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1 Metric Spaces

1.1 Definition

Definition. A set X is called a metric space provided that it is equipped with a
function d : X x X — [0,00) such that

1. For all p,q € X we have d(p,q) =0 if and only if p=q

2. d(p,q) = d(q,p) for allp,q € X.

3. For all p,q,r € X we have

d(p,q) < d(p,r) +d(r,q)
We call d the metric on X. Formally we might write that (X, d) is a metric space,
since a set X may admit many different metrics on it.

Example. Let X = R” for some n € N. If p = (p1,...,pn) and ¢ = (q1,---,qn)

then we define:

N

n

1
da(p,q) = |> (5 —p)*| =lp—al={a—p.a—p)?
j=1

This is commonly called the ¢2 metric on R™. The triangle inequality follows from

Cauchy-Schwartz. Setting x =p —r and y =r — ¢, then x =y = p — ¢ and we also



have:

lz + [ < (ll= ]| + [l]])?
2] + llyll* + 2(z, y) < |z + [yl + 2llzl ]yl

But since we know from Cauchy-Schwarz that (x,y) < ||z||||ly]|, so we win!

We can put another metric on R", namely the ¢° metric for any 1 < s < oc:

s

n
ds(p,q) = | Y _laj —pil°
j=1
This is called the ¢° metric. There is also the ¢°° metric denoted as:
d — .
(D5 q) max lgj — pjl

1.2 Topology on metric spaces

Definition. A topology on a set X is some collection of subsets 7 C P(X), which
we will call the open subsets of X, such that:

e () and X are both open.

o Given any arbitrary family of open sets {U; }icr, their union | J;c; Ui is an open

set

o Given any finite collection of open sets, Uy,...,U,, then their intersection

Ni—, Ui is open.
Definition. Let (X,d) be a metric space. We define a topology on X as follows:

o Forxg € X and e > 0 we define the e-neighborhood of xg as:

N:(zg) :={zx € X | d(z,z0) < &}

o A subset U C X is called open provided that for every p € U there exists some
e >0 so that N.(p) CU.

Proof that this is a topology. The first property follows nearly trivially.



e Fix some arbitrary family of open sets {U;}ic;. Fix some p € J;c; Ui, then
there exists some j € I so that p € U;. Since Uj is open there exists some
€ > 0 so that:

N:(p) CU; C U Ui

And so we are done ®

e Let p € N, U; for some finite collection of open sets Uy, ..., Uy,. Then p € U;

for all 1 < j < n, and so there exists an r; > 0 for each j such that:
Ny, (p) € Uj

Take r = min(ry,...,r,. Then for all j we have N,(p) € Ny, (p) € U;. And

SO:

just as desired.

Remark. This third property is not true for infinite collections! What part of the

proof breaks and provide a counter-example.

With this we are done. =
Exercise. Also, as an exercise, show that for any r > 0 we have N,(p) is open.

Definition. We say a subset C C X of a topological space is closed provided that

its complement X \ C' is open.
Remark. By Demorgan’s laws we get three properties of closed sets:
e () and X are both closed
o If {Ci}icr is a collection of closed sets then [;; C; is closed
e If Cy,...,C, is a finite collection of closed sets then J;-_; C; is a closed set.

The proof is left as an exercise ©



1.3 Limit Points / Accumulation Points

Definition. A point p is called a limit point of a set E provided that every neigh-
borhood of p contains a point q # p such that q € E.

Example. Let £ = [0,1) U {2}. Then 1 is a limit point of E (note that 1 € E),
and also 2 is not a limit point of F even though 2 € F.

Definition. When p € E is not a limit point of E, p is called an isolated point of
E.

Definition. An interior point of E is a point p € E such that there exists r > 0 so
that N,.(p) C E. Thus a set is open exactly when all its points are interior points.
The set of all interior points of a set E is often denoted by E’, this is called the

interior of E.
Example. This depends on the entire metric space

o Let E=1[0,1) U{2} and X = [0,00). Then 0 is an interior point of E (since

N,(0) =[0,7) C E is r is small enough). Thus £ = [0, 1).

e Let £ =[0,1)U{2} and X = R. Then 0 is not an interior point of E, since
any neighborhood of 0 will contain negative numbers, which are not contained
in E.

Thus we conclude that the notion of interior (open or closed) depends on the ambient

space.

Definition. A set E is bounded provided that there eixsts a point x € X and a
number M > 0 such that E C Ny (z).

Definition. A set E C X is dense provided that every point of X is either a limit

point of £ or an element in E.

Example. Let X = [0,1)U{n} then X NQU {7} is dense in X. Notice that X NQ

is not dense in X.

Theorem. If p is a limit point of a set E, then every neighborhood of p contains

infinitely many points of E.
Exercise. Prove this

Corrolary. A finite set can have no limit points



Theorem. A set E is closed if and only if every limit point of E is contained in E.
Proof. Let’s do it! We will use X as our ambient space.

(=) Let E be closed and suppose p is a limit point of E. If p ¢ E then p € X \ E,
which is open, and so there exists an r > 0 such that N,.(p) C X\ E. Therefore
N, (p) N E = 0, but this contradicts the fact that p is a limit point. Therefore
p € E as desired.

(<) Suppose that every limit point belongs to E and take p € X \ E. Since p is
not a limit point of E there must exist some r > 0 such that N,.(p) N E = 0.
But then N,(p) C X \ E. Therefore X \ E is open, and E is closed.

Awesome! We win © —
Definition. A set E is called perfect if E is closed and every point of E is a limit
point. In other words, E consists exactly of its limit points.

Example. [0,1] is perfect in R, but [0,1] U {n} is not.

Example. Let X = R? = C. Consider the following sets

a) The set of all complex numbers |z| < 1
b) The set of all complex numbers |z| < 1
¢) A finite set F C C

e) The set z, = % where n € N

f

)
)
)
d) The set of all integers {(n,0) | n € N}
)
) The set of all complex numbers

)

g) The line segment (a,b) for a,b € R. That is the set of points z € C such that
Im(z) =0 and a < Re(z) <b

Closed | Open | Bounded | Perfect
a) X v v X
b) v X v v
c) v X 4 X
d) v X X X
e) X X v X
f) v v X v
g) X X v X
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1 Introduction

Office Hours

— Monday 8-9am
— Wednesday 4-5pm

— Beginning of Friday lecture

First HW will be posted on Friday

TAs are still not decided on

Further info on the waitlist to come

2 Continuing Metric Spaces

2.1 Last Time

We defined metrics d : X x X — [0,00) with three special properties, and we saw

that this gave us a topology on X.

e Open sets, given p € O we have some § > 0 so that Ns(p) C O.

Closed sets are the complements of open sets

Limit points, p is a limit point of E if every d-neighborhood of p intersects
in a point ¢ # p

Closed sets are exactly the sets where every limit point belongs to the set.



2.2 Closures!

Definition. If X is a metric space and E C X we denote by E’ the set of limit
points of X. The closure of E is the set E = EUE'.

Example. Here are some examples to look at!
e Let E=(0,1] CR then E' =[0,1]=F
o Let £E=(0,1]U{2} CR. Then E' = [0,1] and E = [0,1] U {2}.
Theorem. Let X be a metric space and E C X. Then:
a) E is closed
b) E=FE if and only if E is closed.
¢c) If EC F and F is closed then E C F.
Proof. Let’s go!

a) Let g € E°. Then ¢ ¢ E' U E. Thus there exists a § > 0 so that Ns(q)
Since Nj(q) is open we also know that Ns(q) N E' = (). Therefore Ny(q)

and so (E)C is open as desired.

NE=0.
NE=10
b) Easy exercise

¢) If E C F and F is closed, then E' C F because any limit point of E is also a
limit point of F. Therefore E C F.

¢

Theorem. Let E be a nonempty set of real numbers which is bounded above. Then

y=supE isin E. Hencey € E if E is closed.

Proof. If y € E then we are done because E C E. If y ¢ E then for any ¢ > 0 there

exists some x € F so that:
y—e<ar<y

But this means that z € N.(y), and so N.(y) N E # (. This implies that y € E’,

and so we are done since E' C E. v



2.3 Compact subsets of metric spaces

Definition. We need a couple definitions!

e An open cover of a set E in a metric space X is a collection {Gy}taca of open

sets such that:

o A subset E C X is called compact provided that every open cover of E admits
a finite subcover. That is we can find a finite subcollection {Ga, }1<i<n Of
{Gataca such that {Ga, }1<i<n covers E.

Theorem. Compact subsets of metric spaces are closed and bounded

Proof of Closed. Let K C X be compact and let ¢ € K¢ For each p € K there
exists two subsets U, and W), such that p € Uy, ¢ € W), and U, N W, = . Here
we use that metric spaces are Hausdorff. We can concretely take U, = N;s(p) and
W, = Ns(q) with § < 2d(p. q).

Then in fact {Up}pek is an open cover of K. By compactness there exists a
finite subcover Uy, ...Up, that covers K. Then let:

Then this W is open and W N Uy, = () for all 1 < j < n. Thus we must have

W N K = (), meaning that W C K¢ and K€ is open. =
Proof of Boundedness. Let x € X be arbitrary. The family of sets {N,(x)}nen is
an open cover of E since N is unbounded. Thus by compactness E has a finite
subcover, and so E C Ni(z) for some k € N. -
The main question for the rest of this section: Is the converse true? If not, what
should be a workable criterion for compactness in metric spaces?

In fact it is true on R™ by Heine-Borel. But not the converse, particularly in

infinite dimensions!

Theorem. Closed subsets of compact sets are compact.



Proof. Let C C K be a closed subset of a compact set K and let {G4}aca be an
open cover of C. Then {Gq}aeca UC® is an open cover for K. Thus by compactness

of K there exists aq,...,a, such that:

¢

Therefore C' is comapact.

Theorem (Finite intersection property). If { Ky }aca is a collection of compact sets
such that the intersection of any finite subcollection of { Ky }aca is nonempty. Then,

the intersection ﬂaeA K, is nonempty

Example. If F,, = (0, %] then F, has the finite intersection property since they

are nested and each of them are nonempty. But (), En = 0.

Proof. Suppose that (),cq Ko = 0. Then (J,c4 K5 = X, and so {KS}aca is an
open cover for K, where a, € A is arbitrary. This holds because compact subsets
of metric spaces are closed.

By compactness of K, there exists some aj, ..., a, such that:
n
Ko, €| J KS,
i=1
Thus the finite intersection:

n
K, N ﬂ Ko, =0
i=1

¢

This contradicts the finite intersection property. Oops! We win.

Theorem 1 (Compactness = sequential compactness). Let K be a compact
set and let {x,}nen be a sequence of points in K. Then there exists a convergent

subsequence {xn, tren of {xn}tnen that converges to a point in K.

Proof. Suppose that {z,} has no limit point in K. This means that for any p € K,
there exists some 6, such that Nj, (p) contains at most one point of the sequence

{zn}. The collection {Nj,(p)}per is an open cover of K.

4



By compactness we have some pyq, ..., p, such that:

K C{JNs,, (i)

-

1

1

But this must mean that K contains at most n points of the sequence {x,}. This
means that {z,} takes at most n values. Thus x,, must take one value infinitely
many times, and so x,, has a convergent subsequence.

On the other hand if {x,} has a limit point p € K, then for every k € N there
exists some z,, such that d (z,,,p) < % Clearly {zy, } is a convergent subsequence

and so we win. v

Remark. Is the converse true? Yes! But only in metric spaces.

3 Compactness in R”

Theorem 2 (Nested interval property on R). Suppose that I, = [ay, by] is a nested

sequence of closed intervals, that is I, D Int1. Then (oo In is nonempty

Proof. We know {a,} is an increasing sequence thta is bounded by b;. Let z =
Sup,cn @n- Then a, < x for all n.
Also {b,} is decreasing so a,, < by, < by, for all n > m. Taking the supremum in

n we get x < by, for all m. Therefore a, <z < b, for all n € N, giving us that:

o0
T € mIn
i=1

¢
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e What is a topology on a set X7 Let X be a set. A topology on X
is a collection T of subsets of X that are called open sets satisfying the
following three conditions:

Cl)@eT and X €T,

C2) Given a collection O, € T of index sets, then U,O, € T as well; We
say that 7 is closed under unions,

C3) Given a finite collection of open set Oy, ..., O,, then NJO,, € T; We
say that 7 is closed under finite intersections.

e A topology can be equivalently defined by specifying the collection of
closed sets which satisfy the same conditions as above except that we
switch unions U with intersections N in conditions C2) and C3). The
couple (X, T) is called a topological space, or sometimes we just say X is
a topological space if we're only playing with one agreed upon topology

e A space X can have more than one topology defined on it. A topology Tq
is said to be finer or stronger than 7 if 7o C 77 (we say 7T is courser or
weaker). Notice that the trivial topology {), X'} is the weakest topology
on X.

e One way to describe a topology on a set X is to define precisely all open
sets. This is what we did for metric spaces. Occasionally, we want to
define the smallest topology that designates a particular collection B of
subsets of X as open. This is done as follows:

Q1) Let B be the collection of subsets of X that contains the empty set,
X, as well as all sets obtained as finite intersections of elements of B.
Show that the collection 7 obtained by taking unions of elements of
B is a topology on X.



Q2) Show that any other topology on X that contains B as open sets,
contains 7. We call T the topology generated by B. It is the coarsest
topology containing B.

e (Product Topology) One example where this construction is useful is to
define a topology on the product of topological spaces. Suppose (X,, T,)
are topological spaces for « € A (where A is an index set that could be
infinite). We would like to define a “natural” topology on II, X,. One
reasonable requirement is that the cylindrical sets are open (cylindrical
sets are those of the form I, U, where all the U, are open in X, and
all but one of them is equal to X,. The topology generated by this
collection is called the product or Tychonoff topology.

Q3) Consider the product topology on R? = R x R as defined above. Why
is this the same as the standard topology on R? defined in class.

e We saw in class that the interval [0,1) is not open in R, but is open
relative to the half-line [0, 00) (taking the usual metric on R and [0, c0)]).
Let us try to formalize and generalize this.

Let (X, d) be a metric space and Y C X. Y is a metric space itself, by
restricting the metric d to Y x Y.

Q4) Let E C Y. We say that FE is open relative to Y if it is open in the
metric space (Y,d). Untangle what this definition means in terms
of Ns(p) neighborhood of a point p € E. Deduce that if there is an
open subset G of X, then GNY is open relative to Y.

Q5) Show that FE is open relative to Y if and only if there exists an open
subset G of X such that E=GNY.

Q6) Compactness on the other hand behaves better. Suppose that K C
Y C X. Then K is compact relative to X if and only if it is compact
relative to Y.

Remark: As such, we always need to specify the ambient space when
we talk about open/closed sets (that’s why we always say “FE is an open
subset of X”), but we can make statements like “K is compact (or a
compact metric space)” without the need to specify the ambient space.
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Exercise 1. Prove Q1
Proof. Let’s go!
e Note that ) € B is in particular an element of the set 7. Likewise X € T

e Consider any collection {Up, }nec4 where each U, is an element of 7. Then for
each « there are basis sets {B;}icr, € B so that:

Therefore we have that:

Un-UUB- U B

acA acAicly i€Upen Lo

And therefore by definition of 7 we know the union of the {U,} is an element

of T.

e Consider any finite collection Uy,...,U, in T. For each 1 < i < n there are
basis sets {Ba}aca, each in B. If any of the B, for a € A; are the empty set
then they don’t effect U;, and if any of them are the whole space then that

U; = X and it doesn’t effect the whole intersection.



Thus we can assume that there exists {Bj}1<j<m, in B such that:

M
Bo=()B;
j=1
U; = Ba
a€A;
Ma
= ﬂ Bj
OAGAZ' j=1
Therefore we can write by Demorgan:
n n Mea
Nu=NU N2
i=1 i=1acA, j=1

n Ma;

= U nNns

(alvuaan)EHln:l A;i=1j=1

And since the finite intersection of finite intersections is a finite intersection

we win, this is open.

]

Exercise 2. Show Q2

Proof. Fix a topology T on X which contains each element of 8. Fix some open

set U € 7. Then we know there is some collection {Ea}ae 4 each in B such that:

U:LJEa

aEA

Thus we merely just need to show that B C T since T is closed under arbitrary

unions:
e We know that () and X are elements of T since T is a topology
e In the other case for B € B we have that for some Bi, ..., B, in B that:

n
B=()\Bi

=1



Since T contains each B; and it is closed under finite intersection we then know
that B is in T as desired.

Thus we win! We have that T C 7. —

Exercise 3. Show Q3. That is show the product topology on R? agrees with the
Euclidean topology on R?.

Proof. Call the product topology 7 and the Euclidean topology 7¢. We proceed

by two-way containment.

(C) We know by @2 that to show T, C T¢ it suffices to show that each cylindrical

set is an open set in the Euclidean topology. There are two cases:

— Suppose that U is open in R. We must show that U x R is open in R?
with the Euclidean topology. Fix (z,y) € U x R. Then = € U, so there
exists some ¢ > 0 so that N.(x) C U. We claim that N.(x,y) C U x R.

Fix (v,w) € N¢(z,y). Then we know that:

d(z,v) = |z —v| = /(z — v)?

< \/(l' — U)Q + (y - w)2 = d((xay)v (’U,’lU)) <e

Therefore v € N.(z) € U. Since v € U and w € R we know that
(v,w) € U x R as desired.

— Suppose that U is open in R. We must show that R x U is open in R?
with the Euclidean topology. Fix (x,y) € R x R. Then y € U, so there
exists some ¢ > 0 so that N.(y) C U. We claim that N.(z,y) CU x R.

Fix (v,w) € Nz(z,y). Then we know that:

d(y, w) = |y —w| = /(y — w)?
< VTPt 0P = (@), (v.w)) < =

Therefore w € Ng(y) € U. Since w € U and v € R we know that
(v,w) € R x U as desired.

(D) Fix some open set U C R? with the Euclidean topology. Fix some (x,y) € U.

Then there is an € > 0 so that N.(z,y) C U. Then set § := % Consider



then this open set in the product topology:
Viey) = (Ns(z) x R) N (R x Ns(y)) = Ns(x) x Ns(y)

It is clear that (z,y) € V(). Now take (a,b) € V{,,). We then know that
la —z| < % and |y — b| < % We then must have the following:

(a—x)?+(b—y)?* <e?
d((a,b), (z,y)) <e

Therefore (a,b) € Ne(w,y) € U. This shows that Vi, ,y € U. This lets us
write that:

U= U View)
(z,y)eU

Thus since 7 is a topology and each V(, ) is open in 7; we win! We have
that U is open in 7.

With this we win!

¢
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3 Compactness on R?

Last time we proved the nested interval property on R, namely

Theorem (Nested Interval Property). Let I, = [an, by] be a sequence of closed and
bounded intervals that is nested, aka I, O I,+1. Then we have that:

(1. #0
n=1

Note that we need “closedness.” Take I, = (07 %] In fact what we really need is
compactness.

Definition. A closed boz in R? is a set of the form:

d
H[% b;]

Corrolary (The nested box property of R?). Let B, be a sequence of closed and

nested boxes. Then:

() #0
n=1
Great!
Proof. Let:



Jov
nested. By the previous theorem, for every 1 < j < d there exists some:

T € ﬁ Ij(n)
n=1

B, C B,41 implies for every 1 < j < d that the intervals [ J(n) = [a(-n) b(n)} are

Therefore:

o0
x=(x1,...,2q) € ﬂBn

n=1

¢

And so we win!

Definition. Define in a metric space for any subset E of a metric space X the

diameter when the following supremum exists:

diam E = sup d(z,y)
ryel

Great!

Exercise. Show that for any box B = H;l:l[aj, b;] that:

d 2

diam B = Z(bj — aj)2
7=1

Where we use the standard Euclidean metric on R?

Proof. We will do this with induction on d

e Suppose d = 1. We wish to prove that diam [a,b] = |b — a| = b — a. Note
that b — a is in the set we are taking a supremum over, and so we merely
need to show it is an upper bound. Fix z,y € [a,b]. Without loss of
generality take y > x. Then note that:

b—a=0b-y)+y-—2)+@-a)zy—=z

And so we win




e Suppose that the result holds for d € N. We must show it holds for d + 1.

Note then that a = (ai,...,a4+1) and b = (by,...,bs+1) are in B, and so:
d+1 2
d(a,b) = | > (b; — a;)*
j=1

Is in the set we are taking a supremum over. We need only show that it
is a maximum. Fix x = (z1,...,24+1) and y = (y1,...,Yq+1) in the box

B and without loss of generality assume yq411 > 241

Define 2/ = (x1,...,24) and ¥ = (y1,...,yq). Then we have:

NI

d d
d(@',y) < 6 := diam [ [[a;, b5] = [ D _(bj — a;)?

j=1 j=1

Now note that:

d(z,y) =/ (d(@',9))? + (Ya+1 — Tat1)?
= \/52 + (bay1 —agy,

d 2
= Do — )| + (bay1 — ags1)?
7=1
_ 1
d+1 2
= > (b —a))*| =d(a,b)
[ J=1

But this is exactly what we want ®

]

Awesome!

Theorem. Every closed box in R? is compact.



Proof. Let B = H 1laj, b;] be any closed box. Set:

N

d
0o :=diam B = Z b; —a]

Suppose for the sake of contradiction that {G4}aca is an open cover of B that has
no finite subcover

Split B into 2¢ subboxes of equal size. That is let cj = @ Then the subboxes
are H?Zl I; where I; € {[a;, cj], [cj, b;]}.

Since B cannot be covered by any finite collection of the {Gq}aca, there must
exist a subbox, By such that B cannot be covered by any finite subcollection of the
{Ga}aca. Note also that diam B; = d‘ag‘B Set 01 = diam Bj.

Continue inductively, having constructed B O By 2 By O --- O B, such that
diam B,, = 9, = diZIIBB and B, cannot be covered by any finite collection of the

{Ga}aca. We construct B, y1 by splitting B, into 2¢ subboxes of equal size as in
the previous paragraph and noting that one of those subboxes cannot be covered by
any finite collection of the {G}aca. Let By,y1 be this subbox of B,,. Also note:

diam B,  diam B
9 T 9n+l

diam B,41 =

This is a sequence of closed nested boxes. Applying the nested box property we
know that (>, B —n # 0.

Claim. (", B, is a singleton x.

Proof. Suppose x,y € (\,—;. Then z,y € B, for every n, and therefore d(z,y) <

diam B, dlamB . Letting n go to infinity we get d(z,y) =0 andsox =y. @

Now x € B implies there exists an a, € A so that x € G,. But then this
implies that there is an r > 0 so that N,(x) C G,

For n large enough we know B, C N,(z). In fact if §,, < r then B,, C N,(x).
Thus since d,, — 0 we know §,, < r eventually. But then obviously B, is covered by
a finite collection of the {G4}aca. Oops! The box B must then be compact. —



Theorem (Heine-Borel). A subset K of R? is compact if and only if it is closed
and bounded.

Proof. Let’s go!
(=) We already showed this direction in general metric spaces.

(<) If K is bounded then K is contained in some large closed box B which is
compact. Therefore K is a closed subset of a compact set. This implies that

K is compact (we showed this last time in Hausdorff spaces).

v

4 Compactness in Metric Spaces

It turns out that being closed and bounded is not sufficient to guarantee compactness

in infinite-dimensional metric spaces.

Example. Let £°°(N) denote the set of bounded sequences (ay)nen. The metric on
¢>°(N) is defined as:

d((an), (bn)) = sup | — bn|

Consider the set B = {(a,) € {*°(N) | sup,ey |an| < 1}.

Exercise. This set is closed and bounded (check V).

Proof. To note that it’s bounded consider that:

d((ay),0) =supla,| <1
neN
So this is trivial. Now consider a sequence of sequences (ag )) . which are all
j€

in B which converges to some (ay)nen. We will show 1 is an upper bound for

the set {|an|}nen, and so:

sup|an| <1
neN




Fix n € N. Now fix € > 0. We know there is some large j € N so that:

4((a) (an)) = sup

an—ag) <e

Now note that:

A .
jan] < [a] +

—l

<l+4e

And so since this holds for all ¢ > 0 we must have |a,| < 1 as desired. =

Claim. This set B is not compact!

Proof. Consider the sequence of sequences:

" 0 otherwise

Therefore:

(). () -1

. k
Thus this sequence of sequences (a% )) can have no convergent subsequence.

And thus B is not sequentially compact, and so B is not compact. v

How do we fix this? It turns out we need to strengthen our conditions
e Replace closed by Cauchy Complete
e Replace bounded by total boundedness

Definition. A subset E of a metric space X is totally bounded if for every e > 0
there is a finite cover of E by balls of radius € > 0.

Exercise. Show that:



e On R?* we have boundedness if and only if total boundedness

— Totally bounded implies bounded on every metric space

— For bounded implies totally bounded. Since any box B of the form [—N, N]d
can be split into finitely many subbozes of diameter less than €, and each

sub-box is contained in a ball of radius €.

e On R? we have closed if and only if Cauchy complete. Of course Cauchy
complete implies closed, and for the other direction we just use Cauchy com-

pleteness of RY.

o On (*(N) we have that total boundedness is stronger than boundedness. In
fact:

Exercise. Show that the set B in the above is bounded but not totally bounded.

Use the exact same sequence as in the example and use pigeonhole principle.

Proof. We've already proved it is bounded. Let ¢ = % and suppose for
the sake of contradiction that we have a finite cover by balls of radius ¢.
Call these balls By,...,By. Without loss of generality assume we have
(aglk)) € Bj for each 1 < k < N where we have:

(a(k)> _ 1 ifn=%k
" 0 otherwise
(m)

Now consider the sequence (an ) where we set m := N + 1. We know

there is some k so that (a%m)> € Byj. But then letting (:c%’“)) be the
center of the ball B;, we have that:

1= a((a). (o)) 24 ((afm) . (20)) +a ((+0) (a))

<1+1—1
2 2

¢

Oops! We win ©

Theorem. Let X be a metric space and E C X. The following are equivalent:

1) E is compact



2) E is sequentially compact
3) E is complete and totally bounded.

Remark. If X is a complete metric space then 3) above can be replaced by closed
and totally bounded.

Lemma. Completeness of E C X implies E is closed.

Proof. Let E be complete and z,, € E such that x,, - x € X. Since (x,) converges
it must be Cauchy, and so since E is compelte we know (x,) converges to some

Y
point in E. But limits are unique in metric spaces so x € E, so F is closed!!! @
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¢ Relatively Open, closed, and compact. We saw in class that the
interval [0, 1) is not open in R, but is open relative to the half-line [0, co)
(taking the usual metric on R and [0, 00)]). Let us try to formalize and
generalize this.

Let (X, d) be a metric space and Y C X. Y is a metric space itself, by
restricting the metric d to Y x Y.

Q1) Let £ C Y. We say that F is open relative to Y if it is open in the
metric space (Y,d). Untangle what this definition means in terms
of Ns(p) neighborhood of a point p € E (i.e. restate the condition
that £ is open in Y in terms of the Ns(p) neighborhoods of p € F)
and compare it to the condition of E being open in X.

Q2) Deduce that if there is an open subset G of X, then GNY is open
relative to Y.

Q3) Show that E is open relative to Y if and only if there exists an open
subset G of X such that E=GNY.

Q4) Compactness on the other hand behaves better. Suppose that K C
Y C X. Show that K is compact relative to X if and only if it is
compact relative to Y.

Conclusion: We always need to specify the ambient space when we talk
about open/closed sets (that’s why we always say “F is an open subset
of X”), but we can make statements like “K is compact (or a compact
metric space)” without the need to specify the ambient space.

e The Cantor set. Let us start with the interval C' = [0, 1] and remove
the middle third open interval (3, 2). This leaves us with the set Cy =
[0, 3] U [2,1] formed of 2 closed subintervals. Having constructed C; >

1



Cy D ... D C, where C, is the union of 2" subintervals each of length
3%, we construct C, 1 as follows: To obtain )1 we remove the middle
third of each of the 2" intervals that form C),. This leaves us with a

union of 2! intervals each of length 3,%

Q5) Let C' = Ny=1=C,,. Why is C' non-empty? Is it compact?

