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1 Metric Spaces

1.1 Definition

Definition. A set X is called a metric space provided that it is equipped with a

function d : X ×X → [0,∞) such that

1. For all p, q ∈ X we have d(p, q) = 0 if and only if p = q

2. d(p, q) = d(q, p) for all p, q ∈ X.

3. For all p, q, r ∈ X we have

d(p, q) ≤ d(p, r) + d(r, q)

We call d the metric on X. Formally we might write that (X, d) is a metric space,

since a set X may admit many different metrics on it.

Example. Let X = Rn for some n ∈ N. If p = (p1, . . . , pn) and q = (q1, . . . , qn)

then we define:

d2(p, q) =




n∑

j=1

(qj − pj)2



1
2

= ‖p− q‖ = 〈q − p, q − p〉 12

This is commonly called the `2 metric on Rn. The triangle inequality follows from

Cauchy-Schwartz. Setting x = p− r and y = r − q, then x = y = p− q and we also
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have:

‖x+ y‖2 ≤ (‖x‖+ ‖x‖)2

‖x‖2 + ‖y‖2 + 2〈x, y〉 ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖

But since we know from Cauchy-Schwarz that 〈x, y〉 ≤ ‖x‖‖y‖, so we win!

We can put another metric on Rn, namely the `s metric for any 1 ≤ s <∞:

ds(p, q) =




n∑

j=1

|qj − pj |s



1
s

This is called the `s metric. There is also the `∞ metric denoted as:

d∞(p, q) = max
1≤j≤n

|qj − pj |

1.2 Topology on metric spaces

Definition. A topology on a set X is some collection of subsets T ⊆ P (X), which

we will call the open subsets of X, such that:

• ∅ and X are both open.

• Given any arbitrary family of open sets {Ui}i∈I , their union
⋃

i∈I Ui is an open

set

• Given any finite collection of open sets, U1, . . . , Un, then their intersection⋂n
i=1 Ui is open.

Definition. Let (X, d) be a metric space. We define a topology on X as follows:

• For x0 ∈ X and ε > 0 we define the ε-neighborhood of x0 as:

Nε(x0) := {x ∈ X | d(x, x0) < ε}

• A subset U ⊆ X is called open provided that for every p ∈ U there exists some

ε > 0 so that Nε(p) ⊆ U .

Proof that this is a topology. The first property follows nearly trivially.
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• Fix some arbitrary family of open sets {Ui}i∈I . Fix some p ∈ ⋃i∈I Ui, then

there exists some j ∈ I so that p ∈ Uj . Since Uj is open there exists some

ε > 0 so that:

Nε(p) ⊆ Uj ⊆
⋃

i∈I
Ui

And so we are done ,

• Let p ∈ ⋂n
i=1 Ui for some finite collection of open sets U1, . . . , Un. Then p ∈ Uj

for all 1 ≤ j ≤ n, and so there exists an rj > 0 for each j such that:

Nrj (p) ⊆ Uj

Take r = min(r1, . . . , rn. Then for all j we have Nr(p) ⊆ Nrj (p) ⊆ Uj . And

so:

Nr(p) ⊆
n⋂

i=1

Ui

just as desired.

Remark. This third property is not true for infinite collections! What part of the

proof breaks and provide a counter-example.

With this we are done.

Exercise. Also, as an exercise, show that for any r > 0 we have Nr(p) is open.

Definition. We say a subset C ⊆ X of a topological space is closed provided that

its complement X \ C is open.

Remark. By Demorgan’s laws we get three properties of closed sets:

• ∅ and X are both closed

• If {Ci}i∈I is a collection of closed sets then
⋂

i∈I Ci is closed

• If C1, . . . , Cn is a finite collection of closed sets then
⋃n

i=1Ci is a closed set.

The proof is left as an exercise ,
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1.3 Limit Points / Accumulation Points

Definition. A point p is called a limit point of a set E provided that every neigh-

borhood of p contains a point q 6= p such that q ∈ E.

Example. Let E = [0, 1) ∪ {2}. Then 1 is a limit point of E (note that 1 6∈ E),

and also 2 is not a limit point of E even though 2 ∈ E.

Definition. When p ∈ E is not a limit point of E, p is called an isolated point of

E.

Definition. An interior point of E is a point p ∈ E such that there exists r > 0 so

that Nr(p) ⊆ E. Thus a set is open exactly when all its points are interior points.

The set of all interior points of a set E is often denoted by E̊, this is called the

interior of E.

Example. This depends on the entire metric space

• Let E = [0, 1) ∪ {2} and X = [0,∞). Then 0 is an interior point of E (since

Nr(0) = [0, r) ⊆ E is r is small enough). Thus E̊ = [0, 1).

• Let E = [0, 1) ∪ {2} and X = R. Then 0 is not an interior point of E, since

any neighborhood of 0 will contain negative numbers, which are not contained

in E.

Thus we conclude that the notion of interior (open or closed) depends on the ambient

space.

Definition. A set E is bounded provided that there eixsts a point x ∈ X and a

number M > 0 such that E ⊆ NM (x).

Definition. A set E ⊆ X is dense provided that every point of X is either a limit

point of E or an element in E.

Example. Let X = [0, 1)∪{π} then X ∩Q∪{π} is dense in X. Notice that X ∩Q
is not dense in X.

Theorem. If p is a limit point of a set E, then every neighborhood of p contains

infinitely many points of E.

Exercise. Prove this

Corrolary. A finite set can have no limit points
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Theorem. A set E is closed if and only if every limit point of E is contained in E.

Proof. Let’s do it! We will use X as our ambient space.

(⇒) Let E be closed and suppose p is a limit point of E. If p 6∈ E then p ∈ X \E,

which is open, and so there exists an r > 0 such that Nr(p) ⊆ X \E. Therefore

Nr(p) ∩E = ∅, but this contradicts the fact that p is a limit point. Therefore

p ∈ E as desired.

(⇐) Suppose that every limit point belongs to E and take p ∈ X \ E. Since p is

not a limit point of E there must exist some r > 0 such that Nr(p) ∩ E = ∅.
But then Nr(p) ⊆ X \ E. Therefore X \ E is open, and E is closed.

Awesome! We win ,

Definition. A set E is called perfect if E is closed and every point of E is a limit

point. In other words, E consists exactly of its limit points.

Example. [0, 1] is perfect in R, but [0, 1] ∪ {π} is not.

Example. Let X = R2 = C. Consider the following sets

a) The set of all complex numbers |z| < 1

b) The set of all complex numbers |z| ≤ 1

c) A finite set F ⊆ C

d) The set of all integers {(n, 0) | n ∈ N}

e) The set zn = 1
n where n ∈ N

f) The set of all complex numbers

g) The line segment (a, b) for a, b ∈ R. That is the set of points z ∈ C such that

Im(z) = 0 and a < Re(z) < b

Closed Open Bounded Perfect

a) 7 3 3 7

b) 3 7 3 3

c) 3 7 3 7

d) 3 7 7 7

e) 7 7 3 7

f) 3 3 7 3

g) 7 7 3 7
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1 Introduction

• Office Hours

– Monday 8-9am

– Wednesday 4-5pm

– Beginning of Friday lecture

• First HW will be posted on Friday

• TAs are still not decided on

• Further info on the waitlist to come

2 Continuing Metric Spaces

2.1 Last Time

We defined metrics d : X ×X → [0,∞) with three special properties, and we saw

that this gave us a topology on X.

• Open sets, given p ∈ O we have some δ > 0 so that Nδ(p) ⊆ O.

• Closed sets are the complements of open sets

• Limit points, p is a limit point of E if every δ-neighborhood of p intersects E

in a point q 6= p

• Closed sets are exactly the sets where every limit point belongs to the set.
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2.2 Closures!

Definition. If X is a metric space and E ⊆ X we denote by E′ the set of limit

points of X. The closure of E is the set E = E ∪ E′.

Example. Here are some examples to look at!

• Let E = (0, 1] ⊆ R then E′ = [0, 1] = E

• Let E = (0, 1] ∪ {2} ⊆ R. Then E′ = [0, 1] and E = [0, 1] ∪ {2}.

Theorem. Let X be a metric space and E ⊆ X. Then:

a) E is closed

b) E = E if and only if E is closed.

c) If E ⊆ F and F is closed then E ⊆ F .

Proof. Let’s go!

a) Let q ∈ Ec. Then q 6∈ E′ ∪ E. Thus there exists a δ > 0 so that Nδ(q) ∩ E = ∅.
Since Nδ(q) is open we also know that Nδ(q) ∩E′ = ∅. Therefore Nδ(q) ∩E = ∅
and so

(
E
)c

is open as desired.

b) Easy exercise

c) If E ⊆ F and F is closed, then E′ ⊆ F because any limit point of E is also a

limit point of F . Therefore E ⊆ F .

Theorem. Let E be a nonempty set of real numbers which is bounded above. Then

y = supE is in E. Hence y ∈ E if E is closed.

Proof. If y ∈ E then we are done because E ⊆ E. If y 6∈ E then for any ε > 0 there

exists some x ∈ E so that:

y − ε < x < y

But this means that x ∈ Nε(y), and so Nε(y) ∩ E 6= ∅. This implies that y ∈ E′,
and so we are done since E′ ⊆ E.
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2.3 Compact subsets of metric spaces

Definition. We need a couple definitions!

• An open cover of a set E in a metric space X is a collection {Gα}α∈A of open

sets such that:

E j
⋃

α∈A
Gα

• A subset E ⊆ X is called compact provided that every open cover of E admits

a finite subcover. That is we can find a finite subcollection {Gαi}1≤i≤n of

{Gα}α∈A such that {Gαi}1≤i≤n covers E.

Theorem. Compact subsets of metric spaces are closed and bounded

Proof of Closed. Let K ⊆ X be compact and let q ∈ Kc. For each p ∈ K there

exists two subsets Up and Wp such that p ∈ Up, q ∈ Wp and Up ∩Wp = ∅. Here

we use that metric spaces are Hausdorff. We can concretely take Up = Nδ(p) and

Wp = Nδ(q) with δ < 1
2d(p, q).

Then in fact {Up}p∈K is an open cover of K. By compactness there exists a

finite subcover Up1 , . . . Upn that covers K. Then let:

W =
n⋂

i=1

Wpi

Then this W is open and W ∩ Upj = ∅ for all 1 ≤ j ≤ n. Thus we must have

W ∩K = ∅, meaning that W ⊆ Kc and Kc is open.

Proof of Boundedness. Let x ∈ X be arbitrary. The family of sets {Nn(x)}n∈N is

an open cover of E since N is unbounded. Thus by compactness E has a finite

subcover, and so E ⊆ Nk(x) for some k ∈ N.

The main question for the rest of this section: Is the converse true? If not, what

should be a workable criterion for compactness in metric spaces?

In fact it is true on Rn by Heine-Borel. But not the converse, particularly in

infinite dimensions!

Theorem. Closed subsets of compact sets are compact.

3



Proof. Let C ⊆ K be a closed subset of a compact set K and let {Gα}α∈A be an

open cover of C. Then {Gα}α∈A ∪Cc is an open cover for K. Thus by compactness

of K there exists α1, . . . , αn such that:

K ⊆ Cc ∪
n⋃

i=1

Gαi

C ⊆
n⋃

i=1

Gαi

Therefore C is comapact.

Theorem (Finite intersection property). If {Kα}α∈A is a collection of compact sets

such that the intersection of any finite subcollection of {Kα}α∈A is nonempty. Then,

the intersection
⋂
α∈AKα is nonempty

Example. If En =
(
0, 1n

]
then En has the finite intersection property since they

are nested and each of them are nonempty. But
⋂
n∈NEn = ∅.

Proof. Suppose that
⋂
α∈AKα = ∅. Then

⋃
α∈AK

c
α = X, and so {Kc

α}α∈A is an

open cover for Kα? where α? ∈ A is arbitrary. This holds because compact subsets

of metric spaces are closed.

By compactness of Kα? there exists some α1, . . . , αn such that:

Kα? ⊆
n⋃

i=1

Kc
αi

Thus the finite intersection:

Kα? ∩
n⋂

i=1

Kαi = ∅

This contradicts the finite intersection property. Oops! We win.

Theorem 1 (Compactness =⇒ sequential compactness). Let K be a compact

set and let {xn}n∈N be a sequence of points in K. Then there exists a convergent

subsequence {xnk
}k∈N of {xn}n∈N that converges to a point in K.

Proof. Suppose that {xn} has no limit point in K. This means that for any p ∈ K,

there exists some δp such that Nδp(p) contains at most one point of the sequence

{xn}. The collection {Nδp(p)}p∈K is an open cover of K.
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By compactness we have some p1, . . . , pn such that:

K ⊆
n⋃

i=1

Nδpi
(pi)

But this must mean that K contains at most n points of the sequence {xn}. This

means that {xn} takes at most n values. Thus xn must take one value infinitely

many times, and so xn has a convergent subsequence.

On the other hand if {xn} has a limit point p ∈ K, then for every k ∈ N there

exists some xnk
such that d (xnk

, p) < 1
k . Clearly {xnk

} is a convergent subsequence

and so we win.

Remark. Is the converse true? Yes! But only in metric spaces.

3 Compactness in Rn

Theorem 2 (Nested interval property on R). Suppose that In = [an, bn] is a nested

sequence of closed intervals, that is In ⊇ In+1. Then
⋂∞
n=1 In is nonempty

Proof. We know {an} is an increasing sequence thta is bounded by bj . Let x =

supn∈N an. Then an ≤ x for all n.

Also {bn} is decreasing so an ≤ bn ≤ bm for all n ≥ m. Taking the supremum in

n we get x ≤ bm for all m. Therefore an ≤ x ≤ bn for all n ∈ N, giving us that:

x ∈
∞⋂

i=1

In
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Handout 1

• What is a topology on a set X? Let X be a set. A topology on X
is a collection T of subsets of X that are called open sets satisfying the
following three conditions:

C1) ∅ ∈ T and X ∈ T ,

C2) Given a collection Oα ∈ T of index sets, then ∪αOα ∈ T as well; We
say that T is closed under unions,

C3) Given a finite collection of open set O1, . . . , On, then ∩n1On ∈ T ; We
say that T is closed under finite intersections.

• A topology can be equivalently defined by specifying the collection of
closed sets which satisfy the same conditions as above except that we
switch unions ∪ with intersections ∩ in conditions C2) and C3). The
couple (X, T ) is called a topological space, or sometimes we just say X is
a topological space if we’re only playing with one agreed upon topology

• A space X can have more than one topology defined on it. A topology T1
is said to be finer or stronger than T2 if T2 ⊂ T1 (we say T2 is courser or
weaker). Notice that the trivial topology {∅, X} is the weakest topology
on X.

• One way to describe a topology on a set X is to define precisely all open
sets. This is what we did for metric spaces. Occasionally, we want to
define the smallest topology that designates a particular collection B of
subsets of X as open. This is done as follows:

Q1) Let B be the collection of subsets of X that contains the empty set,
X, as well as all sets obtained as finite intersections of elements of B.
Show that the collection T obtained by taking unions of elements of
B is a topology on X.
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Q2) Show that any other topology on X that contains B as open sets,
contains T . We call T the topology generated by B. It is the coarsest
topology containing B.

• (Product Topology) One example where this construction is useful is to
define a topology on the product of topological spaces. Suppose (Xα,Tα)
are topological spaces for α ∈ A (where A is an index set that could be
infinite). We would like to define a “natural” topology on

∏
αXα. One

reasonable requirement is that the cylindrical sets are open (cylindrical
sets are those of the form

∏
α Uα where all the Uα are open in Xα and

all but one of them is equal to Xα. The topology generated by this
collection is called the product or Tychonoff topology.

Q3) Consider the product topology on R2 = R×R as defined above. Why
is this the same as the standard topology on R2 defined in class.

• We saw in class that the interval [0, 1) is not open in R, but is open
relative to the half-line [0,∞) (taking the usual metric on R and [0,∞)]).
Let us try to formalize and generalize this.

Let (X, d) be a metric space and Y ⊂ X. Y is a metric space itself, by
restricting the metric d to Y × Y .

Q4) Let E ⊂ Y . We say that E is open relative to Y if it is open in the
metric space (Y, d). Untangle what this definition means in terms
of Nδ(p) neighborhood of a point p ∈ E. Deduce that if there is an
open subset G of X, then G ∩ Y is open relative to Y .

Q5) Show that E is open relative to Y if and only if there exists an open
subset G of X such that E = G ∩ Y .

Q6) Compactness on the other hand behaves better. Suppose that K ⊂
Y ⊂ X. Then K is compact relative to X if and only if it is compact
relative to Y .

Remark: As such, we always need to specify the ambient space when
we talk about open/closed sets (that’s why we always say “E is an open
subset of X”), but we can make statements like “K is compact (or a
compact metric space)” without the need to specify the ambient space.
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Exercise 1. Prove Q1

Proof. Let’s go!

• Note that ∅ ∈ B is in particular an element of the set T . Likewise X ∈ T

• Consider any collection {Uα}α∈A where each Uα is an element of T . Then for

each α there are basis sets {Bi}i∈Iα ⊆ B so that:

Uα =
⋃

i∈Iα
Bi

Therefore we have that:

⋃

α∈A
Uα =

⋃

α∈A

⋃

i∈Iα
Bi =

⋃

i∈⋃α∈A Iα
Bi

And therefore by definition of T we know the union of the {Uα} is an element

of T .

• Consider any finite collection U1, . . . , Un in T . For each 1 ≤ i ≤ n there are

basis sets {Bα}α∈Ai each in B. If any of the Bα for α ∈ Ai are the empty set

then they don’t effect Ui, and if any of them are the whole space then that

Ui = X and it doesn’t effect the whole intersection.
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Thus we can assume that there exists {Bj}1≤j≤mα in B such that:

Bα =

mα⋂

j=1

Bj

Ui =
⋃

α∈Ai
Bα

=
⋃

α∈Ai

mα⋂

j=1

Bj

Therefore we can write by Demorgan:

n⋂

i=1

Ui =
n⋂

i=1

⋃

α∈Ai

mα⋂

j=1

Bj

=
⋃

(α1,...,αn)∈
∏n
i=1 Ai

n⋂

i=1

mαi⋂

j=1

Bj

And since the finite intersection of finite intersections is a finite intersection

we win, this is open.

Exercise 2. Show Q2

Proof. Fix a topology T on X which contains each element of B. Fix some open

set U ∈ T . Then we know there is some collection {Bα}α∈A each in B such that:

U =
⋃

α∈A
Bα

Thus we merely just need to show that B ⊆ T since T is closed under arbitrary

unions:

• We know that ∅ and X are elements of T since T is a topology

• In the other case for B ∈ B we have that for some B1, . . . , Bn in B that:

B =

n⋂

i=1

Bi
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Since T contains each Bi and it is closed under finite intersection we then know

that B is in T as desired.

Thus we win! We have that T ⊆ T .

Exercise 3. Show Q3. That is show the product topology on R2 agrees with the

Euclidean topology on R2.

Proof. Call the product topology Tπ and the Euclidean topology TE . We proceed

by two-way containment.

(⊆) We know by Q2 that to show Tπ ⊆ TE it suffices to show that each cylindrical

set is an open set in the Euclidean topology. There are two cases:

– Suppose that U is open in R. We must show that U × R is open in R2

with the Euclidean topology. Fix (x, y) ∈ U × R. Then x ∈ U , so there

exists some ε > 0 so that Nε(x) ⊆ U . We claim that Nε(x, y) ⊆ U ×R.

Fix (v, w) ∈ Nε(x, y). Then we know that:

d(x, v) = |x− v| =
√

(x− v)2

≤
√

(x− v)2 + (y − w)2 = d((x, y), (v, w)) < ε

Therefore v ∈ Nε(x) ⊆ U . Since v ∈ U and w ∈ R we know that

(v, w) ∈ U × R as desired.

– Suppose that U is open in R. We must show that R × U is open in R2

with the Euclidean topology. Fix (x, y) ∈ R × R. Then y ∈ U , so there

exists some ε > 0 so that Nε(y) ⊆ U . We claim that Nε(x, y) ⊆ U ×R.

Fix (v, w) ∈ Nε(x, y). Then we know that:

d(y, w) = |y − w| =
√

(y − w)2

≤
√

(x− v)2 + (y − w)2 = d((x, y), (v, w)) < ε

Therefore w ∈ Nε(y) ⊆ U . Since w ∈ U and v ∈ R we know that

(v, w) ∈ R× U as desired.

(⊇) Fix some open set U ⊆ R2 with the Euclidean topology. Fix some (x, y) ∈ U .

Then there is an ε > 0 so that Nε(x, y) ⊆ U . Then set δ := ε√
2
. Consider
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then this open set in the product topology:

V(x,y) = (Nδ(x)× R) ∩ (R×Nδ(y)) = Nδ(x)×Nδ(y)

It is clear that (x, y) ∈ V(x,y). Now take (a, b) ∈ V(x,y). We then know that

|a− x| < ε√
2

and |y − b| < ε√
2
. We then must have the following:

(a− x)2 <
ε2

2

(b− y)2 <
ε2

2

(a− x)2 + (b− y)2 < ε2

d((a, b), (x, y)) < ε

Therefore (a, b) ∈ Nε(x, y) ⊆ U . This shows that V(x,y) ⊆ U . This lets us

write that:

U =
⋃

(x,y)∈U
V(x,y)

Thus since Tπ is a topology and each V(x,y) is open in Tπ we win! We have

that U is open in Tπ.

With this we win!
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3 Compactness on Rd

Last time we proved the nested interval property on R, namely

Theorem (Nested Interval Property). Let In = [an, bn] be a sequence of closed and

bounded intervals that is nested, aka In ⊇ In+1. Then we have that:

∞⋂

n=1

In 6= ∅

Note that we need “closedness.” Take In =
(
0, 1n

]
. In fact what we really need is

compactness.

Definition. A closed box in Rd is a set of the form:

d∏

j=1

[aj , bj ]

Corrolary (The nested box property of Rd). Let Bn be a sequence of closed and

nested boxes. Then:

∞⋂

n=1

6= ∅

Great!

Proof. Let:

Bn =
d∏

j=1

[
a
(n)
j , b

(n)
j

]
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Bn ⊆ Bn+1 implies for every 1 ≤ j ≤ d that the intervals I
(n)
j =

[
a
(n)
j , b

(n)
j

]
are

nested. By the previous theorem, for every 1 ≤ j ≤ d there exists some:

xj ∈
∞⋂

n=1

I
(n)
j

Therefore:

x = (x1, . . . , xd) ∈
∞⋂

n=1

Bn

And so we win!

Definition. Define in a metric space for any subset E of a metric space X the

diameter when the following supremum exists:

diamE = sup
x,y∈E

d(x, y)

Great!

Exercise. Show that for any box B =
∏d
j=1[aj , bj ] that:

diamB =




d∑

j=1

(bj − aj)2



1
2

Where we use the standard Euclidean metric on Rd

Proof. We will do this with induction on d

• Suppose d = 1. We wish to prove that diam [a, b] = |b− a| = b− a. Note

that b− a is in the set we are taking a supremum over, and so we merely

need to show it is an upper bound. Fix x, y ∈ [a, b]. Without loss of

generality take y ≥ x. Then note that:

b− a = (b− y) + (y − x) + (x− a) ≥ y − x

And so we win
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• Suppose that the result holds for d ∈ N. We must show it holds for d+ 1.

Note then that a = (a1, . . . , ad+1) and b = (b1, . . . , bd+1) are in B, and so:

d(a, b) =



d+1∑

j=1

(bj − aj)2



1
2

Is in the set we are taking a supremum over. We need only show that it

is a maximum. Fix x = (x1, . . . , xd+1) and y = (y1, . . . , yd+1) in the box

B and without loss of generality assume yd+1 ≥ xd+1.

Define x′ = (x1, . . . , xd) and y′ = (y1, . . . , yd). Then we have:

d(x′, y′) ≤ δ := diam

d∏

j=1

[aj , bj ] =




d∑

j=1

(bj − aj)2



1
2

Now note that:

d(x, y) =
√

(d(x′, y′))2 + (yd+1 − xd+1)2

≤
√
δ2 + (bd+1 − a2d+1

=






d∑

j=1

(bj − aj)2

+ (bd+1 − ad+1)

2




1
2

=



d+1∑

j=1

(bj − aj)2



1
2

= d(a, b)

But this is exactly what we want ,

Awesome!

Theorem. Every closed box in Rd is compact.

3



Proof. Let B =
∏d
j=1[aj , bj ] be any closed box. Set:

δ0 := diamB =




d∑

j=1

(bj − aj)2



1
2

Suppose for the sake of contradiction that {Gα}α∈A is an open cover of B that has

no finite subcover

Split B into 2d subboxes of equal size. That is let cj =
aj+bj

2 . Then the subboxes

are
∏d
j=1 Ij where Ij ∈ {[aj , cj ], [cj , bj ]}.

Since B cannot be covered by any finite collection of the {Gα}α∈A, there must

exist a subbox, B1 such that B1 cannot be covered by any finite subcollection of the

{Gα}α∈A. Note also that diamB1 = diamB
2 . Set δ1 = diamB1.

Continue inductively, having constructed B ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bn such that

diamBn = δn = diamB
2n and Bn cannot be covered by any finite collection of the

{Gα}α∈A. We construct Bn+1 by splitting Bn into 2d subboxes of equal size as in

the previous paragraph and noting that one of those subboxes cannot be covered by

any finite collection of the {Gα}α∈A. Let Bn+1 be this subbox of Bn. Also note:

diamBn+1 =
diamBn

2
=

diamB

2n+1

This is a sequence of closed nested boxes. Applying the nested box property we

know that
⋂∞
n=1B − n 6= ∅.

Claim.
⋂∞
n=1Bn is a singleton x.

Proof. Suppose x, y ∈ ⋂∞
n=1. Then x, y ∈ Bn for every n, and therefore d(x, y) ≤

diamBn = diamB
2n . Letting n go to infinity we get d(x, y) = 0 and so x = y.

Now x ∈ B implies there exists an αx ∈ A so that x ∈ Gαx . But then this

implies that there is an r > 0 so that Nr(x) ⊆ Gαx .

For n large enough we know Bn ⊆ Nr(x). In fact if δn < r then Bn ⊆ Nr(x).

Thus since δn → 0 we know δn < r eventually. But then obviously Bn is covered by

a finite collection of the {Gα}α∈A. Oops! The box B must then be compact.

4



Theorem (Heine-Borel). A subset K of Rd is compact if and only if it is closed

and bounded.

Proof. Let’s go!

(⇒) We already showed this direction in general metric spaces.

(⇐) If K is bounded then K is contained in some large closed box B which is

compact. Therefore K is a closed subset of a compact set. This implies that

K is compact (we showed this last time in Hausdorff spaces).

4 Compactness in Metric Spaces

It turns out that being closed and bounded is not sufficient to guarantee compactness

in infinite-dimensional metric spaces.

Example. Let `∞(N) denote the set of bounded sequences (an)n∈N. The metric on

`∞(N) is defined as:

d((an), (bn)) = sup
n∈N
|an − bn|

Consider the set B = {(an) ∈ `∞(N) | supn∈N |an| ≤ 1}.

Exercise. This set is closed and bounded (check 3).

Proof. To note that it’s bounded consider that:

d((an), 0) = sup
n∈N
|an| ≤ 1

So this is trivial. Now consider a sequence of sequences
(
a
(j)
n

)
j∈N

which are all

in B which converges to some (an)n∈N. We will show 1 is an upper bound for

the set {|an|}n∈N, and so:

sup
n∈N
|an| ≤ 1

5



Fix n ∈ N. Now fix ε > 0. We know there is some large j ∈ N so that:

d
((
a(j)n

)
, (an)

)
= sup

n∈N

∣∣∣an − a(j)n
∣∣∣ < ε

Now note that:

|an|
4
≤
∣∣∣a(j)n

∣∣∣+
∣∣∣an − a(j)n

∣∣∣

< 1 + ε

And so since this holds for all ε > 0 we must have |an| ≤ 1 as desired.

Claim. This set B is not compact!

Proof. Consider the sequence of sequences:

(
a(k)n

)
=

{
1 if n = k

0 otherwise

Therefore:

d
((
a(k)n

)
,
(
a(k

′)
n

))
= 1

Thus this sequence of sequences
(
a
(k)
n

)
can have no convergent subsequence.

And thus B is not sequentially compact, and so B is not compact.

How do we fix this? It turns out we need to strengthen our conditions

• Replace closed by Cauchy Complete

• Replace bounded by total boundedness

Definition. A subset E of a metric space X is totally bounded if for every ε > 0

there is a finite cover of E by balls of radius ε > 0.

Exercise. Show that:

6



• On Rd we have boundedness if and only if total boundedness

– Totally bounded implies bounded on every metric space

– For bounded implies totally bounded. Since any box B of the form [−N,N ]d

can be split into finitely many subboxes of diameter less than ε, and each

sub-box is contained in a ball of radius ε.

• On Rd we have closed if and only if Cauchy complete. Of course Cauchy

complete implies closed, and for the other direction we just use Cauchy com-

pleteness of Rd.

• On `∞(N) we have that total boundedness is stronger than boundedness. In

fact:

Exercise. Show that the set B in the above is bounded but not totally bounded.

Use the exact same sequence as in the example and use pigeonhole principle.

Proof. We’ve already proved it is bounded. Let ε = 1
2 and suppose for

the sake of contradiction that we have a finite cover by balls of radius ε.

Call these balls B1, . . . , BN . Without loss of generality assume we have(
a
(k)
n

)
∈ Bj for each 1 ≤ k ≤ N where we have:

(
a(k)n

)
=

{
1 if n = k

0 otherwise

Now consider the sequence
(
a
(m)
n

)
where we set m := N + 1. We know

there is some k so that
(
a
(m)
n

)
∈ Bk. But then letting

(
x
(k)
n

)
be the

center of the ball Bk we have that:

1 = d
((
a(m)
n

)
,
(
a(k)n

)) 4
≤ d

((
a(m)
n

)
,
(
x(k)n

))
+ d

((
x(k)n

)
,
(
a(k)n

))

<
1

2
+

1

2
= 1

Oops! We win ,

Theorem. Let X be a metric space and E ⊆ X. The following are equivalent:

1) E is compact

7



2) E is sequentially compact

3) E is complete and totally bounded.

Remark. If X is a complete metric space then 3) above can be replaced by closed

and totally bounded.

Lemma. Completeness of E ⊆ X implies E is closed.

Proof. Let E be complete and xn ∈ E such that xn → x ∈ X. Since (xn) converges

it must be Cauchy, and so since E is compelte we know (xn) converges to some

point in E. But limits are unique in metric spaces so x ∈ E, so E is closed!!!

8



Fall 2020 MATH 395 Zaher Hani

Handout 2

• Relatively Open, closed, and compact. We saw in class that the
interval [0, 1) is not open in R, but is open relative to the half-line [0,∞)
(taking the usual metric on R and [0,∞)]). Let us try to formalize and
generalize this.

Let (X, d) be a metric space and Y ⊂ X. Y is a metric space itself, by
restricting the metric d to Y × Y .

Q1) Let E ⊂ Y . We say that E is open relative to Y if it is open in the
metric space (Y, d). Untangle what this definition means in terms
of Nδ(p) neighborhood of a point p ∈ E (i.e. restate the condition
that E is open in Y in terms of the Nδ(p) neighborhoods of p ∈ E)
and compare it to the condition of E being open in X.

Q2) Deduce that if there is an open subset G of X, then G ∩ Y is open
relative to Y .

Q3) Show that E is open relative to Y if and only if there exists an open
subset G of X such that E = G ∩ Y .

Q4) Compactness on the other hand behaves better. Suppose that K ⊂
Y ⊂ X. Show that K is compact relative to X if and only if it is
compact relative to Y .

Conclusion: We always need to specify the ambient space when we talk
about open/closed sets (that’s why we always say “E is an open subset
of X”), but we can make statements like “K is compact (or a compact
metric space)” without the need to specify the ambient space.

• The Cantor set. Let us start with the interval C = [0, 1] and remove
the middle third open interval (13 ,

2
3). This leaves us with the set C1 =

[0, 13 ] ∪ [23 , 1] formed of 2 closed subintervals. Having constructed C1 ⊃

1



C2 ⊃ . . . ⊃ Cn where Cn is the union of 2n subintervals each of length
1
3n , we construct Cn+1 as follows: To obtain Cn+1 we remove the middle
third of each of the 2n intervals that form Cn. This leaves us with a
union of 2n+1 intervals each of length 1

3n+1 .

Q5) Let C = ∩n=1∞Cn. Why is C non-empty? Is it compact?

Q6) Show that every point in C is a limit point. Hence C is a perfect
set.

Conclusion: From the homework (HW 2), we deduce that C is un-
countable, since any perfect subset of Rd is uncountable.

Q7) Show that C cannot contain any interval (a, b).

Conclusion: As such, C is totally disconnected (it has no nontrival
connected subset) and nowhere dense (the interior of its closure is
empty).

