
OPERADS AND SHEAF COHOMOLOGY

J.P. MAY

Abstract. I explain how to construct E∞ cochain algebras for computing

classical sheaf cohomology and, in principle, hypercohomology, and I explain

how not to construct E∞ cochain algebras for computing motivic cohomology.
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Introduction

In this short expository paper, I explain how to construct E∞ cochain algebras
for computing classical sheaf cohomology and how not to construct E∞ cochain
algebras for computing motivic cohomology.

There are two brief preliminary sections. In the first, I recall relevant details
about the classical Eilenberg-Zilber theorem. In the second, I recall an elementary
categorical construction of endomorphism operads of functors. It has many applica-
tions, implicit or explicit, and is well-known to the experts. I show in §3 how these
ideas combine to give the Eilenberg-Zilber operad Z that acts on the cochains of
simplicial sets. This is based on Hinich and Schechtman [7] or, for a particularly
clear exposition that I take as a model, Mandell [13, §5]. I give a leisurely pedantic
variant that is intended to facilitate adaptation to the sheaf theoretic context.

In §4, I show how the same ideas work in the Čech approach to sheaf cohomology,
explaining in modern terms ideas that were already understood by Godement [3]. In
§5, I show in principle how to extend the idea to hypercohomology. After recalling
how to define “singular chains” of presheaves in §6, I point out a way not to carry
out this idea in motivic cohomology in §7, which unfortunately contradicts [8].

I will not repeat the definitions of operads and operad actions, for which I refer
the reader to [9, I§§1-2] or [16]. However, to give motivation, let me recall some
basic consequences of having a structure of an E∞ algebra on a cochain complex A
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of modules over a commutative ring R. It is immediate that H∗(A) is a (graded)
commutative algebra, but the added structure on the cochains has stronger impli-
cations. The first of the following two results is fleshed out in [9, I.7.2] and [17,
6.1], by reference to [14], and the second is proven in [9, II.1.5].

Theorem 0.1. Let R = Fp. Then H∗(A) admits Steenrod operations Sqs of degree
s if p = 2 or P s of degree 2s(p− 1) if p > 2 that generalize the pth power operation
and satisfy the Cartan formula and Adem relations.

Theorem 0.2. Let R be a field of characteristic 0. Then A is quasi-isomorphic as
an E∞ algebra to a commutative DGA.

By a DGA, we mean a differential graded R-algebra, with R understood, and of
course commutativity is meant in the graded sense.

Our results in §§4,5 give many examples. In particular, these results apply to
the classical Čech cochain complexes associated to presheaves of commutative R-
algebras on a space (or scheme) X. Theorem 0.2 allows application of the methods
of rational homotopy theory to sheaf cohomology, but that is not a new idea.
There are more direct ways to construct a commutative DGA for computing the
cohomology of a cosimplicial rational commutative DGA, which are already implicit
in Weil’s proof of the deRham theorem. They are exploited explicitly by Hain [4,
5.2] and Navarro Aznar [24], following up work of Morgan [23]. In those papers,
rational homotopy theory is applied to the study of mixed Hodge structures.

As a parenthetical advertisement, another application of such methods, where
at present the full strength of Theorem 0.2 is needed to obtain the relevant com-
mutative DGA’s, appears in [9, IV]. There it is applied to study one approach to
mixed Tate motives. As another parenthetical advertisement, one relevant to pos-
itive characteristic, Mandell [12] has used E∞ algebras to give an algebraization
of p-adic homotopy theory analogous to the Quillen-Sullivan algebraization of ra-
tional homotopy theory. Via our observations, his methods may eventually have
applications in algebraic geometry.

This note is the first in a sequence of three. Here, we only use operads and we
focus on classical situations in algebraic topology and algebraic geometry. In [18],
we describe a different conceptual context, discussing “caterads” and algebras over
caterads. As we explain in [19], it is expected that this will give the right context
in which to describe the general formal structure that is present on the motivic
cochain alebras of [20, 25].

I am happy to thank Roy Joshua for getting me to start thinking about motivic
cochains. I thank Mike Mandell and Vladimir Voevodsky for helping me straighten
out my ideas. I especially thank Chuck Weibel for a careful reading which led to a
more reader friendly reorganization.

1. The Eilenberg-Zilber theorem

To clarify details and philosophy, we recall the classical comparison [2] between
tensor products of chains and chains of tensor products of simplicial Abelian groups
A and B. To avoid later use of the same letter to denote the chain functor defined
on different categories, we follow Mac Lane [10, VIII§5] and let K denote the chain
functor from the category ∆opAb of simplicial Abelian groups to the category Ch
of chain complexes. Thus (KA)n = An, with differential d =

∑
(−1)idi.
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Everything in this paper works equally well using either K or the normalized
chain functor KN . The latter is defined by KNA = KA/DA, where (DA)n is the
subgroup of An generated by the degenerate n-simplices; DA is a a subcomplex
of KA whose homology is zero, and the quotient map KA −→ KNA is a natural
chain homotopy equivalence [10, 6.1]. Normalized chains are substantially more
convenient in algebraic topology, but the reasons will not concern us here. When
considering sheaves, passage to quotients may be inappropriate, and it is then better
to think in terms of unnormalized chains.

