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I. Probability

I.1. Motivation and Measure-Theoretic Framework

Why should you care about probability? Two good reasons

• Random objects can be easier to analyze than deterministic objects. E.g. three random points on

the disk are not collinear.

• Quantum Mechanics informs us that the world is likely to be “inherently probabilistic.”

• Probabilistic method in combinatorics. The idea here is to define a random object of the desired type,

and show it has the desired property with positive probability, hence an object with this property

must exist.

• Heuristically, prime numbers “act like” a random set X ⊆ N such that

P[n ∈ X] =
1

log n
,

and {n ∈ X} are independent.

• Sometimes possible to describe solutions to PDEs in terms of Brownian Motion (B.M.)

• Brownian Motion in complex analysis, which we’ll see a lot of in this course.

Definition I.1.1

A probability space is a triple (Ω,F ,P), where

• Ω is a set of “possible states of the world.”

• F is a σ-algebra of subsets of Ω, i.e. it is closed under complements, countable unions, and

contains ∅,Ω. We think of F as the collection of “events” (aka things that could happen).

• P is a measure on the space (Ω,F) such that P(Ω) = 1. We think of this as the “probability.”

Namely P(E) ∈ [0, 1] for E ∈ F is the “probability that the event E occurs”

Notationally, we say an event E ∈ F occurs almost surely (a.s.) if P(E) = 1.

Whenever we talk about probability, we’re going to be fixing a set (Ω,F ,P), so from now on this will be our

running notation and always assumed.

Definition I.1.2

Let X be a topological space (with the Borel σ-algebra). A random variable (R.V.) taking values in

X is a measurable function

X : Ω → X .

We identify X and X̃ if P[X = X̃] = 1. To specify this exactly, this is

P({ω ∈ Ω | X(ω) = X̃(ω)}) = 1.

Similar to the notation {X = X̃} as above, we’ll take the following notation in general for A ⊆ X a Borel

subset of X ,

{X ∈ A} = {ω ∈ Ω | X(ω) ∈ A}
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Definition I.1.3

Let X be a R.V. taking values in X . The law or distribution of X is the probability measure µX on

X defined by

µX(A) = P[X ∈ A]

for all A ⊆ X Borel. In other words, this is the pushforward measure. Given two R.V.s X,Y , we say

they agree in law or agree in distribution provided that µX = µY . We’ll abbreviate this as X
d
= Y .

Given X,Y R.Vs taking values in X ,Y, we say that the joint law of X,Y

The fundamental thing in probability theory is really the laws or distributions of random variables / their

joint laws. The underlying probability space Ω is not quite as important. It just has to be large enough to

support our random variables and their laws. A really good source is Tao’s notes on probability [15]. This

will provide some good intuition. We also have the following intuition

Example I.1.1

If B is the Borel σ-algebra for X , then (X ,B, µX is a probability space. We can then let X̃(x) = x

for all x ∈ X , and then X̃ is a R.V. with law µX .

Note however that a Random Variable is not determined by its law

Example I.1.2

Let Ω = {1, 2, 3, 4, 5, 6}2 (thought of as pairs of dice rolls, with the appropriate probabilities) and

consider X : Ω → R to be the first dice roll and Y : Ω → R the second dice roll. Then X,Y are not

identical random variables, but they clearly have the same law.

Example I.1.3

If X is countable, then µX is determined by P[X = y] for all y ∈ X .

Definition I.1.4

Let X = R. Then a R.V. X taking values in R has a cumulative distribution function (cdf)

FX(y) = P[X ≤ y] = µX((−∞, y]).

Note that µX is determined by FX .

For F a cdf, we have the following elementary properties. F is

• Non-decreasing,

• F : R → [0, 1].

• Continuous from the right,

µX((−∞, y]) = lim
z→y+

µX((−∞, z])

by the downward continuity of measures.

• F (y)− limz→y− F (z) = P[X = y].
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Conversely, if F : R → [0, 1] is non-decreasing, continuous from the right, and limy→∞ F (y) = 1, limy→−∞ F (y) =

0, we can define a probability measure on R by

µ((a, b]) = F (b)− F (a).

This is sometimes called a Lebesgue–Stieltjes measure.

Definition I.1.5

Let X be a R.V. taking values in Rd for d ≥ 1. If the law µX is absolutely continuous with respect

to the Lebesgue measureon Rd, then the Radon-Nikodym derivative f = dµ
dLeb is called the probability

density function (pdf) or density of X.

If d = 1 then F ′ = f almost everywhere in this case.

Definition I.1.6

Let X be a random variable in R. The expectation (or mean) of X is

E[X] :=

∫
Ω

X(ω) dP(ω) =
∫
R
y dµX(y)

You can do a similar definition when X takes values in a Banach space.

Definition I.1.7

If E[X] exists, then the variance is

varX := E[(X − E[X])2] =

∫
R
(y − E[X])2 dµX(y).

Note: even if the expectation exists, the variance may not, for example if f ∈ L1(R) is your density but

f ̸∈ L2(R).
The standard deviation is σ(X) =

√
varX.

Example I.1.4

The Gaussian or normal distribution with mean a ∈ R and variance σ2 > 0 is the probability measure

on R with density

f(y) =
1√
2πσ

exp

(
− (y − a)2

2σ2

)
We’ll abbreviate X ∼ N(a, σ2) to mean X has Gaussian distribution with mean a and variance σ2. The

standard Gaussian is a = 0, σ2 = 1. If X ∼ N(0, 1), then σX + a ∼ N(a, σ2).

This formula looks sort of arbitrary, but later as we’ll see with the central limit theorem (see: Theorem I.2.7)

the Gaussian is a sort of universal distribution. This makes it a central object in probability theory.

Exercise I.1.5

Show that the density function f(y) is actually a density. In other words
∫∞
−∞ f(y) dy = 1.

Lemma I.1.1 (The Law of The Unconcious Statistician)

Let X be a R.V. taking values in X and let g : X → R be a measurable function. Then g(X) is a
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random variable, and

E[g(X)] =

∫
X
g(y) dµX(y).

Proof. If g =
∑N

j=1 aj1Aj
(the sum of indicators), for Aj ⊆ X Borel and disjoint, then

E[g(X)] =

N∑
j=1

ajP[X ∈ Aj ] =

∫
X
g(y) dµX(y).

In general, approximate g by linear combinations of indicators. More explicitly∫
X
g(y) dµX(y) =

N∑
j=1

aj

∫
X
1Aj

(y) dµX(y)

=

N∑
j=1

ajµX(Aj) =

N∑
j=1

ajP[X ∈ Aj ].

We also have

E[g(X)] =

∫
Ω

g(X(ω)) dP(ω) =
N∑
j=1

aj

∫
Aj

X(ω) dP(ω) =
N∑
j=1

ajP[X ∈ Aj ].

Lets dispel a common mistake that people make when learning probability with an extremely concrete

example.

Example I.1.6

Pairwise independence does not imply independence of the whole collection. To explain this, let

X1, X2 be independent random variables in Z/2Z with distribution P[Xj = 0] = P[Xj = 1] = 1
2 (aka

coin flips!)

Let X3 = X1 +X2 modulo 2. It is not difficult to check that

(X1, X2)
d
= (X1, X3)

d
= (X2, X3)

all in distribution. Thus any two of them are independent. But the triple X = (X1, X2, X3) are not

independent. For example, the probability of the event X = (0, 0, 1) is 0, while the pairwise product

would be 1
8 .

Example I.1.7

Let X,Y be random variables in R. Assume that (X,Y ) has a density with respect to Lebesgue

measure on R2. Call this density f : R2 → [0,∞).

Then (X,Y ) are independent if and only if there exist functions f1, f2 : R → [0,∞) such that

f(x, y) = f1(x)f2(y) Lebesgue-almost everywhere. This is equivalent to the distribution (X,Y ) factors

as the product measure.
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Lemma I.1.2

Let X,Y be independent random variables in R with E[|X|] < ∞,E[|Y |] < ∞. Then we have that

E[XY ] = E[X]E[Y ]

Proof. We see that, by the law of the unconscious statistician

E[XY ] =

∫
R2

uv dµ(X,Y )(u, v) =

∫
R2

uv dµX(u) dµY (v) =

∫
R
udµX(u)

∫
R
v dµY (v) = E[X]E[Y ],

by applying the Fubini theorem.

Again lets emphasize a common mistake. It is possible to have E[XY ] = E[X]E[Y ] forX,Y not independent

random variables.

Lets recall things from last time. Just to fix some terminology, let (Ω,F ,P) be a probability space, X a

topological space with the Borel σ-algebra, and X : Ω → X a random variable (aka a measurable function).

Some people use the following terminology.

• Ω is the event space, or sometimes called the state of the world.

• X is the state space for X.

µX(A) = P(X ∈ A) = P(X−1(A)) is called the law or distribution.

Definition I.1.8

Let X be a random variable in X . The σ-algebra generated by X is

σ(X) = {{X ∈ A} | A ⊆ X , Borel} ⊆ F .

In probability, we often think of σ(X) as the “information determined by X.” This matches intuition

because upon seeing X we can only tell if an event like {X ∈ A} happened.