Q6) Show that every point in C' is a limit point. Hence C' is a perfect
set.
Conclusion: From the homework (HW 2), we deduce that C is un-
countable, since any perfect subset of R? is uncountable.

Q7) Show that C' cannot contain any interval (a, b).
Conclusion: As such, C is totally disconnected (it has no nontrival
connected subset) and nowhere dense (the interior of its closure is
empty).

Q8) What is the total length of C,,? What would be a reasonable defini-
tion of the length of C'7
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Proof of Q1. Let NY (p) = {a € Y | d(p,a) < §} denote the §-neighborhoods in Y
for p € Y and let Ns(p) denote the neighborhood relative to X. Now the definition of
an open set E C Y says that for all p € E there exists a § > 0 such that NY (p) C E.
Note that:

N{ (p) = Ns(p)nY

And so we must have that Ns(p) Y C E.

If E were open in X then we would have a stronger condition, namely that the

whole neighborhood Ns(p) C E. -
Proof of Q2. Suppose that G is an open subset of X. Now consider some p € GNY'.
We know since p € G that there exists some € > 0 so that N.(p) C G. But then we
know that:

NY(p)=N.(p)nY CGNY

By using facts from elementary set theory. This is great! We win now since this

must mean that GNY is open as a subset of Y. v

Proof of @3. The backward direction is exactly a consequence of Q2. We work
instead on the forward direction.

Suppose that E is open relative to Y. For each p € Y there exists some 9, > 0
so that:

Ny (p) = Ns,(p) Y CE



Now consider the following union:

G:= | Ns,(p)

peEE

Since each Ns,(p) is open in X we know that G’ must be open relative to X. We
will show that E=GNY.

(C) Fix p € E. Then we know that p € Y since E is a subset of Y, and further we
know that p € Ns,(p), and so p € G.

(D) Fixx e GNY =Y NG. Then:

zeYNG=ynlJNs@m = NN, ®)
peEE peE

And thus there exists some p so that:
z € N;,(p)NY =Ny (p) CE

Therefore = € E just as desired! Great.
With this we win © =
Proof of Q4. Suppose that K CY C X. Now lets go in each direction

(=) Suppose that K is compact relative to X. Now fix an open cover {Ug }aca of
K relative to Y. By Q3 for each o« € A there exists a G, which is open in X
so that U, = G, NY. Therefore:

Kc|JU.=J¥NnGa)=vn]JGCa

acA aEA aEA

Kc|]Ga

a€cA

Great! Thus the {G4}aea cover K. Since K is compact in X we know there
exists a finite subcover Gy, ...,Gq,. Then since K CY and K C (J;; Gq,

we know:

n

Kcyn| ]G, =V NG, =] U
=1

i=1 =1



And therefore U,,,...,U,, is a finite subcover of {U,}aca just as desired!
Great!!

(<) Suppose that K is compact relative to Y. Now fix an open cover {Gq }aca of
K relative to X. By Q2 we must have that U, := G, NY is open in Y for
each o € A. Note then that since K CY and K C UaEA G, we know:

KgYnUGa:UYﬂG UU

a€cA a€A aEA

And so {Ua}aca is an open cover of K in Y. Therefore there must exist a
finite subcover for it by compactness, which we will denote by U,,,...,U,,,-

Therefore:

And so Gg,,...,Ga, is a finite subcover of {Gq}aca just as desired!!!

]

With this we win ©

Proof of Q5. For notational convenience denote for n € Ny:

27’L

Cn = U [a“z 7b?]

i=1
So that inductively for 1 < ¢ < 2™
Co =10,1]
] = far 250
(a1 = [a?‘;%?,bﬂ
Now lets tackle both of these questions!

e Note that a{ = 0 will always lie at the edge of an interval because supposeing



a? = 0 we know a}tt = a1l = a} = 0. Therefore since:

0 € [a],b]] C C,

for each n > 0 we must know that 0 € C'. A similar argument shows that
leC.

e (C is compact!!! Why? Note that for every n > 0 we have that C, is a
finite union of closed intervals, so each C,, is closed. Thus, C' = ﬂzozo C, is
closed. Furthermore since Cp = [0, 1] is closed and bounded, that is compact.

Therefore since C' C Cj is a closed subset of a compact set, C must be compact.

¢

Perfect! We win!

Proof of Q6. Fix some point x € C'. Then x € C,, for all n > 0, and so for each
n > 0 there exists some 1 < 4,, < 2" so that x € [a?n, b?n]. We claim that a:fL = a?n

is a sequence lying in C'\ {z} that converges to z or z], := a;' is a sequence lying

in C'\ {z} that converges to z. We tackle this in steps.

e First we show that for all n > 0 and all 1 < ¢ < 2" we have a is in C. First
note that af' € [a,b'] C C,, and thus for each 0 < m < n we must have

ai € Cp C Cp,. Inductively we will show that for m > n if we let j, = ¢ and

Jm+1 = 29m — 1 then:

Note that it’s trivial for m = n. Now suppose that a!" = ai’. Consider that:

m+1 _  m+1 m n

g1 2im—1 = Aj,, = G4

And so we must have that this works! Great.

e Now we show that for all n > 0 and all 1 <7 < 2" we have b} is in C. First
note that o' € [al,b!'] C Cy, and thus for each 0 < m < n we must have

b € Cp C Cp,. Inductively we will show that for m > n if we let j, = ¢ and
Jm+1 = 2jm then:



Note that it’s trivial for m = n. Now suppose that b;’; = b}. Consider that:

m+1l _ gm+1 _ m _ in
O = baj, = b5, = b
And so we must have that this works! Great.

e Now we show that for each n > 0 and each 1 <14 < 2" the interval [a]', b}'] has

length 3%
<
Proof of Q7. <
Proof of Q8. <

TODO

TODO

TODO

1N
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Theorem. Let E be a subset of a metric space X. Then the following are equivalent:
1) E is compact

2) E is sequentially compact

3) E is complete and bounded.

We’ve already seen that in matric spaces compactness implies sequential compact-

ness. It remains to show:

(a) Sequential compactness implies compactness

(b) Sequential compactness implies totally bounded and complete
(¢) Totally bounded and complete implies sequentially compact

We will prove (b) and (c) first and then (a). In fact, the proof of the theorem

follows from the following three lemmas

Lemma 1. A sequentially compact subset E of X is totally bounded and complete
Lemma 2. A totally bounded and complete subset E of X is sequentially compact
Lemma 3. A sequentially compact subset of a metric space is compact

Proof of Lemma 1, Totally Bounded. Note that if £ = () then we are done. Thus
let E # () for the duration of this proof.
Let F be sequentially compact. To show it is totally bounded, fix an € > 0.

Claim. Let A C FE be a set of points of mutual distance > . Then A has to be
finite



Proof of claim. Suppose that A were infinite. Then we get a sequence of points
(zn) € Asuch that d(xy,, ) > € for all n # m. But this means that no subsequence

of (zy) is Cauchy, and therefore no subsequence of (z,) is convergent, violating

sequential compactness. \ 4

Now let p; € E be arbitrary. If possible we pick ps € E such that d(p2,p1) > ¢
If this is not possible then we stop. Then we pick ps € E such that d(p1,ps3) > ¢
and d(p2,p3) > €. If this is not possible we stop

Now having picked p1,...,py in this way such that d(p;,p;) > € for all 1 < i #
j < n, we pick ppy1 € E such that d(pp+1,p;) > € for all 1 < j < n. If this is not
possible, then E C [J;; Nz(p;) and we are done.

The claim above tells us that we cannot continue this process forever, and thus
it must end after n steps for some n € N. Therefore FE is totally bounded —
Proof of Lemma 1, Completeness. Let (x,) be a Cauchy sequence in E. Since E is
sequentially compact there is a convergent sequence (zp, ) such that z,, converges
to some p € E as k goes to infinity. Now let € > 0, then there is some N € N large
enough so that for £ > N and n > N we know that:

d(zp, xn,) < %
e
AN
< = + E= €
2 2

¢

Thus (z,,) converges to p € E. Therefore E is complete!

Proof of Lemma 2. Assume that F is totally bounded and complete. Let (z,) be a
sequence in £. We want to show that it has a convergent subsequence. If the set of
all {xy,} is finite, then we can find a constant subsequence and we are done. Assume
that {x,} is infinite.

Since F is totally bounded, one can cover F with finitely many %—neighborhoods.
One of these neighborhoods must contain infinitely many (z,) by the pigeonhole

(1)

principle. Thus we may call this resulting subsequence (xn )

Now cover E with finitely many %—neighborhoods. One of these neighborhoods

contains infinitely many of the (:&P) by the pigeonhole principle. This gives a



subsequence (x,(f)) of (%(11)) completely contained in a %—neighborhood. This is
also a subsequence of (z,) of course.

Inductively, we can define a successivesubsequence (m%k)) such that (x%k)> is a

subsequence of (x%k_l)) and (x%k)> is contained in a ball of radius 2%
(n)

Now set a, = x5, . This is a subsequence of (z,,) that satisfies:

d(ap, am) =d <a:£l”), :c,(g‘)>

If m > n then <a:§;m)> is a subeequence of (:I:I(Jn)) and (xl(;n)) is contained in a ball

of radius 2% with some center, say ¢ for concreteness. Thus:

d (x%”), 337(771”)) é d (:L‘%"),c) +d (ZL‘%’L), c)
1 1 1

Son o Tt

Of course we can swap the role of n and m and so we always have:

1
d(an,am) <

— 9min(n,m)-1

With this established it is clear that (a,) is cauchy. By completeness of E, we
know (a,) converges to a point p € E as desired. Therefore (x,) has a convergent

subsequence v

Lemma 4 (3’). Let E C X be sequentially compact. Let {Gy}aca be an open cover
of E. Then there exists an € > 0 such that every ball of radius € and center p € E

is contained in one of Gy for some o € A.

Proof. Suppose the statement is not true. Then for any integer n > 1 there exists
a pp € F such that N1 (p,) is not contained in any of the {G,}aca. By sequential
compactness, (p,) has a convergent subsequence (py, ) converging to some p € E.

Since p € E there exists a ag such that p € G,,, and so there is some § > 0 so
that Ns(p) C Ga,-

Since py, — p, we may pick n;, large enough so that:

1
N

d (pn,,,p) < <

| >
NGRS



But then fixing z € N 1 (py,, ) we have:
g

2 5 6
And so z € N5(p) C Gq,. This shows that N1 (p,,) € Ga,. Oops! ® >
(3

Proof of Lemma 3. Suppose that E is sequentially compact. Now let {G,} be

any open cover of E. By Lemma 4 (3’), there exists an € > 0 such that any e-

neighborhood of a point in E is contained in one of the G,. Since sequentially com-

pact implies totally bounded, E can be covered by finitely many e-neighborhoods.
That is there is a list p1,...,pny € E such that:

N
EC | N(p)
j=1

Now for each p; with 1 < j < N there exists some «; such that N.(p;) C G, by

construction of € by lemma 3’. Therefore:

N
EC |G
j=1

]

Thus, F is comapct as desired.
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A Small Digression

Last time we showed that compactness in a metric space is equivalent to sequential
compactness is equivalent to totally bounded and complete.
It is clear then that if the total space is complete then compactnes in that space

is equivalent to closed and totally bounded

How is this useful in mathematics?

When solving an ODE or a PDE, we can often recast the problem as solving an

equation of the form:
F(z)=0

for some continuous function F': X — X and some metric space X, which will be a
space of functions. Suppose we are able to find a sequence of approximate solutions

to this equation, for example a sequence x,, such that:
F(x,) =¢n

Where we have ||e,||x — 0 as n — oo. If we can then show that the sequence (z,)
belongs to a compact subset of X, then it must have a convergent subsequence.
This convergent subsequence will converge to some xg, and necessarily we will have
F(z9) = 0 as desired.



3 Continuous functions on metric spaces

Definition. Let X and Y be metric spaces. We say that a function f: X — Y 1is
continuous at vg € X provided that for every e > 0 there exists a § = 0z 4, such that
whenever d(y,zo) < 6 we have d(f(y), f(zo)) < €.

In other words, f maps Bx(xo,0) into By (f(x0),e). We say in particular that

f s continuous when f is continuous at every point xg € X

Proposition. f: X — Y is continuous if and only if the inverse image of every

open set U CY is open in X.
Proof. Let’s go!

(=) Fix z € f~Y(U). Then since f(z) € U, we know that there is an ¢ > 0 so
that By (f(z),e) C U. By continuity there exists some § > 0 so that f maps
Bx(x,6) into By (f(x),e. Therefore:

Bx(x,0) C f~'(By(f(x).¢)) € f7'(U)

Therefore f~(U) is open.

(<) Fix z € X. Now fix € > 0. Note that By (f(z),e) is an open set in Y. Thus
f~Y(By(f(x),e)) is open in X. Since z is in this set in particular, we know
there exists a > 0 so that:

Bx(x,6) € f~N(By(f(z),¢))
f(BX(xa 5)) c BY(f(x)7€)
Therefore f is continuous at x. Since z € X was arbitrary, f is continuous.
—
Theorem. Let X be a compact metric space and let f : X — Y be continuous, then
f(X) is compact

Proof. Let {G,} be an open cover of f(X). Then {f !(G,)} is an open cover of

X. By compactness of X, there exists ay, ..., qy, such that {f71(Ga,)}1<i<n is an
open cover of X. But then {G,, }1<i<n is an open cover of f(X). v

Corrolary 1 (Extreme Value Theorem). Let f: X — R be a continuous function.

If f is compact, then f has a mazimum and a minumum value.



Proof. f(X) is compact in R. Therefore f(X) is closed and bounded. Since it
is bounded, inf f and sup f exist. Furthermore, since it is closed, we know that

inf f,sup f € f(X). This shows that these are in fact a minimum and a maximum,

PN

as desired. v

Definition. Let X and Y be metric spaces. We say that f : X —'Y s uniformly
continuous if for every e > 0 there exists a § = §(e) such that if dx(z,y) < § then

dy (f(z), f(y)) <e

Clearly uniform continuity implies continuity.

Theorem. Let X be a compact metric space and Y be any metric space. If f : X —

Y is continuous then it is in fact uniformly continuous.

Proof. Pick some € > 0. Let ¢’ := §. Then for each z € X we know there is some
6z > 0 so that f(Bjs,(x)) € Bws(f(x)) by continuity. Let 0, := £5,. Now note that
X is covered by these balls {Bs: (z)}zex. So in particular since X is compact we
have z1,...,xy, and 07,...,0,, > 0 such that X is covered by {Bs(x) }1<i<n. Note

that we’ve notated 0} := 0}

». and §; := 0, for convenience. Set:
i [

Now let z,y € X so that d(z,y) < 6. We know that there is some 1 <14 < n so that
x € By (x;). Then in particular:

A
d(zi,y) < d(z;,z) +d(z,y) <6 +6
<68 +8 =04

Therefore since 0] < ¢; it is clear that =,y € By, (x;). Great! Then we must have
that f(z), f(y) € B (f(x)). Which gives:

A (@), F(9)) < d(f (). f(a) +d(f (i), f) <&+ =«

Awesome! We win! f is uniformly continuous. See Hani’s notes for an equivalent

way to do this with Lemma 3’ from previous lecture (it is a similar idea). v



Part 11

Differentiation on R¢

1 Definition of the derviative

1.1 Recollection

Recall. For ¢ : I — R where I is an open subset of R, we call ¢ differentiable at
xg € I provided that the limit

lim
h—0

¢(zo + h) = d(x0)
h

exists. If so we call this limit ¢'(xg).

We call ¢ differentiable in I if it is differentiable at every point = € I; If I is
not open, then we say ¢ is differentiable on [ if there exists an extension ® of ¢ to
some open set J DO I such that ® = ¢ on I and ® is differentiable on J.

1.2 Generalization Steps

How do we generalize this? We would like to look at functions ¢ : R® — R™ for

n,m € N. If n =1 and m > 1 then the same definition works:

Exercise. Show that ¢ = (¢1,...,¢m) : I — R™ where I C R where I C R is
differentiable at xo if and only if ¢; is differentiable at xo ofor every 1 < j < m and

moreover:

¢'(x0) = (¢ (0), - -, P (0))

We run into trouble when n > 1 we run into trouble because we cannot divide



by a vector. Let’s reinterpret the case where n = 1 to deal with this. Note that:

i AT Z00) )
o 900+ 1) = Blao) — ' (ao)
h—0 h
19l + ) 6(e0) — bl _
h—0 |h|

The final definition of differntiability at zg makes much better since for ¢ : R™ — R™,
since |h| is a nonzero real number. But we need to properly interpret ¢'(x¢)h.

Note that for ¢ : R — R™, then ¢/(zg) provides the best linear approximation
to ¢(xo+ h) — ¢(xp). Namely if App(xo) = ¢(zo+ h) — ¢(z0) then the definition of
¢'(z9) tells us that:

r(h) = Apg(xo) — ¢ (x0)h

Satisfies % — 0 as h — 0. Essentially, this means that ¢'(zo)h takes the increment
hin z and gives us the best linear approximation to Ay ¢(xg). This means that ¢'(zg)

can be interepted as a linear transformation from R to R™

1.3 The Correct Generalization

Definition. Let E C R"™ be open and let f : E — R™. We say that f is differen-
tiable at x € E provided that there exists a linear transformation D f(x) : R™ — R™
such that:

iy /(@ +h) = flx) — [Df(@)](h)]]

=0
||| =0 [|A]

We can think of Df(xo) as an m X n matriz by linear alegbra. We will prove that

D f(x) is unique next lecture, justifying the notation.

Note that the f increment is Apf(x) = f(z + h) — f(z). How good is the
approximation, namely r(h) = Ay, f(z) — Df(x)h for a fixed = € E. Then:

RG]

=0
=0 |[A]]
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e The Cantor set. Let us start with the interval C' = [0, 1] and
remove the middle third open interval (3,%). This leaves us with
the set Cy = [0, 3] U [2,1] formed of 2 closed subintervals. Having
constructed C; D Cy D ... D C, where C,, is the union of 2"
subintervals each of length 3%, we construct C, 1 as follows: To
obtain C), .1 we remove the middle third of each of the 2" intervals
that form C,. This leaves us with a union of 2"*! intervals each of

length #

Q1) Let C' =N,=1=C,. Why is C' non-empty? Is it compact?

Q2) Show that every point in C' is a limit point. Hence C is a
perfect set.
Conclusion: From the homework (HW 2), we deduce that C' s
uncountable, since any perfect subset of R? is uncountable.

Q3) Show that C' cannot contain any interval (a, b).

Conclusion: As such, C' is totally disconnected (it has no non-
trival connected subset) and nowhere dense (the interior of its
closure is empty).

Q4) What is the total length of C,,? What would be a reasonable
definition of the length of C?

e Wish list for a measure function Motivated by the above, it
would be grand to have a measure function that tells us how big
or small a subset of R? is. This would be a function from the set
of subsets of R? into [0, 00|, say m : P(R?) — [0, 00]. We would
like this function to satisfy the following properties:

1



a) If Ey, Fs, ... is a countable collection of disjoint subsets of R,
then

m(UfzozlEn) = Z m(En)

b) If E is congruent to F (i.e. F can be obtained from E by
applying rigid motions: translations, rotations, or a reflections)
then we should have that m(E) = m(F).

c) m([0,1)%) = 1.

The bad news is that no such function can exist, and here’s why (at
least when d = 1). Let us define an equivalence relation between
elements of [0,1) as follows: We say x ~ y if x — y is a rational
number. Let N be the subset of [0, 1] that contains exactly one el-
ement of each equivalence relation (the existence of this N requires
invoking the axiom of choice). Now let R = [0,1)NQ, and for each
r € R define the set

N, ={z+r:ze NNn[0,1 —rj}u{z+r—1:2e NNn[l—r1)}.

(Basically N, is just the translate of N by r units to the right,
except that we move the part that sticks out of the interval [0, 1)
one unit to the left).

Q5) Show that [0,1) is the disjoint union of N, for r € R.

Q6) Show that if a measure function satisfying a), b) and c¢) above
exists, then m(N) = m(N,) for every r € R.

Q7) Arrive at a contradiction.

Remark: One might think that possibly relaxing condition a) to cover
only finitely many disjoint sets FE,,, i.e.

N
m(UrJ:]:lEn) = Z m(En).

n=1

would resolve the contradiction. Unfortunately, the Banach-Tarski
paradox (cf. Figure 1) tells us that this is not enough to resolve this
issue.




"z
<YAT

. 1 ad -
50 Q
Figure 1: Banach-Tarski tells us that we can split the unit ball in R? into finitely many

(actually 5 is sufficient) many disjoint pieces, apply rigid motions to those pieces and then
reassemble them to obtain two copies of the unit ball.

Conclusion: The problem with the above wishlist is that we insisted
on being able to measure every subset of RY. We have shown that this
is impossible. The solution is to be content with a measure function
that is defined on some but not all subsets. Such subsets will be called
measurable subsets.
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Proof of Q1. For notational convenience denote for n € Ny:

2n
Cn = U [ai’, b7']
i=1
So that inductively for 1 <7 < 2™
Co = 10,1]
2a” + b7
[agitlpbgz‘tll} = [a?, 131]

[“2?1762#] = [3751}

Now lets tackle both of these questions!

e Note that a{ = 0 will always lie at the edge of an interval because supposeing

n+1 n+1
1

al = 0 we know ay"" = ay;_; = al = 0. Therefore since:

0 € [a},b}] C C,

for each n > 0 we must know that 0 € C'. A similar argument shows that
leC.

C is compact!!! Why? Note that for every n > 0 we have that C, is a
finite union of closed intervals, so each C, is closed. Thus, C = (2, C,, is
closed. Furthermore since Cp = [0, 1] is closed and bounded, that is compact.

Therefore since C' C Cj is a closed subset of a compact set, C must be compact.

Perfect! We win! :



Proof of Q2. Fix some point x € C'. Then x € C, for all n > 0, and so for each
n > 0 there exists some 1 <4, < 2" so that = € [a” b ] Suppose that € > 0, then

ind in
there is some N € N so that SLN < e. We claim that ai\]]\,, bg’v € N.(z)nC

e First we show that for all n > 0 and all 1 <7 < 2" we have af is in C. First
note that al' € [a],b}'] C Cp, and thus for each 0 < m < n we must have

al € Cp C Cp,. Inductively we will show that for m > n if we let j, = ¢ and

Jm+1 = 29m — 1 then:

Note that it’s trivial for m = n. Now suppose that a?}n = a'. Consider that:

m+1 _ m+1 _ m __ n
jm+1 - 2]m_1 - ajm - al

And so we must have that this works! Great.

e Now we show that for all n > 0 and all 1 <7 < 2" we have b} is in C. First

note that b} € [a]',b}] C (), and thus for each 0 < m < n we must have

b € Cp, C Cy,. Inductively we will show that for m > n if we let j, = ¢ and
Jm+1 = 2jm then:

b =07 € Cp,
Note that it’s trivial for m = n. Now suppose that b = b Consider that:

m+1 _ im+1 __ mo__n
bjm+1 - b2]'m - b.]’m - bl

And so we must have that this works! Great.
e Now we show that for each n > 0 and each 1 < i < 2" the interval [a], b] has

177
length 3% Note first that:

1
b(f—a(le—O:l:@



Inductively for 1 <4 < 2™ then we know that:

gl n+1':2a?+b?_ n:b?—al?zl'i: 1
2n—1 2n—1 3 7 3 3 3n 3n+l
bn+1_an+1:bn_a?+2b?:b?_a?:}.i:71
o T 3 3 3 30 3l

Now we're done, since in particular ¢ and bf\fv are distinct, so for any € neighbor-

7
hood of = there are at least two point;vin N:(x)NC. Thus z is a limit point. Z
Proof of Q3. Fix a < b. But then if we had two points z,y € (a,b) such that
xz,y € C and y > x. Note that we then know that there exists some N € N so that
:%N < e. This means that z and y must lie in different intervals making up Cy,
since these are disjoint. But then (a,b) N C' is not an interval, since z,y € C' N (a,b)
but there is some point z between x and y so that z ¢ C. This necessarily means

so then (a,b) # C N (a,b), and so (a,b)  C. -
Proof of Q4. Note that the total length of C" is:

2n

UCp) = 3n

Since C,, is a union of 2™ disjoint intervals each of length 3™. Note that for each

n € N we must conclude since C' C C,, we know:

HC) < U(C,) = 37: _ <§>n

]

Taking n — oo we then can see that ¢(C') should be zero.

Proof of Q5. Fix r,q € R =[0,1) N Q. We will first show that if N, N N, # () then
r = ¢, so by contrapositive the {N,},cr are disjoint. Fix y € N, N1 N,. There are

four cases:

e y=ux,+rand y = x4 + ¢ for some z,,24 € N. Then z, —z, = ¢ —r by
algebra, and so since 7, ¢ € Q we have that ¢ —r € Q and so z, ~ z4. By the
definition of N it follows that x, = x,. Therefore x, +r = x, + ¢, giving that

r=gq.

e y=xz,+r—1and y =x¢+¢—1 for some z,,24 € N. Then 2, —zq=q—r

by algebra, and so since 7, ¢ € Q we have that ¢ —r € Q and so z, ~ 4. By



the definition of N it follows that x, = x,. Therefore x, +r —-1=2, +q¢—1,
giving that r = ¢.

e y=ux,+r—1and y = z4+q for some z,,z4 € N. Then z, —z, = ¢g—r+1 € Q.
Thus z, = x4. Therefore ¢ = r — 1 by some quick algebra. This is clearly a
contradiction! Why? Well 0 < r < 1, and so —1 < r —1 < 0, but we know
q > 0! Oops!

o y=xa,+randy = z,+q—1for some z,,x4 € N. Thenz, —xy =q—r—-1€ Q.
Thus x, = x4. Therefore r = ¢ — 1 by some quick algebra. This is clearly a
contradiction! Why? Well 0 < g < 1, and so —1 < g — 1 < 0, but we know
r > 0! Oops!

We want to show that:

[07 1) = U N,

reR
Let’s go!

(©) Fix y € [0,1). Then by definition there is some = € N so that y ~ x. Note
that then y — z € Q. Further we have 0 < x,y < 1 There are two cases:

— Suppose that y —x > 0. Now set r := y — x. First note that since x > 0
and y < 1 we know y —z < 1 — 0 = 1. Therefore r € QN [0,1) = R. We
claim that y € N,. In particular note that y = x + r. All that remains
to be shown is z € [0,1 — r). We know since z € N that = € [0,1), so
x > 0 immediately. We merely need to show that x < 1 —y + x. This
is simple, since y < 1 we know 1 —y > 0. With this we must have that
z €[0,1)N N, and so:

ye{d'+r|a' e Nn[0,1-7r)} C N,

And soy € N,
— Suppose that y — z < 0. Set r := y — z + 1. Note then that r < 1.

Since 0 < y we know —x < y — z, and then since x < 1 it follows
that —1 < —x < y — x, and so 0 < r. This shows since r € Q that
re€ R =10,1)NQ. We claim that y € N,. Note in particular that
y = x +r — 1 by algebra. We need merely show that z € [1 —r,1). To



do this note that y > 0 so y < 0:

r>—y+r=1-y+or—-1=1—-(y—z+1)=1-r

And we already know x < 1. Therefore:
ye{r'+r—-1]2e Nn[l-r,1)} CN,

And so y € N,!

Great! Since in either case r € R, we must have that y € (J,cz Nr. This

finishes this direction!

