
Fall 2020 MATH 395 Zaher Hani

Handout 3

• The Cantor set. Let us start with the interval C = [0, 1] and
remove the middle third open interval (1

3 ,
2
3). This leaves us with

the set C1 = [0, 1
3 ] ∪ [2

3 , 1] formed of 2 closed subintervals. Having
constructed C1 ⊃ C2 ⊃ . . . ⊃ Cn where Cn is the union of 2n

subintervals each of length 1
3n , we construct Cn+1 as follows: To

obtain Cn+1 we remove the middle third of each of the 2n intervals
that form Cn. This leaves us with a union of 2n+1 intervals each of
length 1

3n+1 .

Q1) Let C = ∩n=1∞Cn. Why is C non-empty? Is it compact?

Q2) Show that every point in C is a limit point. Hence C is a
perfect set.

Conclusion: From the homework (HW 2), we deduce that C is
uncountable, since any perfect subset of Rd is uncountable.

Q3) Show that C cannot contain any interval (a, b).

Conclusion: As such, C is totally disconnected (it has no non-
trival connected subset) and nowhere dense (the interior of its
closure is empty).

Q4) What is the total length of Cn? What would be a reasonable
definition of the length of C?

• Wish list for a measure function Motivated by the above, it
would be grand to have a measure function that tells us how big
or small a subset of Rd is. This would be a function from the set
of subsets of Rd into [0,∞], say m : P(Rd) → [0,∞]. We would
like this function to satisfy the following properties:
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a) If E1, E2, . . . is a countable collection of disjoint subsets of R,
then

m(∪∞n=1En) =
∞∑

n=1

m(En).

b) If E is congruent to F (i.e. F can be obtained from E by
applying rigid motions: translations, rotations, or a reflections)
then we should have that m(E) = m(F ).

c) m([0, 1)d) = 1.

The bad news is that no such function can exist, and here’s why (at
least when d = 1). Let us define an equivalence relation between
elements of [0, 1) as follows: We say x ∼ y if x − y is a rational
number. Let N be the subset of [0, 1] that contains exactly one el-
ement of each equivalence relation (the existence of this N requires
invoking the axiom of choice). Now let R = [0, 1)∩Q, and for each
r ∈ R define the set

Nr = {x + r : x ∈ N ∩ [0, 1− r]} ∪ {x + r− 1 : x ∈ N ∩ [1− r, 1)}.
(Basically Nr is just the translate of N by r units to the right,
except that we move the part that sticks out of the interval [0, 1)
one unit to the left).

Q5) Show that [0, 1) is the disjoint union of Nr for r ∈ R.

Q6) Show that if a measure function satisfying a), b) and c) above
exists, then m(N) = m(Nr) for every r ∈ R.

Q7) Arrive at a contradiction.

Remark: One might think that possibly relaxing condition a) to cover
only finitely many disjoint sets En, i.e.

m(∪Nn=1En) =
N∑

n=1

m(En).

would resolve the contradiction. Unfortunately, the Banach-Tarski
paradox (cf. Figure 1) tells us that this is not enough to resolve this
issue.
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Figure 1: Banach-Tarski tells us that we can split the unit ball in R3 into finitely many
(actually 5 is sufficient) many disjoint pieces, apply rigid motions to those pieces and then
reassemble them to obtain two copies of the unit ball.

Conclusion: The problem with the above wishlist is that we insisted
on being able to measure every subset of Rd. We have shown that this
is impossible. The solution is to be content with a measure function
that is defined on some but not all subsets. Such subsets will be called
measurable subsets.
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Proof of Q1. For notational convenience denote for n ∈ N0:

Cn =
2n⋃

i=1

[ani , b
n
i ]

So that inductively for 1 ≤ i ≤ 2n:

C0 = [0, 1]

[
an+1
2i−1, b

n+1
2i−1

]
=

[
ani ,

2ani + bni
3

]

[
an+1
2i , bn+1

2i

]
=

[
ani + 2bni

3
, bni

]

Now lets tackle both of these questions!

