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1. Introduction
The study of dynamical systems if full of very challenging problems.
One reason is that it is easy to write down a transformation, but
it is difficult to predict the behavior of its iterates. It is therefore
valuable to have some property of the dynamical system preserved by
the transformation.

Complex dynamics is the study of transformations that preserve
a complex structure on the underlying space. The tools of complex
analysis in one and several variables can then be used to understand
the behavior of iterates. In one complex variable these methods led
to rich developments, see e.g. [Mil06] for an introduction, and higher
dimensions are also actively explored, see e.g. [DS10, Lyu14, Can18].

In these notes we concentrate on K3 surface automorphisms. This
puts us in complex dimension 2, but in addition ensures that our auto-
morphisms preserves a smooth volume form. K3 surfaces have several
additional features that become handy when looking at their automor-
phisms.

The first feature is that K3s have good moduli spaces, which turn out
to be homogeneous spaces for appropriate Lie groups. This is related
to the Hodge structure on the cohomology of a K3 surface and quite a
bit about an automorphism can be understood already by looking at
its action on cohomology. In particular, one can construct interesting
automorphisms by specifying linear-algebraic data, instead of giving
say algebraic equations defining the K3 surface. An example of this is
McMullen’s construction of a K3 surface with a Siegel disc (see [McM02]
and §6.1).

A second feature is the existence of special Riemannian metrics on
the K3 surface, compatible with the complex structure and volume
form. The metrics turn out to have vanishing Ricci curvature, although
their sectional curvature (generically) does not vanish. An application
of these metrics to the dynamics of holomorphic automorphisms is
included in Theorem 7.2.2 below.

The above features are specific to K3 surfaces, but many of the ideas
and tools developed in these notes also appear in other situations in
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complex dynamics. I hope that the reader will get a sense for this
active field of investigation. At times I have included brief remarks on
directions not immediately connected to dynamics or K3 surfaces, but
which I believe help situate the discussion in the general landscape.

Overview of contents. Section 2 starts with the place of K3 surfaces
in the general classification of compact complex surfaces. The basic
definitions and examples follow, as well as a discussion of the topology
and Hodge theory of K3 surfaces.

Section 3 takes the point of view of Kähler and Riemannian geome-
try. A discussion of Ricci-flat metrics and Monge–Ampère equations is
followed by a description of holonomy groups and hyperkähler metrics.

Section 4 contains a brief discussion of the Torelli theorems. It starts
with a general discussion of complex deformation theory, followed by
an application to period mappings of K3 surfaces. Several versions of
the Torelli theorem are then stated.

Section 5 is the start of the dynamical part. After introducing some
examples of K3 automorphisms, entropy is discussed in the context of
the Gromov–Yomdin theorem. The section ends with a reminder on
Salem numbers and a few other properties of K3 automorphisms.

Section 6 contains two results that are related to non-hyperbolic
dynamics on K3s. The first is McMullen’s [McM02] construction of
K3 automorphisms that have invariant open sets on which the action
is conjugated to a rigid rotation. The second is Cantat’s [Can01b]
classification of invariant measures, and orbit closures, for sufficiently
large automorphism groups of K3s.

Section 7 contains a discussion of hyperbolic aspects of K3 dynamics.
First we present Cantat’s [Can01a] construction of invariant currents
and the measure of maximal entropy. Then we present a proof of a result
of Cantat & Dupont [CD20b], following [FT19], that the measure of
maximal entropy is equal to the volume form only in Kummer examples.

Some familiarity with complex geometry is assumed, as contained
for example in the first chapters of Griffiths & Harris [GH78]. The
textbook of Huybrechts [Huy05] has an emphasis on topics closer to
the needs of these notes.

Analogies. For readers familiar with Teichmüller theory and the ge-
ometry of Riemann surfaces, Weil’s brief report [Wei09, pg. 390] can
provide a motivation for the study of K3 surfaces. The table of analogies
included below can also serve as a dictionary for many of the structures
in the present text.
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Riemann surfaces K3 surfaces

Mapping classes of diffeomorphisms:
pseudo-Anosov, reducible, periodic

Holomorphic automorphisms:
hyperbolic, parabolic, elliptic

Stable and unstable foliations Stable and unstable currents

Entropy, action on curves Entropy, action on H2

Hodge theory H1 = H1,0 ⊕ H0,1 Hodge theory H2 =H2,0⊕H1,1⊕H0,2

Teichmüller space Period Domain(s)

Flat metrics Ricci-flat (hyperkähler) metrics

Holomorphic 1-form Holomorphic 2-form

Straight lines for the flat metric Special Lagrangians

Periodic trajectories Special Lagrangian tori

Completely periodic foliations Torus fibrations

S1: directions for straight lines S2: twistor (hyperkähler) rotation

square-tiled surfaces Kummer surfaces

Lyapunov exponents for families

Some omitted topics. This text is mainly concerned with infinite
order automorphisms of complex K3 surfaces. One can also consider
finite order automorphisms, or K3s in positive characteristic. Both top-
ics have been extensively studied but are not mentioned further in this
text. One can also consider automorphisms over other ground fields,
e.g. non-archimedean ones such as C((t)), leading to a “tropicalization”
of the discussion (see [Fil19b]). Let us also note that the action of alge-
braic automorphisms on triangulated categories associated to algebraic
manifolds promises to be another direction of fruitful investigation, see
e.g. [FFH+21]. Additionally, questions about arithmetic properties of
points on K3 surfaces can be investigated using dynamical ideas, see
e.g. [FT21].

More recently, the joint dynamics of several automorphisms became
a topic of active investigation. Many of the problems that for now
appear intractable for a single automorphism, such as the properties of
Lebesgue measure (e.g. positivity of entropy, ergodicity) can be studied
for groups generated by several automorphisms. See [CD20a, FT21] for
more in this direction.
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Finally, one can associate Lyapunov exponents to families of K3
surfaces – these measure the non-triviality of the family. For families of
Riemann surfaces, these considerations started with Kontsevich’s article
[Kon97], which also connected the subject to Teichmüller dynamics. A
version for K3 surfaces is discussed in [Fil18].

Further reading. There are many excellent sources that present in
greater depth some of the material in these notes. Our hope is that the
brief overview presented here will entice the reader to learn more about
the subject.

An excellent introduction for the nonspecialist is contained in the
seminar notes [K3-85]. A modern introduction, with a stronger alge-
braic flavor than [K3-85], is the monograph of Huybrechts [Huy16].
Differential-geometric aspects are treated in the collection of notes
[GHJ03]. Yau’s solution of the Calabi conjecture, essential to much of
the geometry of K3 surfaces, is in [Yau78].

Further reading in dynamics. The initial impetus for studying auto-
morphisms of K3 surfaces came from Mazur’s [Maz92] questions about
rational points on them. Cantat’s paper [Can01a] introduced complex-
analytic tools to the subject and constructed the measure of maximal
entropy. McMullen [McM02] constructed the first examples of positive
entropy K3 surface automorphisms which admit a Siegel disc, i.e. an
open domain on which the dynamics is conjugated to a rotation on a
polydisc. Further examples of automorphisms with small but positive
entropy were constructed in [McM11].

Acknowledgments. I am grateful to the organizers of the summer
schools in Grenoble and Beijing for the invitation to deliver these lec-
tures. I am also grateful to those who attended and asked numer-
ous questions, including Paul Apisa, Aaron Calderon, Matteo Costan-
tini, Ben Dozier, Eduard Duryev, Dmitri Gekhtman, Gregor Masbaum,
Christopher-Lloyd Simon, Tina Torkaman, Jane Wang, Karl Winsor.

I am also grateful to Valentino Tosatti for numerous suggestions and
corrections that significantly improved the text. I am also grateful
to Serge Cantat for some suggestions regarding Lemma 5.2.16. I’m
grateful to the referee for providing extensive feedback that significantly
improved the presentation.

This research was partially conducted during the period the author
served as a Clay Research Fellow and is based upon work supported by
the National Science Foundation under Grant No. DMS-2005470.
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2. Basic structures
Outline of section. In §2.1 we set the context for K3 surfaces by
recalling the classification of compact Riemann surfaces and compact
complex surfaces. The three broad classes – elliptic, parabolic, and
hyperbolic – divide the landscape according to their geometric and
algebraic properties. An important theme in this setting is that of
n-forms on n-dimensional manifolds. Whether they have poles, zeros,
or trivialize the canonical bundle, determines to a large extent the
geometry.

In §2.2 we define K3s and give some examples. This is followed by a
brief discussion of their topology in §2.3 and a recollection of essential
Hodge-theoretic facts in §2.4.

2.1. Classification of surfaces
2.1.1. The case of Riemann surfaces. Compact Riemann surfaces
are divided into three fundamentally different classes:

genus 0: The only possibility is P1(C); it carries a metric of
constant positive curvature and has no holomorphic 1-forms.

genus 1: Elliptic curves have a flat metric and exactly one holo-
morphic 1-form.

genus ≥ 2: Higher genus surfaces have canonical constant nega-
tive curvature metrics and plenty of holomorphic 1-forms.

Only the genus 0 and genus 1 Riemann surfaces admit infinite-order
endomorphisms with non-trivial dynamics. Indeed, any holomorphic
self-map of a higher genus surface must act as a semi-contraction for the
hyperbolic metric (by the Schwarz lemma). The map then must either
be an isometry, hence finite order, or a uniform contraction because
the surface is compact (and due to the equality case in the Schwarz
lemma). If the map is a uniform contraction, then a sufficiently high
iterate will take everything to a neighborhood of the fixed point, but
the map is proper, and unless the image is a single point the map is also
open, which leads to a contradiction. In general, the Schwarz lemma is
a powerful tool that’s used to study endomorphisms of P1(C). In higher
dimensions its analogues, such as the notion of Kobayashi hyperbolicity,
also proved very effective.

Alternatively1 one can argue that a holomorphic endomorphism of a
genus g ≥ 2 Riemann surface must be an automorphism since by the

1I am grateful to the referee for this suggestion.
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Riemann–Hurwitz formula its critical set is empty. Its set of holomor-
phic automorphisms is then finite by a theorem of Hurwitz.
2.1.2. Classification of compact complex surfaces. Compact com-
plex surfaces also admit a similar classification, due to Enriques for the
algebraic case and to Kodaira in general. There are also two distinct
geometric conditions on a compact complex surface: being algebraic,
and being Kähler. A comprehensive introduction to compact complex
surfaces is [BHPVdV04], and Friedman’s [Fri98] and Beauville’s [Bea96]
textbooks also provide instructive treatments.
2.1.3. Kodaira dimension. The key invariant distinguishing complex
surfaces is the number of holomorphic differentials. Namely, let KX de-
note the canonical bundle of a compact complex surface X; its sections
are given in local coordinates by f(z1, z2)dz1 ∧ dz2 with f holomorphic.
Define the Kodaira dimension by

κ(X) := lim sup
n

log h0(K⊗n
X )

log n
where h0(L) denotes the dimension of H0(L) – the space of sections of
a line bundle L. It is known that h0(K⊗n

X ) grows polynomially in n,
of degree at most 2. When X is algebraic, the above lim sup can be
replaced by a genuine limit.
2.1.4. Enriques–Kodaira classification. Since blowing up a point
does not change the birational isomorphism class of a surface, assume
that the surface is minimal [BHPVdV04, VI.1]. The possibilities are
then:

κ = −∞: Rational surfaces, i.e. ones bimeromorphic to P2.
Ruled surfaces, i.e. P1-bundles over curves (equivalently:

projectivizations of 2-dimensional vector bundles over curves).
Class VII surfaces, they are not algebraic.