Recall that (A⊗B)n = An⊗Bn. To compare chain complexes of tensor products
with tensor products of chain complexes, we have the Alexander-Whitney map

f : K(A⊗B) −→ KA⊗KB

and the shuffle, or Eilenberg-Mac Lane, map

g : KA⊗KB −→ K(A⊗B).

Both are natural quasi-isomorphisms and are the identity map in degree 0.
The former is specified by

(1.1) f(x⊗ y) =
∑

∂̃n−ix⊗ ∂0
iy

for x ∈ An and y ∈ Bn, where ∂̃ denotes the last face operator. It is associative [10,
VIII.8.7]. It is obviously not commutative, but it is chain homotopy commutative.

The shuffle map, which will not become relevant until §6, is specified by

(1.2) g(x⊗ y) =
∑
(µ,ν)

(−1)σ(µ,ν)(sνq
· · · sν1 ⊗ sµp

· · · sµ1y)

for x ∈ Ap and y ∈ Bq. The sum runs over all (p, q)-shuffle permutations (µ, ν),
and σ(µ, ν) is the sign of the permutation. The shuffle map is unital, associative,
and commutative, with no chain homotopies required. Note that the unit of the
⊗-product in ∆opAb is Z•, the constant simplicial Abelian group at Z, while the
unit of Ch is the chain complex given by Z in degree 0. We have a unit chain
homotopy equivalence Z −→ KZ•, which becomes the identity map on passage to
KNZ•. Explicitly, commutativity says that the following diagram commutes.

(1.3) KA⊗KB
g //

τ

��

K(A⊗B)

Kt

��
KB ⊗KA

g // K(B ⊗A)

Here t on the right is transposition (no sign) and τ on the left is the graded trans-
position τ(x⊗ y) = (−1)pqy ⊗ x, where x is of degree p and y is of degree q.

Formally, the properties of the shuffle map imply the following conceptual result.
Recall that a functor F : A −→ B between symmetric monoidal categories is said
to be lax symmetric monoidal if there is a map λ : κB −→ F (κA ) of unit objects
and a natural map

ι : FX ⊗B FY −→ F (X ⊗A Y )
such that all coherence diagrams relating F to the unit, associativity, and commu-
tativity isomorphisms of A and B commute; see [11, XI§2]; F is strong symmetric
monoidal if λ and ι are isomorphisms. These formal notions are important to us
since a lax symmetric monoidal functor F carries an operad O in A to an operad
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FO in B and carries an O-algebra A to an FO-algebra FA in B. This principle
is in fact one of the main virtues of the definition of an operad.

Proposition 1.4. The functors K and KN from simplicial Abelian groups to chain
complexes are lax symmetric monoidal via the shuffle map.

Let Z• also denote the free Abelian group functor from the category ∆opSets of
simplicial sets to the category ∆opAb. Since we prefer to focus on normalized chains,
we define the chain complex of a simplicial set X by letting C∗(X) = KNZ•X. We
record a triviality.

Proposition 1.5. The functor Z• : ∆opSets −→ ∆opAb is strong symmetric mon-
oidal, hence the functor C∗ is lax symmetric monoidal.

Proof. This holds since Z•(∗) is constant at Z and Z•(X × Y ) ∼= Z•X ⊗ Z•Y for
simplicial sets X and Y . �

Applying KN , it follows that

(1.6) C∗(X × Y ) = KNZ•(X × Y ) ∼= KN (Z•X ⊗ Z•Y ).

Thus the discussion above applies to compare C∗(X × Y ) with C∗(X)⊗ C∗(Y ).
We could apply the discussion of this section equally well starting with the

category MR of modules over a commutative ring R, rather than with Ab. Of
course, the resulting normalized chains C∗(X;R) can be identified with C∗X ⊗R.

2. Endomorphism operads of functors

Let C be any closed symmetric monoidal category with unit object κ, product
⊗, and internal hom functor Hom, so that we have the adjunction

Hom(X ⊗ Y, Z) ∼= Hom(X, Hom(Y,Z)).

For definiteness, the reader should think of C as the category ChMR of cochain
complexes over a commutative ring R, with κ = R. Let ε : Hom(X, Y )⊗X −→ Y
denote the counit of the adjunction and let τ : X ⊗ Y −→ Y ⊗ X denote the
commutativity isomorphism for ⊗. The adjoint of

(ε⊗ ε) ◦ (id⊗τ ⊗ id) : Hom(X, Y )⊗Hom(X ′, Y ′)⊗X ⊗X ′ −→ Y ⊗ Y ′,

gives a natural ⊗-product pairing

Hom(X, Y )⊗Hom(X ′, Y ′) −→ Hom(X ⊗X ′, Y ⊗ Y ′).

We assume that C is complete (has all limits). Let D be any small category, such
as the category ∆ whose covariant and contravariant functors are cosimplicial and
simplicial objects, respectively.

