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1 Spaces

1.1 In set theory there are two kinds of propositions. If X is a set then we can say that x ∈ X,
and for x, y ∈ X we can say that x = y. Equality being the archetype of an equivalence relation,
it has the following properties.

(i) (reflexivity) x = x for all x ∈ X.

(ii) (transitivity) x = y and y = z implies x = z for x, y, z ∈ X.

(iii) (symmetry) x = y implies y = x for x, y ∈ X.

We would like to banish the notion of equality, or rather relax it to the notion of equivalence
or isomorphism. In this new paradigm, equivalence is no longer a property of a pair of elements,
but rather a structure. On a first pass this looks as follows.

We introduce a new datum called an isomorphism x→̃y for x, y ∈ X, and write IsoX(x, y) for
the totality of isomorphisms x→̃y, which for now form a set. The axiom of transitivity becomes an
additional structure, namely a composition law

IsoX(y, z)× IsoX(x, y) −→ IsoX(x, z)

(g, f) 7→ g ◦ f.

The necessary axioms then become:

(i) (identity) for any x ∈ X there exists idx ∈ IsoX(x, x) satisfying f ◦ idx = f and idx ◦g = g for
all isomorphisms f : x→̃y and g : z→̃x.

(ii) (invertibility) for any isomorphism f : x→̃y inX there exists f−1 : y→̃x such that f−1◦f = idx
and f ◦ f−1 = idy.

(iii) (associativity) for any isomorphisms f : x→̃y, g : y→̃z, and h : z→̃w in X, we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Clearly identity and invertibility are replacements for reflexivity and symmetry respectively,
while associativity is something new.

We have thus arrived at the notion of a 1-groupoid. As soon as we make this definition, we
notice a problem: the axioms impose equations (now between isomorphisms), which was supposed
to be forbidden. This can be remedied by postulating that IsoX(x, y) itself has the structure of
a 1-groupoid for all x, y ∈ X, meaning we allow 2-isomorphisms between the previously existing
(1-)isomorphisms. The composition law

IsoX(y, z)× IsoX(x, y) −→ IsoX(x, z)
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for x, y, z ∈ X must then have the structure of a morphism of 1-groupoids, i.e. a functor of
1-categories in the usual sense. Moreover, we specify certain 2-isomorphisms:

• for all 1-isomorphisms f : x→ y and g : z → x we have 2-isomorphisms ιf,x : f ◦ idx →̃f and
ιx,g : idx ◦g→̃g;

• for all 1-isomorphisms f : x → y, g : y → z, and h : z → w, we have a 2-isomorphism
αh,g,f : (h ◦ g) ◦ f→̃h ◦ (g ◦ f).

These 2-isomorphisms are subject to various coherence conditions, which we do not list, as this
task already becomes somewhat tedious. To give the flavor of these conditions, we mention the
so-called pentagon axiom, which says that for 1-isomorphisms f : x→ y, g : y → z, h : z → w, and
i : w → v, the following diagram in IsoX(x, v) commutes:

((i ◦ h) ◦ g) ◦ f

(i ◦ (h ◦ g)) ◦ f (i ◦ h) ◦ (g ◦ f)

i ◦ ((h ◦ g) ◦ f) i ◦ (h ◦ (g ◦ f)).

αi,h,g∗idf αi◦h,g,f

αi,h◦g,f αi,h,g◦f

idi ∗αh,g,f

Here ∗ denotes the “horizontal” composition of 2-isomorphisms, which is induced by functoriality
of the composition law for 1-isomorphisms.

It turns out that the invertibility of a 1-isomorphism f : x → y is a property rather than an
additional structure, in the sense that arbitrary 2-isomorphisms f−1 ◦f→̃ idx and f ◦f−1→̃ idy can
be modified to satisfy the appropriate coherence conditions.

