is one-to-one on

U .

Proof. Let’s Go! First we need the linear case:

Let E = Df(x0). If f were a linear function, that is f(x) = Ex, then f(x) −
f(y) = E(x− y). Therefore x− y = E−1(f(x)− f(y)). This implies that:

|x− y| =
∣∣E−1(f(x)− f(y))

∣∣ ≤ ‖E−1‖ · |f(x)− f(y)|

Where we have defined for any matrix C : Rn → Rm the operator norm:

‖C‖ = sup
x∈Rn

|x|=1

|Cx|

Great!

Exercise. Prove that |Cx| ≤ ‖C‖ · |x| for any x ∈ Rn and that:

‖C‖ ≤ nm · max
1≤i≤m
1≤j≤n

|Cij |

This is useful for us!

Continuing we then have that:

|f(x)− f(y)| ≥ 1

‖E−1‖
|x− y|
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Step 2, we need to generalize. Let H(x) = f(x)− Ex where E = Df(x0). Then:

DH(x) = Df(x)− E

DH(x0) = Df(x0)− E = 0

Since H is a C1 function we can choose ε > 0 so that:

‖DH(x)‖ ≤ 1

2‖E−1‖

If x ∈ B(x0, ε). Now by the mean value theorem (that is Taylor’s Theorem at order

0) we have some c between x and ywith x, y ∈ B(x0, ε) so that:

|H(x)−H(y)| = |DH(c) · (x− y)| ≤ ‖DH(c)‖ · |x− y| ≤ 1

2‖E−1‖
· |x− y|

On the other hand:

|H(x)−H(y)| = |f(x)− f(y)− E(x− y)| ≥ |E(x− y)| − |f(x)− f(y)|

Therefore:

|f(x)− f(y)| ≥ |E(x− y)| − 1

2‖E−1‖
|x− y|

But then by Step 1:

|f(x)− f(y)| ≥ |E(x− y)| − 1

2‖E−1‖
|x− y|

≥ 1

‖E−1‖
|x− y| − 1

2‖E−1‖
|x− y| = 1

2‖E−1‖
|x− y|

Exercise. Suppose f : A ⊆ Rn → Rm is C1, show that the function x ∈ A 7→
‖Df(x)‖ is continuous. More generally we just need to know that the operator norm

is continuous, that is Mat(m× n)→ R≥0 given by A 7→ ‖A‖ is continuous.
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