As always, we should fill our head with examples and remember them dearly

Example I.1.8

X = 1E which is 1 on E, 0 on Ec. Then

σ(X) = {∅, E,Ec,Ω}.

Example I.1.9

Lets say that Ω = R2, and X(a, b) = a.

σ(X) = {A× R | A ⊆ R Borel}.

Example I.1.10

If g : X → Y is measurable and X is a random variable in X , then

σ(g(X)) ⊆ σ(X).

Namely, if B ⊆ Y is Borel, then {g(X) ∈ B} = {X ∈ g−1(B)} ∈ σ(X). This again matches intuition, if

you have a function of X, it contains at most as much information as the value of X itself.

This statement is really interesting, and really captures the intuition. Lets make it even more precise.
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Proposition I.1.3

Conversely to the example above let X be a R.V. in X , Y a R.V. in R and suppose that Y is σ(X)

measurable (aka Y is measurable and σ(Y ) ⊆ σ(X)). Then in fact there exists g : X → R such that

Y = g(X) almost surely.

Proof. First assume Y =
∑N

j=1 aj1Ai
(X) for Ai ⊆ X Borel measurable. Then g(x) =

∑n
j=1 ai1Aj

(x). Sine

Y is σ(X)-measurable, there exists Yn random variables such that each is a linear combination of indicators

and Yn → Y almost surely.

For each n, there exists gn : X → R measurable such that Yn = gn(X). Let g(x) = lim infn→∞ gn(x). We

then have that

Y = lim
n→∞

gn(X) = g(X).

almost surely.

Perfect! This demonstrates that the information-theoretic perspective on σ(X) is rigorous.

We’ll now switch to the notion of independence.

Definition I.1.9

Events E,F are independent if

P(E ∩ F ) = P(E) · P(F ).

An indexed family of events E ⊆ F is independent provided that

P[E1 ∩ · · · ∩ En] =
∏

for any E1, . . . , En ∈ E (the fact this is an indexed family instead of a set is important). We also define

if P[F ] ̸= 0, the conditional probability

P[E | F ] =
P[E ∩ F ]

P[F ]
.

We then have that E,F are independent if and only if P[E | F ] = P[E].

It’s fruitful to extend this discussion to independence of σ-algebra, and then to random variables.

Definition I.1.10

A collection of σ-algebras F1, . . . ,Fn are independent if for all events Ej ∈ Fj , j = 1, . . . , n we have

P[E1 ∩ · · · ∩ En] =

n∏
j=1

P(Ej).

Likewise, a collection of R.V.s X1, . . . , Xn are independent if σ(X1), . . . , σ(Xn) are independent σ-

algebras.

The interpretation of this is that having any information about n− 1 of these random variables doesn’t tell

you any information about the remaining random variable.

The following lemma provides a directly measure-theoretic equivalent definition to independence.
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Lemma I.1.4

Let X1, . . . , Xn be random variables with state spaces X1, . . . ,Xn respectively. Then the following

are equivalent

(i) X1, . . . , Xn are independent.

(ii) For all events Aj ∈ Xj Borel for j = 1, . . . , n we have

P[X1 ∈ A1, . . . , Xn ∈ An] =

n∏
j=1

P[Xj ∈ Aj ]

(iii) Let X = (X1, . . . , Xn) be a variable in X1 × . . .×Xn. Then

µX = µX1
× · · · × µXn

as the product measure.

Proof. Assertion (i) is equivalent to assertion (ii) just by definition of σ(Xj) and independence.

Assertion (ii) implies assertion (iii) since a measure on X1 × · · · × Xn is determined by its values on

rectangular sets A1 × · · · ×An.

We’ll now show assertion (iii) implies assertion (ii). We find that

P[X1 ∈ A1, . . . , Xn ∈ An] = P[X ∈ A1 × · · · ×An] = µX(A1 × · · · ×An)

=

n∏
j=

µXj
(Aj) =

n∏
j=1

P(Xj ∈ Aj)

Great!

Last time: we introduced independent events and independent random variables.

Lemma I.1.5

Let X1, . . . , Xn be pairwise independent random variables in R, and assume E[|Xj |] < ∞. Then

var(X1 + · · ·+Xn) =

n∑
j=1

var(Xj).

Proof. Assume without loss of generality that E[Xj ] = 0, by subtracting off the means from each Xj . This

works because for c constant

E[X − c] = E[X]− c var(X − c)− var(X).

Thus we can just take X ′
j = Xj − E[Xj ]. Then

var

 n∑
j=1

Xj

 = E


 n∑

j=1

Xj

2


=

n∑
i,j=1

E[XiXj ] =

n∑
j=1

E[X2
j ] +

∑
i ̸=j

E[Xi]E[Xj ]

8
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=

n∑
j=1

E[Xj ]
2 =

n∑
j=1

var(Xj).

Perfect!

Example I.1.11

var(X +X) = var(2X) = 4 var(X).

Definition I.1.11

A sequence of random variables {Xj}j≥1 are independent and identically distributed (abbreviated

i.i.d.) if for all n ≥ 1, X1, . . . , Xn are independent and Xj
d
= Xi for all i, j (they all have the same

distribution).

Theorem I.1.6

Let µ be a Borel probability measure on R and let (Ω,F ,P) be the unit interval with Lebesgue measure

on the Borel σ-algebra.

Then there exists a sequence of iid random variables Xn on (Ω,F ,P) with distribution µ.

Proof. See the homework!

Theorem I.1.7

Let µ be a probability measure on a topological space X . Then there exists some probability space

(Ω,F ,P) on which is defined a sequence of iid random variables with distribution µ.

We’ll now swap over to notions of convergence. Much of the content here is similar to measure theory, but

there are some new things, a lot of new language, and different things are generally emphasized.

Definition I.1.12

Let (Xn)n≥1 be random variables in a metric space (X , D). We say that Xn converges to X,

(1) Almost surely provided that

P[ lim
n→∞

Xn = X] = 1,

which is equivalent to almost everywhere convergence of measurable functions.

(2) In probability provided that for all ε > 0,

lim
n→∞

P[D(Xn, X) < ε] = 1,

which is equivalent to convergence in measure in measure theory (weaker than almost sure

convergence).

(3) In distribution provided that µXn → µX weakly (aka weak convergence of measures on X ). In

other words for all bounded continuous functions f : X → R we have E[f(Xn)] → E[f(X)]. In

measure theory language this is∫
X
f(y) dµXn

(y) →
∫
X
f(y) dµX(y).

The relationship between these is summarized by

Almost sure convergence =⇒ convergence in probability =⇒ convergence in distribution.

9
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Example I.1.12

Take {Xn}n≥1, independent identically distributed. Then Xn → X1 in distribution, trivially, as

µXn
= µX1

. However, independence will forbid these random variables from converging in probability

(so long as the Xn are not constant).

Lemma I.1.8

Let {Xn}n≥1 and X be random variables taking values in R, then the following are equivalent

(i) Xn → X in distribution.

(ii) E[f(Xn)] → E[f(X)] for all smooth, compactly supported f .

(iii) P[Xn ∈ [a, b]] → P[X ∈ [a, b]] for all a < b with P[X ∈ {a, b}] = 0.

Proof. Lets complete the cycle

• (i) =⇒ (ii) because smooth compactly supported functions are in particular bounded and continuous.

• (ii) =⇒ (iii). The idea is to construct a bump function approximating the indicator for [a, b]. Let

a < b and ε > 0. Let gε : R → [0, 1] be smooth such that gε ≡ 1 on [a + ε, b − ε] and gε ≡ 0 on

R \ [a, b]. Then we compute, for any Y , that

P[Y ∈ [a+ ε, b− ε]] ≤ E[gε(Y )] ≤ P[Y ∈ [a, b]].

If P[X ∈ {a, b}] = 0, then

P[X ∈ [a+ ε, b− ε]] = P[X ∈ [a, b]]− o(1),

where o(1) → 0 as ε → 0 (from the upper continuity of the measure). Thus

lim inf
n→∞

P[Xn ∈ [a, b]] ≥ lim inf
n→∞

E[gε(Xn)]

≥ E[gε(X)]

≥ P[X ∈ [a+ ε, b− ε]]

= P[X ∈ [a, b]]− o(1).

Thus lim infn→∞ P[Xn ∈ [a, b]] ≥ P[X ∈ [a, b]]. We can do a similar argument to get that

lim supn→∞ P[Xn ∈ [a, b]] ≤ P[X ∈ [a, b]]. This time we’d approximate by a function whose support

is slightly larger than the interval.

• (iii) =⇒ (i) by a similar approximation argument. Namely we approximate a bounded continuous

function by finite linear combinations of indicators of closed intervals. Notably µX , µXn
are finite

measures, and so “most” of the measure will be in some compact set, so the behavior at ∞ is not

too important.

10
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Theorem I.1.9 (Weak Law of Large Numbers (LLN))

Let {Xn}n≥1 be iid random variables taking values in R with finite variance var(Xn) < ∞. Then

1

n

n∑
j=1

Xj → E[X1]

in probability.

Proposition I.1.10 (Markov’s Inequality)

Let X be a non-negative random variable in R. Then for all R > 0,

P[X > R] ≤ E[X]

R
.

Applying this to Xp, for p > 0, we obtain “Chebyshev’s inequality”

P[X > R] = P[Xp > Rp] ≤ E[Xp]

Rp
.