κ = 0: Tori, K3 surfaces, Enriques surfaces, bielliptic surfaces
Kodaira surfaces, they are not Kähler.

κ = 1: Properly elliptic surfaces, of the form X → C with general
fiber an elliptic curve and with C a curve.

κ = 2: General type surfaces.
Note that an Enriques surface is double-covered by a K3 surface, and
bielliptic surfaces are isogenous to locally trivial bundles of elliptic
curves over elliptic curves.

Only surfaces with κ ≤ 0 admit nontrivial endomorphisms. Dynam-
ically interesting endomorphisms on blowups of P2 at finitely many
points have been constructed by Bedford and Kim [BK06] and Mc-
Mullen [McM07].
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For dynamically interesting automorphisms, on minimal surfaces one
has to restrict to κ = 0, see [Can14, §2.5], and this case will be developed
in the remainder of these notes with the study of K3 surfaces. Their
study was initiated by Cantat [Can01a].

2.2. Definition and examples of K3s
2.2.1. Definition. A compact complex surface X is called2 a K3 sur-
face if it satisfies both of the following:

(i) The canonical bundle KX is holomorphically trivial, i.e. there
exists a nowhere vanishing holomorphic 2-form Ω.

(ii) It is simply connected.
The conditions can be succinctly expressed as π1(X) = 0 and KX = 0.

The simple connectivity condition can be weakened but leads to the
same surfaces: it suffices to assume that H1(X) = 0, or a condition
that also makes sense in characteristic p is H1(X,OX) = 0.

2.2.2. Quartics. Consider smooth degree 4 surfaces in P3. They are
simply connected by the Lefschetz hyperplane theorem, and admit a
nowhere vanishing holomorphic 2-form by the residue construction (see
§2.2.3). Alternatively, using the adjunction formula one checks that
KX is trivial. Recall that KP3 ∼= OP3(−4) and for a quartic X ⊂ P4 we
have:

KX
∼= KP3(X)|X ∼= OP3(−4 + 4)|X ∼= OX

One can phrase the calculation differently as follows. The statement
KP3 ∼= OP3(−4) says that a 3-form on P3 must have a pole along a
surface of degree 4 (this can be seen by working in local coordinates
and writing an explicit differential form). The subsequent application
of the adjunction formula is a rephrasing of the residue construction,
which we now discuss.

2.2.3. Residues. Suppose that M is a complex n-dimensional man-
ifold and S ⊂ M is complex (n − 1)-dimensional. Assume that Ω is
a meromorphic n-form on M with poles only along S, i.e. in local
coordinates where S = {z1 = 0} we have

Ω = f(z1, . . . , zn)
zk1

dz1 ∧ · · · ∧ dzn

2“ainsi nommées en l’honneur de Kummer, Kähler, Kodaira et de la belle mon-
tagne K2 au Cachemire” see comments to [Wei09], which also give information on
the origin of the name “Teichmüller spaces”.
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with f holomorphic. Write f = ∑
i≥0 z

i
1fi(z2, . . . , zn) and define

ResS Ω := fk−1(z2, . . . , zn)dz2 ∧ · · · ∧ dzn.

2.2.4. Exercise (Residues are well-defined). Show that the residue
ResS Ω is a well-defined holomorphic (n− 1)-form on S, independent of
the choice of coordinate system. Hint: The head-on approach leads to
complicated calculations. Use instead that in dimension 1, Res(dg) = 0
for any meromorphic function g and write any meromorphic 1-form in
1 variable as Ω = r dz1

z1
+ dg.

Using residues, build a nowhere vanishing holomorphic 2-form on a
quartic surface in P3.
2.2.5. Exercise (Uniqueness of holomorphic form). Show that if a line
bundle L over a compact complex manifold has a nowhere vanishing
holomorphic section Ω, then any other holomorphic section of L is a
scalar multiple of Ω.
2.2.6. Kummer examples. Let T := C2/Λ be a complex torus and
set Q := T/ ± 1 to be the quotient by the involution x 7→ −x on the
torus. Then Q has 16 singular double points and blowing them up gives
a K3 surface X. Indeed the standard symplectic form on T survives
the construction and vanishes nowhere on X, and one can check that
H1(X) = 0 using that the involution of T acts as −1 on H1(T ).
2.2.7. Blowups. Recall that in local coordinates on A2, the blowup
at the origin is described as

Bl0A2 ⊂ A2 × P1 with coordinates (x, y) × (s : t)
using the equation xt = ys. The reader can gain familiarity with
blowups using the following calculations.
2.2.8. Exercise (Log-canonical thresholds). For a function f : C2 → C,
set

lct(f) := sup
{
s :
ˆ
Bε

|f(x, y)|−s dVol < +∞
}

where Bε denotes the ball of radius ε at the origin, for some sufficiently
small ε > 0. Compute lct(f) for f(x, y) = xayb and f(x, y) = y2 − x3.
Hint: For the second example, blow up the origin until it looks like the
first example.
2.2.9. Exercise (Volume form in Kummer construction). Verify that
the holomorphic volume form on a complex torus descends, via the
construction in §2.2.6, to a nowhere vanishing volume form on the
associated Kummer K3. Hint: To do so, it suffices to consider the
quotient map A2 → Q given by (x, y) 7→ (−x,−y), compute Q explicitly,
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and then blow up its singular point. Equivalently, blow up A2 first to
get Q′ → A2 and then lift the involution of A2 to Q′. Then compute
what happens to dx ∧ dy along these maps.

2.3. Topology of K3 surfaces
All K3 surfaces are diffeomorphic and so have the same topology. Indeed,
a deformation theory argument (see §4.1) shows that any K3 surface
can be put in a holomorphic family containing a Kummer example
(§2.2.6). By Poincaré duality H3(X) = H1(X) = 0 so the only non-
trivial homology group is H2. Cup product gives it a symmetric non-
degenerate bilinear form and we first recall some relevant structures.

2.3.1. Lattices. A lattice is a finite rank free Z-module Λ equipped
with a non-degenerate symmetric bilinear form Λ × Λ → Z, with the
pairing of two elements denoted v ·w. A lattice is unimodular if the map
induced by the bilinear form Λ → Λ∨ = Hom(Λ,Z) is an isomorphism.
A lattice is even if v2 is even for all v ∈ Λ.

Denote the extension of scalars to the reals by ΛR. The signature of
Λ is the signature of the bilinear form on ΛR. Say that Λ is indefinite if
the signature is indefinite, i.e. has both positive and negative directions.

It is a fundamental theorem that if Λ is an even, unimodular, in-
definite lattice, then it is unique up to isomorphism. Moreover if the
signature of the pairing on ΛR is (m,n) then m ≡ n mod 8. See [Ser73,
Ch. V] for a concise introduction to these questions.

2.3.2. Examples of even, unimodular lattices. The matrix U :=[
0 1
1 0

]
determines on Z2 an even unimodular lattice structure, of sig-

nature (1, 1). It is sometimes called (confusingly) the hyperbolic plane,
and we will denote by U the corresponding even unimodular lattice.

The lattice E8 is determined from the E8 Dynkin diagram as follows.
The symmetric matrix determining the bilinear form on Z8 has 2 on
the diagonal, −1 in the (i, j) entry if the vertices i, j are adjacent in
the diagram, and 0 otherwise.

Together, E8 and U serve as the building blocks of all even, unimod-
ular, indefinite lattices.

2.3.4. The K3 lattice. The rank of H2(X,Z) for a K3 surface X is 22
(compute the Euler characteristic of the quartic in P3) and cup product
makes it a unimodular lattice (by Poincaré duality). A calculation
with Stiefel–Whitney classes implies that the lattice is even and it has
signature (3, 19) (via Hodge theory, see §2.4). It follows that there is
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Figure 2.3.3. The E8 Dynkin diagram.

a (non-unique) isomorphism H2(X,Z) → I3,19 := U⊕3 ⊕ (−E8)⊕2 with
the fixed lattice constructed from the basic building blocks.

2.3.5. Cohomology of the Kummer surface. One can alternatively
see that for a K3 surface the rank of H2(X) is 22 by looking at Kummer
examples from §2.2.6. Indeed for a torus T we have that H2(T ;Z) ∼= Z6,
since it is the second exterior power Λ2H1(T ;Z) of the first cohomology
group. This also gives that as a lattice H2(T ;Z) ∼= U3 and so has
signature (3, 3). Note that the involution x 7→ −x on the torus acts
trivially on H2, since it acts by (−1) on H1 and hence by (−1)2 = 1
on H2.

Let us denote by T̃ → T the blowup of T at the 16 fixed points of
the involution. Then H2(T̃ ;Z) ∼= Z22 (where 22 = 6 + 16) and note
that the self-intersection of an exceptional curve of the blowup is (−1).
Now the involution of T lifts to T̃ and still acts trivially on H2(T̃ ),
so at least the rank over Q of H2(X) doesn’t change. Similarly the
signature (3, 19) follows from this calculation, but note that the descent
of integral lattice structure on H2 from T̃ to X requires more care. See
[K3-85, Exposé VIII] for a careful treatment of this and more related
to Kummer surfaces.

2.4. Hodge theory on K3 surfaces
We introduce the basic notions of Kähler geometry below in §3.1, but
for now it suffices to know that every K3 surface is Kähler ([Siu83])
and thus admits a Hodge decomposition

H2(X,C) = H2,0 ⊕H1,1 ⊕H0,2

with Hp,q = Hq,p. The space H2,0 is spanned by the holomorphic 2-form
Ω and the intersection pairing determines a positive-definite hermitian
metric on H2,0 ⊕ H0,2, while on H1,1 the signature is (1, 19). Denote
by H1,1

R the real space whose complexification is H1,1.
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2.4.1. Néron–Severi group. Define

NS(X) := H1,1 ∩H2(X,Z)

which is isomorphic, by the Lefschetz (1, 1)-theorem and the vanishing
of H1(X,Z), with the group of holomorphic line bundles on X. A line
bundle L is identified with its first Chern class denoted [L]. Moreover,
the fundamental class of a complex curve C ⊂ X, denoted [C], will also
be in NS(X).

Denote by ρ := rkZ NS(X); the signature of cup product on NS(X)
can be (1, ρ− 1), (0, ρ) or (0, ρ− 1). The K3 is algebraic if and only if
the signature is (1, ρ− 1), by the Kodaira embedding theorem [GH78,
§1.4].