(2) This side follows fairly immediately. Fix y € |J,cg Nr. Then y € N, for some

r € R. There are then two quick cases:

— We have that y = z 4 for some x € N N[0,1—r). Then note that since

r > 0 we have:

0<z<l-—r

0<r<z+r=y<l1

And thus y € [0,1)
— We have that y = x +r — 1 for some x € N N[l —r,1). Then note that

since 1 —r < x <1 that —r < 2 —1 < 0. Therefore since r < 1 we know:
0<z+r—-1l<r<l

With this we're done!

¢

We’ve finished the proof that this is a disjoint union! Wow!

Proof of Q6. Fix some r € R. We wish to show that m(N,) = m(N). First note
that:

m(Ny)=m{z+r|zeNN[0,1-r)}U{z+r—1]ze NN[l-r1))
=m({z+r|lzeNN[0,1-r)})+m{z+r—-1|zeNn[l-r1)})



This follows from axiom (a) for our measure. But then by axiom (b) note that these

are translations of NN [0,1 —r) and N N[l —r, 1) respectively so:
m(Ny) =m(NN[0,1—7)+m(NN[l—-r1))
We need to now show that:
0,1)=1[0,1—-7r)U[l—71)

This is farily quick since we note that r € [0,1)

(C) Fix z € [0,1). Then if z < 1 —r we have x € [0,1 — r). Otherwise we know
zr>1—randsoxe[l—r1).

(D) Fix z € [0,1 —r). Then since r > 0 we know z < 1 —r < 1. Therefore
0<xz<1,and so z € [0,1)

In the other case, fix € [1—r,1). Then we know since r < 1 that 0 < 1—r < z.
Therefore since 0 < < 1 we have x € [0, 1).

Now consider that:
(NN[0,1=r)UNN[1-71)=Nn(0,1-r)U[l—r1)=NN[0,1)=N
The last equality holds sincec N is a subset of [0,1). Therefore:
m(N,) =m(NN[0,1—-7))+m(NN[l—-r1))=m(N)

And we are done! 2
Proof of Q7. We wish to arrive at a contradiction. There are three quick cases:

e Suppose that m(/N) = 0. Then since Q is countable we know R =QnN[0,1) is

countable, giving us by axiom (a) and (c) that:

1:m([0,1)):m<U NT> => m{dN,)=» 0=0

reR reR reR

This is a clear contradiction! Oops!



e Suppose that m(IN) > 0. Note that R is countable and for n > 2 we have
0< 1 <1andsole R Then using axiom (a), axiom (c), and the fact that

m(N) is positive we know that:

1=m([0,1)) =m (U NT>

reR
= Zm(Nr) > im (N%)
reR n=2

= Zm(N) =00
n=2

This is clearly true, since we know that m(N) > 0 doesn’t go to zero, y -7, m(N)

must diverge to infinity. This is an oops since 1 < oo

e Suppose that m(IN) = co Then since R is countable and 0 € R = QnN10,1) we

know that by axiom (b) and axiom (c),
1=m([0,1)) =m <U NT> => " m(N,) = m(No) = m(N) = o0
reR reR
This cannot be true since 1 < 0o. Oops!

With all three of these completed, we must conclude that m(N) is undefined!!! Wow!

This is amazing © v

10
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Continue Differentiability in higher dimensions

We first recalled the definition of the derivative for ¢ : R — R%:

1oy e Q@ R) — ()
¢ (z) = lim o

But we cannot divide by h if h € R?. We reinterpreted the definition saying that
¢'(x) exists if and only if:

i 120 1) = ¢(z) — ¢'(2)A]

=0
h—0 ‘h‘

Reinterpreting this for ¢ : R™ — R we ask for a linear transformation D¢(z) :
R™ — R™ such that:
_||¢(z + h) — ¢(z) — Dé(x) - h|

1
ho0 1]

This recalls the best linear approximation interpretation of the derivative. If we

write:

>
=S
S

I

¢(x +h) — o(x)

[l (r)l
(IRl

[r(h)|| < ||h]| as b — 0.

Then we ask for — 0 as h — 0. We write this as ||r(h)|| = o(]|k]|) That is

Definition. Let E C R" be open and let f : E — R™. We say that f is differ-
entiable at x € E provided that there is a linear transformation D f(x) : R — R™




such that:

ja 1@+ R) = f(2) = Df(a) - bl _

0 Kk
||h]|—0 [|A]] (%)

We can of course think of Df(x) as an m x n matriz. If f is differentiable at every

x € E we say that f is differentiable in E. In this case we have the total derivative:

Df : EF — Hom(R",R™)
Remark. We have some comments

e We need x to be an interior point of E so that x + h € F for small h, so that

f(x + h) makes sense. When E is open this is automatic.

e The numerator in the difference quotient above is in R™ whereas the denom-

inator is in R™.

e Defining r(h) = f(x + h) — f(x) — Df(z) - h, we have that r(h) = o(h). That

1S:

o Il
1 =
h—0 | Al 0

Note then that Df(x) - h = O(h), that is there is a constant C' € R so that
|Df(z) - h| < C|h||, but this is different than r(h) = o(h).

e This definition of derivative only makes sense if D f(x) is unique when it exists.

Proposition 1. Let F, f, and x € E be as in the above definition. Suppose that
A; and Ay are two linear transformations such that (%) holds. Then A; = As

Proof. Let rj(h) = f(x+h)— f(x)—Aj;h for j = 1,2. Then we have that % — 0.
Let w € R™ be arbitrary and nonzero and take h = tu for ¢ > 0, then we can divide

by [[tu|| to get:

rl(tu) — Tz(tu) = (AQ - Al)(tu) = t(AQ - Al)u
(A2 — Au_ [lr1(tu) — ro(tu)
[l tlull
[re ()]l [lr2 ()]
= ] [t




Thus W%M — 0 as t — 0. Therefore (A2 — Aj)u = 0, so Aju = Asu. Note

P

that clearly A; -0 = As - 0. Taking these together we know A; = As. v

Example. Let f(z) = a + Bx where a € R™ and and B € Hom(R",R™) where
f:R™ — R™. Then to compute D f(x) note that:

f(z+h) = f(z) = Bh
fx+h)— f(x)—Bh=0

Therefore we know clearly that:

iy (@ +h) = fz) = Bh|| _

h—0 Rl 0

Therefore D f(x) = B for any = € R".

Remark. Of course, if f is differentiable at z, then it must be continuous there.
Why? Continuity is equivalent to || f(x +h) — f(x)|| — 0 as h — 0. Differentiability
is equivalent to ||f(z) + f(x) — Df(x)h|| = ||r(h)|| = o(||k|]). In particular this
implies that:

1£(+B) — F@)] = IDF@)h+r(h)]
< IDF @A + (0]

But both of these go to 0 as h — 0. Therefore:

lim || (2 +h) = f(2)]) =0

Directional and Partial Derivatives, computing the deriva-

tive

Definition. Let A C R" be open and let f: A — R™. Suppose v € A and u € R"
with uw # 0. We define the directional derivative D, f(x) as the limit:

[z +tu) — f(x)

D, f(x) = lim t eR™
Duf(@) = i [ =IE)



Note that this just means that:

f(z + tu)

d
Duf(w) = dt ‘t:O

Example. Let f: R? — R bed efined as sin(x122). Then let u = (1,0):

D, f(x1,x2) sin((z1 + t)x2)

= il

sm 1T tx
dt‘t— 129 + txa)

= (cos(z122 + tx2) - 2],

= cos(z1x2) - T2

Theorem. Let A CR"™ be open and f: A — R™ be differentiable at x € A. THen

all directional derivatives D, f(x) exist at xo and:

Dyf(z) = Df(x) - u
In particular D, f(x) is linear in u.
Proof. From the definition of Df(x) we have for any v € R™\ {0}

o 1@+ 10) = £(&) = D (@) - tu

i el =0
NG ) — ()~ - (DF @)l
0 (| tul|
This implies that:
fle+tu) — f(x) —t-Df(z) u=r(tu)
Therefore 17 ”(tt“”)” — 0 as t — 0. Dividing by ¢ we get that:
Hat )= 0) i, = 700
Therefore:
[z +tu) — f(z) _ @)l ()l
|2 e = g - Bl 0



As t — 0. Therefore:

Duf(e) = lim TEXIOZIE) _ ypy

=
Caution We will see next time that the converse is not true. Namely, the directional

derivatives might exist at x without f being differntiable at z. In that case D, f(x)

might not even be a linear function of u.

Partial Derivatives

Since D, f(z) = Df(z) - u, we can determine D f(x) by letting u range over the

standard basis vectors.

Definition. Let f: A C R"™ — R™ where A is open. The j-th partial derivative of
f at x is defined as:

of

d
5 (@) = Dy () = S| J@tte)

Example. When m =1 we know f : R" — R then:

af d
%(:ﬁl,...,xn) = &’t_of(xl,...,:rj +tj,...,2n)
; =
d
=4 Sim.f(xl, e X1, 8, L1y e, T)
-
= ¢/(x;)
Where ¢(s) = f(x1,...,2j-1,8,%jt1,...,Tpn). This just means that 597]; is computed
by pretending that x1,...,2;-1,%;41,...,%, are constant and differentiating with

respect to x;.



MATH 395 Notes

Faye Jackson

September 23, 2020

Recall. We defined directional derivatives for f : R™ — R" for u € R" by:

g St t) = f(2)
Duf(z) = %g% t ~ dtle=o

flz+tu) e R™

We also defined partial derivatives % eR™ for 1 <i < n by:

of
8561' a

De, f(x)
Furthermore, if f is differentiable at « then D, f(z) exists for every u. Morevoer:
Dyf(x) = Df(x) - u

The converse is not true in general!!ll We will give today an example where D, f(x)

exists for every n but D f(x) does not

f1
Ifn>1and f: A CR" — R™ then we can write f = ( : ) Then for every
fm
u € R"™ we have:

fi(z+tu)—fi(x)
t

[z +tu) - f(x)

Puf@ == =i :
S (z4tu)— fm ()

7

lim;_,0 M Dy fi(z)

lims_sq fm(w+t:)—f(w) Dy fm()



That is, directional derivatives can be taken componentwise. In particular:

0f1
of | "
o0x; N )
Ofm
ox;
Example. Let F : R? — R3 be given by:
2% + o2
Fle,y)=| ay
siny
Then computing:
L (22 +y?) 2z
OF P
a5 &Y = 5z (2Y) =1y
% siny 0
2
OF (o Y
5y TV x
cosy
If w=(1,2). Then:
(z+ )%+ (y + 2t)? 2z + 4y
D, F(z,y) = o (x+t)(y + 25) = | y+2zx
sin(y + 2t 2 cos(y)
DyF(x,y) = Dey12e, F(2,y) = De, F(x,y) 4 2De, F (2, y)
oF

oF
= — 27
gy (& Y) + 9y (z,y)
This suggests that F' is differentiable at (z,y). But it’s not a proof.

f1
Theorem. Let f: A CR — R™ where A is open and suppose f = ( : ) Then:
fm
a) fis differentiable x € A if and only if each of the components of fi,..., fn are
differentiable at x

b) If f is differentiable at x € A, then Df(x) is the (m x n) matriz whose j-th



o Of
column 1s Ba; -

¢) Equivalently, Df(x) is the (m x n) matriz whose i-th row is D f;(z).

d) Equivalently D f(z) is the m X n matriz whose (i, j)-th entry is ggj (z).

Remark. In calculus for f : R" — R, Df(x) = (%, cel 887];), is often denoted
Vf(z), the gradient of f at z. Sometimes it is important to distinguish between
D f(x) which is a (1 x n) matrix and V f(x) which is an (n x 1) matrix, that is a

vector.

Proof. f is differentiable at x if and only if there exists an (m x n) matrix A such

that:

If(x+h) — f(z) — Ah]
7]

—0

as ||h|| — 0. This holds if and only if each coordinate:

[ fi(z +h) — fi(x) — Ai- A
17l

=0

As ||h]] — 0, where A; is the i-th row of A. Since the i-th coordinate of Ah is A;h.
But this is equivalent to saying that f; is differentiable at x, and D f;(x) is equal to
the i-th row of D f(x).

The above implies parts a) and c). To obtain part b) and c¢) note that if f is

differentiable at  then:
Duf(z) = Df() - u

Taking u = ej for 1 < j < n. we get:

af

5y, (#) = DI(@) &

But this is exactly the j-th column of D f(x). Therefore:

of ... 9Nh
ox1 Oxn
Df(x)=1| : oo
Ofm .. Ofm
ox1 Oxn



]

Example. Let F : R? — R3 to be as before:

2 + y2
Flz,y)=| ay
sin y
Then if the derivative exists we know:
V(z? +y) 20 2y
Df(x,y)=1| Vy) |=|v =
V(siny) 0 cosy

Great

Remark. Partial derivatives and even directional derivatives of a function can exist
at x even if each f, is not differentiable at z. Take f : R> — R:

2

sz i (z,y) #0
— =+
f(m’y)_{o ’ if (z,y) =0

For u € R%\ {0} let us compute D, f(0). Take u = (u1,uz). Then:

. J(O+tu) - f(O) . t3uug
Duf(0) = fim ; = T
. U%UQ 0 if Ug = 0
= oo 2 = u? .

In particular all the directional derivatives exist at (z,y) = 0. However, f is not

differentiable at 0. There are different ways to see this

e Note that D, f(0) is not linear in w!!! This is bad, since we showed that
D, f(0) = Df(0) - u provided that f is differentiable, and D f(0) is a linear

transformation. Thus f is not differentiable.

e Note that f is not even continuous at 0. If we approach (0,0) along the

parabola y = 22 we get that:

_ x4 —1—>O
I T

fla,2?)



As x — 0, but f(0,0) = 0.

The matrix whose entries are (‘;’%_ is called the Jacobian matrix. What we have

learned up until now is:
e If f is differentiable at x then D f(x) is equal to the Jacobian matrix at x.

e But the Jacobian matrix can exist without the derivative existing

Continuously differentiable functions

At this point he only criterion of differentiability at x that we can use is to go back
to the definition. However, given how easy it is to compute partial derivative, it

would be useful to have a criterion of differentiability based on partial derivatives.

Theorem. Let f : A C R®™ — R™ where A is open. Suppose that all partial

derivatives exist % : U — R™ exist in some neighborhood U of x € A and they are

all continuous at xj Then f is differentiable at x.

In particular if oll partial derivatives exist and are continuous through A, then
f is differentiable in A. We call such an f a continuously differentiable, or C!,
function. This implies that Df : R™ — Hom(R"™,R™) is continuous as well (since

each of its component functions are continuous).

Proof. Next time! =
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e Wish list for a measure function It would be grand to have a
measure function that tells us how big or small a subset of R is.
This would be a function from the set of subsets of R? into [0, ool
say m : P(RY) — [0, 00]. We would like this function to satisfy the
following properties:

a) If Fy, Es, ... is a countable collection of disjoint subsets of R,
then o
m(Up ) = Y m(E,).
n=1

This is called Countable Additivity.

b) If E is congruent to F' (i.e. F can be obtained from E by
applying rigid motions: translations, rotations, or a reflections)
then we should have that m(FE) = m(F).

c) m([0,1)%) = 1.

The bad news is that no such function can exist, and here’s why (at
least when d = 1). Let us define an equivalence relation between
elements of [0,1) as follows: We say x ~ y if x — y is a rational
number. Let N be the subset of [0,1) that contains exactly one
element of each equivalence relation (the existence of this N re-
quires invoking the axiom of choice). Now let R = [0,1) N Q, and
for each r € R define the set

N, ={x+r:ze Nn[0,1-r)}u{z+r—1:2€e NN[1—r,1)}.

(Basically N, is just the translate of N by r units to the right,
except that we move the part that sticks out of the interval [0, 1)
one unit to the left).



=90

Figure 1: Banach-Tarski tells us that we can split the unit ball in R? into finitely many
(actually 5 is sufficient) many disjoint pieces, apply rigid motions to those pieces and then
reassemble them to obtain two copies of the unit ball.

'/A'L‘

Q1) Show that [0, 1) is the disjoint union of N, for r € R.

Q2) Show that if a measure function satisfying a), b) and c¢) above
exists, then m(N) = m(N,) for every r € R.

Q3) Arrive at a contradiction.

Remark: One might think that possibly relaxing condition a) to cover
only finitely many disjoint sets FE,, i.e.

UV E,) Zm (Finite Additivity)
would resolve the contradiction. Unfortunately, the Banach-Tarski

paradox (cf. Figure 1) tells us that this is not enough to resolve this
1ssue.

Conclusion: The problem with the above wishlist is that we insisted
on being able to measure every subset of R?. We have shown that this
is impossible. The solution is to be content with a measure function
that is defined on some but not all subsets. Such subsets will be called
measurable subsets.

The Greek method

e Elementary measure. An interval [ is a subset of R of the
form [a, b], [a,b), (a,b],or(a,b) where a,b € R. The length of I is
defined to be |I| := b —a. A bor in R? is a Cartesian product
of intervals B = I1 X Iy x ...I; and its volume is defined to be
|B| = |Lh]..... |I;]. An elementary set is any subset of R? which is
the union of a finite number of boxes.

2



Q4) Show that if £, F C R? are elementary sets, then the union
FEUF | the intersection ENF, the set theoretic difference E\ F,
and the symmetric difference EAF = (E'\ F)U (F \ E) are
also elementary. Also, if z € RY, then the translate E + z :=
{y+x:y € E} is also elementary.

Q5) Show that E can be expressed as the finite union of disjoint
boxes. Hint: Start with d = 1. Then use this result to general-
1ze it to higher dimensions.

e Definition. Let E be an elementary set. The above question
allows to write £ = BiUByU... B, where By,..., B, are disjoint.
We define the elementary measure of E as m(E) := |By| + | Ba| +
oo+ | Byl

Q6) Show that m(F) is well-defined in the sense that if £ can be
expressed in two ways as a union of disjoint boxes By, ... B,
and Bi,... B/ , then

|B1| 4+ |Ba| 4 ...+ |Bn| = |By| + |By| +... +|B. |.

Hint: There’s more than one approach you can take. One is to
notice that for an interval I in R, there holds that

. 1 1

(why?). And more generally for a box B,

1 1
Bl = lim —# (BN =Z").
B Noboo Nd# ( N >
Here %Zd = {% k€ Z%. Use this to give an alternative
definition of m(E) for an elementary set that does rely on its
decomposition into disjoint boxes .
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The wish list:

a) Say that E1, B, Es, ... are disjoint subsets of R?, then:

m (U En) = Zm(En)
n=1 n=1

This is Countable Additivity

b) If F is congruent to F via translations, rotations, and combinations of these. We
want to have m(E) = m(F).

¢) We want m ([0,1)?) = m ([0,1]9) = 1.

We know from last week and Q1-Q3 that there cannot be an m : P(R%) — [0, oc]
that satisfies a), b), and c¢). We construct the set N C [0, 1) containing exactly one
element of each equivalence class for x ~ y defined by x — y € Q. We define N, as
“essentially translates” of N by » € QN [0,1). Then in fact:

[07 1) = H Nr

reQnlo,1)

And this union is disjoint. Furthermore m(N,) = N for each r because of congru-

ence, so:
o
L=m(0.0))= 3 m) =3 m(®)
reQn[o,1) n=1
And whatever we choose for the measure of NV, this produces a contradiction.

Proof of Q4. Let’s go!



e First note that if £ = J!; 4; and F = |J]', By for some boxes A; and By,
thenset C; = A;if 1 <i<nand C;=B;,_,ifn<i<m-+n:
n m m+n
Eur={JAaulB= ]G
i=1 k=1 i=1

And so we have that F U F' is an elementary set as desired.

e We wish to show that £ N F is an elementary set for elementary sets F and
F, TODO

e We wish to show that E \ F is an elementary set for elementary sets E and
F, TODO

e Note now that for elementary sets E and F' we know:
EAF =(E\F)U(F\FE)

And so by the previous bullets E'\ F and F' \ E are elementary, and so their

union EAF is elementary

o We wish to show that the translate F + x is elementary for an elementary E.
TODO

With this we win!

Proof of @5. induct TODO

¢ ¢ @

Proof of Q6. TODO
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Continuously Differentiable Functions

We saw that if f: A C R" — R™ is differentiable at = then D f(x) is given by the

partial derivatives as:

oA .. 9K
o1 OTn
Df(z)=1| : o
Ofm .. Ofm
o1 OTn

The converse statement that if the partial derivatives gﬂ{ L exist for each 1 <7 <m
J

and 1 < j < n then Df exists is FALSE. However we have a slightly stronger

condition that works!

Theorem. Let f : A C R" — R™ where A is open. Suppose that all partial

derivatives gg; (1 <i<m,1<j<mn)ezist in some neighborhood of x € A, and

they are continuous at x.
Then f is differentiable at x. In particular if all partial derivatives exist and are
continuous throughout A then f is differentiable in A. Such a function is called a

C function.

Remark. This theorem allows us to recognize “most” differentiable functions that

we meet in practice just by checking that the partials are continuous.

Proof. Since f is differentiable at x if and only if each of its component functions
are differentiable at x, we may assume without loss of generality that m = 1.
Let r > 0 be such that B(z,r) C A and the partials are defined and continuous



on B(x,r). Then let h € R™ such that ||h|| < r. Let h = (hq,..., hy). Set:

Po =

Dk i= Pr—1 + hyreg

And so p, = x + h. So then we have:

n

fl@+h) = fl) =Y flps) — f(pj-1)

i=1

Now we know that:

f(pj) = f(pj—1) = f(pj—1 + hje;) — f(pj)

Define ¢;(s) := f(pj—1 + se;) where ¢ is defined on some neighborhood of 0 in R.
Since ¢; is differentiable on an open interval containing [0, h;] with derivative 5%,
we know that ¢; is continuous on [0, h;| and differentiable on (0, h;). Therefore by

the mean value theorem we know that for some c;-l € (0, h;) that:

¢;(hj) = 6(0) = hj - &' (c})

0
) = 105 = by 55 a4 )
0
_hj'aa{j (45)

Where ¢; is some point in B(z, ||h||). Therefore:

h) E h;
fla+ &E (95)
For some ¢, ..., @, in the ball of radius ||h|| centered at z. Therefore:
- of of
h pr— Y —
flx+ Z i’ a;p ]Zzl hy [ﬁxj (g5) - Ox; ;%)



This implies that:
|f@+m - @ -Srih - @[S [2h ) - @) |
7] 7]

BNl 2F,  of
<> Jor e - a5 )|

of of
< - (g) — 5~ (=)
= 81‘j J 69@
of of
<mn- sup ‘ q —(ac)H
g€B(|n|) 11 0%; Oz,
1<j<n

But this goes to 0 as ||h|| — 0 since 5% are assumed to be continuous at z. Note

then that we win! The function:
T(h) = hj - =——(z)
; ! Oz

is a linear function, and so f is differentiable at z, and of course Df is just the

0 2] .
vector (87]61, e %) (). Amazing!!! v

Higher Order Derivatives

Let f: A CR" — R™ where A is open. The component functions are f; : A C
R™ — R. Since gg]: ; is itself a function from A — R we can take higher order partial

derivatives. For instance, if f; € C! then % is defined and continuous, so we can
J

consider if the following exists:

?fi _ 9 9f;
a$ka$]’ o 8$k 8:Ej

This is called a second-order partial derivative. Similarly one can define partial

derivatives of higher order inductively.

Definition. A function f : A CR"™ — R™ is of class C" for r € Ny provided that
all the partial derivatives of its component functions up to order r exist and are

continuous.
We say that f is C°° provided that f € C" for all v € Np.



Exercise. Show that f € C" if and only if 8% e C™ ! for each 1 < j <n.

Multi-Index Notation

Definition. A multi-indez is an n-tuple o = (a, ..., o) such that each a; € Ny.

If « is a multi-index then we define:
e The order of a as |a| := a1 + -+ ay. And the

e The factorial ! := aqlas! - - - !

e For x € R™ we define z* = x{tx5? - - aln.

e For f; : R™ —» R we define 0“f := 95t --- 99" f.

Example. For f:R? = R we see:

g2y Pf
Ox10x3

But wait, then what about 83?228];1 ? Does it have a multi-index notation?

Theorem. Let A C R"™ be open and let f : A — R be a function of class C%. Then
for each x € A we have:
0? 0 f

x) =

8$k8$j 8:%8.7%

()

Corrolary. If f: A — R is of class C" then for any 2 < m < r then:

o f o f

8le s a$]’m 8m§1 s 83:%1

for any permutation }1, . ,}m of j1, .-+, Jm- In particular we can always rearrange
J1s---,Jm such that ;1 <. <L ;m and in that case there is a multi-index notation:
am am
;o F _on

8% te a$]’m 3:E'J“1 ce al"jm

For some multi-index a. Therefore any partial derivative up to order r can be written
in multi-index notation as 0“f for some multi-index with order less than or equal

tor.



Exercise. Deduce the corollary from the theorem using induction.

Proof of Theorem. We start with some reductions. Since one computes am%zj and
of

Oz, 927 by keeping all other coordinates x; for k # 4,7 constant, we can assume

PN

without loss of generality that n = 2, and that f: A C R? — R. v
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Continue proving the equality of mixed partials

Theorem. If f € C?(A) where A C R? then for each xy € A we have:

0% f 0% f
(z0) =
O0x0x; Oxj0xy,

(zo)

Corrolary. Equality of mized partials of order r when f € C"(A).

Proof. We began by reducing to the case where d = 2, since in general all variables
different from k,j are frozen when taking these partial derivatives. Thus assume

f:ACR? - Ris C?. Instead of referring to x1, zo we’'ll refer to x,y.

Now lets consider our intuition. We know that % measures A,ff —f (x°+h’y})l_f (@o.y)

And then:
a2f ~ AyAacf _ Axf(xmy + h) - Axf(:r,y)
oyox ~  hk hk
= f by +B) = Fy +E) — @+ hy) + f,9)
Similarly:
of Ay flay+k)— fz,y)
oy~ k k
an ~ AIAyf o Ayf(l‘ + kay) - Ayf(xay)
oxdy ~  hk hk

B %[f(””hvyﬂf)—f(w+h7y)—f(w,y+k)+f(x,y)]

Notice that AyA,f = AzAyf. Thus the equality of this discrete version of the

partials that we expect the partials to be the same.



Now for the real proof. Let (xg,y9) € A and @ be the rectangle with vertices
(xo,v0), (xo + h,y0), (xo,yo + k), (zo + h,y + k). Since A is open, we can take h
and k to be small enough so that Q C A. Now let:

G(h,k) = f(xzo + h,yo + k) — f(xo + k,y0) — f(x0,y0 + k) + f(x0,y0)

‘We will show that:

o*f o*f

G(h, k) = hkaxay (p) = g0 (q)

For some p,q € Q. To show the first equality. Let us use G(h,k) = AyA,f and
let ¢(y) = f(zo + h,y) — f(xo,y) for y between yy and yo + k. We know that ¢
is continuous on [yo, yo + k] since f itself is. Also ¢ is differentiable on (yo, yo + k)
since f is C'. Therefore by the Mean Value Theorem there exists a 1, between 1
and yg + k so that:

d(yo + k) — d(yo) = &' (yu )k

Notice then that:

G(h, k) = ¢(yo + k) — o(v0)

9(y) = gim ) - g-;j@o,w
k) = k [§§<xo AR A0 y*ﬂ

Now we know that g—i(:v,y*) is continuous on the closed interval between xy and
xo + h and differentiable on the open interval. By the MVT there is a x, between
zo and zg + h so that:

0’ f
0xdy

(ears) = & [%(xo AR 1 y*>]

G(h, k) = kh

Note that (2, yx) € Q so we have the first equality. To show the other equality, we
argue similarly using the fact that G(h, k) = A;A,f. More precisely instead of ¢

above we introduce:

U(z) = f(z,y0 + k) — f(z,90)



By MVT we can get a x¢ such that:

G(h, k) = P(xo + h) — (o) = h' (o)

0 0
G, k) = b | 9L (o, o + K) — L (9, 0)

By applying the mean value theorem again we get yo between yg and yg + k we get:

2

_ . 0°f
G(h’ k) - hkm(l‘@vy@)

This is exactly the same moves as in the proof for z. Then:

2 2
G(h, k) == 8 f ($*7y*) — 8 (CCQ%ZUQ?)
hk 0xdy 0yox

By letting h,k — 0 both (z4,%) = p — (20,%0) and (z0,y0) = ¢ — (z0,y0). By
92 f i

9503 and g0z At (z0,yo) we obtain the desired equality that:

continuity of

ﬁ(w )_ ﬁ(x )
D0y 0, Y0 _ayax 0, Y0

¢



The Chain Rule and Taylor’s Formula in Higher Dimen-
sions

Recall. For f: ACR — Rand g: B C R — R such that f(A) C B we have
gof:ACR — R. We have:

Llgo flla) = g (f@)) - 1'(@)

provided that f’(x) and ¢'(f(z)).