• Note that a01 = 0 will always lie at the edge of an interval because supposeing

an1 = 0 we know an+1
1 = an+1

2·1−1 = an1 = 0. Therefore since:

0 ∈ [an1 , b
n
1 ] ⊆ Cn

for each n ≥ 0 we must know that 0 ∈ C. A similar argument shows that

1 ∈ C.

• C is compact!!! Why? Note that for every n ≥ 0 we have that Cn is a

finite union of closed intervals, so each Cn is closed. Thus, C =
⋂∞

n=0Cn is

closed. Furthermore since C0 = [0, 1] is closed and bounded, that is compact.

Therefore since C ⊆ C0 is a closed subset of a compact set, C must be compact.

Perfect! We win!
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Proof of Q2. Fix some point x ∈ C. Then x ∈ Cn for all n ≥ 0, and so for each

n ≥ 0 there exists some 1 ≤ in ≤ 2n so that x ∈
[
anin , b

n
in

]
. Suppose that ε > 0, then

there is some N ∈ N so that 1
3N

< ε. We claim that aNiN , b
N
iN
∈ Nε(x) ∩ C

• First we show that for all n ≥ 0 and all 1 ≤ i ≤ 2n we have ani is in C. First

note that ani ∈ [ani , b
n
i ] ⊆ Cn, and thus for each 0 ≤ m < n we must have

ani ∈ Cn ⊆ Cm. Inductively we will show that for m ≥ n if we let jn = i and

jm+1 = 2jm − 1 then:

ani = amjm ∈ Cm

Note that it’s trivial for m = n. Now suppose that amjm = ani . Consider that:

am+1
jm+1

= am+1
2jm−1 = amjm = ani

And so we must have that this works! Great.

• Now we show that for all n ≥ 0 and all 1 ≤ i ≤ 2n we have bni is in C. First

note that bni ∈ [ani , b
n
i ] ⊆ Cn, and thus for each 0 ≤ m < n we must have

bni ∈ Cn ⊆ Cm. Inductively we will show that for m ≥ n if we let jn = i and

jm+1 = 2jm then:

bni = bmjm ∈ Cm

Note that it’s trivial for m = n. Now suppose that bmjm = bni . Consider that:

bm+1
jm+1

= bm+1
2jm

= bmjm = bni

And so we must have that this works! Great.

• Now we show that for each n ≥ 0 and each 1 ≤ i ≤ 2n the interval [ani , b
n
i ] has

length 1
3n . Note first that:

b01 − a01 = 1− 0 = 1 =
1

30
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Inductively for 1 ≤ i ≤ 2n then we know that:

bn+1
2n−i − an+1

2n−i =
2ani + bni

3
− ani =

bni − ani
3

=
1

3
· 1

3n
=

1

3n+1

bn+1
2n − an+1

2n = bni −
ani + 2bni

3
=

bni − ani
3

=
1

3
· 1

3n
=

1

3n+1

Now we’re done, since in particular aNiN and bNiN are distinct, so for any ε neighbor-

hood of x there are at least two points in Nε(x) ∩ C. Thus x is a limit point.

Proof of Q3. Fix a < b. But then if we had two points x, y ∈ (a, b) such that

x, y ∈ C and y > x. Note that we then know that there exists some N ∈ N so that
1
3N

< ε. This means that x and y must lie in different intervals making up CN ,

since these are disjoint. But then (a, b)∩C is not an interval, since x, y ∈ C ∩ (a, b)

but there is some point z between x and y so that z 6∈ C. This necessarily means

so then (a, b) 6= C ∩ (a, b), and so (a, b) 6⊆ C.

Proof of Q4. Note that the total length of Cn is:

`(Cn) =
2n

3n

Since Cn is a union of 2n disjoint intervals each of length 3n. Note that for each

n ∈ N we must conclude since C ⊆ Cn we know:

`(C) ≤ `(Cn) =
2n

3n
=

(
2

3

)n

Taking n→∞ we then can see that `(C) should be zero.