2.4.2. Transcendental lattice. Denote by T (X) the smallest sub-
space of H2(X;C) that is defined over Q and contains H2,0. It is
clear that T (X) ⊆ NS(X)⊥, and when cup product on NS(X) is non-
degenerate (e.g. if X is algebraic) we have in fact equality.

2.4.3. Riemann–Roch and Serre duality. Because the canonical
bundle of X is trivial, Serre duality implies that hi(L) = h2−i(L∨),
where L∨ denotes the dual line bundle of L. The Riemann–Roch formula
then becomes

h0(L) − h1(L) + h0(L∨) = 1
2[L]2 + 2(2.4.4)

and it implies the existence of holomorphic sections of either L or L∨

as soon as [L]2 ≥ −2.

2.4.5. The (−2) curves. Given a δ ∈ NS(X) with δ2 = −2, there
exists a compact curve C ⊂ X such that [C] = ±δ, and C is a union
C = ∪Ci with each Ci ∼= P1 and [Ci]2 = −2. This follows from
an application of Eqn. (2.4.4) and an analysis of the possibilities, see
[Huy16, 2.1.4].

2.4.6. The Weyl group. Denote by ∆X ⊂ NS(X) the set of all classes
δ with δ2 = −2, and by ∆+

X those which are represented by classes [C]
of (−2) curves. Consider the reflection

sδ(x) := x+ (x · δ)δ

and the group of orthogonal transformations generated by the trans-
formations sδ, called the Weyl group WX ⊂ O(H2). Because we have
δ ∈ NS(X), the action of each sδ and hence all of WX preserves the
Hodge decomposition and the integral structure.
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2.4.7. The Kähler chamber. Consider the action of WX on H1,1,
where the transformation sδ fixes the hyperplane Hδ ⊂ H1,1(X) of
classes orthogonal to δ. The cohomology classes α ∈ H1,1

R (X) with
α2 > 0 form two cones (exchanged by α 7→ −α) and the set of classes
outside all the hyperplanes Hδ form chambers; the action of WX on the
chambers is transitive (within a fixed cone).

Any Kähler metric (see §3.1) gives a cohomology class [ω] ∈ H1,1
R .

Denote by KX the set of all cohomology classes represented by a Käh-
ler metric, and called the Kähler cone. It is a convex subset of H1,1

invariant under positive scaling.
A Kähler metric ω picks out a chamber for WX from the geometric

condition ˆ
C

ω > 0 for any compact curve C.

Indeed, this condition applies to the (−2) curves [C] = δ and so [ω] ·δ >
0.

It is more difficult, but true, that KX coincides with the distinguished
chamber of WX . In other words, any cohomology class [ω] ∈ H1,1

R which
pairs strictly positively with all (−2) curves, and satisfies [ω]2 > 0, can
be represented by a Kähler metric ([K3-85, XIII, Prop. 4]).

3. Differential Geometry
Outline of section. In §3.1 we introduce the basic notions of Käh-
ler geometry. These are followed by a discussion of Monge–Ampère
equations and their connection to the space of Kähler metrics.

The Riemannian geometry point of view is taken up in §3.2, through
the concept of holonomy. We introduce hyperkähler manifolds, of which
K3 surfaces are fundamental examples.

3.1. Kähler geometry
For the following discussion, it is convenient to assume that X is a gen-
eral compact complex n-dimensional manifold, with integrable complex
structure I : TRX → TRX such that I2 = −1. Here TRX denotes the
real tangent bundle and its complexification TCX := TRX ⊗R C splits
as TCX = T 1,0X ⊕ T 0,1X according to the eigenvalues ±

√
−1 of I.

3.1.1. Definition (Kähler metric). A Kähler form is a differential
2-form ω with dω = 0 and such that the symmetric bilinear form
g(−,−) := ω(I−,−) is a Riemannian metric, which is called a Kähler
metric.
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3.1.2. Bundles and curvature. The canonical bundleKX := Λn(T 1,0
C X)

is a holomorphic line bundle and a Kähler form ω induces a metric ωn
on KX . The Ricci curvature of the Kähler metric associated to ω is
equal to the curvature of the holomorphic line bundle KX equipped
with the metric ωn. In coordinates, if

ω =
√

−1
∑

gi,jdzi ∧ dzj

then

ρ = −
√

−1∂∂ log det(gi,j)(3.1.3)
is the alternating form giving the Ricci curvature.

The metric is called Kähler–Einstein if
ρ = k · ω with k ∈ R.(3.1.4)

Recall that on a compact Riemann surface there always exists a Kähler–
Einstein metric. For P1(C) we have k = 1 (positive curvature), for
elliptic curves k = 0 (zero curvature) and for higher genus k = −1
(negative curvature). In this particular case we can even give explicit
formulas for ω:

2|dz|2

(1 + |z|2)2 |dz|2 2|dz|2

(1 − |z|2)2

The first expression gives the constant curvature +1 metric on P1(C)
in a chart on C. The second expression gives a flat metric on C which
descends to any elliptic curve exhibited as a quotient of C by a lattice.
The last expression gives the constant curvature −1 metric on ∆ =
{z ∈ C : |z| < 1}, and it descends to any compact genus g ≥ 2 Riemann
surface exhibited as a quotient of ∆ by a lattice in PSL2(R).

Let us note that the group of holomorphic automorphisms of P1(C) is
PSL2(C) and, since it is not compact, this group does not preserve any
metric on P1(C). On the other hand, any holomorphic automorphism of
a compact Riemann surface of genus g ≥ 1 will preserve a given constant
curvature metric on that surface. This is reflected also in substantial
analytic challenges when constructing Kähler–Einstein metrics in the
case k > 0.
3.1.5. Yau’s theorems. Returning to the general setting of a compact
complex n-manifold X from §3.1.2, the cohomology class [ρ] of ρ as
defined in Eqn. (3.1.3) is expressed in terms of the first Chern class
of the tangent bundle and equal to (2π)c1(T 1,0

C X). Therefore, since
Eqn. (3.1.4) must also hold in cohomology, we must first look for a
k ∈ R and Kähler class [ω] such that

[ρ] = k[ω].
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The existence of a Kähler–Einstein metric when −[ρ] is a Kähler class
(so k < 0) is due independently to Aubin and Yau, and the case [ρ] = 0
(so k = 0) is due to Yau [Yau78]. The case k > 0 is significantly more
difficult and the subject of more recent activity by Chen, Donaldson,
and Sun [CDS14].

For K3 surfaces we have c1(T 1,0
C X) = 0 and k = 0, so Yau’s theorem

says that in any Kähler class [ω′] there exists a unique Ricci-flat Kähler
form ω. Because of the ddc(or ∂∂)-lemma, see [Huy05, 3.A.22] we know
that two cohomologous Kähler metrics are related by

ω = ω′ +
√

−1∂∂ϕ
where ϕ is called a potential.

If Ω denotes the holomorphic 2-form on a K3 surface, then Ω ∧ Ω
induces a flat metric on KX , so the existence of a Ricci–flat metric is
equivalent to solving the equation

(ω′ +
√

−1∂∂ϕ)2 = Ω ∧ Ω
provided that

´
X

(ω′)2 =
´
X

Ω ∧ Ω. This is called a Monge–Ampère
equation. The result proved by Yau is more general.
3.1.6. Theorem ([Yau78]). On an n-dimensional Kähler manifold

(X,ω) let f ∈ C∞(X) be a function such that
´
X
ωn =

´
X
efωn.

Then there exists ϕ ∈ C∞(X) (unique up to a constant) such that

(ω +
√

−1∂∂ϕ)n = efωn

with ω +
√

−1∂∂ϕ also a Kähler metric.
One way to solve the Monge–Ampère equation in Theorem 3.1.6

is to use the continuity method. Concretely, consider a 1-parameter
family of functions fs such that f0 ≡ 0 and f1 = f , for instance
by scaling f linearly and adjusting the constants appropriately. One
shows that the values of s for which a solution ϕt exists is both open
and closed, and since it contains s = 0 by construction, it follows that a
solution exists for s = 1 as well. Openness follows from an elementary
application of the inverse function theorem in appropriate function
spaces. Closedness is the heart of the problem and requires a priori
estimates for the solutions of Monge–Ampère equations.
3.1.7. The space of Kähler metrics. A different approach to solv-
ing Monge–Ampère equations is based on a variational technique, i.e.
solutions are characterized as extremizers of functionals. While show-
ing the regularity (e.g. smoothness) of extremizers is as difficult as
showing closedness in the continuity method, the formal aspects of the
functionals that appear reveal more about the structure of the space
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of all Kähler metrics. The presentation below is heuristic and will not
introduce the necessary function spaces, working formally instead. A
rigorous presentation is in the recent monograph of Guedj and Zeriahi
[GZ17].

For a Kähler metric ω, the space of all cohomologous Kähler metrics
is parametrized by the space of functions ϕ ∈ C∞(X), called potentials,
subject to the requirement

ωϕ := ω +
√

−1∂∂ϕ is a Kähler metric

and modulo constant functions; denote the space by Kω. View the
Monge–Ampère operator as a map from functions to measures3:

MA(ϕ) := ωnϕ

Since functions and measures are dual one can view MA as a differential
1-form on the space of functions. It is closed, and in fact has the
following explicit primitive:

E(ϕ) := 1
n+ 1

n∑
i=0

ˆ
X

ϕωiϕ ∧ ωn−i

called the energy of ϕ. This is justified by the following calculations,
which show that moreover E is a concave functional on the space of
functions.
3.1.8. Proposition. Suppose that ϕt is a 1-parameter family of poten-

tials. Then
d

dt
E(ϕt) =

ˆ
X

ϕ̇tMA(ϕt)

which shows that formally dE = MA on the space of Kähler poten-
tials.
Suppose additionally that ϕt = ϕ0 + tv where v ∈ C∞(X). Then

d2

dt2
E(ϕt) ≤ 0

Note that formulating the concavity of E (the second statement
above) uses the affine structure of the space of functions.