Theorem (Chain Rule). Let A C R™ and B C R™ and suppose that f : A C R™
and g : B C R¥. with f(A) C B. Suppose that xq is an interior point of A and
yo = f(xo) is an interior point of B. Furthermore suppose that f is differentiable
at xg and g s differentiable at yo. Then g o f is differentiable at xo and:

Dlg o f](z0) = Dg(yo) o Df(xo) = Dg(f(x0)) - Df(x0)

Proof. Since yp is an interior point of B there exists a € > 0 such that B(yg,¢) C B.
Since f is continuous at x there exists a § > 0 so that f(B(zo,0)) C B(yo,€). So
we can define g o f : B(xg,6 — R¥. Let ||h|| < 6 for h € R" and define:

_ J@o+h) = f(xo) — Df(xo) - h
|7l

By differentiability of f at xy we have Rf(h) — 0 as ||h|| — 0. Similarly if k|| < e
and k € R™ we define:

gww+m—g%W—Dﬂm%k (k#0)

Ry(k) =0 (k = 0)

Rg(k') =

By differentiability we know that R4(k) — 0 as ||k|| — 0. To show that go f is
differentiable at xq we must show that there exists an A € Hom(R",R¥) such that:

[g 0 fl(xo+h) —[go fl(zo) — Ah
2]l

Ryos(h) = —0as ||k =0



Rewrite as the following:

[g0 fl(zo +h) = [go fl(zo) = g(f(xo + h)) — g(f(20))
= g(f(zo) + f(xo + 1) — f(x0)) — g(f(0))
= 9g(yo + k) — 9(yo)

Where we call k = f(xo+ h) — f(z0). From Ry(k) we know that for any k € R™:

9(yo + k) — g(yo) = Dg(yo) - k + || k|| Ry (k)

Furthermore k£ = f(xo + h) — f(x0) = Df(xo) + ||h||Rf(h). Therefore:

9o + k) — 9(yo) = Dg(yo)[Df (xo)h + |hl[ Ry (h)] + [[E[| R (k)
= Dg(yo) Df(wo) - h + [|h][ Dg(yo) By (h) + [|k[| Ry (k)

Set A = Dg(yo) - Df(xo) This gives that for h # 0 that:

[g0 fl(xo +h) —[go fl(zo) — AR
IRl
|

= Dg(yo) Ry (h) + WR q(k)

Ryoy (h) =

We know that R¢(h) — 0 as ||h|| — 0. It remains to show that %Rg(k) — 0 as
|h]] — 0. We know that:

1Bl = [[Df(z0) - b+ [[1l[ Ry (R)]]
< |IDf (o) - bl + [[Rll[1 224 (Rl
< CllAl[ + Al < (€ + D)|A]

This follows since ||[R¢(h)|| < 11if ||h| is small enough. Also we kow since D f(xq) is
linear we know ||Df(zo) - h|| < C||h|| for some constant C by 296 / linear algebra.

Therefore:

7]

5] 1 H
<(C+1)r—:
H IRl

Therefore as ||h|| — 0 we know that ||k|| — 0 since ||k]| < (C + 1)||h|| and hence

Ry(k) — 0. Therefore HhH Ry(k) — 0 as h — 0 and so this finishes the proof. —



Taylor’s Theorem in several variables

Recall the multi-index notation from last time.

Lemma (The multinomial lemma). For any & = (z1,...,2,) € R"™ and any positive

integer k we have:

k!
(w1 + a2+ +an)F = Z amo‘

|a|=k
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The Elementary measure (Continued)

e Recall from last time that an interval I is a subset of R of the
form [a, b], [a,b), (a,b],or(a,b) where a,b € R. The length of I is
defined to be |I| := b —a. A boxr in R? is a Cartesian product
of intervals B = I} x Iy x ...I; and its volume is defined to be
|B| = |LL]. .. .. |I]. An elementary set is any subset of R? which is
the union of a finite number of boxes.

e Definition. Let F be an elementary set. Last time we saw that
we can write £ = By U By U ... B, where By,..., B, are disjoint.
We define the elementary measure of F as m(FE) := |B;| + |Ba| +
.+ | Byl

Q1) Show that m(FE) is well-defined in the sense that if £ can be
expressed in two ways as a union of disjoint boxes By,... B,
and BY,... B/ , then

|By| + |Bo| + ...+ |By| = |Bl| +|By| +...+|B.|.

Hint: There’s more than one approach you can take. One is to
notice that for an interval I in R, there holds that

1 1
1= g # (10 52)
(why?). And more generally for a box B,

: L4
|B\—A}1H;O—#<BHNZ).



Here %Zd = {% k€ Z9%. Use this to give an alternative
definition of m(E) for an elementary set that does rely on its
decomposition into disjoint boxes.

e Properties of Elementary measure. Show that the following
holds

Q2) Show that if Ey,..., E, are disjoint elementary sets, then
m(B U UE,) =Y m(E)
i=1

Recall that this is called finite additivity.
Q3) Show that if £ C F are two elementary sets, then

This property is called monotonicity.

Q4) Show that if Fy, Es, ..., E, is an arbitrary finite collection of
elementary sets, then

m(EyU. .. E,) <m(Ey) +...+m(E,).
This is called finite subadditivity.

e Why is this unsatisfactory? Of course, the main problem with
this measure is that we can only measure relatively simple sets
(namely the elementary sets). For example, we cannot measure the
area of a disc. One might be tempted to generalize this measure
naively as follows: For an arbitrary set £ C R?, define

. 1 1
Mpixel () = ]\}1_130 m# <E N NZd> :

However, this is not a particurlary satisfactory definition for (at
least) the following two reasons:

Q5) Find a subset E of R for which this limit does not exist.

Q6) Find a subset E of R such that both myixe(E) and mypixel(E+12)
exist, but mpixel(E) # Mypixel (£ + ) for some z € R.
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Proof of Q1.

Lemma. For any interval I in R we have that:

1 1
I=lim — #(In=2
1= Jim % #< ﬁN)

Proof. Consider that the following sets are in bijection:

1
:IN—=Z— NINZ
/ N

z— N-T

This maps its domain into the codomain by definition, since N - I = {N -
|2 el}and £Z = {%-m|meZ}. We also know since N > 0 that this
is an injection from linear algebra. We also know surjectivity as well by quick
definition from the sets. Now say I has endpoints a < b, then NI has endpoints
aN and ON.

Now note that the cardinality #(NI N Z) is between bN — aN — 5 and
bN — aN + 5. So then note that:

bN —aN —5 < #(NINZ) <bN —aN +5

5 1 1 )
—a - — < — — < ph— —_
b-a N—N#<mNZ)—b N

1 1
—a< lim —#(IN=Z)<b-—
b a_Nl_rgoN#<ﬂN>_b a

¢

By squeeze theorem! We win! This limit is equal to |I| =b — a.




Lemma. For any box B C R?, we have:

1 1,4

N—o00

Proof. First write B = szl I}, for intervals I and note that:

Bm%Zd: (ﬁfk>mﬁé-z—n<lkmé~z>

k=1 k=1 k=1
#<3ﬂ12d>:# ﬁ([kml.z> :H#(Ikﬂl-Z>
N k=1 N k=1 N

So now we write that:

And therefore the lemma is proved!

¢

We prove one final lemma, and then the result will fall out!

Lemma. Suppose that we have two disjoint sets X, Y C R® and the limits:

1 1 1 1
lim —# ( XN —27% lim —# (Y N—27%
e Nd#< N ) NféoNd#< N >

N—oo

both exist, then:

N—oo

. L)~ Lo (e ta) s i Lo (v Lo
lim #((XUY)ONZ>— lim Nd#(XﬂNZ>—|—A}gnOONd#<YﬁNZ>

N—oo Nd




Proof. This is fairly simple to prove. Note that:

g L d L d
(XUY)ONZ—<XHNZ>U<YQNZ>

And since these are disjoint:

#(xunngz) =#((xnxz)u(varz))

_ 1,4 1,4
_#<XQNZ>+#<YONZ>

We then know that we can take the limit as N — oo on either side by real

analysis and we must get the same limit as desired in the lemma v

Now fix an elementary set £ C R? and let it be the union of disjoint boxes

Bi,...,B,. By applying the lemmas multiple times:

n

n
.1 1
m(E) = Z |By| = Z]vlféo ~ait (Bk N NZd>
k=1

k=1
— lim g CJ By | N~z
_.Nygijd 1 k N
1 1
= lim — (En—2z¢
NEEoJVd ( N )
Now note that the limit does not depend on the choice of disjoint boxes By, ..., By,
so if we choose another choice of disjoint boxes Bj,..., B}, that union to E then we
know:

> Bil = lim — <E“ NZd> =>_|Bi
k=1 k=1

¢

And so the measure of E is well-defined.



Taylor’s Theorem on R

Lemma (The multinomial lemma). Let x = (z1,...,x,). We would like to look at:
k!
k a
(;171—1—"-—1—37”) = g —':c

With:

lal| =01+ oy

al =ap!- - ay!
xazw?l...x%n

This generalizes the binomial theorem.

Proof. The proof proceeds by induction on n. The binomial theorem gives the case
n = 2. Suppose that the multinomial theorem holds up to n — 1. We want to show

it holds for n, where n > 3. So then we write:

!
(@1 4zt ta)f =@+ @+ Fa) =D otz )’

a+b=k
= Z xf Z :cg,...,a:n)’g
at+b=k alb! \,8| b
=2 2 wxlx? g
a+b=k |B|=b
peNg~!

Now set a = (a, 3). Then:

(:L‘1—|-:L‘2+'--—|-33n)k= Z Z 'ﬂ' 1--~x§"*1

a+b=k |B|=b
BeNg~!

k!
= —xa
Z a!
la|=k
aeN[

]

Therefore the result follows by induction. Great!!!



Lemma (Higher order product rule). For any o € N§j and f,g: R"™ — C we have:

|
(fg)= > -’ fag
BHy=c p

B,7eNg
Whenever f and g are differentiable up to order |a|. This generalizes Leibniz Rule.

Recall. We take as notation:

oo f

axj

Off =0y, f =

For convenience

Proof. Again the proof is by induction on n. For n =1, let « = k € Ny, we want to
show that:

k
H )= Y orsorg =y T or ot
o P! = (k= p)!
This is part of your homework. Press F to pay respects. THerefore the result is true
when n = 1. Now assume the result is true for n — 1, we will show it holds for n.
Take f,g: R™ — C and take a € Nj. Write a = (a,6) where a € Ny, 0 € Ng_l,
and z = (21, 2') where 1 € R and 2’ € R"~!. Then:

0!

% (f9) = 0 0uF) =5 | D rndhfol
o MWV
u,l/ENg_l

0 o rap pav
— Ze W(?xl [8£,faz/gj|
ufé;lf}‘l

0! N A
= Z W Z m!k!@l@m,f(?zl@z/
e



So then we may write:

%(fo) =3 Z lml ,/lkl o o O O £, 0%

pt+rv=0 m-+tk=a

pveNg ™ 1
— 8 Ny
- Mg
Bty=a
The result now follows by induction. Great! Here we take: =

Recall. We recall Taylor’'s Theorem for single-variable functions. Suppose f :
[a,b] — R is C*([a,b]) and 0¥ f : (a,b) — R is differentiable. Then for any a < < b
then:

For some a < ¢ < x.
We will study the generalization of this theorem for functions f : R® — R™.

Recall. If f = (f1,..., fm) and « is a multi-index then:
0% f1
0% f =
0% fm

Thus we only need to consider the case m =1

Definition. We call a subset G C R™ convez provided that for every x,y € G and
every t € [0,1] we have tz + (1 —t)y € G.

The Plan: We would like to derive the Taylor Expansion of f at some point a of
its domain (which should be open and convex). At order k this should give us a

polynomial in xq,...,z, of degree < k that approximates the function near a.



The General Statement and Proof

Theorem (Taylor’s Theorem). Let G C R™ be an open convex set. Suppose that
f:G —C is of class CF1. If a € G, then for any x € G we have:

f(@) = Rapla) + 3 (= a)°0° f(a)
jal<k
a€eNg

where we have:

|a|=k+1
aeNy

For some ¢ € G on the line segment connecting a and x, that is ¢ = ta + (1 — t)x
for some t € [0, 1].

Recall. Recall the following formula

Dy f(x +tu) = % Szof(a:—i-tu—i-su) = % szof(x—i- (t+s)u) = % T:tf(x—l—ru)

Dy,f(z +tu) = %f(x—l—tu)

‘Which is nice

Proof. To avoid confusion, let us denote x by xzg. We will deduce this result from
the single-variable case. To do so we will look at the restriction of f along the line

segment connecting a and g, by convexity this line segment belongs to G. Set:
¢:[0,1] - C
% f(ta+ (1 — t)ao)
Notice that ¢(0) = f(a) and ¢(1) = f(zo), furthermore note that ¢ € C*+1(]0,1])
since f € C*+1(@). By Taylor’s Formula in one dimension at ¢ = 0 we know:

k

¢(1) = Ros(1) + >

p=0

#®(0) - 17
p!

k+1(c)
_ .  \7, 1k+1
Fox (k+1)!



What is ¢ (0)? For p = 0 we know ¢(?)(0) = ¢(0) = f(a). For p =1 we have
V() = (1) = S Flat iz~ a)
= Df(a+t(xo —a)) - (ro — a) = Duf(a+tu)

Where u = 2¢g — a. But then this is equal to:

' (t) = <u1£1 +oe 4 u”c’)i) fla+ tu)

So then we know that:

Think of these as operators on functions that we’re manipulating and consider:

d of B of
&maixl(a—i-tu) =u1D, <3:U1> (x + tu)

And so in general we want to think about:

¢
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Theorem (Taylor’s Theorem). Let G be open and convex. Let f: G — C be CF+1
and a € G. Then:

0 f(a)

f(x) = Ry () + Z o (x —a)”
lal <k
R = Y Lo —ar

|a|=k+1
Where ¢ is on the line segment connecting a and x

Continued Proof of Taylor’s Theorem. We'll fix some xg € G. Then set ¢(t) =
fla+t(xo — a)) where ¢ : [0,1] — C. By taylor’s theorem in one dimension:

ko)
f(wo) = ¢(1) = Ros(1) > ¢ '(0) 1
p=0 P
(k+1)
Roa(1) = ey 144!

For some 0 < § < 1. We need a formula for ¢®)(t). Let u = (2o — a). Then by the

chain rule:

¢'(t) = Df(a+tu) -u= Dyf(a+tu) = (Zuk{iﬁ) (a+ tu)
k=1



So then if we call fi = D, f then we have that:
¢"(t) = Dufi(a+ tu) = [Dy(Duf)](a + tu)
2
= D?f(a+ tu) (Zuk ) (a 4+ tu)
So then by induction we can obtain that:
J
¢(j)( ) = DJ f(a + tu) <Zuk ) (a + tu)

Where this holds for 0 < j < k 4+ 1, since f is differentiable k 4 1 times. And so for
0 < j <k we have:

. j
¢9)(0) = DI f(a) = <Z “’“ai) f(a)

k+1
¢(k+1) (Q) Dk+1f (Z U —— ) f(a + H’U,)

Consider that as operators we can show—using linearity—similarly to how we

showed the multinomial lemma, we have:

n 8 p p'
(Z Uk8xk> = Z auaaa
k=1 |a|=p

This gives us that:

|
o7 (0) = Y7 Tutd" f(a)
lal=p
¢(k+1) (6) — Z (k zll)!uaaaf(a + H'U,)
|a|=k+1 ’

Set ¢ = a4+ Hu which is on the line segment between a and xg, so then we must have



that:

This is exactly what we want to show! =
Example. Let f(z,y) = sin(z? + y) where f : R> — R. Find the 3rd degree
polynomial that best approximates f near (0,0).

This is simply:

Py = 3 LI e

ol
|| <3

Let’s go!
e For |a| = 0 we have o = (0,0) and so 9“f(0) = f(0) =0, and ! = 1.

e For |o| =1 then o = (1,0) or a = (0,1). Call these «, and o, respectively, in
either case a;! = a,! = 1 and then:

0 f(0) = gx (0) = 2z - cos(x? + y)‘o =0
9% £(0) = Zi(@ = cos(a® + 99| =1

e For |a = 2| we have ag, = (2,0) where o ! = 2 and o,y = (1,1) and ay! = 1.



And then oy, = (0,2) where ay,! = 2. Now:

- P 2 2 2 _
9% f(0) = @(0) = 2cos(z® + y) — 4a” sin(z® + y) .= 2
gy 82f _ : 2 _
0 y—m(O)——stm(x +y)’0—0
_ P

0 1(0) = 55(0) = —sin(@? +y)| =0

e We omit the case where |a| = 3 because we cannot deal. WTF

So then:
0O £(0) 020 £(0) 009 £(0)
=2 J\ oy = V) (20, =2 SV (0,3)
290 1 o 1
=y+ 233 6y =1ty 6y

In the following picture. The blue is our polynomial and the purple is f:

Cool!



Inverse Function Theorem

The inverse function theorem gives a necessary and sufficient condition for a function

: R™ — R™ to be locally invertible with a C! inverse.
/ y

Definition. Let f: A CR"™ — R™ where A is open, and let xqg € A. We say that
f is locally invertible around xqg provided that there is some open neighborhood U of
xo so that f!U :U — f(U) is one-to-one, and f(U) is open in R™ This defines an
inverse function g : f(U) — U.

o We say that f is a local homeomorphism around xqg provided that both f and

g are continuous.

o We say that f is a local diffeomorphism around xy provided that both f and g

are differentiable.

o We say that f is a local C"-diffeomorphism for r > 1 provided that both f and

g are C"-functions.

o We say that f is a locally invertible (resp. homeomorphism, diffeomorphism,

C"-diffeomorphism) provided that it is locally invertible (resp.) around every

Ty € A.

Remark. Soon we will give an example that is a local diffeomorphism on an open

set A but is not a diffeomorphism of A.

Our goal is to find a condition for a function to be a local diffeomorphism. This is

easy in one dimension.



The Key Idea

KeX Figure

~

Being a local diffeomorphism neat x is equivalent to being able to express x as
a function of y. This means that the graph of y = f(z) can also be regarded as a
function = = g(y). This can be done when %(mo) #0. If %(wl) = 0, we might get
multiple intersections of lines parallel to the z-axis neat y = f(x1), which means
that the graph cannot define a function x = ¢g(y). The inverse function theorem will

generalize this intuition to higher dimensions.

Necessity that Df(x() is invertible

Proposition. Suppose that f : A C R™ — R™ where A is open. Let xg € A and
suppose [ is differentiable in A. Assume that f is a local diffeomorphism around xg
and suppose g : 0 C R"™ — B(xo,d) where O is open containing y = f(xo) is the

inverse function. Then D f(xq) is invertible and:
Dy(yo) = [Df (wo)] ™"
Proof. Consider that:
go f: B(xg,0) = B(xo,0)
And (g o f)(z) = z. Deriving both sides and using the chain rule:

Dg(f(x0))Df(x0) = Dg(yo)D f(zo) = Id



And so Df(xo) is invertible and Dg(yo) = [Df(x0)] "

/’ \\ ,’ \\
4 N 4 N
4 \ 4 \
’I ° \ 'I \
1 1
| Zo 1 | 1
\ 1 v yO 1
\ ’ \ [ ] ’
> ’ \_/\ 4
~ P ~ -
~e__- ~e__-

¢

Remark. The above proposition shows us that we cannot have a local diffeomor-
phism as defined from A C R" — R™.

One can ask if this is also the case for local homeomorphism. The answer is
yes. However, the proof is more involved and uses tools from algebraic topology

(Brouwer’s invariance of domain theorem)
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Second Try: Jordan measure

e Definition of Jordan measure. The main caveat of elementary
measure is that it only allows us to measure elementary sets, which
is a fairly restrictive family of sets. Building on the old intuition
(going back at least to Archimedes) we can lower bound (respec-
tively upper bound) the measure of a set by approximating it from
within (respectively without) by an elementary set, i.e. if A and
B are elementary and A C E C B, then the measure of E (if it
exists) should be sandwiched between that of A and B.

Definition 0.1 (Jordan measure). Let £ C R? be a bounded set.

— The Jordan inner measure m;(E) of E is defined as

m;(E) = Sup m(A).

ACUFE,Aelementary

Here m(A) is the elementary measure of A.

— The Jordan outer measure m;(F) of E is defined as

my(E) = inf m(A).

ADE, Aelementary

— lf m;(E) =my(F), we say that F is Jordan measurable, and
call the common value m(FE) (the Jordan measure of F).

By convention, we do not consider unbounded sets to be Jordan
measurable.

Q1) Assume that £ C R? is bounded. Show that the following are
equivalent:

a) E is Jordan measurable.

1



b) For every € > 0, there exists elementary sets A and B such
that AC F C Band m(B\ A) <e.
c¢) For every € > 0, there exists an elementary set A such that

Q2) Deduce that every elementary set E is Jordan measurable and
that its Jordan measure is the same as its elementary measure.
In particular, m(@) = 0.

e Properties of Jordan measure Let E, F' be Jordan measurable
sets.

Q3) Clearly m(F) > 0. Show that

(a) Show that EU F,ENF,E \ F, and EAF are all Jordan
measurable.

(b) (Finite additivity) If £ and F are disjoint, then m(EFUF') =
m(E) + m(F).

(¢) (Monotonicity) If E C F, then m(E) < m(F).

(d) (Finite subadditivity) m(E U F) < m(E) + m(F).

(e) (Translation invariance) for any z € RY, m(E+x) = m(E).

e Some Jordan measurable sets. Let B be a closed box of R?
and f: B — R a continuous function.

Q5) Show that the graph {(z, f(z)) : # € B} C R is Jordan
measurable in R%"! and that it has Jordan measure 0. Hint:
Use that f is uniformly continuous.

Q6) Show that the set {(x,t) : v € B,0 <t < f(x)} € R is
Jordan measurable.

From this we conclude that some familiar sets like triangles in R?
and balls in R? are Jordan measurable.
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Exercise 1.
Proof. Let’s go!

(a = b) Fix a Jordan mesaurable set F and some ¢ > 0. By definition of suprema and
infima there exist elementary sets A C F and E C B such that:

m(E) — % < m(A) <m(E) <m(B) < m(E) + g
Note now that AU(B\ A) = B since A C B and so since this union is disjoint:
m(B) = m(A) +m(B\ A) < m(E) + %

So then:
m(B\ A) < m(E) = m(A) + = <

Great! Thus c) holds.

(b = c¢) Fix a set E satisfying the condition in (b). Now fix ¢ > 0. There must be
elementary sets A C E C B so that m(B \ A) < e. Note that:

EAA=(E\A)U(A\E)=E\ A

So then note that £\ A C B\ A since E C B. Also B\ A is an elementary

set, so we must have by definition of infimum that:
mj(EAA) <m(B\A)<e

And so we are done!



(b = a) Fix some set E satisfying (b). In order to show that m;(F) = m;(E) we will
show that for all ¢ > 0 we have |mj(E) —m;(F)| < e. Fix some € > 0, then
there exists elementary sets A C E' C B so that m(B \ A) < e. Note that we

must have by previous work and definitions that:

m(A) <m(B)
m(B) =m(A) +m(B\ A)
my(E) <m(B)
m;(E) = m(A)
my(E) —m;(E) <m(B) —m(A)
=m(B\A)<e

Now note that for every elementary sets C7; and Cy with Ch7 C E C (s we
must have m(C1) < m(Cs). This shows by 295 that:

my(E) = sup m(C) < inf m(C) < m;(FE)
CCE COE
C elementary C' elementary

Therefore we have that:
my(E) —my(E)| =my(E) —my;(E) <e

Taking ¢ —+ 0 we know that the outer Jordan measure agrees with the inner

Jordan measure and so E is Jordan measurable.

(¢ = b) Fix some set F satisfying (c¢). Now fix some ¢ > 0. There exists some elemen-
tary set A with mj(EAA) < § < e. Therefore by definition of infima there
must be some elementary set B so that EAA C B and:

s (BEAA) < m(B) < ¢

Now note that E\ A C B, and so E C AUB. Set D := AU B. Now consider
C := A\ B and note that:

A\BC A\ (EAA) = A\ (AUE)\ (ANE)) = A\ (AUE)U(ANE) = ANE



And therefore C C E. We then note that:
D\C=(AUB)\(A\B)=1B

So we know in particular that m(D \ C) = m(B) < e. Since D and C are

elementary sets we must have that E satisfies (b).
-
Exercise 2.

Proof. Fix some elementary set E. We show that F satisfies (b) from Exercise 1
and so F is Jordan measurable. Fix some € > 0 and note that £ C F C E and

furthermore:
m(E\E)=m@)=0<e

So we know that F is jordan measurable. We now only to show that the Jordan
measure of E agrees with the elementary measure of E. To do this we calulate
mj(F). Fix some A C FE with A elementary, by previous homework m(A) < m(E)
so the elementary measure of E is an upper bound on the set defining m;(E).
Furthermore, this upper bound belongs to the set defining m ;(E) since £ C E and
FE is elementary. Therefore it is a maximum for that set, and is thus the supremum.

This gives us that the Jordan measure of E, which is equal to the Jordan inner

measure is also equal to the elementary measure of E just as desired. Perfect! —
Exercise 1c.
Proof. Let’s go! Fix F and F' as Jordan measurable sets.

e TODO

e TODO

e TODO

e TODO

¢

This gives us exactly what we want.
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Recall. Let f : A C R" — R" with A open. Let zg € A. We say that f is lo-
cally invertible near xo € A provided that there eixsts U,V C R" such that zg € U,
f(xo) € V, and f is bijective from U to V. Similarly we define local homeomorphism

and local diffeomorphisms.

Main Question: When is a function f a local diffeomorphism? If y = f(z) this

means, when can we express x as a function of y.

AN
n

Yo

~

Then clearly we can only express z as a function of y in a neighborhood of 3y and
not y;. The reason for this difference is %(wo) # 0 whereas 373(331) =0.

This geometric intuition turns out to be true in any dimension if we require
Df(xg) to be invertible instead of just non-zero. Of course this is equivalent to the

determinant of D f(z) being nonzero.

Recall. Last time, we showed that if f is a local diffeomorphism near xy and
g : U — V is the inverse function with g € U and y = f(x¢) € V, then:

Dg(yo) = [D f(w0)] "



This shows the necessity of the condition D f(xz() being invertible for f to be a local
diffeomorphism near xy. The inverse function theorem (IFT) tells us that this is

sufficient

Theorem (Inverse Function Theorem, IFT). Let A C R™ be open and let f : A —
R™ be of class C" with r > 1. Suppose that xo € A and D f(x¢) is invertible, then:

(1) There exists an open neighborhood U of xy and an open neighborhood of V' of
yo = f(xo) such that f is a bijection from U to V

(2) The inverse function g : V — U is of class C" as well, and Dg(y) = [Df(z)] ™!
when y = f(x) for any xz € U.