Proof of Markov’s Inequality. We see that X ≥ R1X>R, hence

E[X] ≥ RE[1X>R] = RP[X > R].

Proof of Weak LLN. Write a ≡ E[X1]. We see that

E

 1

n

n∑
j=1

Xj

 = a.

Consequently, we have that

E


 1

n

n∑
j=1

Xj − a

2
 = var

 1

n

n∑
j=1

Xj


=

1

n2
var

 n∑
j=1

Xj


=

1

n2

n∑
j=1

var(Xj).

Great! Now since these are identically distributed, we obtain,

E


 1

n

n∑
j=1

Xj − a

2
 =

1

n2
· (n var(X1)) =

var(X1)

n

Now by Markov’s inequality

P

∣∣∣∣∣∣ 1n
n∑

j=1

Xj − a

∣∣∣∣∣∣ > ε

 = P


 1

n

n∑
j=1

Xj − a

2

> ε2



11



Faye Jackson April 24th, 2024 MATH 327 - I.1

≤ 1

ε2
· 1
n
var(X1).

Perfect! For fixed ε > 0, this goes to 0 as n → ∞, and this is exactly the definition of convergence of
1
n

∑n
j=1 Xj → a = E[X1] in probability.

Theorem I.1.11 (Strong Law of Large Numbers)

Let {Xn}n≥1 be independent random variables with the same mean a ∈ R. Assume there exists a

c > 0 so that E[X4
j ] ≤ c for all j. Then 1

n

∑n
j=1 Xj → a almost surely.

Remark I.1.1

If {Xn}n≥1 are iid with E[|X1|] < ∞ then 1
n

∑n
j=1 Xj → E[X1] almost surely. See [DD19, Theorem

2.4.1].

Lemma I.1.12 (Borel-Cantelli)

Let {Ej}j≥1 be events. If
∑∞

j=1 P[Ej ] < ∞, then P[infinitely many Ej ’s occur] = 0.

Proof. The event that infinitely many Ej occur is the same as

{infinitely many Ei occur} =

∞⋂
n=1

∞⋃
j=n

Ej .

But let Gn =
⋃∞

j=n Ej . But then for all m ∈ N.

P[
∞⋂

n=1

Gn] ≤ P[Gm] ≤
∞∑

j=m

P[Ej ],

and the right hand side goes to zero as m → ∞ since
∑∞

j=1 P[Ej ] < 1. Thus P[
⋂∞

n=1 Gn] = 0, just as

desired.

Proof. Proof of the law of large numbers. Assume without loss of generality that a = 0.

Claim

There exists a c1 > 0 such that E
[(∑n

j=1 Xj

)4]
≤ c1n

2.

Alright, lets just expand

E


 n∑

j=1

Xj

4
 =

n∑
i,j,k,ℓ=1

E[XiXjXkXℓ].

By independence and having mean zero, any term where one of i, j, k, ℓ is different from the rest is zero.

There are then two kinds of terms

(a) E[X4
j ] for some j,

(b) E[X2
i X

2
j ] = E[X2

i ]E[X2
j ] for some i, j.

12
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There are n terms of type (a), and by hypothesis E[X4
j ] ≤ c. The total contribution then of terms of

type (a) is nc. By Cauchy-Schwarz,

E[X2
j ] ≤ E[X4

j ]
1/2 ≤ c1/2.

Hence each term of type (b) is ≤ c. The total contribution is then ≤ Cn2 for some constant depending

on the combinatorics (the number of permutations of 4 copies of 2 distinct objects). Thus

E


 n∑

j=1

Xj

4
 =

n∑
i,j,k,ℓ=1

E[XiXjXkXℓ] ≤ cn+ Cn2,

and the result follows.

Great! Now consider

En =

 1

n

n∑
j=1

Xj > n−1/8


=


n∑

j=1

Xj > n7/8

 .

By Markov, we see that

P[En] ≤
E
[(∑n

j=1 Xj

)4]
n7/2

≤ c1n
2 · n−7/2 = c1n

−3/2.

Great! By Borel-Cantelli, this tells us that almost surely En occurs for only finitely many n. This is equivalent

to the statement that almost surely

1

n

n∑
j=1

Xj ≤ n−1/8

for all n large enough. This implies that it goes to zero almost surely.

I.2. Fourier Analysis for Probability

We’ll now begin the study of Fourier analysis in probability. In this context, the fourier transform is called

a characteristic function. Namely

Definition I.2.1

Let X be a random variable in R. The characteristic function φX : R → C is

φX(t) = E[eitX ] =

∫
R
eity dµX(y),

which is the Fourier transform of µX .

Lemma I.2.1

t 7→ φX(t) is continuous.

13
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Proof. Let tn → t. Then ∣∣eitnX − eitX
∣∣→ 0

pointwise, and
∣∣eitnX − eitX

∣∣ ≤ 2, so the dominated convergence theorem applies to give φX(tn) → φX(t).

Lemma I.2.2

If X1, . . . , Xn are independent, then

φX1+···+Xn(t) =

n∏
j=1

φXj (t).

In the language of Fourier transforms, this is equivalent to the fourier transform of a convolution is the

product of the fourier transforms.

Proof. We see that

φX1+···+Xn
(t) = E[eit(X1+···+Xn)] = E[eitX1 · · · eitXn ] =

∏
j

E[eitXj ] =
∏
j

φXj
(t).

Lemma I.2.3

Suppose X is a normal distribution X ∼ N(a, σ2). Then φX(t) = eiat−σ2t2/2.

Proof. See Problem Set 2.

Lemma I.2.4

Let X be a random variable in R, and let n ∈ N such that E[|X|n] < ∞. Then

φ
(n)
X (0) = inE[Xn].

Proof. First we need an elementary inequality for exponentials. Namely, for all y ∈ R, we have∣∣∣∣∣eiy −
n∑

k=0

(iy)k

k!

∣∣∣∣∣ ≤ min

(
|y|n+1

(n+ 1)!
,
2 |y|n

n!

)
.

The proof of this is just elementary calculus (e.g. integration by parts). For a proof see Lemma 3.3.7 in

[DD19].

Set y = tX and take expectations, then∣∣∣∣∣φX(t)−
n∑

k=0

ikE[Xk]

k!
tk

∣∣∣∣∣ ≤ E

[
min

{
tn+1 |X|n+1

(n+ 1)!
,
2tn |X|n

n!

}]

≤ tnE

[
min

{
t |X|n+1

(n+ 1)!
,
2 |X|n

n!

}]
.

14
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Now wait, the left hand side of this minimum goes to 0 pointwise as t → 0, and the right hand side is bounded

by assumption. Thus the dominated convergence theorem applies, and we find that∣∣∣∣∣φX(t)−
n∑

k=0

ikE[Xk]

k!
tk

∣∣∣∣∣ = o(tn)

as t → 0. Perfect! This implies that
∑n

k=0
ikE[Xk]

k! tk is the degree n Taylor polynomial for φX at t = 0. Hence

the result follows! φ
(n)
X (0) = inE[Xn].

Last time: We defined the characteristic function φX(t) = E[eitX ]..

Proposition I.2.5

Let {Xj}j≥1 and X be random variables in R. Assume that φXj
(t) → φX(t) Lebesgue almost

everywhere. Then Xj → X in distribution.

Proof. Let g : R → R be a smooth compactly supported function We need to show that

E[g(Xj)] → E[g(X)].

Well, let

ĝ(y) =

∫
R
e−ixyg(x) dx,

and so since g is a Schwartz function (being compactly supported), so is ĝ by basic Fourier analysis. Thus

we can apply the Fourier inversion formula to find that

g(x) =
1

2π

∫
R
eixy ĝ(y) dy.

Now we can look at the following

E[g(Xj)] =
1

2π
E
[∫

R
eiXjy ĝ(y) dy

]
=

1

2π

∫
R
E[eiXjy]ĝ(y) dy

=
1

2π

∫
R
φXj

(y)ĝ(y) dy.

Here we’ve used that everything converges absolutely to exchange the expectation and the integral. Similarly

E[g(X)] =
1

2π

∫
R
φX(y)ĝ(y) dy.

Note now that ∥φXj
∥∞, ∥φX∥∞ = 1 and ĝ is Schwartz (so in particular L1). Thus by the dominated

convergence theorem (with |ĝ| dominating), we then see that E[g(Xj)] → E[g(X)].

Corollary I.2.6

If X,Y are random variables with φX = φY almost everywhere, then X,Y have the same distribution.

Proof. Take Xj = Y , then φXj
= φX , and so X = Xj → X in distribution. And thus Y = X in

distribution.

15
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Theorem I.2.7 (Central Limit Theorem)

Let {Xj}j≥1 be independent identically distributed random variables in R with E[Xj ] = 0, var(Xj) = 1.

Now let

Zn =
1√
n

n∑
j=1

Xj .

Then Zn → N(0, 1) (the standard normal distribution) in distribution.

Remark I.2.1

This is telling us some interesting information. We know E[Zn] = 0 from the law of large numbers,

which is sort of first order information. The second order information, that
∑n

j=1 Xj has size ≈
√
n is

very interesting, and is a phenomenon referred to as “square root cancellation.” This is also telling us

that N(0, 1) is actually very special, and not some random distribution. In some sense it is universal.

