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Abstract. This is an expository article on Tarski’s principle and the elimi-

nation of quantifiers for real closed and algebraically closed fields.

1. Introduction

Tarski’s Principle [12] is usually discussed in the context of formal languages and
model theory. The aim of the present article is to present this result using only or-
dinary notions of algebra. Hopefully this will make this important result accessible
to a wider class of readers. We follow the method of Kreisel and Krivine [6] fairly
closely. This has the advantages of being very elementary and also constructive. I
have also included some standard applications in section 4 and have added a final
section proving the classical properties of real closed fields which are used here.
Further results on real closed fields can be found in the original paper of Artin and
Schreier [1] and excellent surveys of later results are given in Lam’s papers [8], [9].

2. Elementary predicates

Let F be a field, possibly ordered. We consider a special class of relations between
elements of F known as elementary predicates. We begin with relations of the form
f(x1, . . . , xn) = 0 and, in the case of an ordered field, also f(x1, . . . , xn) > 0, where
f is a polynomial with integral coefficients. In applying these relations to elements
a1, . . . , an of our field we interpret the constant term c of f as c1 where 1 is the
unit element of F . These relations will be referred to as atomic predicates.

Remark 2.1. The use of integral coefficients does not prevent us from looking at
polynomials with coefficients in F . It only forces us to specify these explicitly
i.e. ax2 + bx + c = 0 must be written as f(a, b, c, x) = 0 where f(x1, x2, x3, x) =
x1x

2 + x2x+ x1.

Although I will not use any deep results from logic, I will use some of the ele-
mentary notation of symbolic logic since I think this will make clear what sort of
assertions are being considered. We can combine the predicates by using the usual
logical connectives: disjunction: P ∨Q (for “P or Q”), conjunction: P ∧Q (for “P
and Q”), and negation: ¬P (for “not P”). We enclose the parts in brackets when
necessary to avoid ambiguity. Other logical connectives can be expressed in terms
of these: P ⊃ Q (P implies Q) as ¬P ∨ Q and P ≡ Q (P is equivalent to Q) as
(P ⊃ Q) ∧ (Q ⊃ P ).

The class of elementary predicates is defined as the smallest class containing the
atomic predicates and closed under ¬, ∨, ∧ and the quantifiers: (∀x)P (x, y1, . . . , yn)
(“P (x, y1, . . . , yn) holds for all x”) and (∃x)P (x, y1, . . . , yn) (“P (x, y1, . . . , yn) holds
for some x”). The class of quantifier–free elementary predicates is defined as the
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smallest class containing the atomic predicates which is closed under ¬, ∨, ∧, no
quantifiers being used.

Remark 2.2. In using the quantifiers ∀ and ∃, it is best to use a new variable
not occurring elsewhere as the quantified variable. In this way we avoid confusing
constructions like (∃x)[x = 0 ∧ (∀x)¬(x2 + 1 = 0)]. Rules for parsing such things
may be found in the references.

Terminology 2.3.
(1) An elementary predicate in the theory of fields will mean one involving

only atomic predicates of the form f = 0. If it is intended to be applied to
algebraically closed fields, we refer to it as an elementary predicate in the
theory of algebraically closed fields.

(2) An elementary predicate in the theory of ordered fields will mean one which
may involve atomic predicates of the form f > 0 as well as those of the form
f = 0. If it is intended to be applied to real closed fields, we refer to it as
an elementary predicate in the theory of real closed fields.

(3) An elementary predicate involving no free (i.e. unquantified) variables will
be called an elementary statement.

Example 2.4. We give a few examples of elementary predicates and statements. The
fact that F has characteristic p with p non–zero can be expressed by p = 0 using
the convention that the constant term of a polynomial is to be interpreted as p · 1
in F . It can also be expressed by (∀x)[px = 0]. The fact that F has characteristic
0, however, must be expressed by an infinite number of statements ¬[p = 0] for all
primes p. The algebraic closure of the field can be expressed by an infinite sequence
of statements (∀a1) . . . (∀an)(∃x)[xn + a1x

n−1 + . . . an = 0].

3. Elimination of Quantifiers

Definition 3.1. Two elementary predicates P (x1, . . . , xn) and Q(x1, . . . , xn) are
said to be equivalent in the theory of algebraically closed fields if for any alge-
braically closed field F and elements a1, . . . , an ∈ F , P (a1, . . . , an) is true if and
only if Q(a1, . . . , an) is true. Similarly P and Q are equivalent in the theory of real–
closed fields if for any real–closed field F and elements a1, . . . , an ∈ F , P (a1, . . . , an)
is true if and only if Q(a1, . . . , an) is true. Recall that in the real closed case we
allow atomic predicates of the form f > 0 as well as f = 0.

It is important to specify the type of field being considered in applying this
definition. For example, the fact that x ≥ 0 in a real closed field could be expressed
by (∃y)[x = y2] but this in not true in the ordered field Q.

As above we say that an elementary predicate is quantifier–free if it is constructed
from atomic predicates without using any quantifiers ∀ or ∃. The main object of
this exposition is to prove the following theorem.

Theorem 3.2 (Tarski).
(1) Any elementary predicate in the theory of algebraically closed fields is equiv-

alent to a quantifier–free one.
(2) Any elementary predicate in the theory of real–closed fields is equivalent to

a quantifier–free one.
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Corollary 3.3. Let F ⊆ E be algebraically closed fields and let P (x1, . . . , xn) be
an elementary predicate in the theory of algebraically closed fields. If a1, . . . , an are
elements of F then P (a1, . . . , an) is true in F if and only if it is true in E. The
same holds for the real–closed case.

Once the quantifiers have been eliminated this follows immediately from the fact
that it is true for the atomic predicates occurring in P . In the real–closed case note
that a > 0 in E if and only if it is true in F since a = b2 in F implies the same
relation in E while a = b2 in E implies a 6= −c2 in F .

Corollary 3.4 (Elementary Lefschetz Principle). Let S be an elementary statement
in the theory of algebraically closed fields. If S is true for one algebraically closed
field F then S is true in all algebraically closed fields having the same characteristic
as F .