Remark. Another interpretation of IFT is that it allows us to solve an equation:

y = f(x)

For x in terms of y locally around z¢p when D f(x) is invertible. Note that if the
funciton f is invertible then f(z) = Ax for some n x n matrix A, then the ability to
solve this equation is exactly the invertibility of A, but A = D f(x) for any . Wow!
The IFT generalizes this to nonlinear functions using differentiability and we work

locally.

Remark. The IFT does not guarantee the existence of a global inverse function of
f:A— R" but only a local inverse, even if D f(z) is invertible and continuous for
all z € A.

The only exception is when n = 1, and A is connected. In that case if f/(x) #
0 and f’ is continuous then f’(x) has a definite sign, and so f is either strictly

increasing or decreasing. This stops being true for n > 2
Example. Here’s a concrete example. Let f : A = (1,2) x (—x,37) — R? where

f(r,0) = (rcos(f),rsin(f)). Then:

Df(r.0) = (cos(&) —r sin(9)>

sin(f)  rcos(d)
THen note that:

det(Df(r,0)) =r € (1,2)



And so Df(r,0) is invertible on A. However f(r,0) = (r,0) = f(r,27). Thus f is
not globally injective, even though the IFT tells us that it is locally
Lemmas for the IFT

Lemma 1. Let A C R™ be open and let f : A — R™ be of class C*. If Df(xg) is
non-singular (that is invertible), then there exists an o > 0 and a neighborhood U
of g such that:

|f(x) = f(y)| > alz -yl

For any x,y € U. In particular f(x) # f(y) if x #y. Therefore f is one-to-one on
U.

Proof. Let’s Go! First we need the linear case:
Let E = Df(xg). If f were a linear function, that is f(z) = Ex, then f(x) —
f(y) = E(z — y). Therefore x —y = E~(f(x) — f(y)). This implies that:

o =yl = [E(f (@) = f)] < 1B - |f (@) = f()
Where we have defined for any matrix C' : R® — R™ the operator norm:

|C|l = sup |Czx|
z€R™
jal=1

Great!

Exercise. Prove that |Cx| < ||C|| - |z| for any x € R™ and that:

|C]] < nm - max |Cy]
1<i<m
1<5<n

This is useful for us!

Continuing we then have that:

@)= S)| > g o=



Step 2, we need to generalize. Let H(x) = f(z) — Ex where E = D f(xg). Then:

DH(xz)=Df(z)— E
DH(xo) = Df(z9) —E=0

Since H is a C! function we can choose € > 0 so that:

1

IDH ()| < 5=
2171

If z € B(xo,e). Now by the mean value theorem (that is Taylor’s Theorem at order

0) we have some ¢ between = and ywith z,y € B(xzg,¢) so that:

|H(x) = H(y)| = [DH(c) - (z —y)| < |[DH()]| - [ —y| < 2”;_1” =yl

On the other hand:

|H(z) — H(y)| = [f(z) = f(y) — E(x —y)| = |[E(z —y)| = |f(2) = f(y)]
Therefore:

1
f@)=fWl 2 E@—-y)| - s lr — v
@)~ )| = |l )] = gz e =]
But then by Step 1:

1

[f(z) = f)] = |E(x—y)| - AET| [z =yl

>y sy = s [z
> i e =yl = s e vyl = s ey
BT 2ET] 2B

¢

Exercise. Suppose f : A C R" — R™ is C', show that the function x € A
|Df(x)| is continuous. More generally we just need to know that the operator norm

is continuous, that is Mat(m x n) — Rx>qg given by A — ||A|| is continuous.
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More Inverse Function Theorem

Theorem (Inverse Function Theorem, IFT). Let f : A C R" — R" be a C"-
function for r > 1 and suppose D f(xq) is invertible where xo € A. Then f is a local

C"-diffeomorphism around xqy. In other words there are open meighborhoods U of xg
and V' of f(zo) such that:

1) f is a bijection from U to V

2) The inverse function g :V — U is C" and Dg(y) = [Df(z)]”" where z € U and
y = f().

Lemma. If f: ACR" — R" is C' and Df(xq) is non-singular. Then f is locally

one-to-one around xg. More strongly there is an open neighborhood U around xg

such that for some o > 0 we have that for all x,y € U:

[f(@) = f(y)l = ez -yl

Great!

Lemma. Suppose f: A CR"™ — R (where A is open) is differentiable. If f admits

a local minimum (or mazximum) at xy € A, then D f(xg) = 0.

Proof. Let u € R™ be arbitrary and set ¢(t) = f(xo + tu) where t € (—6,0) for §
small enough so that xg + tu is always in A. Since f has an extremum at xg, then
so does ¢ at 0. By the chain rule ¢ is differentiable on (-4, ). Therefore ¢/(0) =0
but:

&' (t) = Df(xo +tu) - u
0=¢'(0) = Df(x0) - u



]

And this is true for any u € R", so Df(z9) = 0.

Proof of the Inverse Function Theorem, IFT. By the first lemma there exists a neigh-
borhood U of g on which f is one-to-one. By shrinking U if necessary we may also
assume that D f(x) is non-singular for every z € U. We may do this because f € C*
and so D f varies continuously, meaning that since det D f(zg) # 0 we can shrink U
to get nonzero determinant all across U. Let V = f(U).

Step 1 We must show V' is open in R". Take y € V, we want to show that
there exists an € > 0 such that B(y,e) C V. Write y = f(z) for some z € U.
Since U is open there is some 6 > 0 so that B(z,d) C U. Note that the boundary
0B(z,0) ={z € R" | |z — x| = d} is a compact set, and so if we let I' = f(0B(z,9))
we know that this is compact since f is continuous. Note that y ¢ I' because f
is one-to-one. Thus there is an ¢ > 0 such that B(y,2¢) C I'°. We claim that
B(y,e) C V. To show that, let ¢ € B(y,¢) and set:

¢:B(z,6) > R
2% | f(z) =

Now since ¢ is a continuous function on a compact set it achieves its minimum value
at some point z, € B(x,d). We claim that 2z, ¢ 0B(x,d), and so z € B(z,d). Why?
Well if z, € 0B(x,0) then f(z,) € I' and so:

$(z) = |f(z) — > = f(z0) —y+y —cf
> (|f(z) —yl—ly—c)® > (2e —e)? =&
This is a problem since ¢(x) = |y — c|2 < €2, but this contradicts the fact that ¢

has its minimum at z,. Therefore z, € B(x,d) since z € B(x,6) and z ¢ 0B(x,0).

By Lemma 2 we must have that D¢(z,) = 0 so we calculate the derivative.

Claim. To justify the above we look at the function g : R™ — R defined by g(z) = |z|?



Consider that:

0ig(x1,...,xn) = 2,
Dg(.%'l,.. . ,.’En) = (2.%'1,.. ,21‘n) = 2

So then setting F'(z) = f(z) — ¢ and so:

D¢(z) = Dg(F(2)) - DF(z) = 2F(2) - Df(2) = 2(f(2) — ¢) - Df(2)

This gives that:

0= D(z) = 2(f(2.) — ) Df(z)

Since D f(z,) is invertible, this implies that f(z,)—c = 0, and so f(z,) = ¢. Therefore
c€ f(B(z,0)) C f(U). And so B(y,e) C f(U) =V as desired.

Great! The conclusion of Step 1 is that f : U — V is one-to-one, onto, and
U,V are open. Therefore there exists an inverse function ¢ : V' — U such that
fog=Idyand go f = Idy.

Step 2: We must show g is continuous. We need to show that g1 (U") is open
for every open U’ C U. This is equivalent to showing that f(U’) is open for any
open U’ C U. But wait! This is exactly what we did in Step 1 by replacing U by
U’

Step 3: We show that g is differentiable. To do this. Let y € V' where y = f(x)
for some x € U. Now let E = D f(x), by hypothesis E is invertible. We will show
that:

gy +k) —gly) — E~'(k)

—0ask—0
|h|

This result implies that ¢ is differentiable at y and Dg(y) = [Df(x)]”" where y =
f(x). We know that if |k| is small enough then B(y,|k|) € V by openness. Thus
there exists some h such that y+k = f(x+h) for some x+h € U. And so we know

k= f(zx+h)— f(z). Now note that h = g(y + k) — g(y) and so h — 0 as k — 0 by



continuity of g. By the differentiability of f at x we know that:

r(h):= f(zx+h) — f(x) — Eh
=k—FEh
r(h)

—— —=0as |[h| —0
Id

Now we know that:

Elr(h)=E %k —h=E"Yk—gly+k)+g(y)

—E"'r(h) _ gly+k)—gly) — Bk
K] k]

h)

-1
It then suffices to show that limy_,g % r(h)

= 0. It suffices to show that limy_,q W=

0, since E~! is linear. Writing then:

r(h) _ r(h) |hl
k[ |hl [k
Since % — 0 as |h| — 0 and since |h| — 0 as |k| — 0 it suffices to show that % is
bounded by some C' > 0 for nonzero but small enough k. Recall that:
h=FE'k—Er(h)
|hl = |E7(k — r(h)]
< IE7H - |k —r(h)]
<ETHE- (k] + |r(R)])
Now since % — 0 as |h| — 0 if |h| is small enough we get:
Rl 1
[ T 2B
Therefore if |k| is small enough then |h| is small enough so that |r(h)| < 2”5,'1“.




And therefore:

_ |h
n < |27 (w -
MET]

hi

—\E~ Lk L

1B~k +

Al < 2B~ ||

1hl 1
<2(E~|

K]

Pulling this all together:

gly+k)—gly) —E"'k| _|E"r(k)
et - Y

And we know that:

<9|E- 1”“"( I 0ash—0
||
And so since h — 0 as k — 0 and E~! is linear, we are done, g is differentiable.
Step 4: We need to check that ¢ € C"(V). We have shown that Dg(y) =
[Df(z)]~! where y = f(x). We can write this as:

7“(h)‘_ (W [p]
Id [hl Ikl

Dg=[Df] 'og

By Cramer’s rule [D f]_1 is a rational function (a polynomial over a polynomial) of

the partial
Recall. Cramer’s rule gives you a formula for the inverse of a matrix C', namely:

L1

et O -[Adj C]

We have that det C' is a polynomial in entries of C' and:
(Adj C); = det(CY)

Where C’ij is the same as C except that we replace the i-th column with ;. Of

course these are all polynomials in terms of the entries of C.

This implies that [Df]~! belongs to C" ! if f € C" because D f belongs to C" 1.



Now consider that:

Dg=[Df] toy (*)

Now we know that g € C? and so since [Df]~! € C° we get Dg € C°. But then
g € C'. Feeding this into (x) again we get that Dg € C' if » > 2, and so g € C2.

We may do this r times to obtain that g € C". v
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Theorem (Mean Value Theorem). For a differentiable function H : R — R we
have that for any x,y € R™ there is some c on the line segment between x and y so
that:

H(y) — H(z) = DH(c) - (y — x)

Great!

Proof. Set ¢(t) : [0,1] = R as ¢(t) = H(x + t(y — x)). By the single-variable mean

value theorem there is some ¢ € (0,1) so that:

¢(1) — ¢(0) = ¢'(t) - (1 - 0)
H(y) - H(z) = ¢/(t)

Now by the chain rule, if we set ¢ := x + t(y — x), which is on the line segment:
¢'(t) = DH(c) - (y — x)

And so we have the statement of the mean value theorem. Of course, this is just

Taylor’s Theorem at degree k = 0. v

How to estimate R, ;(z)

Now for Taylor’s Theorem, how do we estimate Ry ,(x)? This will help us to
show the Taylor polynomial is a good approximation. Suppose that f: A — R is
sufficiently differentiable and that we can show for all x € A that |0 f(x)| < Mg+



for || = k + 1. So then:

(= 20)*| =

| R (2)] =

Worksheet Time
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Jordan measure (Continued)

e Recall.
Definition 0.1 (Jordan measure). Let E C R? be a bounded set.

— The Jordan inner measure m ;(E) of E is defined as

my(E) = sup  m(A).

ACE,Aelementary

Here m(A) is the elementary measure of A.

— The Jordan outer measure my(E) of E is defined as

m = inf :
mJ(E) ADE,Alerllementary m(A)
— If m;(F) =my(F), we say that E is Jordan measurable, and
call the common value m(FE) (the Jordan measure of E).
By convention, we do not consider unbounded sets to be Jordan
measurable.

Recall from last time that the Jordan measure extends the notion
of elementary measure to more general sets. We also saw that the
Jordan measure satisfies Boolean closure properties (if E, F' are
Jordan measurable sets, the so are EUF, ENF, E\ F)), as well as
finite additivity (If Fy, ..., Ej are disjoint are Jordan measurable,
then m(Ey U ... U E;) = m(Ey) + ... + m(E}y), and translation
invariance (m(E) = m(E + x) for x € RY).

Q1) Show that the graph {(z, f(z)) : * € B} C Rl is Jordan
measurable in R%*! and that it has Jordan measure 0. Hint:
Use that f is uniformly continuous.

1



Q2) Show that the set {(z,t) : z € B,0 < t < f(x)} c R¥*!is
Jordan measurable.

From this we conclude that some familiar sets like triangles in R?
and balls in R? are Jordan measurable. For instance,

Q3) Show that the open and closed balls B(zg,r) = {y € R :
lz —y| < r} and B(x,7) = {y € R? : |y — 2| < r} are both
Jordan measurable, and that their Jordan measure is ¢gr¢ for
some constant c¢; > 0 that only depends on the dimension.

d
Q4) Establish the bound 2) <y <24
Vd

e Sets that are not Jordan measurable. This shows that a lot
of familiar subsets of R? are Jordan measurable, however many
subsets of interest aren’t: a) all unbounded subsets are not Jordan
measurable, and more importantly b) several interesting bounded
sets are not too as the following questions show.

Q5) Let E C R? be bounded. Show that both E and its closure F
have the same Jordan outer measure.

Q6) Show that E and its interior £° have the same Jordan inner
measure.

Q7) Show that E is Jordan measurable if and only if the topological
boundary OF = E '\ E° has Jordan outer measure 0.

Q8) Show that the bullet-riddled square [0,1] \ Q?, and the set of
bullets [0,1] N Q? both have Jordan inner measure zero and
Jordan outer measure one. In particular, both sets are not
Jordan measurable.



MATH 395 Notes

Faye Jackson

October 19, 2020

Announcements

e Midterm is Wednesday (class time)

— Cameras should be on
— Be ready 5 minutes earlier

— Exam from 1pm — 2:20pm

From 2:30 — 2:30 pm upload your answers to gradescope

e No class on Friday October 30th because Hani has to work with the NSF

Concluding Remarks on the Inverse Function Theorem

The IFT says that if y = f(x) for x € R™ satisfies Df(xg) being non-singular,

then there exists an inverse function near zg. In other words, this means that

specifying (y1, ..., yn) completely determines (z1,...,x,) at least locally around xg
for yo = f(xo).

This means that we can use (y1, .. .,yn) as a coordinate system around x( instead
of (z1,...,xp).

Example. Let f:[0,00) x R x R — R3 be given by:

f(p,¢,0) = p(sin ¢ cos 0, sin psin @, cos ¢)



This is the spherical coordinate system, note that:

sin¢cosf pcospcos —psin@sinf
Df = | singsinf pcosgsing  psin¢pcosf
cos ¢ —psin ¢ 0

det Df(p, ¢,6) = —psin ¢sin O(—psin O(sin? ¢ + cos® ¢))
+ psin ¢ cos O(—p cos O(sin” ¢ + cos® ¢))
= p?sin ¢(sin® @ + cos? §) = p?sin ¢

Now note that det D f # 0 whenever p # 0 and sin ¢ # 0. That is for any (po, ¢o, o)
such that ¢g # 0 and ¢y # 0 there is a neighborhood U of (pg, ¢g,0) on which f is
a diffeomorphism. In particular, we can use (fi, f2, f3) as coordinates on U.

In this example, the inverse function can be computed using:

p= \/m ¢ = arccos (‘f’) 6 = arctan (ﬁ)

Around a point for which p # 0 and sin ¢ # 0, this holds whenever f2 + f2 # 0.

The Implicit Function Theorem

Geometric Motivations

Definition. A level set of a function f : R™ — R is of the form {z € R" | f(z) = C'}

for some constant C € R

Consider the function:

f:R?=R

(2,9) b a? + 47 1

We know that the equation f(x,y) = 0, a level set of f, is the unit circle.



:1;2+y2:1 y:m

But the upper part of the unit circle is also defined by the function y = /1 — 22.
In other words, when does the equation f(z,y) = 0 define the graph of a function
y = g(z). In this case, we say that f(z,y) = 0 defines y implicitly in terms of x.
For (a,b) on the unit circle, we can write the equation f(z,y) =0 asy = g(z) in
a small neighborhood of (a,b) so long as (a,b) # (1,0) and (a,b) # (—1,0) by the

vertical line test

\.\

0.9 [1

7

Clearly any red box will violate the vertical line test, and so we can’t do this trick
near (1,0).
of

These are exactly the points where 5 = 0. In the context of the implicit

function theorem, we are given a function f(z,y) with z € R¥ and y € R" and



f:ACRF xR — R" When can the level set {f = C} locally be described as the
graph of a function y = g(z).
Calculus Motivation (Implicit Differentiation)

Suppose that the equation f(x,y) = 0 defines y as a function of x (the main as-
sumption). What is 9. Well:

dx
flz,y(z)) =0
of ~of dy
ox + oy dx 0
dy _ 5t
- o)
dx 8%

Indeed the condition %;; # 0 is again needed to compute %. We will see that the
Implicit Function Theorem Tells us this is a sufficient condition to be able to express

y as a function of x.

Dimension Counting

We would like to find and prove the right generalization of those conditions so that
the equation f(z,y) = 0 with z € R¥,y € R™ and f(x,y) € RP can be solved
uniquely in terms of z in a sufficiently small neighborhood of (a,b) on the level set.
Let us study the linear problem, i.e. when f(z,y) = L(x,y) and L is a linaer
function from R* x R™ — RP, that is L is a p x (n + k) matrix. Write L as:

L=(4lB)

Where A is p x k and B is p xn. Then L(x,y) = Az + By, and so L(z,y) = 0 if and
only if Ax+ By = 0. Therefore y is uniquely solvable in terms of z when By = Ax is
uniquely solvable, which happens exactly when B is an invertible matrix. Therefore
we must have that p = n.

Notice that the matrix B has its columns as %ﬁiﬁy) for 1 < j < n. This motivates

the following:

Definition. Let f : A C R® — R™ be differentiable and let fi,..., fmn be the

components of f. We denote:



o First:

a(fla"'afm) o af

bj= O(x1,...,an) OF

The matriz whose columns are 8 - e R™ for1<j<n.

e Now suppose that (x1,...,2,) = (y,2) for y € R¥ and y € R"*. We denote

then:
of 8(f1)--'7fn)_( f)
8y oY1, .- Yk) 0 1<j<k

%: (fh""fn < )
07 0(z1,...,2n—k) 0z; 1<j<n—k

The Implicit function theorem states (roughly) that given f : A C RFt" — R"
where f(v) = f(z,y) with 2 € R* and y € R", then the level set {f(z,y) = 0}
defines y as a function of = in a neighborhood of any point (a,b) on the level set if

af . .
a7 18 non-singular.
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Jordan measure (Continued)

e Recall.
Definition 0.1 (Jordan measure). Let E C R? be a bounded set.

— The Jordan inner measure m ;(E) of E is defined as

my(E) = sup  m(A).

ACE,Aelementary

Here m(A) is the elementary measure of A.

— The Jordan outer measure my(E) of E is defined as

m = inf :
mJ(E) ADE,Alerllementary m(A)
— If m;(F) =my(F), we say that E is Jordan measurable, and
call the common value m(FE) (the Jordan measure of E).
By convention, we do not consider unbounded sets to be Jordan
measurable.

Recall from last time that the Jordan measure extends the notion
of elementary measure to more general sets. We also saw that the
Jordan measure satisfies Boolean closure properties (if E, F' are
Jordan measurable sets, the so are EUF, ENF, E\ F)), as well as
finite additivity (If Fy, ..., Ej are disjoint are Jordan measurable,
then m(Ey U ... U E;) = m(Ey) + ... + m(E}y), and translation
invariance (m(E) = m(E + x) for x € RY).

Q1) Show that the graph {(z, f(z)) : * € B} C Rl is Jordan
measurable in R%*! and that it has Jordan measure 0. Hint:
Use that f is uniformly continuous.

1



Q2) Show that the set {(z,t) : z € B,0 < t < f(x)} c R¥*!is
Jordan measurable.

From this we conclude that some familiar sets like triangles in R?
and balls in R? are Jordan measurable. For instance,

Q3) Show that the open and closed balls B(zg,r) = {y € R :
lz —y| < r} and B(x,7) = {y € R? : |y — 2| < r} are both
Jordan measurable, and that their Jordan measure is ¢gr¢ for
some constant c¢; > 0 that only depends on the dimension.

d
Q4) Establish the bound 2) <y <24
Vd

e Sets that are not Jordan measurable. This shows that a lot
of familiar subsets of R? are Jordan measurable, however many
subsets of interest aren’t: a) all unbounded subsets are not Jordan
measurable, and more importantly b) several interesting bounded
sets are not too as the following questions show.

Q5) Let E C R? be bounded. Show that both E and its closure F
have the same Jordan outer measure.

Q6) Show that E and its interior £° have the same Jordan inner
measure.

Q7) Show that E is Jordan measurable if and only if the topological
boundary OF = E '\ E° has Jordan outer measure 0.

Q8) Show that the bullet-riddled square [0,1] \ Q?, and the set of
bullets [0,1] N Q? both have Jordan inner measure zero and
Jordan outer measure one. In particular, both sets are not
Jordan measurable.
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Jordan measure and Riemann Integration

It turns out that the notion of Jordon measurability of sets is inti-
mately related (in a way essentially equivalent) to the notion of Rie-
mann integrability of functions. We will only display this relation in
dimension 1.

e Recall. To define the Riemann' integral of a bounded function f
on an interval [a,b] C R, we first recall the notion of a partition P
which is a set of points o = a < x1 < x93 < ... <z, = b, the norm
of the partition is AP = maxj<g<, x — Tr—1, and we denote by
Axj, = x, — xp_1. For each such partition, we define to quantities:

L(f Zf o)Az, and U(f,P) Zf JAxy,

k=1
where x, = inff,, 4, f and z* = supy,, | .1 /-

Afterwards, we define the lower and upper Darboux integrals re-
spectively as

/f :z:—supL(f, and /f dx—me(fP)

where the extrema above are taken over all partitions of the inter-
val [a,b]. We say that f is Riemann integrable if the above two
numbers are equal. We define the common value as the Riemann
(or Darboux) integral of f.

1Strictly speaking, we are recalling here the notion of Darboux integral, but that is equivalent to the
notion of Riemann integrability that is often covered in introductory calculus classes.

1



Q1) Let [a,b] be an interval and let f : [a,b] — R be a bounded
nonnegative function. Show that f is Riemann integrable if
and only if the set F := {(z,t) : x € [a,b] : 0 <t < f(x)} is
Jordan measurable in R?.

Q2) Let [a,b] be an interval and let f : [a,b] — R be a bounded
function. Show that f is Riemann integrable if and only if the
sets By = {(z,t) : x € [a,b] : 0 <t < f(x)} and E_ =
{(x,t) : x € [a,b] : f(x) <t <0} are Jordan measurable in R?.

Remark. 'The above results generalize to higher dimensions. For
that we will need a notion of Riemann (or Darboux) integrability
on R? (d > 2). We will discuss this theory in our lectures, starting
next week.
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Proof Sketch of Q3. We talk about this by doing induction. Clearly any ball of
radius 7 in one dimension is measurable, since this will just be a line.
Fix d € N so that B(0,7) C R? is measurable. We will show that B(0,r) C R¥+!

is measurable. We consider the following function defined on the box [—r,r]%:

fil-r T‘]d — R+

Fa) = { VI=Tel? if flzl| <

0 otherwise

This will give a hemisphere of B(0,7) C R%*! and we can glue two of these together
to give the full ball. We then can take away the graphs of the functions and we will
win. v
Proof Sketch of Q5. Fix some bounded subset E C R?. We will show that E and
E have the same Jordan outer measure. To do this lets show that m;(E) < m (FE)

and my(FE) > my(E). Let’s go!

Lemma. The closure of any elementary set A has the same elementary measure as

A, and in fact A is an elementary set.

Proof. First note that clearly m(A4) < m(A) by monotonicity. Write A as a
disjoint union of a finite number of boxes Bi, ..., B,. Now note that:
n n
A= <U Bk> =| | B
k=1 k=1




We will justify this second equality:

(C) Note that A is the smallest closed set that contains A. Now note that
?_ By is closed and since B, C Bj it contains A. Therefore A C
k=1

UZ:1 Pk-

(2) Fix some z € | J;_; B. Then x € B, for some 1 < j < n. Therefore since
Bj C Ui_, Bx that we must have z € B; C J;_, Br, = A.

Now note that By, is a box, and so when we take its closure that is still a box, and
all the intervals making up the product become closed intervals. This does not
change the measure, and so m(By) = m(Bj). The union above demonstrates

that A is elementary and by finite subadditivity:

m(A) < m(By) =Y _ m(By) = m(A)
k=1 k=1

]

And so we must have since m(A) < m(A) that m(A) = m(A).

Fix some elementary set A that contains F, this must exist since F is bounded,
and thus E is bounded. Then A clearly contains E. And so m;(E) < m(E). This

shows m;(F) is a lower bound for the set definining m;(FE). By the definition of
infimum then m;(E) < my(E).

Now fix some elementary set A that contains F, this must exist since E is
bounded. Then A contains E, and so m (E) < m(A) = m(A) by the lemma.

But then m;(FE) is a lower bound for the set defining m;(F). This means that

my(E) <m;(E)

Therefore mj(E) = m(F) and we are done! Great! =

Proof Sketch of Q6. This is very similar to Question 5!!! Lets show that F and its

interior E° have the same Jordan inner measure! For this we a lemma:

Lemma. The interior of any elementary set A is elementary and has the same

measure as A.

Proof. First note that A° C A so by monotonicity if A° is elementary then
TODO

¢

¢

TODO



Proof Sketch of Q7. Let’s go both ways!!!

=)

Suppose F is Jordan measurable. Then by Q5 and Q6:

Now to compute m;(OF) we know that 0 < mj(OF) because for any elemen-
tary set A we know 0 < m(A). By the characterization of infima it suffices to

find for every € > 0 some elementary set C' containing OF so that:
0<m(C)<e

Note by characterization of suprema and infima for £ and E° we have an
elementary set A containing F and an elementary set B contained in E° so
that:

A
=
=
A
=
B

Now note that A\ B contains OF since A contains E and everything we are
cutting from A is in B C E°. Now we know that A\ B is elementary, so set
C := A\ B and we will show m(C) < e. This is simple since:

And so we are done! Great!

Now suppose that 0F has outer measure 0. We must show that E is Jordan

measurable. To do

By Q5 and Q6 it suffices to show that m;(E) > m;(E°) and likewise m j(E) <

m ;(E°), since these are the outer and inner measures of E respectively.