Proof. Let Z ∼ N(0, 1). Then we know from the Complex Analysis homework that

φZ(t) = e−t2/2.

We want to show that φZn
(t) → φZ(t) Lebesgue almost everywhere, so that we can use the proposition. Let

φ = φX1
= φXj

(since these all have the same distribution).

Then, using independent of eitXj/
√
n we may write

φZn
(t) = E

[
exp

(
it · 1√

n

n∑
i=1

Xj

)]
=

n∏
j=1

E[eitXj/
√
n] = (φ(t/

√
n))n.

Great! Now we know that φ(0) = E[e0] = 1. We also know that φ′(0) = iE[X1] = 0 and φ′′(0) = i2E[X2
1 ] = −1

by the mean and variance assumptions on the Xj . We can now do a Taylor expansion

φ(t/
√
n) = 1− t2

2n
+ ot(1/n).

Where ot(1/n) → 0 possibly dependent on t. So now we see that

LogφZn
(t) = nLogφ(t/

√
n) = nLog

(
1− t2

2n
+ ot(1/n)

)
= n

(
− t2

2n
+ o(1/n)

)
→ − t2

2
.

Here we’ve used the taylor expansion of the logarithm. . . but note that this is a complex logarithm, which is

scary! Well we can choose the branch cut on the negative real axis, because we only care about the logarithm

of something close to 1. Hence

φZn
(t) → e−t2/2 = φZ(t),

just as desired! An alternative proof could use that for all a ∈ R,

lim
n→∞

(
1 +

a

n

)n
= ea,

and explicit errors on this estimate.
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II. Conditional Expectation

Let (Ω,F ,P) be a probability space, and let G ⊆ F be a sub-σ-algebra. Here as usual we think of G as a

“packet of information.” If X is a random variable taking values in R, then we can think of E[X] as our “best

guess” for the value of X. We wish to define E[X | G], the conditional expectation given G. In other words,

our “best guess for X given information in G.” This will in fact be a random variable.

Remark II.0.1

We shouldn’t think of E[X | G] as saying we know that events in G happened. But rather, as saying

that we can tell whether or not events in G happen with our measurement devices.

Now lets translate this idea into abstract measure theory. We’ll give it in terms of its properties and then

show it exists and is unique.

Definition II.0.1

Let X be a random variable in R, E[|X|] < ∞. Then the conditional expectation of X given G,
denoted E[X | G], is the unique G-measurable random variable such that for all G ∈ G we have

E[1GE[X | G]] = E[X1G].

In other words, ∫
G

E[X | G](ω) dP(ω) =
∫
G

X(ω) dP(ω).

Another way to think of this is that E[X | G] is the “projection (in L2) ofX onto {G-measurable random variables}.”
This definition doesn’t work quite if X ̸∈ L2, but you can do some approximation arguments.

Proposition II.0.1

In the setting of the above definition, E[X | G] exists and is unique (up to events of probability 0).

Proof of Existence. We’re going to apply the Radon-Nikodym theorem. To start, lets do some reductions

(1) If X = X1 −X2 and E[X1 | G],E[X2 | G] exist we can just set E[X | G] = E[X1 | G]− E[X2 | G].
(2) We can write X = X1X≥0 − (−X)1X<0. Thus we can assume that X ≥ 0 (is nonnegative).

Now for G ∈ G we let

ν(G) = E[1GX] =

∫
G

X(ω) dP(ω).

This is a measure on G, and if P[G] = 0, we see that ν(G) = 0. Therefore ν is absolutely continuous with

respect to P defined on G. Thus, by the Radon-Nikodym theorem, there exists a nonnegative G-measurable

function Z = dν
dP so that

ν(G) =

∫
G

Z(ω) dP(ω)

Thus E[1GX] = E[1GZ], and Z is G-measurable, so Z can be E[X | G].

Proof of Uniqueness. Assume that Z, Z̃ are G-measurable and they both satisfy the definition of E[X | G].
Let G = {Z > Z̃} ∈ G. Hence

E[(Z − Z̃)1G] = E[X1G]− E[X1G] = 0.

17
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Because (Z− Z̃) is positive on 1G, we see this can only happen if P[Z > G̃] = 0. Likewise P[Z < G̃] = 0.

Last Time: We defined the conditional expectation of a random variable X with E[|X|] < ∞ given a

sub-σ-algebra G ⊆ F is defined as a G-measurable random variable E[X | G] satisfying

E[X1G] = E[E[X | G]1G],

where G ∈ G. We’ll now develop some lemmas that show that thinking of this as the “best guess for X given

G” is correct. All the lemmas will be trivial to prove, motivating this definition as the right one.

Lemma II.0.2

E[E[X | G]] = E[X].

Proof. Take G = Ω.

Lemma II.0.3

For any constants a, b ∈ R, we have

E[aX + bY | G] = aE[X | G] + bE[Y | G]

Proof. Check that aE[X | G] + bE[Y | G] satisfies the definition of E[aX + bY | G] using the linearity of

expectation.

Lemma II.0.4

If X is G-measurable, then E[X | G] = X.

Proof. By definition.

Lemma II.0.5

If σ(X) is independent from G, then E[X | G] = E[X].

Proof. Observe that E[X] is G-measurable (being a constant) and

E[1GX] = E[1G]E[X]

= E[E[X]1G].

by independence and linearity of expectation.

Lemma II.0.6

If H ⊆ G ⊆ F are σ-algebras, then

E[E[X | G] | H] = E[X | H].

Proof. E[E[X | G] | H] satisfies the defining property of E[X | H].

Lemma II.0.7

If Y is G-measurable and E[|XY |] < ∞, then

E[XY | G] = Y E[X | G].

18
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Proof. First we prove this for Y = 1G for G ∈ G, then for all H ∈ G, we have

E[1HY E[X | G]] = E[1G∩HE[X | G]]

= E[1G∩HX] = E[1GY X].

Hence Y E[X | G] = E[XY | G] for Y an indicator function. In general, we approximate Y by a linear

combination of indicator functions and use linearity.

Definition II.0.2

Let X be a random variable in R with E[|X|] < ∞, and let Y be any random variable. Then we

define the conditional expectation of X given Y by E[X | Y ] := E[X | σ(Y )].

In the aim of being concrete, lets link this directly with a very traditional way of thinking about conditional

expectation from probability.

Example II.0.1

Let Y be a random variable taking values in a countable set A, X be a random variable taking values

in R with E[|X|] < ∞. We’ll now compute E[X | Y ].

Claim

E[X | Y ] =
∑

a∈A
E[X1A]
P[Y=a]1Y=a.

Proof. Let Z be the right hand side. Notably Z is σ(Y ) measurable. We must show for any G ∈ σ(Y )

that

E[Z1G] = E[X1G].

Since A is countable, we can write 1G =
∑

b∈B 1Y=b for some subset B ⊆ A, because every event

G = {Y ∈ B} for G ∈ σ(Y ), B ⊆ A. By linearity, we can assume that G = {Y = b} for some b ∈ A.

Then we find that

E[Z1Y=b] =
∑
a∈A

E[X1Y=a]

P[Y = a]
E[1Y=a1Y=b]

=
E[X1Y=b]

P[Y = b]
· P[Y = b] = E[X1Y=b].

Perfect! This is just what we wanted!

To go even more concrete.

Example II.0.2

Consider Y = 1F , F ∈ F , P[F ] > 0. We find that

E[X | Y ] =
E[X1F ]

P[F ]
1F +

E[X1F c ]

P[F c]
1F c .

And if X = 1E for some event E, we have

E[X | Y ] =
P[E ∩ F ]

P[F ]
1F +

E[X ∩ F c]

P[F c]
1F c .

So, on F , this is exactly P[E | F ], the conditional probability.
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Definition II.0.3

For G ⊆ F a σ-algebra, and E ∈ F we can take

P[E | G] = E[1E | G].

This is an okay definition, but really we want a conditional distribution, being able to tell the distribution of

all events given the information of a σ-algebra.

Definition II.0.4

Let G ⊆ F . Let X : Ω → X be a random variable. Let M : Ω → Prob(X ) be a G-measurable random

variable taking values in

Prob(X ) = {Borel Probability measures on X},

where we place the topology of weak convergence on Prob(X ). We say thatM is the (regular) conditional

distribution of X given G if for all Borel sets A ⊆ X almost surely

P[X ∈ A | G] = M(A).

Note: both sides of this equation are G-measurable random variables taking values in [0, 1].

Theorem II.0.8

If X is a separable metric space, then for all σ-algebras G ⊆ F , and for all random variables X taking

values in X , the conditional distribution of X given G exists and is unique.

Proof. Section 5.1.3 of Durrett’s book [DD19].

Remark II.0.2

In general in math, a good goal is to break down complicated things into simpler things and understand

each smaller thing more easily. Here are some examples

• A function f , break it down as f = g ◦ h and understand g, h.

• To understand a group G, find a normal subgroup H and try to understand H,G/H.

• . . .

In probability, the analogy is

• To understand a random variable X, find some random variable Y so that the distribution of

Y and the conditional distribution of X given Y are somehow simpler to understand than the

distribution of X.