The resulting notion is that of a 2-groupoid. Once again we find ourselves in the same quan-
dary, only one level higher: the coherence conditions we have imposed are equations between
2-isomorphisms. The obvious remedy is to introduce 3-groupoids by endowing each IsoX(x, y) with
the structure of a 2-groupoid, but spelling out the requisite structures and coherence conditions
is a daunting combinatorial problem. Moreover, once we finish this arduous task our difficulties
become still greater, requiring us to climb a never-ending hierarchy to define n-groupoids for every
nonnegative integer n.

1.2 Having dug ourselves into an ever-deepening hole, we change stategies and try to imagine how
a hypothetical notion of ∞-groupoid might look. Although this might seem like a huge leap given
the difficulties of defining n-groupoids for a fixed n, we are aided by the following heuristic due to
Grothendieck.

Postulate 1.2.1 (Homotopy hypothesis). The notion of ∞-groupoid is equivalent to that of a
space in the sense of homotopy theory.

We interpret this hypothesis as a requirement on any reasonable definition of ∞-groupoid. In
what follows, the word “space” will always be taken in the sense of homotopy theory rather than
point-set topology: although topological spaces can serve as a model of the former notion, it is
conceptually distinct. For example, an isomorphism of spaces is a homotopy equivalence rather
than a homeomorphism, and an isomorphism class of spaces is what is usually referred to as a
homotopy type.

To help understand and justify the homotopy hypothesis, we summarize in the following table
how the internal structure of a space mirrors that of a higher groupoid.
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spaces ∞-groupoids

point object
path 1-morphism
concatenation of paths composition of 1-morphisms
constant path identity 1-morphism
reversed path inverse 1-morphism
path homotopy 2-morphism
homotopy between path homotopies 3-morphism

...
...

Various concrete models of spaces are known to homotopy theorists. One possibility, which
allows for a literal interpretation of terms like “path” and thereby tracks closely with our intuition
about spaces, is to use a well-behaved class of topological spaces such as CW complexes. A disad-
vantage of this approach is that it involves the real numbers, and spaces are really combinatorial
or algebraic rather than analytic objects. So we would like to avoid invoking the continuum.

Another option is to use simplicial sets, or more precisely those satisfying the Kan condition.
These so-called Kan complexes are purely combinatorial objects, and have the convenient feature
that the Kan condition can be relaxed to include ∞-categories which are not groupoids.

In these notes we will attempt to work in a “model-independent” way. Hopefully the reader
is willing to accept that for applications in algebraic geometry and homological algebra, the par-
ticularities of the model one uses for spaces are largely irrelevant. Instead, one need only learn
the general syntax, meaning which sentences and operations are allowed, along with some basic
facts. Of course, to do serious work in homotopy theory or higher category theory, it is not always
possible to avoid explicit models.

1.3 Given a space X and points x, y ∈ X, we can form a space IsoX(x, y) called the path space.
A point in IsoX(x, y) is a 1-isomorphism or path x→̃y in X, an isomorphism in IsoX(x, y) is a
2-isomorphism or path homotopy in X, etc. In the case x = y we write Ω(X,x) := IsoX(x, x) for
the loop space of X at x, or sometimes just ΩX if the point x ∈ X is understood.

Any set can be viewed as a space where the only isomorphisms are the identity morphisms. Con-
versely, given a space X we can consider the set π0X of connected components, a.k.a. isomorphism
classes. If π0X consists of a single element then we say that X is connected.

For any spaces X and Y we can form their product X × Y . Its points are pairs (x, y) where
x ∈ X and y ∈ Y , paths are pairs consisting of a path in X and a path in Y , and more generally
n-isomorphisms are pairs of n-isomorphisms in X and Y . We have π0(X × Y ) = π0(X) × π0(Y ),
and if (x1, y1), (x2, y2) ∈ X × Y then

IsoX×Y ((x1, y1), (x2, y2)) = IsoX(x1, y1)× IsoY (x2, y2),

and in particular Ω(X × Y, (x, y)) = Ω(X,x)× Ω(Y, y).
A space X gives rise to a 1-groupoid π≤1X in the following way. The objects of π≤1X are

the points of X, and for x, y ∈ X the isomorphisms x→̃y in π≤1X are given by π0 IsoX(x, y).
Concatenation of paths in X satisfies the identity, associativity, and invertibility axioms up to
homotopy, which means π≤1X has the structure of a 1-groupoid as claimed. In particular, for any
x ∈ X we can consider the fundamental group π1(X,x) := π0Ω(X,x).