Proof. This follows from the previous corollary for algebraically closed fields con-
taining or contained in F . The general case now follows since any algebraically
closed field contains the algebraic closure of the prime field. �

Corollary 3.5 (Tarski Principle). Let S be an elementary statement in the theory
of real–closed fields. If S is true for one real–closed field F then S is true in all
real–closed fields.

Proof. This follows as in the case of algebraically closed fields once we know that
the real–closure of Q is unique. A proof of this is given in the next section. �

4. Applications

In this section we will give some standard applications to illustrate the usefulness
of Tarski’s theorem. We begin with the Hilbert Nullstellensatz.

Theorem 4.1. Let k be any field and let A = k[x1, . . . , xn]/I be a finitely generated
k–algebra. If A 6= 0 there is a k–algebra homomorphism A→ k̄ of A to the algebraic
closure k̄ of k.

Proof. Let m ⊇ I be a maximal ideal containing I. Let I = (h1, . . . , hm) and let K
be an algebraically closed field containing A/m. Let a1, . . . , aN be the coefficients
of the hi and let P (a1, . . . , aN ) be the predicate (∃x1) . . . (∃xn)[h1(x) = 0 ∧ · · · ∧
hm(x) = 0]. Since this holds in K it also holds in k̄ ⊆ K and the theorem follows.

�

Corollary 4.2 (Hilbert’s Nullstellensatz). With the notation of the theorem we
have

(1) For each maximal ideal m of A, A/m is a finite algebraic extension of k.
(2) Let V (I) = {(z1, . . . , zn) ∈ k̄n|h(z) = 0 for all h ∈ I}. Then the set of

f ∈ A which vanish on V (I) is the radical
√
I.

(3) If P is a prime ideal of A then P =
⋂

m⊇P m.

Proof.
(1) The field A/m maps to k̄ and so is algebraic over k and is finitely generated

as a k algebra.
(2) If g vanishes on V (I) then there is no k–algebra homomorphism of Ag to k̄

so the image of g in A must be nilpotent i.e. some gm lies in I.
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(3) Let B = A/P . If g does not lie in P , Bg 6= 0 so there is a k–algebra
homomorphism Bg → k̄. The kernel of A → B → k̄ is a maximal ideal of
A containing P but not containing g.

�

In the rest of this sections I will write R for any real closed field, the real numbers
being, of course, the most interesting example. We begin with Artin’s solution of
Hilbert’s 17th problem [2].

Theorem 4.3 (Artin [2]). Let f(x1, . . . , xn) be a polynomial in R[x1, . . . , xn] such
that f(a1, . . . , an) ≥ 0 for all a1, . . . , an in R. Then f is a sum of squares in the
quotient field R(x1, . . . , xn).

Examples show that f need not by a sum of squares in the polynomial ring
R[x1, . . . , xn] itself.

Proof. The following short proof is due to Gondard and Ribenboim [5]. Lemma 10.1
shows that if f is not a sum of squares in F = R(x1, . . . , xn) then E = F (

√
−f) is

real. Let K be a real closure of E. Since −f is a square in K we have f < 0. Let
c1, . . . , cN be the coefficients of f and consider (∃X1) . . . (∃Xn)[f(X1, . . . ,Xn) < 0]
as a predicate P (c1, . . . , cN ) in these coefficients. It is satisfied in K (by the values
Xi = xi). Therefore it is satisfied in R by Corollary 3.3 so there are elements
a1, . . . , an in R which satisfy f(a1, . . . , an) < 0 contradicting the hypothesis. �

Next we prove Lang’s Homomorphism Theorem [7].

Theorem 4.4 (Lang [7]). Let A = R[x1, . . . , xn]/I be an R–algebra of finite type
which is a domain with a real quotient field. Then there is an R–algebra homomor-
phism A→ R.

Proof. Let I = (h1, . . . , hm) and let ξi be the image of xi in A. Then the predicate
(∃X1) . . . (∃Xn)[h1(X) = 0∧· · ·∧hm(X) = 0] in the coefficients of the hi, is satisfied
in the quotient field F of A (by Xi = ξi) and therefore in a real closure K of F .
By Corollary 3.3, it is satisfied in R also so there are elements ri in R such that all
hi(r) = 0. The required homomorphism is obtained by sending xi to ri. �

Corollary 4.5 ([9, Cor. 5.5(B)]). Let A = R[x1, . . . , xn]/I be an R–algebra of finite
type. Then there is an R–homomorphism A→ R if and only if there is no relation
1 +

∑
a2
i = 0 in A

Proof. The ”only if” part is obvious.For the converse let S = {1 +
∑
a2
i }. This

is multiplicative and does not contain 0. Let P be an ideal maximal with respect
to P ∩ S = ∅. Then P is prime. Replacing A by A/P we can assume that A is
a domain and that S meets all non–zero ideals so that AS is a field. We claim
that this field is real. Suppose 1 +

∑
(fi/s)2 = 0 with s ∈ S and fi ∈ A. Then

s2 +
∑

(fi)2 = 0 in A but the sum on the left hand side lies in S. Lang’s theorem
now applies to give the required homomorphism. �

Remark 4.6. For a domain, the condition that there is no relation 1 +
∑
a2
i =

0 is weaker than requiring the quotient field to be real. For example let A =
R[x1, . . . , xn]/(

∑
x2
i ).
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Let A = R[x1, . . . , xn]/I be as above. Let V (I) be the set of (a1, . . . , an) ∈ R
n

for which f(a1, . . . , an) = 0 for all f ∈ I. The following is a well known theorem of
Dubois and Risler [3], [10], [4].

Corollary 4.7 (Reellnullstellensatz). f ∈ R[x1, . . . , xn] vanishes on V (I) if and
only if there are elements gi of R[x1, . . . , xn] and r > 0 with f2r +

∑
g2
i ∈ I.