Example II.0.3

Let X and Y be independent. Lets compute the conditional distribution of X given σ(Y ). This is

just constant at µX , the unconditional distribution of X. Namely

P[X ∈ A | σ(Y )] = P[X ∈ A] = µX(A).
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Example II.0.4

X is σ(Y )-measurable, then the conditional distribution ofX given σ(Y ) is a point mass atX, because

P[X ∈ A | σ(Y )] =

{
1 if X ∈ A

0 if X ̸∈ A
,

this is a special case of E[Z | G] = Z if Z is G-measurable.

Last time: Defined conditional distribution of X given G via

M(A) = P[X ∈ A | G]

Example II.0.5

Let X be a random variable taking values in X and Y be a random variable taking values in a

countable set Y. For each y ∈ Y such that P[Y = y] > 0 we can define a measure

My(A) =
P[X ∈ A, Y = y]

P[Y = y]
= P[X ∈ A | Y = y].

For all A ⊆ X Borel.

Claim

MY is the conditional distribution of X given σ(Y ). To be clear, this is the function

MY (A) : ω 7→ MY (ω)(A) =
P[X ∈ A, Y = Y (ω)]

P[Y = Y (ω)]
.

We want to show that MY (A) = P[X ∈ A | Y ]. Well this is if and only if for all B ⊆ Y we have

E[MY (A)1Y ∈B ] = E[1X∈A1Y ∈B ] = P[X ∈ A, Y ∈ B],

by the definition of conditional probability. Well, lets evaluate

E[MY (A)1Y ∈B ] =
∑
y∈B

P[Y = y]My(A) =
∑
y∈B

P[X ∈ A, Y = y] = P[X ∈ A, Y ∈ B].

Great! This is just as desired!

There is a similar expression for when the random variables X,Y take values in R, with (X,Y ) having a

density. There the sum is replaced by an integral.

III. Brownian Motion

III.1. Motivation and The Big Idea

Brownian Motion is the answer to the following question: What is the most natural random continuous

function [0,∞) → R? Equivalently, what is the most natural probability measure on (or random variable in)

C([0,∞),R) with the topology of locally uniform convergence.

The idea will be to discretize the problem. What is the most natural random function on N0 → Z? To be

precise, let {ξj}j≥1 be identically distributed random variables with

P[ξj = 1] = P[ξj = −1] =
1

2
.

21



Faye Jackson May 1st, 2024 MATH 327 - III.2

Let S0 = 0 and Sn =
∑n

j=1 ξj . THen n 7→ Sn is a random function from N0 → Z.

Definition III.1.1

Such a function N0 → Z is called a random walk on Z. We can extend to S : [0,∞) → R by piecewise

linear interpolation.

The idea to get a continuous function, is to now rescale. Namely we’ll intuitively take the limit t 7→ Snt as

n → ∞. The problem here first is that this won’t converge, we’ll need a good rescaling. By the Central Limit

Theorem, we know that n−1/2Sn converges in distribution to a standard normal distribution N(0, 1). This

tells us the right scaling factor is n−1/2Snt.

We see in fact that

n−1/2Snt =
(tn)1/2

n1/2
(tn)−1/2Snt → t1/2N(0, 1) = N(0, t),

in distribution. We also want to know the information of the joint distribution of t. Namely, for any t > 0,

we have that

{Su+⌊tn⌋ − S⌊tn⌋}u≥0

is independent from S
∣∣
0,⌊tn⌋ and has the same distribution as {Su}u≥0. Why? Well this is obtained in the

same way as {Su}u≥0 but using {ξj+⌊tn⌋}j≥0.

Iterating this for 0 ≤ t0 < t1 < · · · < tN we find that

(S⌊t1n⌋ − S⌊t0n⌋, . . . , S⌊tNn⌋ − S⌊tN−1n⌋),

are all independent, and S⌊tjn⌋ − S⌊tj−1n⌋
d
= S⌊(tj−tj−1)n⌋. What this actually shows is that, if we look at

this N -tuple and rescale it we get

1

n1/2
(S⌊t1n⌋ − S⌊t0n⌋, . . . , S⌊tNn⌋ − S⌊tN−1n⌋)

d→ (X1, . . . , XN )

of independent Xj with Xj ∼ N(0, tj − tj−1).

This really pins down the limit of the process t 7→ n−1/2Snt, and tells us something about its properties.

We’ll use this to make a definition.

III.2. Definition and Properties

Ok! Using the motivation from last section, we’ll now make a definition via properties, and discuss its

existence.

Definition III.2.1

Brownian Motion is the random continuous function B : [0,∞) → R, t 7→ Bt so that B0 = 0 and

For all s < t, Bt −Bs ∼ N(0, t− s).

(i)(ii) For all 0 ≤ t0 < · · · < tN , the increments Btj −Btj−1
for j = 1, . . . , N are independent.

By this, we mean that B is a random variable taking values in C([0,∞),R).

It is a nontrivial theorem that. . .

Theorem III.2.1

Brownian Motion Exists.
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Figure 1. Brownian Motion Graphs

For a proof using the motivation from last section, see [DD19, Section 8]. We’ll see a different proof in Week

9 from a different lecturer while Professor Gwynne is at a conference ,.

Remark III.2.1

Lets discuss some applications / realities to Brownian Motion

• The motion of particles in a dust cloud, e.g. motion of a single particle is tracked by three

independent brownian motions. This phenomenon was studied by Brown and Einstein.

• Fluctuations of Stock Prices. Keyword: Black-Scholes equation.

• Feynman Path Integrals.

• Solutions of PDEs, and analyzing behavior of conformal mappings in complex analysis.

Last Time: We defined Brownian motion as a random continuous function B : [0,∞) → R satisfying

B0 = 0 and

(i) For all s < t, Bt −Bs ∼ N(0, t− s).

(ii) For all 0 ≤ t0 ≤ t1 ≤ · · · ≤ tN , Btj −Btj−1
are independent.

Lemma III.2.2

If B, B̃ satisfy the definition of Brownian Motion then B
d
= B̃.

Proof. By definition, for all t1 ≤ · · · ≤ tN , we have

(Bt1 , Bt2 −Bt1 , . . . , BtN −BtN−1
)

d
= (B̃t1 , B̃t2 − B̃t1 , . . . , B̃tN − B̃tN−1

).
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Then this implies that

(Bt1 , . . . , BtN )
d
= (B̃t1 , . . . , B̃tN ).

Because Brownian motion is continuous, we can chop up any finite time interval into ε > 0 size intervals. Thus

the joint distribution being the same for any finite collection of times being the same implies B
d
= B̃.

Lemma III.2.3 (Markov Property)

Let B be Brownian motion. Then for all t > 0, s 7→ Bs+t − Bt is a Brownian Motion independent

from B
∣∣
[0,t]

.

Proof. Let B̃s = Bs+t −Bt. It’s easy to check that B̃s satisfies the defining properties for Brownian motion.

By independent increments, we have for any 0 ≤ t1 ≤ · · · ≤ tN ≤ t, 0 ≤ s1 ≤ · · · ≤ sM that the random

vectors

(Bt1 , . . . , BtN ), (B̃s1 , . . . , B̃sM )

are independent. By an approximation argument, it follows that Bt, B̃s are independent.

Remark III.2.2

An equivalent formulation is that the conditional distribution of s 7→ Bs+t −Bt given B
∣∣
[0,t]

is just

the distribution of Brownian Motion.

Lemma III.2.4 (Brownian Scaling)

If B is a Brownian Motion, then for any constant c > 0, we have that {c−1/2Bct}t≥0 is a Brownian

Motion.

Proof. Clearly t 7→ c−1/2Bct is continuous with independent increments. Furthermore, if X ∼ N(0, t) then

c−1/2X ∼ N(0, t/c). Hence, c−1/2Bct ∼ c−1/2N(0, ct) = N(0, t) as desired. Thus t 7→ c−1/2Bct is Brownian

Motion.

Now we’ll mention a theorem we won’t prove but is important to be aware of.

Theorem III.2.5

Let B̃ : [0,∞) → R be a random continuous function such that B̃0 = 0 and

(i) For all s < t, we have B̃t − B̃s
d
= B̃t−s.

(ii) For any 0 ≤ t0 ≤ · · · ≤ tN it holds that B̃tj − B̃tj−1
are independent.

Then B̃ is “essentially” a Brownian motion. Namely there exists a ≥ 0, b ∈ R such that B̃t = aBt + bt

where B is a Brownian Motion. Notably here, condition (i) does not give us that these are normals.

Remark III.2.3

The idea of the proof is to apply the Central Limit Theorem to the increments. However, actually

carrying this out is difficult in practice, since e.g. it is not immediately clear that the increments have

finite variance.

Okay! So now lets think more about properties of Brownian Motion to see why this is so incredible. We’re

going to analyze s 7→ Bs+τ where τ is a random time. To make notational convenience, let
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Definition III.2.2

Ft = σ(B
∣∣
[0,t]

And so that we can actually analyze these, we only consider a special type of time τ .

Definition III.2.3

A random time τ in [0,+∞] is a stopping time for B if for all t ≥ 0 if {τ ≤ t} ∈ Ft.