Proof of Q5. Fix r, q ∈ R = [0, 1) ∩Q. We will first show that if Nr ∩Nq 6= ∅ then

r = q, so by contrapositive the {Nr}r∈R are disjoint. Fix y ∈ Nr ∩ Nq. There are

four cases:

• y = xr + r and y = xq + q for some xr, xq ∈ N . Then xr − xq = q − r by

algebra, and so since r, q ∈ Q we have that q − r ∈ Q and so xr ∼ xq. By the

definition of N it follows that xr = xq. Therefore xr + r = xr + q, giving that

r = q.

• y = xr + r − 1 and y = xq + q − 1 for some xr, xq ∈ N . Then xr − xq = q − r

by algebra, and so since r, q ∈ Q we have that q − r ∈ Q and so xr ∼ xq. By
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the definition of N it follows that xr = xq. Therefore xr + r− 1 = xr + q − 1,

giving that r = q.

• y = xr+r−1 and y = xq+q for some xr, xq ∈ N . Then xr−xq = q−r+1 ∈ Q.

Thus xr = xq. Therefore q = r − 1 by some quick algebra. This is clearly a

contradiction! Why? Well 0 ≤ r < 1, and so −1 ≤ r − 1 < 0, but we know

q ≥ 0!!! Oops!

• y = xr+r and y = xq+q−1 for some xr, xq ∈ N . Then xr−xq = q−r−1 ∈ Q.

Thus xr = xq. Therefore r = q − 1 by some quick algebra. This is clearly a

contradiction! Why? Well 0 ≤ q < 1, and so −1 ≤ q − 1 < 0, but we know

r ≥ 0!!! Oops!

We want to show that:

[0, 1) =
⋃

r∈R
Nr

Let’s go!

(⊆) Fix y ∈ [0, 1). Then by definition there is some x ∈ N so that y ∼ x. Note

that then y − x ∈ Q. Further we have 0 ≤ x, y < 1 There are two cases:

– Suppose that y − x ≥ 0. Now set r := y − x. First note that since x ≥ 0

and y < 1 we know y − x < 1− 0 = 1. Therefore r ∈ Q ∩ [0, 1) = R. We

claim that y ∈ Nr. In particular note that y = x + r. All that remains

to be shown is x ∈ [0, 1 − r). We know since x ∈ N that x ∈ [0, 1), so

x ≥ 0 immediately. We merely need to show that x < 1 − y + x. This

is simple, since y < 1 we know 1 − y > 0. With this we must have that

x ∈ [0, 1) ∩N , and so:

y ∈ {x′ + r | x′ ∈ N ∩ [0, 1− r)} ⊆ Nr

And so y ∈ Nr

– Suppose that y − x < 0. Set r := y − x + 1. Note then that r < 1.

Since 0 ≤ y we know −x ≤ y − x, and then since x < 1 it follows

that −1 < −x ≤ y − x, and so 0 < r. This shows since r ∈ Q that

r ∈ R = [0, 1) ∩ Q. We claim that y ∈ Nr. Note in particular that

y = x + r − 1 by algebra. We need merely show that x ∈ [1 − r, 1). To
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do this note that y ≥ 0 so y ≤ 0:

x ≥ −y + x = 1− y + x− 1 = 1− (y − x + 1) = 1− r

And we already know x < 1. Therefore:

y ∈ {x′ + r − 1 | x′ ∈ N ∩ [1− r, 1)} ⊆ Nr

And so y ∈ Nr!

Great! Since in either case r ∈ R, we must have that y ∈ ⋃r∈R Nr. This

finishes this direction!