Fix some elementary set A which contains E. Thensince E O E D E° we know
A contains E°. Now fix an elementary set B so that B C E°. Then m(B) <
m(A) by monotonicity, so by definition of supremum m ;(E°) < m(A). Then

by definition of infimum m;(E°) < m (E).
We will prove this one by showing that for every £ > 0 we have:

m;(E°) + e > my(E)

And so we get the result by taking € to 0.
TODO

¢

Worksheet 8
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More Implicit Function Theorem

Problematic: We have f : A C RFf" — R™ with f = f(z,y) with € RF and
y € R™. We are interested in the level set L = {f(z,y) = 0}.

yeR?

r € Rk

Suppose that (a,b) is on the level set, that is f(a,b) = 0. Now the equation f =0
gives us n-equations in

Question: Can we write the condition that {f(z,y) = 0} near (a, b) as the graph
of a function y = g(z), i.e. (z,y) € L if and only if y = g(x). In other words, can
we solve the system of equations f(z,y) = 0 near (a,b) for y in terms of z? In yet
other words, does the equation {f = 0} define y implicitly in terms of x

Roughly speaking, the implicit function theorem says that the answer is yes
provided that % = H is non-singular.

Before stating the theorem precisely, let’s state an easier result about the deriva-

tive of the implicit function:

Theorem (Implicit Differentiation). Let A C R¥*™ be open and f : A — R™ be
differentiable and write f = f(x,y) with x € RF and y € R™. Now suppose that the
equation f(x,y) = 0 defines y implicitly, i.e. there exists a function g : B — R"



defined on an open subset B of R* such that (x,g(x)) € A and f(x,g(x)) = 0 for

all x € B.
THEN, for x € B we have:
of of _
G @,9(2) + G (@.9(a) - D(z) =0

In particular, if %(m,g(:c)) is invertible, then:

-1
Do) = - |G| oot

Proof. Then let h : B — R**" be the function h(z) = (z,g(z)) then foh = 0 by

supposition. Take the derivative of this expression, and so by the chain rule:

pr=(81%)
I
Df(h()) Dh(z) = %%))h(@'(l)'},)x
— L (b(a)) + G (b)) Dg(a) =0

And this is what we wished to show.

¢

The implicit function theorem tells us that the invertibility of % is sufficient for

the condition of the above theorem to hold



Theorem (Implicit Function Theorem). Let A C R**™ be open and f : A — R"
be of class C" with v > 1. Write f in the form f(z,y) with € R*¥ and y € R".
Suppose that (a,b) € A such that f(a,b) = 0.

y e R"?

xr € RF

If %(a, b) is non-singular, then there exists a neighborhood B C RF of a and a
unique continuous function g : B — R"™ such that g(a) = b and f(x,g(z)) = 0 for
x € B. The function g will in fact be of class C". In fact inside the green window,
f(x,y) =0 if and only if y = g(x).

Remark. Of course, the variables y for which we solve for in terms of x don’t have

to be the last n coordinates. They can be any n of the (n + k) coordinates.

Proof. Step 1 (An Auxiliary Function): Consider the auxiliary function:

F:-A C Rk—i—n N Rk—i—n

F T
®5) = <f(w, y))

DR

DF: I
DF(x,y) = :2 _<DI}>

DFk-I—n

I | O
of | of
ox | Oy



Therefore using block matrices you can check that:

_ OFN _ et (9F
det DF (x,y) = det I}, det <8y) = det <8y>

But we know that % is nonsingular at (a,b) and so:

0
det DF(a,b) = det a—f(a, b) #0
Y
Thus DF'(a,b) is nonsingular, and so by the inverse function theorem there exists a
neighborhood U x V of (a, b) such that a € U is open in R* and b € V is open in R™
as well as a neighborhood W of (a,0) € R¥*™ such that F is a C"-diffeomorphism

from U x V onto W.

y e R" z € R
Vv (\ F
bl-- T —
1 flz,y) =
| A w
ay x € RF (a,'O) xRk

Let G : W — U x V be the the inverse function of F. ILe. (z,y) = G(z, f(z,v)).
for all (z,y) € U xV and (z,z) = F o G(x, 2) for (x,z) € W. This tells us that
G is the identity on its first k£ coordinate functions. Let h : W — V be defined
as h(x,z) = (Ggy1, Ggao, .-, Gran), h is clearly C" since G is C" by the inverse
function theorem.

Step 2 (Definition of g): Let B be a ball around a such that B C U and Bx {0} C
W. Now notice that (x,y) € BxV satisfies f(z,y) = 0 if and only if F(z,y) = (z,0)
if and only if (z,y) = G(z,0) = (z, h(z,0)). Defining g(x) = h(x,0) for x € B we
have that (x,y) € B x V satisfying f(x,y) = 0 if and only if y = g(z) for z € B.
Clearly g is C" since h is C".

Also note that (a,b) = G(a,0) = (a,h(a,0)), and so b = h(a,0) = g(a) as
desired.

Step 3 (Uniqueness of g): Suppose that ¢’ : B — R is another continuous func-



tion that satisfies the conclusions of the theorem. Let S = {x € B | g(z) = ¢'(x)}.
Clearly since g and ¢’ are continuous, S is closed relative to B. Also, we must have
that a € S, since b = g(a) = g(a’). We will show that S is also open in B, which
would mean that S = B, since B is connected. This will finish the proof. We’ll

leave this until next time v
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Note: No class on Friday

The Proof of the Implicit Function Theorem

Continued Proof of the Implicit Function Theorem. We had an A C RF™™ and an
f A — R" of class C" with » > 1. We also had f(a,b) = 0 and g—g(a, b) is

nonsingular. We model this with the picture:

y e R"?

1 k
o reR

We constructed a neighborhood B around a, a neighborhood V' around b, and a
function g : B — V satisfying g(a) = b and f(z,y) = 0 if and only if y = g(z) for
(z,y) € B x V. We did this with the following steps:

1) We defined an auxiliary function F(z,y) = (z, f(z,y)) : A — RF™. We showed
that DF'(a,b) is invertible since g—fyc(a, b) is invertible. We then applied the Inverse

Function Theorem. This gave us the following picture



y e R" z€eR"

\% (\ F
bl - T —
| f(z,y) =0
| A w
ay xRk (370) xr € RF

We then showed the inverse function G(z, z) must be given as (z, h(z, 2)) where
heCr.

We then defined g with a neighborhood B C U such that B x {0} C W. We
then defined g : B — V as g(z) = h(x,0). This satisfies the desired conditions.

We showed the Uniqueness of g. We supposed that ¢’ : B — V was another
continuous function such that ¢’(a) = b and f(x,¢'(z)) = 0. We defined S =
{z € B|¢'(z) = g(x)}. We want to show that S = B. Using the connectedness
of B we simply need to show that S is a nonempty subset of B that is both open

and closed in B.

S is clearly nonempty since ¢'(a) = g(a), and thus a € S. We know S is closed
since g,¢' are both continuous, and we can rewrite S = (g — ¢/)71({0}). It

remains to show that S is open

Let’s show this! Let g € S, then ¢'(z9) = g(zo) € V is open. There must exist

a neighborhood B’ of xy such that ¢'(B’) C V using the fact that ¢’ is continuous.
But then:

f(z,g'(x))=0 re€B CB gdx) eV

But then this must mean that:

F(z,g'(z)) = (=, f(z,'(z))) = (2,0)
(z,9'(x)) = G(2,0) = (2, h(2,0)) = (2,9())

This of course implies that ¢'(x) = g(x) for all x € B’. Therefore S is open in B,

and we win!!!! Yay ©

¢



How to Apply the Implicit Function Theorem

Suppose that f : A C R> — R? is a function in C” and the equation f(z,y, z,u,v) =
0 gives us two equations in five unknowns, and thus by dimension counting, the
solution set is a set parameterized in three variables. We expect (under appropriate
conditions) that we can solve for two of the variables in terms of the others.

Suppose one wishes to solve for (y,v) in terms of (z, z, u) near a point (xg, Yo, 20, o, Vo =
0. All we need to check is that % is nonsingular at (g, Yo, 20, %0, v9). The implicit

function theorem then tells us that we can write y = ¢(z, z,u) and v = ¥(z, z,u)

(y,v)
1% (\
(Yo, vo) ””XT\ F=0
(z0, 20, uo) (.2
Moreover by implicit differentiation:
e e e o

Example. Show that the system of equations:

-yt +22=0
z cos(mx) + sin(my) = 0

admits a one-parameter family of solutions around the point (1,1, 0)

Define f : R3 — R? by:

Z COSTTX + sin 7y




Then f(1,1,0) = 0 and:
2 .2
Df = ( 33:' 3y 2z )
—mzsinTx TCOSTY COSTX
3 — 0 of
Df(1,1,0) = -9
f( ) (0 - _1> a(x,y,z)
af (3 0
o(z,2z)  \o -1

This is of course a non-singular matrix, and so we can solve for (z, z) in terms

of y near the point y = 1. That is there are functions ¢, : B — R? where B
is an open neighborhood of y = 1 such that f(¢(y),y,¥(y)) =0 for all y € B.

In other words, the solution set near (1,1,0) is a one-parameter family of
solutions. We will later find out that this means it is a “manifold of dimension

one”

With this we have essentially finished differentiation!




Riemann Integration in Higher Dimensions

Definition of the integral

The purpose os this section is to generalize the notion of the Riemann integral to

higher dimesnions

Definition. We will use some concepts from our Friday sections

1) Recall that we defined a box B C R™ to be the Cartesian product of n intervals
B=1 xI) x---x1I,. Generally I, ..., I, can be closed, open, or half open.

Howewver, in what follows, there will be no loss of generality in considering only
closed boxes. Thus to simplify notation, we will assume that all boxes are closed

unless stated otherwise

Given B = [a1,b1] X -+ X [an, by| we set:

2) Partitions

(n=1) Given an interval I = [a,b] a partition of [a,b] is a finite collection P of
points xp = a < w1 < x93 < --- < x = b. FEach [x;_;,x;] has length
Ax; = x; —x;_1. We define the mesh (or norm) of P as:

|P|| = max Az;
1<i<k

(n>1) Given a box B = Iy X --- x I,, a partition P of B is an n-tuple (Py,...,P,)
such that Pj is a partition of I; for each j.

Y

ba 1

“““
vvvvvv




Each partition P; decomposes I into sub-intervals I](l), e ,I;kj) with dis-

joint interiors This gives a decomposition of B into sub-boxes of the form
1 (k5)

Ji X -+ Jp where Jj € {Ij( ),...,Ij Y.

Notice that the sub-boxes can only intersect at the boundary, that is they

have disjoint interiors. The mesh of a partition P = (Py,...,P,) is |P|| =

maxi<j<n || Fjl|-

3) We now define Lower and upper sums. Let B be a box and f : B — R be bounded.
Let P be a partition of B and denote by By, ..., By the resulting subboxes. Let

mp,(f) == inf f(x)

:EEBj

M, (f) = sup f(x)
zeB;

Then we may define the lower and upper sums respectively as:
N
L(f,P) = _mp,(f)-v(B)
=1

N
U(f,P)=>Y_ Mg,(f) v(B)
/=1

In one dimension if f > 0 then L(f, P) is the sum of the green rectangles inscribed
by the region under the curve, and U(f,P) is the area of the red rectangles

circumscribed by the region under the curve

41(

4) We define now the Refinement of a partition Let B be a box and le tP =




(P,...,Py) and Q = (Q1,...,Qn) be two partitions of B. We say that Q is
a refinement of P is P; C Q; for every j.

Given two partitions P = (Py,...,P,) and P' = (P{,..., P)) the common refin-
ment is Q = (PLUP],...,P,UP)).

Lemma. Refining a partition increases lower sums and decreases upper sums. In
other words, let P be a partition of a box B and f : B — R be bounded. If Q is a
refinement of P, then:

L(f,P) < L(f,Q) U(f,Q) <U(f,P)

Before proving this lemma, let us state a corollary

Corrolary. Let B be a bozx and f : B — R be a bounded function. If P and P’ are
any two partitions of B, then L(f,P) <U(f,P').

Proof of corollary. Clearly for any partition we have L(f,Q) < U(f,Q). Le tQ be
the common refinement of P and P’ and use the lemma to see that:

L(f,P) < L(f,Q) < U(f.Q) < U(f, P')

¢

Great!
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Continue Defining the Riemann Integral

Definition. Given a box B = [a1,b1] X - -+ X [an, by] which is closed and a function
f: B — R that is bounded. We defined a partition P = (Py,...,P,) of B as a tuple
where each Pj is a partition of [aj,b;]. We then let {Bj}é-\[:1 be the set of sub-boxes
determined by the partition. We then defined the lower sum and upper sum of f

over a partition P:

mp, = xlenlgj f(zx)
Mp, := sup f(z)
r€B;

N

L(f,P) =Y mp,v(B;)
j=1
N

U(f,P) := ZMij(Bj)

Exercise. U(f,P) = —L(—f,P).

We then talked about refinements of a partition, saying that Q@ = (Q1,...,Qn)
is a refinement of P = (Py,...,P,) if PL C Q1, P2 CQo,.. ..

We defined the common refinement of P = (P1,...,P,) and Q = (Q1,...,Qn)
as PUQ = (PLUQ1,...,P,UQy,).

Lemma. Let P be a partition of a box B and f : B — R be bounded. If Q is a



refinement of P then:

L(f, P)
U(f,P)

IN

L(f,Q)
U(f, Q)

v

Proof. We reduce first. Since U(f, P) = —L(—f, P), it is enough to prove the lemma
for lower sums.

Now since @ ca be obtained from P by successively adding points to the partition,
we can reduce to the case where @ is obtained from P = (P,..., P,) by adding a
single point. to Py for some 1 < k < n.

By symmetry, we assume that £k = 1. Suppose that B = [a1,b1] X - - X [an, b,] and
suppose that P; consists of the points a1 = g < -+ < 2 = b. Now @ is obtained
by adding the point ¢ that lies in the interior of (z,_1, ;) for some 1 < p < k.

The sub-boxes determined by P are of the form [x;_1, x;] X S where S is a subbox
of [ag,ba] X + -+ X [ap, by] determined by the partition (Ps,..., P,). Let us denote by
. the set of all such subboxes.

The sub-boxes determined by @ are of the form: [z;_1,z;] x Sfor 1 <i<p-—1
orp+1<i<kand S €. or[ry,_1,q] xS or gz xS for Se.”. Therefore:

k
L(f’ P) = Z m[miflymi]XS(f) : U([J;i—hﬂ?i] X S)
dev
- > M,y ;%8 () - v([@iz1, 2] X 5)

1€ {10 p}U{p+1,.. b}
Se.s

+ Z m[zpflva}XS(f) ’ (‘TP - xpfl) : U(S)

Ses
The left sum appears in the definition of L(f, @), and so we only consider the right
sum. The point is that the:

inf f(z) < inf f(z), inf  f(x)

z€[Tp_1,7p]X S z€lTp_1,q]xS 7xe[q,xp]><5

This implies that:

Mz, 12y xS(F)  (@p = Tp—1) = Mgy 2 1xs(f) (@ = 2p-1) + M 2 )xs(f) - (2p — )

< Mg, 1 qxs(f) - (@ = 2p-1) + Mgz )xs(f) - (2p —q)



But then:
L(f,Q) = Z Mg, 1 2xs(f) - v([Tiz1, 7] X S)

i€{L,....p}U{p+1,....k}
Ses

+ Z m[xp_l,q]xs(f) (g — xp—l) + m[q,xp]xS(f) ) ($p —q)
Ses

And so L(f, P) < L(f, Q) because:

L(f,P) = Z Mg, 1 w)xs(f) - v([Tie1, 2i] X S)
i€ {1, p)UlptL,.. k)
S
+ Z m[xpfl,xp}xS(f) ) (:I:P - l'pfl) ’ U(S)
Sev

And we know that:

Z m[wpflvffp}xs<f) ’ (l‘p - xp—l) : U(S)

Ses
< Z m[a:p_l,q}XS(f) ! (q - xp—l) + m[q,xp}XS(f) ' (xp - Q)
Ses
That was disgusting!!! —

Corrolary. If P and P’ are any two partitions of B then L(f,P) < U(f,P"). The

proof was given last time.

Definition (Upper integrals, lower integrals, and Riemann integrability). Let B be
a box and let f : B — R be a bounded function.

a) We define the lower and upper integral of f over B respectively as:

/f(x) dz = sup L(f, P)
JB P
/Bf(:z)dx = i%fU(f,P)

These numbers exist because L(f, P) is bounded above by (sup,ep f(z)) - v(B)
and U(f, P) is bounded below by (infyep f(z)) - v(B)

b) We say that f is Riemann integrable over B provided that the lower and upper

integral agree. In this case we define the Riemann integral fB f(x)dx as the

3



common value, aka:

[ war= [ fwae= [ )ar

Remark. Strictly speaking, this is the definition of Darboux integrability. The
precise definition of Riemann integrability is: A bounded function f is Riemann
integrable with integral A on the box B if for every ¢ > 0 there exists a § > 0 such
that if P is a partition of B with mesh < §, then for any choice of z, € B,, where
B, are the sub-boxes determined by P:

<e€

Z f(za)v(Ba) — A
Bo

We will prove these are equivaelnt on Homework 9. F

Remark. Suppose that f : B C R? — R is a non-negative function. Then L(f, P)
is the total volume of a bunch of boxes under the graph of f whereas the upper sum

is the total volume of a bunch of boxes that are circumscribed

Exercise. Show that if f: B C R™ — R is non-negative and bounded. Then f is
Riemann integrable if and only if the region in R™1 under the graph of f given by:

R={(z,0n11) €R" xR |0 < 2,11 < f(2)}

is Jordan measurable with m(R) = [ f(x)dzx.
Example. Let f : [0,1]> — R be defined as:

0 if z and y are rationally dependent
flz,y) =

1 otherwise

We call  and y rationally dependent provided that there exists (ky, k2) € Z? such
that (k‘l, kz) 75 0 and ki1z + koy = 0.
Now let P be any partition of B = [0, 1]2. For any subbox R resulting from the

partition we have:

mp(f) =inf f =0

Mpg(f)=supf =1
R



Since for any subbox of [0,1]? with non-empty interior, there exists (x,%) € R such
that both z and y are rational numbers, and so they are rationally dependent. For
the second statement, since for any sub-box of [0, 1]? with non-empty interior, there
exists (z,y) € R such that x is a non-zero rational and y is irrational. This implies
that z,y are rationally independent.

Therefore:
L(f.P)=0 U(f,P)=1

For any partiton P of [0,1]?. And therefore:

/Bf(:z:)da::O /Bf(a;)dle

Therefore, f is not integrable

Theorem 1 (The Riemann Condition). Let B be a boz in R™ and let f : B — R be

a bounded function. Then:
a) We always have that [ f(x)dx < Ef(a:) dz

b) f is integrable if and only if for every e > 0 there exists a partition P of B for
which U(f, P) — L(f,P) < e.

Remark. Reminiscient of the exercise in our discussion sections that E is Jordan
measurable if for any € > 0 there eixsts elementary sets A C E C B such that
m(B\ A4) < e.

Proof. Part (a) is trivial since we saw that L(f, P) < U(f,P’) for any P and P’
Taking the sup over P and the inf over P’ gives the result.

For (b), there are two directions:

(=) Suppose f is integrable and £ > 0. Choose a partiton P; such that:

€
‘Mﬁm—/f%Q
B
and another partition P» such that:
15
vir.r - [ 1] <
B



Then we know that U(f, P,) — L(f,P1) < . Take P to be the common
refinement of P and P. Then we know that:

This means that U(f, P) — L(f, P) < U(f, P.) — L(f, P1) < e. Thus we win!

(<) Let £ > 0 be arbitrary. Choose a partition P such that U(f, P) — L(f, P) < e.
Then:

/Bf_/BfSU(f’P)—L(f,P)<s

Since we know that:

/Bf <U(f,P)
| r=1.p)

Since € > 0 is arbitrary, we can take ¢ — 0 and so we must have that the

upper and lower integrals agree. Therefore f is integrable.

¢

With this we win! ®

Proposition. Let B be a box. Denote by R(B) the set of all Riemann integrbale

functions on B. Then:

1) R(B) is a vector space. That is if f,g € R(B) then f+cg € R(B) for all c € R.
Furthermore, [g is a linear function from R(B) to R. That is:

/Bf—l-cg:/Bf+c/Bg

2) Every constant function f(x) = c is integrable, and in particular has integral

fo:C'U(B)

3) If P is any partition of B then:



Which is the sum taken over all sub-boxes determined by P
4) Let By,...,By be a collection of boxes that cover B, then:
v(B) <Y u(By)
j=1
Proof. Let’s go!
1) We leave this as an exercise

2 & 3) For any partition P note that:

L(f,P)=c) (@) =U(f,P)
Q

And therefore by the Riemann condition, f is integrable. And furthermore:
/ c=c Z v(Q)
B Q

Taking P to be the trivial partition we have that [ ¢ = c-v(B)

4) Let B be a box containing Bji,...,Bi. Now let P be a partition of B that
contains all the endpoints that define By, ..., By and B. By the above:

¢



MATH 395 Notes

Faye Jackson

November 4, 2020

Characterization of Riemann Integrability

Definition. Let A C R™. We say that A has Lebesque measure zero in R™ if for

every € > 0 there exists a covering of A by a countable collection By, Ba, ... of bozes
such that:

oo

> w(B)) <e

j=1

We’ll call this £-measure zero for convenience.

Proposition. Some properties of measure-zero sets:

a) If B C A and A has (-measure zero, then B has {-measure zero

b) If A= U;’;l Aj and A; has (-measure zero for all j, then A has {-measure zero.

c) A set A has {-measure zero if and only if for every e > 0 there exists a covering

of A by a countable collection of open boxes Bi, B, ... such that:
iv(Bj) <e
j=1
Aka, we may replace the boxes in the definition by open bozxes
d) If B is a boz, then OB has {-measure zero
e) If v(B) # 0 then B does not have {-measure zero

Proof. Let’s go!



a) (a) is direct

b) Fix some € > 0. Then since A; has ¢-measure zero there are boxes Bji, By, . ..
such that:

And then:

Therefore A has ¢-measure zero.

¢) The converse direction is immediate. We handle the forward direction. Let
A C R"™ have f-measure zero. Fix ¢ > 0. We know that there is a collection of
boxes Bi, By ... such that:

o0
AclUB
j=1
oo

3
> _v(B) < gy

J=1

Then for each B; with v(B;) # 0, let Ej be the open box that is obtained from
B; by dilating it (around its center), by a factor of 2. If v(B;) = 0 then let Ej



be an open box containing B; with U(Ej) < 5771~ Then clearly:

A@B][:j

7j=1
00 00 9]
SuB)= 3 B Y s
j=1 7j=1 j=1
v(B;)=0 v(B;)#0
cELE_
2 2

Great! Thus A has f-measure zero.

d) Let B = [a1,b1] X - -+ X [an, by]. Then 0B is the union of the faces of B given by:
[a1,b1] X [aj—1,bj-1] X & X [aj41,bj1] X -+ X [an, by]
Where 1 < j <n and & € {aj,b;}. Let us denote this ace by Fj. Then:

F; € Bj = [a1,b1] x -+ x [§5 —0/2,&5 + /2] x -+ X [an, by]

Bj):(SHbj—aj

i#]
We can make this arbitrarily small by choosing § to be small, and so F} has

¢-measure zero, showing that 0B has ¢-measure zero by part (b).

e) Now suppose that v(B) # 0 and B has f-measure zero for the sake of ontradiction.
We know that B = B U dB and so by part (b) we know that B has f-measure

zero, and also v(B) # 0 since B C B. Now take ¢ = $v(B) and let By, By, ... be

a countable collection of open boxes such that:
oo
B U B,
i=1
o
Z v(Bj) <e
j=1

Since B is compact, there exists a finite subcollection, say By, ..., By such taht



B is a subset of B; U---U Bj. Then:

v(B) < Zv(Bj) <e= %v(ﬁ)
j=1

Since v(B) # 0 this gives a contradiction!
Great! —

Example. The set of rational numbers in [0, 1] has f-measure zero, because it is the
countable union of singletons, and every singleton has ¢-measure zero. Recall that

this set is not Jordan measurable.

Theorem (Characterization of Riemann integrability). Let B C R? be a box and
f B — R be a bounded function. Let & be the set of points in B at which f is
discontinuous. Then f is Riemann integrable on B if and only if 2 has £-measure

zero.
Example. Consider the following function:

f(x):]0,1] = R

xbi> 1 ifze@Q
0 ifzgQ

Then 2 = [0, 1], which does not have ¢-measure zero. Therefore f is not Riemann

integrable.
Proof. Choose M such that |f(x)] < M for all x € B:

(<) Suppose that the set Z has ¢-measure zero. Let ¢ > 0 be given. We shall
exhibit a partitioon P of B such that:

U(f,P)—L(f,P)SCE:

where C' is a constant independent of € and P. By the Riemann criterion,

this implies that f is Riemann integrable. Since & has f-measure zero. There



exists open boxes Bi, Bo, ... such that:

j=1
i U(Bj) <e€
j=1

For each x ¢ 2, f is continuous at z, and so there exists an open box @,

centered at x such that:

fy)—fW)| <e (Vy,y' € Qz N B)

Let Cp = (Qz N B)? which is a box. The collection {B;} and {C,} is an open

cover of B which is compact. Therefore there exists a finite subcover:
BiU---UB,UCy U---UCy,

Rename Cy := C,,. We have thus obtained that:

(0 (0)
Z::v(Bk) <e

k=1
vy €eCo = |fly)—fy)| <e

Let P be the partition of B that contains all of the endpoints of the component
intervals of the boxes { By} and {Q,}. Then each By and each @y is the union

of sub-boxes is the union of sub-boxes determined by P.

We split the sub-boxes R determined by P into two groups, which we will call
X1 and Ho. X, is the sub-boxes that are contained in By, for some 1 < k < p,
then %, are the sub-boxes contained in @ for some 1 </ < gq.



We then estimate:

U(fvp)_L(fvp):

<2M- ) u(R)+e- > u(R)

Re% ReZ>

<2M -3 Y w(R) e v(R)

k=1 Re%; R
RCByg

=2M - ZU(Bk) +¢e-v(B)
k=1

<(2M+wv(B))-e=C-¢

And this finishes this part of the proof!

(=) We now show that if f is integrable then 2 has f-measure zero. We need to

introduce the notion of the oscillation of a function at a point:

Definition. With g : A C R" — R bounded and for x € A we define the

oscillation of g at x:
oscsg(z) == sup  [g(y) — g(¥/)]
v,y €ANB(,0)

osc g(x) := inf oscs g(x)
6>0
Exercise. Show the following properties of the oscillation function:

a) oscs g(x) = Supp (g 5na) 9 — infpesnag > 0.
b) oscs g(x) is increasing in 5, i.e. if 6 < & then oscsg(x) < oscy g(z).
This follows because the supremum over a smaller set is smaller than the

supremum over a bigger set
¢) Then we have that osc g(x) = limg_,g oscg g(x).

d) f is continuous at x if and only if osc f(x) = 0.



The rest of this direction will be done in next section

¢
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Theorem. Suppose f: B CR" — R is bounded. Then f is Riemann integrable if

and only if the set 9 of discontinuities of f has Lebesgue measure zero.

Proof. We've already proved the <= direction in class. We are in the process of
proving the = direction using the properties of osc, which we defined at a point

x € B as follows:

osc; f(z) == sup  fly) = f() (0>0)
v,y €B(x,0)NB

= sup f— inf f
B(x,6)NB B(z,6)nB

osc f(x) := gg oscs f(x) = (%i_r}r(l] oscs f(x)

This holds because oscs f(z) is increasing in 6.

Exercise. Verify the properties of osc and oscs:
a) oscs f(x) = supp(y s NB — fB(%é) f>0

b) oscs f is increasing with &

¢) f is continuous at v € B <= osc f(z) =0

Now we are ready to show that if f is Riemann integrable on B then & has

Lebesgue measure zero:
1
D = {a: € B| osc f(z) > }
m

9 ={x€B|oscf(x)>0}= U.@m
m=1



Since ¥ is a countable union of the %,,, it suffices to show that each %, has
Lebesgue measure zero.