Example III.2.1

Any non-random time is a stopping time. For more interesting examples:

• τ = min{t ≥ 0 | Bt ∈ A} where A ⊆ R is closed. Intuitively, you can tell if you’ve hit A before

time t by looking at the behavior of B from time 0 to t. Formally

{τ ≤ t} = {B[0, t] ∩A ̸= ∅}

• τ = min{τ1, τ2} or τ = max{τ1, τ2} where τ1, τ2 are stopping times. You can do this even for

countably many stopping times as

{min(τ1, τ2) ≤ t} = {τ1 ≤ t} ∪ {τ2 ≤ t}

{max(τ1, τ2) ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t}

Non-Example III.2.2

Let A ⊆ R be closed. Then let

τ = sup{τ ∈ [0, 1] | Bt ∈ A}.

The last time that Brownian motion hits something is not a stopping time!

Remark III.2.4

An intuitive way to think of stopping times is that they make good directions! Turn right at the first

stoplight is a good direction. Turn right at the last stoplight is a bad direction (hence not a stopping

time).

Using this definition, we can upgrade the Markov Probability!

Theorem III.2.6 (Strong Markov Property)

Let τ be a stopping time such that P[τ < ∞] = 1. Then s 7→ Bs+τ −Bτ is a Brownian Motion which

is independent from B
∣∣
[0,τ ]

.

Remark III.2.5

If P[τ = ∞] ∈ (0, 1) then instead on the event {τ < ∞}, the conditional distribution of s 7→ Bs+τ −Bτ

given B
∣∣
[0,τ ]

is Brownian Motion.

Also, to see why you stopping times are necessary. Consider τ = sup{τ ∈ [0, 1] | Bt ∈ A}. We then

see that Bs+τ cannot hit A, and so Bs+τ −Bτ will not be independent from B
∣∣
[0,τ ]

!

Proof. For t ≥ 0, consider

Bt
s = Bmin{s,t}
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B
t

s = Bs+t −Bt.

Note that σ(Bt) = σ(B
∣∣
[0,t]

). Now we want to show that B
τ d
= B and B

τ
is independent from Bτ .

Claim

The result holds when there exists a countable set T ⊆ R such that P[τ ∈ T ] = 1.

Let U, V ⊆ C([0,∞),R) be measurable. We need to show that

P[Bτ ∈ U,Bτ ∈ V ] = P[B ∈ U ]P[Bτ ∈ V ],

This is sufficient since if we take V to be the whole space, this reduces to B
τ d
= B. The fact that it

splits as a product is then independence. Now we have

P[Bτ ∈ U,Bτ ∈ V ] =
∑
t∈T

P[Bτ ∈ U,Bτ ∈ V, τ = t]

=
∑
t∈T

P[Bt ∈ U,Bt ∈ V, τ = t].

Great! Now {τ = t} ∈ Ft = σ(Bt). Furthermore, by the ordinary Markov property, B
t d
= B and is

independent from Bt. Notably, it’s also independent from the event {τ = t}. Hence∑
t∈T

P[Bt ∈ U,Bt ∈ V, τ = t] =
∑
t∈T

P[B ∈ U ]P[Bt ∈ V, τ = t]

= P[B ∈ U ]
∑
t∈T

P[Bt ∈ V, τ = t]

= P[B ∈ U ]P[Bτ ∈ V ].

Perfect! Combining this with the equation above, we have the proof!

In general, we take a general stopping time τ , and then define

τn := 2−n ⌈2nτ⌉

This is the first integer multiple of 2−n coming after τ . This is a stopping time, since τ is a stopping time.

Thus the result holds for τn ∈ 2−nZ, as there are only countably many values. Furthermore limn→∞ τn = τ .

Thus, for all n, B
τn d

= B and is independent from Bτn
.

Furthermore B
τn → B

τ
and Bτn → Bτ converge almost surely. Hence B

τ d
= B and is independent from

Bτ , by basic checks with almost sure convergence.

Last time: We defined what a stopping time τ for a Brownian Motion B is, and we showed the Strong

Markov Property, namely that if τ is a stopping time then Bs+τ − Bτ is a Brownian Motion independent

from B
∣∣
[0,τ ]

.

As a consequence
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Proposition III.2.7 (Reflection Principle)

Let a > 0. Then for all t > 0, both of the following equivalent statements are true

P
[
max
0≤s≤t

Bs ≥ a

]
= 2P[Bt ≥ a] ⇐⇒ max

0≤s≤t
Bs

d
= |Bt| .

Note: this equality does not hold in distribution as functions of t. One can see this since the left hand

side always goes up, while the right hand side can increase or decrease.

Proof. Let τ = min{t | Bt = a} be a stopping time. Then

{max
0≤s≤t

Bs ≥ a} = {τ ≤ t}.

In particular, if Bt ≥ a then τ ≤ t. Hence, by the definition of conditional probability,

P[Bt ≥ a] = P[τ ≤ t]P[Bt ≥ a | τ ≤ t].

By the strong Markov property, the conditional distribution of Bt−Bτ given B
∣∣
[0,τ ]

is N(0, t− τ). Of course

Bτ = a, and so

P[Bt ≥ a | B
∣∣
[0,τ ]

] = P[N(0, t− τ) ≥ 0] =
1

2
.

If we multiply both sides of this by 1τ≤t we obtain

P[Bt ≥ a | B
∣∣
[0,τ ]

]1τ≤t =
1

2
τ ≤ t.

Hence, taking expectations on both sides yields

P[Bt ≥ a] =
1

2
P[τ ≤ t] =

1

2
P
[
max
0≤s≤t

Bs ≥ a

]
.

Great! Why is this equivalent to the second relation? Well

P[|Bt| ≥ a] = P[Bt ≥ a] + P[Bt ≤ −a] = 2P[Bt ≥ a],

by symmetry of the normal distribution. Hence |Bt| and max0≤s≤t Bs have the same (“reversed”) cumulative

distribution functions.

Proposition III.2.8

Almost surely, we have

lim sup
t→∞

Bt = +∞ lim inf
t→∞

Bt = −∞.

Proof. By the reflection principle,

max
0≤s≤t

Bs
d
= |B|t

d
= t1/2 |B1| .

Furthermore, for any a > 0,

lim
t→∞

P[t1/2 |B1| > a] = lim
t→∞

P[|B1| > t−1/2a] = 1.
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Hence we see that

lim
t→∞

P[ max
0≤s≤t

Bs > a] = 1.

This implies that lim supt→∞ Bt = +∞ almost surely. Hence by symmetry (B
d
= −B, lim inft→∞ Bt =

−∞.

III.3. Brownian Motion in Rd

Now lets look at Brownian Motion in higher dimensions. The definition is rather simple!

Definition III.3.1

Let d ∈ N. The Brownian Motion in Rd is the random continuous function B = (B1, . . . , Bd) :

[0,∞) → Rd where B1, . . . , Bd are independent 1-dimensional brownian motions.

Proposition III.3.1

Brownian Motion in Rd is the unique (in distribution) random continuous function B : [0,∞) → Rd

satisfying B0 = 0 and

(i) For any time s < t, we have Bt −Bs is a vector of d independent Gaussians N(0, t− s).

(ii) For 0 ≤ t0 ≤ t1 ≤ · · · ≤ tN , we have that Btj −Btj−1 are independent.

The proof of this is exactly the 1-dimensional proof. We also have many properties similar to the one-

dimensional case.

Lemma III.3.2 (Brownian Scaling in Rd)

For any c > 0, the function t 7→ c−1/2Bct is a d-dimensional Brownian Motion.

Lemma III.3.3 (Strong Markov Property)

Let τ be a stopping time for B. Then s 7→ Bs+τ−Bτ is a d-dimensional Brownian Motion independent

from B
∣∣
[0,τ ]

.

Proposition III.3.4 (Rotational Invariance)

Let Q be a d× d orthogonal matrix. Then Q ·B d
= B

Proof. QB is continuous, QB0 = 0, and QB has independent increments (they are Q times the increments

for B). Now for s < t we have

QBt −QBs = Q(Bt −Bs),

now Bt −Bs is a vector of d independent N(0, t− s) Gaussians. By Problem Set 5, Q(Bt −Bs) is in fact a

vector of d independent N(0, t− s) Gaussians.

We’ll now state some geometric properties without proof. If you want to see proofs see Brownian Motion

by Mörters-Peres [MP10].

• For d = 2, almost surely we have

– For all a < b, there exists s, t ∈ [a, b], s ̸= t so that Bs = Bt.
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– Neighborhood recurrence: For all z ∈ R, for all ε > 0, there exists arbitrarily large t such that

Bt = Dε(z), where Dε(z) is a disk of radius ε about z (we don’t use the usual B notation for

ball, because it would be needlessly confusing here).

– For all z ∈ R2, P[∃ t > 0 s.t. Bt = z] = 0. Thus the range is dense with zero Lebesgue measure.

• For d = 3, almost surely we have,

– Self-intersections in every time interval.

– Transient: limt→∞ |Bt| = ∞. Sort of the opposite of neighborhood recurrence.

• For d ≥ 4, almost surely we have,

– For all s ≤ t, Bs ̸= Bt.

– Transient, as in R3.

• In any dimension, almost surely the Hausdorff dimension of the range of Bt is 2. This is related to

1D Brownian Motion being 1/2-Hölder continuous, which we’ll see in the construction next week.