3Probability measures, if
´

X
ωn = 1
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Proof. We calculate directly:

d

dt
E(ϕt) = 1

n+ 1
d

dt

n∑
j=0

ˆ
X

ϕt ω
j
ϕt

∧ ωn−j

= 1
n+ 1

n∑
j=0

ˆ
X

(
ϕ̇tω

j
ϕt

+ j · ϕt(
√

−1∂∂ϕ̇t)ωj−1
ϕt

)
∧ ωn−j

= 1
n+ 1

n∑
j=0

ˆ
X

(
ϕ̇tω

j
ϕt

+ j · (
√

−1∂∂ϕt)ϕ̇tωj−1
ϕt

)
∧ ωn−j

= 1
n+ 1

n∑
j=0

ˆ
X

(
ϕ̇tω

j
ϕt

+ j · (ωϕt − ω)ϕ̇tωj−1
ϕt

)
∧ ωn−j

=
ˆ
X

ϕ̇t ω
n
ϕt

=
ˆ
X

ϕ̇tMA(ϕt)

where we used: the Leibniz rule, integration by parts, the expression√
−1∂∂ϕt = ωϕt − ω, and finally a telescoping sum.
To compute the second derivative, recall that now ϕt varies affinely,

so ϕ̈t = 0. Compute directly again, using the previous expression as a
starting point:

d2

dt2
E(ϕt) =

ˆ
X

ϕ̈tω
n
ϕt

+
ˆ
X

ϕ̇t n (
√

−1∂∂ϕ̇t) ∧ ωn−1
ϕt

=
ˆ
X

ϕ̇t n (
√

−1∂∂ϕ̇t) ∧ ωn−1
ϕt

= −n
ˆ
X

√
−1(∂ϕ̇t) ∧ (∂ϕ̇t) ∧ ωn−1

ϕt
≤ 0

since
√

−1∂ξ ∧ ∂ξ ≥ 0 for any ξ ∈ C∞(X). □

3.1.9. The variational approach. In Proposition 3.1.8 we estab-
lished that E : Kω → R is a concave function, with dE = MA formally.
Moreover E is “increasing” in the sense that if ϕ̇t ≥ 0 then d

dt
E(ϕt) ≥ 0.

In order to solve the equation MA(ϕ) = µ0 for a fixed measure µ0,
consider the functional

Fµ0(ϕ) := E(ϕ) −
ˆ
X

ϕ dµ0

on the space Kω. One expects a maximum of Fµ0 , achieved at ϕ0, to
solve dE(ϕ0) = µ0. For further information in this direction, see also
Demailly’s survey [Dem17].
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3.2. Holonomy point of view
For a more detailed exposition of the concepts in this section, see
[K3-85, Exp. XV]. On a Riemannian manifold (X, g) the Levi-Civita
connection defines parallel transport along paths connecting x, y ∈ X
inducing maps between tangent spaces TxX → TyX.
3.2.1. Definition (Holonomy of a Riemannian metric). The set of all
maps in GL(TxX) obtained as parallel transport along loops based at
x ∈ X is called the holonomy group of the metric g, at the point x.
Restricting to loops based at x ∈ X that are null homotopic defines
the restricted holonomy group.
3.2.2. Remark.

(i) The holonomy group is contained in the orthogonal group
O(TxX) determined by the metric, since the Levi-Civita con-
nection preserves the metric. Since the group is also closed, it
is a compact Lie group.

(ii) A smooth path connecting x, y ∈ X induces by parallel trans-
port a map TxX → TyX which identifies the holonomy groups.
Hence the conjugacy class of the holonomy group is indepen-
dent of the basepoint and we can speak of “the” holonomy
group (assuming X is connected).

(iii) The Lie algebra of the holonomy group can be computed in
terms of the curvature tensors at all the points.

3.2.3. Example.

(i) The holonomy group of a Kähler manifold is contained in U(n).
Indeed, the condition dω = 0 is equivalent to the complex
structure I : TX → TX being preserved by parallel transport.

(ii) A Kähler manifold is Ricci-flat if and only if the restricted
holonomy group is contained in SU(n). On the other hand,
the existence of a holomorphic nowhere vanishing volume form
if equivalent to the holonomy group being contained in SU(n).

(iii) The manifold is called hyperkähler if the holonomy is con-
tained in Sp(n), the group of n× n quaternion matrices which
are unitary for an appropriate metric. In this case, parallel
transport preserves three complex structures I, J,K with the
usual relations, and in fact any complex structure of the form
xI + yJ + zK with x2 + y2 + z2 = 1.

(iv) For a symmetric space G/K with G a semisimple Lie group
(with finite center), K a maximal compact, and the metric
given by the Killing form, the holonomy group is the connected
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component of the identity of K. The same holds for G compact
and K ⊂ G a compact subgroup.

3.2.4. K3s as hyperkähler manifolds. For an in depth treatment
of these concepts, see the collection of notes [GHJ03].

IJ

KThe exceptional isomorphism of compact Lie
groups SU(2) ∼= Sp(1) implies that on a Ricci-
flat K3 surface, there exists besides the complex
structure I another one J , with IJ = −JI = K.
In fact there is a whole sphere S2 of complex
structures, as per Example 3.2.3(iii), called the
twistor sphere.

There is a relationship between the 2-form ω
defining the Ricci-flat metric, the holomorphic
2-form Ω, and the complex structures I, J,K. After rescaling Ω by an
appropriate complex number, we have

ω = ωI = g(I−,−)
Re Ω = ωJ = g(J−,−)
Im Ω = ωK = g(K−,−)

Moreover, for It := xI + yJ + zK with x2 + y2 + z2 = 1, the 2-form
ωIt := g(It−,−) is also Kähler, i.e. dωIt = 0, as can be seen from the
above relations.

3.2.5. Special Lagrangians in dimension 1. Consider the complex
plane C equipped with the holomorphic form Ω := dz and Euclidean flat
metric. Then straight lines can be characterized as distance-minimizing
curves. Alternatively, if they meet the horizontal at angle θ, straight
lines are characterized as curves on which e

√
−1θΩ restricts to a real-

valued 1-form inducing the length element of the ambient flat metric.

3.2.6. Special Lagrangians in general. Suppose now that (X,ω,Ω)
is a complex n-dimensional manifold, ω is a Kähler metric, and Ω is a
holomorphic n-form. Then a real n-dimensional submanifold L ⊂ X is
special Lagrangian (abbreviated: sLag) if:

Lagrangian: The restriction ω|L ≡ 0, i.e. L is Lagrangian in
the symplectic manifold (X,ω).

special: The restriction Ω|L is a real n-form inducing the same
volume on L as the Riemannian metric on X determined by ω.

Note that in the definition, we can start with e
√

−1θΩ to have a “rotated”
variant. Special Lagrangians are locally volume minimizing, since they
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are calibrated manifold, i.e. their volume can be computed using a
closed differential form.

3.2.7. Counting sLags in dimension 1. In complex dimension 1,
i.e. on Riemann surfaces, we saw that sLags are the same as straight
lines determined by the flat metric induced by a holomorphic 1-form.
Counting the number of such curves that are closed has been studied
extensively and implies also counts for the number of closed billiard
trajectories in rational-angled polygons. Veech [Vee89] showed that the
number of closed billiard trajectories of length at most L is asymptotic
to cnL2 for an explicit constant cn. For general rational-angled polygons
Masur [Mas88] proved that the number of closed trajectories has qua-
dratic upper and lower bounds, and results of Eskin, Mirzakhani, and
Mohammadi [EMM15] imply a quadratic asymptotic in an averaged
sense.

Two features are important and recur. First, given one closed billiard
trajectory, perturbing it (but keeping the angle fixed) gives another
closed billiard trajectory. Second, the angles of the trajectories will
equidistribute on the unit circle.

3.2.8. Counting sLags in dimension 2. When (X,ω,Ω) is a K3
surface with a Ricci-flat metric, there is again an abundance of special
Lagrangian 2-tori. In dimension 1 the angle was on the unit circle, while
on K3s the choice of angle corresponds to equators on the twistor sphere.
Again given one sLag torus, one can deform it to obtain a foliation (with
closed leaves) on the K3 surface. In fact, while in dimension 1 there can
be “barriers” to obtaining a foliation with closed leaves on the entire
space, in dimension 2 this barrier can be passed and one gets a special
Lagrangian torus fibration of the entire K3 surface.

It is shown in [Fil20] that the number of such fibrations, with volume
of a fiber bounded by V , is

N(V ) = C · V 20 +O(V 20−δ)

at least when the K3 surface is sufficiently general. The constant C is,
up to rational factors, equal to 1

π20ζ(11) and arises as a ratio of volumes
of homogeneous moduli spaces.

3.2.9. SLags and hyperkähler metrics. Using the hyperkähler struc-
ture on a K3 surface, one finds that a special Lagrangian on a K3 surface
is, in fact, a holomorphic curve for a different complex structure. For
example, sLag tori lead to elliptic curves. This connection allows one
to reduce the question of counting sLags to to counting special vectors
in the K3 lattice, and then to a problem in homogeneous dynamics.
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4. Torelli theorems
Outline of section. A remarkable feature of K3 surfaces is that their
geometry is, to a large extent, determined by the Hodge structure.
For example, if two K3 surfaces have abstractly isomorphic Hodge
structures, then they are in fact isomorphic. The correspondence is
even stronger and allows one to construct automorphisms of K3s using
Hodge structures.

This section describes some of these results and the related back-
ground. Basic facts from deformation theory are recalled in §4.1. The
period domains relevant to K3 surfaces are described in §4.2. Finally,
some of the Torelli theorems valid for K3 surfaces are in §4.3.

4.1. Complex deformation theory
4.1.1. Setup. The discussion in this section is quite general and ex-
tends beyond K3 surfaces. For a more in depth treatment of the con-
cepts in this section, see [K3-85, Exp. V]. We will consider proper holo-
morphic submersions X

π−→ B between complex manifolds. Assume
that B is simply connected, e.g. the unit ball in CN , and equipped
with a basepoint b0 ∈ B. For a point b ∈ B let Xb denote π−1(b). The
data of X

π−→ B will be called a deformation of Xb0 .
4.1.2. Definition (Universal family). The deformation X

π−→ B is
a universal deformation of Xb0 if the following holds. For any other
deformation π : X ′ → B′ and isomorphism χ0 : Xb′

0
→ Xb0 there exists

an open B′′ ⊂ B′ containing b′
0 and unique holomorphic maps χ, β

giving a commutative diagram:

X ′′ := π−1(B′′) X

B′′ B

χ

π′ π

β

such that χ|Xb′
0

= χ0 and β(b′
0) = b0. If the maps are not required to

be unique, the deformation is called versal.
The following result gives a useful criterion for when a universal defor-

mation exists. For the statement, ΘX denotes the sheaf of holomorphic
vector fields on X and H•(X,ΘX) are the sheaf cohomology groups.
4.1.3. Theorem (Kodaira–Spencer–Nirenberg). Suppose X is a com-

pact complex manifold with H0(X,ΘX) = 0 and H2(X,ΘX) = 0.
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Then there exists a universal deformation of X, whose base is an
open subset of H1(X,ΘX) containing the origin.
The space H0(X,ΘX) denotes the global holomorphic vector fields

on X, which can be viewed as infinitesimal automorphisms. When
H2(X,ΘX) ̸= 0, a versal deformation space still exists, but it can be
singular.

4.1.4. Tangent sheaf for K3 surfaces. Suppose now that X is a
compact complex manifold with a nowhere vanishing holomorphic 2-
form Ω. Then Ω induces a sheaf isomorphism ΘX → Θ∨

X , where Θ∨
X

is the sheaf of differential 1-forms. When X is Kähler, the dimension
of the sheaf cohomology groups of Θ∨

X can be computed from the
Hodge numbers as dimHp(X,Θ∨

X) = dimH1,p(X) and in fact there are
canonical isomorphism between the corresponding vector spaces.