Let € > 0 be arbitrary. We will cover %, by countably many boxes whose total
volume is less than . Note that since f is integrable we can find a partition P of
B such that:

£
U(f,P)— L(f,P —
We now write that 2, = 2/, U 2/ where:

9D, ={x € Dy, | * € OR for some sub-box R determined by P}

Note that 7, C |Jz OR where R ranges over the finitely many sub-boxes determined
by P. Therefore, since we saw last time that the boundary of any box has Lebesgue
measure zero, we know 2/, has Lebesgue measure zero. Of course we can then cover

9, by countably many boxes whose total volume is less than §

It remains to cover Z;,, by countably many boxes of total volume less than 5.

First note that if = € &), then:
fa)> 5
osc f(x) > —
~ 2m
x € R° for some sub-box R determined by the partition

Therefore there exists a § > 0 so that B(x,d) C R and:

1
— < osc f(x) <oscs f(x) = sup f— inf
sy < 00 (@) S s () = sup [~ ]

<sup f —inf f = Mgr(f) — mg(f)
R R



We multiply by v(R) and summing over all R we get:

1

2m

Y w® < Y (Mg(f) —ma(f) - v(R)
ngﬁg;ﬁ@ ngf%;,’ﬁé@
<Y (Mg(f) = mr(f)) - v(R)
R
=U(,P) = L(,P) < 5~
And therefore:

Y o<

R
RN, #0

Do ™

¢

These boxes which intersect 2/, provide the needed covering of 2.

Remark. This theorem shows that sets of Lebesgue measure zero can be prob-
lematic for Riemann integration. In the sense that, changing a function on a set
of Lebesgue measure zero can make it non-integrable. In particular consider the

function:

1g:[0,1] 5 R
)1 ifzeQ
1@(@_{ 0 ifzgQ

This is only different from a constant function on a set of measure zero, namely it
differs from the constant function on Q N [0,1]. This indicates a kind of “incom-

pleteness” of Riemann integration.
Corrolary. Let B be a box in R"™ and f : B — R be Riemann integrable.

a) If f vanishes except on a set of Lebesque measure zero, then [5 f = 0. We say

that f =0 almost everywhere

b) If f > 0 and fo = 0 then f wvanishes except possibly on a set of Lebesgue

measure zero. That is f vanishes almost everywhere.

Remark. The corollary is not true without the assumption that f is Riemann

integrable.



Proof. Let’s go!

a)

Let 2y be the set {z € B | f(z) # 0}. By assumption, %y has f-measure zero.
Let P be any partition of B. For any sub-box R of this partition, we have that
R ¢ 9 (since v(R) > 0). This implies there exists an z € R such that f(z) =0,

and so:

Therefore L(f, P) <0 and U(f, P) > 0. But wait this implies that:

/sto /szo

Since f is integrable, we then know that:

[t=[1=[r=0

And so we are done.

Suppose f(z) >0 and [ 5[ = 0. We will show that if f is continuous at some z,
then f(z) = 0. Since the set of discontinuities of f has measure zero beause f is
Riemann integrable, this shows that the set of all z where f(z) # 0 must have

measure zero as well.

We will do this by contradiction. Suppose that f is continuous at some zg and
f(zo) > 0. Then there exists an ¢ > 0 and a small box R centered at xp such
that f(z) > ¢ for all z € R.

Now consider the following function:

e ifzelR
g(x) = .
0 ifzeB\R

Then g is integrable since the set of discontinuities of g has measure zero. Also
f(X) > g(z) for all x € B and so:

/Bfé/Bgls‘v(R)>O



?
Hani says we should verify > and L. T leave that to you ®

Another approach is to take a partition P obtained from the endpoints of R and
B. Then we get L(f,P) > e-v(Rp). where Ry is the sub-box of P containing
xg. But this implies that:

/ f(x)dx =sup L(f, P) > - v(Rp)
B P

In either case, we have an oops! Great!

¢

Fubini’s Theorem

After defining the integral, the main question remains: how to compute integrals
in higher dimensions? (We know how to compute integrals in 1D using the Funda-
mental Theorem of Calculus and various techniques of integration)

Fubini’s Theorem will allow us to compute integrals in higher dimensions by
reducing them to iterated integrals in lower dimensions. This often allows us to
reduce things to the one-dimensional case.

One would wish to say that if f: Q — R is integrable where Q = A x B and A
is a box in R* and B is a box in R¢. Then z — [ f(x,y) dy exists for every z € A

and defines an integrable function over A. Furthermore:

/sz/A(/Bf(x,y)dy) d ()

This requires that the function z — [ f(x,y) dy is defined for every x (i.e. f(z,y)
is integrable in y for fixed x € A) and that function x — [ f(z,y)dy is integrable
in z itself on A.

Unfortunately, such a nice property is not necessarily true for all x € A. Indeed,
we will see that it is true except for sets of Lebesgue measure zero. This is no
problem for Lebesgue integrals (for which * holds), but since Riemann integrability

can depend on sets of Lebesgue measure zero, we might lose there.

Theorem (Fubini’s Theorem). Let Q = A x B where A is a box in R¥ and B is a
boz in RE. let f(z,y): Q — R be a bounded function (where z € A andy € B)



Then for each © € A consider the lower and upper integrals:

:v+—>/f(w,y)dy xH/f(w,y)dy
JB B
if  is integral over QQ then the above two functions are integrable over A and:

/Qf N /A (/Bf(x’y) dy) dz = /A </Bf(x,y) dy> dz

Of course we have lower and upper integrals here. If we get agreement of the above

two functions on all of x then we would be very happy.
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Theorem (Fubini). Given a box Q = A x B where A C RF and B C RY are bozes.
Let f: Q — R be a bounded function, and we write it as f(x,y) where x € A and
y € B.

If f is integrable over QQ, then the functions:

:c»—>/Bf(:E,y)dy 1?'—>/Bf(90,y)dy

are both integrable over A, and furthermore:

/Qf=/A/Bf(m7y)dydw=/A/Bf(w,y)dydw

Remark. The drawback is that the iterated integrals are in terms of lower and
upper integrals rather than having [ g f(z,y)dy. We cannot guarantee that these

agree
Corrolary. With the same assumptions as above, there holds the following:

a) [gf(x,y)dy exists for almost every x € A, that is, it exists except on a set
of Lebesgue measure zero. In other words x +— fB f(z,y)dy is defined for all

x € A\ N where N has Lebesgue measure zero.

b) If we further assume that [ f(x,y)dy exists for allx € A, then we have Fubini’s

Theorem as we would like it:

/Qf—/A/Bf(x,y)dydx

c) Let Q =11 x --- x I, where I, = [a;,b;] CR. Then if f: Q — R is continuous



then:

/Qf:/hm Inf(azl,...,xn)dazn-~-dx1

Proof of Corollary. By Fubini’s:

L= [ [renaa= [ [ e

o= [| [ [ i | a

>0 and integrable

Therefore by previous work:

[ [ =0

except possibly on a set of measure zero. This gives part a).
Part b) is exactly from Fubini’s theorem, and part c) follows because continuous

functions are always integrable. v

Proof of Fubini. Let us define the following;:
1(0) = [ fGa.v)ay 1) = [ fGa.v)ay

We need to show that if fQ f exists then I(z) and I(z) are both integrable over A,
and their integrals are both fQ f-

Let P be any partition of @) and write P = (Py4, Pp) are partitions of A and B.
Any sub-box R determined by P can be written as R = R4 X Rp where R4 and
Rp are sub-boxes of A and B determined by P4 and Pp respectively.

Now note that for any x € R4:

mg(f) = i%ff(x,y) < inIgB f(z,y)

mR(f) < MRp (f(l‘, _))



Multiplying by v(Rp) and summing over all sub-boxes Rp we get for every x € R4:

Y mr(f)-v(Rp) <Y mpy(fla,-))o(Rp)
RB RB
= L(f(ZL', _)7PB) < l(.%')

Then if we take the infimum over x € R4 we obtain:

Z mR<f)U(RB) < mp, (l>
Rp

We then multiply by v(R4) and sum over all such R 4:

Y me(Hv(Rp)v(Ra) <Y mp,(Lv(Ra)

RA,RB Ra
An exactly similar argument establishes that:

Given these two inequalities, we will be able to finish the proof. Note that because
I < T we have:

These inqualities hold for any partition P. Let € > 0 be arbitrary and choose P so
that U(f, P) — L(f, P) < €. Therefore from the above inequalities and a squeezing

argument:



This gives that I and I are both integrable on A. Now we get that:

Mﬂﬂééféﬂﬂﬂ

uﬁmsuLms/fswLHSUUf>
A

~
VAN

L(f,P)gL(I,P)g/ U(I,P)<U(f,P)

A

Therefore we get that:

‘/Qf—/AI<5 ‘/Qf—/AI‘<€

And so since £ > 0 was chosen arbitrarily, we must have that:

/sz/AfzfAI

Which is exactly what we wanted to show!

¢



Integral over a bounded set

Up until now, we have been integrating functions on boxes. What if we want to

integrate a function over a region S C R" that is not a box.

Definition. Let S CR"” be a bounded set and suppose that f : S — R is a bounded
function. We define fs(x) = f(x) when x € S and fs(x) =0 when x & S. Then fg
is defined on all of R™, that is fg : R" - R

Choose a box QQ which contains S, then we define the integral of f over S as:

/S f(z) do = /Q fs(w) do

provided that the integral on the right hand side exists.

For this definition to make sense, we should get the same answer if we change

the box (). This is guaranteed by the following lemma:

Lemma. Let Q and Q' be two boxes in R™ and let f : R™ — R be a function that is
supported inside QN Q'. That is f = 0 outside Q N Q.

=k

Included in the statement is that f is integrable over Q if and only if f is integrable

over Q’.
Proof. Let’s go!

Case 1) Suppose that @ C @’. Then f is supported in Q.

Note that f is integrable on @ if and only if the set of discontinuities of f
in ) has Lebesgue measure zero, we call this set 2. But wait! The set of
discontinuities of f in @', which we call 2, is equal to 2 U A, where A C 9Q),
because f is constant on @'\ Q. Since 9Q has Lebesgue measure zero, and so
A has Lebesgue measure zero, we know 2’ has Lebesgue measure zero if and

only if Z has Lebesgue measure zero. Therefore:
f is integrable over Q' <= f is integrable over @

Now let P be a partition of Q' and let P be the refinement of P obtained
from P by adding in the endpoints of (). Then @ is the union of some sub-



Case 2)

boxes determined by P. Write Q = Upe.» where .7 is the family of sub-boxes
determined by P such that B C Q.

Now if B is determined by P and B ¢ . then f(x) =0 for some = € B.
Therefor if B ¢ . then mp(f) <0 < Mp(f). Therefore:

L, P) < L(£,P) < Y ma(f) )Séf

Bes

U(f,P)>U(f,P) > 3 My(f) )Zéf

Bes

This holds for any P. Taking suprema and infima in P:

[ s=swrrp)< | 5

[ s=imtur.p /f

And therefore fQ/ f= fQ f

Pick Q" to be a sufficiently large box containing both @ and @’. Then:

Afz/)f:

Just by applying Case 1 twice, and of course existence of these integrals if and

only if one of them exists.

v
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Jordan measure and Riemann Integration

It turns out that the notion of Jordon measurability of sets is inti-
mately related (in a way essentially equivalent) to the notion of Rie-
mann integrability of functions. We will only display this relation in
dimension 1.

e Recall. To define the Riemann' integral of a bounded function f
on an interval [a,b] C R, we first recall the notion of a partition P
which is a set of points o = a < x1 < x93 < ... <z, = b, the norm
of the partition is AP = maxj<g<, x — Tr—1, and we denote by
Axj, = x, — xp_1. For each such partition, we define to quantities:

L(f Zf o)Az, and U(f,P) Zf JAxy,

k=1
where x, = inff,, 4, f and z* = supy,, | .1 /-

Afterwards, we define the lower and upper Darboux integrals re-
spectively as

/f :z:—supL(f, and /f dx—me(fP)

where the extrema above are taken over all partitions of the inter-
val [a,b]. We say that f is Riemann integrable if the above two
numbers are equal. We define the common value as the Riemann
(or Darboux) integral of f.

1Strictly speaking, we are recalling here the notion of Darboux integral, but that is equivalent to the
notion of Riemann integrability that is often covered in introductory calculus classes.

1



Q1) Let [a,b] be an interval and let f : [a,b] — R be a bounded
nonnegative function. Show that f is Riemann integrable if
and only if the set F := {(z,t) : x € [a,b] : 0 <t < f(x)} is
Jordan measurable in R,

Q2) Let [a,b] be an interval and let f : [a,b] — R be a bounded
function. Show that f is Riemann integrable if and only if the
sets By = {(z,t) : x € [a,b] : 0 <t < f(x)} and E_ :=
{(x,t) : x € [a,b] : f(z) <t <0} are Jordan measurable in R?.

Remark. The above results generalize to higher dimensions.

Where we are right now?

We have thus far discussed the classical theory of Jordan measure,
which went as follows

(i) We define the notion of a box and its volume |B| or v(B),

(ii)) Then we defined the notion of an elementary set and its ele-
mentary measure,

(iii) Then we defined the notion of Jordan inner and outer measure
m;(E) and m”7(E) and said that a set E is Jordan measurable
if those two concepts agree.

In particular, unwinding the definition of the Jordan outer mea-
sure, we have that for any set F

my(E) = ECBllgF.UBk [Bil+. 4 [ Byl

where the infimum is taken over all finite coverings of E by boxes
Bi,...,B;.

Q3) Show that a set F is Jordan measurable if and only if for every
€ > 0 there exists an elementary set U containing F such that
my(U\ F) <e.

The notions of Lebesgue outer measure and Lebesgue measurability
are refinements of the Jordan ones as follows:

2



— Lebesgue outer measure: We modify the notion of Jor-
dan outer measure by replacing the finite union of boxes by a
countable union of boxes, i.e.

(e :EcafsofBZ'B'

where the union above is taken over boxes B; C R4,

Q4) Show that the Lebesgue outer measure m*(E) is zero for
any countable set E. Contrast this to fact that the Jordan
outer measure of the rationals in [0, 1] was equal to 1.

— Lebesgue measurability A set £ C R? is said to be Lebesgue
measurable if for every € > 0, there exists an open set U C R?
containing F such that m*(U \ F) < e. If F is measurable, we
refer to m(E) = m*(F) as the Lebesgue measure of F.

Remarks: Note that there is no need for £ to be bounded for
this definition to make sense. Also, the notion of Lebesgue
measurability can be seen as a (finite to countably infinite)
generalization of that of Jordan measurability since it can be
shown that every open set is the countable union of closed
boxes.
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Where we are right now?

e We have thus far discussed the classical theory of Jordan measure,
which went as follows

(i) We define the notion of a box and its volume |B| or v(B),

(ii)) Then we defined the notion of an elementary set and its ele-
mentary measure,

(iii) Then we defined the notion of Jordan inner and outer measure
m;(E) and m7(E) and said that a set E is Jordan measurable
if those two concepts agree.

In particular, unwinding the definition of the Jordan outer mea-
sure, we have that for any set

my(E) = ECBllgF.UBk [Bil+ .+ [ Byl

where the infimum is taken over all finite coverings of £ by boxes
By, ..., B

QO0) Show that a set F is Jordan measurable if and only if for every
€ > 0 there exists an elementary set U containing F such that
my(U\ F) <e.

Lebesgue outer measure

The notions of Lebesgue outer measure and Lebesgue measurability
are refinements of the Jordan ones as follows:

e Lebesgue outer measure: We modify the notion of Jordan outer
measure by replacing the finite union of boxes by a countable union

of boxes, i.e.
0

w(E) = il , 315
j:



where the union above is taken over boxes B; C R4,

Q1) Show that m*(E) < my(F) where my is the Jordan outer
measure.

Q2) Show that in the definition above the countable cover by boxes
in the definition of m*(E) can be restricted to closed boxes or
open boxes.

Q3) Show that the Lebesgue outer measure m*(FE) is zero for any
countable set /. Contrast this to fact that the Jordan outer
measure of the rationals in [0, 1] was equal to 1.

e Lebesgue measurability A set £ C R? is said to be Lebesgue
measurable if for every € > 0, there exists an open set U C R?
containing E such that m*(U \ E) < e. If F is measurable, we
refer to m(E) = m*(E) as the Lebesgue measure of FE.

Remarks:

(i) Note that there is no need for E to be bounded for this defini-
tion to make sense.

(ii) The notion of Lebesgue measurability can be seen as a (finite
to countably infinite) generalization of that of Jordan measura-
bility since it can be shown that every open set is the countable
union of closed boxes.

Q4) Show that m*(f)) = 0.

Q5) (Monotonicity) Show that if £ ¢ F C R? then m*(E) <

Q6) (Countable subadditivity) If Ei, Es,... C R? is a countable
sequence of sets, then m* (U, E,) < 7, m*(E,).
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Exercise 0. Show that a set E is Jordan measurable if and only if for every e > 0

there exists an elementary set U containing E such that mj(U \ E) < €.

¢

Proof. TODO
Exercise 1. Show that m*(E) < m;(E) where my is the Jordan outer measure

Proof. Fix some elementary set A which contains E and write it as the disjoint

union of a finite collection of boxes By, ..., B, that cover E. Then note that:

“(E) f <N Bj|=m
m*(E) Ecozgoch\C\ Z! i

And so taking the infimum over all elementary sets A containing F we obtain:

]

Just as desired.

Exercise 2. Show that in the definition above the countable cover by bozes in the

definition of m*(E) can be restriced to closed boxes or open boxes



Proof. We deal with closed boxes first. Consider the sets:

o0 [e.9]
S=q>_ 1Bl 1EC]B
j=1 j=1

Se=4 > _|Bj| | EC | B;,Bj closed
=1 j=1

oo o0
So=14>_|Bj| | EC | B, B; open
=1 j=1

We know that m*(F) = inf S and we wish to show that inf.S = inf S, = inf S,.
Now note that of course S,,S. C 5, and so inf S < inf S.,inf .S,, therefore it only
remains to show that inf S > inf S, inf .S,.

To do so, by definition of greatest lower bound, it suffices to show that inf S,
and inf S, are both lower bounds for S. We handle each of these:

e Take some countable collection of boxes By, Bs, ... such that their union con-
tains E, giving us an element ) | |B;| of S. Then we may consider the collection
of their closures By, Bo, .. .. Since B; C Ej we know that the union of all these
contains F. So then > ’Fj‘ € S.. But then we are in a great spot! We know

’Ej‘ = |Bj|. So then we may write:

© 00
J=1 j=1

And so inf S, is a lower bound for S, and so inf S, < inf S as desired.

e Take some countable collection of boxes Bj, Bo,... whose union contains F,

giving us an element ) |B;| of S. We will show for any ¢ > 0 that:

o0
inf S, < 5+Z\Bj]
j=1

And so taking e — 0 we see that inf S, is a lower bound for S and so inf S, <

inf S as desired.

Fix some such ¢ > 0, and consider the open box C; obtained from B, by

dilating B; so that [C}| < |Bj| + 57 and B; C Cj. Then ) Cj lies in S, since



the union of all the C; contains E. But then:

inf S, <Z|C|<Z +ZyB|_e+Z|B|

Taking ¢ — 0 we see that inf S, < > |Bj|, and so inf S, is a lower bound for
S, giving us that inf S, < inf S as desired.

With this we are done! m*(E) = inf § = inf S, = inf S.. Great! -

Exercise 3. Show that the Lebesgue outer measure m*(E) is zero for any countable
set E. Cotnrast this to the face that the Jordan outer measure of the rationals in

[0,1] was equal to 1

Proof. Let E be a countable set. Then consider that:

Ec |J{=

zeE

exhibits F as a countable union of boxes, all of measure zero. Therefore:

0<m*(E)< ) [{z}}[=0
zeE
Showing us that m*(E) = 0.
Let’s look for another way of doing this! Write E as x1,x2,.... We will allow
repeats here, and if E' is empty just repeat z,, = 0. Fix € >) and then take the box

£

whose volume is ; around every point z; = (®j1,...,2jq). In other words:

d d
9
[mﬂf 7

d
1;[ 2\F YT

1

si-1145
Ezj\m 2232



Great! Since F C U‘;‘;l Bj this means that:

0<m*(E)<) |Bjl=¢
j=1

Now taking ¢ — 0 we get m*(E) = 0. —
Exercise 4. Show that m*(()) = 0.
Proof. Note that () is a countable set, so this follows easily from Q3 —

Exercise 5. Show that if E C F C R? then m*(E) < m*(F).

Proof. We will show that m*(E) is a lower bound for the set defining m*(F'), and
so by definition of infimum we have m*(E) < m*(F).
Fix some countable collection of boxes By, Bo, . .. containing F', then in particular

they contain F since F' contains F, and so by definition of infimum:
o0
m*(E) <Y |B]
j=1

Taking the infimum on the right hand side we get:

m*(E) < m*(F)

Great! This is exactly what we want! —
Exercise 6. If E1, Es,... C R% is a countable sequence of sets, then:
o0 o
m* (U En> <> m*(E,)
n=1 n=1
Great!

Proof. Fix some ¢ > 0, we will show that:

o (0R) s S
n=1 n=1

and so by taking ¢ — 0 we will obtain the result. Take E = |J;”, E,, for convenience.



Consider some £, then by definition of infimum and the fact that 5 > 0 there

is some countable collection of boxes B,,1, Bya, ... containing F,, such that:

9
Z\Bw\ < (En) + o

We can then sum over all F, to get:

oo oo ) © 00
=1 n=1 n=1 n=1

And so now consider the countable collection of all the { B,,;}. This will be countable
by 295, and also it will cover F, since for every x € E we know x € FE,, for some n

and then by construction z € B,,; for some j. But then by definition of infimum:

B 9 SLVERS BT
n=1 j=1
Since € > 0 was chosen to be arbitrary, we can take ¢ — 0 and we see that:

m* (U En> =m*(E) <> m*(Ey,)
n=1

n=1

¢

Great! This is the desired result ®.

10
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Continuing the characterization of Jordan Measurability

Theorem. Let S be a bounded subset of R™. The following are equivalent:
1) S is Jordan measurable
2) The constant function 1 is Riemann Integrable on S
3) 0S has Lebesgue measure zero
4) 0S has Jordan outer measure zero.
Proof. Let’s go!
1 = 2) Suppose S is Jordan measurable. We need to show that:

1 ifzeS

fS(x):]lSZ{ 0 ifzgs

is Riemann integrable on some box B containing .S. Now let € > 0 be arbitrary
and pick two elementary sets Fy C S C Es such that m(Es2\ E7) < . Without
loss of generality, by dilating the component boxes of Fs we may assume that
S C E3S.

Choose B to be some box containing Fo. Now let P be a partition B that
contains the endpoints of the intervals defining the boxes whose union is E

and Fs. Let Ry,..., R,; be some enumeration of the sub-boxes determined by



this partition. Then:

U(ls,P)=> Mpg,(1s)v(R;)
=1

= Y Mg(Ls)v(R)

R;NS#D

< ) Mg(1s)v(R;)
R;CE2

< > u(R) =m(Ey)
R;CE>

Similarly, we can show that L(1g, P) > m(E7). But then:
U(lg,P)— L(1g,P) <m(Ey) —m(E)) =m(Es \ E1) <e¢
Great! Therefore 1g is integrable and:

m(E;) < L(1g, P) < /Sldx < U(lg, P) < m(Es)

and:

m(Er) <m(S) < m(Es)

Gives us that:

/Sldx—m(S)‘ <c

For any € > 0, and therefore:

m(S) —/Sldx

2 = 1) Let B be a box which contains S and take £ > 0 to be arbitrary. Since 1g is
integrable on B, there exists a partition P of B such that:

U(lg,P)— L(1lg,P)<e

Let Ri,..., R, be an enumeration of the sub-boxes determined by P. Now



set:

Ey=|J rRcsS
R;CS

FEy = U R; DS
R;NS#D

And then we see that:

U(lg, P) = Z Mg, (1s)v(R;)
i1

Therefore!
m(Ez \ Ev) = m(Ez) —m(Ey) = U(ls, P) — L(1s, P) <¢

Since € > 0 was arbitrary, we conclude that S is Jordan measurable.

2 <= 3) This is straightforward using our characterization of integrability and the fact

that 1g is discontinuous exactly at the points on the boundary of S.

3 = 4) Let € > 0. Since 0S5 has Lebesgue measure zero there is a collection of boxes
By, By, ... such that 98 C |J72, Bj and >Jv(B;) < 5. Dilate each B; into a
larger open box Ej such that B; C Ej and U(Ej) < 20(B;j).

Now note that the Ej forms an open cover of the closed and bounded set 0S.



By compactness there is a finite sub-cover Ejl, . 7§jk of 05. But then:
k _ [e%S) _ 9]

D u(B)) <) w(B;) <2) w(Bj) <e
i=1 j=1 j=1

Great! This shows that S has Jordan outer measure zero.

4 = 3) follows trivially.

¢

Improper Integrals

Up until now in the discussion of | g we restricted to the case where f and S are
both bounded. In this section we relax these assumptions a bit to include any open

set S and any continuous function f.

Remark. The ultimate dispensing of those two restrictions on S and f comes

through the theory of Lebesgue integration.
Before we proceed, we introduce some notation:
e Let J denote the family of Jordan measurable subsets of R™.
e Let J. denote the collection of compact Jordan measurable sets

e For a function f : S — R we define the positive part and negative part of f

as:

f1-(x) = max(f(x),0) f—(x) = max(—f(z),0)

It is easy to veritfy that:

- f=H-7
- f+af720
= |fl=f+ + f-

— If f is continous then both f, and f_ are continuous.

Definition. Let A be an open subset of R™ and let f : A — R be a continuous

function



e If f is non-negative on A we define the (extended) integral of f over A as:
= [ 1
9CA
P€T.

provided that this supremum exists.

o [If f is an arbitrary continuous function on A, write f = fi — f_, where these
are the positive and negative part of f. Provided that fi and f_ are integrable

on A in the extended sense we say f is also integrable and let:

Afjéﬁ—éf

Remark. We now have two difference definitons of [ 4 f when A is open and bounded
and f is continuous and bounded. We shall see later that these two definitions are
equivalent if both integrals exist. The extended integral might exist without having
the traditional integrals existince Why?

Notice that if B C A are both open then if the extended integral of f over A

exists then the extended integral of f over B exists and:

EEYN

However if f = 1 then [ p 1 exisrts only when B is Jordan measurable, and tehre
are bounded open sets that are not Jordan measurable (we’ll see an example in our

Friday sessions)

Convention: If A is open and f is continuous then [ 4 J will always denote the

extended integral

Lemma. Let A CR" be open. There exists a sequence of C1,C — 2, ... of compact
Jordan measurable sets such that A =J;Z, Cj and Cj € C3,,. In fact, C; can be

taken to be elementary

Proof. Define:
n C 1
In ={z e R" | d(z, A®) > N ,|z] < N}

Thus 2y is bounded and closed since x — d(z, A°) and = — |z| are both continuous



functions. Now consider:

Ans1 = {z € R" | d(z, A°) >

1
<N+1
ol <N+

And then Any; is open and:
In CANy1 € DNy
This implies that:
9N C 9]?{4—1

We clearly have by the fact that A is open that:

i ()
N=1

The sets Yy may not be Jordan measurable. To fix this, note that for x € Zy there
exists a closed cube centered at x and contained in 25 ;. The interior of these
cubes is an open cover of Zy and hence by compactness there is a fintie subcover.
Define Cy to be the elementary set given by the finite union of such a finite subcover

of Yn made up of closed cubes. Thus Cjy is closed and bounded, and furthermore:
Dy CC{ CONC Py €Ok

Therefore we see that Cy is compact and Jordan measurable as well as the fact that

UX—1 Cn = A. Great! This finishes the proof. v

Theorem. Let A C R" be open and let f : A — R be a continuous function.
Choose a sequence Cy € [J. such that A = U?Vozl Cpy and Cy C C’]O\,Jrl as in the
above lemma. Then f is integrable over A if and only if ch |f| is bounded by a

constant which does not depend on N. In this case,

f= lim f
/1:4 N—oco Cn

In particular, f is integrable over A if and onl if |f]| is too.