For a pair of covariant functors X, Y : D −→ C , we define HomD(X, Y ) to be
the equalizer in C displayed in the diagram

(2.1) HomD(X, Y ) //
∏

d∈D Hom(Xd, Yd)
//
//
∏

α:d→e Hom(Xd, Ye),

where the second product runs over all morphisms α of D . Here Xd denotes the
object that X assigns to d. Writing Xα : Xd −→ Xe for the morphism that X
assigns to α : d → e, the parallel arrows send (fd) to (fe◦Xα) and to (Yα◦fd). Thus
the αth components of the parallel arrows are the composites of the projections to
the eth or the dth component followed by

Hom(Xα, id) : Hom(Xe, Ye) −→ Hom(Xd, Ye)
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or
Hom(id, Yα) : Hom(Xd, Yd) −→ Hom(Xd, Ye).

This is just a pedantically precise internal hom analogue of the definition of the set
of natural transformations from X to Y .

We define the tensor product over D of a contravariant functor X : D −→ C ,
written d 7−→ Xd on objects, and a covariant functor Y : D −→ C to be the
coequalizer displayed in the analogous diagram

(2.2)
∐

α:d→e Xd ⊗ Ye
//
//
∐

d∈D Xd ⊗ Yd
//X ⊗D Y.

The parallel arrows are given by the maps

Xα ⊗ id : Xe ⊗ Yd −→ Xd ⊗ Yd and id⊗Yα : Xe ⊗ Yd −→ Xe ⊗ Ye.

Construction 2.3. Fix a covariant functor Λ : D −→ C . We have the diagonal
power functor Λj . It sends d to the j-fold ⊗-power (Λd)j . By convention, the
0-fold power of Λ is the constant functor at κ. We define the endomorphism operad
End(Λ) of the functor Λ by setting

End(Λ)(j) = HomD(Λ,Λj).

The unit η : κ −→ HomD(Λ,Λ) is the adjoint of the identity and the right action of
the symmetric group Σj on HomD(Λ,Λj) is induced from the permutation action
of Σj on the functor Λj . The product maps

γ : EndΛ(k)⊗ EndΛ(j1)⊗ · · · ⊗ EndΛ(jk) −→ EndΛ(j),

where j = j1 + · · ·+ jk, are the composites

HomD(Λ,Λk)⊗HomD(Λ,Λj1)⊗ · · · ⊗HomD(Λ,Λjk)

id⊗ k-fold ⊗-product

��
HomD(Λ,Λk)⊗HomD(Λk,Λj)

τ

��
HomD(Λk,Λj)⊗HomD(Λ,Λk)

composition

��
HomD(Λ,Λj).

The verifications of the defining equivariance, unit, and associativity conditions for
an operad (see [9, 16]) are immediate.

Remark 2.4. The appearance of the commutativity isomorphism τ in the definition
of γ introduces appropriate signs in graded situations. In terms of elements of
internal Hom objects, γ is given by

γ(g; f1, · · · , fk) = (−1)pq(f1 ⊗ · · · ⊗ fk) ◦ g,

where p is the sum of the degrees of the fi and q is the degree of g.

Remark 2.5. Endomorphism operads are special cases of the “functor operads” of
McClure and Smith [22], in which powers of a given functor (our Λj) are replaced
by a sequence of functors Λ(j) that are related by suitable natural transformations.
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The purpose of defining an operad O is to define O-algebras (see [9, 16]). Such
algebras are given by a suitably equivariant, unital, and associative sequence of
maps O(j)⊗Xj −→ X. The maps γ generalize in a way that leads to this.

Construction 2.6. For covariant functors Ai : D −→ C , 1 ≤ i ≤ j, we have the
diagonal ⊗-product A1 ⊗ · · · ⊗ Aj : D −→ C that sends d to A1,d ⊗ · · · ⊗ Aj,d. In
analogy with the definition of γ above,we define

ξ : End(Λ)(j)⊗HomD(Λ, A1)⊗ · · · ⊗HomD(Λ, Aj) −→ HomD(Λ, A1 ⊗ · · · ⊗Aj)

to be the composite

HomD(Λ,Λj)⊗HomD(Λ, A1)⊗ · · · ⊗HomD(Λ, Aj)

id⊗ j-fold ⊗-product

��
HomD(Λ,Λj)⊗HomD(Λj , A1 ⊗ · · · ⊗Aj)

τ

��
HomD(Λj , A1 ⊗ · · · ⊗Aj)⊗HomD(Λ,Λj)

composition

��
HomD(Λ, A1 ⊗ · · · ⊗Aj).

We call these maps ξ generalized Alexander-Whitney maps.

3. The Eilenberg-Zilber operad

Specializing the construction of the previous section, we take D to be the cat-
egory ∆ of finite sets n and monotonic maps, so that a simplicial object is a con-
travariant functor defined on ∆ and a cosimplicial object is a covariant functor
defined on ∆. As is usual, we often use bullets • and • to denote cosimplicial or
simplicial variables, but we note that this is opposite to the conventional use of
superscripts and subscripts in the previous section.

Fix a commutative ring R and let MR be the category of R-modules. We take
C in the previous section to be the category ChMR of differential Z-graded R-
modules, or R-cochain complexes, with differentials raising degree by 1. We write
Xn = X−n and so regard cochain complexes as chain complexes, and conversely,
whenever convenient. The internal hom functor is given by letting Homn

R(X, Y ) be
the product over q of the HomR(Xq, Y q+n). The differential on an element (fq)
of Homn

R(X, Y ) is given by d(fq) = d ◦ fq + (−1)q+1fq+1 ◦ d. Let ∆n denote the
standard simplicial n-simplex, that is, the represented functor ∆(−,n). As n varies,
the ∆n give a cosimplicial simplicial set ∆•.