We’ll also prove something about Hölder continuity on the homework this week.

Additional intuition: A Lipschitz function preserves Hausdorff dimension from the domain, so a
1
2 -Hölder continuous function can double the Hausdorff dimension of the domain.

We’re now going to move from Brownian Motion to its implications on analysis.

III.4. Brownian Motion and Harmonic Functions

Let U ⊆ Rd be open. Recall that u : U → R is harmonic if ∆u = 0 where ∆ =
∑d

j=1 ∂
2
xj
. We’re now

interested in the Dirichlet Problem.

Let ϕ : ∂U → R be continuous, can we find u : U → R continuous with∆u = 0 in U

u = ϕ on ∂U.

We’ll see that this is related to Brownian motion. Namely, let Bz for z ∈ U be a d-dimensional Brownian

Motion with Bz
0 = z, and set

τ = min{t ≥ 0 | Bz
t ̸∈ U}.

Then the solution to the Dirichlet problem is actually

u(z) = E[φ(Bz
τ )].

Plan for the Rest of Class

• Today: Brownian Motion and Harmonic Functions

• Friday: Applications of Brownian Motion to Complex Analysis and Vice Versa

• Next Week: Construction of Brownian Motion, lectures by Sayan Das, since Professor Gwynne is

away at a conference.

Last time, we talked about d-dimensional Brownian Motion. Today we’re going to continue exploring the

Dirichlet problem, using Brownian Motion. For notation, for z ∈ Rd we’ll write Pz for the probability measure

(or distribution) on the space of functions, where B starts at z instead of 0. This is the distribution of B0+ z.
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Another way to think about it is that

Ez[F (B)] = E[F (B0 + z)],

where F is any functional on paths.

Remark III.4.1

If τ is a stopping time, then the conditional distribution of s 7→ Bs+τ given B
∣∣
[0,τ ]

is just PBτ
. This

is an equivalent formulation of the strong Markov property.

Proposition III.4.1

Let U ⊆ Rd be open, let B be a d-dimensional Brownian Motion, and let τ = min{t | Bt ̸∈ U}.
Assume that for all z ∈ U , we have that Pz[τ < ∞] = 1. Note this is automatic if U is bounded.

Let φ : U → R be a bounded, measurable function. For all z ∈ U , set

u(z) = Ez[φ(Bτ )].

Then u is harmonic.

Proof. Recall from harmonic / complex analysis, that a function is harmonic if and only if it satisfies the

mean value property. Let r > 0, z ∈ U such that Dr(z) ⊆ U where Dr(z) is the disk of radius r about z. We

want to show that ∫
∂Dr(z)

u(w) dσ(w) = u(z),

where σ is the uniform measure on ∂Dr(z). Let

T = min{t ≥ 0 | Bt ∈ ∂Dr(z)}.

In particular, T is a stopping time, and T ≤ τ . We know by basic properties of conditional expectation that

u(z) = Ez[φ(Bt)] = Ez[Ez[φ(Bτ ) | B
∣∣
[0,T ]

]]

The strong markov property implies that the conditional distribution of s 7→ Bs+T given B
∣∣
[0,T ]

is just PBT
.

Furthermore,

τ − T = min{s ≥ 0 | Bs+T ̸∈ U}.

By combining these two facts we see that

Ez[φ(Bτ ) | B
∣∣
[0,T ]

] = EBT
[φ(B̃τ )] = u(BT ),

where B̃τ is being used to distinguish that it starts at BT . To take the expectation of this, we need to know

something about the distribution of BT . By rotational invariance, BT has the uniform distribution σ on

∂Dr(z). Hence

u(z) = Ez[Ez[φ(Bτ ) | B
∣∣
[0,T ]

]] = Ez[u(BT )] =

∫
∂Dr(z)

u(w) dσ(w).

Perfect! This finishes the proof!
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The rest of the solution of the Dirichlet problem is a bit more technical. We need to show that if φ : ∂U → R
is continuous, then the constructed function u extends continuously to the boundary

Essentially, we want to show that if z is close to the boundary, then our Brownian motion exits U on the

boundary close to z. This property is not actually true for every domain. Consider D1(0) \ {0}. Then if we

start the Brownian motion close to the origin, it will never hit the origin. . . oops. So we need some reasonable

conditions on the domain.

We’ll restrict our life to d = 2, since we can impose topological conditions on the domain in this case. In

higher dimensions we need geometric conditions on the domain, not just topological conditions. For d = 2, it

will be enough for U to be simply connected. We’ll do this in several lemmas. We won’t give detailed proofs

here for all of these lemmas, but they can be found in Professor Gwynne’s notes.

Lemma III.4.2

Let B be a 2D Brownian Motion and let z ∈ ∂D1/2(0). If B0 = z, then with positive probability, B

makes a loop around D1(0) \D1/2(0) before exiting D1(0).

Proof by Picture. Construct the loop piece by piece, using that Brownian motion is uniform on the boundary

of a disk. Make the loop almost close up, then make it cross itself. You can do each piece with positive

probability.

Lemma III.4.3

Let B be a Brownian Motion with B0 = 0. Then there exists C,α > 0 such that for all R > r > 0 we

have that

P[B disconnects ∂DR(0) from ∂Dr(0) before exiting DR(0)] ≥ 1− C
( r

R

)α
.

Proof by Picture. Take the big annulus, and divide it up into dyadic sub-annuli. All the sub-annuli have

aspect ratio ≈ 2. Namely r, 2r, 4r, . . . until we reach R, the number of annuli is ≈ log2(R/r). There’s

probability at least p > 0 that it will make a loop between r, 2r, by the previous lemma. The probability it

fails to make a loop there is ≤ 1− p. By scale invariance, it has probability at least p to succeed and make a

loop. By strong markov, the chance for each annulus is independent. Thus we have log2(R/r) trials, and the

probability we fail to make a loop is 1− p. Thus the probability that we fail to make a loop

P[fail to make a loop in each annulus] ≤ (1− p)⌊log2(R/r)⌋ ≤ C
( r

R

)α
,

where 1 − p = 2− log2
1

1−p and we just simplify to get α = log2
1

1−p > 0. The C comes from the floor

function.

Theorem III.4.4

Let U ⊆ R2 be open, simply connected, U ̸= R2. Let τ = min{t > 0 | Bt ̸∈ U}. Now let φ : ∂U → R
be bounded, continuous. Let

u(z) =

Ez[φ(Bτ )] z ∈ U

φ(z) z ∈ ∂U,
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then ∆u = 0 on U , and u is continuous on U , solving the Dirichlet problem in this case.

Proof by Picture. We’ve already shown that it’s harmonic. We need to show that it’s continuous on U . It

essentially suffices to show that if we start Brownian motion at z close to ∂U , it’s very likely for z to exit U

close to z.

Let dist(z, ∂U) = δ < 1. Now cosnder Dδ(z) ⊆ Dδ1/2(z). Then

Pz[B disconnects ∂Dδ(z) from ∂Dδ1/2(z) before exiting Dδ1/2(z)] ≥ 1− Cδα/2.

In this case, the Brownian Motion B has to exit U before exiting Dδ1/2(z), by basic topological considerations.

This is where we use that U is simply connected. Essentially, we know that R2 \ U is connected, and if we

created a loop without exiting U , this would provide a disconnection of R2 \ U (notably this is also where

we use U ̸= R2). Hence

Pz[dist(z,Bτ ) ≤ δ1/2] ≥ 1− Cδα/2.

Once we have this statement, the continuity of φ and basic expectation estimates will give continuity of

u.

Last Time: We used Brownian Motion to solve the Dirichlet problem on simply connected domains U ⊊ R2.

This time we’re going to show uniqueness of our solution. Recall the construction, let B be a 2D Brownian

motion

τ = min{t ≥ 0 | Bt ̸∈ U},

φ : ∂U → R bounded and continuous. We let

u(z) =

Ez[φ(Bτ )] z ∈ U

φ(z) z ∈ ∂U.

Then u is continuous on U and ∆u = 0 on U .

Proposition III.4.5

Suppose v1, v2 : U → R is continuous such that vi
∣∣
∂U

= φ and ∆vi = 0. Assume U is bounded/simply

connected, then v1(z) = v2(z) for all z ∈ U .

Proof. v1 − v2 is harmonic on U , continuous on U , and zero on ∂U . By the maximum principle, v1 − v2

achieves its maximum / minimum on ∂U , and hence v1 − v2 = 0.

Remark III.4.2

The same construction of a solution u to the Dirichlet problem works if R2 \ U has finitely many

components, all non-singleton.

Remark III.4.3

For d ≥ 3 Brownian Motion cannot disconnect ∂DR(0) from ∂Dr(0). Thus the proof that we described

cannot work in higher dimensions. The hypotheses on the domain are more complicated. A sufficient

condition is that ∂U is a C1-submanifold of Rd of dimension d− 1. But C0 is not sufficient.
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A good way to see our construction does not work is to run an increasingly thin spike through a

sphere.

Now identify C with R2, x+ iy ∼ (x, y).

Definition III.4.1

Let U ⊆ C be open, and let B be a Brownian motion in C, B = B1 + iB2. Define τ by

τ = min{t ≥ 0 | Bt ̸∈ U}.