Proof. The “if” part is obvious. For the converse let A = R[x1, . . . , xn]/I and
note that there is no R–algebra homomorphism Af → R so there is a relation
1 +

∑
(gi/fs)2 = 0 in Af which implies a relation f2t(f2s +

∑
g2
i ) = 0 in A. �

With the same notation, suppose that I is the ideal of all polynomials vanishing
on V (I) so that A is a ring of functions on V (I). Let S be the set of all elements
of A which have no zeros on V (I). and define the “real coordinate ring” of A to be
AS . This can be described algebraically in terms of A as follows.

Corollary 4.8. With this notation we have AS = AΣ where Σ is the set of all
1 +

∑
f2
i in A.

Proof. Clearly Σ is contained in S. We have to show that if s ∈ S there is a
σ ∈ Σ which is divisible by s. Since s is never zero on V (I) there is no R–algebra
homomorphism A/(s) → R. By corollary 4.5 we have some 1 +

∑
f2
i ∈ (s) so

σ = 1 +
∑
f2
i will do. �

In [11] I gave a generalization of this result to the case of semi–algebraic sets.
Using these methods we can also show that the real closure of an ordered field

is unique if it preserves the ordering. It is well known that a filtered limit of non–
empty compact spaces is compact and non–empty. I will give a simple proof of the
non–emptyness for the case of finite sets.

Lemma 4.9. Let {Xα|α ∈ D} be an inverse system of non–empty finite sets where
D is a directed set.. Then limXα is non–empty.

Proof. Since the intersection of a chain of non–empty finite sets is non–empty,
Zorn’s lemma applies to show that {Xα} has a sub inverse system {Yα} minimal
with respect to consisting of non–empty sets. Fix an α. If each y in Yα is not in the
image of some Yβ(y), choose γ > β(y) for all y. Then the image of Yγ → Yα would
be empty so Yγ would be empty. This shows that there is some y in Yα which lies
in the image of all Yβ with β ≥ α. Let Zβ be the inverse image of y in Yβ for β ≥ α
and let Zβ = Yβ for all other β. Then {Zβ} is a sub inverse system of non–empty
sets so the minimality of {Yβ} shows that Zβ = Yβ for all β. Therefore each Yα has
exactly one element so limYα is a single element which lies in limXα. �

Lemma 4.10. Let E and K be fields containing a field F . Assume that E is
algebraic over F . If for each subfield E′ of E finite over F there is an F–embedding
of E′ in K, then there is an F–embedding of E in K

Proof. Write HomF (E,K) for the set of F–algebra homomorphisms E → K. The
fields E′ form a directed set and for each of them HomF (E′,K) is finite and non–
empty by hypothesis. By Lemma 4.9 we see that HomF (E,K) = lim HomF (E′,K)
is non–empty. �
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Theorem 4.11. Let E be a real closure of F (with E algebraic over F ). Let K be
a real closed field containing F which induces the same ordering on F as E does.
Then there is an F–embedding of E in K.

Proof. Let E′ be a subfield of E finite over F . Write E′ = F [x]/(f(x)) and consider
(∃x)[f(x) = 0] as a predicate in the coefficients a1, . . . , an of f . By Theorem 3.2,
this is equivalent to a quantifier free predicate P (a1, . . . , an). This holds in E and
therefore in F since it involves only elements of F . Since K induces the same order
on F , P (a1, . . . , an) also holds in K so there is a ξ in K satisfying f(ξ) = 0 and we
embed E′ in K by sending x to ξ. It now follows by Lemma 4.10 that E embeds
in K. �

Remark 4.12. The fact that P (a1, . . . , an) holds in F does not imply that f has a
root in F since the equivalence of P (a1, . . . , an) with (∃x)[f(x) = 0] only holds for
real closed fields.

It is well known that any ordered field has a real closure which induces the given
ordering on it. I have included the usual proof in section 10. The next corollary
shows that this is unique up to isomorphism.

Corollary 4.13. If E and K are real closures of F which induce the same ordering
on F then there is an F–isomorphism E ≈ K.

Proof. Embed E in K by the theorem. Then K is real and algebraic over E. Since
E is real closed this implies E = K. �

Corollary 4.14. Let F be a subfield of the real closed field K. Let E be the algebraic
closure of F in K. Then E is real closed.

Proof. If a > 0 in E then
√
a is in K and therefore in E. It follows that all positive

elements of E are squares in E so E has a unique order. Let L be a real closure
of E. By the theorem we can embed L in K. Since L is algebraic over E and E is
algebraically closed in K we have L = E. �

In contrast to Theorem 4.1 if k is a subfield of R, and A = k[x1, . . . , xn]/I satisfies
the conditions of Lang’s Theorem 4.4 it may still happen that there is no k–algebra
homomorphism A→ R. For example, let k = Q(

√
2) and let A = k[x]/(x2−

√
2) =

Q( 4
√

2). This maps to R but if we embed k in R be sending
√

2 to −
√

2, there is
no extension to A. One has to assume that the order induced on k by R and by a
real closure of the quotient field of A agree. The precise result is as follows.

Theorem 4.15 ([8, §6.2]). Let A = k[x1, . . . , xn]/I be a k–algebra of finite type
which is a domain with quotient field F . Suppose F is ordered and let K be a real
closure of k which induces the same order on k as F does. Then there is a k–algebra
homomorphism A→ K.

Proof. The proof is essentially the same as Theorem 4.11. Let E be a real closure
of F inducing the given ordering on F . Let

(∃X1) . . . (∃Xn)[h1(X) = 0 ∧ · · · ∧ hm(X) = 0]

be the predicate considered in the proof of Theorem 4.4. By Theorem 3.2, this, when
applied to real closed fields, is equivalent to a quantifier free predicate P (a1, . . . , aN )
in the coefficients a0, . . . , aN of h1, . . . , hm. This holds in E and therefore in F since
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it involves only elements of F . Since K induces the same order on F , P (a1, . . . , an)
also holds in K so there are elements ξj in K satisfying hi(ξ1, . . . , ξn) = 0 giving
the required homomorphism. �

5. Preliminary Reduction

In order to prove Theorem 3.2 it will obviously suffice to eliminate one quantifier
at a time. Since (∀x)P (x) is equivalent to ¬(∃x)¬P (x), it is enough to consider
the case of one existential quantifier (∃x)P (x, y1, . . . , yn) where P is quantifier–free.
We will normally omit mentioning the other variables yi. This P is constructed
from atomic predicates of the form f = 0 and g > 0 (or g 6= 0 in the algebraically
closed case) where f and g are polynomials in x, y1, . . . , yn. We regard them as
polynomials in x with coefficients in Z[y1, . . . , yn].