Definition 3.1. Define Λ : ∆ −→ ChMR to be the functor that sends n to
the normalized chain complex C∗(∆n, R). That is, Λ = C∗(∆•, R). Define the
Eilenberg-Zilber operad to be the operad Z = End(Λ) in ChMR.

Let C om denote the commutativity operad in ChMR. Each C om(j) = R, with
trivial action by Σj ; the unit and structure maps of C om are identity maps. The
C om-algebras are exactly the commutative DGA’s. Define a map ε : Z −→ C om
of operads by identifying each C∗(∆0, R)j with R and restricting maps in Z (j)
to cosimplicial level zero, where they give elements of R = HomR(R,R). The
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method of acyclic models introduced by Eilenberg and Zilber [2] implies that the
Eilenberg-Zilber operad is acyclic, which means that the following result holds.

Proposition 3.2. For j ≥ 0, ε : Z (j) −→ C om(j) = R is a quasi-isomorphism.

An E∞ operad in ChMR is an acyclic operad E such that each E (j) is an R[Σj ]-
free resolution of R. Thus, in addition to being acyclic, it is required that E (j)n = 0
for n < 0 and that Σj act freely on each E (j)n. These conditions are not satisfied
by Z , but we have the following result.

Proposition 3.3. There is an E∞ operad E and a quasi-isomorphism of operads
α : E −→ Z .

A quick direct proof is given in [13, §4]. More sophisticated proofs use the fact
that the category of operads admits a model structure [1, 6]. McClure and Smith
[21] have constructed a combinatorially explicit E∞ approximation α : E −→ Z .

An E∞ algebra over R is a cochain complex together with an action of an E∞
operad. Note that we are implicitly regrading a chain E∞ operad cohomologically
to make sense of this. For purposes of analogy, we recall the proof that the cochains
of a simplicial set form a Z -algebra and thus, by pullback along α, an E∞ algebra.
To this end, we give a slightly unorthodox description of the chains and cochains
of simplicial sets. Embed MR in ChMR by regarding R-modules as (co)chain
complexes concentrated in degree zero, with differential zero.

Definition 3.4. Let X be a simplicial set. Define a simplicial R-module R•X
by applying the free R-module functor in each degree, so that RnX is the free
R-module generated by the n-simplices of X. Define a cosimplicial R-module R•X
by R•X = HomR(R•X, R). Thus RnX = RXn is the cartesian product of copies of
R indexed by the n-simplices of X. Regarding each RnX and RnX as a (co)chain
complex concentrated in degree zero and with differential zero, redefine

(3.5) C∗(X, R) = Λ⊗∆op R•X

and define

(3.6) C∗(X, R) = Hom∆(Λ, R•X).

To see that these definitions agree with the usual ones, observe that an easy
Yoneda argument shows that, in degree n, the right side of (3.5) is the free R-
module on the basis {in ⊗ xn}, where in is the fundamental class of the usual
Cn(∆n, R) and xn runs through the nondegenerate n-simplices of X. Expressed in
this basis, the differential is given by

d(in ⊗ xn) = d(in)⊗ xn =
n∑

q=0

(−1)qin−1 ⊗ dqxn

since dqin = δq(in−1) for the appropriate face map δq : n− 1 −→ n in ∆. This
identifies C∗(X, R) with the usual normalized chains of X, as defined in §1. Simi-
larly, since the functor HomR(−, R) converts coequalizers to equalizers, we have a
canonical natural isomorphism of cochain complexes

(3.7) HomR(Λ⊗∆op R•X, R) ∼= Hom∆(Λ,HomR(R•X, R)).

Using our first identification, this identifies C∗(X, R) with the usual normalized
cochains of X, namely HomR(C∗(X;R), R).

We need the following analogue of Proposition 1.5.
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Proposition 3.8. The functor R• from simplicial sets to cosimplicial R-modules
is lax symmetric monoidal.

Proof. The unit for the ⊗-product of cosimplicial R-modules is the constant cosim-
plicial R-module R• at R, which is R•(∗). For simplicial sets X and Y , define

ι : R•X ⊗R•Y −→ R•(X × Y )

by ι(f ⊗ g)(x, y) = f(x)g(y) for f : Xn → R, g : Yn → R, x ∈ Xn, and y ∈ Yn.
Clearly ι is associative, commutative, and unital. �

Theorem 3.9. The cochain functor C∗(−, R) on simplicial sets takes values in the
category of Z -algebras.

Proof. Define
ι : (R•X)j −→ R•(Xj)

to be the identity if j = 0 (where both sides are constant at R) or if j = 1 and to
be the iterate of ι if j ≥ 2. Here the power on the left side is the tensor power of
cosimplicial R-modules, while Xj on the right denotes the j-fold cartesian power.
Then we have the composites

(3.10) Hom∆(Λ,Λj)⊗Hom∆(Λ, R•X)j

ξ

��
Hom∆(Λ, (R•X)j)

Hom∆(id,ι)

��
Hom∆(Λ, R•(Xj))

Hom∆(id,R•(4))

��
Hom∆(Λ, R•X).