Q8) What is the total length of Cn? What would be a reasonable defini-
tion of the length of C?
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Proof of Q1. Let NY
δ (p) = {a ∈ Y | d(p, a) < δ} denote the δ-neighborhoods in Y

for p ∈ Y and let Nδ(p) denote the neighborhood relative to X. Now the definition of

an open set E ⊆ Y says that for all p ∈ E there exists a δ > 0 such that NY
δ (p) ⊆ E.

Note that:

NY
δ (p) = Nδ(p) ∩ Y

And so we must have that Nδ(p) ∩ Y ⊆ E.

If E were open in X then we would have a stronger condition, namely that the

whole neighborhood Nδ(p) ⊆ E.

Proof of Q2. Suppose that G is an open subset of X. Now consider some p ∈ G∩Y .

We know since p ∈ G that there exists some ε > 0 so that Nε(p) ⊆ G. But then we

know that:

NY
ε (p) = Nε(p) ∩ Y ⊆ G ∩ Y

By using facts from elementary set theory. This is great! We win now since this

must mean that G ∩ Y is open as a subset of Y .

Proof of Q3. The backward direction is exactly a consequence of Q2. We work

instead on the forward direction.

Suppose that E is open relative to Y . For each p ∈ Y there exists some δp > 0

so that:

NY
δp(p) = Nδp(p) ∩ Y ⊆ E

3



Now consider the following union:

G :=
⋃

p∈E
Nδp(p)

Since each Nδp(p) is open in X we know that G must be open relative to X. We

will show that E = G ∩ Y .

(⊆) Fix p ∈ E. Then we know that p ∈ Y since E is a subset of Y , and further we

know that p ∈ Nδp(p), and so p ∈ G.

(⊇) Fix x ∈ G ∩ Y = Y ∩G. Then:

x ∈ Y ∩G = Y ∩
⋃

p∈E
Nδp(p) =

⋃

p∈E
(Y ∩Nδp(p))

And thus there exists some p so that:

x ∈ Nδp(p) ∩ Y = NY
δp(p) ⊆ E

Therefore x ∈ E just as desired! Great.

With this we win ,

Proof of Q4. Suppose that K ⊆ Y ⊆ X. Now lets go in each direction

(⇒) Suppose that K is compact relative to X. Now fix an open cover {Uα}α∈A of

K relative to Y . By Q3 for each α ∈ A there exists a Gα which is open in X

so that Uα = Gα ∩ Y . Therefore:

K ⊆
⋃

α∈A
Uα =

⋃

α∈A
(Y ∩Gα) = Y ∩

⋃

α∈A
Gα

K ⊆
⋃

α∈A
Gα

Great! Thus the {Gα}α∈A cover K. Since K is compact in X we know there

exists a finite subcover Gα1 , . . . , Gαn . Then since K ⊆ Y and K ⊆ ⋃n
i=1Gαi

we know:

K ⊆ Y ∩
n⋃

i=1

Gαi =

n⋃

i=1

(Y ∩Gαi =

n⋃

i=1

Uαi

4



And therefore Uα1 , . . . , Uαn is a finite subcover of {Uα}α∈A just as desired!

Great!!

(⇐) Suppose that K is compact relative to Y . Now fix an open cover {Gα}α∈A of

K relative to X. By Q2 we must have that Uα := Gα ∩ Y is open in Y for

each α ∈ A. Note then that since K ⊆ Y and K ⊆ ⋃α∈AGα we know:

K ⊆ Y ∩
⋃

α∈A
Gα =

⋃

α∈A
(Y ∩Gα) =

⋃

α∈A
Uα

And so {Uα}α∈A is an open cover of K in Y . Therefore there must exist a

finite subcover for it by compactness, which we will denote by Uα1 , . . . , Uαn .

Therefore:

K ⊆
n⋃

i=1

Uαi =
n⋃

i=1

(Y ∩Gαi) = Y ∩
n⋃

i=1

Gαi

K ⊆
n⋃

i=1

Gαi

And so Gα1 , . . . , Gαn is a finite subcover of {Gα}α∈A just as desired!!!

With this we win ,

Proof of Q5. For notational convenience denote for n ∈ N0:

Cn =
2n⋃

i=1

[ani , b
n
i ]

So that inductively for 1 ≤ i ≤ 2n:

C0 = [0, 1]

[
an+1
2i−1, b

n+1
2i−1

]
=

[
ani ,

2ani + bni
3

]

[
an+1
2i , bn+1

2i

]
=

[
ani + 2bni

3
, bni

]

Now lets tackle both of these questions!

• Note that a01 = 0 will always lie at the edge of an interval because supposeing

5



an1 = 0 we know an+1
1 = an+1

2·1−1 = an1 = 0. Therefore since:

0 ∈ [an1 , b
n
1 ] ⊆ Cn

for each n ≥ 0 we must know that 0 ∈ C. A similar argument shows that

1 ∈ C.

• C is compact!!! Why? Note that for every n ≥ 0 we have that Cn is a

finite union of closed intervals, so each Cn is closed. Thus, C =
⋂∞
n=0Cn is

closed. Furthermore since C0 = [0, 1] is closed and bounded, that is compact.

Therefore since C ⊆ C0 is a closed subset of a compact set, C must be compact.

Perfect! We win!

Proof of Q6. Fix some point x ∈ C. Then x ∈ Cn for all n ≥ 0, and so for each

n ≥ 0 there exists some 1 ≤ in ≤ 2n so that x ∈
[
anin , b

n
in

]
. We claim that x`n := anin

is a sequence lying in C \ {x} that converges to x or xrn := anin is a sequence lying

in C \ {x} that converges to x. We tackle this in steps.

• First we show that for all n ≥ 0 and all 1 ≤ i ≤ 2n we have ani is in C. First

note that ani ∈ [ani , b
n
i ] ⊆ Cn, and thus for each 0 ≤ m < n we must have

ani ∈ Cn ⊆ Cm. Inductively we will show that for m ≥ n if we let jn = i and

jm+1 = 2jm − 1 then:

ani = amjm ∈ Cm

Note that it’s trivial for m = n. Now suppose that amjm = ani . Consider that:

am+1
jm+1

= am+1
2jm−1 = amjm = ani

And so we must have that this works! Great.

• Now we show that for all n ≥ 0 and all 1 ≤ i ≤ 2n we have bni is in C. First

note that bni ∈ [ani , b
n
i ] ⊆ Cn, and thus for each 0 ≤ m < n we must have

bni ∈ Cn ⊆ Cm. Inductively we will show that for m ≥ n if we let jn = i and

jm+1 = 2jm then:

bni = bmjm ∈ Cm

6



Note that it’s trivial for m = n. Now suppose that bmjm = bni . Consider that:

bm+1
jm+1

= bm+1
2jm

= bmjm = bni

And so we must have that this works! Great.

• Now we show that for each n ≥ 0 and each 1 ≤ i ≤ 2n the interval [ani , b
n
i ] has

length 1
3n . TODO

Proof of Q7. TODO

Proof of Q8. TODO
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Theorem. Let E be a subset of a metric space X. Then the following are equivalent:

1) E is compact

2) E is sequentially compact

3) E is complete and bounded.

We’ve already seen that in matric spaces compactness implies sequential compact-

ness. It remains to show:

(a) Sequential compactness implies compactness

(b) Sequential compactness implies totally bounded and complete

(c) Totally bounded and complete implies sequentially compact

We will prove (b) and (c) first and then (a). In fact, the proof of the theorem

follows from the following three lemmas

Lemma 1. A sequentially compact subset E of X is totally bounded and complete

Lemma 2. A totally bounded and complete subset E of X is sequentially compact

Lemma 3. A sequentially compact subset of a metric space is compact

Proof of Lemma 1, Totally Bounded. Note that if E = ∅ then we are done. Thus

let E 6= ∅ for the duration of this proof.

Let E be sequentially compact. To show it is totally bounded, fix an ε > 0.

Claim. Let A ⊆ E be a set of points of mutual distance ≥ ε. Then A has to be

finite

1



Proof of claim. Suppose that A were infinite. Then we get a sequence of points

(xn) ∈ A such that d(xn, xm) ≥ ε for all n 6= m. But this means that no subsequence

of (xn) is Cauchy, and therefore no subsequence of (xn) is convergent, violating

sequential compactness.

Now let p1 ∈ E be arbitrary. If possible we pick p2 ∈ E such that d(p2, p1) ≥ ε.
If this is not possible then we stop. Then we pick p3 ∈ E such that d(p1, p3) ≥ ε

and d(p2, p3) ≥ ε. If this is not possible we stop

Now having picked p1, . . . , pn in this way such that d(pi, pj) ≥ ε for all 1 ≤ i 6=
j ≤ n, we pick pn+1 ∈ E such that d(pn+1, pi) ≥ ε for all 1 ≤ j ≤ n. If this is not

possible, then E ⊆ ⋃n
i=1Nε(pj) and we are done.

The claim above tells us that we cannot continue this process forever, and thus

it must end after n steps for some n ∈ N. Therefore E is totally bounded

Proof of Lemma 1, Completeness. Let (xn) be a Cauchy sequence in E. Since E is

sequentially compact there is a convergent sequence (xnk
) such that xnk

converges

to some p ∈ E as k goes to infinity. Now let ε > 0, then there is some N ∈ N large

enough so that for k > N and n > N we know that:

d(xn, xnk
) <

ε

2

d(xnk
, p) <

ε

2

d(xn, p)
4
≤ d(xn, xnk

) + d(xnk
, p)

<
ε

2
+
ε

2
= ε

Thus (xn) converges to p ∈ E. Therefore E is complete!

Proof of Lemma 2. Assume that E is totally bounded and complete. Let (xn) be a

sequence in E. We want to show that it has a convergent subsequence. If the set of

all {xn} is finite, then we can find a constant subsequence and we are done. Assume

that {xn} is infinite.

Since E is totally bounded, one can cover E with finitely many 1
2 -neighborhoods.

One of these neighborhoods must contain infinitely many (xn) by the pigeonhole

principle. Thus we may call this resulting subsequence
(
x
(1)
n

)

Now cover E with finitely many 1
22

-neighborhoods. One of these neighborhoods

contains infinitely many of the
(
x
(1)
n

)
by the pigeonhole principle. This gives a

2



subsequence
(
x
(2)
n

)
of
(
x
(1)
n

)
completely contained in a 1

22
-neighborhood. This is

also a subsequence of (xn) of course.

Inductively, we can define a successivesubsequence
(
x
(k)
n

)
such that

(
x
(k)
n

)
is a

subsequence of
(
x
(k−1)
n

)
and

(
x
(k)
n

)
is contained in a ball of radius 1

2k
.

Now set an = x
(n)
n . This is a subsequence of (xn) that satisfies:

d(an, am) = d
(
x(n)n , x(m)

m

)

If m ≥ n then
(
x
(m)
p

)
is a subeequence of

(
x
(n)
p

)
and

(
x
(n)
p

)
is contained in a ball

of radius 1
2n with some center, say c for concreteness. Thus:

d
(
x(n)n , x(m)

m

) 4
≤ d

(
x(n)n , c

)
+ d

(
x(m)
m , c

)

<
1

2n
+

1

2n
=

1

2n−1

Of course we can swap the role of n and m and so we always have:

d(an, am) ≤ 1

2min(n,m)−1

With this established it is clear that (an) is cauchy. By completeness of E, we

know (an) converges to a point p ∈ E as desired. Therefore (xn) has a convergent

subsequence

Lemma 4 (3’). Let E ⊆ X be sequentially compact. Let {Gα}α∈A be an open cover

of E. Then there exists an ε > 0 such that every ball of radius ε and center p ∈ E
is contained in one of Gα for some α ∈ A.

Proof. Suppose the statement is not true. Then for any integer n ≥ 1 there exists

a pn ∈ E such that N 1
n

(pn) is not contained in any of the {Gα}α∈A. By sequential

compactness, (pn) has a convergent subsequence (pnk
) converging to some p ∈ E.

Since p ∈ E there exists a α0 such that p ∈ Gα0 , and so there is some δ > 0 so

that Nδ(p) ⊆ Gα0 .

Since pnk
→ p, we may pick nk large enough so that:

d (pnk
, p) <

δ

2

1

nk
<
δ

2

3



But then fixing x ∈ N 1
nk

(pnk
) we have:

d(x, p)
4
≤ d (x, pnk

) + d (pnk
, p) <

δ

2
+
δ

2
< δ

And so x ∈ Nδ(p) ⊆ Gα0 . This shows that N 1
nk

(pnk
) ⊆ Gα0 . Oops! ,

Proof of Lemma 3. Suppose that E is sequentially compact. Now let {Gα} be

any open cover of E. By Lemma 4 (3’), there exists an ε > 0 such that any ε-

neighborhood of a point in E is contained in one of the Gα. Since sequentially com-

pact implies totally bounded, E can be covered by finitely many ε-neighborhoods.

That is there is a list p1, . . . , pN ∈ E such that:

E ⊆
N⋃

j=1

Nε(pj)

Now for each pj with 1 ≤ j ≤ N there exists some αj such that Nε(pj) ⊆ Gαj by

construction of ε by lemma 3’. Therefore:

E ⊆
N⋃

j=1

Gαj

Thus, E is comapct as desired.
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A Small Digression

Last time we showed that compactness in a metric space is equivalent to sequential

compactness is equivalent to totally bounded and complete.

It is clear then that if the total space is complete then compactnes in that space

is equivalent to closed and totally bounded

How is this useful in mathematics?

When solving an ODE or a PDE, we can often recast the problem as solving an

equation of the form:

F (x) = 0

for some continuous function F : X → X and some metric space X, which will be a

space of functions. Suppose we are able to find a sequence of approximate solutions

to this equation, for example a sequence xn such that:

F (xn) = εn

Where we have ‖εn‖X → 0 as n→∞. If we can then show that the sequence (xn)

belongs to a compact subset of X, then it must have a convergent subsequence.

This convergent subsequence will converge to some x0, and necessarily we will have

F (x0) = 0 as desired.
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3 Continuous functions on metric spaces

Definition. Let X and Y be metric spaces. We say that a function f : X → Y is

continuous at x0 ∈ X provided that for every ε > 0 there exists a δ = δε,x0 such that

whenever d(y, x0) < δ we have d(f(y), f(x0)) < ε.

In other words, f maps BX(x0, δ) into BY (f(x0), ε). We say in particular that

f is continuous when f is continuous at every point x0 ∈ X

Proposition. f : X → Y is continuous if and only if the inverse image of every

open set U ⊆ Y is open in X.

Proof. Let’s go!

(⇒) Fix x ∈ f−1(U). Then since f(x) ∈ U , we know that there is an ε > 0 so

that BY (f(x), ε) ⊆ U . By continuity there exists some δ > 0 so that f maps

BX(x, δ) into BY (f(x), ε. Therefore:

BX(x, δ) ⊆ f−1(BY (f(x), ε)) ⊆ f−1(U)

Therefore f−1(U) is open.

(⇐) Fix x ∈ X. Now fix ε > 0. Note that BY (f(x), ε) is an open set in Y . Thus

f−1(BY (f(x), ε)) is open in X. Since x is in this set in particular, we know

there exists a δ > 0 so that:

BX(x, δ) ⊆ f−1(BY (f(x), ε))

f(BX(x, δ)) ⊆ BY (f(x), ε)

Therefore f is continuous at x. Since x ∈ X was arbitrary, f is continuous.

Theorem. Let X be a compact metric space and let f : X → Y be continuous, then

f(X) is compact

Proof. Let {Gα} be an open cover of f(X). Then {f−1(Gα)} is an open cover of

X. By compactness of X, there exists α1, . . . , αn such that {f−1(Gαi)}1≤i≤n is an

open cover of X. But then {Gαi}1≤i≤n is an open cover of f(X).

Corrolary 1 (Extreme Value Theorem). Let f : X → R be a continuous function.

If f is compact, then f has a maximum and a minumum value.
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Proof. f(X) is compact in R. Therefore f(X) is closed and bounded. Since it

is bounded, inf f and sup f exist. Furthermore, since it is closed, we know that

inf f, sup f ∈ f(X). This shows that these are in fact a minimum and a maximum,

as desired.

Definition. Let X and Y be metric spaces. We say that f : X → Y is uniformly

continuous if for every ε > 0 there exists a δ = δ(ε) such that if dX(x, y) < δ then

dY (f(x), f(y)) < ε

Clearly uniform continuity implies continuity.

Theorem. Let X be a compact metric space and Y be any metric space. If f : X →
Y is continuous then it is in fact uniformly continuous.

Proof. Pick some ε > 0. Let ε′ := ε
2 . Then for each x ∈ X we know there is some

δx > 0 so that f(Bδx(x)) ⊆ Bε′(f(x)) by continuity. Let δ′x := 1
2δx. Now note that

X is covered by these balls {Bδ′x(x)}x∈X . So in particular since X is compact we

have x1, . . . , xn and δ′1, . . . , δ
′
n > 0 such that X is covered by {Bδ′i(xi)}1≤i≤n. Note

that we’ve notated δ′i := δ′xi and δi := δxi for convenience. Set:

δ := min
1≤i≤n

δ′i

Now let x, y ∈ X so that d(x, y) < δ. We know that there is some 1 ≤ i ≤ n so that

x ∈ Bδ′i(xi). Then in particular:

d(xi, y)
4
≤ d(xi, x) + d(x, y) < δ′i + δ

≤ δ′i + δ′i = δi

Therefore since δ′i < δi it is clear that x, y ∈ Bδi(xi). Great! Then we must have

that f(x), f(y) ∈ Bε′(f(x)). Which gives:

d(f(x), f(y))
4
≤ d(f(x), f(xi)) + d(f(xi), f(y)) < ε′ + ε′ = ε

Awesome! We win! f is uniformly continuous. See Hani’s notes for an equivalent

way to do this with Lemma 3’ from previous lecture (it is a similar idea).
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Part II

Differentiation on Rd

1 Definition of the derviative

1.1 Recollection

Recall. For φ : I → R where I is an open subset of R, we call φ differentiable at

x0 ∈ I provided that the limit

lim
h→0

φ(x0 + h)− φ(x0)

h

exists. If so we call this limit φ′(x0).

We call φ differentiable in I if it is differentiable at every point x ∈ I¿ If I is

not open, then we say φ is differentiable on I if there exists an extension Φ of φ to

some open set J ⊇ I such that Φ = φ on I and Φ is differentiable on J .

1.2 Generalization Steps

How do we generalize this? We would like to look at functions φ : Rn → Rm for

n,m ∈ N. If n = 1 and m ≥ 1 then the same definition works:

φ′(x0) = lim
h→0

φ(x0 + h)− φ(x0)

h

Exercise. Show that φ = (φ1, . . . , φm) : I → Rm where I ⊆ R where I ⊆ R is

differentiable at x0 if and only if φj is differentiable at x0 ofor every 1 ≤ j ≤ m and

moreover:

φ′(x0) = (φ′1(x0), . . . , φ
′
m(x0))

We run into trouble when n ≥ 1 we run into trouble because we cannot divide
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by a vector. Let’s reinterpret the case where n = 1 to deal with this. Note that:

lim
h→0

φ(x0 + h)− φ(x0)

h
− φ′(x0) = 0

lim
h→0

φ(x0 + h)− φ(x0)− φ′(x0) · h
h

= 0

lim
h→0

|φ(x0 + h)− φ(x0)− φ′(x0)h|
|h| = 0

The final definition of differntiability at x0 makes much better since for φ : Rn → Rm,

since |h| is a nonzero real number. But we need to properly interpret φ′(x0)h.

Note that for φ : R → Rm, then φ′(x0) provides the best linear approximation

to φ(x0 + h)− φ(x0). Namely if ∆hφ(x0) = φ(x0 + h)− φ(x0) then the definition of

φ′(x0) tells us that:

r(h) := ∆hφ(x0)− φ′(x0)h

Satisfies |r(h)||h| → 0 as h→ 0. Essentially, this means that φ′(x0)h takes the increment

h in x and gives us the best linear approximation to ∆hφ(x0). This means that φ′(x0)

can be interepted as a linear transformation from R to Rm

1.3 The Correct Generalization

Definition. Let E ⊆ Rn be open and let f : E → Rm. We say that f is differen-

tiable at x ∈ E provided that there exists a linear transformation Df(x) : Rn → Rm

such that:

lim
‖h‖→0

‖f(x+ h)− f(x)− [Df(x)](h)‖
‖h‖ = 0

We can think of Df(x0) as an m × n matrix by linear alegbra. We will prove that

Df(x) is unique next lecture, justifying the notation.

Note that the f increment is ∆hf(x) = f(x + h) − f(x). How good is the

approximation, namely r(h) = ∆hf(x)−Df(x)h for a fixed x ∈ E. Then:

lim
‖h‖→0

‖r(h)‖
‖h‖ = 0
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Handout 3

• The Cantor set. Let us start with the interval C = [0, 1] and
remove the middle third open interval (1

3 ,
2
3). This leaves us with

the set C1 = [0, 1
3 ] ∪ [2

3 , 1] formed of 2 closed subintervals. Having
constructed C1 ⊃ C2 ⊃ . . . ⊃ Cn where Cn is the union of 2n

subintervals each of length 1
3n , we construct Cn+1 as follows: To

obtain Cn+1 we remove the middle third of each of the 2n intervals
that form Cn. This leaves us with a union of 2n+1 intervals each of
length 1

3n+1 .

Q1) Let C = ∩n=1∞Cn. Why is C non-empty? Is it compact?

Q2) Show that every point in C is a limit point. Hence C is a
perfect set.

Conclusion: From the homework (HW 2), we deduce that C is
uncountable, since any perfect subset of Rd is uncountable.

Q3) Show that C cannot contain any interval (a, b).

Conclusion: As such, C is totally disconnected (it has no non-
trival connected subset) and nowhere dense (the interior of its
closure is empty).

Q4) What is the total length of Cn? What would be a reasonable
definition of the length of C?

• Wish list for a measure function Motivated by the above, it
would be grand to have a measure function that tells us how big
or small a subset of Rd is. This would be a function from the set
of subsets of Rd into [0,∞], say m : P(Rd) → [0,∞]. We would
like this function to satisfy the following properties:
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a) If E1, E2, . . . is a countable collection of disjoint subsets of R,
then

m(∪∞n=1En) =
∞∑

n=1

m(En).

b) If E is congruent to F (i.e. F can be obtained from E by
applying rigid motions: translations, rotations, or a reflections)
then we should have that m(E) = m(F ).

c) m([0, 1)d) = 1.

The bad news is that no such function can exist, and here’s why (at
least when d = 1). Let us define an equivalence relation between
elements of [0, 1) as follows: We say x ∼ y if x − y is a rational
number. Let N be the subset of [0, 1] that contains exactly one el-
ement of each equivalence relation (the existence of this N requires
invoking the axiom of choice). Now let R = [0, 1)∩Q, and for each
r ∈ R define the set

Nr = {x + r : x ∈ N ∩ [0, 1− r]} ∪ {x + r− 1 : x ∈ N ∩ [1− r, 1)}.
(Basically Nr is just the translate of N by r units to the right,
except that we move the part that sticks out of the interval [0, 1)
one unit to the left).

Q5) Show that [0, 1) is the disjoint union of Nr for r ∈ R.

Q6) Show that if a measure function satisfying a), b) and c) above
exists, then m(N) = m(Nr) for every r ∈ R.

Q7) Arrive at a contradiction.

Remark: One might think that possibly relaxing condition a) to cover
only finitely many disjoint sets En, i.e.

m(∪Nn=1En) =
N∑

n=1

m(En).

would resolve the contradiction. Unfortunately, the Banach-Tarski
paradox (cf. Figure 1) tells us that this is not enough to resolve this
issue.

2



Figure 1: Banach-Tarski tells us that we can split the unit ball in R3 into finitely many
(actually 5 is sufficient) many disjoint pieces, apply rigid motions to those pieces and then
reassemble them to obtain two copies of the unit ball.

Conclusion: The problem with the above wishlist is that we insisted
on being able to measure every subset of Rd. We have shown that this
is impossible. The solution is to be content with a measure function
that is defined on some but not all subsets. Such subsets will be called
measurable subsets.
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Proof of Q1. For notational convenience denote for n ∈ N0:

Cn =
2n⋃

i=1

[ani , b
n
i ]

So that inductively for 1 ≤ i ≤ 2n:

C0 = [0, 1]

[
an+1
2i−1, b

n+1
2i−1

]
=

[
ani ,

2ani + bni
3

]

[
an+1
2i , bn+1

2i

]
=

[
ani + 2bni

3
, bni

]

Now lets tackle both of these questions!

• Note that a01 = 0 will always lie at the edge of an interval because supposeing

an1 = 0 we know an+1
1 = an+1

2·1−1 = an1 = 0. Therefore since:

0 ∈ [an1 , b
n
1 ] ⊆ Cn

for each n ≥ 0 we must know that 0 ∈ C. A similar argument shows that

1 ∈ C.

• C is compact!!! Why? Note that for every n ≥ 0 we have that Cn is a

finite union of closed intervals, so each Cn is closed. Thus, C =
⋂∞

n=0Cn is

closed. Furthermore since C0 = [0, 1] is closed and bounded, that is compact.

Therefore since C ⊆ C0 is a closed subset of a compact set, C must be compact.

Perfect! We win!
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Proof of Q2. Fix some point x ∈ C. Then x ∈ Cn for all n ≥ 0, and so for each

n ≥ 0 there exists some 1 ≤ in ≤ 2n so that x ∈
[
anin , b

n
in

]
. Suppose that ε > 0, then

there is some N ∈ N so that 1
3N

< ε. We claim that aNiN , b
N
iN
∈ Nε(x) ∩ C

• First we show that for all n ≥ 0 and all 1 ≤ i ≤ 2n we have ani is in C. First

note that ani ∈ [ani , b
n
i ] ⊆ Cn, and thus for each 0 ≤ m < n we must have

ani ∈ Cn ⊆ Cm. Inductively we will show that for m ≥ n if we let jn = i and

jm+1 = 2jm − 1 then:

ani = amjm ∈ Cm

Note that it’s trivial for m = n. Now suppose that amjm = ani . Consider that:

am+1
jm+1

= am+1
2jm−1 = amjm = ani

And so we must have that this works! Great.

• Now we show that for all n ≥ 0 and all 1 ≤ i ≤ 2n we have bni is in C. First

note that bni ∈ [ani , b
n
i ] ⊆ Cn, and thus for each 0 ≤ m < n we must have

bni ∈ Cn ⊆ Cm. Inductively we will show that for m ≥ n if we let jn = i and

jm+1 = 2jm then:

bni = bmjm ∈ Cm

Note that it’s trivial for m = n. Now suppose that bmjm = bni . Consider that:

bm+1
jm+1

= bm+1
2jm

= bmjm = bni

And so we must have that this works! Great.

• Now we show that for each n ≥ 0 and each 1 ≤ i ≤ 2n the interval [ani , b
n
i ] has

length 1
3n . Note first that:

b01 − a01 = 1− 0 = 1 =
1

30
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Inductively for 1 ≤ i ≤ 2n then we know that:

bn+1
2n−i − an+1

2n−i =
2ani + bni

3
− ani =

bni − ani
3

=
1

3
· 1

3n
=

1

3n+1

bn+1
2n − an+1

2n = bni −
ani + 2bni

3
=
bni − ani

3
=

1

3
· 1

3n
=

1

3n+1

Now we’re done, since in particular aNiN and bNiN are distinct, so for any ε neighbor-

hood of x there are at least two points in Nε(x) ∩ C. Thus x is a limit point.

Proof of Q3. Fix a < b. But then if we had two points x, y ∈ (a, b) such that

x, y ∈ C and y > x. Note that we then know that there exists some N ∈ N so that
1
3N

< ε. This means that x and y must lie in different intervals making up CN ,

since these are disjoint. But then (a, b)∩C is not an interval, since x, y ∈ C ∩ (a, b)

but there is some point z between x and y so that z 6∈ C. This necessarily means

so then (a, b) 6= C ∩ (a, b), and so (a, b) 6⊆ C.

Proof of Q4. Note that the total length of Cn is:

`(Cn) =
2n

3n

Since Cn is a union of 2n disjoint intervals each of length 3n. Note that for each

n ∈ N we must conclude since C ⊆ Cn we know:

`(C) ≤ `(Cn) =
2n

3n
=

(
2

3

)n

Taking n→∞ we then can see that `(C) should be zero.

Proof of Q5. Fix r, q ∈ R = [0, 1) ∩Q. We will first show that if Nr ∩Nq 6= ∅ then

r = q, so by contrapositive the {Nr}r∈R are disjoint. Fix y ∈ Nr ∩ Nq. There are

four cases:

• y = xr + r and y = xq + q for some xr, xq ∈ N . Then xr − xq = q − r by

algebra, and so since r, q ∈ Q we have that q − r ∈ Q and so xr ∼ xq. By the

definition of N it follows that xr = xq. Therefore xr + r = xr + q, giving that

r = q.

• y = xr + r − 1 and y = xq + q − 1 for some xr, xq ∈ N . Then xr − xq = q − r
by algebra, and so since r, q ∈ Q we have that q − r ∈ Q and so xr ∼ xq. By
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the definition of N it follows that xr = xq. Therefore xr + r− 1 = xr + q − 1,

giving that r = q.

• y = xr+r−1 and y = xq+q for some xr, xq ∈ N . Then xr−xq = q−r+1 ∈ Q.

Thus xr = xq. Therefore q = r − 1 by some quick algebra. This is clearly a

contradiction! Why? Well 0 ≤ r < 1, and so −1 ≤ r − 1 < 0, but we know

q ≥ 0!!! Oops!

• y = xr+r and y = xq+q−1 for some xr, xq ∈ N . Then xr−xq = q−r−1 ∈ Q.

Thus xr = xq. Therefore r = q − 1 by some quick algebra. This is clearly a

contradiction! Why? Well 0 ≤ q < 1, and so −1 ≤ q − 1 < 0, but we know

r ≥ 0!!! Oops!

We want to show that:

[0, 1) =
⋃

r∈R
Nr

Let’s go!

(⊆) Fix y ∈ [0, 1). Then by definition there is some x ∈ N so that y ∼ x. Note

that then y − x ∈ Q. Further we have 0 ≤ x, y < 1 There are two cases:

– Suppose that y − x ≥ 0. Now set r := y − x. First note that since x ≥ 0

and y < 1 we know y − x < 1− 0 = 1. Therefore r ∈ Q ∩ [0, 1) = R. We

claim that y ∈ Nr. In particular note that y = x + r. All that remains

to be shown is x ∈ [0, 1 − r). We know since x ∈ N that x ∈ [0, 1), so

x ≥ 0 immediately. We merely need to show that x < 1 − y + x. This

is simple, since y < 1 we know 1 − y > 0. With this we must have that

x ∈ [0, 1) ∩N , and so:

y ∈ {x′ + r | x′ ∈ N ∩ [0, 1− r)} ⊆ Nr

And so y ∈ Nr

– Suppose that y − x < 0. Set r := y − x + 1. Note then that r < 1.

Since 0 ≤ y we know −x ≤ y − x, and then since x < 1 it follows

that −1 < −x ≤ y − x, and so 0 < r. This shows since r ∈ Q that

r ∈ R = [0, 1) ∩ Q. We claim that y ∈ Nr. Note in particular that

y = x + r − 1 by algebra. We need merely show that x ∈ [1 − r, 1). To
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do this note that y ≥ 0 so y ≤ 0:

x ≥ −y + x = 1− y + x− 1 = 1− (y − x+ 1) = 1− r

And we already know x < 1. Therefore:

y ∈ {x′ + r − 1 | x′ ∈ N ∩ [1− r, 1)} ⊆ Nr

And so y ∈ Nr!

Great! Since in either case r ∈ R, we must have that y ∈ ⋃r∈RNr. This

finishes this direction!

(⊇) This side follows fairly immediately. Fix y ∈ ⋃r∈RNr. Then y ∈ Nr for some

r ∈ R. There are then two quick cases:

– We have that y = x+ r for some x ∈ N ∩ [0, 1− r). Then note that since

r ≥ 0 we have:

0 ≤ x < 1− r
0 ≤ r ≤ x+ r = y < 1

And thus y ∈ [0, 1)

– We have that y = x+ r − 1 for some x ∈ N ∩ [1− r, 1). Then note that

since 1− r ≤ x < 1 that −r ≤ x− 1 < 0. Therefore since r < 1 we know:

0 ≤ x+ r − 1 < r < 1

With this we’re done!

We’ve finished the proof that this is a disjoint union! Wow!