In the case of K3 surfaces we have Hp,q(X) = 0 unless p+ q equals
0, 2, 4, which implies that the conditions of Theorem 4.1.3 are satisfied.
Furthermore the dimension of the universal deformation is 20 (which
is dimH1,1(X)), and following through the cohomological calculations
gives that the deformations are canonically parametrized by an open
set in Hom(H2,0, H1,1).

4.2. Period domains
4.2.1. Definition (Marked K3s). Let Λ := I3,19 denote the unique
even, unimodular lattice of signature (3, 19).

A marking of a K3 surface X is an isomorphism of lattices ι : Λ →
H2(X,Z). A marked family of K3 surfaces X

π−→ B is a marking on each
fiber Xt = π−1(t), compatible with local identifications of H2(Xt,Z).

Let MΛ denote the space of marked K3 surfaces, up to marking-
preserving isomorphisms. For the lattice Λ, extensions of scalars to a
field or ring k are denoted Λk.

4.2.2. Period domain. Consider the period domain

DΛ := {[α] ∈ P(ΛC) : α · α = 0, α · α > 0}(4.2.3)

An element [α] ∈ DΛ determines a Hodge decomposition

ΛC = [α]
⊕(

[α] ⊕ [α]
)⊥⊕

[α]

which mimics the Hodge decomposition of the second cohomology of a
K3 surface.
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4.2.4. Associated groups. Consider the orthogonal groups G :=
O(ΛR), Γ = O(ΛZ) and H = StabG(α) ∼= O2(R) × O1,19(R), for some
[α] ∈ DΛ. Therefore we have

DΛ ∼= G/H

in a G-equivariant way, and in particular there is a Γ-action on DΛ.

4.2.5. Period map. There is a natural map MΛ
Per−−→ DΛ, called the

period map, defined as follows. For a marked K3 surface (X, ι) ∈ MΛ,
set

Per(x, ι) := ι−1
(
H2,0(X)

)
∈ P (ΛC)

That the period map lands in DΛ follows from the properties of the
Hodge structure of a K3 surface. The period map is holomorphic (this
holds more generally and follows from basic results in the deformation
theory of complex manifolds). Furthermore, it is Γ-equivariant by
construction.

4.3. Torelli theorems
The following result is due, in various levels of generality, to Pyatetski-
Shapiro–Shafarevich, Looijenga–Peters, Todorov, and Burns–Rapoport.
4.3.1. Theorem (Torelli theorem for K3 families). The period map

MΛ → DΛ is a local covering map between complex manifolds.
The image of the period map is all of DΛ.

The next construction, due to Atiyah [Ati58], illustrates how MΛ can
fail to be separated.
4.3.2. Example (Flops). There exist two holomorphic families Xi

πi−→
∆ = {|z| < 1} with the following properties. First, the central fibers are
biholomorphic: X1,0 ∼= X2,0. Second, the families over the punctured
disc are isomorphic: there exists an isomorphism

X1|∆×−̃→ X2|∆×

which commutes with projections to ∆× = {0 < |z| < 1}. Neverthe-
less, there does not exist an isomorphism X1−̃→X2 commuting with
projection to ∆.

The monodromy of the transformation going around the central fiber
squares to the identity in the smooth mapping class group (Kronheimer)
but is infinite order in the symplectic mapping class group (Seidel). See
[Sei08] for more on this.

The next result refines Theorem 4.3.1 to identify isomorphism classes
of K3s and their automorphisms.
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4.3.3. Theorem (Torelli theorem for individual K3s). Suppose that
X1, X2 are two K3 surfaces. If there exists an isomorphism f : H2(X1) →
H2(X2) preserving the Z-structure, Hodge structure, and cup product,
then X1 ∼= X2.
If moreover f takes the Kähler cone of X1 to that of X2, then there
exists a unique isomorphism F : X2 → X1 with F ∗ = f on cohomol-
ogy.

4.3.4. Kummer examples can be characterized cohomologi-
cally. [K3-85, Exp. IX, Prop. 2] gives a cohomological characterization
of Kummer examples. Specifically, suppose that [α] ∈ DΛ ⊂ P(ΛC) is
a point in the period domain. Set L[α] := ([α] ⊕ [α]) ∩ ΛR to be the
real 2-dimensional subspace, whose complexification would correspond
to H2,0 ⊕H0,2 in the Hodge decomposition. Then [α] is the period of
a marked Kummer surface if and only if L[α],Z := L[α] ∩ ΛZ has rank 2
over Z, and if x ∈ L[α],Z then x2 ≡ 0 mod 4.

Using this cohomological characterization, as well as an analysis of
the period map, shows that any K3 surface can be deformed to a
Kummer example. To do so, it suffices to show that the period points
of Kummer surfaces are dense in the associated period domain.

5. Dynamics on K3s
Outline of section. We can now discuss examples and basic properties
of K3 surface automorphisms. After giving some examples in §5.1, we
proceed to discuss entropy and the Gromov–Yomdin theorem in §5.2.
Finally, some elementary and useful general properties are discussed in
§5.3.

5.1. Some basic examples
We begin by describing some concrete examples of K3 surfaces with
dynamically interesting automorphisms.
5.1.1. The (2, 2, 2) examples. Consider a smooth surface X ⊂ P1 ×
P1×P1 cut out by a multi-degree (2, 2, 2) polynomial, i.e. if (X0 : X1, Y0 :
Y1, Z0 : Z1) are the homogeneous coordinates, then the equation for F
has degree 2 in each of the variables. Concretely, in a chart given by
A3 one can take

x2 + y2 + z2 + t(xyz) + 1 = 0
with t as a parameter, and compactify to (P1)3 by homogenezing each
variable individually.
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For each of the P1 factors, projecting X along it to P1 × P1 gives a
2 : 1 map and an involution exchanges the two sheets. Concretely, for
the above example we have

σx(x, y, z) =
(

1 + y2 + z2

x
, y, z

)
The first entry is determined from the formula for the coefficients of
a quadratic equation in terms of the roots, and can be alternatively
written as −tyz − x. Analogously one defines σy, σz and together these
generate a free group, modulo the relations σ2

• = 1.
See [Maz92] for further questions about this family.

5.1.2. Kummer examples. Suppose that T is a complex 2-torus with
fT : T → T a linear automorphism; for example take T = E×E with E
an elliptic curve, then fT can be constructed from a matrix in SL2(Z)
using the group structure on E.

Perform the Kummer construction on T (see §2.2.6) and observe that
the linear automorphism fT extends to fX : X → X. The topological
entropy (see §5.2) of fT and fX is the same, the measure of maximal
entropy is given by the holomorphic 2-form, and the invariant currents
are smooth (see Theorem 7.1.1 for these concepts).

A more general definition of Kummer examples is introduced in
[CD20b, Def. 1.3]. Specifically, X can be any projective surface and f an
automorphism, and the requirements are that there exists a birational
map X → X ′ to an orbifold, a finite orbifold cover T → X ′, where T
is a torus, and corresponding automorphisms fX′ , fT , with the natural
commutation relations between them and to f . In dynamical systems
terminology, one would say that (X, f) and (T, fT ) admit a common
(finite) factor.
5.1.3. Automorphisms and Hodge theory. Although the existence
of a Hodge decomposition requires a Kähler metric, the decomposition
itself only depends on the complex structure. Therefore, any holomor-
phic automorphism preserves the Hodge decomposition of a complex
manifold. Furthermore, the automorphism preserves the Z-structure
and cup product in cohomology.

In the case of K3 surfaces, any holomorphic automorphism preserves
the decomposition H2(X,C) = H2,0 ⊕ H1,1 ⊕ H0,2. In particular, it
preserves H1,1

R and hence gives an element in O(H1,1
R ), which is an

orthogonal group of signature (1, 19).
5.1.4. Types of automorphisms. Elements of O(R1,19) can be clas-
sified (after perhaps raising to a power) according to their action on
R1,19 as follows:
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• hyperbolic elements have an eigenvector v with eigenvalue λ,
with |λ| > 1 and v · v = 0.

• parabolic elements are unipotent (with non-trivial Jordan block)
and fix a vector with v · v = 0.

• elliptic elements fix a vector with v · v = 1.
Hyperbolic elements are also frequently called “loxodromic”. We will
use the same adjectives for automorphisms of K3 surfaces, according
to their action on H1,1

R .
Note that because automorphisms preserve an integral structure in

cohomology, elliptic ones will necessarily be of finite order. Parabolic
automorphisms will preserve the fibers of a map X → P1, which will be
elliptic curves. From the dynamical point of view, the most interesting
ones are the hyperbolic automorphisms. They have positive entropy by
Gromov–Yomdin’s Theorem 5.2.3 below.

5.2. Entropy
5.2.1. Coverings and Nets. Let (X, d) be a metric space and ε > 0.
A subset S ⊂ X is ε-separated if ∀s1, s2 ∈ S we have d(s1, s2) ≥ ε when
s1 ̸= s2. A subset S ⊂ X is an ε-covering if for all x ∈ X there is s ∈ S
with d(x, s) < ε.

Observe that a maximal ε-separated set is also an ε-covering. Con-
versely, given an ε-covering C ⊂ X and a (2ε)-separated set S ⊂ X,
there is an injection S ↪→ C by assigning to each element of S one of
the elements in C that is at distance less than ε from it.

As a consequence, for many purposes it is equivalent to work with
maximal ε-separated sets or minimal ε-coverings, were maximal and
minimal are taken according to the cardinality. For convenience, we
will work with maximal ε-separated sets and denote by S(X, d, ε) their
cardinality.

5.2.2. Topological entropy. Let f : X → X be a continuous map of
a metric space and define the new distances

dn(x, y) := max
i=0...n

d(f ix, f iy)

which measures the maximal distance at which the two points diverge
after n iterates of the dynamics. Define

h(f, ε) := lim sup
n→∞

log S(X, dn, ε)
n

htop(f) := lim
ε→0

h(f, ε)
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Provided we can only make ε-accurate measurements, the first quantity
measure the exponential growth rate of distinct trajectories, as we
observe the dynamics up to time n.
5.2.3. Theorem (Gromov–Yomdin). Let f : X → X be a holomorphic

endomorphism of a compact Kähler manifold. Then

htop(f) = log ρ(f)

where ρ(f) is the spectral radius of f ∗ acting on the cohomology
H•(X).

5.2.4. Remark.
(i) Yomdin [Yom87] proved that for any smooth map of a compact

manifold one has the inequality

htop(f) ≥ log ρ(f)

while Gromov [Gro03] proved, for compact Kähler manifolds,
the reverse inequality htop(f) ≤ log ρ(f). Thus for a K3 surface
automorphism, f ∗ is hyperbolic on H2 if and only if htop(f) > 0.

Below, we will present the proof of Gromov’s half of Theo-
rem 5.2.3.

(ii) Gromov’s theorem fails for non-Kähler complex manifolds. For
example take a cocompact lattice Γ ⊂ SL2(C) coming from
a compact hyperbolic 3-manifold. Then the time-one map of
the geodesic flow on Γ

∖
SL2(C) has positive entropy but is

homotopic to the identity.