The Alexander-Whitney map ξ is given by Construction 2.6; the map4 : X −→ Xj

is the projection X −→ ∗ if j = 0, the identity if j = 1, and the iterated diagonal
map if j ≥ 2. With these structure maps, denoted

(3.11) θ = θj : Z (j)⊗ C∗(X, R)j −→ C∗(X, R),

C∗(X, R) is an algebra over Z . �

We give some discussion to make this more concrete. The composites

C∗(∆n, R)
4∗ //C∗(∆n ×∆n, R)

f //C∗(∆n, R)⊗ C∗(∆n, R)

specify a zero cycle in the chain complex Z (2) = Hom∆(Λ,Λ2), and the operad
Z encodes the collection of all natural chain maps of the same general form. Re-
stricted to this cycle, the action map θ2 recovers the usual cup product on C∗(X;R).
The acyclicity of Z directly implies that the resulting product on H∗(X;R) is as-
sociative, commutative, and unital. Note that the geometric diagonal map 4 is
cocommutative. The non-commutativity on the cochain level comes from the non-
commutativity of the Alexander-Whitney map f , or of any other comparison map
in this direction. The ∪1-product, which gives the chain homotopy commutativity
of C∗(X;R), and the higher ∪i-products are given similarly by elements of degree
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i in Z (2). These are the source of the classical mod 2 Steenrod operations when
R = F2. Similar, but less explicit, structure in Z (p) gives the Steenrod operations
when R = Fp for an odd prime p.

We abstract the structures used in this example. We started in the cartesian
monoidal category T = ∆opSets of simplicial sets; the cartesian monoidal structure
gave rise to the diagonal maps 4. We had a lax monoidal functor R• from T to
the category of cosimplicial R-modules. Via the embedding MR −→ ChMR, we
regarded R• as taking values in cosimplicial cochain complexes.

Theorem 3.12. Let T be a cartesian monoidal category and let F • be a lax sym-
metric monoidal functor from T to the category of cosimplicial R-modules. For
X ∈ T , define the cochains of X with coefficients in F • by

C∗(X, F •) = Hom∆(Λ, F •X).

Then C∗(X, F •) is naturally an algebra over the operad Z with structure maps θ
defined as in (3.10), but with R• replaced by F •.

4. Classical sheaf cohomology

Using Čech cochains, we show here that Theorem 3.12 adapts to give E∞
cochains that compute sheaf cohomology. This should not be a new result, al-
though there seems to be no exposition in the literature. In fact, although the
language of operads came almost fifteen years later [15], the basic idea was already
understood by Godement [3, p.v] in 1958. To quote him, “... la théorie multiplica-
tive des faisceaux n’est qu’un cas particulier de la théorie générale concernant les
complexes <<simpliciaux>>; elle montre que toute notion reposant exclusivement
sur l’existence d’une structure simpliciale s’étend automatiquement à la théorie des
faisceaux; en particulier, il est clair dès maintenant que les opérations de Steenrod
peuvent se définir en théorie des faisceaux.” However, he left an exposition to “le
second tome de cet ouvrage”, which unfortunately never appeared. As he realized,
his canonical flasque resolutions could be used instead of the Čech construction.
Only the simplicial structure is relevant.

For simplicity of notation and clarity of exposition, we shall work over a topo-
logical space X rather than in a Grothendieck site. The argument adapts without
difficulty to the latter situation. Let U be an open cover of X indexed on a totally
ordered set I. Define a simplicial set U• by letting the set Un of n-simplices be
the set of ordered (n + 1)-tuples S = {Ui0 , . . . , Uin} (possibly with repeats) of sets
in U that have non-empty intersection, denoted US . The qth face operator deletes
the qth set, and the qth degeneracy operator repeats the qth set. Given a presheaf
F of R-modules on X, we define a cosimplicial R-module F •

U by setting

(4.1) Fn
U =

∏
S∈Un

F (US).

The cofaces and codegeneracies are induced by restriction maps associated in the
evident fashion to the faces and degeneracies of U•. If F is constant at R, this is
the obvious analogue of the construction R• on simplicial sets. As there, we regard
F •

U as a cosimplicial cochain complex, and we define the Čech cochain complex by

(4.2) Č
∗
(U ,F ) = Hom∆(Λ,F •

U ).

Because we are using normalized chains in the definition of Λ, we are restricting to
the subproduct in (4.1) with coordinates zero when S contains repeated subsets,
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and we are imposing the expected differential. Up to language, this is precisely the
standard definition of Čech cochains; compare [3, 5.1] or [5, III§4].

A refinement of a cover U indexed on an ordered set I is a cover V indexed
on an ordered set J together with a function α : J −→ I such that Vj ⊂ Uα(j). A
refinement induces a map α• : V• −→ U• of simplicial sets, a map α• : F •

U −→ F •
V

of cosimplicial R-modules, and thus a map α∗ : Č
∗
(U ,F ) −→ Č

∗
(V ,F ) of Čech

cochains. Two choices of α lead to chain homotopic maps [3, 5.7.1]. Regarding the
set of coverings of X as partially ordered under refinement, we can pass to colimits.
Alternatively, by choosing an ordering of the points of X and restricting attention
to covers indexed on X and satisfying x ∈ Ux, we can pass to colimits canonically.
Either way, passing to colimits over covers and refinements, we obtain a colimit
cosimplicial R-module F •, and we define cochains by

(4.3) Č
∗
(X, F ) = Hom∆(Λ,F •).