Proof of Q6. Fix some r ∈ R. We wish to show that m(Nr) = m(N). First note

that:

m(Nr) = m ({x+ r | x ∈ N ∩ [0, 1− r)} ∪ {x+ r − 1 | x ∈ N ∩ [1− r, 1))

= m({x+ r | x ∈ N ∩ [0, 1− r)}) +m({x+ r − 1 | x ∈ N ∩ [1− r, 1)})

8



This follows from axiom (a) for our measure. But then by axiom (b) note that these

are translations of N ∩ [0, 1− r) and N ∩ [1− r, 1) respectively so:

m(Nr) = m(N ∩ [0, 1− r)) +m(N ∩ [1− r, 1))

We need to now show that:

[0, 1) = [0, 1− r) ∪ [1− r, 1)

This is farily quick since we note that r ∈ [0, 1)

(⊆) Fix x ∈ [0, 1). Then if x < 1 − r we have x ∈ [0, 1 − r). Otherwise we know

x ≥ 1− r and so x ∈ [1− r, 1).

(⊇) Fix x ∈ [0, 1 − r). Then since r ≥ 0 we know x < 1 − r ≤ 1. Therefore

0 ≤ x < 1, and so x ∈ [0, 1)

In the other case, fix x ∈ [1−r, 1). Then we know since r < 1 that 0 < 1−r ≤ x.

Therefore since 0 < x < 1 we have x ∈ [0, 1).

Now consider that:

(N ∩ [0, 1− r)) ∪ (N ∩ [1− r, 1)) = N ∩ ([0, 1− r) ∪ [1− r, 1)) = N ∩ [0, 1) = N

The last equality holds sincec N is a subset of [0, 1). Therefore:

m(Nr) = m(N ∩ [0, 1− r)) +m(N ∩ [1− r, 1)) = m(N)

And we are done!

Proof of Q7. We wish to arrive at a contradiction. There are three quick cases:

• Suppose that m(N) = 0. Then since Q is countable we know R = Q∩ [0, 1) is

countable, giving us by axiom (a) and (c) that:

1 = m([0, 1)) = m

(⋃

r∈R
Nr

)
=
∑

r∈R
m(Nr) =

∑

r∈R
0 = 0

This is a clear contradiction! Oops!
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• Suppose that m(N) > 0. Note that R is countable and for n ≥ 2 we have

0 < 1
n < 1 and so 1

n ∈ R. Then using axiom (a), axiom (c), and the fact that

m(N) is positive we know that:

1 = m([0, 1)) = m

(⋃

r∈R
Nr

)

=
∑

r∈R
m(Nr) ≥

∞∑

n=2

m
(
N 1

n

)

=
∞∑

n=2

m(N) =∞

This is clearly true, since we know thatm(N) > 0 doesn’t go to zero,
∑∞

n=2m(N)

must diverge to infinity. This is an oops since 1 <∞

• Suppose that m(N) =∞ Then since R is countable and 0 ∈ R = Q∩ [0, 1) we

know that by axiom (b) and axiom (c),

1 = m([0, 1)) = m

(⋃

r∈R
Nr

)
=
∑

r∈R
m(Nr) ≥ m(N0) = m(N) =∞

This cannot be true since 1 <∞. Oops!

With all three of these completed, we must conclude that m(N) is undefined!!! Wow!

This is amazing ,
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Continue Differentiability in higher dimensions

We first recalled the definition of the derivative for φ : R→ Rd:

φ′(x) = lim
h→0

φ(x+ h)− φ(x)

h

But we cannot divide by h if h ∈ Rd. We reinterpreted the definition saying that

φ′(x) exists if and only if:

lim
h→0

|φ(x+ h)− φ(x)− φ′(x)h|
|h| = 0

Reinterpreting this for φ : Rn → Rm we ask for a linear transformation Dφ(x) :

Rn → Rm such that:

lim
h→0

‖φ(x+ h)− φ(x)−Dφ(x) · h‖
‖h‖

This recalls the best linear approximation interpretation of the derivative. If we

write:

∆φ(h) = φ(x+ h)− φ(x)

r(h) = ∆φ(h)−Dφ(x) · h

Then we ask for ‖r(h)‖‖h‖ → 0 as h → 0. We write this as ‖r(h)‖ = o(‖h‖) That is

‖r(h)‖ � ‖h‖ as h→ 0.

Definition. Let E ⊆ Rn be open and let f : E → Rm. We say that f is differ-

entiable at x ∈ E provided that there is a linear transformation Df(x) : Rn → Rm

1



such that:

lim
‖h‖→0

‖f(x+ h)− f(x)−Df(x) · h‖
‖h‖ = 0 (∗∗)

We can of course think of Df(x) as an m×n matrix. If f is differentiable at every

x ∈ E we say that f is differentiable in E. In this case we have the total derivative:

Df : E → Hom(Rn,Rm)

Remark. We have some comments

• We need x to be an interior point of E so that x+ h ∈ E for small h, so that

f(x+ h) makes sense. When E is open this is automatic.

• The numerator in the difference quotient above is in Rm whereas the denom-

inator is in Rn.

• Defining r(h) = f(x+ h)− f(x)−Df(x) · h, we have that r(h) = o(h). That

is:

lim
h→0

‖r(h)‖
‖h‖ = 0

Note then that Df(x) · h = O(h), that is there is a constant C ∈ R so that

‖Df(x) · h‖ ≤ C‖h‖, but this is different than r(h) = o(h).

• This definition of derivative only makes sense if Df(x) is unique when it exists.

Proposition 1. Let E, f , and x ∈ E be as in the above definition. Suppose that

A1 and A2 are two linear transformations such that (∗∗) holds. Then A1 = A2

Proof. Let rj(h) = f(x+h)−f(x)−Ajh for j = 1, 2. Then we have that
‖rj(h)‖
‖h‖ → 0.

Let u ∈ Rn be arbitrary and nonzero and take h = tu for t > 0, then we can divide

by ‖tu‖ to get:

r1(tu)− r2(tu) = (A2 −A1)(tu) = t(A2 −A1)u

‖(A2 −A1)u

‖u‖ =
‖r1(tu)− r2(tu)‖

t‖u‖

≤ ‖r1(tu)‖
‖tu‖ +

‖r2(tu)‖
‖tu‖

2



Thus ‖(A2−A1)u‖
‖u‖ → 0 as t → 0. Therefore (A2 − A1)u = 0, so A1u = A2u. Note

that clearly A1 · 0 = A2 · 0. Taking these together we know A1 = A2.

Example. Let f(x) = a + Bx where a ∈ Rm and and B ∈ Hom(Rn,Rm) where

f : Rn → Rm. Then to compute Df(x) note that:

f(x+ h)− f(x) = Bh

f(x+ h)− f(x)−Bh = 0

Therefore we know clearly that:

lim
h→0

‖f(x+ h)− f(x)−Bh‖
‖h‖ = 0

Therefore Df(x) = B for any x ∈ Rn.

Remark. Of course, if f is differentiable at x, then it must be continuous there.

Why? Continuity is equivalent to ‖f(x+h)− f(x)‖ → 0 as h→ 0. Differentiability

is equivalent to ‖f(x) + f(x) − Df(x)h‖ = ‖r(h)‖ = o(‖h‖). In particular this

implies that:

‖f(x+ h)− f(x)‖ = ‖Df(x)h+ r(h)‖
4
≤ ‖Df(x)h‖+ ‖r(h)‖

But both of these go to 0 as h→ 0. Therefore:

lim
h→0
‖f(x+ h)− f(x)‖ = 0

Directional and Partial Derivatives, computing the deriva-

tive

Definition. Let A ⊆ Rn be open and let f : A → Rm. Suppose x ∈ A and u ∈ Rn

with u 6= 0. We define the directional derivative Duf(x) as the limit:

Duf(x) := lim
t→0

f(x+ tu)− f(x)

t
∈ Rm

Duf(x) := lim
t→0

f(x+ tu)− f(x)

t
∈ Rm

3



Note that this just means that:

Duf(x) =
d

dt

∣∣∣
t=0

f(x+ tu)

Example. Let f : R2 → R bed efined as sin(x1x2). Then let u = (1, 0):

Duf(x1, x2) =
d

dt

∣∣∣
t=0

sin((x1 + t)x2)

=
d

dt

∣∣∣
t=0

sin(x1x2 + tx2)

= (cos(x1x2 + tx2) · x2]t=0

= cos(x1x2) · x2

Theorem. Let A ⊆ Rn be open and f : A → Rm be differentiable at x ∈ A. THen

all directional derivatives Duf(x) exist at x0 and:

Duf(x) = Df(x) · u

In particular Duf(x) is linear in u.

Proof. From the definition of Df(x) we have for any u ∈ Rn \ {0}

lim
t→0

‖f(x+ tu)− f(x)−Df(x) · tu‖
‖tu‖ = 0

lim
t→0

‖f(x+ tu)− f(x)− t · (Df(x) · u)‖
‖tu‖ = 0

This implies that:

f(x+ tu)− f(x)− t ·Df(x) · u = r(tu)

Therefore ‖r(tu)‖‖tu‖ → 0 as t→ 0. Dividing by t we get that:

f(x+ tu)− f(x)

t
−Df(x)u =

r(tu)

t

Therefore:
∥∥∥∥
f(x+ tu)− f(x)

t
−Df(x)u

∥∥∥∥ =
‖r(tu)‖
‖t‖ = ‖u‖ · ‖r(tu)‖

‖tu‖ → 0

4



As t→ 0. Therefore:

lim
t→0

∥∥∥∥
f(x+ tu)− f(x)

t
−Df(x)u

∥∥∥∥ = 0

Duf(x) = lim
t→0

f(x+ tu)− f(x)

t
= Df(x) · u

Caution We will see next time that the converse is not true. Namely, the directional

derivatives might exist at x without f being differntiable at x. In that case Duf(x)

might not even be a linear function of u.

Partial Derivatives

Since Duf(x) = Df(x) · u, we can determine Df(x) by letting u range over the

standard basis vectors.

Definition. Let f : A ⊆ Rn → Rm where A is open. The j-th partial derivative of

f at x is defined as:

∂f

∂xj
(x) = Dejf(x) =

d

dt

∣∣∣
t=0

f(x+ tej)

Example. When m = 1 we know f : Rn → R then:

∂f

∂xj
(x1, . . . , xn) =

d

dt

∣∣∣
t=0

f(x1, . . . , xj + tj , . . . , xn)

=
d

ds

∣∣∣
s=xj

f(x1, . . . , xj−1, s, xj+1, . . . , xn)

= φ′(xj)

Where φ(s) = f(x1, . . . , xj−1, s, xj+1, . . . , xn). This just means that ∂f
∂xj

is computed

by pretending that x1, . . . , xj−1, xj+1, . . . , xn are constant and differentiating with

respect to xj .
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Recall. We defined directional derivatives for f : Rn → Rm for u ∈ Rn by:

Duf(x) = lim
t→0

f(x+ tu)− f(x)

t
=

d

dt

∣∣∣
t=0

f(x+ tu) ∈ Rm

We also defined partial derivatives ∂f
∂xi
∈ Rm for 1 ≤ i ≤ n by:

∂f

∂xi
= Deif(x)

Furthermore, if f is differentiable at x then Duf(x) exists for every u. Morevoer:

Duf(x) = Df(x) · u

The converse is not true in general!!! We will give today an example where Duf(x)

exists for every n but Df(x) does not

If n ≥ 1 and f : A ⊆ Rn → Rm then we can write f =

(
f1
...

fm

)
. Then for every

u ∈ Rn we have:

Duf(x) = lim
t→0

f(x+ tu)− f(x)

t
= lim

t→0




f1(x+tu)−f1(x)
t
...

fm(x+tu)−fm(x)
t




=




limt→0
f1(x+tu)−f(x)

t
...

limt→0
fm(x+tu)−f(x)

t


 =




Duf1(x)
...

Dufm(x)




1



That is, directional derivatives can be taken componentwise. In particular:

∂f

∂xi
=




∂f1
∂xi
...

∂fm
∂xi




Example. Let F : R2 → R3 be given by:

F (x, y) =



x2 + y2

xy

sin y




Then computing:

∂F

∂x
(x, y) =




∂
∂x(x2 + y2)

∂
∂x(xy)
∂
∂x sin y


 =




2x

y

0




∂F

∂y
(x, y) =




2y

x

cos y




If u = (1, 2). Then:

DuF (x, y) =
d

dt

∣∣∣
t=0




(x+ t)2 + (y + 2t)2

(x+ t)(y + 25)

sin(y + 2t


 =




2x+ 4y

y + 2x

2 cos(y)




DuF (x, y) = De1+2e2F (x, y) = De1F (x, y) + 2De2F (x, y)

=
∂F

∂x
(x, y) + 2

∂F

∂y
(x, y)

This suggests that F is differentiable at (x, y). But it’s not a proof.

Theorem. Let f : A ⊆ R→ Rm where A is open and suppose f =

(
f1
...
fm

)
. Then:

a) f is differentiable x ∈ A if and only if each of the components of f1, . . . , fn are

differentiable at x

b) If f is differentiable at x ∈ A, then Df(x) is the (m × n) matrix whose j-th

2



column is ∂f
∂xj

.

c) Equivalently, Df(x) is the (m× n) matrix whose i-th row is Dfi(x).

d) Equivalently Df(x) is the m× n matrix whose (i, j)-th entry is ∂fi
∂xj

(x).

Remark. In calculus for f : Rn → R, Df(x) =
(

∂f
∂x1

, . . . , ∂f
∂xn

)
, is often denoted

∇f(x), the gradient of f at x. Sometimes it is important to distinguish between

Df(x) which is a (1 × n) matrix and ∇f(x) which is an (n × 1) matrix, that is a

vector.

Proof. f is differentiable at x if and only if there exists an (m × n) matrix A such

that:

‖f(x+ h)− f(x)−Ah‖
‖h‖ → 0

as ‖h‖ → 0. This holds if and only if each coordinate:

‖fi(x+ h)− fi(x)−Ai · h‖
‖h‖ → 0

As ‖h‖ → 0, where Ai is the i-th row of A. Since the i-th coordinate of Ah is Aih.

But this is equivalent to saying that fi is differentiable at x, and Dfi(x) is equal to

the i-th row of Df(x).

The above implies parts a) and c). To obtain part b) and c) note that if f is

differentiable at x then:

Duf(x) = Df(x) · u

Taking u = ej for 1 ≤ j ≤ n. we get:

∂f

∂xj
(x) = Df(x) · ej

But this is exactly the j-th column of Df(x). Therefore:

Df(x) =




∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn




3



Example. Let F : R2 → R3 to be as before:

F (x, y) =



x2 + y2

xy

sin y




Then if the derivative exists we know:

Df(x, y) =



∇(x2 + y)

∇(xy)

∇(sin y)


 =




2x 2y

y x

0 cos y




Great

Remark. Partial derivatives and even directional derivatives of a function can exist

at x even if each fn is not differentiable at x. Take f : R2 → R:

f(x, y) =

{
x2y

x4+y2
if (x, y) 6= 0

0 if (x, y) = 0

For u ∈ R2 \ {0} let us compute Duf(0). Take u = (u1, u2). Then:

Duf(0) = lim
t→0

f(0 + tu)− f(0)

t
= lim

t→0

t3u21u2
t5u41 + t3u22

= lim
t→0

u21u2
t2u41 + u22

=

{
0 if u2 = 0
u2
1

u2
if u2 6= 0

In particular all the directional derivatives exist at (x, y) = 0. However, f is not

differentiable at 0. There are different ways to see this

• Note that Duf(0) is not linear in u!!! This is bad, since we showed that

Duf(0) = Df(0) · u provided that f is differentiable, and Df(0) is a linear

transformation. Thus f is not differentiable.

• Note that f is not even continuous at 0. If we approach (0, 0) along the

parabola y = x2 we get that:

f(x, x2) =
x4

x4 + x4
=

1

2
→ 0

4



As x→ 0, but f(0, 0) = 0.

The matrix whose entries are ∂fi
∂xj

is called the Jacobian matrix. What we have

learned up until now is:

• If f is differentiable at x then Df(x) is equal to the Jacobian matrix at x.

• But the Jacobian matrix can exist without the derivative existing

Continuously differentiable functions

At this point he only criterion of differentiability at x that we can use is to go back

to the definition. However, given how easy it is to compute partial derivative, it

would be useful to have a criterion of differentiability based on partial derivatives.

Theorem. Let f : A ⊆ Rn → Rm where A is open. Suppose that all partial

derivatives exist ∂f
∂xj

: U → Rm exist in some neighborhood U of x ∈ A and they are

all continuous at x. Then f is differentiable at x.

In particular if all partial derivatives exist and are continuous through A, then

f is differentiable in A. We call such an f a continuously differentiable, or C1,

function. This implies that Df : Rn → Hom(Rn,Rm) is continuous as well (since

each of its component functions are continuous).

Proof. Next time!
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Handout 4

• Wish list for a measure function It would be grand to have a
measure function that tells us how big or small a subset of Rd is.
This would be a function from the set of subsets of Rd into [0,∞],
say m : P(Rd)→ [0,∞]. We would like this function to satisfy the
following properties:

a) If E1, E2, . . . is a countable collection of disjoint subsets of R,
then

m(∪∞n=1En) =
∞∑

n=1

m(En).

This is called Countable Additivity.

b) If E is congruent to F (i.e. F can be obtained from E by
applying rigid motions: translations, rotations, or a reflections)
then we should have that m(E) = m(F ).

c) m([0, 1)d) = 1.

The bad news is that no such function can exist, and here’s why (at
least when d = 1). Let us define an equivalence relation between
elements of [0, 1) as follows: We say x ∼ y if x − y is a rational
number. Let N be the subset of [0, 1) that contains exactly one
element of each equivalence relation (the existence of this N re-
quires invoking the axiom of choice). Now let R = [0, 1) ∩Q, and
for each r ∈ R define the set

Nr = {x+ r : x ∈ N ∩ [0, 1− r)} ∪ {x+ r− 1 : x ∈ N ∩ [1− r, 1)}.
(Basically Nr is just the translate of N by r units to the right,
except that we move the part that sticks out of the interval [0, 1)
one unit to the left).

1



Figure 1: Banach-Tarski tells us that we can split the unit ball in R3 into finitely many
(actually 5 is sufficient) many disjoint pieces, apply rigid motions to those pieces and then
reassemble them to obtain two copies of the unit ball.

Q1) Show that [0, 1) is the disjoint union of Nr for r ∈ R.

Q2) Show that if a measure function satisfying a), b) and c) above
exists, then m(N) = m(Nr) for every r ∈ R.

Q3) Arrive at a contradiction.

Remark: One might think that possibly relaxing condition a) to cover
only finitely many disjoint sets En, i.e.

m(∪Nn=1En) =
N∑

n=1

m(En). (Finite Additivity)

would resolve the contradiction. Unfortunately, the Banach-Tarski
paradox (cf. Figure 1) tells us that this is not enough to resolve this
issue.
Conclusion: The problem with the above wishlist is that we insisted
on being able to measure every subset of Rd. We have shown that this
is impossible. The solution is to be content with a measure function
that is defined on some but not all subsets. Such subsets will be called
measurable subsets.

The Greek method

• Elementary measure. An interval I is a subset of R of the
form [a, b], [a, b), (a, b], or(a, b) where a, b ∈ R. The length of I is
defined to be |I| := b − a. A box in Rd is a Cartesian product
of intervals B = I1 × I2 × . . . Id and its volume is defined to be
|B| = |I1|. . . . .|Id|. An elementary set is any subset of Rd which is
the union of a finite number of boxes.

2



Q4) Show that if E,F ⊂ Rd are elementary sets, then the union
E∪F , the intersection E∩F , the set theoretic difference E\F ,
and the symmetric difference E∆F = (E \ F ) ∪ (F \ E) are
also elementary. Also, if x ∈ Rd, then the translate E + x :=
{y + x : y ∈ E} is also elementary.

Q5) Show that E can be expressed as the finite union of disjoint
boxes. Hint: Start with d = 1. Then use this result to general-
ize it to higher dimensions.

• Definition. Let E be an elementary set. The above question
allows to write E = B1∪B2∪ . . . Bn where B1, . . . , Bn are disjoint.
We define the elementary measure of E as m(E) := |B1| + |B2| +
. . . + |Bn|.

Q6) Show that m(E) is well-defined in the sense that if E can be
expressed in two ways as a union of disjoint boxes B1, . . . Bn

and B′1, . . . B
′
m, then

|B1|+ |B2|+ . . . + |Bn| = |B′1|+ |B′2|+ . . . + |B′m|.
Hint: There’s more than one approach you can take. One is to
notice that for an interval I in R, there holds that

|I| = lim
N→∞

1

N
#

(
I ∩ 1

N
Z
)
.

(why?). And more generally for a box B,

|B| = lim
N→∞

1

Nd
#

(
B ∩ 1

N
Zd

)
.

Here 1
NZd = { k

N : k ∈ Zd}. Use this to give an alternative
definition of m(E) for an elementary set that does rely on its
decomposition into disjoint boxes .
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The wish list:

a) Say that E1, E2, E3, . . . are disjoint subsets of Rd, then:

m

( ∞⋃

n=1

En

)
=

∞∑

n=1

m(En)

This is Countable Additivity

b) If E is congruent to F via translations, rotations, and combinations of these. We

want to have m(E) = m(F ).

c) We want m
(
[0, 1)d

)
= m

(
[0, 1]d

)
= 1.

We know from last week and Q1-Q3 that there cannot be an m : P (Rd) → [0,∞]

that satisfies a), b), and c). We construct the set N ⊆ [0, 1) containing exactly one

element of each equivalence class for x ∼ y defined by x− y ∈ Q. We define Nr as

“essentially translates” of N by r ∈ Q ∩ [0, 1). Then in fact:

[0, 1) =
∐

r∈Q∩[0,1)
Nr

And this union is disjoint. Furthermore m(Nr) = N for each r because of congru-

ence, so:

1 = m([0, 1)) =
∑

r∈Q∩[0,1)
m(Nr) =

∞∑

n=1

m(N)

And whatever we choose for the measure of N , this produces a contradiction.

Proof of Q4. Let’s go!
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• First note that if E =
⋃n

i=1Ai and F =
⋃m

k=1Bk for some boxes Ai and Bk,

then set Ci = Ai if 1 ≤ i ≤ n and Ci = Bi−n if n < i ≤ m+ n:

E ∪ F =
n⋃

i=1

Ai ∪
m⋃

k=1

Bk =
m+n⋃

i=1

Ci

And so we have that E ∪ F is an elementary set as desired.

• We wish to show that E ∩ F is an elementary set for elementary sets E and

F , TODO

• We wish to show that E \ F is an elementary set for elementary sets E and

F , TODO

• Note now that for elementary sets E and F we know:

E4F = (E \ F ) ∪ (F \ E)

And so by the previous bullets E \ F and F \ E are elementary, and so their

union E4F is elementary

• We wish to show that the translate E + x is elementary for an elementary E.

TODO

With this we win!

Proof of Q5. induct TODO

Proof of Q6. TODO
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Continuously Differentiable Functions

We saw that if f : A ⊆ Rn → Rm is differentiable at x then Df(x) is given by the

partial derivatives as:

Df(x) =




∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fm
∂x1

· · · ∂fm
∂xn




The converse statement that if the partial derivatives ∂fi
∂xj

exist for each 1 ≤ i ≤ m

and 1 ≤ j ≤ n then Df exists is FALSE. However we have a slightly stronger

condition that works!

Theorem. Let f : A ⊆ Rn → Rm where A is open. Suppose that all partial

derivatives ∂fi
∂xj

(1 ≤ i ≤ m, 1 ≤ j ≤ n) exist in some neighborhood of x ∈ A, and

they are continuous at x.

Then f is differentiable at x. In particular if all partial derivatives exist and are

continuous throughout A then f is differentiable in A. Such a function is called a

C1 function.

Remark. This theorem allows us to recognize “most” differentiable functions that

we meet in practice just by checking that the partials are continuous.

Proof. Since f is differentiable at x if and only if each of its component functions

are differentiable at x, we may assume without loss of generality that m = 1.

Let r > 0 be such that B(x, r) ⊆ A and the partials are defined and continuous

1



on B(x, r). Then let h ∈ Rn such that ‖h‖ < r. Let h = (h1, . . . , hn). Set:

p0 := x

pk := pk−1 + hkek

And so pn = x+ h. So then we have:

f(x+ h)− f(x) =
n∑

j=1

f(pj)− f(pj−1)

Now we know that:

f(pj)− f(pj−1) = f(pj−1 + hjej)− f(pj)

Define φj(s) := f(pj−1 + sej) where φ is defined on some neighborhood of 0 in R.

Since φj is differentiable on an open interval containing [0, hj ] with derivative ∂f
∂xj

,

we know that φj is continuous on [0, hj ] and differentiable on (0, hj). Therefore by

the mean value theorem we know that for some chj ∈ (0, hj) that:

φj(hj)− φ(0) = hj · φ′(chj )

f(pj)− f(pj−1) = hj ·
∂f

∂xj
(pj−1 + chj ej)

= hj ·
∂f

∂xj
(qj)

Where qj is some point in B(x, ‖h‖). Therefore:

f(x+ h)− f(x) =

n∑

i=1

hj ·
∂f

∂xj
(qj)

For some q1, . . . , qn in the ball of radius ‖h‖ centered at x. Therefore:

f(x+ h)− f(x)−
n∑

i=1

hj ·
∂f

∂xj
(x) =

n∑

j=1

hj ·
[
∂f

∂xj
(qj)−

∂f

∂xj
(x)

]

2



This implies that:

∥∥∥f(x+ h)− f(x)−∑n
i=1 hj · ∂f∂xj (x)

∥∥∥
‖h‖ =

∥∥∥
∑n

j=1 hj ·
[
∂f
∂xj

(qj)− ∂f
∂xj

(x)
]∥∥∥

‖h‖
4
≤

n∑

j=1

‖hj‖
‖h‖ ·

∥∥∥∥
∂f

∂xj
(qj)−

∂f

∂xj
(x)

∥∥∥∥

≤
n∑

j=1

∥∥∥∥
∂f

∂xj
(qj)−

∂f

∂xj
(x)

∥∥∥∥

≤ n · sup
q∈B(x,‖h‖)

1≤j≤n

∥∥∥∥
∂f

∂xj
(q)− ∂f

∂xj
(x)

∥∥∥∥

But this goes to 0 as ‖h‖ → 0 since ∂f
∂xj

are assumed to be continuous at x. Note

then that we win! The function:

T (h) =
n∑

i=1

hj ·
∂f

∂xj
(x)

is a linear function, and so f is differentiable at x, and of course Df is just the

vector
(
∂f
∂x1

, . . . , ∂f∂xn

)
(x). Amazing!!!

Higher Order Derivatives

Let f : A ⊆ Rn → Rm where A is open. The component functions are fi : A ⊆
Rn → R. Since ∂fi

∂xj
is itself a function from A→ R we can take higher order partial

derivatives. For instance, if fi ∈ C1 then ∂fi
∂xj

is defined and continuous, so we can

consider if the following exists:

∂2fi
∂xk∂xj

:=
∂

∂xk

∂fi
∂xj

This is called a second-order partial derivative. Similarly one can define partial

derivatives of higher order inductively.

Definition. A function f : A ⊆ Rn → Rm is of class Cr for r ∈ N0 provided that

all the partial derivatives of its component functions up to order r exist and are

continuous.

We say that f is C∞ provided that f ∈ Cr for all r ∈ N0.

3



Exercise. Show that f ∈ Cr if and only if ∂f
∂xj
∈ Cr−1 for each 1 ≤ j ≤ n.

Multi-Index Notation

Definition. A multi-index is an n-tuple α = (α1, . . . , αn) such that each αi ∈ N0.

If α is a multi-index then we define:

• The order of α as |α| := α1 + · · ·αn. And the

• The factorial α! := α1!α2! · · ·αn!

• For x ∈ Rn we define xα = xα1
1 xα2

2 · · ·xαn
n .

• For fi : Rn → R we define ∂αf := ∂α1
x1 · · · ∂αn

xn f .

Example. For f : R2 → R we see:

∂(1,2)f =
∂3f

∂x1∂x22

But wait, then what about ∂2f
∂x2∂x1

? Does it have a multi-index notation?

Theorem. Let A ⊆ Rn be open and let f : A→ R be a function of class C2. Then

for each x ∈ A we have:

∂2

∂xk∂xj
(x) =

∂2f

∂xj∂xk
(x)

Corrolary. If f : A→ R is of class Cr then for any 2 ≤ m ≤ r then:

∂mf

∂xj1 · · · ∂xjm
=

∂mf

∂xj̃1 · · · ∂xj̃m

for any permutation j̃1, . . . , j̃m of j1, . . . , jm. In particular we can always rearrange

j1, . . . , jm such that j̃1 ≤ · · · ≤ j̃m and in that case there is a multi-index notation:

∂mf

∂xj1 · · · ∂xjm
=

∂mf

∂xj̃1 · · · ∂xj̃m
= ∂αf

For some multi-index α. Therefore any partial derivative up to order r can be written

in multi-index notation as ∂αf for some multi-index with order less than or equal

to r.

4



Exercise. Deduce the corollary from the theorem using induction.

Proof of Theorem. We start with some reductions. Since one computes ∂f
∂xi∂xj

and
∂f

∂xj∂xi
by keeping all other coordinates xk for k 6= i, j constant, we can assume

without loss of generality that n = 2, and that f : A ⊆ R2 → R.

5
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Continue proving the equality of mixed partials

Theorem. If f ∈ C2(A) where A ⊆ Rd then for each x0 ∈ A we have:

∂2f

∂xk∂xj
(x0) =

∂2f

∂xj∂xk
(x0)

Corrolary. Equality of mixed partials of order r when f ∈ Cr(A).

Proof. We began by reducing to the case where d = 2, since in general all variables

different from k, j are frozen when taking these partial derivatives. Thus assume

f : A ⊆ R2 → R is C2. Instead of referring to x1, x2 we’ll refer to x, y.

Now lets consider our intuition. We know that ∂f
∂x measures ∆xf

h = f(x0+h,y)−f(x0,y)
h .

And then:

∂2f

∂y∂x
≈ ∆y∆xf

hk
=

∆xf(x, y + h)−∆xf(x, y)

hk

=
1

hk
[f(x+ h, y + k)− f(x, y + k)− f(x+ h, y) + f(x, y)]

Similarly:

∂f

∂y
≈ ∆yf

k
=
f(x, y + k)− f(x, y)

k

∂2f

∂x∂y
≈ ∆x∆yf

hk
=

∆yf(x+ k, y)−∆yf(x, y)

hk

=
1

hk
[f(x+ h, y + k)− f(x+ h, y)− f(x, y + k) + f(x, y)]

Notice that ∆y∆xf = ∆x∆yf . Thus the equality of this discrete version of the

partials that we expect the partials to be the same.

1



Now for the real proof. Let (x0, y0) ∈ A and Q be the rectangle with vertices

(x0, y0), (x0 + h, y0), (x0, y0 + k), (x0 + h, y + k). Since A is open, we can take h

and k to be small enough so that Q ⊆ A. Now let:

G(h, k) = f(x0 + h, y0 + k)− f(x0 + k, y0)− f(x0, y0 + k) + f(x0, y0)

We will show that:

G(h, k) = hk
∂2f

∂x∂y
(p) = hk

∂2f

∂y∂x
(q)

For some p, q ∈ Q. To show the first equality. Let us use G(h, k) = ∆y∆xf and

let φ(y) = f(x0 + h, y) − f(x0, y) for y between y0 and y0 + k. We know that φ

is continuous on [y0, y0 + k] since f itself is. Also φ is differentiable on (y0, y0 + k)

since f is C1. Therefore by the Mean Value Theorem there exists a y? between y0

and y0 + k so that:

φ(y0 + k)− φ(y0) = φ′(y?)k

Notice then that:

G(h, k) = φ(y0 + k)− φ(y0)

φ′(y) =
∂f

∂y
(x0 + h, y)− ∂f

∂y
(x0, y)

G(h, k) = k

[
∂f

∂y
(x0 + h, y?)−

∂f

∂y
(x0, y?)

]

Now we know that ∂f
∂y (x, y?) is continuous on the closed interval between x0 and

x0 + h and differentiable on the open interval. By the MVT there is a x? between

x0 and x0 + h so that:

G(h, k) = kh
∂2f

∂x∂y
(x?, y?) = k

[
∂f

∂y
(x0 + h, y?)−

∂f

∂y
(x0, y?)

]

Note that (x?, y?) ∈ Q so we have the first equality. To show the other equality, we

argue similarly using the fact that G(h, k) = ∆x∆yf . More precisely instead of φ

above we introduce:

ψ(x) = f(x, y0 + k)− f(x, y0)

2



By MVT we can get a x♥ such that:

G(h, k) = ψ(x0 + h)− ψ(x0) = hψ′(x♥)

G(h, k) = h

[
∂f

∂x
(x♥, y0 + k)− ∂f

∂x
(x♥, y0)

]

By applying the mean value theorem again we get y♥ between y0 and y0 +k we get:

G(h, k) = hk
∂2f

∂y∂x
(x♥, y♥)

This is exactly the same moves as in the proof for x. Then:

G(h, k)

hk
=

∂2f

∂x∂y
(x?, y?) =

∂2

∂y∂x
(x♥, y♥)

By letting h, k → 0 both (x?, y?) = p → (x0, y0) and (x♥, y♥) = q → (x0, y0). By

continuity of ∂2f
∂x∂y and ∂2f

∂y∂x at (x0, y0) we obtain the desired equality that:

∂2f

∂x∂y
(x0, y0) =

∂2f

∂y∂x
(x0, y0)

3



The Chain Rule and Taylor’s Formula in Higher Dimen-

sions

Recall. For f : A ⊆ R → R and g : B ⊆ R → R such that f(A) ⊆ B we have

g ◦ f : A ⊆ R→ R. We have:

d

dx
[g ◦ f ](x) = g′(f(x)) · f ′(x)

provided that f ′(x) and g′(f(x)).