The loop space Ω(X,x) has a canonical point, namely the constant or identity path. Thus we
may consider the iterated loop space Ωn(X,x) for any n ≥ 0, where by convention Ω0(X,x) := X.
This allows us to define the nth homotopy group πn(X,x) := π0Ωn(X,x). Note that for n ≥ 2 we
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can view πn(X,x) as a group object in groups, so by the standard Eckmann-Hilton argument the
group structure on πn(X,x) is abelian.

Once we have a working notion of space or ∞-groupoid, we may therefore define an n-groupoid
to be a space X such that πi(X,x) = 1 for all x ∈ X and all i > n.

1.4 Given spaces X and Y , we have the notion of morphism (a.k.a. continuous map) f : X → Y . A
morphism of spaces sends points to points and n-isomorphisms to n-isomorphisms, while respecting
the composition structure in a homotopy coherent manner. More generally we can form the mapping
space Map(X,Y ) whose points are maps f : X → Y , paths are homotopies between maps, etc. For
any spaces X, Y , and Z, we have a morphism

Map(Y, Z)×Map(X,Y ) −→ Map(X,Z)

which encodes the composition law. Composition satisfies natural identity and associativity con-
ditions up to coherent homotopy (we will elaborate on this when we discuss ∞-categories). In
particular we have a well-defined 1-category Ho(Spc) called the homotopy category of spaces, whose
objects are spaces and morphisms X → Y are given by π0 Map(X,Y ).

A map of spaces f : X → Y is called a homotopy equivalence or just an isomorphism if it is
an isomorphism in Ho(Spc), i.e. there exists a map g : Y → X and homotopies g ◦ f→̃ idX and
f ◦ g→̃ idY . A space is called discrete if it is homotopy equivalent to a set, or contractible if it is
homotopy equivalent to the singleton set pt.

A map f : X → Y is a homotopy equivalence if and only if the induced map π0f : π0X → π0Y
is bijective and πn(f, x) : πn(X,x) → πn(Y, f(x)) is an isomorphism for all x ∈ X and all n ≥ 1.
In particular, a space X is discrete if and only if πn(X,x) = 1 for all x ∈ X and all n ≥ 1, and X
is contractible if and only if X is discrete and π0X = pt.

1.5 Given maps of spaces f : X → Z and g : Y → Z, we can form their fiber product X ×Z Y .
A point of X ×Z Y consists of a point x ∈ X, a point y ∈ Y , and a path f(x)→̃g(y) in Z. More
generally, an n-morphism in X ×Z Y consists of n-morphisms α in X and β in Y together with an
(n+ 1)-morphism f(α)→̃g(β) in Z. In particular we have a canonical map

π0(X ×Z Y ) −→ π0(X)×π0(Z) π0(Y )

which is surjective but generally not injective.
For example, we have X ×pt Y = X × Y . Another important special case is the fiber of a

map of spaces f : X → Y over a point y ∈ Y , defined by f−1(y) := X ×Y {y}. For example,
given points x1, x2 ∈ X we have {x1} ×X {x2} = IsoX(x1, x2), and when x1 = x2 this becomes
{x} ×X {x} = Ω(X,x).