See [3, 5.8] for details and variants “with support”. The essential starting point
for Čech cohomology is the fact that this Čech cochain functor transforms exact
sequences of presheaves to exact sequences of cochain complexes [3, 5.8.1].

However, for us, the essential point is that, again taking C = ChMR and D = ∆,
we are again in a context where the generalized Alexander-Whitney maps ξ of
Construction 2.6 are defined. We need analogues of the maps ι and F •(4) that
were used to obtain action maps in Theorem 3.9. For the first, we have the following
analogue of Proposition 3.8.

Proposition 4.4. The functors (−)•U and (−)• from the category of presheaves
of R-modules over X to the category of cosimplicial R-modules are lax symmetric
monoidal.

Proof. The ⊗-product of presheaves F and G is the “diagonal presheaf” F ⊗ G
on X defined by

(4.5) (F ⊗ G )(U) = F (U)⊗ G (U),

where the tensor product on the right is just the ordinary tensor product of R-
modules. Define

(4.6) ι : F •
U ⊗ G •U −→ (F ⊗ G )•U

by the evident projections on diagonal factors

(4.7) (
∏

S∈Un

F (US))⊗ (
∏

T∈Un

G (UT )) −→
∏

S∈Un

(F (US)⊗ G (US)).

As n varies, these clearly give a map of cosimplicial R-modules, and the required
associativity, commutativity, and unity of ι are also clear. �

Since we are interested in multiplicative structures, we must assume such a
structure on F , and that will give us the required analogue of the map F •(4).

Theorem 4.8. Let F be a presheaf of commutative R-algebras on X. Then
Č
∗
(U ,F ) and Č

∗
(X, F ) are Z -algebras.

Proof. The structure maps

θ = θj : Z (j)⊗ Č
∗
(U ,F )j −→ Č

∗
(U ,F )
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are the composites
Hom∆(Λ,Λj)⊗Hom∆(Λ,F •

U )j

ξ

��
Hom∆(Λ, (F •

U )j)

Hom∆(id,ι)

��
Hom∆(Λ, (F j)•U )

Hom∆(id,φ)

��
Hom∆(Λ,F •

U ).

Here ι : (F •
U )j −→ (F j)•U is the identity when j = 0, where both sides are the

constant presheaf at R, and when j = 1; when j ≥ 2, ι is obtained by iterating
the map ι of the previous proof. Similarly, φ is the unit map when j = 0 and
the identity map when j = 1; when j ≥ 2, φ is induced by the iterated product
F j −→ F . The structure maps for Č

∗
(X, F ) are obtained by passage to colimits

over covers U . �

Remark 4.9. Since we used normalized chains in defining Λ, we have Cpq−i(∆q) = 0
if pq − i > q. Tracing through the definition of ξ and comparing with the general
algebraic definition of Steenrod operations [14, 5.1, 5.2], we see that the Steenrod
operations derived on Ȟ∗(X, F ) when R = Fp satisfy P s = 0 for s < 0, something
which is not true in all algebraic situations where Steenrod operations are defined.
For example, it is not true in hypercohomology. The proof that P 0 = Id in the
cohomology of simplicial sets is special to that situation [15, 8.1]. Since P 0 in degree
zero is the pth power, or Frobenius, one does not have P 0 = Id in Čech cohomology.
Rather, P 0 is the Frobenius operator obtained by applying the pth power in the Fp-
algebras F (U) to all coordinates of representative cochains of cohomology classes.
All of the other basic properties familiar from algebraic topology do hold [9, I.7.2].

5. Hypercohomology

With the exposition above, our results on operad actions appear to be unnatural
specializations of more general results. We have been using the evident embedding
MR −→ ChMR, but it is more natural to start out with cosimplicial R-cochain
complexes rather than just with cosimplicial R-modules. The larger category is
the natural domain for the “totalization functor” Hom∆(Λ,−), which is usually
denoted “Tot”. Theorems 3.12 and 4.8 generalize to give the following results.

Theorem 5.1. Let T be a cartesian monoidal category and let F • be a lax symmet-
ric monoidal functor from T to the category of cosimplicial R-cochain complexes.
For X ∈ T , define the cochains of X with coefficients in F • by

C∗(X, F •) = Hom∆(Λ, F •X).

Then C∗(X, F •) is naturally an algebra over the operad Z with structure maps θ
defined as in (3.10), but with R• replaced by F •.

Here, rather than ask for a functor F • on a cartesian monoidal category, one can
modify the argument to obtain the following more general variant.
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Theorem 5.2. Let F • be a cosimplicial commutative DGA. Then Hom∆(Λ, F •) is
an algebra over the operad Z with structure maps the composites

Hom∆(Λ,Λj)⊗Hom∆(Λ, F •)j
ξ // Hom∆(Λ, (F •)j)

Hom∆(id,φ) // Hom∆(Λ, F •),

where φ : (F •)j −→ F • is the unit map if j = 0, the identity if j = 1, and the
iterated product of F • if j ≥ 2.