5.2.5. Preparations for Gromov’s theorem. Consider the embed-
ding

∆f,n : X → X × · · · ×X

x 7→ (x, fx, . . . , fnx)

and denote by Γf,n ⊂ Xn+1 the image. Fix a Kähler metric ω on X
and endow Xn+1 with the induced Kähler metric ω[n] := ω ⊠ · · · ⊠ ω.
Let d[n] denote the induced distance on Xn+1. The estimate between
the dynamically defined distances dn and d[n]:

dn(x1, x2) ≤ d[n](∆f,n(x1),∆f,n(x2)) ≤ n · dn(x1, x2)

allows us to use d[n] in the definition of entropy from §5.2.2, since the
factor of n disappears after taking log and dividing by n.

Gromov’s theorem will follow from the next two results, which we
prove below.
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5.2.6. Proposition (Volume growth). For the Kähler metric ω[n] on
Xn+1 we have

lim
n→∞

log Vol(Γf,n)
n

= log ρ(f)

where ρ(f) is the spectral radius of f ∗ acting on the cohomology of
X.

5.2.7. Proposition (Lower bounds on volume). Let V ⊂ M be com-
plex manifolds with a Kähler metric on M , with a uniform bound K
on the sectional curvatures. Given ε > 0 there exists δ = δ(dim V, ε,K) >
0 (but independent of dimM) such that if x ∈ V then

Vol(B(x, ε) ∩ V ) ≥ δ

where B(x, ε) denotes the ball of radius ε at x.
This last result is valid more generally for minimal surfaces in Rie-

mannian manifolds, of which complex submanifolds of Kähler manifolds
are examples.
5.2.8. Proof of Gromov’s theorem. By Proposition 5.2.7 applied
to Γf,n ⊂ Xn+1 we have that

S(Γf,n, d[n], ε) · δ ≤ Vol(Γf,n)
since the ε-separated set gives disjoint balls with lower bounds on
volume. Combined with Proposition 5.2.6 and the definition of entropy,
the result follows.
5.2.9. Proof of Proposition 5.2.6. It is convenient to introduce the
quantities

δp(f) := lim
n→∞

(ˆ
X

ωq ∧ (f ∗)nωp
) 1

n

where p+ q = dimCX.(5.2.10)

We’ll check in a moment that the limit indeed exists, and that δp(f) is
the spectral radius of f ∗ on Hp,p(X); assume this for now.

To proceed, note that the volume of Γf,n is computed using the
formula

Vol(Γf,n) =
ˆ
X

(
ω + f ∗ω + · · · + (f ∗)nω

)dimX

.

Using Eqn. (5.2.10), one checks directly that

lim
n→∞

log Vol(Γf,n)
n

= max
p

log δp(f)

so it remains to establish the existence of the limit defining δp(X) and
its equality to the spectral radius of f ∗ on Hp,p(X) .
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To do so, consider inside Hp,p(X) the open cone of classes repre-
sentable by smooth strongly positive (p, p)-forms (see §7.1.9 for strong
positivity). This cone is clearly preserved by f ∗ and contains [ω]p, in par-
ticular is nonempty. By a generalized version of the Perron–Frobenius
theorem, an eigenvector with largest eigenvalue of f ∗ lies in the closure
of the cone. Furthermore, the iterate of any vector in the interior will
grow at the maximal rate, given by the largest eigenvalue. Note also
that cup-product with [ω]q defines a strictly positive function on the
boundary of the cone, since it is clearly nonnegative and remains so
under any small perturbation of [ω]. This in particular implies that the
limit in Eqn. (5.2.10) exists and equals this largest eigenvalue. □

Let us point out that in the above argument, the largest (in absolute
value) eigenvalue need not be unique, and Jordan blocks can occur.

5.2.11. Proof of Proposition 5.2.7. Because the curvature of ω is
assumed bounded, we can assume that we work in a fixed neighborhood
of 0 ∈ CN and ω is Euclidean. The claimed lower bound then follows
from the more general result below, which is interesting for both large
and small radii:
5.2.12. Theorem (Lelong inequality). Suppose that V ⊂ CN is a prop-

erly embedded complex submanifold, of dimension k and containing
0 ∈ CN . Setting B(0, r) to be the ball of radius r in CN , the function

Vol(V ∩B(0, r))
r2k is increasing as r increases.

Its limit as r → 0 is a fixed constant Ck.

Proof. The basic facts are that

√
−1∂∂ ∥z∥2 is the Euclidean metric

√
−1∂∂ log ∥z∥2 ≥ 0

and Stokes theorem (integration by parts) will be used repeatedly. De-
note by Vr = B(0, r)∩V and ∂Vr its boundary (nonempty by properness
of the embedding). It will also be more convenient to express the cal-
culation using the real operators

d = ∂ + ∂ and dc =
√

−1(∂ − ∂)
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so that 1
2dd

c =
√

−1∂∂. Let us first present a heuristic calculation:

1
r2k

ˆ
Vr

(ddc ∥z∥2)k = 1
r2k−2

ˆ
∂Vr

(
dc ∥z∥2

∥z∥2

)
∧ (ddc ∥z∥2)k−1

= 1
r2k−2

ˆ
∂Vr

(
dc log ∥z∥2

)
∧ (ddc ∥z∥2)k−1

= 1
r2k−2

ˆ
Vr

(
ddc log ∥z∥2

)
∧ (ddc ∥z∥2)k−1

= · · ·

=
ˆ
Vr

(
ddc log ∥z∥2

)k
Since the integrand is positive, it is clear that the function is increasing
in r. Note that the integrand has a singularity at 0 ∈ CN and the
above integration by parts should be stated using a spherical shell with
radii between ε and r. To be more explicit, assume that k = 1 for
simplicity, i.e. that the manifold V is 1-dimensional but the dimension
of the ambient space is arbitrary. Define now:

I(r) := 1
r2

ˆ
Vr

ddc ∥z∥2

Then we can use Stokes’s theorem and that r2 = ∥z∥2 on Vr to rewrite
it as

I(r) =
ˆ
∂Vr

dc log
(
∥z∥2

)
as we did above in the first step of the calculation. Define now the
spherical shell S(r, ε) := {z ∈ CN : ε ≤ ∥z∥ ≤ r} and compute using
Stokes again:

I(r) − I(ε) =
ˆ
∂Vr

dc log ∥z∥2 −
ˆ
∂Vε

dc log ∥z∥2

=
ˆ
V ∩S(r,ε)

ddc log
(
∥z∥2

)
The integrand is nonnegative so the function is monotonic. □

5.2.13. Remark (Image in projectivization). The positive form ddc log ∥z∥2

in CN can be identified with π∗ωFS where ωFS is the Fubini–Study form
on P(CN) and π : CN 99K P(CN) is the rational map given by projec-
tivization. This description tells us when is I(r) constant, namely when
V is a line so its projectivization is a point. The function I(r) measures
the area of the image of V ∩B(0, r) in P(CN).
5.2.14. Exercise (Wirtinger inequality).
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(i) Let ω be a skew-symmetric form, and g a positive-definite
inner product on a real vector space P . Show that there exist
pairwise orthogonal (for g) unit vectors ei, fi ∈ P and real
scalars λi such that

ω =
∑
i

λie
∨
i ∧ f∨

i

where for a vector p ∈ P , p∨ := g(p,−) denotes the associated
linear form. Show additionally that the absolute values |λi| are
uniquely determined as a set, possibly with multiplicities.

(ii) Let ω be a Kähler form on a complex vector space V and let g
be the associated inner product on V viewed as a real vector
space. Show that for any real 2k-dimensional subspace P ⊂ V
we have

1
k!ω

k

∣∣∣∣
P

≤ dVolg(P )

where dVolg(P ) denotes the volume form induced by g on P ,
with equality if and only if P is a complex subspace of V . Hint:
Estimate |λi| from the previous part by considering ω(ei, fi) and
the relation to the inner product.

5.2.15. Aside: dynamical degrees. The quantities defined in Eqn. (5.2.10)
are called the dynamical degrees of f . They form a log-concave sequence
in p, namely:

δp−1(f)δp+1(f) ≤ δp(f)2

as follows from the following inequality of Khovanskii–Teissier–Gromov
[Gro90, 1.6.C1]. For any Kähler metrics ω1, ω2 on X, the sequenceˆ

X

ωa1 ∧ ωdimCX−a
2 is log-concave in a.

Note that in the proof of Gromov’s theorem, we only showed that
limn→∞

log Vol(Γf,n)
n

= maxp log δp(f) ≤ log ρ(f). The last inequality
is, in fact, an equality. This follows from Yomdin’s theorem (see Re-
mark 5.2.4(i)), but can be established also from the next result (I am
grateful to Serge Cantat for suggesting to consider X ×X).
5.2.16. Lemma (Bounds on (p, q) spectral radius). Let ρp,q(f) de-

note the spectral radius of f ∗ on the group Hp,q(X) of the Hodge
decomposition of Hp+q(X;C). Then we have the inequality:

ρp,q(f)2 ≤ max
i=0...,p+q

δi(f) · δp+q−i(f)

Proof. Suppose that β ∈ Hp,q(X) is such that f ∗β = λβ. It is clear
that ρp,q(f) is the largest |λ| that occurs as such an eigenvalue.
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Consider X × X, with automorphism f × f , and let πi, i = 1, 2 be
projections to the corresponding factors. The cohomology class

β ⊠ β := π∗
1β ∧ π∗

2β

is in Hp+q,p+q(X ×X), is not zero, and has eigenvalue |λ|2 under f × f .
In §5.2.9 we showed, in particular, that the spectral radius on a (k, k)-
group is equal to δk, therefore we have that

|λ|2 ≤ δp+q(f × f)
To bound the last expression, note that π∗

1ω + π∗
2ω is a Kähler metric

on X × X when ω is a Kähler metric on X. Plugging this Kähler
metric into the definition of δp+q(f × f) and expanding the expression
in Eqn. (5.2.10) leads directly to:

δk(f × f) = max
i=0...k

δi(f) · δk−i(f)

which implies the desired claim. □

5.3. Basic properties of K3 automorphisms
5.3.1. Volumes on K3s. Recall that Ω denotes the (unique up to
scale) holomorphic 2-form on a K3 surface X. Then Ω ∧ Ω defines a
volume form on X which is invariant under any automorphism (see
Proposition 5.3.2 below).

Suppose that X is algebraic and defined over R. Since Ω is also in
this case an algebraic differential form, it induces a volume form on
X(R) which is again invariant under any automorphism.
5.3.2. Proposition (Phase of area form). Suppose that f : X → X is

a K3 surface automorphism.
(i) There exists δ(f) such that f ∗Ω = δ(f)Ω and |δ(f)| = 1. Fur-

thermore δ(f) equals the eigenvalue of f ∗ on H2,0.
(ii) If f(p) = p for some p ∈ X, then det(Dfp) = δ(f).
(iii) If X is algebraic then δ(f) is a root of unity.