The formation of fiber products is natural in the sense that a diagram

X1 Z1 Y1

X2 Z2 Y2

f1

a c

g1

b

f2
g2

together with homotopies c◦f1→̃f2 ◦a and c◦g1→̃g2 ◦ b determines a map X1×Z1 Y1 → X2×Z2 Y2.
The particular instance of this when X1 = Y1 = Z1 and f1, g1 are the identity gives the universal
property of the fiber product. Another example is that a map f : X → Y determines a map
Ω(X,x)→ Ω(Y, f(x)) for any x ∈ X.
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Suppose we are given a fiber square

X Y

pt Z,

f

g

z

meaning we are given a homotopy from g ◦ f to the constant map X → Z with value z and the
induced map X → g−1(z) is a homotopy equivalence. Then a choice of point x ∈ X, which is the
same datum as a point y = f(x) ∈ Y and a homotopy g(y)→̃z, determines a map

∂ : Ω(Z, z) = {z} ×Z {z} −→ Y ×Z {z} = X.

Looping repeatedly, we get a map Ωn+1(Z, z)→ Ωn(X,x) for all n ≥ 0. In particular, applying π0

we obtain the “boundary maps” in a sequence

· · · −→ πn+1(Z, z) −→ πn(X,x) −→ πn(Y, y) −→ πn(Z, z) −→ · · · .

In fact, this sequence is exact: recall that a sequence of pointed sets

(S, s)
f−→ (T, t)

g−→ (U, u)

is called exact at (T, t) if g ◦ f : S → U is the constant map with value u and the resulting map
S → g−1(u) is a bijection, generalizing the usual notion of exactness for sequences of groups. It
follows that a map f : X → Y is a homotopy equivalence if and only if f−1(y) is contractible for
all y ∈ Y .

Note that the exactness assertion reduces by induction to the claim that

Ω(X,x) Ω(Y, y)

pt Ω(Z, z)

is a fiber sequence, and that the sequence

· · · −→ π1(Y, y) −→ π1(Z, z) −→ π0X −→ π0Y −→ π0Z

is exact. The latter assertion at least can be verified in a model-independent fashion: let’s illustrate
this by proving exactness at π0X. Suppose we are given a point x′ ∈ X such that f(x′) lies in the
connected component of y. Identifying X→̃g−1(y), can think of x′ as a pair (y′, α) where y′ ∈ Y
and α : g(y′)→̃z. In these terms f(x′) = y′, so by assumption there exists a path β : y→̃y′. Thus
we obtain a loop

γ : z = g(y)
g(β)−→ g(y′)

α−→ z,

which represents an element of π1(Z, z). By the construction of γ we see that α lifts canonically
to a path ∂(γ)→̃x′, so the connected component of X containing x′ lies in the image of π1(Z, z) as
desired.
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2 Categories

2.1 Now we begin the study of (∞, 1)-categories. One can say that (∞, 1)-categories are to ordinary
categories as spaces are to sets: in particular, in an (∞, 1)-category the morphisms from one object
to another form a space.

To put these objects in context, we should explain heuristically what an (n, k)-category is for
n, k ≥ 0. The idea is that m-morphisms are allowed for m ≤ n, and are required to be isomorphisms
if m > k. In particular (n, k)-categories coincide with (n, n)-categories for all k > n, so we may as
well assume that k ≤ n.

For small values of n and k, these are familiar objects. A (0, 0)-category is just a set. A
(1, 0)-category is a 1-groupoid, and a (1, 1)-category is an ordinary category. A (2, 2)-category is a
2-category in the usual sense.

We have been studying spaces or ∞-groupoids, which are (∞, 0)-categories. This means that
n-morphisms are allowed for all n ≥ 0, but are required to be invertible for n > 0. So an (∞, 1)-
category should be like a space, except with 1-morphisms not necessarily invertible. A prototypical
example is the (∞, 1)-category of spaces, which we will denote by Spc.

There are various models of (∞, 1)-categories available. A particularly convenient one is the
theory of quasicategories, which are simplicial sets satisfying a weakened form of the Kan condition.
Below we will give an intrinsic realization of the (∞, 1)-category of (∞, 1)-categories as a full
subcategory of simplicial spaces.

2.2 The simplex category ∆ is a (1, 1)-category which will play a central role in what follows.
Recall that it consists of finite nonempty linearly ordered sets and weakly order-preserving maps.
An equivalent “skeletal” full subcategory has objects [n] := {0, 1, · · · , n} for n ≥ 0.