Remark 5.3. When R is a field of characteristic zero, the conclusion of the previous
result can be strengthened to obtain quasi-isomorphic commutative DGA’s, either
by quotation of [9, II.5.1] or by the methods of rational homotopy theory [4, 23, 24].

Similarly, in the previous section, we can start with a presheaf F of cochain
complexes on a space X, define a cosimplicial cochain complex F •

U associated to
an open cover U as in (4.1), and define Čech hypercochain complexes by

(5.4) Č
∗
(U ,F ) = Hom∆(Λ,F •

U ).

Unravelling the notation shows that this agrees with the usual definition of Čech
hypercochains. With no changes in the constructions and arguments, we obtain
the following generalization of Theorem 4.8. In fact, this can also be thought of
as a special case of Theorem 5.2 since the Čech construction gives a presheaf of
cosimplicial commutative DGA’s to which that result applies.

Theorem 5.5. Let F be a presheaf of commutative DGA’s on X. Then Č
∗
(U ,F )

and Č
∗
(X, F ) are Z -algebras, with action maps defined as in Theorem 4.8.

As pointed out to me by Nori, this applies, for example, to deRham cohomology
in positive characteristic. However, a problem with the previous two results is that,
in practice, we may not encounter commutative DGA’s in nature. Rather, we may
encounter only E∞ algebras. We can generalize these results to that situation. The
tensor product of operads O and P is specified by (O ⊗ P)(j) = O(j) ⊗ P(j),
with the evident structure maps determined by those of O and P. This simple
construction has been used since the introduction of operads [15] to combine operad
actions that have possibly different “geometric” origins.

Theorem 5.6. Let O be an operad and let F • be a cosimplicial O-algebra with
structure maps θ. Then Hom∆(Λ, F •) is an algebra over the operad O ⊗Z . The
action maps are the composites

O(j)⊗Hom∆(Λ,Λj)⊗Hom∆(Λ, F •)j

id⊗ξ

��
O(j)⊗Hom∆(Λ, (F •)j)

ζ

��
Hom∆(Λ,O(j)⊗ (F •)j)

Hom∆(id,θ)

��
Hom∆(Λ, F •).
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Here ζ is the evident map of cochain complexes induced from the map

(5.7) ζ : X ⊗Hom(Y,Z) −→ Hom(Y, X ⊗ Z)

defined for R-modules X, Y , and Z by ζ(x⊗ f)(y) = x⊗ f(y).

Theorem 5.8. Let O be an operad and let F be a presheaf of O-algebras on a
space X with action maps θ. Then Č

∗
(U ,F ) and Č

∗
(X, F ) are O ⊗Z -algebras.

The action maps

θ : O(j)⊗Z (j)⊗ Č
∗
(U ,F )j −→ Č

∗
(U ,F )

are the composites

O(j)⊗Hom∆(Λ,Λj)⊗Hom∆(Λ,F •
U )j

id⊗ξ

��
O(j)⊗Hom∆(Λ, (F •

U )j)

ζ

��
Hom∆(Λ,O(j)⊗ (F •

U )j)

Hom∆(id,θ)

��
Hom∆(Λ,F •

U ).

Here, in interpreting the action θ of O on F •
U , we are using (4.1) and the

observation that finite cartesian products of O-algebras are O-algebras.
We record the following variant of Proposition 3.3, which is again a special case

of the results of [13, §4] and also follows from the model theoretic work of [1, 6].

Proposition 5.9. If O is acyclic, there is an E∞ operad E and a quasi-isomorphism
of operads α : E −→ O ⊗ Z . Therefore O ⊗ Z -algebras are E -algebras and thus
E∞ algebras by pullback along α.

Remark 5.10. Let S be a site. Then, modifying the Čech construction to deal
with covers U of objects X in the site, everything in this and the previous section
adapts to the Čech cochain complexes of X with coefficients in sheaves on S of
the specified algebraic types. One replaces the intersections appearing in (4.1) with
finite limits, and one observes that finite limits of O-algebras are O-algebras.

6. Presheaf singular chains

Let S = Sm/k be the category of smooth separated schemes of finite type over
a field k and let Pre(S ) be the category of presheaves on S . We have the standard
cosimplicial object ∆• in S . Its nth scheme is

∆n = Spec(k[t0, . . . , tn]/(Σti − 1)),

and its faces and degeneracies are precisely analogous to the faces and degeneracies
relating the simplicial or topological simplices ∆n; see [25, pp. 150, 245].

Definition 6.1. For a presheaf F on S , define a simplicial presheaf F• by letting

Fn(X) = F (X ×∆n)

for X ∈ S , with faces and degeneracies induced by those of ∆•. If F is Abelian,
then F• is a simplicial Abelian presheaf.
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Proposition 6.2. The functors

(−)• : Pre(S ) −→ ∆opPre(S ) and (−)• : AbPre(S ) −→ ∆opAbPre(S )

are strong symmetric monoidal.