Lemma 5.1. Let P be a quantifier–free predicate constructed from atomic predi-
cates A1, . . . , An. Then P is equivalent to a disjunction P1 ∨ P2 ∨ · · · ∨ Pm where
each Pi has the form Bi1 ∧Bi2 ∧ · · · ∧Biri with each Bij of the form Ak or ¬Ak.

Proof. Since P ⊃ Q is equivalent to ¬P ∨ Q and P ≡ Q is equivalent to [P ⊃
Q] ∧ [Q ⊃ P ], we can build up P using only ¬, ∨ and ∧. By induction on the
length it is sufficient to show that if P and Q have the required form then so do
P ∨ Q, P ∧ Q, and ¬P . This is trivial for P ∨ Q. If P = P1 ∨ P2 ∨ · · · ∨ Pm and
Q = Q1 ∨Q2 ∨ · · · ∨Qn, then P ∧Q is equivalent to the disjunction

∨
i,j Pi ∧Qj ,

and ¬P is equivalent to
∧
i ¬Pi. Now ¬Pi is equivalent to ¬Bi1∨¬Bi2∨· · ·∨¬Biri

.
This has the required form and therefore so does

∧
i ¬Pi by the case P ∧Q. �

Corollary 5.2. A quantifier–free predicate in the theory of fields is equivalent to
the disjunction of predicates of the form f1 = 0 ∧ · · · ∧ fp = 0 ∧ g1 6= 0 ∧ · · · ∧ gq 6=
0. A quantifier–free predicate in the theory of ordered fields is equivalent to the
disjunction of predicates of the form f1 = 0 ∧ · · · ∧ fp = 0 ∧ g1 > 0 ∧ · · · ∧ gq > 0.

Proof. The first statement is immediate. For the second note that ¬[f = 0] i.e.
f 6= 0 is equivalent to [f > 0] ∨ [−f > 0] and that ¬[f > 0] is equivalent to
[f = 0] ∨ [−f > 0]. Since [C ∨D] ∧ E is equivalent to [C ∧ E] ∨ [D ∧ E] the result
follows easily. �

Corollary 5.3. It will suffice to prove the elimination of quantifiers for predicates
of the form (∃x)[f1 = 0∧ · · · ∧ fp = 0∧ g1 > 0∧ · · · ∧ gq > 0] in the real–closed case
and (∃x)[f1 = 0 ∧ · · · ∧ fp = 0 ∧ g1 6= 0 ∧ · · · ∧ gq 6= 0] in the algebraically closed
case.

This follows from the fact that (∃x)[P1∨P2∨· · ·∨Pm] is equivalent to [(∃x)P1]∨
[(∃x)P2] ∨ · · · ∨ [(∃x)Pn]

6. Pseudomonic Form

The proof of the theorem is complicated by the fact that the polynomials involved
need not be monic. In fact, the coefficients will, in general, be polynomials in the
other variables.
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Definition 6.1. I will say that a quantifier–free predicate P (x) is in pseudomonic
form (relative to the variable x) if it has the form c 6= 0 ∧ Q(x) where c is a
polynomial not involving x and divisible by the leading coefficients (with respect
to x) of all polynomials occurring in Q(x)

Lemma 6.2. A quantifier–free predicate in the theory of fields is equivalent to the
disjunction of quantifier–free predicates in pseudo–monic form.

Proof. Let h1(x), . . . , hr(x) be all the polynomials occurring in the given predicate
P (x). Let ci be the leading coefficient of hi. Then P (x) is equivalent to the
disjuction [c1 = 0 ∧ P (x)] ∨ [c1 6= 0 ∧ P (x)]. In [c1 = 0 ∧ P (x)] we can erase the
leading term of h1 and use induction on the number of terms (in x) in P (x) to put
[c1 = 0 ∧ P (x)] in the required form. The expression [c1 6= 0 ∧ P (x)] is equivalent
to the disjunction [c1c2 6= 0∧P (x)]∨ [c1 6= 0∧ c2 = 0∧P (x)]. The expression with
c2 = 0 is treated by induction as before and we repeat the process on the other
expression using c3, etc. �

Remark 6.3. Note that this reduction does not increase the degrees of the polyno-
mials involved.

Corollary 6.4. A quantifier–free predicate in the theory of fields is equivalent to
the disjunction of pseudo–monic predicates of the form c 6= 0 ∧ f1 = 0 ∧ · · · ∧ fp =
0∧ g1 6= 0∧ · · · ∧ gq 6= 0 where c is divisible by the leading coefficients of the fi and
the gj. A quantifier–free predicate in the theory of ordered fields is equivalent to the
disjunction of predicates of the form c 6= 0∧f1 = 0∧· · ·∧fp = 0∧g1 > 0∧· · ·∧gq > 0
where c is divisible by the leading coefficients of the fi and the gj.

7. Euclidean Algorithm

In proving the theorems we will take the following as our induction hypothesis.

Induction Hypothesis(n). Let P (x) be a quantifier–free predicate and let f be a
polynomial of degree at most n in x. Let c be a polynomial in the variables other than
x which is divisible by the leading coefficient of f . Then (∃x)[c 6= 0∧ f = 0∧P (x)]
is equivalent to a quantifier–free predicate.