Proof. Because the holomorphic form Ω is unique up to scaling, its
pullback must be proportional to it. Because the total volume with
respect to Ω ∧ Ω is preserved, the proportionality constant must have
absolute value 1.

For part (ii), note that the determinant of the derivative map at
a fixed point can be computed using the action on a non-degenerate
volume form. So part (i) implies part (ii).

For part (iii), decompose H2(X,Q) = NS(X)Q ⊕T (X)Q where T (X)
is called the transcendental lattice (see §2.4.2) and this decomposition
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is preserved by f ∗. The Hodge decomposition carries over to T (X)C =
H2,0 ⊕ T 1,1 ⊕ H0,2 and if X is algebraic, then the signature of the
metric on T 1,1 is strictly negative-definite. Indeed the signature of
H1,1 is (1, 19) and the only positive direction went into NS(X) by the
algebraicity assumption.

It follows that f ∗ acts as an isometry on T (X) when endowed with the
positive-definite metric associated to the Hodge decomposition. Since
f ∗ also preserves the integral structure it follows that it has finite order
and so its eigenvalues are roots of unity. Since H2,0 is one-dimensional,
is preserved by f ∗, and spanned by Ω, the result follows. □

5.3.3. Salem numbers. The spectral radius of an automorphism of
a complex surface is a special kind of algebraic number. Namely the
real algebraic integer λ > 1 is a Salem number if it is a unit (i.e. λ−1 is
also an algebraic integer) and all Galois conjugates of λ other than λ−1

are on the unit circle in C. Note that λ−1 is also a Galois conjugate of
λ, since the product of all Galois conjugates of a unit must equal 1.

The minimal polynomial S(t) ∈ Z[t] of λ has even degree 2d and
obeys the symmetry S(t) = t2dS(1

t
), because its roots are symmetric

under λ′ 7→ 1
λ′ . It follows that we can write S(t) = tdR(t+ 1

t
) for some

degree d polynomial R(t) ∈ Z[t]. Indeed, in the ring Z[t, 1
t
] we have

an involution ι(t) = 1
t
, and the fixed point ring Z[t, 1

t
]ι has two bases

(as Z-module): one given by ti + 1
ti

and another given by
(
t+ 1

t

)i
(for

i = 0, 1, . . .). Expressing 1
td
S(t) in the second basis gives the desired

polynomial R(y).
The irreducible polynomial S(t) is called a Salem polynomial, and the

associated R(y) is called its associated Salem trace polynomial. Note
that R(y) will have one root outside [−2, 2] corresponding to λ + 1

λ

and all the other roots will be in the interval [−2, 2], corresponding to
expressions of the form λ′ + 1

λ′ with |λ′| = 1.
5.3.4. Proposition (Salem numbers and entropy). If the K3 surface

automorphism f has positive entropy, then its spectral radius ρ(f) is
a Salem number.

Proof. It is clear that the eigenvalues of f ∗ on H2 are algebraic integers,
since it preserves H2(X;Z). Note also that f ∗ preserves the indefinite
inner product coming from cup product on H2.

Next, let λ denote the largest eigenvalue (in absolute value) of f ∗

on H1,1, and vλ the corresponding eigenvector. Then λ−1 is also an
eigenvalue of f ∗ on H1,1, since f ∗ preserves v⊥

λ and acts as multiplication
by λ−1 on H1,1/v⊥

λ since it preserves cup product. Then the matrix
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of the cup products of eigenvectors of λ, λ−1 must be, up to scaling,

equal to
[
0 1
1 0

]
. On its orthogonal complement in H1,1, f ∗ acts as an

isometry for a positive-definite inner product. Similarly, the action on
H2,0 ⊕ H0,2 also preserves a positive-definite inner product, so all the
other eigenvalues of f ∗ have absolute value 1. □

6. Elliptic dynamics on K3s
Outline of section. We now describe two results about automorphisms
K3 surfaces that build, or make use of, quasi-periodic (or elliptic) dy-
namics.

McMullen [McM02] constructed the first (and only, at the moment)
examples of positive-entropy K3 surface automorphisms with invariant
open sets in which the dynamics has zero entropy. In fact, he showed
that there exist examples with domains in which the automorphism is
conjugated to an isometry of a polydisc. This construction is outlined
in §6.1.

Cantat showed that when the full automorphism group of a K3
surface is sufficiently large, its ergodic invariant measures and closed
invariant sets are particularly simple. The proof exploits the dynamics
of translations on tori and is outlined in §6.2.

6.1. Siegel domains on K3s
6.1.1. Setup. Throughout, we will be concerned with an automor-
phism

F : I3,19 → I3,19

of the unique even unimodular lattice of signature (3, 19). Denote by

S(t) := det
(
t1 − F

)
its characteristic polynomial.
6.1.2. Theorem (Torelli for automorphisms). Suppose that S(t) is a

Salem polynomial. Then:
(i) There exists a K3 surface X with an automorphism

f : X → X

and a marking ι : I3,19 → H2(X;Z), such that ι conjugates the
action of F and f ∗.
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(ii) The Néron–Severi group of X is trivial, in particular X is not
projective.

(iii) There exists an F -invariant positive-definite 2-plane P2 ⊂ I3,19(R)
such that, after complexification, F acts with eigenvalues δ, δ.
The phase of the area form δ(f) from Proposition 5.3.2 can be
arranged to equal one of these eigenvalues.

Note that a Salem polynomial is by definition irreducible. The choice
of eigenvalue δ or δ above corresponds to the choice of either X or its
complex conjugate X.

Proof. It follows from the assumptions that F has two eigenvalues λ, λ−1

with λ a Salem number, and the corresponding eigenvectors vλ, vλ−1 are
isotropic. It follows that we have an F -invariant decomposition

I3,19(R) = Rvλ ⊕ Rvλ−1 ⊕ P2 ⊕ P18

where the inner product is positive-definite on P2 and negative-definite
on P18. After complexification, F will decompose P2(C) into two
eigenspaces P2(C)δ, P2(C)δ with eigenvalues δ, δ. By the surjectivity
of the period map Theorem 4.3.1, there exists a K3 surface X and a
marking ι : I3,19 → H2(X;Z) such that ι (P2(C)δ) = H2,0.

The Néron–Severi group of X is trivial, since its pullback to I3,19
under ι would have to be F -invariant and this contradicts the irre-
ducibility of S(t), the characteristic polynomial of F . To see that the
pullback of the Néron–Severi group of X is F -invariant, note that it
can be constructed as ι−1 NS(X) = P⊥

2 ∩ I3,19, and both P2 and the
lattice are F -invariant. It follows in particular that the Kähler cone of
X is one component of the vectors in H1,1 which have positive square.

Note that F preserves the pullback of the Kähler cone since by
assumption Salem numbers are greater than 1, hence positive. It follows
from the Torelli Theorem 4.3.3 that there exists an automorphism f of
X, such that the action of f ∗ on H2(X) is conjugated by ι to that of
F on I3,19. □

From now on, S(t) is always assumed to be a Salem polynomial of
degree 22.

6.1.3. Sufficient conditions for a Siegel domain. We now describe
two essential assumptions on the automorphism F . We then explain
in §6.1.8 why the assumptions guarantee that the K3 automorphism
provided by Theorem 6.1.2 has a Siegel domain. We then explain in
§6.1.9 how to construct an F obeying the assumptions.
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The first assumption is that

tr
(
F
)

= −1 on I3,19.(6.1.4)

For the second assumption, let δ = δ(f) be the phase provided by
Theorem 6.1.2. Then the algebraic numbers α, β defined byα · β = δ satisfy |α| = |β| = 1

α + β = 1+δ+δ2

1+δ and are multiplicatively independent.
(6.1.5)

The assumption that α, β are multiplicatively independent means that
if αiβj = 1, for some i, j ∈ Z, then necessarily i = j = 0.

6.1.6. Lefschetz number calculations. Assume that F has been
constructed to satisfy the above two assumptions, which translate di-
rectly to the same properties of f ∗ acting on H2(X). The Lefschetz
number of f (see [GH78, p. 421]) satisfies

L(f) := tr
(
f ∗, H0 ⊕H2 ⊕H4

)
= 1 − 1 + 1 = 1

and therefore f has exactly one fixed point p ∈ X. Indeed all isolated
fixed points of a holomorphic map have positive index, and f has only
isolated fixed points since a positive-dimensional fixed-point set would
give a non-trivial element of the Néron–Severi group.

The holomorphic Lefschetz number of f (see [GH78, p. 424]) satisfies

L(f,O) := tr
(
f ∗, H0,0 ⊕H0,2

)
= 1 + δ

but can also be expressed in terms of the derivative at the unique fixed
point:

L(f,O) = 1
det (1 −Dfp)

Let α, β denote the eigenvalues of Dfp on T 1,0
p X. Then α·β = δ because

f ∗Ω = δ · Ω, and combining the two expressions for the holomorphic
Lefschetz number gives

1
(1 − α)(1 − β) = 1 + δ =⇒ α + β = 1 + δ + δ2

1 + δ

using in the course of calculations that δ = 1
δ
.
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6.1.7. Diophantine condition. Recall that p was the fixed point of f
and the eigenvalues of Dfp are α, β. By the assumption in Eqn. (6.1.5)
α, β are multiplicatively independent and by construction they are alge-
braic numbers. In fact, they satisfy the stronger Diophantine condition

|αk1βk2 − 1| ≥ 1
C max(k1, k2)M

for some C,M > 0

and any ki not both equal to zero. Indeed, these estimates follow from
results of Fel’dman [Fel68, Thm. 1], themselves based on the Gel’fond–
Baker method (see [BW07] for an introduction). Note that Fel’dman
shows an estimate of the form

|k0 logα0 + · · · + kn logαn| ≥ exp
(

− C +M log (max |ki|)
)

where αi are multiplicatively independent algebraic numbers, logαi
are some fixed choices of their logarithms, and C,M depend on the
previous choices. The ki are arbitrary integers, not all zero. Note that
2π

√
−1 ∈ log(1) is a possible choice of the logarithm of 1. To recover

the desired Diophantine inequality, fix a choice of logα, log β and note
that

|αk1βk2 −1| ≥ 1
10 inf

k0

∣∣∣∣k1 logα+k2 log β+k02π
√

−1
∣∣∣∣ ≥ 1

C ′ max (k1, k2)M

which is what we wanted

6.1.8. Existence of Siegel domain. The assumptions of Sternberg’s
linearization theorem [Ste61, §5] are exactly the kind of Diophantine
condition obtained in §6.1.7. As they are satisfied, it follows that
there exists an f -invariant open neighborhood Up of p in X, and a
biholomorphism to a polydisc h : Up → ∆2 ⊂ C2, such that h conjugates

the action of f on Up to that of
[
α 0
0 β

]
on ∆2.

Note that Sternberg’s theorem is an extension to higher dimensions
of Siegel’s linearization theorem in one complex variable and the proofs
follows a similar method.

