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Announcements

e Final to be released on Monday December 14 in the afternoon, and due on

Tuesday early morning. Say 4pm-4am

e To be submitted through gradescope

Recalling Improper Integrals

Recall. For A an open set and f continuous on A. We defined the extended [ i

as follows:

o If f > 0 then we define:
/f—wy/f
DEJL

Where 7. is the set of all compact Jordan measurable sets.

e For general f we write f = fi — f_ and define:

Af:Ah—Aﬁ

By convention if f is continuous and A is open then [ 4 J will mean the extended

integral.

Problem: If A is open and bounded and f is continuous and bounded, we have two

definitions for [ 4 J- The extended integral may exist without having the ordinary



integral existing. We will see today that if the ordinary integral exists then the

extended integral exists and they are equal. We also proved the following

Lemma. If A C R" is open then there exists a sequence C1,Cy, ... of elementary

sets (also compact Jordan measurable) such that:

Cn C Cr
A=]J¢
j=1

Theorem. Let A C R"™ be open and let f : A — R be continuous. Choose a sequence
Cy € J. as in the above lemma. Then f is integrable on A (in the extended sense)

if and only if an |f| is bounded (uniformly in n). In this case,

f— lim f

n—o0

In particular, f is integrable on A if and only if | f] is too.
Proof. We’ll do this in cases:

e Let f be non-negative. In this case fC fdx is a monotonically increasing
n
sequence of non-negative numbers, and as such it converges as n — oo if and

only if it is uniformly bounded.

(=) Suppose that f is integrable over A. We want to show that an f exists
and converges to [ 4 fasn — oo. Since f is continuous and Cy, is compact,
then f is bounded on C,, and hence an f exists since C), is Jordan
measurable.

Also:

[t [ i=]s
DeJ.

Therefore an f is uniformly bounded in n. This implies that it converges,
now we need to show it converges to the right thing. We must also have
that:

im [ f< / s
n—oo Cn A



Great!

(<) Suppose lim,, an f exists. Then an f is uniformly bounded in n by
some constant M. Now take any D C A and D € J.. Then we know
that:

o
pclJcy
n=1

By compactness of D there exists a finite subcover, and since C; € C7 4

there exists some no such that D C C’;O. Therefore we know that:
[1<] 1<u
D Cney
And therefore we have a nonempty bounded set, so the supremum exists:
[r= s [ ren
A DCA JD
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Since M can be taken to be the limit as n — oo of an f then we get
that:

[ < pim [ 1
A n—oo Cn

Combining these two inequalities from the if and only if we win and get the

equality:

/ f = lim f
A n—oo Cn
Perfect!

Let’s deal with general f : A — R that is continuous. f is integrable over A
if and only if f; and f_ are integrable if and only if an f+ and an f- are

bounded sequences by case one.

But this is if and only if an f+ + f- is a bounded sequence, since fy, f— > 0.
But since fy + f- = |f]| this is only when an |f| is a bounded sequence.
Therefore applying case 1 this is if and only if [ 4 | f] exists.



In this case we of course have:

/Cnf+—>/Af+

[l

/Cnf=/onf+/0nf
%Ah—Aﬂ
:/Af

So we are done!

¢

Theorem. Let A be a bounded open set in R™ and let f : A — R be a bounded

continuous function. Then:
a) The extended integral exists
b) If the ordinary integral exists, then the two integrals are equal.

Proof. e Let us first show that the extended integral exists. Let M be an upper
bound for |f| on A. If D € J. is a subset of A, then:

[ifi< 0 [ 1=an0) < vo()

Where B is any box containing A. Therefore the set defining the extended
integral is bounded, and so the extended integral of |f| over A exists. This of
course implies that the extended integral of f over A exists by our previous

theorem.

e Now suppose that the ordinary integral [ 4 [ exists and that f > 0. Then let
B be a box containing A, then:

(Ord)/AfI/BfA



Now let D C A and D € J, then we must have that:

/Df—/DfAS/BfA—(OTd)/Af

Therefore taking a sup over all D we get that:

(ext) /A f < (ord) /A /

To show the reverse inequality, let P be any partition of B and let Ry,..., R,
denote the sub-boxes of this partition. Now let D = Jg.c4 Ri- Then D C A
and D € J.. Therefore:

L(fa, P) = mg,(fa)v(R:)
i=1
= > mg,(fa)v(Ry)

R;,CA

Sz/mf:/pf

R;,CA

<(ext) [ 1
A
Take the supremum over all such P and we obtain:
(ord)/ f=supL(fa,P) < (ext)/ f
A P A

These two inequalities imply that the ordinary and extended integrals agree
as desired to give (b) when f > 0.

e Write f = f, — f_ as usual. Since f is integrable over A in the ordinary sense,
so are fi = max(f,0) and f_ = max(—f,0). Therefore:

ford) [ £ = (ord) [ 1= (ora) [ £
= (ext) [ o= (ext) [ 1-
~(ext) | f

And this finishes the proof



=
Corrolary. Let S be any bounded set and f : S — R be a bounded continuous

function. If f is integrable on S in the ordinary sense, then:
ford) [ £ =(ext) [
S Se

Proof. Recall that if [¢ f = [q. f, then apply the previous theorem. =

This corollary is useful to translate results for extended integrals to ordinary

integrals (like the change of variable formula in the next section).

The Change of Variables Formula

Recall. THe change of variable formula in 1D, otherwise known as u-substitution.
Letting f,g : [a,b] — R be functions with ¢ C! and f continuous. Then letting
u = g(z) and du = ¢'(z) dz we have:

b g(b)
/fmmﬂmm=/ £() du
a g(a)

There’s a nuance, we are using ff f to denote the signed integral which is defined

/bf: f[a,b]f 1fa§b
a — f[bﬂ] f ifb<a
This u-substitution holds basically due to the chain rule, since if F' is an antideriva-

tive for f then (F og) = f(g(z)) - ¢'(2)
Integrating from a to b then gives u-substitution by the Fundamental Theorem

as:

of Calculus.

There is no notion of signed integrals in higher dimensions, so we first need
to formulate this theorem without signed integrals. For this note that g([a,b]) =
[9(a),g(b)] if g is increasing, i.e. ¢ > 0. And also g([a,b]) = [g(b),g(a)] if g is

decreasing, i.e. ¢’ <0.



If g is increasing then we can write:

flg(@)) - ' (z) = / oy T

[a,0]

And if g is decreasing then we can write:

)¢ (z)dx = — w) du
/[a,b] F(9(2)d () / .

That is:

/ F(9())(~d (@) dz = / f(u) du
[a,b] 9([a,b])

In either case, we may write that if g is monotone, then:

€T "(2)| da = u) du
Sota)]9/@) / oy T

la,b
This is the formula that generalizes easily to higher dimensions.

So we look at this genralizing this via the correspondence:

1D higher dimension
[a, b] set A
9([a, b)) g9(4)
g is monotone and C' | g is a C! diffeomorphism
u=g() u=g(x)
du = |¢'(z)| d= du = |det Dg|dx

And so we have something like:
| #g(o) et Dgldo = [ fwau
A 9(4)

And we use this in the same way with:

u=g(z)
du = |det Dg|dz

Definition. Let A be open in R™ and let g : A — R™ be a one-to-one function of
class C" such that det Dg(x) # 0 for x € A. We call such a g a change of variables



on A

Remark. Recall that a C" diffeomorphism is a one-to-one and onto function such
Lare in CO"
The inverse function theorem tells us that g~ € C" if g € C" and det Dg(z) # 0.

A change of variables on A is then nothing but a C” diffeomorphism from A to

9(4)

that g and g~

Theorem (Change of Variables Theorem). Let g : A — B be a C'-diffeomorphism
of open sets in R™ and let f : B — R be a continuous function. Then f is integrable
over B if and only if f(g(z)) - |det Dg(z)| is integrable over A, and:

/ f(g(x)) - |det Dg(x)| dz = / f(u) du
A B