As a warm-up, let us describe the (1, 1)-category Catordn of ordinary or (1, 1)-categories as a
full subcategory of the (1, 1)-category of simplicial sets

Set∆op
:= Fun(∆op,Set).

For a given simplicial set E, we will use the notation E(n) for its value on [n].
The nerve functor

N : Catordn −→ Set∆op

is defined as follows. Recall that to specify a simplicial set, it suffices to describe for each n its value
on [n], the face maps d0, · · · , dn : [n− 1]→ [n], and the degeneracy maps s0, · · · , sn : [n+ 1]→ [n]
(of course, one must also check that certain relations are satisfied). Here di : [n − 1] → [n] is
the injection whose image does not contain i, and si : [n + 1] → [n] is the surjection which hits
i twice. Given a (1, 1)-category C , the 0-simplices N(C )(0) consist of objects of C (so we tacitly
assume that C is small). The 1-simplices N(C )(1) consist of morphisms in C , and more generally
the n-simplices N(C )(n) consist of strings of composable morphisms

c0
f1−→ c1

f2−→ · · · fn−1−→ cn−1
fn−→ cn

of length n. The face map di : N(C )(n) → N(C )(n−1) applied to such a string forgets ci, and for
0 < i < n composes fi+1 ◦ fi. The degeneracy map si : N(C )(n) → N(C )(n+1) replaces ci with
idci : ci → ci. We leave it to the reader to verify that the necessary relations are satisfied and to
extend N to a functor on Catordn.
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Let E be a simplicial set, fix n1, n2 ≥ 1, and put n := n1 + n2. Consider the pushout square

[0] [n1]

[n2] [n]

in ∆, where [0]→ [n1] and [0]→ [n2] send 0 7→ n1 and 0 7→ 0 respectively, while the maps [n1]→ [n]
and [n2]→ [n] send i 7→ i and i 7→ i+ n1 respectively. This gives rise to a square of sets

E(n) E(n1)

E(n2) E(0)

(2.1)

Proposition 2.2.1. The functor N is fully faithful. Its essential image consists of simplicial sets
E satisfying the Segal condition, which says that for all n1, n2 ≥ 1 the square (2.1) is cartesian.

We can also characterize groupoids by their nerves. Consider the square

[0] [1]

[1] [2]

in ∆, where both maps [0] → [1] send 0 7→ 0, one map [1] → [2] sends i 7→ i, and the other map
sends 0 7→ 0, 1 7→ 2. This gives rise to a square

E(2) E(1)

E(1) E(0).

(2.2)

Proposition 2.2.2. A (1, 1)-category C is a groupoid if and only if N(C ) has the property that
(2.2) is cartesian.

2.3 Loosely speaking, an (∞, 1)-category C is like a (1, 1)-category, but the morphisms HomC (c1, c2)
between two objects forms a space, and the composition law

HomC (c2, c3)×HomC (c1, c2) −→ HomC (c1, c3)

is associative with identity up to coherent homotopy.
In particular, we can extract from C a (1, 1)-category Ho(C ) whose objects are the objects of

C , and whose morphisms are 1-morphisms of C modulo 2-isomorphism. Note that if C is actually
a space, then Ho(C ) = π≤1C in the previously introduced notation. Conversely, we call C ordinary
if HomC (c1, c2) is discrete for all objects c1, c2 in C . An ordinary (∞, 1)-category is the same thing
as a (1, 1)-category.

We can use the terminology of n-morphisms for n ≥ 1 in an (∞, 1)-category C : a 0-morphism
is an object, and for n ≥ 1 an n-morphism is an (n−1)-morphism in HomC (c1, c2) for some objects
c1, c2 of C . In particular n-morphisms in C are invertible for n > 1.
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A full subcategory C0 of C is determined by which objects of C belong to it: for any objects
c1, c2 in C0 we have

HomC0(c1, c2) = HomC (c1, c2).