Theorem (Chain Rule). Let A ⊆ Rn and B ⊆ Rm and suppose that f : A ⊆ Rm

and g : B ⊆ Rk. with f(A) ⊆ B. Suppose that x0 is an interior point of A and

y0 = f(x0) is an interior point of B. Furthermore suppose that f is differentiable

at x0 and g is differentiable at y0. Then g ◦ f is differentiable at x0 and:

D[g ◦ f ](x0) = Dg(y0) ◦Df(x0) = Dg(f(x0)) ·Df(x0)

Proof. Since y0 is an interior point of B there exists a ε > 0 such that B(y0, ε) ⊆ B.

Since f is continuous at x0 there exists a δ > 0 so that f(B(x0, δ)) ⊆ B(y0, ε). So

we can define g ◦ f : B(x0, δ → Rk. Let ‖h‖ < δ for h ∈ Rn and define:

Rf (h) =
f(x0 + h)− f(x0)−Df(x0) · h

‖h‖ (h 6= 0)

Rf (h) = 0 (h = 0)

By differentiability of f at x0 we have Rf (h)→ 0 as ‖h‖ → 0. Similarly if ‖k‖ < ε

and k ∈ Rm we define:

Rg(k) =
g(y0 + k)− g(y0)−Dg(y0) · k

‖k‖ (k 6= 0)

Rg(k) = 0 (k = 0)

By differentiability we know that Rg(k) → 0 as ‖k‖ → 0. To show that g ◦ f is

differentiable at x0 we must show that there exists an A ∈ Hom(Rn,Rk) such that:

Rg◦f (h) =
[g ◦ f ](x0 + h)− [g ◦ f ](x0)−Ah

‖h‖ → 0 as ‖h‖ → 0

4



Rewrite as the following:

[g ◦ f ](x0 + h)− [g ◦ f ](x0) = g(f(x0 + h))− g(f(x0))

= g(f(x0) + f(x0 + h)− f(x0))− g(f(x0))

= g(y0 + k)− g(y0)

Where we call k = f(x0 + h)− f(x0). From Rg(k) we know that for any k ∈ Rm:

g(y0 + k)− g(y0) = Dg(y0) · k + ‖k‖Rg(k)

Furthermore k = f(x0 + h)− f(x0) = Df(x0) + ‖h‖Rf (h). Therefore:

g(y0 + k)− g(y0) = Dg(y0)[Df(x0)h+ ‖h‖Rf (h)] + ‖k‖Rg(k)

= Dg(y0)Df(x0) · h+ ‖h‖Dg(y0)Rf (h) + ‖k‖Rg(k)

Set A = Dg(y0) ·Df(x0) This gives that for h 6= 0 that:

Rg◦f (h) =
[g ◦ f ](x0 + h)− [g ◦ f ](x0)−Ah

‖h‖

= Dg(y0)Rf (h) +
‖k‖
‖h‖Rg(k)

We know that Rf (h) → 0 as ‖h‖ → 0. It remains to show that ‖k‖‖h‖Rg(k) → 0 as

‖h‖ → 0. We know that:

‖k‖ = ‖Df(x0) · h+ ‖h‖Rf (h)‖
≤ ‖Df(x0) · h‖+ ‖h‖‖Rf (h)‖
≤ C‖h‖+ ‖h‖ ≤ (C + 1)‖h‖

This follows since ‖Rf (h)‖ ≤ 1 if ‖h‖ is small enough. Also we kow since Df(x0) is

linear we know ‖Df(x0) · h‖ ≤ C‖h‖ for some constant C by 296 / linear algebra.

Therefore:
∥∥∥∥
‖k‖
‖h‖Rg(k)

∥∥∥∥ ≤ (C + 1)
‖h‖
‖h‖‖Rg(k)‖ ≤ (C + 1)‖Rg(k)‖

Therefore as ‖h‖ → 0 we know that ‖k‖ → 0 since ‖k‖ ≤ (C + 1)‖h‖ and hence

Rg(k)→ 0. Therefore ‖k‖‖h‖Rg(k)→ 0 as h→ 0 and so this finishes the proof.
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Taylor’s Theorem in several variables

Recall the multi-index notation from last time.

Lemma (The multinomial lemma). For any ~x = (x1, . . . , xn) ∈ Rn and any positive

integer k we have:

(x1 + x2 + · · ·+ xn)k =
∑

|α|=k

k!

α!
xα

6
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The Elementary measure (Continued)

• Recall from last time that an interval I is a subset of R of the
form [a, b], [a, b), (a, b], or(a, b) where a, b ∈ R. The length of I is
defined to be |I| := b − a. A box in Rd is a Cartesian product
of intervals B = I1 × I2 × . . . Id and its volume is defined to be
|B| = |I1|. . . . .|Id|. An elementary set is any subset of Rd which is
the union of a finite number of boxes.

• Definition. Let E be an elementary set. Last time we saw that
we can write E = B1 ∪ B2 ∪ . . . Bn where B1, . . . , Bn are disjoint.
We define the elementary measure of E as m(E) := |B1| + |B2| +
. . . + |Bn|.

Q1) Show that m(E) is well-defined in the sense that if E can be
expressed in two ways as a union of disjoint boxes B1, . . . Bn

and B′1, . . . B
′
m, then

|B1|+ |B2|+ . . . + |Bn| = |B′1|+ |B′2|+ . . . + |B′m|.
Hint: There’s more than one approach you can take. One is to
notice that for an interval I in R, there holds that

|I| = lim
N→∞

1

N
#

(
I ∩ 1

N
Z
)
.

(why?). And more generally for a box B,

|B| = lim
N→∞

1

Nd
#

(
B ∩ 1

N
Zd

)
.

1



Here 1
NZd = { k

N : k ∈ Zd}. Use this to give an alternative
definition of m(E) for an elementary set that does rely on its
decomposition into disjoint boxes.

• Properties of Elementary measure. Show that the following
holds

Q2) Show that if E1, . . . , En are disjoint elementary sets, then

m(E1 ∪ . . . ∪ En) =
n∑

i=1

m(Ei)

Recall that this is called finite additivity.

Q3) Show that if E ⊂ F are two elementary sets, then

m(E) ≤ m(F ).

This property is called monotonicity.

Q4) Show that if E1, E2, . . . , En is an arbitrary finite collection of
elementary sets, then

m(E1 ∪ . . . En) ≤ m(E1) + . . . + m(En).

This is called finite subadditivity.

• Why is this unsatisfactory? Of course, the main problem with
this measure is that we can only measure relatively simple sets
(namely the elementary sets). For example, we cannot measure the
area of a disc. One might be tempted to generalize this measure
naively as follows: For an arbitrary set E ⊂ Rd, define

mpixel(E) = lim
N→∞

1

Nd
#

(
E ∩ 1

N
Zd

)
.

However, this is not a particurlary satisfactory definition for (at
least) the following two reasons:

Q5) Find a subset E of R for which this limit does not exist.

Q6) Find a subset E of R such that both mpixel(E) and mpixel(E+x)
exist, but mpixel(E) 6= mpixel(E + x) for some x ∈ R.

2
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Proof of Q1.

Lemma. For any interval I in R we have that:

|I| = lim
N→∞

1

N
·#
(
I ∩ 1

N
Z
)

Proof. Consider that the following sets are in bijection:

f : I ∩ 1

N
Z→ NI ∩ Z

x 7→ N · I

This maps its domain into the codomain by definition, since N · I = {N ·
x | x ∈ I} and 1

NZ =
{

1
N ·m | m ∈ Z

}
. We also know since N > 0 that this

is an injection from linear algebra. We also know surjectivity as well by quick

definition from the sets. Now say I has endpoints a ≤ b, then NI has endpoints

aN and bN .

Now note that the cardinality #(NI ∩ Z) is between bN − aN − 5 and

bN − aN + 5. So then note that:

bN − aN − 5 ≤ #(NI ∩ Z) ≤ bN − aN + 5

b− a− 5

N
≤ 1

N
#

(
I ∩ 1

N
Z
)
≤ b− a+

5

N

b− a ≤ lim
N→∞

1

N
#

(
I ∩ 1

N
Z
)
≤ b− a

By squeeze theorem! We win! This limit is equal to |I| = b− a.
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Lemma. For any box B ⊆ Rd, we have:

|B| = lim
N→∞

1

Nd
#

(
B ∩ 1

N
Zd

)

Proof. First write B =
∏d

k=1 Ik for intervals Ik and note that:

B ∩ 1

N
Zd =

(
d∏

k=1

Ik

)
∩

d∏

k=1

1

N
· Z =

d∏

k=1

(
Ik ∩

1

N
· Z
)

#

(
B ∩ 1

N
Zd

)
= #

(
d∏

k=1

(
Ik ∩

1

N
· Z
))

=

d∏

k=1

#

(
Ik ∩

1

N
· Z
)

So now we write that:

lim
N→∞

1

Nd
#

(
B ∩ 1

N
Zd

)
= lim

N→∞
1

Nd

d∏

k=1

#

(
Ik ∩

1

N
· Z
)

=
d∏

k=1

lim
N→∞

1

N
#

(
Ik

1

N
Z
)

=

d∏

k=1

|Ik| = |B|

And therefore the lemma is proved!

We prove one final lemma, and then the result will fall out!

Lemma. Suppose that we have two disjoint sets X,Y ⊆ Rd and the limits:

lim
N→∞

1

Nd
#

(
X ∩ 1

N
Zd

)
lim

N→∞
1

Nd
#

(
Y ∩ 1

N
Zd

)

both exist, then:

lim
N→∞

1

Nd
#

(
(X ∪ Y ) ∩ 1

N
Zd

)
= lim

N→∞
1

Nd
#

(
X ∩ 1

N
Zd

)
+ lim

N→∞
1

Nd
#

(
Y ∩ 1

N
Zd

)

4



Proof. This is fairly simple to prove. Note that:

(X ∪ Y ) ∩ 1

N
Zd =

(
X ∩ 1

N
Zd

)
∪
(
Y ∩ 1

N
Zd

)

And since these are disjoint:

#

(
(X ∪ Y ) ∩ 1

N
Zd

)
= #

((
X ∩ 1

N
Zd

)
∪
(
Y ∩ 1

N
Zd

))

= #

(
X ∩ 1

N
Zd

)
+ #

(
Y ∩ 1

N
Zd

)

We then know that we can take the limit as N → ∞ on either side by real

analysis and we must get the same limit as desired in the lemma

Now fix an elementary set E ⊆ Rd and let it be the union of disjoint boxes

B1, . . . , Bn. By applying the lemmas multiple times:

m(E) =
n∑

k=1

|Bk| =
n∑

k=1

lim
N→∞

1

Nd
#

(
Bk ∩

1

N
Zd

)

= lim
N→∞

1

Nd
#

((
n⋃

k=1

Bk

)
∩ 1

N
Zd

)

= lim
N→∞

1

Nd

(
E ∩ 1

N
Zd

)

Now note that the limit does not depend on the choice of disjoint boxes B1, . . . , Bn,

so if we choose another choice of disjoint boxes B′
1, . . . , B

′
m that union to E then we

know:

n∑

k=1

|Bk| = lim
N→∞

1

Nd

(
E ∩ 1

N
Zd

)
=

m∑

k=1

∣∣B′
k

∣∣

And so the measure of E is well-defined.
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Taylor’s Theorem on Rd

Lemma (The multinomial lemma). Let x = (x1, . . . , xn). We would like to look at:

(x1 + · · ·+ xn)k =
∑

|α|=k

k!

α!
xα

With:

|α| = α1 + · · ·αn
α! = α1! · · ·αn!

xα = xα1
1 · · ·xαn

n

This generalizes the binomial theorem.

Proof. The proof proceeds by induction on n. The binomial theorem gives the case

n = 2. Suppose that the multinomial theorem holds up to n− 1. We want to show

it holds for n, where n ≥ 3. So then we write:

(x1 + x2 + · · ·+ xn)k = (x1 + (x2 + · · ·+ xn))k =
∑

a+b=k

k!

a!b!
xa1(x2 + · · ·+ xn)b

=
∑

a+b=k

k!

a!b!
xa1
∑

|β|=b

b!

β!
(x2, . . . , xn)β

=
∑

a+b=k

∑

|β|=b
β∈Nn−1

0

k!

a!β!
xa1x

β1
2 · · ·xβn−1

n

Now set α = (a, β). Then:

(x1 + x2 + · · ·+ xn)k =
∑

a+b=k

∑

|β|=b
β∈Nn−1

0

k!

a!β!
xa1x

β1
2 · · ·xβn−1

n

=
∑

|α|=k
α∈Nn

0

k!

α!
xα

Therefore the result follows by induction. Great!!!

1



Lemma (Higher order product rule). For any α ∈ Nn0 and f, g : Rn → C we have:

∂α(fg) =
∑

β+γ=α
β,γ∈Nn

0

α!

β!γ!
∂βf∂γg

Whenever f and g are differentiable up to order |α|. This generalizes Leibniz Rule.

Recall. We take as notation:

∂aj f = ∂axjf =
∂af

∂xaj

For convenience

Proof. Again the proof is by induction on n. For n = 1, let α = k ∈ N0, we want to

show that:

∂k(fg) =
∑

p+q=k

k!

p!q!
∂pf∂qg =

k∑

p=0

k!

p!(k − p)!∂
pf∂k−pg

This is part of your homework. Press F to pay respects. THerefore the result is true

when n = 1. Now assume the result is true for n− 1, we will show it holds for n.

Take f, g : Rn → C and take α ∈ Nn0 . Write α = (a, θ) where a ∈ N0, θ ∈ Nn−10 ,

and x = (x1, x
′) where x1 ∈ R and x′ ∈ Rn−1. Then:

∂αx (fg) = ∂ax1∂
θ
x′(fg) = ∂αx1




∑

µ+ν=θ

µ,ν∈Nn−1
0

θ!

µ!ν!
∂µx′f∂

ν
x′g




=
∑

µ+ν=θ

µ,ν∈Nn−1
0

θ!

µ!ν!
∂αx1
[
∂µx′f∂

ν
x′g
]

=
∑

µ+ν=θ

µ,ν∈Nn−1
0

θ!

µ!ν!

∑

m+k=a

a!

m!k!
∂mx1∂

µ
x′f∂

k
x1∂

ν
x′

2



So then we may write:

∂αx (fg) =
∑

µ+ν=θ

µ,ν∈Nn−1
0

∑

m+k=a

a!θ!

(µ!m!)(ν!k!)
∂mx1∂

µ
x′f∂

k
x1∂

ν
x′

=
∑

β+γ=α

α!

β!γ!
∂βf∂γg

The result now follows by induction. Great! Here we take:

Recall . We recall Taylor’s Theorem for single-variable functions. Suppose f :

[a, b]→ R is Ck([a, b]) and ∂kf : (a, b)→ R is differentiable. Then for any a ≤ x ≤ b
then:

f(x) = Ra,k(x) +
k∑

j=0

(x− a)j · f (j)(a)

j!

Ra,k(x) =
(x− a)k+1

(k + 1)!
f (k+1)(c)

For some a ≤ c ≤ x.

We will study the generalization of this theorem for functions f : Rn → Rm.

Recall. If f = (f1, . . . , fm) and α is a multi-index then:

∂αf =



∂αf1

· · ·
∂αfm




Thus we only need to consider the case m = 1

Definition. We call a subset G ⊆ Rn convex provided that for every x, y ∈ G and

every t ∈ [0, 1] we have tx+ (1− t)y ∈ G.

The Plan: We would like to derive the Taylor Expansion of f at some point a of

its domain (which should be open and convex). At order k this should give us a

polynomial in x1, . . . , xn of degree ≤ k that approximates the function near a.

3



The General Statement and Proof

Theorem (Taylor’s Theorem). Let G ⊆ Rn be an open convex set. Suppose that

f : G→ C is of class Ck+1. If a ∈ G, then for any x ∈ G we have:

f(x) = Ra,k(x) +
∑

|α|≤k
α∈Nn

0

1

α!
(x− a)α∂αf(a)

where we have:

Ra,k(x) =
∑

|α|=k+1
α∈Nn

0

1

α!
(x− a)α∂αf(c)

For some c ∈ G on the line segment connecting a and x, that is c = ta + (1 − t)x
for some t ∈ [0, 1].

Recall. Recall the following formula

Duf(x+ tu) =
d

ds

∣∣∣
s=0

f(x+ tu+ su) =
d

ds

∣∣∣
s=0

f(x+ (t+ s)u) =
d

dr

∣∣∣
r=t
f(x+ ru)

Duf(x+ tu) =
d

dt
f(x+ tu)

Which is nice

Proof. To avoid confusion, let us denote x by x0. We will deduce this result from

the single-variable case. To do so we will look at the restriction of f along the line

segment connecting a and x0, by convexity this line segment belongs to G. Set:

φ : [0, 1]→ C

t
φ7−→ f(ta+ (1− t)x0)

Notice that φ(0) = f(a) and φ(1) = f(x0), furthermore note that φ ∈ Ck+1([0, 1])

since f ∈ Ck+1(G). By Taylor’s Formula in one dimension at t = 0 we know:

φ(1) = R0,k(1) +
k∑

p=0

φ(p)(0) · 1p
p!

R0,k =
φk+1(c)

(k + 1)!
· 1k+1

4



What is φ(p)(0)? For p = 0 we know φ(0)(0) = φ(0) = f(a). For p = 1 we have

φ(1)(t) = φ′(t) =
d

dt
f(a+ t(x0 − a))

= Df(a+ t(x0 − a)) · (x0 − a) = Duf(a+ tu)

Where u = x0 − a. But then this is equal to:

φ′(t) =

(
u1

∂

∂x1
+ · · ·+ un

∂

∂xn

)
f(a+ tu)

So then we know that:

φ′(0) =

(
u1

∂

∂x1
+ · · ·+ un

∂

∂xn

)
f(a)

Now for p = 2:

φ′′(t) =
d

dt




n∑

j=1

uj
∂

∂xj


 f(a+ tu)

=




n∑

j=1

uj
∂

∂xj


Duf(a+ tu) =




n∑

j=1

uj
∂

∂xj




2

f(a+ tu)

Think of these as operators on functions that we’re manipulating and consider:

d

dt
u1

∂f

∂x1
(a+ tu) = u1Du

(
∂f

∂x1

)
(x+ tu)

And so in general we want to think about:

φ(p)(t) =




n∑

j=1

uj
∂

∂xj



p

f(a+ tu)

φ(p)(0) =




n∑

j=1

uj
∂

∂xj



p

f(a)

5
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Theorem (Taylor’s Theorem). Let G be open and convex. Let f : G→ C be Ck+1

and a ∈ G. Then:

f(x) = Ra,k(x) +
∑

|α|≤k

∂αf(a)

α!
(x− a)α

Ra,k(x) =
∑

|α|=k+1

∂αf

α!
(c)(x− a)α

Where c is on the line segment connecting a and x

Continued Proof of Taylor’s Theorem. We’ll fix some x0 ∈ G. Then set φ(t) =

f(a+ t(x0 − a)) where φ : [0, 1]→ C. By taylor’s theorem in one dimension:

f(x0) = φ(1) = R0,k(1)

k∑

p=0

φ(p)(0)

p!
1p

R0,k(1) =
φ(k+1)(θ)

(k + 1)!
1k+1

For some 0 ≤ θ ≤ 1. We need a formula for φ(p)(t). Let u = (x0 − a). Then by the

chain rule:

φ′(t) = Df(a+ tu) · u = Duf(a+ tu) =

(
n∑

k=1

uk
∂f

∂xk

)
(a+ tu)

1



So then if we call f1 = Duf then we have that:

φ′′(t) = Duf1(a+ tu) = [Du(Duf)](a+ tu)

= D2
uf(a+ tu) =

(
n∑

k=1

uk
∂

∂xk

)2

f(a+ tu)

So then by induction we can obtain that:

φ(j)(x) = Dj
uf(a+ tu) =

(
n∑

k=1

uk
∂

∂xj

)j
f(a+ tu)

Where this holds for 0 ≤ j ≤ k + 1, since f is differentiable k + 1 times. And so for

0 ≤ j ≤ k we have:

φ(j)(0) = Dj
uf(a) =

(
n∑

k=1

uk
∂

∂xk

)j
f(a)

φ(k+1)(θ) = Dk+1
u f(a) =

(
n∑

k=1

uk
∂

∂xk

)k+1

f(a+ θu)

Consider that as operators we can show—using linearity—similarly to how we

showed the multinomial lemma, we have:

(
n∑

k=1

uk
∂

∂xk

)p
=
∑

|α|=p

p!

α!
uα∂α

This gives us that:

φ(p)(0) =
∑

|α|=p

p!

α!
uα∂αf(a)

φ(k+1)(θ) =
∑

|α|=k+1

(k + 1)!

α!
uα∂αf(a+ θu)

Set c = a+ θu which is on the line segment between a and x0, so then we must have

2



that:

f(x0) = φ(1) =
φ(k+1)

(k + 1)!
+

k∑

p=0

φ(p)(a)

p!

=
1

(k + 1)!

∑

|α|=k+1

(k + 1)!

α!
uα∂α(c)

+
k∑

p=0

1

p!


p!

∑

|α|=p

1

α!
uα∂αf(a)




=
∑

|α|≤k

∂αf(a)

α!
uα +

∑

|α|=k+1

∂α(c)

α!
uα

This is exactly what we want to show!

Example . Let f(x, y) = sin(x2 + y) where f : R2 → R. Find the 3rd degree

polynomial that best approximates f near (0, 0).

This is simply:

P (x, y) =
∑

|α|≤3

∂αf(0)

α!
(x, y)α

Let’s go!

• For |α| = 0 we have α = (0, 0) and so ∂αf(0) = f(0) = 0, and α! = 1.

• For |α| = 1 then α = (1, 0) or α = (0, 1). Call these αx and αy respectively, in

either case αx! = αy! = 1 and then:

∂αxf(0) =
∂f

∂x
(0) = 2x · cos(x2 + y)

∣∣∣
0

= 0

∂αyf(0) =
∂f

∂y
(0) = cos(x2 + yy2)

∣∣∣
0

= 1

• For |α = 2| we have αxx = (2, 0) where αx,x! = 2 and αxy = (1, 1) and αxy! = 1.

3



And then αyy = (0, 2) where αyy! = 2. Now:

∂αxxf(0) =
∂2f

∂x2
(0) = 2 cos(x2 + y)− 4x2 sin(x2 + y)

∣∣∣
0

= 2

∂αxy =
∂2f

∂x∂y
(0) = −2x sin(x2 + y)

∣∣∣
0

= 0

∂αyyf(0) =
∂2f

∂y2
(0) = − sin(x2 + y)

∣∣∣
0

= 0

• We omit the case where |α| = 3 because we cannot deal. WTF

So then:

P (x, y) =
∂(0,1)f(0)

(0, 1)!
(x, y)(0,1) +

∂(2,0)f(0)

(2, 0)!
(x, y)(2,0) +

∂(0,3)f(0)

(0, 3)!
(x, y)(0,3)

= y +
2

2
x2 − 1

6
y3 = x2 + y − 1

6
y3

In the following picture. The blue is our polynomial and the purple is f :

Cool!

4



Inverse Function Theorem

The inverse function theorem gives a necessary and sufficient condition for a function

f : Rn → Rn to be locally invertible with a C1 inverse.

Definition. Let f : A ⊆ Rn → Rm where A is open, and let x0 ∈ A. We say that

f is locally invertible around x0 provided that there is some open neighborhood U of

x0 so that f
∣∣
U

: U → f(U) is one-to-one, and f(U) is open in Rm This defines an

inverse function g : f(U)→ U .

• We say that f is a local homeomorphism around x0 provided that both f and

g are continuous.

• We say that f is a local diffeomorphism around x0 provided that both f and g

are differentiable.

• We say that f is a local Cr-diffeomorphism for r ≥ 1 provided that both f and

g are Cr-functions.

• We say that f is a locally invertible (resp. homeomorphism, diffeomorphism,

Cr-diffeomorphism) provided that it is locally invertible (resp.) around every

x0 ∈ A.

Remark. Soon we will give an example that is a local diffeomorphism on an open

set A but is not a diffeomorphism of A.

Our goal is to find a condition for a function to be a local diffeomorphism. This is

easy in one dimension.

5



The Key Idea

Key Figure

x0 x1

y0

y1

Being a local diffeomorphism neat x is equivalent to being able to express x as

a function of y. This means that the graph of y = f(x) can also be regarded as a

function x = g(y). This can be done when df
dx (x0) 6= 0. If df

dx (x1) = 0, we might get

multiple intersections of lines parallel to the x-axis neat y = f(x1), which means

that the graph cannot define a function x = g(y). The inverse function theorem will

generalize this intuition to higher dimensions.

Necessity that Df(x0) is invertible

Proposition. Suppose that f : A ⊆ Rn → Rn where A is open. Let x0 ∈ A and

suppose f is differentiable in A. Assume that f is a local diffeomorphism around x0

and suppose g : O ⊆ Rn → B(x0, δ) where O is open containing y = f(x0) is the

inverse function. Then Df(x0) is invertible and:

Dg(y0) = [Df(x0)]
−1

Proof. Consider that:

g ◦ f : B(x0, δ)→ B(x0, δ)

And (g ◦ f)(x) = x. Deriving both sides and using the chain rule:

Dg(f(x0))Df(x0) = Dg(y0)Df(x0) = Id

6



And so Df(x0) is invertible and Dg(y0) = [Df(x0)]
−1.

x0
•

y0•

f

g

Remark. The above proposition shows us that we cannot have a local diffeomor-

phism as defined from A ⊆ Rn → Rm.

One can ask if this is also the case for local homeomorphism. The answer is

yes. However, the proof is more involved and uses tools from algebraic topology

(Brouwer’s invariance of domain theorem)

7
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Second Try: Jordan measure

• Definition of Jordan measure. The main caveat of elementary
measure is that it only allows us to measure elementary sets, which
is a fairly restrictive family of sets. Building on the old intuition
(going back at least to Archimedes) we can lower bound (respec-
tively upper bound) the measure of a set by approximating it from
within (respectively without) by an elementary set, i.e. if A and
B are elementary and A ⊂ E ⊂ B, then the measure of E (if it
exists) should be sandwiched between that of A and B.

Definition 0.1 (Jordan measure). Let E ⊂ Rd be a bounded set.

– The Jordan inner measure mJ(E) of E is defined as

mJ(E) = sup
A⊂E,A elementary

m(A).

Here m(A) is the elementary measure of A.

– The Jordan outer measure mJ(E) of E is defined as

mJ(E) = inf
A⊃E,A elementary

m(A).

– If mJ(E) = mJ(E), we say that E is Jordan measurable, and
call the common value m(E) (the Jordan measure of E).

By convention, we do not consider unbounded sets to be Jordan
measurable.

Q1) Assume that E ⊂ Rd is bounded. Show that the following are
equivalent:

a) E is Jordan measurable.

1



b) For every ε > 0, there exists elementary sets A and B such
that A ⊂ E ⊂ B and m(B \ A) ≤ ε.

c) For every ε > 0, there exists an elementary set A such that
mJ(E∆A) ≤ ε.

Q2) Deduce that every elementary set E is Jordan measurable and
that its Jordan measure is the same as its elementary measure.
In particular, m(∅) = 0.

• Properties of Jordan measure Let E,F be Jordan measurable
sets.

Q3) Clearly m(E) ≥ 0. Show that

(a) Show that E ∪ F,E ∩ F,E \ F, and E∆F are all Jordan
measurable.

(b) (Finite additivity) If E and F are disjoint, then m(E∪F ) =
m(E) +m(F ).

(c) (Monotonicity) If E ⊂ F , then m(E) ≤ m(F ).

(d) (Finite subadditivity) m(E ∪ F ) ≤ m(E) +m(F ).

(e) (Translation invariance) for any x ∈ Rd, m(E+x) = m(E).

• Some Jordan measurable sets. Let B be a closed box of Rd

and f : B → R a continuous function.

Q5) Show that the graph {(x, f(x)) : x ∈ B} ⊂ Rd+1 is Jordan
measurable in Rd+1 and that it has Jordan measure 0. Hint:
Use that f is uniformly continuous.

Q6) Show that the set {(x, t) : x ∈ B, 0 ≤ t ≤ f(x)} ⊂ Rd+1 is
Jordan measurable.

From this we conclude that some familiar sets like triangles in R2

and balls in Rd are Jordan measurable.

2
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Exercise 1.

Proof. Let’s go!

(a =⇒ b) Fix a Jordan mesaurable set E and some ε > 0. By definition of suprema and

infima there exist elementary sets A ⊆ E and E ⊆ B such that:

m(E)− ε

2
< m(A) ≤ m(E) ≤ m(B) < m(E) +

ε

2

Note now that A∪ (B \A) = B since A ⊆ B and so since this union is disjoint:

m(B) = m(A) +m(B \A) < m(E) +
ε

2

So then:

m(B \A) < m(E)−m(A) +
ε

2
< ε

Great! Thus c) holds.

(b =⇒ c) Fix a set E satisfying the condition in (b). Now fix ε > 0. There must be

elementary sets A ⊆ E ⊆ B so that m(B \A) ≤ ε. Note that:

E4A = (E \A) ∪ (A \ E) = E \A

So then note that E \ A ⊆ B \ A since E ⊆ B. Also B \ A is an elementary

set, so we must have by definition of infimum that:

mJ(E4A) ≤ m(B \A) ≤ ε

And so we are done!

3



(b =⇒ a) Fix some set E satisfying (b). In order to show that mJ(E) = mJ(E) we will

show that for all ε > 0 we have |mJ(E)−mJ(E)| ≤ ε. Fix some ε > 0, then

there exists elementary sets A ⊆ E ⊆ B so that m(B \ A) ≤ ε. Note that we

must have by previous work and definitions that:

m(A) ≤ m(B)

m(B) = m(A) +m(B \A)

mJ(E) ≤ m(B)

mJ(E) ≥ m(A)

mJ(E)−mJ(E) ≤ m(B)−m(A)

= m(B \A) ≤ ε

Now note that for every elementary sets C1 and C2 with C1 ⊆ E ⊆ C2 we

must have m(C1) ≤ m(C2). This shows by 295 that:

mJ(E) = sup
C⊆E

C elementary

m(C) ≤ inf
C⊇E

C elementary

m(C) ≤ mJ(E)

Therefore we have that:

|mJ(E)−mJ(E)| = mJ(E)−mJ(E) ≤ ε

Taking ε → 0 we know that the outer Jordan measure agrees with the inner

Jordan measure and so E is Jordan measurable.

(c =⇒ b) Fix some set E satisfying (c). Now fix some ε > 0. There exists some elemen-

tary set A with mJ(E4A) ≤ ε
2 < ε. Therefore by definition of infima there

must be some elementary set B so that E4A ⊆ B and:

mJ(E4A) ≤ m(B) < ε

Now note that E \A ⊆ B, and so E ⊆ A ∪B. Set D := A ∪B. Now consider

C := A \B and note that:

A \B ⊆ A \ (E4A) = A \ ((A ∪ E) \ (A ∩ E)) = A \ (A ∪ E) ∪ (A ∩ E) = A ∩ E

4



And therefore C ⊆ E. We then note that:

D \ C = (A ∪B) \ (A \B) = B

So we know in particular that m(D \ C) = m(B) < ε. Since D and C are

elementary sets we must have that E satisfies (b).

Exercise 2.

Proof. Fix some elementary set E. We show that E satisfies (b) from Exercise 1

and so E is Jordan measurable. Fix some ε > 0 and note that E ⊆ E ⊆ E and

furthermore:

m(E \ E) = m(∅) = 0 < ε

So we know that E is jordan measurable. We now only to show that the Jordan

measure of E agrees with the elementary measure of E. To do this we calulate

mJ(E). Fix some A ⊆ E with A elementary, by previous homework m(A) ≤ m(E)

so the elementary measure of E is an upper bound on the set defining mJ(E).

Furthermore, this upper bound belongs to the set defining mJ(E) since E ⊆ E and

E is elementary. Therefore it is a maximum for that set, and is thus the supremum.

This gives us that the Jordan measure of E, which is equal to the Jordan inner

measure is also equal to the elementary measure of E just as desired. Perfect!

Exercise 1c.

Proof. Let’s go! Fix E and F as Jordan measurable sets.