(⊇) This side follows fairly immediately. Fix y ∈ ⋃r∈R Nr. Then y ∈ Nr for some

r ∈ R. There are then two quick cases:

– We have that y = x+ r for some x ∈ N ∩ [0, 1− r). Then note that since

r ≥ 0 we have:

0 ≤ x < 1− r

0 ≤ r ≤ x + r = y < 1

And thus y ∈ [0, 1)

– We have that y = x + r − 1 for some x ∈ N ∩ [1− r, 1). Then note that

since 1− r ≤ x < 1 that −r ≤ x− 1 < 0. Therefore since r < 1 we know:

0 ≤ x + r − 1 < r < 1

With this we’re done!

We’ve finished the proof that this is a disjoint union! Wow!

Proof of Q6. Fix some r ∈ R. We wish to show that m(Nr) = m(N). First note

that:

m(Nr) = m ({x + r | x ∈ N ∩ [0, 1− r)} ∪ {x + r − 1 | x ∈ N ∩ [1− r, 1))

= m({x + r | x ∈ N ∩ [0, 1− r)}) + m({x + r − 1 | x ∈ N ∩ [1− r, 1)})
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This follows from axiom (a) for our measure. But then by axiom (b) note that these

are translations of N ∩ [0, 1− r) and N ∩ [1− r, 1) respectively so:

m(Nr) = m(N ∩ [0, 1− r)) + m(N ∩ [1− r, 1))

We need to now show that:

[0, 1) = [0, 1− r) ∪ [1− r, 1)

This is farily quick since we note that r ∈ [0, 1)

(⊆) Fix x ∈ [0, 1). Then if x < 1 − r we have x ∈ [0, 1 − r). Otherwise we know

x ≥ 1− r and so x ∈ [1− r, 1).

(⊇) Fix x ∈ [0, 1 − r). Then since r ≥ 0 we know x < 1 − r ≤ 1. Therefore

0 ≤ x < 1, and so x ∈ [0, 1)

In the other case, fix x ∈ [1−r, 1). Then we know since r < 1 that 0 < 1−r ≤ x.

Therefore since 0 < x < 1 we have x ∈ [0, 1).

Now consider that:

(N ∩ [0, 1− r)) ∪ (N ∩ [1− r, 1)) = N ∩ ([0, 1− r) ∪ [1− r, 1)) = N ∩ [0, 1) = N

The last equality holds sincec N is a subset of [0, 1). Therefore:

m(Nr) = m(N ∩ [0, 1− r)) + m(N ∩ [1− r, 1)) = m(N)

And we are done!

Proof of Q7. We wish to arrive at a contradiction. There are three quick cases:

• Suppose that m(N) = 0. Then since Q is countable we know R = Q∩ [0, 1) is

countable, giving us by axiom (a) and (c) that:

1 = m([0, 1)) = m

(⋃

r∈R
Nr

)
=
∑

r∈R
m(Nr) =

∑

r∈R
0 = 0

This is a clear contradiction! Oops!
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• Suppose that m(N) > 0. Note that R is countable and for n ≥ 2 we have

0 < 1
n < 1 and so 1

n ∈ R. Then using axiom (a), axiom (c), and the fact that

m(N) is positive we know that:

1 = m([0, 1)) = m

(⋃

r∈R
Nr

)

=
∑

r∈R
m(Nr) ≥

∞∑

n=2

m
(
N 1

n

)

=
∞∑

n=2

m(N) =∞

This is clearly true, since we know that m(N) > 0 doesn’t go to zero,
∑∞

n=2m(N)

must diverge to infinity. This is an oops since 1 <∞

• Suppose that m(N) =∞ Then since R is countable and 0 ∈ R = Q∩ [0, 1) we

know that by axiom (b) and axiom (c),

1 = m([0, 1)) = m

(⋃

r∈R
Nr

)
=
∑

r∈R
m(Nr) ≥ m(N0) = m(N) =∞

This cannot be true since 1 <∞. Oops!

With all three of these completed, we must conclude that m(N) is undefined!!! Wow!

This is amazing ,
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