Note that a full subcategory of C is the same datum as a full subcategory of Ho(C ).
For any two (∞, 1)-categories C and D we can consider their product C×D , whose n-morphisms

are pairs consisting of an n-morphism of C and an n-morphism of D .
Another fundamental construction attaches a space C grpd to any (∞, 1)-category C , whose 1-

morphisms are the invertible 1-morphisms of C , and whose n-morphisms for n 6= 1 are the same as
those of C .

2.4 We also grant ourselves the notion of a functor of (∞, 1)-categories F : C → D , which sends n-
morphisms of C to n-morphisms of D , in a way which respects the composition laws up to coherent
homotopy. In particular we require that F respect the structure of mapping spaces, i.e. for any
objects c1, c2 in C we have a map of spaces

HomC (c1, c2) −→ HomD(F (c1), F (c2)).

If this map is an isomorphism for all c1, c2, we say that F is fully faithful.
A functor of (∞, 1)-categories F : C → D induces a functor of (1, 1)-categories Ho(F ) :

Ho(C )→ Ho(D). We call F essentially surjective, respectively conservative, if Ho(F ) is so.
For any (∞, 1)-categories C and D , functors assemble into an (∞, 1)-category Fun(C ,D). Mo-

reover, we have a composition law

Fun(D ,E )× Fun(C ,D) −→ Fun(C ,E )

is which is associative with identity up to coherent isomorphism. This is part of the structure
of (∞, 2)-category on the totality of (∞, 1)-categories, but we will not pursue this now. We will,
however, describe it as an (∞, 1)-category.

2.5 Write Spc∆op
:= Fun(∆op, Spc) for the (∞, 1)-category of simplicial spaces. We call a simplicial

space E a Segal space if the square (2.1) in Spc is cartesian for all n1, n2 ≥ 1. Observe that we can
extract a (1, 1)-category from any such E with objects π0(E(0)) and morphisms π0(E(1)), and in
particular we can consider the space (E(1))invrt consisting of those components of E(1) which are
invertible in π0(E(1)). In particular, the degeneracy map E(0) → E(1) factors through (E(1))invrt.

Then Cat, the (∞, 1)-category of (∞, 1)-categories, is (equivalent to, or defined to be, according
to one’s taste) the full subcategory of Spc∆op

consisting of Segal spaces E satisfying the following
completeness (or univalence) condition: the degeneracy map

E(0) −→ (E(1))invrt

is an isomorphism. For an (∞, 1)-category C , the corresponding complete Segal space E satisfies

E(n) = Fun([n],C )grpd

where we view [n] as a (1, 1)-category in the usual way.
There is a canonical fully faithful functor Spc → Cat which sends a space X to the constant

simplicial space with value X. A complete Segal space E comes from a space if the degeneracy
map E(0) → E(1) is an isomorphism.
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A functor F : C → D of (∞, 1)-categories is called an equivalence if it is so in Ho(Cat). It is
known that F is an equivalence if and only if it is fully faithful and essentially surjective.

We can describe some of the previously introduced constructions with an (∞, 1)-category C in
terms of the corresponding complete Segal space E. The space C grpd is just E(0). If we view two
objects c1, c2 of C as points in E(0), the mapping space is the fiber

HomC (c1, c2) = E(1) ×
E(0)×E(0)

{(c1, c2)}.

Ordinary categories are those (∞, 1)-categories whose complete Segal space takes values in 1-
groupoids. Note that this is not compatible with our earlier realization of ordinary categories as
Segal spaces valued in sets.

Observe that Spc∆op
has a canonical involutive autoequivalence given by precomposition with

the involution rev : ∆ → ∆. The latter is the identity on objects, and defined on a morphism
α : [n1]→ [n2] by

rev(α) : [n1]−̃→[n1]op α−→ [n2]op−̃→[n2],

where we used the canonical isorphism [n]→̃[n]op which sends i 7→ n − i. The induced involution
of Spc∆op

preserves Cat, where we denote it by C 7→ C op.
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