• TODO

• TODO

• TODO

• TODO

This gives us exactly what we want.
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Recall. Let f : A ⊆ Rn → Rn with A open. Let x0 ∈ A. We say that f is lo-

cally invertible near x0 ∈ A provided that there eixsts U, V ⊆ Rn such that x0 ∈ U ,

f(x0) ∈ V , and f is bijective from U to V . Similarly we define local homeomorphism

and local diffeomorphisms.

Main Question: When is a function f a local diffeomorphism? If y = f(x) this

means, when can we express x as a function of y.

x0 x1

y0

y1

Then clearly we can only express x as a function of y in a neighborhood of y0 and

not y1. The reason for this difference is df
dx (x0) 6= 0 whereas df

dx (x1) = 0.

This geometric intuition turns out to be true in any dimension if we require

Df(x0) to be invertible instead of just non-zero. Of course this is equivalent to the

determinant of Df(x0) being nonzero.

Recall . Last time, we showed that if f is a local diffeomorphism near x0 and

g : U → V is the inverse function with x0 ∈ U and y = f(x0) ∈ V , then:

Dg(y0) = [Df(x0)]
−1

1



This shows the necessity of the condition Df(x0) being invertible for f to be a local

diffeomorphism near x0. The inverse function theorem (IFT) tells us that this is

sufficient

Theorem (Inverse Function Theorem, IFT). Let A ⊆ Rn be open and let f : A →
Rn be of class Cr with r ≥ 1. Suppose that x0 ∈ A and Df(x0) is invertible, then:

(1) There exists an open neighborhood U of x0 and an open neighborhood of V of

y0 = f(x0) such that f is a bijection from U to V

(2) The inverse function g : V → U is of class Cr as well, and Dg(y) = [Df(x)]−1

when y = f(x) for any x ∈ U .

Remark. Another interpretation of IFT is that it allows us to solve an equation:

y = f(x)

For x in terms of y locally around x0 when Df(x0) is invertible. Note that if the

funciton f is invertible then f(x) = Ax for some n×n matrix A, then the ability to

solve this equation is exactly the invertibility of A, but A = Df(x) for any x. Wow!

The IFT generalizes this to nonlinear functions using differentiability and we work

locally.

Remark. The IFT does not guarantee the existence of a global inverse function of

f : A→ Rn, but only a local inverse, even if Df(x) is invertible and continuous for

all x ∈ A.

The only exception is when n = 1, and A is connected. In that case if f ′(x) 6=
0 and f ′ is continuous then f ′(x) has a definite sign, and so f is either strictly

increasing or decreasing. This stops being true for n ≥ 2

Example. Here’s a concrete example. Let f : A = (1, 2) × (−π, 3π) → R2 where

f(r, θ) = (r cos(θ), r sin(θ)). Then:

Df(r, θ) =

(
cos(θ) −r sin(θ)

sin(θ) r cos(θ)

)

THen note that:

det(Df(r, θ)) = r ∈ (1, 2)

2



And so Df(r, θ) is invertible on A. However f(r, 0) = (r, 0) = f(r, 2π). Thus f is

not globally injective, even though the IFT tells us that it is locally

Lemmas for the IFT

Lemma 1. Let A ⊆ Rn be open and let f : A → Rn be of class C1. If Df(x0) is

non-singular (that is invertible), then there exists an α > 0 and a neighborhood U

of x0 such that:

|f(x)− f(y)| ≥ α |x− y|

For any x, y ∈ U . In particular f(x) 6= f(y) if x 6= y. Therefore f is one-to-one on

U .

Proof. Let’s Go! First we need the linear case:

Let E = Df(x0). If f were a linear function, that is f(x) = Ex, then f(x) −
f(y) = E(x− y). Therefore x− y = E−1(f(x)− f(y)). This implies that:

|x− y| =
∣∣E−1(f(x)− f(y))

∣∣ ≤ ‖E−1‖ · |f(x)− f(y)|

Where we have defined for any matrix C : Rn → Rm the operator norm:

‖C‖ = sup
x∈Rn

|x|=1

|Cx|

Great!

Exercise. Prove that |Cx| ≤ ‖C‖ · |x| for any x ∈ Rn and that:

‖C‖ ≤ nm · max
1≤i≤m
1≤j≤n

|Cij |

This is useful for us!

Continuing we then have that:

|f(x)− f(y)| ≥ 1

‖E−1‖ |x− y|

3



Step 2, we need to generalize. Let H(x) = f(x)− Ex where E = Df(x0). Then:

DH(x) = Df(x)− E
DH(x0) = Df(x0)− E = 0

Since H is a C1 function we can choose ε > 0 so that:

‖DH(x)‖ ≤ 1

2‖E−1‖

If x ∈ B(x0, ε). Now by the mean value theorem (that is Taylor’s Theorem at order

0) we have some c between x and ywith x, y ∈ B(x0, ε) so that:

|H(x)−H(y)| = |DH(c) · (x− y)| ≤ ‖DH(c)‖ · |x− y| ≤ 1

2‖E−1‖ · |x− y|

On the other hand:

|H(x)−H(y)| = |f(x)− f(y)− E(x− y)| ≥ |E(x− y)| − |f(x)− f(y)|

Therefore:

|f(x)− f(y)| ≥ |E(x− y)| − 1

2‖E−1‖ |x− y|

But then by Step 1:

|f(x)− f(y)| ≥ |E(x− y)| − 1

2‖E−1‖ |x− y|

≥ 1

‖E−1‖ |x− y| −
1

2‖E−1‖ |x− y| =
1

2‖E−1‖ |x− y|

Exercise. Suppose f : A ⊆ Rn → Rm is C1, show that the function x ∈ A 7→
‖Df(x)‖ is continuous. More generally we just need to know that the operator norm

is continuous, that is Mat(m× n)→ R≥0 given by A 7→ ‖A‖ is continuous.
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More Inverse Function Theorem

Theorem (Inverse Function Theorem, IFT). Let f : A ⊆ Rn → Rn be a Cr-

function for r ≥ 1 and suppose Df(x0) is invertible where x0 ∈ A. Then f is a local

Cr-diffeomorphism around x0. In other words there are open neighborhoods U of x0

and V of f(x0) such that:

1) f is a bijection from U to V

2) The inverse function g : V → U is Cr and Dg(y) = [Df(x)]−1 where x ∈ U and

y = f(x).

Lemma. If f : A ⊆ Rn → Rn is C1 and Df(x0) is non-singular. Then f is locally

one-to-one around x0. More strongly there is an open neighborhood U around x0

such that for some α > 0 we have that for all x, y ∈ U :

|f(x)− f(y)| ≥ α |x− y|

Great!

Lemma. Suppose f : A ⊆ Rn → R (where A is open) is differentiable. If f admits

a local minimum (or maximum) at x0 ∈ A, then Df(x0) = 0.

Proof. Let u ∈ Rn be arbitrary and set φ(t) = f(x0 + tu) where t ∈ (−δ, δ) for δ

small enough so that x0 + tu is always in A. Since f has an extremum at x0, then

so does φ at 0. By the chain rule φ is differentiable on (−δ, δ). Therefore φ′(0) = 0,

but:

φ′(t) = Df(x0 + tu) · u
0 = φ′(0) = Df(x0) · u

1



And this is true for any u ∈ Rn, so Df(x0) = 0.

Proof of the Inverse Function Theorem, IFT. By the first lemma there exists a neigh-

borhood U of x0 on which f is one-to-one. By shrinking U if necessary we may also

assume that Df(x) is non-singular for every x ∈ U . We may do this because f ∈ C1

and so Df varies continuously, meaning that since detDf(x0) 6= 0 we can shrink U

to get nonzero determinant all across U . Let V = f(U).

Step 1 We must show V is open in Rn. Take y ∈ V , we want to show that

there exists an ε > 0 such that B(y, ε) ⊆ V . Write y = f(x) for some x ∈ U .

Since U is open there is some δ > 0 so that B(x, δ) ⊆ U . Note that the boundary

∂B(x, δ) = {z ∈ Rn | |z − x| = δ} is a compact set, and so if we let Γ = f(∂B(x, δ))

we know that this is compact since f is continuous. Note that y 6∈ Γ because f

is one-to-one. Thus there is an ε > 0 such that B(y, 2ε) ⊆ Γc. We claim that

B(y, ε) ⊆ V . To show that, let c ∈ B(y, ε) and set:

φ : B(x, δ)→ R

z
φ7−→ |f(z)− c|2

Now since φ is a continuous function on a compact set it achieves its minimum value

at some point z? ∈ B(x, δ). We claim that z? 6∈ ∂B(x, δ), and so z ∈ B(x, δ). Why?

Well if z? ∈ ∂B(x, δ) then f(z?) ∈ Γ and so:

φ(z?) = |f(z?)− c|2 = |f(z?)− y + y − c|2

≥ (|f(z?)− y| − |y − c|)2 > (2ε− ε)2 = ε2

This is a problem since φ(x) = |y − c|2 < ε2, but this contradicts the fact that φ

has its minimum at z?. Therefore z? ∈ B(x, δ) since z ∈ B(x, δ) and z 6∈ ∂B(x, δ).

By Lemma 2 we must have that Dφ(z?) = 0 so we calculate the derivative.

Claim. To justify the above we look at the function g : Rn → R defined by g(x) = |x|2

2



Consider that:

g(x1, . . . , xn) =

n∑

i=1

x2i

∂ig(x1, . . . , xn) = 2xi

Dg(x1, . . . , xn) = (2x1, . . . , 2xn) = 2x

So then setting F (z) = f(z)− c and so:

Dφ(z) = Dg(F (z)) ·DF (z) = 2F (z) ·Df(z) = 2(f(z)− c) ·Df(z)

This gives that:

0 = Dφ(z?) = 2(f(z?)− c)Df(z?)

SinceDf(z?) is invertible, this implies that f(z?)−c = 0, and so f(z?) = c. Therefore

c ∈ f(B(x, δ)) ⊆ f(U). And so B(y, ε) ⊆ f(U) = V as desired.

Great! The conclusion of Step 1 is that f : U → V is one-to-one, onto, and

U, V are open. Therefore there exists an inverse function g : V → U such that

f ◦ g = IdV and g ◦ f = IdU .

Step 2: We must show g is continuous. We need to show that g−1(U ′) is open

for every open U ′ ⊆ U . This is equivalent to showing that f(U ′) is open for any

open U ′ ⊆ U . But wait! This is exactly what we did in Step 1 by replacing U by

U ′.

Step 3: We show that g is differentiable. To do this. Let y ∈ V where y = f(x)

for some x ∈ U . Now let E = Df(x), by hypothesis E is invertible. We will show

that:

g(y + k)− g(y)− E−1(k)

|h| → 0 as k → 0

This result implies that g is differentiable at y and Dg(y) = [Df(x)]−1 where y =

f(x). We know that if |k| is small enough then B(y, |k|) ⊆ V by openness. Thus

there exists some h such that y+k = f(x+h) for some x+h ∈ U . And so we know

k = f(x+ h)− f(x). Now note that h = g(y + k)− g(y) and so h→ 0 as k → 0 by

3



continuity of g. By the differentiability of f at x we know that:

r(h) := f(x+ h)− f(x)− Eh
= k − Eh

r(h)

|h| → 0 as |h| → 0

Now we know that:

E−1r(h) = E−1k − h = E−1k − g(y + k) + g(y)

−E−1r(h)

|k| =
g(y + k)− g(y)− E−1k

|k|

It then suffices to show that limk→0
E−1r(h)
|k| = 0. It suffices to show that limk→0

r(h)
|k| =

0, since E−1 is linear. Writing then:

r(h)

|k| =
r(h)

|h|
|h|
|k|

Since r(h)
|h| → 0 as |h| → 0 and since |h| → 0 as |k| → 0 it suffices to show that |h||k| is

bounded by some C > 0 for nonzero but small enough k. Recall that:

h = E−1k − E−1r(h)

|h| =
∣∣E−1(k − r(h)

∣∣

≤ ‖E−1‖ · |k − r(h)|
≤ ‖E−1‖ · (|k|+ |r(h)|)

Now since r(h)
|h| → 0 as |h| → 0 if |h| is small enough we get:

|r(h)|
|h| ≤

1

2‖E−1‖

Therefore if |k| is small enough then |h| is small enough so that |r(h)| ≤ |h|
2‖E−1‖ .

4



And therefore:

|h| ≤ ‖E−1‖
(
|k|+ |h|

2‖E−1‖

)

= ‖E−1‖ |k|+ |h|
2

|h| ≤ 2‖E−1‖ |k|
|h|
|k| ≤ 2‖E−1‖

Pulling this all together:

∣∣∣∣
g(y + k)− g(y)− E−1k

|k|

∣∣∣∣ =

∣∣∣∣
E−1r(k)

|h|

∣∣∣∣

And we know that:
∣∣∣∣
r(h)

|k|

∣∣∣∣ =
|r(h)|
|h| ·

|h|
|k| ≤ 2‖E−1‖|r(h)|

|h| → 0 as h→ 0

And so since h→ 0 as k → 0 and E−1 is linear, we are done, g is differentiable.

Step 4: We need to check that g ∈ Cr(V ). We have shown that Dg(y) =

[Df(x)]−1 where y = f(x). We can write this as:

Dg = [Df ]−1 ◦ g

By Cramer’s rule [Df ]−1 is a rational function (a polynomial over a polynomial) of

the partials ∂fi
∂xj

, and this rational function has nonzero denominator

Recall. Cramer’s rule gives you a formula for the inverse of a matrix C, namely:

C−1 =
1

detC
· [AdjC]

We have that detC is a polynomial in entries of C and:

(AdjC)ij = det(Cji )

Where Cji is the same as C except that we replace the i-th column with ~ej . Of

course these are all polynomials in terms of the entries of C.

This implies that [Df ]−1 belongs to Cr−1 if f ∈ Cr because Df belongs to Cr−1.

5



Now consider that:

Dg = [Df ]−1 ◦ g (?)

Now we know that g ∈ C0 and so since [Df ]−1 ∈ C0 we get Dg ∈ C0. But then

g ∈ C1. Feeding this into (?) again we get that Dg ∈ C1 if r ≥ 2, and so g ∈ C2.

We may do this r times to obtain that g ∈ Cr.

6
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Theorem (Mean Value Theorem). For a differentiable function H : Rn → R we

have that for any x, y ∈ Rn there is some c on the line segment between x and y so

that:

H(y)−H(x) = DH(c) · (y − x)

Great!

Proof. Set φ(t) : [0, 1]→ R as φ(t) = H(x+ t(y − x)). By the single-variable mean

value theorem there is some t ∈ (0, 1) so that:

φ(1)− φ(0) = φ′(t) · (1− 0)

H(y)−H(x) = φ′(t)

Now by the chain rule, if we set c := x+ t(y − x), which is on the line segment:

φ′(t) = DH(c) · (y − x)

And so we have the statement of the mean value theorem. Of course, this is just

Taylor’s Theorem at degree k = 0.

How to estimate Rx0,k(x)

Now for Taylor’s Theorem, how do we estimate Rk,x0(x)? This will help us to

show the Taylor polynomial is a good approximation. Suppose that f : A → R is

sufficiently differentiable and that we can show for all x ∈ A that |∂αf(x)| ≤Mk+1

1



for |α| = k + 1. So then:

|(x− x0)α| =

∣∣∣∣∣∣

n∏

j=1

(xj − x0,j)αj

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

n∏

j=1

|x− x0|αj

∣∣∣∣∣∣
= |x− x0||α|

|Rk,x0(x)| =

∣∣∣∣∣∣
∑

|α|=k+1

∂αf(cx)

α!

∣∣∣∣∣∣
≤

∑

|α|=k+1

Mk+1

α!
|x− x0|k+1

Worksheet Time
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Jordan measure (Continued)

• Recall.

Definition 0.1 (Jordan measure). Let E ⊂ Rd be a bounded set.

– The Jordan inner measure mJ(E) of E is defined as

mJ(E) = sup
A⊂E,A elementary

m(A).

Here m(A) is the elementary measure of A.

– The Jordan outer measure mJ(E) of E is defined as

mJ(E) = inf
A⊃E,A elementary

m(A).

– If mJ(E) = mJ(E), we say that E is Jordan measurable, and
call the common value m(E) (the Jordan measure of E).

By convention, we do not consider unbounded sets to be Jordan
measurable.

Recall from last time that the Jordan measure extends the notion
of elementary measure to more general sets. We also saw that the
Jordan measure satisfies Boolean closure properties (if E,F are
Jordan measurable sets, the so are E ∪F,E ∩F,E \F,), as well as
finite additivity (If E1, . . . , Ek are disjoint are Jordan measurable,
then m(E1 ∪ . . . ∪ Ek) = m(E1) + . . . + m(Ek), and translation
invariance (m(E) = m(E + x) for x ∈ Rd).

Q1) Show that the graph {(x, f(x)) : x ∈ B} ⊂ Rd+1 is Jordan
measurable in Rd+1 and that it has Jordan measure 0. Hint:
Use that f is uniformly continuous.

1



Q2) Show that the set {(x, t) : x ∈ B, 0 ≤ t ≤ f(x)} ⊂ Rd+1 is
Jordan measurable.

From this we conclude that some familiar sets like triangles in R2

and balls in Rd are Jordan measurable. For instance,

Q3) Show that the open and closed balls B(x0, r) = {y ∈ Rd :
|x − y| < r} and B(x, r) = {y ∈ Rd : |y − x| ≤ r} are both
Jordan measurable, and that their Jordan measure is cdr

d for
some constant cd > 0 that only depends on the dimension.

Q4) Establish the bound
(

2√
d

)d
≤ cd ≤ 2d.

• Sets that are not Jordan measurable. This shows that a lot
of familiar subsets of Rd are Jordan measurable, however many
subsets of interest aren’t: a) all unbounded subsets are not Jordan
measurable, and more importantly b) several interesting bounded
sets are not too as the following questions show.

Q5) Let E ⊂ Rd be bounded. Show that both E and its closure E
have the same Jordan outer measure.

Q6) Show that E and its interior E◦ have the same Jordan inner
measure.

Q7) Show that E is Jordan measurable if and only if the topological
boundary ∂E = E \ E◦ has Jordan outer measure 0.

Q8) Show that the bullet-riddled square [0, 1] \ Q2, and the set of
bullets [0, 1] ∩ Q2 both have Jordan inner measure zero and
Jordan outer measure one. In particular, both sets are not
Jordan measurable.
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Announcements

• Midterm is Wednesday (class time)

– Cameras should be on

– Be ready 5 minutes earlier

– Exam from 1pm → 2:20pm

– From 2:30 → 2:30 pm upload your answers to gradescope

• No class on Friday October 30th because Hani has to work with the NSF

Concluding Remarks on the Inverse Function Theorem

The IFT says that if y = f(x) for x ∈ Rn satisfies Df(x0) being non-singular,

then there exists an inverse function near x0. In other words, this means that

specifying (y1, . . . , yn) completely determines (x1, . . . , xn) at least locally around x0

for y0 = f(x0).

This means that we can use (y1, . . . , yn) as a coordinate system around x0 instead

of (x1, . . . , xn).

Example. Let f : [0,∞)× R× R→ R3 be given by:

f(ρ, φ, θ) = ρ(sinφ cos θ, sinφ sin θ, cosφ)

1



This is the spherical coordinate system, note that:

Df =




sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ

sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0




detDf(ρ, φ, θ) = −ρ sinφ sin θ(−ρ sin θ(sin2 φ+ cos2 φ))

+ ρ sinφ cos θ(−ρ cos θ(sin2 φ+ cos2 φ))

= ρ2 sinφ(sin2 θ + cos2 θ) = ρ2 sinφ

Now note that detDf 6= 0 whenever ρ 6= 0 and sinφ 6= 0. That is for any (ρ0, φ0, θ0)

such that φ0 6= 0 and φ0 6= 0 there is a neighborhood U of (ρ0, φ0, θ0) on which f is

a diffeomorphism. In particular, we can use (f1, f2, f3) as coordinates on U .

In this example, the inverse function can be computed using:

ρ =
√
f21 + f22 + f23 φ = arccos

(
f3
ρ

)
θ = arctan

(
f2
f1

)

Around a point for which ρ 6= 0 and sinφ 6= 0, this holds whenever f21 + f22 6= 0.

The Implicit Function Theorem

Geometric Motivations

Definition. A level set of a function f : Rn → R is of the form {x ∈ Rn | f(x) = C}
for some constant C ∈ R

Consider the function:

f : R2 → R

(x, y)
f7−→ x2 + y2 − 1

We know that the equation f(x, y) = 0, a level set of f , is the unit circle.

2



x

y

x2 + y2 = 1 y =
√

1− x2

But the upper part of the unit circle is also defined by the function y =
√

1− x2.
In other words, when does the equation f(x, y) = 0 define the graph of a function

y = g(x). In this case, we say that f(x, y) = 0 defines y implicitly in terms of x.

For (a, b) on the unit circle, we can write the equation f(x, y) = 0 as y = g(x) in

a small neighborhood of (a, b) so long as (a, b) 6= (1, 0) and (a, b) 6= (−1, 0) by the

vertical line test

x
10.9

Clearly any red box will violate the vertical line test, and so we can’t do this trick

near (1, 0).

These are exactly the points where ∂f
∂y = 0. In the context of the implicit

function theorem, we are given a function f(x, y) with x ∈ Rk and y ∈ Rn and

3



f : A ⊆ Rk ×Rn → Rn. When can the level set {f = C} locally be described as the

graph of a function y = g(x).

Calculus Motivation (Implicit Differentiation)

Suppose that the equation f(x, y) = 0 defines y as a function of x (the main as-

sumption). What is dy
dx . Well:

f(x, y(x)) = 0

∂f

∂x
+
∂f

∂y
· dy

dx
= 0

dy

dx
= −

∂f
∂x
∂f
∂y

Indeed the condition ∂f
∂y 6= 0 is again needed to compute dy

dx . We will see that the

Implicit Function Theorem Tells us this is a sufficient condition to be able to express

y as a function of x.

Dimension Counting

We would like to find and prove the right generalization of those conditions so that

the equation f(x, y) = 0 with x ∈ Rk, y ∈ Rn and f(x, y) ∈ Rp can be solved

uniquely in terms of x in a sufficiently small neighborhood of (a, b) on the level set.

Let us study the linear problem, i.e. when f(x, y) = L(x, y) and L is a linaer

function from Rk × Rn → Rp, that is L is a p× (n+ k) matrix. Write L as:

L =
(
A B

)

Where A is p×k and B is p×n. Then L(x, y) = Ax+By, and so L(x, y) = 0 if and

only if Ax+By = 0. Therefore y is uniquely solvable in terms of x when By = Ax is

uniquely solvable, which happens exactly when B is an invertible matrix. Therefore

we must have that p = n.

Notice that the matrix B has its columns as ∂L(x,y)
∂yj

for 1 ≤ j ≤ n. This motivates

the following:

Definition. Let f : A ⊆ Rn → Rm be differentiable and let f1, . . . , fm be the

components of f . We denote:

4



• First:

Df =
∂(f1, . . . , fm)

∂(x1, . . . , xn)
=
∂f

∂~x

The matrix whose columns are ∂f
∂xj
∈ Rm for 1 ≤ j ≤ n.

• Now suppose that (x1, . . . , xn) = (y, z) for y ∈ Rk and y ∈ Rn−k. We denote

then:

∂f

∂~y
=
∂(f1, . . . , fn)

∂(y1, . . . , yk)
=

(
∂f

∂yj

)

1≤j≤k

∂f

∂~z
=

∂(f1, . . . , fn)

∂(z1, . . . , zn−k)
=

(
∂f

∂zj

)

1≤j≤n−k

The Implicit function theorem states (roughly) that given f : A ⊆ Rk+n → Rn

where f(v) = f(x, y) with x ∈ Rk and y ∈ Rn, then the level set {f(x, y) = 0}
defines y as a function of x in a neighborhood of any point (a, b) on the level set if
∂f
∂~y is non-singular.
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Jordan measure (Continued)

• Recall.

Definition 0.1 (Jordan measure). Let E ⊂ Rd be a bounded set.

– The Jordan inner measure mJ(E) of E is defined as

mJ(E) = sup
A⊂E,A elementary

m(A).

Here m(A) is the elementary measure of A.

– The Jordan outer measure mJ(E) of E is defined as

mJ(E) = inf
A⊃E,A elementary

m(A).

– If mJ(E) = mJ(E), we say that E is Jordan measurable, and
call the common value m(E) (the Jordan measure of E).

By convention, we do not consider unbounded sets to be Jordan
measurable.

Recall from last time that the Jordan measure extends the notion
of elementary measure to more general sets. We also saw that the
Jordan measure satisfies Boolean closure properties (if E,F are
Jordan measurable sets, the so are E ∪F,E ∩F,E \F,), as well as
finite additivity (If E1, . . . , Ek are disjoint are Jordan measurable,
then m(E1 ∪ . . . ∪ Ek) = m(E1) + . . . + m(Ek), and translation
invariance (m(E) = m(E + x) for x ∈ Rd).

Q1) Show that the graph {(x, f(x)) : x ∈ B} ⊂ Rd+1 is Jordan
measurable in Rd+1 and that it has Jordan measure 0. Hint:
Use that f is uniformly continuous.
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Q2) Show that the set {(x, t) : x ∈ B, 0 ≤ t ≤ f(x)} ⊂ Rd+1 is
Jordan measurable.

From this we conclude that some familiar sets like triangles in R2

and balls in Rd are Jordan measurable. For instance,

Q3) Show that the open and closed balls B(x0, r) = {y ∈ Rd :
|x − y| < r} and B(x, r) = {y ∈ Rd : |y − x| ≤ r} are both
Jordan measurable, and that their Jordan measure is cdr

d for
some constant cd > 0 that only depends on the dimension.

Q4) Establish the bound
(

2√
d

)d
≤ cd ≤ 2d.

• Sets that are not Jordan measurable. This shows that a lot
of familiar subsets of Rd are Jordan measurable, however many
subsets of interest aren’t: a) all unbounded subsets are not Jordan
measurable, and more importantly b) several interesting bounded
sets are not too as the following questions show.

Q5) Let E ⊂ Rd be bounded. Show that both E and its closure E
have the same Jordan outer measure.

Q6) Show that E and its interior E◦ have the same Jordan inner
measure.

Q7) Show that E is Jordan measurable if and only if the topological
boundary ∂E = E \ E◦ has Jordan outer measure 0.

Q8) Show that the bullet-riddled square [0, 1] \ Q2, and the set of
bullets [0, 1] ∩ Q2 both have Jordan inner measure zero and
Jordan outer measure one. In particular, both sets are not
Jordan measurable.
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Jordan measure and Riemann Integration

It turns out that the notion of Jordon measurability of sets is inti-
mately related (in a way essentially equivalent) to the notion of Rie-
mann integrability of functions. We will only display this relation in
dimension 1.

• Recall. To define the Riemann1 integral of a bounded function f
on an interval [a, b] ⊂ R, we first recall the notion of a partition P
which is a set of points x0 = a < x1 < x2 < . . . < xn = b, the norm
of the partition is ∆P = max1≤k≤n xk − xk−1, and we denote by
∆xk = xk − xk−1. For each such partition, we define to quantities:

L(f,P) =
n∑

k=1

f(x∗)∆xk, and U(f,P) =
n∑

k=1

f(x∗)∆xk,

where x∗ = inf [xk−1,xk] f and x∗ = sup[xk−1,xk] f .

Afterwards, we define the lower and upper Darboux integrals re-
spectively as

∫ b

a

f(x)dx = sup
P

L(f,P), and

∫ b

a

f(x)dx = inf
P

U(f,P).

where the extrema above are taken over all partitions of the inter-
val [a, b]. We say that f is Riemann integrable if the above two
numbers are equal. We define the common value as the Riemann
(or Darboux) integral of f .

1Strictly speaking, we are recalling here the notion of Darboux integral, but that is equivalent to the
notion of Riemann integrability that is often covered in introductory calculus classes.

1



Q1) Let [a, b] be an interval and let f : [a, b] → R be a bounded
nonnegative function. Show that f is Riemann integrable if
and only if the set E := {(x, t) : x ∈ [a, b] : 0 ≤ t ≤ f(x)} is
Jordan measurable in R2.

Q2) Let [a, b] be an interval and let f : [a, b] → R be a bounded
function. Show that f is Riemann integrable if and only if the
sets E+ := {(x, t) : x ∈ [a, b] : 0 ≤ t ≤ f(x)} and E− :=
{(x, t) : x ∈ [a, b] : f(x) ≤ t ≤ 0} are Jordan measurable in R2.

Remark. The above results generalize to higher dimensions. For
that we will need a notion of Riemann (or Darboux) integrability
on Rd (d ≥ 2). We will discuss this theory in our lectures, starting
next week.

2
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Worksheet 7

Proof Sketch of Q3. We talk about this by doing induction. Clearly any ball of

radius r in one dimension is measurable, since this will just be a line.

Fix d ∈ N so that B(0, r) ⊆ Rd is measurable. We will show that B(0, r) ⊆ Rd+1

is measurable. We consider the following function defined on the box [−r, r]d:

f : [−r, r]d → Rd+1

f(x) =

{ √
1− ‖x‖2 if ‖x‖ < r

0 otherwise

This will give a hemisphere of B(0, r) ⊆ Rd+1, and we can glue two of these together

to give the full ball. We then can take away the graphs of the functions and we will

win.

Proof Sketch of Q5. Fix some bounded subset E ⊆ Rd. We will show that E and

E have the same Jordan outer measure. To do this lets show that mJ(E) ≤ mJ(E)

and mJ(E) ≥ mJ(E). Let’s go!

Lemma. The closure of any elementary set A has the same elementary measure as

A, and in fact A is an elementary set.

Proof. First note that clearly m(A) ≤ m(A) by monotonicity. Write A as a

disjoint union of a finite number of boxes B1, . . . , Bn. Now note that:

A =

(
n⋃

k=1

Bk

)
=

n⋃

k=1

Bk

5



We will justify this second equality:

(⊆) Note that A is the smallest closed set that contains A. Now note that⋃n
k=1Bk is closed and since Bk ⊆ Bk it contains A. Therefore A ⊆⋃n
k=1Bk.

(⊇) Fix some x ∈ ⋃n
k=1Bk. Then x ∈ Bj for some 1 ≤ j ≤ n. Therefore since

Bj ⊆
⋃n

k=1Bk that we must have x ∈ Bj ⊆
⋃n

k=1Bk = A.

Now note that Bk is a box, and so when we take its closure that is still a box, and

all the intervals making up the product become closed intervals. This does not

change the measure, and so m(Bk) = m(Bk). The union above demonstrates

that A is elementary and by finite subadditivity:

m(A) ≤
n∑

k=1

m(Bk) =
n∑

k=1

m(Bk) = m(A)

And so we must have since m(A) ≤ m(A) that m(A) = m(A).

Fix some elementary set A that contains E, this must exist since E is bounded,

and thus E is bounded. Then A clearly contains E. And so mJ(E) ≤ m(E). This

shows mJ(E) is a lower bound for the set definining mJ(E). By the definition of

infimum then mJ(E) ≤ mJ(E).

Now fix some elementary set A that contains E, this must exist since E is

bounded. Then A contains E, and so mJ(E) ≤ m(A) = m(A) by the lemma.

But then mJ(E) is a lower bound for the set defining mJ(E). This means that

mJ(E) ≤ mJ(E)

Therefore mJ(E) = mJ(E) and we are done! Great!

Proof Sketch of Q6. This is very similar to Question 5!!! Lets show that E and its

interior E◦ have the same Jordan inner measure! For this we a lemma:

Lemma. The interior of any elementary set A is elementary and has the same

measure as A.

Proof. First note that A◦ ⊆ A so by monotonicity if A◦ is elementary then

TODO

TODO

6



Proof Sketch of Q7. Let’s go both ways!!!

(⇒) Suppose E is Jordan measurable. Then by Q5 and Q6:

m(E) = mJ(E) = mJ(E)

m(E) = mJ(E) = mJ(E◦)

Now to compute mJ(∂E) we know that 0 ≤ mJ(∂E) because for any elemen-

tary set A we know 0 ≤ m(A). By the characterization of infima it suffices to

find for every ε > 0 some elementary set C containing ∂E so that:

0 ≤ m(C) ≤ ε

Note by characterization of suprema and infima for E and E◦ we have an

elementary set A containing E and an elementary set B contained in E◦ so

that:

m(E) ≤ m(A) ≤ m(E) +
ε

2

m(E)− ε

2
≤ m(B) ≤ m(E)

Now note that A \ B contains ∂E since A contains E and everything we are

cutting from A is in B ⊆ E◦. Now we know that A \ B is elementary, so set

C := A \B and we will show m(C) ≤ ε. This is simple since:

B ⊆ E◦ ⊆ E ⊆ E ⊆ A
A = A \B tB

m(A) = m(A \B) +m(B)

m(C) = m(A)−m(B)

≤ m(E) +
ε

2
−m(E) +

ε

2
= ε

And so we are done! Great!

(⇐) Now suppose that ∂E has outer measure 0. We must show that E is Jordan

measurable. To do

By Q5 and Q6 it suffices to show that mJ(E) ≥ mJ(E◦) and likewise mJ(E) ≤
mJ(E◦), since these are the outer and inner measures of E respectively.