Also, assume Pz[τ < ∞] = 1 for all z ∈ U . We define the harmonic measure on ∂U viewed from z as

hmz
U (A) = P[Bτ ∈ A]

for all A ⊆ ∂U Borel. In other words, this is the distribution of Bτ .

Remark III.4.4

In this language, we have

u(z) = Ez[φ(Bτ )] =

∫
∂U

φ(x) d hmz
U (x).

Remark III.4.5

The most elementary harmonic measure: If U = Dr(0), z = 0, the hm0
Dr(0) is the uniform measure

on ∂Dr(0).

Theorem III.4.6

Let U, V ⊆ C be open and simply connected. Assume also that U is bounded. Let f : U → V be a

biholomorphism, and assume also that f extends continuously to U → V . Then we have that

hmz
V (A) = hm

f−1(z)
U (f−1(A))

for all z ∈ V and A ⊆ ∂V Borel.

Proof. Let φ : ∂V → R be any bounded and continuous function. Let v : V → R solve the Dirichlet problem

for φ. We see that v ◦ f is continuous on U . We know that v ◦ f is harmonic since f is holomorphic, so it

solves the Dirichlet problem for φ ◦ f on ∂U . By uniqueness, this implies that, for z ∈ U ,∫
∂V

φd hmz
V = v(z) = v(f(f−1(z))) =

∫
∂U

(φ ◦ f) d hmf−1(z)
U .

This shows the required claim, by approximating an indicator 1A by a bounded continuous function φ.

Example III.4.1

For ε > 0 let Uε = D1(0) ∪Dε(1) ∪D1(2). In other words something like a bowtie ,
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Let fε : D1(0) → Uε be a biholomorphism with fε(0) = 0. What does f−1
ε (∂UE ∩ ∂D1(2)) look like? If

B is a Brownian Motion started from B is unlikely to enter Dε(1) before leaving D1(0). Hence

hm0
Uε
(∂Uε ∩ ∂D1(2)) = O(ε).

Hence

hm0
D1(0)(f

−1
ε (∂Uε ∩ ∂D1(2))) = O(ε).

But from our knowledge of the disk we know that

Leb(f−1
ε (∂Uε ∩ ∂D1(2))).

We know also that this preimage is an interval, so it looks absolutely tiny in the disk. In other words,

we can draw things like

Example III.4.2

Let ε > 0, Uε = D1(0) \ [ε, 1]. Let fε : D1(0) → Uε be a biholomorphism with fε(0) = 0. But what

does f−1
ε ([ε, 1]) look like? Well it looks like almost all of the disk!

Brownian motion starting at 0 in Uε is unlikely to exit D1(0) before hitting [ε, 1]. Hence

lim
ε→0

hm0
Uε
([ε, 1]) = 1

lim
ε→0

Leb(f−1
ε ([ε, 1])) = 1.

Last time: We defined and talked about the harmonic measure. This was defined for U ⊆ C open, B a 2D

Brownian motion, with

τ := min{t ≥ 0 | Bt ̸∈ U},

and assuming Pz[τ < ∞] = 1. The harmonic measure on ∂U was then

hmz
U (A) = Pz[Bτ ∈ A]
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for A ⊆ ∂U Borel.

Theorem III.4.7

ForU, V ⊆ C open, simply connected, U, V ̸= C. A biholomorphism f : U → V extending continuously

to U → V has

hmz
V (A) = hm

f−1(z)
U (f−1(A)).

We were able to use this last time to understand the geometry of such biholomorphisms supplied by the

Riemann Mapping Theorem

Example III.4.3

We’ll use the harmonic measure to construct an explicit Riemannian mapping U → D for U ⊊ C
a simply connected open domain. For simplicity we’ll do this for ∂U a simple C0 loop. Then fix

z0 ∈ U, x0 ∈ ∂U . We’ll produce an explicit biholomorphism f : U → D with f(z0) = 0, f(x0) = 1.

We start by defining the action on y ∈ ∂U ,

p(y) = hmz0
U (counterclockwise arc of ∂U from x0 to y)

g : ∂U → ∂D

g(y) = e2πip(y).

This is essentially forced on us by harmonic measure being a conformal invariant. We can now solve the

Dirichlet problem with this function. Let f : U → C solve

f = g on ∂U ∆f = 0 on U,

where we can just solve the Dirichlet problem on the real and imaginary parts separately. To be more

explicit

f(z) = Ez[g(Bτ )] τ := min{t ≥ 0 | Bτ ̸∈ U}.

In general, it’s not clear that f will be holomorphic (i.e. that its real and imaginary parts are harmonic

conjugates). We have only solved two a priori unrelated Dirichlet problems for some boundary data. Let

f̃ : U → B1(0) be the actual biholomorphism with f̃(z0) = 0 and f̃(x0) = 1 from the Riemann mapping

theorem.

By the conformal invariance of harmonic measure, we see that f̃ , f agree on the boundary ∂U . By

uniqueness of the solution to the Dirichlet problem, we then see that f = f̃ .

III.5. Construction of Brownian Motion

Recall that a 1D Brownian Motion is a random continuous B : [0,∞) → R such that B0 = 0 and

(i) For all s < t, Bt − Bs ∼ N(0, t− s).

(ii) For all t0 < · · · < tN we have {Btj − Btj−1
}j=1,...,n are independent.

Theorem III.5.1

Brownian Motion exists.
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Notice it suffices to construct B
∣∣
[0,1]

, since we can just concatenate countably many iid B
∣∣
[0,1]

. Here’s the

two main steps which we’ll follow.

(i) Define B for dyadic times.

(ii) Show that B extends to a continuous function on [0, 1], by proving it is uniformly continuous on the

dyadic rationals.

For each n ∈ N we let

Dn =

{
j

2n
| j = 1, . . . , 2n

}
,

and we set D =
⋃∞

n=1 Dn ⊆ [0, 1]. We’re also going to let {Zt | t ∈ D} be iid N(0, 1) random variables

(countably many!). We’ll define {Bt | t ∈ D} inductively. Define B0 = 0,B1 = Z1. Inductively, now assume

Bt is defined for all t ∈ Dn−1. Note that if t ∈ Dn \Dn−1, then t± 2−n ∈ Dn−1. We set

Bt =
1

2
(Bt−2−n + Bt+2−n) + 2−(n+1)/2 · Zt.

Great! Now we need to know some things. . .

Lemma III.5.2

For all n ∈ N we have Bj/2n − B(j−1)/2n for j
2n ∈ Dn are iid N(0, 2−n).

Proof. To prove this, we’ll induct on n. For n = 0, this is immediate, B1 −B0 = Z1 ∼ N(0, 1). Now let n ≥ 1

and assume the lemma for n− 1. If j
2n ∈ Dn \Dn−1, then (j − 1)/2n ∈ Dn−1. Hence

Bj/2n − B(j−1)/2n = 2−(n+1)/2Zj/2n +
1

2

(
B(j+1)/2n − B(j−1)/2n

)
.

Similarly if j/2n ∈ Dn−1 then we instead have

Bj/2n − B(j−1)/2n = 2−(n+1)/2Z(j−1)/2n +
1

2
(Bj/2n − B(j−2)/2n).

These are normally distributed and independent by induction and the fact that the Zt are independently

distributed and normal.

To be more precise, (Bj/2n − B(j−1)/2n)j=1,...,2n is the image under a linear map of{
(Bi/2n−1 − B(i−1)/2n−1)i=1,...,2n−1 , (2−(n−1)/2Zt)t∈Dn\Dn−1

}
.

All of these are independent, the first is iid with distribution N(0, 2−(n−1)), as are the second iid with

distribution N(0, 2−(n−1)). Furthermore the left is independent from the right, since Bi/2n−1 is a function

of the Zt for t ∈ Dn−1. In particular, each Bj/2n − B(j−1)/2n is the sum of two independent N(0, 2−(n−1))

random variables times 1/2.

It is not difficult to see then that Bj/2n − B(j−1)/2n is distributed as N(0, 2−n). One can compute that

E
[(
Bi/2n − B(i−1)/2n

) (
Bj/2n − B(j−1)/2n

)]
= 0,

if i ̸= j. On Problem Set 5, we showed that a linear function M · A of independent identically distributed

Gaussian random variables A1, . . . , Am has independent components if and only if E[MAi · MAj ] = 0 for

i ̸= j. Notably, this is essentially checking that M is a scalar multiple of orthogonal matrix.
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Now lets go further

Lemma III.5.3

We have the properties of Brownian Motion on the dyadics

(i) For all s, t ∈ D with s < t we have Bt − Bs ∼ N(0, t− s).

(ii) For all t0 < · · · < tN in D we have Btj −Btj−1
are independent for j = 1, . . . , N .

Proof. Let’s go!

(i) Choose n such that s, t ∈ Dn. Then

Bt − Bs =
∑

j,j/2n∈(s,t]

Bj/2n − B(j−1)/2n .

These are iid with distribution N(0, 2−n) and there are 2n(t−s) of them. Hence Bt−Bs ∼ N(0, t−s).

(ii) Choose n such that t0, . . . , tN ∈ Dn and proceed similarly.

The second step, uniform continuity, will come Wednesday!
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