We first show that the polynomials in P (x) can be assumed to have degrees less
than n

Lemma 7.1. Let f be a polynomial of degree d over a commutative ring with
leading coefficient a. Let g be a polynomial of degree m over the same ring where
m ≥ d. Then we can write am−d+1g = fq + r where deg r < d

Proof. Let b be the leading coefficient of g and let g1 = ag − bxm−df . Then
deg g1 < m. If m = d we are done and otherwise the result follows by induction on
m �

Lemma 7.2. A predicate of the form (∃x)[a 6= 0∧f = 0∧P (x)] where a is divisible
by the leading coefficient of f is equivalent to a predicate (∃x)[a 6= 0∧f = 0∧Q(x)]
where all polynomials in Q(x) have degree less than that of f .
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Proof. If g(x) occurs in P (x) we can replace g(x) by aNg(x) since the value of Q(x)
is only relevant when a 6= 0. We choose N even so as not to affect the sign of g(x)
in the ordered case. By Lemma 7.1 we can write aNg(x) = f(x)q(x) + r(x) (for
sufficiently large N) where deg r < deg f . We can then replace aNg(x) by r(x)
since the value of Q(x) is only relevant in case f = 0. �

The proof will now proceed as follows. The induction hypothesis is clearly true
for n = 0 since f will then be a constant and therefore c 6= 0∧f = 0 is always false.
We state the following steps for the real–closed case. The same results hold in the
algebraically closed case if we replace all conditions g > 0 by g 6= 0.

Lemma 7.3. If the induction hypothesis holds for n then the induction hypothesis
holds for n+ 1 provided that any predicate

(∃x)[c 6= 0 ∧ f = 0 ∧ g1 > 0, . . . gq > 0]

with deg f = n+ 1, deg gi ≤ n for all i, and c divisible by the leading coefficients of
f and all gi, is equivalent to a quantifier–free predicate

Proof. We must show that a predicate (∃x)[a 6= 0∧f = 0∧P (x)] with deg f = n+1
and a divisible by the leading coefficient of f is equivalent to a quantifier–free
predicate. By Lemma 7.2 we can assume that all polynomials in P (x) have degree
at most n. After reducing P (x) to a disjunction of pseudomonic expressions of the
form c 6= 0 ∧ f1 = 0 ∧ · · · ∧ fp = 0 ∧ g1 > 0 ∧ · · · ∧ gq > 0, our predicate reduces to
a disjunction of predicates of the form

ac 6= 0 ∧ f = 0 ∧ f1 = 0 ∧ · · · ∧ fp = 0 ∧ g1 > 0 ∧ · · · ∧ gq > 0

where ac is divisible by the leading coefficients of f , the fi, and the gj , and the fi
and gj have degrees at most n. If p 6= 0 the induction hypothesis applies using f1.
Therefore only the case p = 0 remains to be proved. �

Lemma 7.4. If the induction hypothesis holds for all n and if any predicate of the
form

(∃x)[c 6= 0 ∧ g1 > 0, . . . gq > 0]

with c divisible by the leading coefficients of all gi, is equivalent to a quantifier–free
predicate, then any predicate (∃x)P (x) with P (x) quantifier–free is equivalent to a
quantifier–free predicate.

Proof. We reduce P (x) to a disjunction of pseudomonic expressions of the form

c 6= 0 ∧ f1 = 0 ∧ · · · ∧ fp = 0 ∧ g1 > 0 ∧ · · · ∧ gq > 0

where c is divisible by the leading coefficients of the fi and the gj . If p 6= 0 the
induction hypothesis applies using f1. Therefore only the case p = 0 remains to be
proved. �

In verifying the hypotheses of these two lemmas I will always make sure that the
sought for quantifier–free predicate has the form c 6= 0 ∧Q. Then, in checking the
equivalence by assigning values in a real closed field to the variables other than x,
we can assume that c 6= 0 for the assigned values, the case c = 0 being trivial. As
always, c will denote a polynomial in the variables other than x.
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8. The algebraically closed case

We first consider the case of algebraically closed fields. In order to prove Theo-
rem 3.2 in this case it will suffice, by the remarks in the last section to prove the
following two lemmas.

Lemma 8.1. In the theory of algebraically closed fields a predicate of the form
(∃x)[c 6= 0 ∧ g1 6= 0 ∧ · · · ∧ gq 6= 0] where c is divisible by the leading coefficients of
the gi, is equivalent to the quantifier–free predicate c 6= 0.

Proof. The predicate is equivalent to (∃x)[c 6= 0 ∧ g(x) 6= 0] where g = g1 · · · gq.
Suppose that we have assigned values (in an algebraically closed field) to the vari-
ables other than x. If c 6= 0 then the leading coefficient of g is non–zero. Since the
field is infinite, any x not a root of g will satisfy g(x) 6= 0. �

Lemma 8.2. In the theory of algebraically closed fields a predicate of the form
(∃x)[c 6= 0 ∧ f = 0 ∧ g1 6= 0 ∧ · · · ∧ gq 6= 0] where c is divisible by the leading
coefficients of f and the gi is equivalent a quantifier–free predicate.

Proof. As in the previous proof the predicate is equivalent to (∃x)[c 6= 0 ∧ f =
0 ∧ g 6= 0]. Suppose that we have assigned values to all the variables except x in
such a way that c 6= 0. There will be an element x with f(x) = 0 and g(x) 6= 0
unless every root of f is also a root of g. As observed in [6], this will happen if
and only if f divides gd where deg f = d. . Let m be the degree of g and write
cm−d+1gd = fq+ r where deg r < deg f . After assigning values to all variables but
x in such a way that c 6= 0, r is still the remainder in dividing cm−d+1gd by f and
f divides gd if and only if it divides cm−d+1gd which happens if and only if r is
identically zero. Therefore, if we write r(x) = ad−1x

d−1 + ad−2x
d−2 + · · ·+ a0, our

predicate is equivalent to c 6= 0 ∧ [ad−1 6= 0 ∨ ad−2 6= 0 ∨ · · · ∨ a0 6= 0]. �

9. The real–closed case

The following theorem lists the (well–known) results on real closed fields which
we will need. These results are all proved in the original paper [1]. I have also
included proofs in section 10 for completeness.