7



Fix some elementary set A which contains E. Then since E ⊇ E ⊇ E◦ we know

A contains E◦. Now fix an elementary set B so that B ⊆ E◦. Then m(B) ≤
m(A) by monotonicity, so by definition of supremum mJ(E◦) ≤ m(A). Then

by definition of infimum mJ(E◦) ≤ mJ(E).

We will prove this one by showing that for every ε > 0 we have:

mJ(E◦) + ε > mJ(E)

And so we get the result by taking ε to 0.

TODO

Worksheet 8
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More Implicit Function Theorem

Problematic: We have f : A ⊆ Rk+n → Rn with f = f(x, y) with x ∈ Rk and

y ∈ Rn. We are interested in the level set L = {f(x, y) = 0}.

y ∈ Rn

x ∈ Rk
a

b
f(x, y) = 0

Suppose that (a, b) is on the level set, that is f(a, b) = 0. Now the equation f = 0

gives us n-equations in x

Question: Can we write the condition that {f(x, y) = 0} near (a, b) as the graph

of a function y = g(x), i.e. (x, y) ∈ L if and only if y = g(x). In other words, can

we solve the system of equations f(x, y) = 0 near (a, b) for y in terms of x? In yet

other words, does the equation {f = 0} define y implicitly in terms of x

Roughly speaking, the implicit function theorem says that the answer is yes

provided that ∂f
∂y = ∂(f1,...,fn)

∂(y1,...,yn)
is non-singular.

Before stating the theorem precisely, let’s state an easier result about the deriva-

tive of the implicit function:

Theorem (Implicit Differentiation). Let A ⊆ Rk+n be open and f : A → Rn be

differentiable and write f = f(x, y) with x ∈ Rk and y ∈ Rn. Now suppose that the

equation f(x, y) = 0 defines y implicitly, i.e. there exists a function g : B → Rn

1



defined on an open subset B of Rk such that (x, g(x)) ∈ A and f(x, g(x)) = 0 for

all x ∈ B.

THEN, for x ∈ B we have:

∂f

∂x
(x, g(x)) +

∂f

∂y
(x, g(x)) ·Dg(x) = 0

In particular, if ∂f
∂y (x, g(x)) is invertible, then:

Dg(x) = −
[
∂f

∂y
(x, g(x))

]−1 ∂f
∂x

(x, g(x))

Proof. Then let h : B → Rk+n be the function h(x) = (x, g(x)) then f ◦ h = 0 by

supposition. Take the derivative of this expression, and so by the chain rule:

Df(h(x)) ·Dh(x) = 0

Dh(x) =

(
Ik

Dg

)∣∣∣
x

Df =
(

∂f
∂x

∂f
∂y

)

Df(h(x))Dh(x) =
(

∂f
∂x

∂f
∂y

)∣∣∣
h(x)
·
(

Ik

Dg

)∣∣∣
x

=
∂f

∂x
(h(x)) +

∂f

∂y
(h(x))Dg(x) = 0

And this is what we wished to show.

The implicit function theorem tells us that the invertibility of ∂f
∂y is sufficient for

the condition of the above theorem to hold

2



Theorem (Implicit Function Theorem). Let A ⊆ Rk+n be open and f : A → Rn

be of class Cr with r ≥ 1. Write f in the form f(x, y) with x ∈ Rk and y ∈ Rn.

Suppose that (a, b) ∈ A such that f(a, b) = 0.

y ∈ Rn

x ∈ Rk
a

b
f(x, y) = 0

If ∂f
∂y (a, b) is non-singular, then there exists a neighborhood B ⊆ Rk of a and a

unique continuous function g : B → Rn such that g(a) = b and f(x, g(x)) = 0 for

x ∈ B. The function g will in fact be of class Cr. In fact inside the green window,

f(x, y) = 0 if and only if y = g(x).

Remark. Of course, the variables y for which we solve for in terms of x don’t have

to be the last n coordinates. They can be any n of the (n+ k) coordinates.

Proof. Step 1 (An Auxiliary Function): Consider the auxiliary function:

F : A ⊆ Rk+n → Rk+n

(x, y)
F7−→
(

x

f(x, y)

)

DF (x, y) =




DF1

DF2

...

DFk+n




=

(
Ik

Df

)

=

(
Ik 0
∂f
∂x

∂f
∂y

)

3



Therefore using block matrices you can check that:

detDF (x, y) = det Ik det

(
∂f

∂y

)
= det

(
∂f

∂y

)

But we know that ∂f
∂y is nonsingular at (a, b) and so:

detDF (a, b) = det
∂f

∂y
(a, b) 6= 0

Thus DF (a, b) is nonsingular, and so by the inverse function theorem there exists a

neighborhood U ×V of (a, b) such that a ∈ U is open in Rk and b ∈ V is open in Rn

as well as a neighborhood W of (a, 0) ∈ Rk+n such that F is a Cr-diffeomorphism

from U × V onto W .

y ∈ Rn

x ∈ Rka

b
f(x, y) = 0

U

V F

G

z ∈ Rn

x ∈ Rk(a, 0)

W

Let G : W → U × V be the the inverse function of F . I.e. (x, y) = G(x, f(x, y)).

for all (x, y) ∈ U × V and (x, z) = F ◦ G(x, z) for (x, z) ∈ W . This tells us that

G is the identity on its first k coordinate functions. Let h : W → V be defined

as h(x, z) = (Gk+1, Gk+2, . . . , Gk+n), h is clearly Cr since G is Cr by the inverse

function theorem.

Step 2 (Definition of g): Let B be a ball around a such that B ⊆ U and B×{0} ⊆
W . Now notice that (x, y) ∈ B×V satisfies f(x, y) = 0 if and only if F (x, y) = (x, 0)

if and only if (x, y) = G(x, 0) = (x, h(x, 0)). Defining g(x) = h(x, 0) for x ∈ B we

have that (x, y) ∈ B × V satisfying f(x, y) = 0 if and only if y = g(x) for x ∈ B.

Clearly g is Cr since h is Cr.

Also note that (a, b) = G(a, 0) = (a, h(a, 0)), and so b = h(a, 0) = g(a) as

desired.

Step 3 (Uniqueness of g): Suppose that g′ : B → R is another continuous func-

4



tion that satisfies the conclusions of the theorem. Let S = {x ∈ B | g(x) = g′(x)}.
Clearly since g and g′ are continuous, S is closed relative to B. Also, we must have

that a ∈ S, since b = g(a) = g(a′). We will show that S is also open in B, which

would mean that S = B, since B is connected. This will finish the proof. We’ll

leave this until next time
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Note: No class on Friday

The Proof of the Implicit Function Theorem

Continued Proof of the Implicit Function Theorem. We had an A ⊆ Rk+n and an

f : A → Rn of class Cr with r ≥ 1. We also had f(a, b) = 0 and ∂f
∂y (a, b) is

nonsingular. We model this with the picture:

y ∈ Rn

x ∈ Rk
a

b
f(x, y) = 0

We constructed a neighborhood B around a, a neighborhood V around b, and a

function g : B → V satisfying g(a) = b and f(x, y) = 0 if and only if y = g(x) for

(x, y) ∈ B × V . We did this with the following steps:

1) We defined an auxiliary function F (x, y) = (x, f(x, y)) : A→ Rk+n. We showed

that DF (a, b) is invertible since ∂f
∂y (a, b) is invertible. We then applied the Inverse

Function Theorem. This gave us the following picture

1



y ∈ Rn

x ∈ Rk

f(x, y) = 0

U

V

a

b
F

G

z ∈ Rn

x ∈ Rk(a, 0)

W

We then showed the inverse function G(x, z) must be given as (x, h(x, z)) where

h ∈ Cr.

2) We then defined g with a neighborhood B ⊆ U such that B × {0} ⊆ W . We

then defined g : B → V as g(x) = h(x, 0). This satisfies the desired conditions.

3) We showed the Uniqueness of g. We supposed that g′ : B → V was another

continuous function such that g′(a) = b and f(x, g′(x)) = 0. We defined S =

{x ∈ B | g′(x) = g(x)}. We want to show that S = B. Using the connectedness

of B we simply need to show that S is a nonempty subset of B that is both open

and closed in B.

S is clearly nonempty since g′(a) = g(a), and thus a ∈ S. We know S is closed

since g, g′ are both continuous, and we can rewrite S = (g − g′)−1({0}). It

remains to show that S is open

Let’s show this! Let x0 ∈ S, then g′(x0) = g(x0) ∈ V is open. There must exist

a neighborhood B′ of x0 such that g′(B′) ⊆ V using the fact that g′ is continuous.

But then:

f(x, g′(x)) = 0 x ∈ B′ ⊆ B g′(x) ∈ V

But then this must mean that:

F (x, g′(x)) = (x, f(x, g′(x))) = (x, 0)

(x, g′(x)) = G(x, 0) = (x, h(x, 0)) = (x, g(x))

This of course implies that g′(x) = g(x) for all x ∈ B′. Therefore S is open in B,

and we win!!!! Yay ,

2



How to Apply the Implicit Function Theorem

Suppose that f : A ⊆ R5 → R2 is a function in Cr and the equation f(x, y, z, u, v) =

0 gives us two equations in five unknowns, and thus by dimension counting, the

solution set is a set parameterized in three variables. We expect (under appropriate

conditions) that we can solve for two of the variables in terms of the others.

Suppose one wishes to solve for (y, v) in terms of (x, z, u) near a point (x0, y0, z0, u0, v0 =

0. All we need to check is that ∂f
∂(y,v) is nonsingular at (x0, y0, z0, u0, v0). The implicit

function theorem then tells us that we can write y = φ(x, z, u) and v = ψ(x, z, u)

(y, v)

(x, z, u)
(x0, z0, u0)

(y0, v0)
f = 0

B

V

Moreover by implicit differentiation:

∂(φ, ψ)

∂(x, z, u)
(x0, z0, u0) = −

[
∂f

∂(y, v)(x0, y0, z0, u0, v0)

]−1 ∂f
∂x

(x, g(x))

Example. Show that the system of equations:

x3 − y3 + z2 = 0

z cos(πx) + sin(πy) = 0

admits a one-parameter family of solutions around the point (1, 1, 0)

Define f : R3 → R2 by:

f(x, y, z) =

(
x3 − y3 + z2

z cosπx+ sinπy

)

3



Then f(1, 1, 0) = 0 and:

Df =

(
3x2 −3y2 2z

−πz sinπx π cosπy cosπx

)

Df(1, 1, 0) =

(
3 − 0

0 −π −1

)
=

∂f

∂(x, y, z)

∂f

∂(x, z)
=

(
3 0

0 −1

)

This is of course a non-singular matrix, and so we can solve for (x, z) in terms

of y near the point y = 1. That is there are functions φ, ψ : B → R2 where B

is an open neighborhood of y = 1 such that f(φ(y), y, ψ(y)) = 0 for all y ∈ B.

In other words, the solution set near (1, 1, 0) is a one-parameter family of

solutions. We will later find out that this means it is a “manifold of dimension

one”

With this we have essentially finished differentiation!

4



Riemann Integration in Higher Dimensions

Definition of the integral

The purpose os this section is to generalize the notion of the Riemann integral to

higher dimesnions

Definition. We will use some concepts from our Friday sections

1) Recall that we defined a box B ⊆ Rn to be the Cartesian product of n intervals

B = I1 × I2 × · · · × In. Generally I1, . . . , In can be closed, open, or half open.

However, in what follows, there will be no loss of generality in considering only

closed boxes. Thus to simplify notation, we will assume that all boxes are closed

unless stated otherwise

Given B = [a1, b1]× · · · × [an, bn] we set:

m(B) :=

n∏

i=1

(bi − ai)

2) Partitions

(n = 1) Given an interval I = [a, b] a partition of [a, b] is a finite collection P of

points x0 = a < x1 < x2 < · · · < xk = b. Each [xi−i, xi] has length

∆xi = xi − xi−1. We define the mesh (or norm) of P as:

‖P‖ = max
1≤i≤k

∆xi

(n ≥ 1) Given a box B = I1×· · ·× In, a partition P of B is an n-tuple (P1, . . . , Pn)

such that Pj is a partition of Ij for each j.

y

x
a1 b1

a2

b2

5



Each partition Pj decomposes Ij into sub-intervals I
(1)
j , . . . , I

(kj)
j with dis-

joint interiors This gives a decomposition of B into sub-boxes of the form

J1 × · · · Jn where Jj ∈ {I(1)j , . . . , I
(kj)
j }.

Notice that the sub-boxes can only intersect at the boundary, that is they

have disjoint interiors. The mesh of a partition P = (P1, . . . , Pn) is ‖P‖ =

max1≤j≤n ‖Pj‖.

3) We now define Lower and upper sums. Let B be a box and f : B → R be bounded.

Let P be a partition of B and denote by B1, . . . , BN the resulting subboxes. Let

mBj (f) := inf
x∈Bj

f(x)

MBi(f) := sup
x∈Bj

f(x)

Then we may define the lower and upper sums respectively as:

L(f, P ) =
N∑

`=1

mB`
(f) · v(B`)

U(f, P ) =

N∑

`=1

MB`
(f) · v(B`)

In one dimension if f ≥ 0 then L(f, P ) is the sum of the green rectangles inscribed

by the region under the curve, and U(f, P ) is the area of the red rectangles

circumscribed by the region under the curve

2 4 6 8

1

2

3

4

4) We define now the Refinement of a partition Let B be a box and le tP =

6



(P1, . . . , Pn) and Q = (Q1, . . . , Qn) be two partitions of B. We say that Q is

a refinement of P is Pj ⊆ Qj for every j.

Given two partitions P = (P1, . . . , Pn) and P ′ = (P ′1, . . . , P
′
n) the common refin-

ment is Q = (P1 ∪ P ′1, . . . , Pn ∪ P ′n).

Lemma. Refining a partition increases lower sums and decreases upper sums. In

other words, let P be a partition of a box B and f : B → R be bounded. If Q is a

refinement of P , then:

L(f, P ) ≤ L(f,Q) U(f,Q) ≤ U(f, P )

Before proving this lemma, let us state a corollary

Corrolary. Let B be a box and f : B → R be a bounded function. If P and P ′ are

any two partitions of B, then L(f, P ) ≤ U(f, P ′).

Proof of corollary. Clearly for any partition we have L(f,Q) ≤ U(f,Q). Le tQ be

the common refinement of P and P ′ and use the lemma to see that:

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ′)

Great!
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Continue Defining the Riemann Integral

Definition. Given a box B = [a1, b1]× · · · × [an, bn] which is closed and a function

f : B → R that is bounded. We defined a partition P = (P1, . . . , Pn) of B as a tuple

where each Pj is a partition of [aj , bj ]. We then let {Bj}Nj=1 be the set of sub-boxes

determined by the partition. We then defined the lower sum and upper sum of f

over a partition P :

mBj := inf
x∈Bj

f(x)

MBj := sup
x∈Bj

f(x)

L(f, P ) :=
N∑

j=1

mBjv(Bj)

U(f, P ) :=

N∑

j=1

MBjv(Bj)

Exercise. U(f, P ) = −L(−f, P ).

We then talked about refinements of a partition, saying that Q = (Q1, . . . , Qn)

is a refinement of P = (P1, . . . , Pn) if P1 ⊆ Q1, P2 ⊆ Q2, . . ..

We defined the common refinement of P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn)

as P ∪Q = (P1 ∪Q1, . . . , Pn ∪Qn).

Lemma. Let P be a partition of a box B and f : B → R be bounded. If Q is a

1



refinement of P then:

L(f, P ) ≤ L(f,Q)

U(f, P ) ≥ U(f,Q)

Proof. We reduce first. Since U(f, P ) = −L(−f, P ), it is enough to prove the lemma

for lower sums.

Now sinceQ ca be obtained from P by successively adding points to the partition,

we can reduce to the case where Q is obtained from P = (P1, . . . , Pn) by adding a

single point. to Pk for some 1 ≤ k ≤ n.

By symmetry, we assume that k = 1. Suppose that B = [a1, b1]×· · ·×[an, bn] and

suppose that P1 consists of the points a1 = x0 < · · · < xk = b. Now Q is obtained

by adding the point q that lies in the interior of (xp−1, xp) for some 1 ≤ p ≤ k.

The sub-boxes determined by P are of the form [xi−1, xi]×S where S is a subbox

of [a2, b2]× · · · × [an, bn] determined by the partition (P2, . . . , Pn). Let us denote by

S the set of all such subboxes.

The sub-boxes determined by Q are of the form: [xi−1, xi]× S for 1 ≤ i ≤ p− 1

or p+ 1 ≤ i ≤ k and S ∈ S or [xp−1, q]× S or [q, xp]× S for S ∈ S . Therefore:

L(f, P ) =
k∑

i=1
S∈S

m[xi−1,xi]×S(f) · v([xi−1, xi]× S)

=
∑

i∈{1,...,p}∪{p+1,...,k}
S∈S

m[xi−1,xi]×S(f) · v([xi−1, xi]× S)

+
∑

S∈S

m[xp−1,xp]×S(f) · (xp − xp−1) · v(S)

The left sum appears in the definition of L(f,Q), and so we only consider the right

sum. The point is that the:

inf
x∈[xp−1,xp]×S

f(x) ≤ inf
x∈[xp−1,q]×S

f(x), inf
x∈[q,xp]×S

f(x)

This implies that:

m[xp−1,xp]×S(f) · (xp − xp−1) = m[xp−1,xp]×S(f) · (q − xp−1) +m[xp−1,xp]×S(f) · (xp − q)
≤ m[xp−1,q]×S(f) · (q − xp−1) +m[q,xp]×S(f) · (xp − q)

2



But then:

L(f,Q) =
∑

i∈{1,...,p}∪{p+1,...,k}
S∈S

m[xi−1,xi]×S(f) · v([xi−1, xi]× S)

+
∑

S∈S

m[xp−1,q]×S(f) · (q − xp−1) +m[q,xp]×S(f) · (xp − q)

And so L(f, P ) ≤ L(f,Q) because:

L(f, P ) =
∑

i∈{1,...,p}∪{p+1,...,k}
S∈S

m[xi−1,xi]×S(f) · v([xi−1, xi]× S)

+
∑

S∈S

m[xp−1,xp]×S(f) · (xp − xp−1) · v(S)

And we know that:

∑

S∈S

m[xp−1,xp]×S(f) · (xp − xp−1) · v(S)

≤
∑

S∈S

m[xp−1,q]×S(f) · (q − xp−1) +m[q,xp]×S(f) · (xp − q)

That was disgusting!!!

Corrolary. If P and P ′ are any two partitions of B then L(f, P ) ≤ U(f, P ′). The

proof was given last time.

Definition (Upper integrals, lower integrals, and Riemann integrability). Let B be

a box and let f : B → R be a bounded function.

a) We define the lower and upper integral of f over B respectively as:

∫

B
f(x) dx = sup

P
L(f, P )

∫

B
f(x) dx = inf

P
U(f, P )

These numbers exist because L(f, P ) is bounded above by (supx∈B f(x)) · v(B)

and U(f, P ) is bounded below by (infx∈B f(x)) · v(B)

b) We say that f is Riemann integrable over B provided that the lower and upper

integral agree. In this case we define the Riemann integral
∫
B f(x) dx as the

3



common value, aka:

∫

B
f(x) dx :=

∫

B
f(x) dx =

∫

B
f(x) dx

Remark. Strictly speaking, this is the definition of Darboux integrability. The

precise definition of Riemann integrability is: A bounded function f is Riemann

integrable with integral A on the box B if for every ε > 0 there exists a δ > 0 such

that if P is a partition of B with mesh ≤ δ, then for any choice of xα ∈ Bα, where

Bα are the sub-boxes determined by P :

∣∣∣∣∣
∑

Bα

f(xα)v(Bα)−A
∣∣∣∣∣ < ε

We will prove these are equivaelnt on Homework 9. F

Remark. Suppose that f : B ⊆ R2 → R is a non-negative function. Then L(f, P )

is the total volume of a bunch of boxes under the graph of f whereas the upper sum

is the total volume of a bunch of boxes that are circumscribed

Exercise. Show that if f : B ⊆ Rn → R is non-negative and bounded. Then f is

Riemann integrable if and only if the region in Rn+1 under the graph of f given by:

R = {(x, xn+1) ∈ Rn × R | 0 ≤ xn+1 ≤ f(x)}

is Jordan measurable with m(R) =
∫
B f(x) dx.

Example. Let f : [0, 1]2 → R be defined as:

f(x, y) =

{
0 if x and y are rationally dependent

1 otherwise

We call x and y rationally dependent provided that there exists (k1, k2) ∈ Z2 such

that (k1, k2) 6= 0 and k1x+ k2y = 0.

Now let P be any partition of B = [0, 1]2. For any subbox R resulting from the

partition we have:

mR(f) = inf
R
f = 0

MR(f) = sup
R
f = 1
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Since for any subbox of [0, 1]2 with non-empty interior, there exists (x, y) ∈ R such

that both x and y are rational numbers, and so they are rationally dependent. For

the second statement, since for any sub-box of [0, 1]2 with non-empty interior, there

exists (x, y) ∈ R such that x is a non-zero rational and y is irrational. This implies

that x, y are rationally independent.

Therefore:

L(f, P ) = 0 U(f, P ) = 1

For any partiton P of [0, 1]2. And therefore:

∫

B
f(x) dx = 0

∫

B
f(x) dx = 1

Therefore, f is not integrable

Theorem 1 (The Riemann Condition). Let B be a box in Rn and let f : B → R be

a bounded function. Then:

a) We always have that
∫
Bf(x) dx ≤

∫
Bf(x) dx

b) f is integrable if and only if for every ε > 0 there exists a partition P of B for

which U(f, P )− L(f, P ) < ε.

Remark. Reminiscient of the exercise in our discussion sections that E is Jordan

measurable if for any ε > 0 there eixsts elementary sets A ⊆ E ⊆ B such that

m(B \A) < ε.

Proof. Part (a) is trivial since we saw that L(f, P ) ≤ U(f, P ′) for any P and P ′.

Taking the sup over P and the inf over P ′ gives the result.

For (b), there are two directions:

(⇒) Suppose f is integrable and ε > 0. Choose a partiton P1 such that:

∣∣∣∣L(f, P1)−
∫

B
f

∣∣∣∣ <
ε

2

and another partition P2 such that:

∣∣∣∣U(f, P2)−
∫

B
f

∣∣∣∣ <
ε

2

5



Then we know that U(f, P2) − L(f, P1) < ε. Take P to be the common

refinement of P1 and P2. Then we know that:

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2)

This means that U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1) < ε. Thus we win!

(⇐) Let ε > 0 be arbitrary. Choose a partition P such that U(f, P )−L(f, P ) < ε.

Then:

∫

B
f −

∫

B
f ≤ U(f, P )− L(f, P ) < ε

Since we know that:

∫

B
f ≤ U(f, P )

∫

B
f ≥ L(f, P )

Since ε > 0 is arbitrary, we can take ε → 0 and so we must have that the

upper and lower integrals agree. Therefore f is integrable.

With this we win! ,

Proposition. Let B be a box. Denote by R(B) the set of all Riemann integrbale

functions on B. Then:

1) R(B) is a vector space. That is if f, g ∈ R(B) then f + cg ∈ R(B) for all c ∈ R.

Furthermore,
∫
B is a linear function from R(B) to R. That is:

∫

B
f + cg =

∫

B
f + c

∫

B
g

2) Every constant function f(x) = c is integrable, and in particular has integral∫
B f = c · v(B)

3) If P is any partition of B then:

v(B) =

∫

B
1 =

∑

Q

v(Q)

6



Which is the sum taken over all sub-boxes determined by P

4) Let B1, . . . , Bk be a collection of boxes that cover B, then:

v(B) ≤
k∑

j=1

v(Bj)

Proof. Let’s go!

1) We leave this as an exercise

2 & 3) For any partition P note that:

L(f, P ) = c
∑

Q

v(Q) = U(f, P )

And therefore by the Riemann condition, f is integrable. And furthermore:

∫

B
c = c

∑

Q

v(Q)

Taking P to be the trivial partition we have that
∫
B c = c · v(B)

4) Let B be a box containing B1, . . . , Bk. Now let P be a partition of B that

contains all the endpoints that define B1, . . . , Bk and B. By the above:

v(B) =
∑

Q⊆B
v(Q) ≤

k∑

j=1

∑

Q⊆Bi
v(Q) =

k∑

j=1

v(Bj)
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Characterization of Riemann Integrability

Definition. Let A ⊆ Rn. We say that A has Lebesgue measure zero in Rn if for

every ε > 0 there exists a covering of A by a countable collection B1, B2, . . . of boxes

such that:

∞∑

j=1

v(Bj) < ε

We’ll call this `-measure zero for convenience.

Proposition. Some properties of measure-zero sets:

a) If B ⊆ A and A has `-measure zero, then B has `-measure zero

b) If A =
⋃∞
j=1Aj and Aj has `-measure zero for all j, then A has `-measure zero.

c) A set A has `-measure zero if and only if for every ε > 0 there exists a covering

of A by a countable collection of open boxes B1, B2, . . . such that:

∞∑

j=1

v(Bj) < ε

Aka, we may replace the boxes in the definition by open boxes

d) If B is a box, then ∂B has `-measure zero

e) If v(B) 6= 0 then B does not have `-measure zero

Proof. Let’s go!
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a) (a) is direct

b) Fix some ε > 0. Then since Aj has `-measure zero there are boxes Bj1, Bj2, . . .

such that:

Aj ⊆
∞⋃

k=1

Bjk

∞∑

k=1

v(Bjk) <
ε

2j

And then:

A ⊆
∞⋃

j=1

⊆
∞⋃

j=1

∞⋃

k=1

Bjk

∞∑

j=1

∞∑

k=1

v(Bjk) <
∞∑

j=1

ε

2j
= ε

Therefore A has `-measure zero.

c) The converse direction is immediate. We handle the forward direction. Let

A ⊆ Rn have `-measure zero. Fix ε > 0. We know that there is a collection of

boxes B1, B2 . . . such that:

A ⊆
∞⋃

j=1

Bj

∞∑

j=1

v(Bj) <
ε

2n+1

Then for each Bj with v(Bj) 6= 0, let B̃j be the open box that is obtained from

Bj by dilating it (around its center), by a factor of 2. If v(Bj) = 0 then let B̃j

2



be an open box containing Bj with v(B̃j) <
ε

2j+1 . Then clearly:

A ⊆
∞⋃

j=1

Bj ⊆
∞⋃

j=1

B̃j

∞∑

j=1

v(B̃j) =
∞∑

j=1
v(Bj)=0

v(B̃j) + 2n
∞∑

j=1
v(Bj)6=0

v(Bj)

<
ε

2
+
ε

2
= ε

Great! Thus A has `-measure zero.

d) Let B = [a1, b1]× · · · × [an, bn]. Then ∂B is the union of the faces of B given by:

[a1, b1]× [aj−1, bj−1]× ξj × [aj+1, bj+1]× · · · × [an, bn]

Where 1 ≤ j ≤ n and ξj ∈ {aj , bj}. Let us denote this ace by Fj . Then:

Fj ⊆ Bj = [a1, b1]× · · · × [ξj − δ/2, ξj + δ/2]× · · · × [an, bn]

v(Bj) = δ
∏

i 6=j
bj − aj

We can make this arbitrarily small by choosing δ to be small, and so Fj has

`-measure zero, showing that ∂B has `-measure zero by part (b).

e) Now suppose that v(B) 6= 0 and B has `-measure zero for the sake of ontradiction.

We know that B = B ∪ ∂B and so by part (b) we know that B has `-measure

zero, and also v(B) 6= 0 since B ⊆ B. Now take ε = 1
2v(B) and let B1, B2, . . . be

a countable collection of open boxes such that:

B ⊆
∞⋃

i=1

Bj

∞∑

j=1

v(Bj) < ε

Since B is compact, there exists a finite subcollection, say B1, . . . , Bk such taht

3



B is a subset of B1 ∪ · · · ∪Bk. Then:

v(B) ≤
k∑

j=1

v(Bj) < ε =
1

2
v(B)

Since v(B) 6= 0 this gives a contradiction!

Great!

Example. The set of rational numbers in [0, 1] has `-measure zero, because it is the

countable union of singletons, and every singleton has `-measure zero. Recall that

this set is not Jordan measurable.

Theorem (Characterization of Riemann integrability). Let B ⊆ Rd be a box and

f : B → R be a bounded function. Let D be the set of points in B at which f is

discontinuous. Then f is Riemann integrable on B if and only if D has `-measure

zero.

Example. Consider the following function:

f(x) : [0, 1]→ R

x
f7−→
{

1 if x ∈ Q
0 if x 6∈ Q

Then D = [0, 1], which does not have `-measure zero. Therefore f is not Riemann

integrable.

Proof. Choose M such that |f(x)| ≤M for all x ∈ B:

(⇐) Suppose that the set D has `-measure zero. Let ε > 0 be given. We shall

exhibit a partitioon P of B such that:

U(f, P )− L(f, P ) ≤ Cε

where C is a constant independent of ε and P . By the Riemann criterion,

this implies that f is Riemann integrable. Since D has `-measure zero. There

4



exists open boxes B1, B2, . . . such that:

D ⊆
∞⋃

j=1

Bj

∞∑

j=1

v(Bj) < ε

For each x 6∈ D , f is continuous at x, and so there exists an open box Qx

centered at x such that:

∣∣f(y)− f(y′)
∣∣ < ε (∀y, y′ ∈ Qx ∩B)

Let Cx = (Qx ∩B)o which is a box. The collection {Bj} and {Cx} is an open

cover of B which is compact. Therefore there exists a finite subcover:

B1 ∪ · · · ∪Bp ∪ Cx1 ∪ · · · ∪ Cxq

Rename C` := Cx` . We have thus obtained that:

B =

(
p⋃

k=1

Bk

)
∪
(

q⋃

`=1

C`

)

p∑

k=1

v(Bk) < ε

y, y′ ∈ C` =⇒
∣∣f(y)− f(y′)

∣∣ < ε

Let P be the partition of B that contains all of the endpoints of the component

intervals of the boxes {Bk} and {Q`}. Then each Bk and each Q` is the union

of sub-boxes is the union of sub-boxes determined by P .

We split the sub-boxes R determined by P into two groups, which we will call

R1 and R2. R1 is the sub-boxes that are contained in Bk for some 1 ≤ k ≤ p,
then R2 are the sub-boxes contained in Q` for some 1 ≤ ` ≤ q.
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We then estimate:

U(f, P )− L(f, P ) =
∑

R

[MR(f)−mR(f)] · v(R)

≤
∑

R∈R1

[MR(f)−mR(f)] · v(R) +
∑

R∈R2

[MR(f)−mR(f)] · v(R)

≤
∑

R∈R1

2M · v(R) +
∑

R∈R2

ε · v(R)

≤ 2M ·
∑

R∈R1

v(R) + ε ·
∑

R∈R2

v(R)

≤ 2M ·
p∑

k=1

∑

R∈R1
R⊆Bk

v(R) + ε ·
∑

R

v(R)

= 2M ·
p∑

k=1

v(Bk) + ε · v(B)

< (2M + v(B)) · ε = C · ε

And this finishes this part of the proof!

(⇒) We now show that if f is integrable then D has `-measure zero. We need to

introduce the notion of the oscillation of a function at a point:

Definition. With g : A ⊆ Rn → R bounded and for x ∈ A we define the

oscillation of g at x:

oscδ g(x) := sup
y,y′∈A∩B(x,δ)

[g(y)− g(y′)]

osc g(x) := inf
δ>0

oscδ g(x)

Exercise. Show the following properties of the oscillation function:

a) oscδ g(x) = supB(x,δ)∩A) g − infB(x,δ)∩A g ≥ 0.

b) oscδ g(x) is increasing in δ, i.e. if δ < δ′ then oscδ g(x) ≤ oscδ′ g(x).

This follows because the supremum over a smaller set is smaller than the

supremum over a bigger set

c) Then we have that osc g(x) = limδ→0 oscδ g(x).

d) f is continuous at x if and only if osc f(x) = 0.
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The rest of this direction will be done in next section
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Theorem. Suppose f : B ⊆ Rn → R is bounded. Then f is Riemann integrable if

and only if the set D of discontinuities of f has Lebesgue measure zero.

Proof. We’ve already proved the ⇐= direction in class. We are in the process of

proving the =⇒ direction using the properties of osc, which we defined at a point

x ∈ B as follows:

oscδ f(x) := sup
y,y′∈B(x,δ)∩B

f(y)− f(y′) (δ > 0)

:= sup
B(x,δ)∩B

f − inf
B(x,δ)∩B

f

osc f(x) := inf
δ>0

oscδ f(x) = lim
δ→0

oscδ f(x)

This holds because oscδ f(x) is increasing in δ.