Proof. This is just the observation that (−)• takes unit objects to unit objects and
preserves products. The latter holds since

(F ×G )n(X) = (F ×G )(X ×∆n) = F (X ×∆n)×G (X ×∆n) = Fn(X)×Gn(X)

for presheaves F and G and

(F ⊗G )n(X) = (F ⊗G )(X ×∆n) = F (X ×∆n)⊗G (X ×∆n) = Fn(X)⊗Gn(X)

for Abelian presheaves F and G . �

We use the chain functor K (or KN ) of §1 to define “singular chains”.

Definition 6.3. Define the chain presheaf C∗(F ) of an Abelian presheaf F by
C∗(F ) = KF•. Tensoring with an Abelian group A, we obtain the chain presheaf
C∗(F , A) with coefficients in A.

Heading towards motivic cochains, let F = {F (q)} be a sequence of Abelian
presheaves, and suppose given natural external pairings

φ : F (q)(X)⊗F (r)(Y ) −→ F (q + r)(X × Y )

for X, Y ∈ S . These specialize to give external products

F (q)(X ×∆n)⊗F (r)(X ×∆n) −→ F (q + r)(X ×∆n ×X ×∆n).

Pulling back along the diagonal of X ×∆n, this gives an internal product

(6.4) φ : F (q)• ⊗F (r)• −→ F (q + r)•

of simplicial Abelian presheaves. Passing to chains and composing with the shuffle
map g, we obtain the product map of presheaves of chain complexes

(6.5) C∗(F (q))⊗ C∗(F (r))
g //C∗(F (q)⊗F (r))

φ //C∗(F (q + r)).

Choosing F appropriately and then reindexing cohomologically with a shift of
grading, this is how the products on motivic cochains are defined formally [20,
3.10]. The chain level product is not commutative because the external pairing
φ is not commutative. Naively, the problem of constructing E∞ motivic cochain
algebras can be viewed as the problem of finding an acyclic operad O that acts
on F in such a manner that the product (6.5) is given by a choice of a zero cycle
in O(2). As I will explain in [18, 19], such a naive formulation seems to impede
real understanding. However, it is plausible that it can be carried out, and then
Proposition 5.8 will apply to give E∞ motivic cochains for the hypercohomology
groups that define motivic cohomology.
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7. A misleading endomorphism operad

We describe one way not to proceed. Return to the context of §1, starting
with a closed symmetric monoidal category C , a small category D , and a functor
Λ: D −→ C . We have the endomorphism operad End(Λ) in C .

Recall that a commutative monoid in C is an object with a commutative, asso-
ciative, and unital product. For any C , there is an operad N (or C om) in C such
that an N -algebra is a commutative monoid. Each N (j) is the unit object of C ,
with trivial action by Σj ; the unit and structure maps are identity maps.

Now take C to be cartesian closed, so that its product is the categorical product,
and let ∗ denote its unit object. For each d ∈ D , we have the iterated diagonal
map 4 : Λd −→ Λj

d, which can be viewed as a map ∗ −→ Hom(Λd,Λ
j
d). The

naturality of diagonal maps implies that these maps are the coordinates of a map
∗ −→ HomD(Λ,Λj) = End(Λ)(j). Since composites of products of diagonal maps
are diagonal maps, these maps specify a map 4 : N −→ End(Λ) of operads in C .

Lemma 7.1. For any cartesian closed category C and any functor Λ: D −→ C ,
an algebra over End(Λ) is a commutative monoid in C by pullback along 4.

Now return to the notations of the previous section, letting S = Sm/k.

Construction 7.2. We construct an operad O in the category ChPre(S ) of pre-
sheaves of chain complexes on S , together with a map 4∗ : C om −→ O, where
C om denotes the commutativity operad in ChPre(S ). Regarding schemes as rep-
resentable presheaves, start with the endomorphism operad End(∆•) in Pre(S ).
Consider the following three functors.

Pre(S )
(−)• //∆opPre(S )

Z• //∆opAbPre(S ) K //ChPre(S )

By Propositions 1.4, 1.5, and 6.2, these functors are all lax symmetric monoidal
and therefore take operads to operads. Writing C∗ for the composite of these three
functors, define

(7.3) O = C∗(End(∆•)).

As above, if N is the commutativity operad in Pre(S ), we have the map of operads
4 : N −→ End(∆•). Using normalized chains KN , C∗(N ) = C om since it is the
operad whose jth presheaf is constant at the chain complex Z; using unnormalized
chains K, there is an evident map C om −→ C∗(N ). Either way, applying the
composite functor C∗ to 4, we obtain a map of operads 4∗ : C om −→ O.

Since C om-algebras are presheaves of commutative DGA’s, the following obser-
vation is immediate.

Proposition 7.4. By pullback along 4∗, an O-algebra is a presheaf of commutative
DGA’s over Z.

The following result holds but, since it seems to have no applications, we omit
the proof. It is an easy application of [25, 4.1] or [20, 2.18].

Proposition 7.5. The operad O is acyclic.

Scholium 7.6. An unsuccessful attempt to construct E∞ motivic cochains was given
in [8]. On close inspection, one finds that the acyclic operad intended there is in
fact the operad O of (7.3), or rather its evident cubical variant. Since its algebras
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are presheaves of commutative DGA’s and since the motivic cochain algebras are
not commutative, this operad cannot act on motivic cochains.
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