Theorem 9.1. A real closed field F has the following properties.
(1) F has a unique ordering. The positive elements are the non–zero squares.
(2) Let f(X) ∈ F [X] be a polynomial over F . Suppose that f(a) < 0 and

f(b) > 0 where a < b. Then there is an element c ∈ F with a < c < b and
f(c) = 0.

(3) Let f(X) ∈ F [X] be a polynomial over F . Let a < b and assume that
f ′(x) > 0 for all x in (a, b) where f ′(x) is the derivative of f with respect
to x. Then f(a) < f(b).

Before giving the proof of Tarski’s theorem we consider a few special cases which
will be useful.

Lemma 9.2. Suppose the induction hypothesis holds for n. Let deg g ≤ n and let c
be a polynomial in the other variables divisible by the leading coefficient of g. Let y
and z be variables not occurring in g. Then the following assertions are equivalent
to quantifier–free predicates in y, z, and the remaining variables.

(1) c 6= 0, y < z, and g is never zero in the open interval (y, z).
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(2) c 6= 0 and g is never zero in the open interval (y,∞).
(3) c 6= 0 and g is never zero in the open interval (−∞, z).
(4) c 6= 0 and g is never zero.

Proof. The predicate (1)is equivalent to c 6= 0∧y < z∧¬(∃x)[y < x < z∧g(x) = 0].
Since this will be false if c = 0, it does not affect the truth of the assertion if we insert
c 6= 0 in the last bracket getting c 6= 0∧y < z∧¬(∃x)[y < x < z∧c 6= 0∧g(x) = 0].
The induction hypothesis can now be applied to eliminate the quantifier. A similar
argument applies to the other predicates. We omit y < z and replace y < x < z by
y < x, x < z for (2) and (3) and omit it for (4). �

Lemma 9.3. Let f = a0x
n + a1x

n−1 + · · ·+ an be a polynomial over a real closed
field with a0 6= 0. If |x| > |a0|−1

∑n
0 |ai| then f(x) = a0x

nθ where θ > 0.

Proof. We have θ = 1 + a−1
0 a1x + . . . a−1

0 anx
n. Since |x| ≥ 1, |x|−k ≤ |x|−1 for

k ≥ 1 so θ ≥ 1−
∑n

1 |a0|−1|x|−1 > 0 �

As usual we use x >> 0 to mean x is sufficiently large and x << 0 to mean −x
is sufficiently large.

Corollary 9.4. Let c be a polynomial in the variables other than x and let f(x) be
a polynomial whose leading coefficient divides c. Then the assertions

(1) c 6= 0 and f(x) > 0 for x >> 0
(2) c 6= 0 and f(x) < 0 for x << 0

are equivalent to quantifier–free predicates in the coefficients of f

In fact (1) is equivalent to c 6= 0 ∧ a0 > 0 while (2) is equivalent to c 6= 0 ∧
(−1)na0 < 0.

We now turn to the proof of Tarski’s theorem. As shown above, to prove Theo-
rem 3.2 it will suffice to prove the following two lemmas.

Lemma 9.5. Suppose the induction hypothesis holds for n. Then a predicate

(∃x)[c 6= 0 ∧ g1 > 0, . . . gq > 0]

with deg gi ≤ n for all i, and c divisible by the leading coefficients of all gi, is
equivalent to a quantifier–free predicate.

Lemma 9.6. Suppose the induction hypothesis holds for n. Then a predicate

(∃x)[c 6= 0 ∧ f = 0 ∧ g1 > 0, . . . gq > 0]

with deg f = n+ 1, deg gi ≤ n for all i, and c divisible by the leading coefficients of
f and all gi, is equivalent to a quantifier–free predicate.

In each case we give an explicit construction of an equivalent predicate to which
the induction hypothesis for n applies. Since these are rather lengthy I will write
them out in the usual mathematical terminology avoiding long strings of ∨’s and
∧’s.

In the next two lemmas, the condition c 6= 0 is never used but it seemed simpler
to include it than to explain later where this condition should go in the applications
to Lemmas 9.5 and 9.6.
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Lemma 9.7. The predicate

(∃x)[c 6= 0 ∧ g1 > 0 ∧ · · · ∧ gq > 0]

with c divisible by the leading coefficients all gi, is equivalent to the disjunction of
the following predicates where i, j, and k run from 1 to q.

A(i,j): c 6= 0 and there exist y and z such that
(1) y < z
(2) gi(y) = 0
(3) gj(z) = 0
(4) For k = 1, . . . , q, gk is never 0 on (y, z)
(5) For k = 1, . . . , q, gk(y+z

2 ) > 0
B(i): c 6= 0 and there exists y such that

(2) gi(y) = 0
(4) For k = 1, . . . , q, gk is never 0 on (y,∞)
(5) For k = 1, . . . , q, gk(y + 1) > 0

C(j): c 6= 0 and there exists z such that
(3) gj(z) = 0
(4) For k = 1, . . . , q, gk is never 0 on (−∞, z)
(5) For k = 1, . . . , q, gk(z − 1) > 0

D: c 6= 0 and
(4) For k = 1, . . . , q, gk is never 0
(5) For k = 1, . . . , q, gk(0) > 0

Proof. Suppose all variables except x have been assigned values in a real closed field
F in such a way that c 6= 0. If one of the itemized predicates holds, condition (5)
gives the required value of x for which all gk are positive. Conversely, assume that
such an x exists. Let a1, . . . , aN be all roots of all gk in F arranged in increasing
order. Write a0 = −∞ and aN+1 = ∞. This gives a partition of F into non–
overlapping intervals (a0, a1], [a1, a2], . . . , [aN , aN+1). The value of x is not one of
the aµ since all gk are positive at x. Suppose the value of x lies in the interval
(aµ, aµ+1). We consider the case that µ 6= 0 and µ + 1 6= N + 1. The argument
in the remaining cases is similar. Let aµ be a root of gi and let aµ+1 be a root of
gj . Set y = aµ and z = aµ+1. Then conditions (1), (2), and (3) clearly hold, (4) is
clear since the aµ are all zeros of all gk, and (5) holds because all gk are positive
at x and the gk cannot change sign in the interval (y, z) otherwise Theorem 9.1(2)
would imply that some gk has a zero in (y, z). �

Proof of Lemma 9.5. Assume the induction hypothesis for n and suppose deg gk ≤
n for all k. Then the numbered conditions are all equivalent to quantifier–free
predicates in y and z. For (4) we use Lemma 9.2 and the induction hypothesis.
After replacing this by a quantifier–free predicate we can rewrite A(i,j) as (∃y)[c 6=
0 ∧ gi(y) = 0 ∧ (∃z)[c 6= 0 ∧ gj(z) = 0 ∧ Q(y, z)]] where Q(y, z) is a quantifier–
free predicate equivalent to the remaining conditions of A(i,j). Since deg gi ≤ n
and deg gj ≤ n, the induction hypothesis applies to eliminate the quantifier (∃z)
and the again to eliminate the quantifier (∃y) A similar argument applies to the
remaining cases. For B(i) we get (∃y)[c 6= 0 ∧ gi(y) = 0 ∧ Q(y)] and similarly for
C(j) we get (∃z)[c 6= 0∧ gj(z) = 0∧Q(z)]. For D we get a quantifier–free predicate
once (4) has been replaced by a quantifier–free condition. �
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We now turn to the proof of Lemma 9.6. Following [6], the trick here is to add
another condition involving the derivative f ′ of f , replacing

(∃x)[c 6= 0 ∧ f = 0 ∧ g1 > 0 ∧ · · · ∧ gq > 0]

by the disjunction of 3 predicates

(∃x)[c 6= 0 ∧ f = 0 ∧Rν(x) ∧ g1 > 0 ∧ · · · ∧ gq > 0]

where R1(x) is f ′(x) > 0, R2(x) is f ′(x) = 0, and R3(x) is f ′(x) < 0. The case
involving R2 is immediate by the induction hypothesis since deg f ′ = n and the
leading coefficient divides c since n is a unit in our field. The case involving R3

reduces to that involving R1 by replacing f by −f . To do the case involving R1 we
define g0 = f ′ and use the following lemma.

Lemma 9.8. Let g0 = f ′, the derivative of f with respect to x, and let c be divisible
by the leading coefficients of f and all gi. Then the predicate

(∃x)[c 6= 0 ∧ f = 0 ∧ g0 > 0 ∧ · · · ∧ gq > 0]

is equivalent to the disjunction of the following predicates where i, j, and k run
from 0 to q.

A(i,j): c 6= 0 and there exist y and z such that
(1) y < z
(2) gi(y) = 0.
(3) gj(z) = 0.
(4) For k = 0, . . . , q, gk is never 0 on (y, z).
(5) For k = 0, . . . , q, gk(y+z

2 ) > 0.
(6) f(y) < 0 and f(z) > 0.

B(i): c 6= 0 and there exists y such that
(2) gi(y) = 0.
(4) For k = 0, . . . , q, gk is never 0 on (y,∞).
(5) For k = 0, . . . , q, gk(y + 1) > 0.
(6) f(y) < 0 and f(v) > 0 for v >> 0.

C(j): c 6= 0 and there exists z such that
(3) gj(z) = 0.
(4) For k = 0, . . . , q, gk is never 0 on (−∞, z).
(5) For k = 0, . . . , q, gk(z − 1) > 0.
(6) f(u) < 0 for u << 0 and f(z) > 0.

D: c 6= 0 and
(4) For k = 0, . . . , q, gk is never 0.
(5) For k = 0, . . . , q, gk(0) > 0.
(6) f(u) < 0 for u << 0 and f(v) > 0 for v >> 0.

Proof. Suppose all variables except x have been assigned values in a real closed
field F in such a way that c 6= 0. If one of the itemized predicates holds, then by
(4) and Theorem 9.1(2), each gi is of constant sign on the interval (y, z) (or (y,∞),
(−∞, z), (−∞,∞) in cases B, C, or D). Therefore by (5) we have gi > 0 on (y, z)
for all i. By condition (6), f changes sign on this interval so by Theorem 9.1(2), f
has a zero in the interval and all gk are positive there. Conversely, suppose that x
exists. Partition F into intervals as in the proof of Lemma 9.5 (using also the roots
of g0). As in that proof we let x lie in the interval (y, z) = (aµ, aµ+1) and observe
that conditions (1) to (5) hold as before. Since g0 = f ′ > 0 on our interval and
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y < x < z, Theorem 9.1(3) implies that f(y) < 0 and f(z) > 0 showing that (6)
holds. �

Proof of Lemma 9.6. As in the proof of Lemma 9.5 we assume the induction hy-
pothesis for n and suppose deg f ≤ n+1 and deg gk ≤ n for all k including 0. Then
the numbered conditions are all equivalent to quantifier–free predicates in y and z.
For (4) we use Lemma 9.2 and the induction hypothesis as before while for (6) we
use Corollary 9.4 which does not require the induction hypothesis. The rest of the
proof is exactly the same as that of Lemma 9.5 �

This completes the proof of Tarski’s theorem.

10. Real closed fields

For completeness the present section gives proofs for the classical results on real
closed fields used above following [1]. Recall that a field F is called real or formally
real if

∑
a2
i = 0 in F implies that all ai = 0. This implies that the field has

characteristic 0. The field F is called real closed if it is real and no proper algebraic
extension of F is real. Any real field F has a real closure, an algebraic extension
of F which is real closed. Just take a maximal real extension of F in the algebraic
closure of F . The standard example of a real closed field is, of course, R the field
of real numbers.

Lemma 10.1. Let F be a real field and let a ∈ F be non–zero. Then F (
√
a) is real

if and only if −a is not a sum of squares in F .

Proof. If F (
√
a) is real and −a =

∑
c2i then b2 +

∑
c2i = 0 where b =

√
a so b = 0.