We’ll prove this theorem next time. In the meantime, here are some properties
of the extended integral. For setup let A C R™ be open and let f,g : A — R be



continuous functions such that [ 4 J and i) 4 g exist:

a) f + cg is integrable for any ¢ € R and:

/Af+cg=/Af+C/Ag

b) If f < g then:

IREYK
TR

c) If A and B are both open and A C B then if f is integrable over B then f is

integrable over A. Furthermore if f is non-negative on B then:

RN

d) If A and B are open and f is continuous on A U B, then if f is integrable on A
and B then f is integrable on AU B and A N B. Furthermore we have:

NS RAY Ry A

In particular:
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Where we are right now?

e Lebesgue outer measure: We modify the notion of Jordan outer
measure by replacing the finite union of boxes by a countable union
of boxes, i.e.

B = Z‘B ‘

where the union above is taken over boxes B; C R?. We saw last
time that this is smaller than the Jordan outer measure and that
the boxes above can be taken to be open or closed. We also saw
that any countable set has zero Lebesgue outer measure.

e Lebesgue measurability A set £ C R? is said to be Lebesgue
measurable if for every € > 0, there exists an open set U C R
containing E such that m*(U \ E) < e. If E is measurable, we
refer to m(E) = m*(F) as the Lebesgue measure of F.

We saw last time some properties of this definition:

— Show that m*(0) = 0.

— (Monotonicity) Show that if E ¢ F C R? then m*(E) <

— (Countable subadditivity) If Ej, Ey,... C R? is a countable
sequence of sets, then m* (U2, E,) < > > m*(E,).

A natural question is whether one has that an additivity property
for the outer measure: namely that if F, F' are disjoint sets then

m*(EUF) =m*(E)+m*(F)? While this turns out to be correct
for some sets E and F' (to be called Lebesgue-measurable sets),




we already saw at the start of our discussion of measures that
this cannot hold for general sets (cf. the Banach-Tarski paradox).
The enemy here is that we might have the two sets £/ and F' too
intertwined or entangled together which can cause the additivity
property to fail.

Q1) Show that if dist(E, F') > 0, then m*(EUF) = m*(E)+m*(F).
Q2) Show that if £ is an elementary set, then m*(E) = m(E) where
m(FE) is the elementary measure of £ defined before.

Q3) Conclude that if £ is any bounded set, then m(E) < m*(F) <
m(E) where m(FE) and m(FE) are the inner and outer Jordan
measures of F.

Q4) Construct a bounded open subset U of R that is not Jordan
measurable. Hint: Start with an enumeration of the rationals
in [0,1] and create an open set whose Lebesque outer-measure
15 arbitrarily small but the Jordan outer measure 1s > 1.
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Exercise 1. Show that if dist(E, F) > 0 then m*(E U F) = m*(E) + m*(F).

Proof. We already have that m*(EUF) < m*(E)+m*(F'). We now use the property
of greatest lower bound to prove that m*(E U F) > m*(E) + m*(F). To do so, we

will first prove a lemma:

Lemma. For any sets E and F with dist(E, F) > 0 and any box B we have that
there is a finite collection of disjoint sub-boxes By, ..., By covering B such that each

B; intersects at most one of E and F'.

Proof. Let € := dist(F, F) > 0. Now since ¢ > 0 we know that we can split B
into sub-boxes Bi, ..., By each of diameter less than €. Then consider that for

any ¢ and any two points X,y € B; we have:
d(z,y) < diam(B;) < e = dist(F, F)

We then may say that we cannot have x € E and y € F|, since if we did then

we would have:
d(z,y) < diam(B;) < e =dist(E, F) < d(z,y)

Which is a contradiction. Therefore B; intersects at most one of F/ and F'. —

Fix some countable collection B1, Bs, ... which covers £ U F. We wish to show that
m*(E) + m*(F) is a lower bound for these, that is:

m*(E) +m*(F) < fj B;
=1



Now for each B; we use the lemma to split it into disjoint sub-boxes B, ..., B;n;,
covering B such that each box B;; intersects at most one of £ and F'. In particular
we can split this up into disjoint collections of a countbale covering of F and a

countable covering of F'. Then by infimums:

00 oo N;
> 5-33 5,
=1

i=1 j=1
o0 [e.9] o0 o0
S RS b oY
i=1 Jj=1 =1 Jj=1
BijﬂE#w Bi]‘ﬂF#@

> m*(E) +m*(F)
Taking the infimum on the left hand side we see that:
m*(EUF) >m*(E) +m*(F)

And therefore since we already have the other direction of the inequality by finite
subadditivity we have m*(E U F) = m*(E) + m*(F) just as desired! Great! v

Exercise 2. Show that if E is an elementary set, then m*(E) = m(E) where m(E)

is the elementary measure of E defined before

Proof. We want to only work with closed elementary sets. To do this we need a

lemma:

Lemma. For any elementary set E we have that m*(E) and m*(E).

Proof. This is not too difficult. First note since E C E we have by monotonicity

that m*(E) < m*(E).
Now we wish to show that m*(E) > m*(E). Note by finite sub-additivity

we know:
m*(E) = m*(EUOE) = m*(E) + m*(0F)
But wait! We know by previous IBL work that:

0 <m*(OF) <7 (0E) =0




Since we have previously shown that the Jordan measure of the boundary of a
Jordan measurable set is zero, and FE is elementary so it is Jordan measurable.
But then

TODO —

Now write F, which must be an elementary set, as a finite union of disjoint boxes
Ey, ..., E, by definition of an elementary set. Then note that the collection E1, ..., E,

covers E, and so by definition of the Lebesgue outer measure as an infimum:
n
m*(B) < 3 || = m(E)
j=1

We now simply need to show the other inequality. To do so, it suffices to show that
m(E) is a lower bound for the set which defines m*(E) by the definition of infimum.
By last homework, it suffices to consider countable coverings by open boxes.

Fix some countable collection of open boxes Bj, B, ... which covers E. Now
consider that E is compact since elementary sets are bounded. Therefore there is
a finite subcollection By, ..., By which covers E. By finite sub-additivity of the

elementary measure:

And therefore taking an infimum on the right hand side:

m(E) <m”(E)

But wait! Then by the lemma and previous work on elementary measure we have:

Great! This is exactly what we wanted to show!!! ® —
Exercise 3. TODO
Proof. TODO —
Exercise 4. TODO
Proof. TODO 3
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Announcements

e Final to be released on Monday December 14 in the afternoon, and due on

Tuesday early morning. Say 4pm-4am

e To be submitted through gradescope

Recalling Improper Integrals

Recall. For A an open set and f continuous on A. We defined the extended [ Vi

as follows:

o If f > 0 then we define:
/f—wy/f
DEJC

Where 7. is the set of all compact Jordan measurable sets.

e For general f we write f = f1 — f_ and define:

Af:Ah—Af

By convention if f is continuous and A is open then [, f will mean the extended

integral.

Problem: If A is open and bounded and f is continuous and bounded, we have two

definitions for [, f. The extended integral may exist without having the ordinary



integral existing. We will see today that if the ordinary integral exists then the

extended integral exists and they are equal. We also proved the following

Lemma. If A C R" is open then there exists a sequence C1,Ca, ... of elementary

sets (also compact Jordan measurable) such that:

Cn CChia
A=]J¢
j=1

Theorem. Let A C R"™ be open and let f : A — R be continuous. Choose a sequence
Cpn € J. as in the above lemma. Then f is integrable on A (in the extended sense)

if and only if an |f| is bounded (uniformly in n). In this case,

f— lim f

n—00

In particular, f is integrable on A if and only if | f]| is too.
Proof. We’ll do this in cases:

e Let f be non-negative. In this case fc fdz is a monotonically increasing
sequence of non-negative numbers, and as such it converges as n — oo if and

only if it is uniformly bounded.

(=) Suppose that f is integrable over A. We want to show that an f exists
and converges to [ 4 J asn — oo. Since f is continuous and C,, is compact,
then f is bounded on C),, and hence an f exists since C, is Jordan

measurable.
Also:

[t [ 1=
Deg.

Therefore |, ¢, J is uniformly bounded in n. This implies that it converges,
now we need to show it converges to the right thing. We must also have
that:

i <



Great!

(<) Suppose lim,, o an f exists. Then an f is uniformly bounded in n by
some constant M. Now take any D C A and D € J.. Then we know
that:

o0
pcljcs
n=1

By compactness of D there exists a finite subcover, and since C; C €7,

there exists some no such that D C €y . Therefore we know that:

/Df§ [ ysm

And therefore we have a nonempty bounded set, so the supremum exists:

7= m [ rsm

DeJ.

Since M can be taken to be the limit as n — oo of an f then we get
that:

[ < pim [ g
A n—oo Cn

Combining these two inequalities from the if and only if we win and get the

equality:

/ f = lim f
A n—oo Cn
Perfect!

Let’s deal with general f : A — R that is continuous. f is integrable over A
if and only if fi and f- are integrable if and only if [, fi and [, f- are

bounded sequences by case one.

But this is if and only if | c, f+ + f— is a bounded sequence, since f;, f— > 0.
But since fy + f- = |f]| this is only when an |f| is a bounded sequence.
Therefore applying case 1 this is if and only if [, |f| exists.



In this case we of course have:

/Cnf+—>/Af+

cnf_—>/Af_

/Cnfz/cnﬂ—/cnf—
%Ah—Aﬁ
:/Af

So we are done!
—
Theorem. Let A be a bounded open set in R™ and let f : A — R be a bounded
continuous function. Then:
a) The extended integral exists

b) If the ordinary integral exists, then the two integrals are equal.

Proof. e Let us first show that the extended integral exists. Let M be an upper
bound for |f| on A. If D € 7. is a subset of A, then:

/D\f|§M/Dl:Mv(D)§MU(B)

Where B is any box containing A. Therefore the set defining the extended
integral is bounded, and so the extended integral of |f| over A exists. This of
course implies that the extended integral of f over A exists by our previous

theorem.

e Now suppose that the ordinary integral | 4 J exists and that f > 0. Then let

B be a box containing A, then:

o) [ £= [ 1



Now let D C A and D € J. then we must have that:

/DfZ/DfAS/BfAZ(Ord)/Af

Therefore taking a sup over all D we get that:

ext) [ 1< (o) [ 1

To show the reverse inequality, let P be any partition of B and let Rq,..., R,
denote the sub-boxes of this partition. Now let D = |Jg.c4 Ri- Then D C A
and D € J.. Therefore:

L(fa,P) =Y mg,(fa)v(R:)
=1
= Y me(fa)v(Ri)

R;,CA

sZ/Rifszf

R,CA

< (ext)/ f
A
Take the supremum over all such P and we obtain:
(ord)/ f=supL(fa,P) < (ext)/ f
A P A

These two inequalities imply that the ordinary and extended integrals agree
as desired to give (b) when f > 0.

e Write f = fi — f_ as usual. Since f is integrable over A in the ordinary sense,
so are fi = max(f,0) and f_ = max(—f,0). Therefore:

ord) [ £ = (ord) [ £y~ (ora) [ £
= (ext) [ £y = (o) [ 1
~ (ext) /A f

And this finishes the proof



]

Corrolary. Let S be any bounded set and f : S — R be a bounded continuous

function. If f is integrable on S in the ordinary sense, then:

(ord)/sf = (ext) . f

¢

Proof. Recall that if [ f = [s. f, then apply the previous theorem.

This corollary is useful to translate results for extended integrals to ordinary
integrals (like the change of variable formula in the next section).
The Change of Variables Formula

Recall. THe change of variable formula in 1D, otherwise known as u-substitution.
Letting f,g : [a,b] — R be functions with ¢ C' and f continuous. Then letting
u = g(z) and du = ¢'(z) dz we have:

b g(b)
/ F(9(2))d (@) dz = / £ () du
a g(a)

There’s a nuance, we are using f; f to denote the signed integral which is defined

/bf: f[a,b]f 1fa§b
a — f[b’a} f ifb<a
This u-substitution holds basically due to the chain rule, since if F' is an antideriva-

tive for f then (Fog) = f(g(z)) - ¢ ()
Integrating from a to b then gives u-substitution by the Fundamental Theorem

as:

of Calculus.

There is no notion of signed integrals in higher dimensions, so we first need
to formulate this theorem without signed integrals. For this note that g([a,b]) =
[g(a),g(b)] if g is increasing, i.e. ¢’ > 0. And also g([a,b]) = [g(b),g(a)] if g is

decreasing, i.e. ¢’ <O0.



If g is increasing then we can write:

o)) - d'(z) = u) du
/[a’b}f(g( ) -d() / o f)

And if g is decreasing then we can write:

o) (z)dx = — u) du
/[a’b] Fg()d () / .

That is:
/ F9(@)(—g'(2)) do = / £ () du
[a,b] 9([a,b])

In either case, we may write that if ¢ is monotone, then:

floa)) |g@)]de = [ flwdu
[a,b] 9([ab])
This is the formula that generalizes easily to higher dimensions.

So we look at this genralizing this via the correspondence:

1D higher dimension
[a, b] set A
9(la, b]) g(4)
¢ is monotone and C! | g is a C! diffeomorphism
u = g(z) u=g(x)
du = |¢'(z)|dx du = |det Dg| dx

And so we have something like:
| #a(o) et Dgldo = [ fwau
A g(A)

And we use this in the same way with:

u=g(x)
du = |det Dg| dz

Definition. Let A be open in R™ and let g : A — R"™ be a one-to-one function of
class C" such that det Dg(x) # 0 for x € A. We call such a g a change of variables



on A

Remark. Recall that a C" diffeomorphism is a one-to-one and onto function such

Lare in C7

that g and g~
The inverse function theorem tells us that g~ € C" if g € C™ and det Dg(x) # 0.
A change of variables on A is then nothing but a C” diffeomorphism from A to

g(A)

Theorem (Change of Variables Theorem). Let g : A — B be a C*-diffeomorphism
of open sets in R™ and let f : B — R be a continuous function. Then f is integrable
over B if and only if f(g(x)) - |det Dg(x)| is integrable over A, and:

/ f(9(x)) - |det Dg(z)| dz = / £(u) du
A B
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Change of Variables Theorem

Theorem. We look at:
/ F(g(x)) |det Dg(x)| da = / £ (1) du
A g(A)

Intuitively we have:

u=g(x)
du = |det Dg|dx
reAueglA)

And so this holds whenever:
o g: A— g(A) = B is a C'-diffeomorphism
e TODO

Example. We look at Polar Coordinate Integration. Let:
B ={(z,y) e R? | a® < 2? + % < b’}
Then there are the polar coordinates:
g(r,0) = (rcos(9),rsin(d))

Note that B = g(A) where A = {(r,0) | a < r < b,0 < 0 < 27w}. Then let us



introduce:

A:={(r0)|a<r<b0<8<2r}
B = g(A) = B\ (x-axis)

And so then we have:
[ fagydrdy= [ fay)dedy
B 9(A)
— [ #(g(r.0)) - det Dyt )] dr s
A
And we know by previous homework that:

Dgq(r,0) = (

det Dg(r,0) =r >0

cosf —rsin 9)

sinf rcosf

Since we know that Dg is locally a C'-diffeomorphism via the inverse function
theorem and it is a bijection we know that it is a C'-diffeomorphism, which is great.

Now we apply Fubini:

2w b
/Vf(a:,y)dxdy:/ /f(rcos@,rsin@)rdrd@
B 0 a

Now since the z-axis has Lebesgue measure zero in R?, we then know that:

2w b
/Bf(x,y)dxdy:/Ef(x,y)dxdy:/o /af(rcosﬂ,rsine)rdrdﬁ

We know this because for Cy a nested sequence compact Jordan measurable set

contained in B and covering B we know:

[f(mﬁdwdy: lim f(z,y)dzdy
B

N—=oo Jon\ (x-axis)

m f(z,y)dzdy

li
N—o0 Cxn

=/fwwmw
B



Great!

Example. Now for Spherical coordinate integration! Suppose we have:
B={(z,y,x) | x>0,y >0,2> 0,2 +¢° + 22 < a?}

Suppose we want to evaluate | 5 f(x,y,2)drdydz. Suppose we take the change of

coordinates:

x = psin¢cosf
y = psin ¢sinf

zZ = pcos ¢

And we’ll denote this by g(p, ¢, 6). We aready calculated in previous homework that
det Dg = p?sin ¢, and this is greater than 0 if p > 0 and 0 < ¢ < w. This happens

on the set:

A:{(p,(b,@):0<p<a,0<¢<g,0<9<g}

And here we have g(A) = B. Therefore using that g is a C' diffeomorphism from
A to B and using Fubini we have that:

/f(xay,Z)dwdydzz/ f(z,y,2)dzdydz
B g(A4)
:/f(psinqscose,psin¢sine,pcos¢)p2sin¢dpd¢d9
A

:/ /2 /2 f(psin ¢ cos b, psin ¢sin b, pcos ¢)p*sin ¢ df dp dp
o Jo Jo

Some mapping Properties of diffeomorphisms

Lemma. Let A C R™ be open and let g : A — R™ be a C' function. If E C A is a

set of Lebesgue measure zero, then g(E) also has Lebesgue measure zero.

Remark. This is not true if g is only assumed to be continuous. In fact, there
exists a continuous g : [0,1] — [0,1]? that is onto. This is called Peano’s space

filling curve.

Proof. Let C'y be a family of compact sets such that A = U]o\,oz1 Cnyand Cy C C’JOVH.



The note that:

o0
Ex:=ENCy E:UEN
N=1

It is enough to show that each g(Ey) has Lebesgue measure zero.

Fix e > 0 and let M := supc,,, [|[Dgllop < oo, since g € C! and Cyyq is
compact.

Also since Cy C C}; 41 there exists a § > 0 such that the d-neighborhood of Cx
is a subset of C};, ;.

Since Ex has Lebesgue mreasure zero we can cover Fy by countably many boxes
Bj such that )" v(Bj;) < €. In fact, we can assume Without Loss of Generality that
all the B; are cubes and have diameter < § by covering them with cubes of diameter
< 4.

Then g(En) is a subset of | g(B;) where B; is a cube of diameter less than ¢

Claim. diam g(B;) < M diam B;.

Proof. Let z,2' € B;. By the Mean Value Theorem for some ¢ on the line

segment between x and z':

g9(z) = g(a) = Dg(c)(z — ')
|9(x) — g(«")] < | Dg(c)llop | — 2’|
< M diam B;

¢

Great!

Therefore g(B;) is contained in a ball of radius M diam B; which is then contained
in a cube of ij of side length 2M diam B;. Also:

D 0(@)) =) (2M)" - (diam B)"

J J

=) (2M)"- (u(B;)" - C

J

For some constant C, since the B; are cubes, and so their diameter is proportional



to their volume. But then:

J

> (@) = C@M)" -3 u(By) < (2M)"-C-<

But then since (2M)" - C' is a constant, we can take ¢ — 0 and we will be done.

This finishes the proof. v

Corrolary. Let g : A — B be a diffeomorphism betweeen two open sets A and B.
Let K C A be compact. Then:

a) g(K°) = (9(K))° and g(0K) = 0g(K)

b) If K is Jordan measurable, then so is g(K).

These results hold if K is not compact provided that 0K C A and 0g(K) C B.
Proof. Let’s go!

a) This takes some work!

e Since ¢!

g(B(z,6)) is an open subset of g(K), which implies that g(B(z,d)) C
(9(K))°. And so g(K°) C (9(K))°.

e Also g(A\ K) C B\ g(K) since g is one-to-one. Let y € dg(K). Then there
exists an x € A such that y = g(x). We know that = ¢ K° since then y
would belong to (g(K))°.

We also know x ¢ A\ K since otherwise y € B\ ¢g(K) which also does not
intersect dg(K) since g(K) is closed. Therefore z € 0K, and so dg(K) C
g(0K).

is continuous, then ¢ is open. Therefore if B(x,d) C K then

e Apply the same argument to g~ and g(K) to obtain that:

And therefore:

(9(K))° < g(K°)
9(0K) C 99(K)



Combining this with the previous part gives part (a)

b) Note that if K is Jordan measurable, then 0K has Lebesgue measure zero. Since
g is C! we then know that g(0K) = dg(K) has Lebesgue measure zero, and so

g(K) is Jordan measurable.
—
Volumes and Determinants

Theorem. Let A be an n X n matriz and let h : R™ — R" be the transformation
h(z) = Az. Let S be a Jordan measurable set in R™ and T := h(S). Then:

v(T) = |det A| v(S)

Proof. T is Jordan measurable by the above corollary. Therefore when |det A| # 0
we have by the change of variables that:

o(T) =v(T°) = / ldz

o]

= / = |det A| dy
h(se) Jse

= |det A|v(S°) = |det A| v(S)

In Case 2, when det A = 0 we know that the range of h is a subspace V of R" os
dimension p < n. Since V has Lebesgue measure zero (check!), we are done, since

then T' C V will have Lebesgue measure zero. v
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Last time, we proved that:

Theorem. Let A be an n x n matriz and h : R™ — R"™ be given by h(x) = A-x. If

S is Jordan measurable then h(S) is Jordan measurable and:

vol(h(S)) = |det Al - vol(S)

Corrolary. Letay,...,a, ben linearly independent vectors of R™. Let A = [aq, ..., a,]
be the n xn matriz whose columns are ay, ..., a, and let P be the parallelopiped given
by:

P:{Zcia”OSCiSl}
Then v(P) = |det A|

Proof. Let h(x) = Az, then h takes the unit cube in R™ to P. Therefore:

vol(P) = vol(h(S)) = |det A - vol(]0, 1]") = |det A|

¢

Orientations

Definition. Let § = (a1,...,a,) be a basis of R". We call this basis right-handed
if det(ai,...,an) > 0 and left-handed if det(ay,...,a,) <O0.
On a general vector space V. Let B = (v1,...,v,) and ' = (w1,...,wy,) be two

bases of V.. Let w; = aj1v1 + -+ + ajpvn. Then the matrizc A = (a;i) is invertible



since:
A= p[ld]g

is a change of basis matriz. We say that S and B’ have the same orientation if

det A > 0 and opposite orientation if det A < 0.

Remark. The choice of notation is motivated by the 2D and 3D cases in which we
have the right-hand rule

Exercise. Show that:

1) This gives an equivalence relation on the set of bases of V with two equivalence

classes.

2) Another way to define this equivalence relation is as follows. Pick T : R™ — V
a linear isomorphism. Any basis 8 of V' can be writte as {Taq,...,Tay} where
(a1,...,an) is a basis of R™. So given two bases B = {Tay,...,Ta,} and ' =
{Tby,...,Thy,}.

B and B have the same orientation if and only if (a1,...,an and (by,..., by)

have the same orientation in R™.

Theorem. Let C be a non-singular n X n matriz and let h : R™ — R"™ be given by
h(z) = Cz. Let (a1,...,a,) be a basis in R™. Then the two bases (ai1,...,an) and
(h(ar),...,h(ay)) have the same orientation if and only if det C > 0.

Proof. Let bj = h(a;). Then Claq,...,a,] = [b1,...,by]. But then:
det C - det(ay,...,an) = det(by,...,by)

And so det C' > 0 if and only if det(ay,...,a,) and det(by,...,b,) have the same

sign, which is exactly when they have the same orientation. v

Isometries of R"

Definition. Let h : X — Y be a map between metric spaces (X,dx) and (Y,dy).
We say that h is an isometry provided that:

dy(h(xl),h(l‘Q)) = dx(l‘l,xg) (.7}1,.7}2 S X)



Remark. Isometries are always one-to-one, but they might not be onto. For exam-
ple h: R — R? where h(z) = (x,0).

Here we will discuss isometries from R™ — R"™ with the same Euclidean metrix
Example. Lets grab some examples!

1) Consider h : R™ — R"™ where h(z) = x — a for a constant a € R, since:
hz)—hy) =z —a—y+ta=z—y = [|h(z)—h)| =z -yl
2) Let h: R™ — R™ where h(z) = Az and A is an orthogonal matrix. Then h is an

isometry:

Recall. A is orthogonal means A7 A = AAT =1d. In other words:
(Az, Ay) = (AT Az,y) = (z,y)
That is A preserves inner products

But then we know that:

|Az — Ay||* = (Az — Ay, Az — Ay)
= (A(z —y), Az —v))
= (& —y,z—y) = |z —y|
And therefore h is an isometry.

The interesting fact is that these are the only two examples of isometries on R"”
Theorem. Let h: R™ — R"™ be a map such that h(0) = 0. Then:
a) h is an isometry if and only if h preserves inner products
b) h is an isometry if and only if h = Ax where A is an orthogonal matriz.
Proof. Let’s go!

a) Consider that:

Ih(z) = h(y)|* = (h(z) = h(y), h(z) — h(y))
= (h(2), h(z)) = 2(h(x), h(y)) + (h(y), h(y))



And:

lz —yl* = (& —y,z—y)
= (z,7) — 2(z,y) + (¥,9)

Now we can do this. Therefore if h preserves inner products we must have

|h(z) — h(y)]| = ||z — y||, and so h is an isometry.
On the other hand, if h is an isometry and h(0) = 0 then:

(h(z), h(@)) = [M@)[* = |h(x) = BO)]* = & — O] = (z,2)

We also know for every z,y € R™ that |h(x) — h(y)|* = |z — y|* and so using the

above two equations again we see that:
2(h(x), h(y)) = 2(z,y) = (h(x), h(y)) = (z,y)

The backwards implication was discussed in the previous direction. For the for-
ward direction consider {h(ey),h(ez2),...,h(e,)} where ey, ..., e, is the standard
basis of R™. Since h preserves inner products {h(ey),...,h(e,)} is an orthonor-

mal set, which implies that it is an orthonormal basis.

Therefore for any x € R™ we can express:
n
h(z) =Y aj(x)h(e))
j=1
And then we know that:

(h(z), her)) = < Oéj(x)h(ej)vh(ek)>

J

I
—

I
NE

a;(z) - (h(e;j), hlex))

<.
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a;(x) - (ej, ex)
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I
Q
=



But then we have that:
ar(x) = (h(z), hiek)) = (z,ex) = xy
And therefore:

h(z) = ijh(ej) = Ax
j=1

where A = [h(e1),...,h(ey)]. Since this is an orthonormal basis, A is orthogonal

and so we are done.

¢

Corrolary. Let h : R" — R". Then:

1) h is an isometry if and only if it is an orthogonal transformation followed by a

translation. Le. h(x) = Ax + p where A is an orthogonal matriz and p € R™.

2) If h is an isometry, then h preserves volumes as well. That is if S is Jordan

measurable, then h(S) is Jordan measurable and:

Proof. This is pretty cool!

1) Let h(z) = h(z) — h(0). Then h is an isometry if and only if h is an isometry
with h(0) = 0, and this holds by the previous theorem if and only if h(z) = Az

for A some orthogonal matrix.
Then by rearrangement h is an isometry if and only if:

h(z) = h(z) + h(0) = Az + h(0)

For some orthogonal matrix A.

2) We know that A-.S is Jordan measurable with volume |det A|-v(S) = v(S) since
|det A| = 1 when A is orthogonal. Of course A - S + p has the same measure as

A- S, and so h(S) = A- S+ p, and therefore v(h(S)) = v(S) as desired!!!

Great! .v.