Exercise. Verify the properties of osc and oscδ:

a) oscδ f(x) = supB(x,δ) ∩B −
∫
B(x,δ) f ≥ 0

b) oscδ f is increasing with δ

c) f is continuous at x ∈ B ⇐⇒ osc f(x) = 0

Now we are ready to show that if f is Riemann integrable on B then D has

Lebesgue measure zero:

Dm :=

{
x ∈ B | osc f(x) ≥ 1

m

}

D = {x ∈ B | osc f(x) > 0} =

∞⋃

m=1

Dm

1



Since D is a countable union of the Dm, it suffices to show that each Dm has

Lebesgue measure zero.

Let ε > 0 be arbitrary. We will cover Dm by countably many boxes whose total

volume is less than ε. Note that since f is integrable we can find a partition P of

B such that:

U(f, P )− L(f, P ) <
ε

2m

We now write that Dm = D ′m ∪D ′′m where:

D ′m = {x ∈ Dm | x ∈ ∂R for some sub-box R determined by P}
D ′′m = Dm \D ′m

Note that D ′m ⊆
⋃
R ∂R where R ranges over the finitely many sub-boxes determined

by P . Therefore, since we saw last time that the boundary of any box has Lebesgue

measure zero, we know D ′m has Lebesgue measure zero. Of course we can then cover

D ′m by countably many boxes whose total volume is less than ε
2

It remains to cover D ′′m by countably many boxes of total volume less than ε
2 .

First note that if x ∈ D ′′m then:

osc f(x) ≥ 1

2m

x ∈ R◦ for some sub-box R determined by the partition

Therefore there exists a δ > 0 so that B(x, δ) ⊆ R and:

1

2m
≤ osc f(x) ≤ oscδ f(x) = sup

B(x,δ)
f − inf

B(x,δ)
f

≤ sup
R
f − inf

R
f = MR(f)−mR(f)

2



We multiply by v(R) and summing over all R we get:

1

2m

∑

R
R∩D ′′

m 6=∅

v(R) ≤
∑

R
R∩D ′′

m 6=∅

(MR(f)−mR(f)) · v(R)

≤
∑

R

(MR(f)−mR(f)) · v(R)

= U(f, P )− L(f, P ) <
ε

2m

And therefore:

∑

R
R∩D ′′

m 6=∅

<
ε

2

These boxes which intersect D ′′m provide the needed covering of D ′′m.

Remark. This theorem shows that sets of Lebesgue measure zero can be prob-

lematic for Riemann integration. In the sense that, changing a function on a set

of Lebesgue measure zero can make it non-integrable. In particular consider the

function:

1Q : [0, 1]→ R

1Q(x) =

{
1 if x ∈ Q
0 if x 6∈ Q

This is only different from a constant function on a set of measure zero, namely it

differs from the constant function on Q ∩ [0, 1]. This indicates a kind of “incom-

pleteness” of Riemann integration.

Corrolary. Let B be a box in Rn and f : B → R be Riemann integrable.

a) If f vanishes except on a set of Lebesgue measure zero, then
∫
B f = 0. We say

that f = 0 almost everywhere

b) If f ≥ 0 and
∫
B f = 0 then f vanishes except possibly on a set of Lebesgue

measure zero. That is f vanishes almost everywhere.

Remark . The corollary is not true without the assumption that f is Riemann

integrable.
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Proof. Let’s go!

a) Let D0 be the set {x ∈ B | f(x) 6= 0}. By assumption, D0 has `-measure zero.

Let P be any partition of B. For any sub-box R of this partition, we have that

R * D0 (since v(R) > 0). This implies there exists an x ∈ R such that f(x) = 0,

and so:

mR(f) ≤ 0

MR(f) ≥ 0

Therefore L(f, P ) ≤ 0 and U(f, P ) ≥ 0. But wait this implies that:

∫

B
f ≤ 0

∫

B
f ≥ 0

Since f is integrable, we then know that:

∫

B
f =

∫

B
f =

∫

B
f = 0

And so we are done.

b) Suppose f(x) ≥ 0 and
∫
B f = 0. We will show that if f is continuous at some x,

then f(x) = 0. Since the set of discontinuities of f has measure zero beause f is

Riemann integrable, this shows that the set of all x where f(x) 6= 0 must have

measure zero as well.

We will do this by contradiction. Suppose that f is continuous at some x0 and

f(x0) > 0. Then there exists an ε > 0 and a small box R centered at x0 such

that f(x) > ε for all x ∈ R.

Now consider the following function:

g(x) =

{
ε if x ∈ R
0 if x ∈ B \R

Then g is integrable since the set of discontinuities of g has measure zero. Also

f(X) ≥ g(x) for all x ∈ B and so:

∫

B
f

?
≥
∫

B
g

?
= ε · v(R) > 0
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Hani says we should verify
?
≥ and

?
=. I leave that to you ,

Another approach is to take a partition P obtained from the endpoints of R and

B. Then we get L(f, P ) ≥ ε · v(R0). where R0 is the sub-box of P containing

x0. But this implies that:

∫

B
f(x) dx = sup

P
L(f, P ) ≥ ε · v(R0)

In either case, we have an oops! Great!

Fubini’s Theorem

After defining the integral, the main question remains: how to compute integrals

in higher dimensions? (We know how to compute integrals in 1D using the Funda-

mental Theorem of Calculus and various techniques of integration)

Fubini’s Theorem will allow us to compute integrals in higher dimensions by

reducing them to iterated integrals in lower dimensions. This often allows us to

reduce things to the one-dimensional case.

One would wish to say that if f : Q→ R is integrable where Q = A×B and A

is a box in Rk and B is a box in R`. Then x 7→
∫
B f(x, y) dy exists for every x ∈ A

and defines an integrable function over A. Furthermore:

∫

Q
f =

∫

A

(∫

B
f(x, y) dy

)
dx (?)

This requires that the function x 7→
∫
B f(x, y) dy is defined for every x (i.e. f(x, y)

is integrable in y for fixed x ∈ A) and that function x 7→
∫
B f(x, y) dy is integrable

in x itself on A.

Unfortunately, such a nice property is not necessarily true for all x ∈ A. Indeed,

we will see that it is true except for sets of Lebesgue measure zero. This is no

problem for Lebesgue integrals (for which ? holds), but since Riemann integrability

can depend on sets of Lebesgue measure zero, we might lose there.

Theorem (Fubini’s Theorem). Let Q = A×B where A is a box in Rk and B is a

box in R`. let f(x, y) : Q→ R be a bounded function (where x ∈ A and y ∈ B)
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Then for each x ∈ A consider the lower and upper integrals:

x 7→
∫

B
f(x, y) dy x 7→

∫

B
f(x, y) dy

if f is integral over Q then the above two functions are integrable over A and:

∫

Q
f =

∫

A

(∫

B
f(x, y) dy

)
dx =

∫

A

(∫

B
f(x, y) dy

)
dx

Of course we have lower and upper integrals here. If we get agreement of the above

two functions on all of x then we would be very happy.

6
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Theorem (Fubini). Given a box Q = A×B where A ⊆ Rk and B ⊆ R` are boxes.

Let f : Q → R be a bounded function, and we write it as f(x, y) where x ∈ A and

y ∈ B.

If f is integrable over Q, then the functions:

x 7→
∫

B
f(x, y) dy x 7→

∫

B
f(x, y) dy

are both integrable over A, and furthermore:

∫

Q
f =

∫

A

∫

B
f(x, y) dy dx =

∫

A

∫

B
f(x, y) dy dx

Remark. The drawback is that the iterated integrals are in terms of lower and

upper integrals rather than having
∫
B f(x, y) dy. We cannot guarantee that these

agree

Corrolary. With the same assumptions as above, there holds the following:

a)
∫
B f(x, y) dy exists for almost every x ∈ A, that is, it exists except on a set

of Lebesgue measure zero. In other words x 7→
∫
B f(x, y) dy is defined for all

x ∈ A \N where N has Lebesgue measure zero.

b) If we further assume that
∫
B f(x, y) dy exists for all x ∈ A, then we have Fubini’s

Theorem as we would like it:

∫

Q
f =

∫

A

∫

B
f(x, y) dy dx

c) Let Q = I1 × · · · × In where Ik = [ai, bi] ⊆ R. Then if f : Q → R is continuous

1



then:

∫

Q
f =

∫

I1

· · ·
∫

In

f(x1, . . . , xn) dxn · · · dx1

Proof of Corollary. By Fubini’s:

∫

Q
f =

∫

A

∫

B
f(x, y) dy dx =

∫

A

∫

B
f(x, y) dy dx

0 =

∫

A




∫

B
f(x, y) dy −

∫

B
f(x, y) dy

︸ ︷︷ ︸
≥0 and integrable


 dx

Therefore by previous work:

∫

B
f(x, y) dy −

∫

B
f(x, y) = 0

except possibly on a set of measure zero. This gives part a).

Part b) is exactly from Fubini’s theorem, and part c) follows because continuous

functions are always integrable.

Proof of Fubini. Let us define the following:

I(x) =

∫

B
f(x, y) dy I(x) =

∫

B
f(x, y) dy

We need to show that if
∫
Q f exists then I(x) and I(x) are both integrable over A,

and their integrals are both
∫
Q f .

Let P be any partition of Q and write P = (PA, PB) are partitions of A and B.

Any sub-box R determined by P can be written as R = RA × RB where RA and

RB are sub-boxes of A and B determined by PA and PB respectively.

Now note that for any x ∈ RA:

mR(f) = inf
R
f(x, y) ≤ inf

y∈RB

f(x, y)

mR(f) ≤ mRB
(f(x,−))

2



Multiplying by v(RB) and summing over all sub-boxes RB we get for every x ∈ RA:

∑

RB

mR(f) · v(RB) ≤
∑

RB

mRB
(f(x,−))v(RB)

= L(f(x,−), PB) ≤ I(x)

Then if we take the infimum over x ∈ RA we obtain:

∑

RB

mR(f)v(RB) ≤ mRA
(I)

We then multiply by v(RA) and sum over all such RA:

∑

RA,RB

mR(f)v(RB)v(RA) ≤
∑

RA

mRA
(I)v(RA)

L(f, P ) ≤ L(I, PA)

An exactly similar argument establishes that:

U(f, P ) ≥ U(I, PA)

Given these two inequalities, we will be able to finish the proof. Note that because

I ≤ I we have:

L(f, P ) ≤ L(I, PA) ≤ U(I, PA) ≤ U(I, PA) ≤ U(f, P )

L(f, P ) ≤ L(I, PA) ≤ L(I, PA) ≤ U(I, PA) ≤ U(f, P )

These inqualities hold for any partition P . Let ε > 0 be arbitrary and choose P so

that U(f, P )− L(f, P ) < ε. Therefore from the above inequalities and a squeezing

argument:

U(I, PA)− L(I, PA) < ε

U(I, PA)− L(I, PA) < ε

3



This gives that I and I are both integrable on A. Now we get that:

L(f, P ) ≤
∫

Q
f ≤ U(f, P )

L(f, P ) ≤ L(I, P ) ≤
∫

A
I ≤ U(I, P ) ≤ U(f, P )

L(f, P ) ≤ L(I, P ) ≤
∫

A
I ≤ U(I, P ) ≤ U(f, P )

Therefore we get that:

∣∣∣∣
∫

Q
f −

∫

A
I

∣∣∣∣ < ε

∣∣∣∣
∫

Q
f −

∫

A
I

∣∣∣∣ < ε

And so since ε > 0 was chosen arbitrarily, we must have that:

∫

Q
f =

∫

A
I =

∫

A
I

Which is exactly what we wanted to show!

4



Integral over a bounded set

Up until now, we have been integrating functions on boxes. What if we want to

integrate a function over a region S ⊆ Rn that is not a box.

Definition. Let S ⊆ Rn be a bounded set and suppose that f : S → R is a bounded

function. We define fS(x) = f(x) when x ∈ S and fS(x) = 0 when x 6∈ S. Then fS

is defined on all of Rn, that is fS : Rn → R
Choose a box Q which contains S, then we define the integral of f over S as:

∫

S
f(x) dx =

∫

Q
fS(x) dx

provided that the integral on the right hand side exists.

For this definition to make sense, we should get the same answer if we change

the box Q. This is guaranteed by the following lemma:

Lemma. Let Q and Q′ be two boxes in Rn and let f : Rn → R be a function that is

supported inside Q ∩Q′. That is f = 0 outside Q ∩Q′.
∫

Q
f =

∫

Q′
f

Included in the statement is that f is integrable over Q if and only if f is integrable

over Q′.

Proof. Let’s go!

Case 1) Suppose that Q ⊆ Q′. Then f is supported in Q.

Note that f is integrable on Q if and only if the set of discontinuities of f

in Q has Lebesgue measure zero, we call this set D . But wait! The set of

discontinuities of f in Q′, which we call D ′, is equal to D ∪A, where A ⊆ ∂Q,

because f is constant on Q′ \Q. Since ∂Q has Lebesgue measure zero, and so

A has Lebesgue measure zero, we know D ′ has Lebesgue measure zero if and

only if D has Lebesgue measure zero. Therefore:

f is integrable over Q′ ⇐⇒ f is integrable over Q

Now let P be a partition of Q′ and let P̃ be the refinement of P obtained

from P by adding in the endpoints of Q. Then Q is the union of some sub-

5



boxes determined by P̃ . Write Q =
⋃

B∈S where S is the family of sub-boxes

determined by P̃ such that B ⊆ Q.

Now if B is determined by P̃ and B 6∈ S then f(x) = 0 for some x ∈ B.

Therefor if B 6∈ S then mB(f) ≤ 0 ≤MB(f). Therefore:

L(f, P ) ≤ L(f, P̃ ) ≤
∑

B∈S

mB(f)v(B) ≤
∫

Q
f

U(f, P ) ≥ U(f, P̃ ) ≥
∑

B∈S

MB(f)v(B) ≥
∫

Q
f

This holds for any P . Taking suprema and infima in P :

∫

Q′
f = supL(f, P ) ≤

∫

Q
f

∫

Q′
f = inf U(f, P ) ≥

∫

Q
f

And therefore
∫
Q′ f =

∫
Q f

Case 2) Pick Q′′ to be a sufficiently large box containing both Q and Q′. Then:

∫

Q
f =

∫

Q′′
f =

∫

Q′
f

Just by applying Case 1 twice, and of course existence of these integrals if and

only if one of them exists.
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Jordan measure and Riemann Integration

It turns out that the notion of Jordon measurability of sets is inti-
mately related (in a way essentially equivalent) to the notion of Rie-
mann integrability of functions. We will only display this relation in
dimension 1.

• Recall. To define the Riemann1 integral of a bounded function f
on an interval [a, b] ⊂ R, we first recall the notion of a partition P
which is a set of points x0 = a < x1 < x2 < . . . < xn = b, the norm
of the partition is ∆P = max1≤k≤n xk − xk−1, and we denote by
∆xk = xk − xk−1. For each such partition, we define to quantities:

L(f,P) =
n∑

k=1

f(x∗)∆xk, and U(f,P) =
n∑

k=1

f(x∗)∆xk,

where x∗ = inf [xk−1,xk] f and x∗ = sup[xk−1,xk] f .

Afterwards, we define the lower and upper Darboux integrals re-
spectively as

∫ b

a

f(x)dx = sup
P
L(f,P), and

∫ b

a

f(x)dx = inf
P
U(f,P).

where the extrema above are taken over all partitions of the inter-
val [a, b]. We say that f is Riemann integrable if the above two
numbers are equal. We define the common value as the Riemann
(or Darboux) integral of f .

1Strictly speaking, we are recalling here the notion of Darboux integral, but that is equivalent to the
notion of Riemann integrability that is often covered in introductory calculus classes.

1



Q1) Let [a, b] be an interval and let f : [a, b] → R be a bounded
nonnegative function. Show that f is Riemann integrable if
and only if the set E := {(x, t) : x ∈ [a, b] : 0 ≤ t ≤ f(x)} is
Jordan measurable in R2.

Q2) Let [a, b] be an interval and let f : [a, b] → R be a bounded
function. Show that f is Riemann integrable if and only if the
sets E+ := {(x, t) : x ∈ [a, b] : 0 ≤ t ≤ f(x)} and E− :=
{(x, t) : x ∈ [a, b] : f(x) ≤ t ≤ 0} are Jordan measurable in R2.

Remark. The above results generalize to higher dimensions.

Where we are right now?

We have thus far discussed the classical theory of Jordan measure,
which went as follows

(i) We define the notion of a box and its volume |B| or v(B),

(ii) Then we defined the notion of an elementary set and its ele-
mentary measure,

(iii) Then we defined the notion of Jordan inner and outer measure
mJ(E) and mJ(E) and said that a set E is Jordan measurable
if those two concepts agree.

In particular, unwinding the definition of the Jordan outer mea-
sure, we have that for any set E

mJ(E) = inf
E⊂B1∪...∪Bk

|B1|+ . . .+ |Bk|

where the infimum is taken over all finite coverings of E by boxes
B1, . . . , Bk.

Q3) Show that a set E is Jordan measurable if and only if for every
ε > 0 there exists an elementary set U containing E such that
mJ(U \ E) < ε.

The notions of Lebesgue outer measure and Lebesgue measurability
are refinements of the Jordan ones as follows:

2



– Lebesgue outer measure: We modify the notion of Jor-
dan outer measure by replacing the finite union of boxes by a
countable union of boxes, i.e.

m∗(E) = inf
E⊂∪∞j=1Bj

∞∑

j=1

|Bj|

where the union above is taken over boxes Bj ⊂ Rd.

Q4) Show that the Lebesgue outer measure m∗(E) is zero for
any countable set E. Contrast this to fact that the Jordan
outer measure of the rationals in [0, 1] was equal to 1.

– Lebesgue measurability A set E ⊂ Rd is said to be Lebesgue
measurable if for every ε > 0, there exists an open set U ⊂ Rd

containing E such that m∗(U \E) ≤ ε. If E is measurable, we
refer to m(E) = m∗(E) as the Lebesgue measure of E.

Remarks: Note that there is no need for E to be bounded for
this definition to make sense. Also, the notion of Lebesgue
measurability can be seen as a (finite to countably infinite)
generalization of that of Jordan measurability since it can be
shown that every open set is the countable union of closed
boxes.

3
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Where we are right now?

• We have thus far discussed the classical theory of Jordan measure,
which went as follows

(i) We define the notion of a box and its volume |B| or v(B),

(ii) Then we defined the notion of an elementary set and its ele-
mentary measure,

(iii) Then we defined the notion of Jordan inner and outer measure
mJ(E) and mJ(E) and said that a set E is Jordan measurable
if those two concepts agree.

In particular, unwinding the definition of the Jordan outer mea-
sure, we have that for any set E

mJ(E) = inf
E⊂B1∪...∪Bk

|B1|+ . . .+ |Bk|

where the infimum is taken over all finite coverings of E by boxes
B1, . . . , Bk.

Q0) Show that a set E is Jordan measurable if and only if for every
ε > 0 there exists an elementary set U containing E such that
mJ(U \ E) < ε.

Lebesgue outer measure

The notions of Lebesgue outer measure and Lebesgue measurability
are refinements of the Jordan ones as follows:

• Lebesgue outer measure: We modify the notion of Jordan outer
measure by replacing the finite union of boxes by a countable union
of boxes, i.e.

m∗(E) = inf
E⊂∪∞j=1Bj

∞∑

j=1

|Bj|

1



where the union above is taken over boxes Bj ⊂ Rd.

Q1) Show that m∗(E) ≤ mJ(E) where m̄J is the Jordan outer
measure.

Q2) Show that in the definition above the countable cover by boxes
in the definition of m∗(E) can be restricted to closed boxes or
open boxes.

Q3) Show that the Lebesgue outer measure m∗(E) is zero for any
countable set E. Contrast this to fact that the Jordan outer
measure of the rationals in [0, 1] was equal to 1.

• Lebesgue measurability A set E ⊂ Rd is said to be Lebesgue
measurable if for every ε > 0, there exists an open set U ⊂ Rd

containing E such that m∗(U \ E) ≤ ε. If E is measurable, we
refer to m(E) = m∗(E) as the Lebesgue measure of E.

Remarks:

(i) Note that there is no need for E to be bounded for this defini-
tion to make sense.

(ii) The notion of Lebesgue measurability can be seen as a (finite
to countably infinite) generalization of that of Jordan measura-
bility since it can be shown that every open set is the countable
union of closed boxes.

Q4) Show that m∗(∅) = 0.

Q5) (Monotonicity) Show that if E ⊂ F ⊂ Rd, then m∗(E) ≤
m∗(F ).

Q6) (Countable subadditivity) If E1, E2, . . . ⊂ Rd is a countable
sequence of sets, then m∗ (∪∞n=1En) ≤∑∞n=1m

∗(En).
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Exercise 0. Show that a set E is Jordan measurable if and only if for every ε > 0

there exists an elementary set U containing E such that mJ(U \ E) < ε.

Proof. TODO

Exercise 1. Show that m∗(E) ≤ mJ(E) where mJ is the Jordan outer measure

Proof. Fix some elementary set A which contains E and write it as the disjoint

union of a finite collection of boxes B1, . . . , Bn that cover E. Then note that:

m∗(E) = inf
E⊆⋃∞

j=1 Cj

∞∑

j=1

|Cj | ≤
n∑

j=1

|Bj | = m(A)

And so taking the infimum over all elementary sets A containing E we obtain:

m∗(E) ≤ mJ(E)

Just as desired.

Exercise 2. Show that in the definition above the countable cover by boxes in the

definition of m∗(E) can be restriced to closed boxes or open boxes

6



Proof. We deal with closed boxes first. Consider the sets:

S =




∞∑

j=1

|Bj | | E ⊆
∞⋃

j=1

Bj





Sc =




∞∑

j=1

|Bj | | E ⊆
∞⋃

j=1

Bj , Bj closed





So =




∞∑

j=1

|Bj | | E ⊆
∞⋃

j=1

Bj , Bj open





We know that m∗(E) = inf S and we wish to show that inf S = inf Sc = inf So.

Now note that of course So, Sc ⊆ S, and so inf S ≤ inf Sc, inf So, therefore it only

remains to show that inf S ≥ inf Sc, inf So.

To do so, by definition of greatest lower bound, it suffices to show that inf Sc

and inf So are both lower bounds for S. We handle each of these:

• Take some countable collection of boxes B1, B2, . . . such that their union con-

tains E, giving us an element
∑ |Bj | of S. Then we may consider the collection

of their closures B1, B2, . . .. Since Bj ⊆ Bj we know that the union of all these

contains E. So then
∑∣∣Bj

∣∣ ∈ Sc. But then we are in a great spot! We know∣∣Bj

∣∣ = |Bj |. So then we may write:

inf Sc ≤
∞∑

j=1

∣∣Bj

∣∣ ≤
∞∑

j=1

|Bj |

And so inf Sc is a lower bound for S, and so inf Sc ≤ inf S as desired.

• Take some countable collection of boxes B1, B2, . . . whose union contains E,

giving us an element
∑ |Bj | of S. We will show for any ε > 0 that:

inf So ≤ ε+
∞∑

j=1

|Bj |

And so taking ε→ 0 we see that inf So is a lower bound for S and so inf So ≤
inf S as desired.

Fix some such ε > 0, and consider the open box Cj obtained from Bj by

dilating Bj so that |Cj | ≤ |Bj |+ ε
2j

and Bj ⊆ Cj . Then
∑
Cj lies in So since

7



the union of all the Cj contains E. But then:

inf So ≤
∞∑

j=1

|Cj | ≤
∞∑

j=1

ε

2j
+

∞∑

j=1

|Bj | = ε+

∞∑

j=1

|Bj |

Taking ε → 0 we see that inf So ≤
∑ |Bj |, and so inf So is a lower bound for

S, giving us that inf So ≤ inf S as desired.

With this we are done! m∗(E) = inf S = inf So = inf Sc. Great!

Exercise 3. Show that the Lebesgue outer measure m∗(E) is zero for any countable

set E. Cotnrast this to the face that the Jordan outer measure of the rationals in

[0, 1] was equal to 1

Proof. Let E be a countable set. Then consider that:

E ⊆
⋃

x∈E
{x}

exhibits E as a countable union of boxes, all of measure zero. Therefore:

0 ≤ m∗(E) ≤
∑

x∈E
|{x}}| = 0

Showing us that m∗(E) = 0.

Let’s look for another way of doing this! Write E as x1, x2, . . .. We will allow

repeats here, and if E is empty just repeat xn = 0. Fix ε >) and then take the box

whose volume is ε
2j

around every point xj = (xj1, . . . , xjd). In other words:

Bj =
d∏

k=1

[
xjk −

d
√
ε

2
d
√

2j
, xjk +

d
√
ε

2
d
√

2j

]

|Bj | =
d∏

k=1

d
√
ε

d
√

2j
=

ε

2j

∞∑

j=1

|Bj | =
∞∑

j=1

ε

2j
= ε

8



Great! Since E ⊆ ⋃∞j=1Bj this means that:

0 ≤ m∗(E) ≤
∞∑

j=1

|Bj | = ε

Now taking ε→ 0 we get m∗(E) = 0.

Exercise 4. Show that m∗(∅) = 0.

Proof. Note that ∅ is a countable set, so this follows easily from Q3

Exercise 5. Show that if E ⊆ F ⊆ Rd then m∗(E) ≤ m∗(F ).

Proof. We will show that m∗(E) is a lower bound for the set defining m∗(F ), and

so by definition of infimum we have m∗(E) ≤ m∗(F ).

Fix some countable collection of boxesB1, B2, . . . containing F , then in particular

they contain E since F contains E, and so by definition of infimum:

m∗(E) ≤
∞∑

j=1

|Bj |

Taking the infimum on the right hand side we get:

m∗(E) ≤ m∗(F )

Great! This is exactly what we want!

Exercise 6. If E1, E2, . . . ⊆ Rd is a countable sequence of sets, then:

m∗
( ∞⋃

n=1

En

)
≤
∞∑

n=1

m∗(En)

Great!

Proof. Fix some ε > 0, we will show that:

m∗
( ∞⋃

n=1

En

)
≤ ε+

∞∑

n=1

m∗(En)

and so by taking ε→ 0 we will obtain the result. Take E =
⋃∞

n=1En for convenience.

9



Consider some En, then by definition of infimum and the fact that ε
2n > 0 there

is some countable collection of boxes Bn1, Bn2, . . . containing En such that:

m∗(En) ≤
∞∑

j=1

|Bnj | ≤ m∗(En) +
ε

2n

We can then sum over all En to get:

∞∑

n=1

∞∑

j=1

|Bnj | ≤
∞∑

n=1

m∗(En) +
∞∑

n=1

ε

2n
= ε+

∞∑

n=1

m∗(En)

And so now consider the countable collection of all the {Bnj}. This will be countable

by 295, and also it will cover E, since for every x ∈ E we know x ∈ En for some n

and then by construction x ∈ Bnj for some j. But then by definition of infimum:

m∗(E) ≤
∞∑

n=1

∞∑

j=1

|Bnj | ≤ ε+

∞∑

n=1

m∗(En)

Since ε > 0 was chosen to be arbitrary, we can take ε→ 0 and we see that:

m∗
( ∞⋃

n=1

En

)
= m∗(E) ≤

∞∑

n=1

m∗(En)

Great! This is the desired result ,.

10



MATH 395 Notes

Faye Jackson

November 18, 2020

Continuing the characterization of Jordan Measurability

Theorem. Let S be a bounded subset of Rn. The following are equivalent:

1) S is Jordan measurable

2) The constant function 1 is Riemann Integrable on S

3) ∂S has Lebesgue measure zero

4) ∂S has Jordan outer measure zero.

Proof. Let’s go!

1 =⇒ 2) Suppose S is Jordan measurable. We need to show that:

fS(x) = 1S =

{
1 if x ∈ S
0 if x 6∈ S

is Riemann integrable on some box B containing S. Now let ε > 0 be arbitrary

and pick two elementary sets E1 ⊆ S ⊆ E2 such that m(E2\E1) < ε. Without

loss of generality, by dilating the component boxes of E2 we may assume that

S ⊆ E◦2 .

Choose B to be some box containing E2. Now let P be a partition B that

contains the endpoints of the intervals defining the boxes whose union is E1

and E2. Let R1, . . . , Rm be some enumeration of the sub-boxes determined by

1



this partition. Then:

U(1S , P ) =
m∑

i=1

MRi(1S)v(Ri)

=
∑

Ri∩S 6=∅
MRi(1S)v(Ri)

≤
∑

Ri⊆E2

MRi(1S)v(Ri)

≤
∑

Ri⊆E2

v(Ri) = m(E2)

Similarly, we can show that L(1S , P ) ≥ m(E1). But then:

U(1S , P )− L(1S , P ) ≤ m(E2)−m(E1) = m(E2 \ E1) < ε

Great! Therefore 1S is integrable and:

m(E1) ≤ L(1S , P ) ≤
∫

S
1 dx ≤ U(1S , P ) ≤ m(E2)

and:

m(E1) ≤ m(S) ≤ m(E2)

Gives us that:
∣∣∣∣
∫

S
1 dx−m(S)

∣∣∣∣ < ε

For any ε > 0, and therefore:

m(S) =

∫

S
1 dx

2 =⇒ 1) Let B be a box which contains S and take ε > 0 to be arbitrary. Since 1S is

integrable on B, there exists a partition P of B such that:

U(1S , P )− L(1S , P ) < ε

Let R1, . . . , Rm be an enumeration of the sub-boxes determined by P . Now

2



set:

E1 =
⋃

Ri⊆S
Ri ⊆ S

E2 =
⋃

Ri∩S 6=∅
Ri ⊇ S

And then we see that:

U(1S , P ) =
m∑

i=1

MRi(1S)v(Ri)

=
∑

Ri∩S 6=∅
MRi(1S)v(Ri)

=
∑

Ri∩S 6=∅
v(Ri) = m(E2)

L(1S , P ) =

m∑

i=1

mRi(1S)v(Ri)

=
∑

Ri⊆S
mRi(1S)v(Ri)

=
∑

Ri⊆S
v(Ri) = m(E1)

Therefore!

m(E2 \ E1) = m(E2)−m(E1) = U(1S , P )− L(1S , P ) < ε

Since ε > 0 was arbitrary, we conclude that S is Jordan measurable.

2 ⇐⇒ 3) This is straightforward using our characterization of integrability and the fact

that 1S is discontinuous exactly at the points on the boundary of S.

3 =⇒ 4) Let ε > 0. Since ∂S has Lebesgue measure zero there is a collection of boxes

B1, B2, . . . such that ∂S ⊆ ⋃∞j=1Bj and
∑
v(Bj) <

ε
2 . Dilate each Bj into a

larger open box B̃j such that Bj ⊆ B̃j and v(B̃j) < 2v(Bj).

Now note that the B̃j forms an open cover of the closed and bounded set ∂S.

3



By compactness there is a finite sub-cover B̃j1 , . . . , B̃jk of ∂S. But then:

k∑

i=1

v(B̃jk) ≤
∞∑

j=1

v(B̃j) < 2
∞∑

j=1

v(Bj) < ε

Great! This shows that ∂S has Jordan outer measure zero.

4 =⇒ 3) follows trivially.

Improper Integrals

Up until now in the discussion of
∫
S f we restricted to the case where f and S are

both bounded. In this section we relax these assumptions a bit to include any open

set S and any continuous function f .

Remark . The ultimate dispensing of those two restrictions on S and f comes

through the theory of Lebesgue integration.

Before we proceed, we introduce some notation:

• Let J denote the family of Jordan measurable subsets of Rn.

• Let Jc denote the collection of compact Jordan measurable sets

• For a function f : S → R we define the positive part and negative part of f

as:

f+(x) = max(f(x), 0) f−(x) = max(−f(x), 0)

It is easy to veritfy that:

– f = f+ − f−
– f+, f− ≥ 0

– |f | = f+ + f−.

– If f is continous then both f+ and f− are continuous.

Definition. Let A be an open subset of Rn and let f : A → R be a continuous

function

4



• If f is non-negative on A we define the (extended) integral of f over A as:

∫

A
f = sup

D⊆A
D∈Jc

∫

D
f

provided that this supremum exists.

• If f is an arbitrary continuous function on A, write f = f+− f−, where these

are the positive and negative part of f . Provided that f+ and f− are integrable

on A in the extended sense we say f is also integrable and let:

∫

A
f =

∫

A
f+ −

∫

A
f−

Remark. We now have two difference definitons of
∫
A f whenA is open and bounded

and f is continuous and bounded. We shall see later that these two definitions are

equivalent if both integrals exist. The extended integral might exist without having

the traditional integrals existince Why?