Conversely if F (
√
a) is not real we can write

∑
(xi + yi

√
a)2 = 0 where not all

yi = 0. This implies
∑
x2
i + a

∑
y2
i = 0 so −a = (

∑
x2
i )(

∑
y2
i )/(

∑
y2
i )2 which is a

sum of squares. �

If F is real closed, F (
√
a) will be real if and only if a is a square in F , otherwise

F (
√
a) would be a proper algebraic extension of F which is real.

Corollary 10.2. Let F be a real closed field and let a ∈ F be non–zero. Then a is
a square in F if and only if −a is not a sum of squares in F .

Theorem 10.3. If F is real closed it has a unique ordering and the positive ele-
ments are the non–zero squares.

Proof. An ordering of a field F can be specified by giving P = {x|x ≥ 0} satisfying
the conditions: P ∩ −P = {0}, P ∪ −P = F , P + P ⊆ P , and PP ⊆ P . Clearly
P contains all sums of squares. But a sum of squares

∑
a2
i is already a square

otherwise Corollary 10.2 would show that −
∑
a2
i =

∑
b2j which implies that all ai

and bj are zero. Tha same reasoning shows that one of a and −a must be a square
and that if both are squares then a = 0. Therefore the set of squares satisfies the
conditions above so the field is ordered. Any P contains the squares and can be no
larger without violating P ∩ −P = {0} so the ordering is unique. �

The following result is often referred to as the Weierstrass Nullstellensatz.

Theorem 10.4. Let F be a real closed field and let f(x) be a polynomial over F .
Let a, b ∈ F with a < b. If f(a) < 0 and f(b) > 0 then f(c) = 0 for some c
satisfying a < c < b.
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Proof. It will suffice to show that f has a root c in F . It is then easy to see that f
has a root between a and b. If c < a write f(x) = (x− c)g(x). Then g(a) < 0 and
g(b) > 0 so by induction on the degree we can assume that g has a root between a
and b. A similar argument applies if c > b.

To prove that f has a root in F we adapt the argument of [1, Satz 2]. We use
induction on the degree n of f . Write f as a product of irreducible polynomials.
One of these must change sign in going from a to b. Therefore we can assume f
is irreducible. If f has no root in F then E = F [X]/(f(X)) is a proper algebraic
extension of F and so is not real. Therefore, if α is the image of X in E we can write∑
i(

∑n−1
j=0 aijα

j)2 = 0 in E where not all aij = 0. Let gi(X) =
∑n−1
j=0 aijX

j . Then
we have an equation

∑
i gi(X)2 = f(X)h(X) with not all gi = 0. Choose such an

equation with deg h least. Note deg h ≤ n− 2 since deg gi < n and deg f = n. Now
f(a)h(a) ≥ 0 and f(b)h(b) ≥ 0 so either h(a) = 0 or h(b) = 0 or h changes sign
in going from a to b. By the induction hypothesis, h has a root r in F . Therefore∑
i gi(r)

2 = 0 so all gi(r) = 0. It follows that we can write gi(X) = (X − r)ki(X)
in F [X] getting (X − r)2

∑
i ki(X)2 = f(X)h(X). Since f has no root in F , this

implies that (X − r)2 divides h so h(X) = (X − r)2h1(X) and we get an equation∑
i ki(X)2 = f(X)h1(X) contradicting the choice of h as having the least possible

degree. �

Theorem 10.5 (Rolle’s Theorem). Let F be a real closed field and let f(x) be a
polynomial over F . Let a, b ∈ F with a < b. If f(a) = 0 and f(b) = 0 then f ′(c) = 0
for some c satisfying a < c < b.

Proof. We follow the proof in [13, §114] .We can assume that f has no zero between
a and b. Write f(X) = (X − a)p(X − b)qg(X) where g is not zero at a or b.
Therefore g is not zero on the closed interval [a, b] and so is of constant sign on
that interval by the previous theorem. Now f ′(X) = (X − a)p−1(X − b)q−1h(X)
where h(X) = p(X − b)g(X) + q(X − a)g(X) + (X − a)(X − b)g′(X). We have
h(a) = p(a − b)g(a) and h(b) = q(b − a)g(b) so h(a) and h(b) have opposite signs.
Therefore h has a root c with a < c < b by the previous theorem. �

Corollary 10.6 (The mean value theorem). Let F be a real closed field and let f(x)
be a polynomial over F . Let a, b ∈ F with a < b. Then f(b) − f(a) = (b − a)f ′(c)
for some c satisfying a < c < b.

This follows by the familiar proof of elementary calculus.

Corollary 10.7. Let F be a real closed field and let f(x) be a polynomial over F .
Let a, b ∈ F with a < b. If f ′(c) > 0 for all c satisfying a < c < b then f(b) > f(a).

The following is not needed in the proof of Tarski’s theorem but is included since
it was mentioned in section 4.

Theorem 10.8. Let F be an ordered field. Then F has a real closure whose or-
dering agrees with that of F .

This real closure is unique as was shown in section 4. To prove the theorem it
will suffice to extend F to a real field E such the each positive element of F is a
square in E. Then any real closure of E will do.

Lemma 10.9. Let F be an ordered field. Let E be the field obtained from F by
adjoining the square roots of all positive elements of F . Then E is real.
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Proof. It is sufficient to show that finitely generated subfields of E are real. Let
K = F (

√
a1, . . . ,

√
an) where the ai are positive elements of F . We can assume

no
√
ai is superfluous so |K : F | = 2n. A base for K as a vector space over F is

given by the elements eI =
√
aI where I ⊆ {1, . . . , n} and aI =

∏
i∈I ai. Write

I ⊕ J for the set of i lying in exactly one of I and J . Then eIeJ = aI∩JeI⊕J .
Suppose that

∑
α(

∑
I c

(α)
I eI)2 = 0 where the c(α)

I lie in F . The coefficient of e∅ in
this sum is

∑
I,α(c(α)

I )2aI = 0. Since all term of this sum are positive, all c(α)
I = 0

as required. �
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