Notice that if B ⊆ A are both open then if the extended integral of f over A

exists then the extended integral of f over B exists and:

∫

B
f ≤

∫

A
f

However if f = 1 then
∫
B 1 exisrts only when B is Jordan measurable, and tehre

are bounded open sets that are not Jordan measurable (we’ll see an example in our

Friday sessions)

Convention: If A is open and f is continuous then
∫
A f will always denote the

extended integral

Lemma. Let A ⊆ Rn be open. There exists a sequence of C1, C − 2, . . . of compact

Jordan measurable sets such that A =
⋃∞

i=1Cj and Cj ⊆ C◦j+1. In fact, Cj can be

taken to be elementary

Proof. Define:

DN = {x ∈ Rn | d(x,Ac) ≥ 1

N
, |x| ≤ N}

Thus DN is bounded and closed since x 7→ d(x,Ac) and x 7→ |x| are both continuous

5



functions. Now consider:

AN+1 = {x ∈ Rn | d(x,Ac) >
1

N + 1
, |x| < N + 1}

And then AN+1 is open and:

DN ⊆ AN+1 ⊆ DN+1

This implies that:

DN ⊆ D◦N+1

We clearly have by the fact that A is open that:

A =

∞⋃

N=1

DN

The sets DN may not be Jordan measurable. To fix this, note that for x ∈ DN there

exists a closed cube centered at x and contained in D◦N+1. The interior of these

cubes is an open cover of DN and hence by compactness there is a fintie subcover.

Define CN to be the elementary set given by the finite union of such a finite subcover

of DN made up of closed cubes. Thus CN is closed and bounded, and furthermore:

DN ⊆ C◦N ⊆ CN ⊆ D◦N+1 ⊆ C◦N+1

Therefore we see that CN is compact and Jordan measurable as well as the fact that⋃∞
N=1CN = A. Great! This finishes the proof.

Theorem. Let A ⊆ Rn be open and let f : A → R be a continuous function.

Choose a sequence CN ∈ Jc such that A =
⋃∞

N=1CN and CN ⊆ C◦N+1 as in the

above lemma. Then f is integrable over A if and only if
∫
CN
|f | is bounded by a

constant which does not depend on N . In this case,

∫

A
f = lim

N→∞

∫

CN

f

In particular, f is integrable over A if and onl if |f | is too.

We’ll prove this theorem next time. In the meantime, here are some properties

of the extended integral. For setup let A ⊆ Rn be open and let f, g : A → R be

6



continuous functions such that
∫
A f and

∫
A g exist:

a) f + cg is integrable for any c ∈ R and:

∫

A
f + cg =

∫

A
f + c

∫

A
g

b) If f ≤ g then:

∫

A
f ≤

∫

A
g

In particular:

∣∣∣∣
∫

A
f

∣∣∣∣ ≤
∫

A
|f |

c) If A and B are both open and A ⊆ B then if f is integrable over B then f is

integrable over A. Furthermore if f is non-negative on B then:

∫

A
f ≤

∫

B
f

d) If A and B are open and f is continuous on A ∪ B, then if f is integrable on A

and B then f is integrable on A ∪B and A ∩B. Furthermore we have:

∫

A∪B
f =

∫

A
f +

∫

B
f −

∫

A∩B
f

7
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Handout 10

Where we are right now?

• Lebesgue outer measure: We modify the notion of Jordan outer
measure by replacing the finite union of boxes by a countable union
of boxes, i.e.

m∗(E) = inf
E⊂∪∞j=1Bj

∞∑

j=1

|Bj|

where the union above is taken over boxes Bj ⊂ Rd. We saw last
time that this is smaller than the Jordan outer measure and that
the boxes above can be taken to be open or closed. We also saw
that any countable set has zero Lebesgue outer measure.

• Lebesgue measurability A set E ⊂ Rd is said to be Lebesgue
measurable if for every ε > 0, there exists an open set U ⊂ Rd

containing E such that m∗(U \ E) ≤ ε. If E is measurable, we
refer to m(E) = m∗(E) as the Lebesgue measure of E.

We saw last time some properties of this definition:

– Show that m∗(∅) = 0.

– (Monotonicity) Show that if E ⊂ F ⊂ Rd, then m∗(E) ≤
m∗(F ).

– (Countable subadditivity) If E1, E2, . . . ⊂ Rd is a countable
sequence of sets, then m∗ (∪∞n=1En) ≤∑∞

n=1m
∗(En).

A natural question is whether one has that an additivity property
for the outer measure: namely that if E,F are disjoint sets then
m∗(E ∪ F ) = m∗(E) +m∗(F )? While this turns out to be correct
for some sets E and F (to be called Lebesgue-measurable sets),

1



we already saw at the start of our discussion of measures that
this cannot hold for general sets (cf. the Banach-Tarski paradox).
The enemy here is that we might have the two sets E and F too
intertwined or entangled together which can cause the additivity
property to fail.

Q1) Show that if dist(E,F ) > 0, then m∗(E∪F ) = m∗(E)+m∗(F ).

Q2) Show that if E is an elementary set, then m∗(E) = m(E) where
m(E) is the elementary measure of E defined before.

Q3) Conclude that if E is any bounded set, then m(E) ≤ m∗(E) ≤
m(E) where m(E) and m(E) are the inner and outer Jordan
measures of E.

Q4) Construct a bounded open subset U of R that is not Jordan
measurable. Hint: Start with an enumeration of the rationals
in [0, 1] and create an open set whose Lebesgue outer-measure
is arbitrarily small but the Jordan outer measure is ≥ 1.

2
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Exercise 1. Show that if dist(E,F ) > 0 then m∗(E ∪ F ) = m∗(E) +m∗(F ).

Proof. We already have that m∗(E∪F ) ≤ m∗(E)+m∗(F ). We now use the property

of greatest lower bound to prove that m∗(E ∪ F ) ≥ m∗(E) +m∗(F ). To do so, we

will first prove a lemma:

Lemma. For any sets E and F with dist(E,F ) > 0 and any box B we have that

there is a finite collection of disjoint sub-boxes B1, . . . , BN covering B such that each

Bi intersects at most one of E and F .

Proof. Let ε := dist(E,F ) > 0. Now since ε > 0 we know that we can split B

into sub-boxes B1, . . . , BN each of diameter less than ε. Then consider that for

any i and any two points X, y ∈ Bi we have:

d(x, y) ≤ diam(Bi) < ε = dist(E,F )

We then may say that we cannot have x ∈ E and y ∈ F , since if we did then

we would have:

d(x, y) ≤ diam(Bi) < ε = dist(E,F ) ≤ d(x, y)

Which is a contradiction. Therefore Bi intersects at most one of E and F .

Fix some countable collection B1, B2, . . . which covers E ∪F . We wish to show that

m∗(E) +m∗(F ) is a lower bound for these, that is:

m∗(E) +m∗(F ) ≤
∞∑

i=1

Bi

3



Now for each Bi we use the lemma to split it into disjoint sub-boxes Bi1, . . . , BiNi

covering B such that each box Bij intersects at most one of E and F . In particular

we can split this up into disjoint collections of a countbale covering of E and a

countable covering of F . Then by infimums:

∞∑

i=1

Bi =
∞∑

i=1

Ni∑

j=1

Bij

≥
∞∑

i=1

∞∑

j=1
Bij∩E 6=∅

Bij +

∞∑

i=1

∞∑

j=1
Bij∩F 6=∅

Bij

≥ m∗(E) +m∗(F )

Taking the infimum on the left hand side we see that:

m∗(E ∪ F ) ≥ m∗(E) +m∗(F )

And therefore since we already have the other direction of the inequality by finite

subadditivity we have m∗(E ∪ F ) = m∗(E) +m∗(F ) just as desired! Great!

Exercise 2. Show that if E is an elementary set, then m∗(E) = m(E) where m(E)

is the elementary measure of E defined before

Proof. We want to only work with closed elementary sets. To do this we need a

lemma:

Lemma. For any elementary set E we have that m∗(E) and m∗(E).

Proof. This is not too difficult. First note since E ⊆ E we have by monotonicity

that m∗(E) ≤ m∗(E).

Now we wish to show that m∗(E) ≥ m∗(E). Note by finite sub-additivity

we know:

m∗(E) = m∗(E ∪ ∂E) = m∗(E) +m∗(∂E)

But wait! We know by previous IBL work that:

0 ≤ m∗(∂E) ≤ mJ(∂E) = 0

4



Since we have previously shown that the Jordan measure of the boundary of a

Jordan measurable set is zero, and E is elementary so it is Jordan measurable.

But then

TODO

Now write E, which must be an elementary set, as a finite union of disjoint boxes

E1, . . . , En by definition of an elementary set. Then note that the collection E1, . . . , En

covers E, and so by definition of the Lebesgue outer measure as an infimum:

m∗(E) ≤
n∑

j=1

|Ej | = m(E)

We now simply need to show the other inequality. To do so, it suffices to show that

m(E) is a lower bound for the set which defines m∗(E) by the definition of infimum.

By last homework, it suffices to consider countable coverings by open boxes.

Fix some countable collection of open boxes B1, B2, . . . which covers E. Now

consider that E is compact since elementary sets are bounded. Therefore there is

a finite subcollection B1, . . . , BN which covers E. By finite sub-additivity of the

elementary measure:

m(E) ≤
N∑

j=1

m(Bj) ≤
∞∑

j=1

|Bj |

And therefore taking an infimum on the right hand side:

m(E) ≤ m∗(E)

But wait! Then by the lemma and previous work on elementary measure we have:

m∗(E) = m∗(E) = m(E) = m(E)

Great! This is exactly what we wanted to show!!! ,

Exercise 3. TODO

Proof. TODO

Exercise 4. TODO

Proof. TODO
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Announcements

• Final to be released on Monday December 14 in the afternoon, and due on

Tuesday early morning. Say 4pm-4am

• To be submitted through gradescope

Recalling Improper Integrals

Recall. For A an open set and f continuous on A. We defined the extended
∫
A f

as follows:

• If f ≥ 0 then we define:

∫

A
f = sup

D∈Jc
D⊆A

∫

D
f

Where Jc is the set of all compact Jordan measurable sets.

• For general f we write f = f+ − f− and define:

∫

A
f :=

∫

A
f+ −

∫

A
f−

By convention if f is continuous and A is open then
∫
A f will mean the extended

integral.

Problem: If A is open and bounded and f is continuous and bounded, we have two

definitions for
∫
A f . The extended integral may exist without having the ordinary

1



integral existing. We will see today that if the ordinary integral exists then the

extended integral exists and they are equal. We also proved the following

Lemma. If A ⊆ Rn is open then there exists a sequence C1, C2, . . . of elementary

sets (also compact Jordan measurable) such that:

Cn ⊆ C◦n+1

A =
∞⋃

j=1

Cj

Theorem. Let A ⊆ Rn be open and let f : A→ R be continuous. Choose a sequence

Cn ∈ Jc as in the above lemma. Then f is integrable on A (in the extended sense)

if and only if
∫
Cn
|f | is bounded (uniformly in n). In this case,

∫

A
f = lim

n→∞

∫

Cn

f

In particular, f is integrable on A if and only if |f | is too.

Proof. We’ll do this in cases:

• Let f be non-negative. In this case
∫
Cn
f dx is a monotonically increasing

sequence of non-negative numbers, and as such it converges as n→∞ if and

only if it is uniformly bounded.

(⇒) Suppose that f is integrable over A. We want to show that
∫
Cn
f exists

and converges to
∫
A f as n→∞. Since f is continuous and Cn is compact,

then f is bounded on Cn, and hence
∫
Cn
f exists since Cn is Jordan

measurable.

Also:

∫

Cn

f ≤ sup
D⊆A
D∈Jc

∫

D
f =

∫

A
f

Therefore
∫
Cn
f is uniformly bounded in n. This implies that it converges,

now we need to show it converges to the right thing. We must also have

that:

lim
n→∞

∫

Cn

f ≤
∫

A
f

2



Great!

(⇐) Suppose limn→∞
∫
Cn
f exists. Then

∫
Cn
f is uniformly bounded in n by

some constant M . Now take any D ⊆ A and D ∈ Jc. Then we know

that:

D ⊆
∞⋃

n=1

C◦j

By compactness of D there exists a finite subcover, and since Cj ⊆ C◦j+1

there exists some n♥ such that D ⊆ C◦n♥ . Therefore we know that:

∫

D
f ≤

∫

Cn♥

f ≤M

And therefore we have a nonempty bounded set, so the supremum exists:

∫

A
f = sup

D⊆A
D∈Jc

∫

D
f ≤M

Since M can be taken to be the limit as n → ∞ of
∫
Cn
f then we get

that:

∫

A
f ≤ lim

n→∞

∫

Cn

f

Combining these two inequalities from the if and only if we win and get the

equality:

∫

A
f = lim

n→∞

∫

Cn

f

Perfect!

• Let’s deal with general f : A → R that is continuous. f is integrable over A

if and only if f+ and f− are integrable if and only if
∫
Cn
f+ and

∫
Cn
f− are

bounded sequences by case one.

But this is if and only if
∫
Cn
f+ + f− is a bounded sequence, since f+, f− ≥ 0.

But since f+ + f− = |f | this is only when
∫
Cn
|f | is a bounded sequence.

Therefore applying case 1 this is if and only if
∫
A |f | exists.

3



In this case we of course have:

∫

Cn

f+ →
∫

A
f+

∫

Cn

f− →
∫

A
f−

∫

Cn

f =

∫

Cn

f+ −
∫

Cn

f−

→
∫

A
f+ −

∫

A
f−

=

∫

A
f

So we are done!

Theorem. Let A be a bounded open set in Rn and let f : A → R be a bounded

continuous function. Then:

a) The extended integral exists

b) If the ordinary integral exists, then the two integrals are equal.

Proof. • Let us first show that the extended integral exists. Let M be an upper

bound for |f | on A. If D ∈ Jc is a subset of A, then:

∫

D
|f | ≤M

∫

D
1 = Mv(D) ≤Mv(B)

Where B is any box containing A. Therefore the set defining the extended

integral is bounded, and so the extended integral of |f | over A exists. This of

course implies that the extended integral of f over A exists by our previous

theorem.

• Now suppose that the ordinary integral
∫
A f exists and that f ≥ 0. Then let

B be a box containing A, then:

(ord)

∫

A
f =

∫

B
fA

4



Now let D ⊆ A and D ∈ Jc then we must have that:

∫

D
f =

∫

D
fA ≤

∫

B
fA = (ord)

∫

A
f

Therefore taking a sup over all D we get that:

(ext)

∫

A
f ≤ (ord)

∫

A
f

To show the reverse inequality, let P be any partition of B and let R1, . . . , Rm

denote the sub-boxes of this partition. Now let D =
⋃

Ri⊆ARi. Then D ⊆ A

and D ∈ Jc. Therefore:

L(fA, P ) =
m∑

i=1

mRi(fA)v(Ri)

=
∑

Ri⊆A
mRi(fA)v(Ri)

≤
∑

Ri⊆A

∫

Ri

f =

∫

D
f

≤ (ext)

∫

A
f

Take the supremum over all such P and we obtain:

(ord)

∫

A
f = sup

P
L(fA, P ) ≤ (ext)

∫

A
f

These two inequalities imply that the ordinary and extended integrals agree

as desired to give (b) when f ≥ 0.

• Write f = f+−f− as usual. Since f is integrable over A in the ordinary sense,

so are f+ = max(f, 0) and f− = max(−f, 0). Therefore:

(ord)

∫

A
f = (ord)

∫

A
f+ − (ord)

∫

A
f−

= (ext)

∫

A
f+ − (ext)

∫

A
f−

= (ext)

∫

A
f

And this finishes the proof

5



Corrolary. Let S be any bounded set and f : S → R be a bounded continuous

function. If f is integrable on S in the ordinary sense, then:

(ord)

∫

S
f = (ext)

∫

S◦
f

Proof. Recall that if
∫
S f =

∫
S◦ f , then apply the previous theorem.

This corollary is useful to translate results for extended integrals to ordinary

integrals (like the change of variable formula in the next section).

The Change of Variables Formula

Recall. THe change of variable formula in 1D, otherwise known as u-substitution.

Letting f, g : [a, b] → R be functions with g C1 and f continuous. Then letting

u = g(x) and du = g′(x) dx we have:

∫ b

a
f(g(x))g′(x) dx =

∫ g(b)

g(a)
f(u) du

There’s a nuance, we are using
∫ b
a f to denote the signed integral which is defined

as:

∫ b

a
f =

{ ∫
[a,b] f if a ≤ b
−
∫
[b,a] f if b < a

This u-substitution holds basically due to the chain rule, since if F is an antideriva-

tive for f then (F ◦ g)′ = f(g(x)) · g′(x)

Integrating from a to b then gives u-substitution by the Fundamental Theorem

of Calculus.

There is no notion of signed integrals in higher dimensions, so we first need

to formulate this theorem without signed integrals. For this note that g([a, b]) =

[g(a), g(b)] if g is increasing, i.e. g′ ≥ 0. And also g([a, b]) = [g(b), g(a)] if g is

decreasing, i.e. g′ ≤ 0.

6



If g is increasing then we can write:

∫

[a,b]
f(g(x)) · g′(x) =

∫

g([a,b])
f(u) du

And if g is decreasing then we can write:

∫

[a,b]
f(g(x))g′(x) dx = −

∫

g([a,b])
f(u) du

That is:

∫

[a,b]
f(g(x))(−g′(x)) dx =

∫

g([a,b])
f(u) du

In either case, we may write that if g is monotone, then:

∫

[a,b]
f(g(x))

∣∣g′(x)
∣∣dx =

∫

g([a,b])
f(u) du

This is the formula that generalizes easily to higher dimensions.

So we look at this genralizing this via the correspondence:

1D higher dimension

[a, b] set A

g([a, b]) g(A)

g is monotone and C1 g is a C1 diffeomorphism

u = g(x) u = g(x)

du = |g′(x)| dx du = |detDg|dx
And so we have something like:

∫

A
f(g(x)) |detDg|dx =

∫

g(A)
f(u) du

And we use this in the same way with:

u = g(x)

du = |detDg| dx

Definition. Let A be open in Rn and let g : A → Rn be a one-to-one function of

class Cr such that detDg(x) 6= 0 for x ∈ A. We call such a g a change of variables

7



on A

Remark. Recall that a Cr diffeomorphism is a one-to-one and onto function such

that g and g−1 are in Cr

The inverse function theorem tells us that g−1 ∈ Cr if g ∈ Cr and detDg(x) 6= 0.

A change of variables on A is then nothing but a Cr diffeomorphism from A to

g(A)

Theorem (Change of Variables Theorem). Let g : A→ B be a C1-diffeomorphism

of open sets in Rn and let f : B → R be a continuous function. Then f is integrable

over B if and only if f(g(x)) · |detDg(x)| is integrable over A, and:

∫

A
f(g(x)) · |detDg(x)|dx =

∫

B
f(u) du

8
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Change of Variables Theorem

Theorem. We look at:

∫

A
f(g(x)) |detDg(x)|dx =

∫

g(A)
f(u) du

Intuitively we have:

u = g(x)

du = |detDg| dx
x ∈ A, u ∈ g(A)

And so this holds whenever:

• g : A→ g(A) = B is a C1-diffeomorphism

• TODO

Example. We look at Polar Coordinate Integration. Let:

B = {(x, y) ∈ R2 | a2 < x2 + y2 < b2}

Then there are the polar coordinates:

g(r, θ) = (r cos(θ), r sin(θ))

Note that B = g(A) where A = {(r, θ) | a < r < b, 0 ≤ θ ≤ 2π}. Then let us

1



introduce:

Ã := {(r, θ) | a < r < b, 0 < θ < 2π}
B̃ := g(Ã) = B \ (x-axis)

And so then we have:

∫

B̃
f(x, y) dx dy =

∫

g(Ã)
f(x, y) dx dy

=

∫

Ã
f(g(r, θ)) · |detDg(r, θ)| dr dθ

And we know by previous homework that:

Dg(r, θ) =

(
cos θ −r sin θ

sin θ r cos θ

)

detDg(r, θ) = r > 0

Since we know that Dg is locally a C1-diffeomorphism via the inverse function

theorem and it is a bijection we know that it is a C1-diffeomorphism, which is great.

Now we apply Fubini:

∫

B̃
f(x, y) dx dy =

∫ 2π

0

∫ b

a
f(r cos θ, r sin θ)r dr dθ

Now since the x-axis has Lebesgue measure zero in R2, we then know that:

∫

B
f(x, y) dx dy =

∫

B̃
f(x, y) dx dy =

∫ 2π

0

∫ b

a
f(r cos θ, r sin θ)r dr dθ

We know this because for CN a nested sequence compact Jordan measurable set

contained in B and covering B we know:

∫

B̃
f(x, y) dx dy = lim

N→∞

∫

CN\(x-axis)
f(x, y) dx dy

= lim
N→∞

∫

CN

f(x, y) dx dy

=

∫

B
f(x, y) dx dy
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Great!

Example. Now for Spherical coordinate integration! Suppose we have:

B = {(x, y, x) | x > 0, y > 0, z > 0, x2 + y2 + z2 < a2}

Suppose we want to evaluate
∫
B f(x, y, z) dx dy dz. Suppose we take the change of

coordinates:

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ

And we’ll denote this by g(ρ, φ, θ). We aready calculated in previous homework that

detDg = ρ2 sinφ, and this is greater than 0 if ρ > 0 and 0 < φ < π. This happens

on the set:

A =
{

(ρ, φ, θ) : 0 < ρ < a, 0 < φ <
π

2
, 0 < θ <

π

2

}

And here we have g(A) = B. Therefore using that g is a C1 diffeomorphism from

A to B and using Fubini we have that:

∫

B
f(x, y, z) dx dy dz =

∫

g(A)
f(x, y, z) dx dy dz

=

∫

A
f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dρdφ dθ

=

∫ a

0

∫ π
2

0

∫ π
2

0
f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφ dθ dφ dρ

Some mapping Properties of diffeomorphisms

Lemma. Let A ⊆ Rn be open and let g : A→ Rn be a C1 function. If E ⊆ A is a

set of Lebesgue measure zero, then g(E) also has Lebesgue measure zero.

Remark. This is not true if g is only assumed to be continuous. In fact, there

exists a continuous g : [0, 1] → [0, 1]2 that is onto. This is called Peano’s space

filling curve.

Proof. Let CN be a family of compact sets such that A =
⋃∞
N=1CN and CN ⊆ C◦N+1.
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The note that:

EN := E ∩ CN E =

∞⋃

N=1

EN

It is enough to show that each g(EN ) has Lebesgue measure zero.

Fix ε > 0 and let M := supCN+1
‖Dg‖op < ∞, since g ∈ C1 and CN+1 is

compact.

Also since CN ⊆ C◦N+1 there exists a δ > 0 such that the δ-neighborhood of CN

is a subset of C◦N+1.

Since EN has Lebesgue mreasure zero we can cover EN by countably many boxes

Bj such that
∑
v(Bj) < ε. In fact, we can assume Without Loss of Generality that

all the Bj are cubes and have diameter < δ by covering them with cubes of diameter

< δ.

Then g(EN ) is a subset of
⋃
g(Bj) where Bj is a cube of diameter less than δ

Claim. diam g(Bj) ≤M diamBj.

Proof. Let x, x′ ∈ Bj . By the Mean Value Theorem for some c on the line

segment between x and x′:

g(x)− g(x′) = Dg(c)(x− x′)
∣∣g(x)− g(x′)

∣∣ ≤ ‖Dg(c)‖op
∣∣x− x′

∣∣

≤M diamBj

Great!

Therefore g(Bj) is contained in a ball of radius M diamBj which is then contained

in a cube of Q̃j of side length 2M diamBj . Also:

∑

j

v(Qj) =
∑

j

(2M)n · (diamBj)
n

=
∑

j

(2M)n · (v(Bj))
n · C

For some constant C, since the Bj are cubes, and so their diameter is proportional
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to their volume. But then:

∑

j

(Qj) = C(2M)n ·
∑

j

v(Bj) < (2M)n · C · ε

But then since (2M)n · C is a constant, we can take ε → 0 and we will be done.

This finishes the proof.

Corrolary. Let g : A → B be a diffeomorphism betweeen two open sets A and B.

Let K ⊆ A be compact. Then:

a) g(K◦) = (g(K))◦ and g(∂K) = ∂g(K)

b) If K is Jordan measurable, then so is g(K).

These results hold if K is not compact provided that ∂K ⊆ A and ∂g(K) ⊆ B.

Proof. Let’s go!

a) This takes some work!

• Since g−1 is continuous, then g is open. Therefore if B(x, δ) ⊆ K then

g(B(x, δ)) is an open subset of g(K), which implies that g(B(x, δ)) ⊆
(g(K))◦. And so g(K◦) ⊆ (g(K))◦.

• Also g(A \K) ⊆ B \ g(K) since g is one-to-one. Let y ∈ ∂g(K). Then there

exists an x ∈ A such that y = g(x). We know that x 6∈ K◦ since then y

would belong to (g(K))◦.

We also know x 6∈ A \K since otherwise y ∈ B \ g(K) which also does not

intersect ∂g(K) since g(K) is closed. Therefore x ∈ ∂K, and so ∂g(K) ⊆
g(∂K).

• Apply the same argument to g−1 and g(K) to obtain that:

g−1((g(K))◦) ⊆ K◦

∂K ⊆ g−1(∂g(K))

And therefore:

(g(K))◦ ⊆ g(K◦)

g(∂K) ⊆ ∂g(K)
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Combining this with the previous part gives part (a)

b) Note that if K is Jordan measurable, then ∂K has Lebesgue measure zero. Since

g is C1 we then know that g(∂K) = ∂g(K) has Lebesgue measure zero, and so

g(K) is Jordan measurable.

Volumes and Determinants

Theorem. Let A be an n × n matrix and let h : Rn → Rn be the transformation

h(x) = Ax. Let S be a Jordan measurable set in Rn and T := h(S). Then:

v(T ) = |detA| v(S)

Proof. T is Jordan measurable by the above corollary. Therefore when |detA| 6= 0

we have by the change of variables that:

v(T ) = v(T ◦) =

∫

T ◦
1 dx

=

∫

h(S◦)
=

∫

S◦
|detA| dy

= |detA| v(S◦) = |detA| v(S)

In Case 2, when detA = 0 we know that the range of h is a subspace V of Rn os

dimension p < n. Since V has Lebesgue measure zero (check!), we are done, since

then T ⊆ V will have Lebesgue measure zero.
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Last time, we proved that:

Theorem. Let A be an n× n matrix and h : Rn → Rn be given by h(x) = A · x. If

S is Jordan measurable then h(S) is Jordan measurable and:

vol(h(S)) = |detA| · vol(S)

Corrolary. Let a1, . . . , an be n linearly independent vectors of Rn. Let A = [a1, . . . , an]

be the n×n matrix whose columns are a1, . . . , an and let P be the parallelopiped given

by:

P =
{∑

ciai | 0 ≤ ci ≤ 1
}

Then v(P ) = |detA|

Proof. Let h(x) = Ax, then h takes the unit cube in Rn to P . Therefore:

vol(P ) = vol(h(S)) = |detA| · vol([0, 1]n) = |detA|

Orientations

Definition. Let β = (a1, . . . , an) be a basis of Rn. We call this basis right-handed

if det(a1, . . . , an) > 0 and left-handed if det(a1, . . . , an) < 0.

On a general vector space V . Let β = (v1, . . . , vn) and β′ = (w1, . . . , wn) be two

bases of V . Let wj = aj1v1 + · · · + ajnvn. Then the matrix A = (ajk) is invertible

1



since:

A = β′ [Id]β

is a change of basis matrix. We say that β and β′ have the same orientation if

detA > 0 and opposite orientation if detA < 0.

Remark. The choice of notation is motivated by the 2D and 3D cases in which we

have the right-hand rule

Exercise. Show that:

1) This gives an equivalence relation on the set of bases of V with two equivalence

classes.

2) Another way to define this equivalence relation is as follows. Pick T : Rn → V

a linear isomorphism. Any basis β of V can be writte as {Ta1, . . . , Tan} where

(a1, . . . , an) is a basis of Rn. So given two bases β = {Ta1, . . . , Tan} and β′ =

{Tb1, . . . , T bn}.
β and β′ have the same orientation if and only if (a1, . . . , an and (b1, . . . , bn)

have the same orientation in Rn.

Theorem. Let C be a non-singular n× n matrix and let h : Rn → Rn be given by

h(x) = Cx. Let (a1, . . . , an) be a basis in Rn. Then the two bases (a1, . . . , an) and

(h(a1), . . . , h(an)) have the same orientation if and only if detC > 0.

Proof. Let bj = h(aj). Then C[a1, . . . , an] = [b1, . . . , bn]. But then:

detC · det(a1, . . . , an) = det(b1, . . . , bn)

And so detC > 0 if and only if det(a1, . . . , an) and det(b1, . . . , bn) have the same

sign, which is exactly when they have the same orientation.

Isometries of Rn

Definition. Let h : X → Y be a map between metric spaces (X, dX) and (Y, dY ).

We say that h is an isometry provided that:

dY (h(x1), h(x2)) = dX(x1, x2) (x1, x2 ∈ X)
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Remark. Isometries are always one-to-one, but they might not be onto. For exam-

ple h : R→ R2 where h(x) = (x, 0).

Here we will discuss isometries from Rn → Rn with the same Euclidean metrix

Example. Lets grab some examples!

1) Consider h : Rn → Rn where h(x) = x− a for a constant a ∈ Rn, since:

h(x)− h(y) = x− a− y + a = x− y =⇒ ‖h(x)− h(y)‖ = ‖x− y‖

2) Let h : Rn → Rn where h(x) = Ax and A is an orthogonal matrix. Then h is an

isometry:

Recall. A is orthogonal means ATA = AAT = Id. In other words:

〈Ax,Ay〉 = 〈ATAx, y〉 = 〈x, y〉

That is A preserves inner products

But then we know that:

‖Ax−Ay‖2 = 〈Ax−Ay,Ax−Ay〉
= 〈A(x− y), A(x− y)〉
= 〈x− y, x− y〉 = ‖x− y‖2

And therefore h is an isometry.

The interesting fact is that these are the only two examples of isometries on Rn

Theorem. Let h : Rn → Rn be a map such that h(0) = 0. Then:

a) h is an isometry if and only if h preserves inner products

b) h is an isometry if and only if h = Ax where A is an orthogonal matrix.

Proof. Let’s go!

a) Consider that:

‖h(x)− h(y)‖2 = 〈h(x)− h(y), h(x)− h(y)〉
= 〈h(x), h(x)〉 − 2〈h(x), h(y)〉+ 〈h(y), h(y)〉
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And:

‖x− y‖2 = 〈x− y, x− y〉
= 〈x, x〉 − 2〈x, y〉+ 〈y, y〉

Now we can do this. Therefore if h preserves inner products we must have

‖h(x)− h(y)‖ = ‖x− y‖, and so h is an isometry.

On the other hand, if h is an isometry and h(0) = 0 then:

〈h(x), h(x)〉 = |h(x)|2 = |h(x)− h(0)|2 = |x− 0|2 = 〈x, x〉

We also know for every x, y ∈ Rn that |h(x)− h(y)|2 = |x− y|2 and so using the

above two equations again we see that:

2〈h(x), h(y)〉 = 2〈x, y〉 =⇒ 〈h(x), h(y)〉 = 〈x, y〉

b) The backwards implication was discussed in the previous direction. For the for-

ward direction consider {h(e1), h(e2), . . . , h(en)} where e1, . . . , en is the standard

basis of Rn. Since h preserves inner products {h(e1), . . . , h(en)} is an orthonor-

mal set, which implies that it is an orthonormal basis.

Therefore for any x ∈ Rn we can express:

h(x) =
n∑

j=1

αj(x)h(ej)

And then we know that:

〈h(x), h(ek)〉 =
〈

n∑

j=1

αj(x)h(ej), h(ek)

〉

=
n∑

j=1

αj(x) · 〈h(ej), h(ek)〉

=
n∑

j=1

αj(x) · 〈ej , ek〉

= αk(x)
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But then we have that:

αk(x) = 〈h(x), h(ek)〉 = 〈x, ek〉 = xk

And therefore:

h(x) =
n∑

j=1

xjh(ej) = Ax

where A = [h(e1), . . . , h(en)]. Since this is an orthonormal basis, A is orthogonal

and so we are done.

Corrolary. Let h : Rn → Rn. Then:

1) h is an isometry if and only if it is an orthogonal transformation followed by a

translation. I.e. h(x) = Ax+ p where A is an orthogonal matrix and p ∈ Rn.

2) If h is an isometry, then h preserves volumes as well. That is if S is Jordan

measurable, then h(S) is Jordan measurable and:

v(h(S)) = v(S)

Proof. This is pretty cool!

1) Let h̃(x) = h(x) − h(0). Then h is an isometry if and only if h̃ is an isometry

with h̃(0) = 0, and this holds by the previous theorem if and only if h̃(x) = Ax

for A some orthogonal matrix.

Then by rearrangement h is an isometry if and only if:

h(x) = h̃(x) + h(0) = Ax+ h(0)

For some orthogonal matrix A.

2) We know that A ·S is Jordan measurable with volume |detA| · v(S) = v(S) since

|detA| = 1 when A is orthogonal. Of course A · S + p has the same measure as

A · S, and so h(S) = A · S + p, and therefore v(h(S)) = v(S) as desired!!!

Great!
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