6.1.9. Constructing a lattice automorphism. It remains to con-
struct an automorphism F : I3,19 → I3,19 satisfying the requirements in
§6.1.3. Given a Salem polynomial S(t), the multiplication by t action
on Z[t]/S(t) =: OS has characteristic polynomial S(t) by construction.
Therefore, we must exhibit a degree 22 Salem polynomial S(t) and
endow OS with an inner product making it an even, unimodular lattice,
with further requirements.
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Note that the condition in Eqn. (6.1.4) can be checked at the level
of the polynomial S(t). Indeed, writing S(t) = ∑22

i=0 ait
i it follows that

tr(F ) = −a21 = −a1 using the symmetry of the coefficients.
On the other hand, the condition in Eqn. (6.1.5) also depends on

the choice of inner product on OS. We omit a direct construction and
refer to McMullen’s detailed presentation in [McM02], particularly §8-9.
To end, let us note that an explicit Salem polynomial for which the
construction can be performed is:

(6.1.10) S(t) = 1 + t− t3 − 2t4 − 3t5 − 3t6 − 2t7 + 2t9 + 4t10

+ 5t11

+ 4t12 + 2t13 − 2t15 − 3t16 − 3t17 − 2t18 − t19 + t21 + t22

6.2. Twists along elliptic fibrations
We present some results of Cantat [Can01b] that originated in earlier
work of Wang [Wan95]. Suppose that the automorphism group of a K3
surface contains two independent “twist” automorphisms (see §6.2.2).
Then Theorem 6.2.4 describes the topological and measure-theoretic
dynamics of the full automorphism group of the K3 surface.

The idea of understanding a group action through its unipotent
elements is a classical one in homogeneous dynamics and has been used
in the non-homogeneous setting as well, e.g. by Goldman [Gol97].

6.2.1. Setup. Throughout X is a K3 surface and X π−→ P1 denotes an
elliptic fibration. Namely all but finitely many of the fibers are smooth
connected genus 1 curves. Two elliptic fibrations will be viewed as
different if the homology classes of their fibers have non-trivial intersec-
tion.
6.2.2. Twist automorphisms. A twist automorphism associated to
an elliptic fibration X

π−→ P1 is a map T : X → X that preserves the
fibers of π (i.e. commutes with π) and that is of infinite order.

Alternatively, one can define a twist automorphism to be one that
induces a parabolic map on H1,1, see §5.1.4.
6.2.3. Jacobians of elliptically fibered K3s. We review a useful
construction for K3 surfaces. Starting from an elliptic fibration X π−→ P1,
there exists by [Huy16, 11.4.5] an associated elliptic fibration J(X) πJ−→
P1 where J(X) is also, remarkably, a K3 surface with the following
properties. For any p ∈ P1 the fibers π−1(p) and π−1

J (p) are isomorphic
and additionally, there exists a section σ : P1 → J(X). Note that J(X)
has a modular interpretation.
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6.2.4. Theorem (Cantat). Suppose that X has two distinct elliptic
fibrations, with each fibration admitting a non-trivial twist automor-
phism. Then:

(i) The Lebesgue measure on X is Aut(X)-ergodic.
(ii) For any point x ∈ X, its orbit closure Aut(X)x is either finite,

or a real 2-dimensional submanifold, or all of X.
(iii) Any ergodic Aut(X)-invariant probability measure on X is ei-

ther supported on finitely many points, or Lebesgue on a totally
real surface4, or Lebesgue on X.

The proof of the theorem is based on two elementary facts. The
first one holds for general translations on compact abelian groups, and
the second will show that the translations along fibers of an elliptic
fibration are “truly varying”.
6.2.5. Exercise (Dynamics on compact abelian groups). Suppose that
T is a compact abelian group and fα : T → T is translation by α ∈ T.
Let Tα ⊂ T be the smallest compact abelian group that contains α.
Then

(i) Any orbit closure fZ
α t is a translate of Tα.

(ii) Any ergodic fα-invariant probability measure on T is the trans-
lation of Haar measure on Tα.

6.2.6. Local structure of twists. Suppose that T : X → X is a twist
automorphism along an elliptic fibration X π−→ P1. All but finitely many
fibers of π are elliptic curves and hence isomorphic to R2/Z2 in a way
that preserves the group structure. Furthermore, on small enough open
sets U ⊂ P1 not containing the singular points, the fibration can be
trivialized as U × R2/Z2 → U .

Since T is holomorphic, it preserves the group structure on the elliptic
curve fibers of π. Therefore, in the constructed trivialization, there
exists α : U → R2/Z2 such that the action of T is as (p, t) 7→ (p, t+α(p)).
Note that α is a real-analytic function by construction.
6.2.7. Proposition (Twists are not isotrivial). With notation as above,

the map α : U → R2/Z2 is an open map.

Proof. Consider the construction of α. First pick a local section of the
fibration, i.e. a holomorphic map s : U → π−1(U) such that π◦s(p) = p.
This determines some trivialization π−1(U) ψ−→ U × R2/Z2 satisfying

4Recall that a totally real surface S ⊂ X is such that at every s ∈ S, we have
TsX = TsS ⊕

√
−1TsS (where we are considering tangent spaces of real manifolds

and
√

−1 is the complex structure on X).
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the condition ψ(s(p)) = (p, 0) and compatible with the group structure.
Next apply the automorphism and use the trivialization to find that

(p, α(p)) = ψ
(
T (s(p))

)
and since non-trivial holomorphic maps are open, as are homeomor-
phisms and fibration maps, it follows that α is open, provided it is not
constant.

To check that α is indeed not constant, one can appeal to the ar-
gument in [Can01b], last paragraph of Proof of Prop. 2.2. We sketch
the argument, with a slight twist. Assume by contradiction that α is
constant for some open set U ⊂ P1. Then by analyticity, it is constant
on any other such open set on which it is defined. Taking the associated
Jacobian K3 J(X) (see §6.2.3), we see that the twist automorphism
determines another section σα : P1 → J(X) besides the zero section
of the Jacobian fibration. The class [σα(P1)] ∈ H2 (J(X)) intersects
non-trivially the classes of the fibers.

The twist automorphism T of X extends to a twist automorphism
TJ of J(X). It follows from a cohomological calculation that

[σα(P1)].
(
T nJ [σα(P1)]

)
grows quadratically in n.

Like in [Can01b, p. 207] one checks that the contribution to the in-
tersection at the singular fibers is uniformly bounded. It follows that
for n large enough σα and T nJ ◦ σα intersect at one point away from
the singular fibers. By local constancy of α it follows that the sections
agree. Therefore α is a torsion point for all elliptic curve fibers in the
fibration, so TJ (and thus T ) is of finite order. This is a contradiction
to T being a twist. □

We can now sketch the arguments for the main result.

Proof of Theorem 6.2.4. We only illustrate the ideas by establishing (i).
Subsequent parts are based on similar arguments but require a more
in-depth analysis of the possibilities.

Suppose that A ⊂ X is an Aut(X)-invariant subset of positive
Lebesgue measure. Let T1, T2 be twists along distinct elliptic fibra-
tions π1, π2. It suffices to check that for each of the πi and Lebesgue-a.e.
p ∈ P1, the set A ∩ π−1

i (p) has either full, or null Lebesgue measure in
π−1
i (p).
Assuming this claim, note that by Fubini we can choose a set S1 of

positive Lebesgue measure in P1 such that π−1
1 (s) ∩ A full Lebesgue

measure in π−1
1 (s), ∀s ∈ S1 (by first arranging that it has positive

Lebesgue measure). Therefore A contains π−1
1 (S1), up to Lebesgue null
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sets. All but finitely many fibers of π2 intersect all elliptic curve fibers
of π1, therefore Lebesgue a.e. fiber of π2 intersects A in a set of positive
Lebesgue measure. Hence Lebesgue a.e. fiber of π2 intersects A in a set
of full Lebesgue measure, showing that A has full Lebesgue measure.

It remains to establish the initial claim. It is local on the base P1,
hence we can assume that the twist dynamics has been trivialized as
in §6.2.6. We showed that the map α is open, hence outside countably
many points and real-analytic curves on the base, the twist map is
ergodic for Lebesgue measure on the fibers. Since A is Aut(X)-invariant,
hence twist-invariant, the claim follows. □

7. Hyperbolic dynamics on K3s
Outline of section. We specialize now to a single automorphism
f : X → X which is furthermore of positive entropy, or equivalently it
acts as a hyperbolic matrix on H1,1(X), see §5.1.4.

The basic facts about such maps, due to Cantat [Can01a], are de-
scribed in §7.1. This involves the construction of currents that are
expanded/contracted by the dynamics and the associated measure of
maximal entropy. If the measure of maximal entropy is in the same
class as Lebesgue measure, then Cantat–Dupont [CD20b] showed that
the automorphism must necessarily be a Kummer example (see §5.1.2).
A different proof of this result, from [FT19] using Ricci-flat metrics, is
described in §7.2.

7.1. Currents
Recall that in §5.1.4, hyperbolic automorphisms were defined to be
those which admit an eigenvalue λ in cohomology with |λ| > 1. The
basic results concerning such automorphisms are contained in the fol-
lowing theorem. This section provides the necessary background and
sketches a partial proof.
7.1.1. Theorem (Cantat [Can01a]). Suppose that f : X → X is a

positive entropy automorphism of a K3 surface. Let v± ∈ H1,1(X) be
non-zero cohomology classes with f∗v± = λ±1v±, where λ > 1.

(i) There exist unique closed currents η±, with [η±] = v±, satisfying
f∗η± = λ±1η±

and with locally L1 potentials.
(ii) There exist unique closed positive currents in the cohomology

classes v±, and they agree with η± from (i).
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(iii) The currents η± have locally Hölder potentials and satisfy η2
+ =

0 = η2
−; in cohomology we have v2

+ = 0 = v2
−.

(iv) The measure µ := η+ ∧ η−, when normalized to be a probabil-
ity measure, is the unique measure of maximal entropy. It is
mixing, hence ergodic.

7.1.2. Remark.
(i) The eigenvalue λ of f∗ on cohomology is also equal to its

spectral radius. Indeed, any element of the orthogonal group
O1,n(R) has at most one eigenvalue λ with |λ| > 1, and the
eigenvector v in this case is necessarily a null vector for the
indefinite quadratic form. Then the action of f∗ preserves the
line spanned by v, and also its orthogonal complement v⊥, and
acts as an isometry on v⊥/v, which is equipped with a natural
positive-definite quadratic form. Note also that λ−1 has to be
an eigenvalue as well, by looking for instance at determinants.
It follows from Theorem 5.2.3 that the topological entropy of
f is log λ.

(ii) It is more delicate to show that the measure µ := η+ ∧ η−
has maximal entropy, i.e. log λ, and that it is unique with
this property, see [Can01a, Thm. 6.2]. One needs some fur-
ther tools from Pesin theory, in particular the existence of sta-
ble/unstable manifolds, and the Ledrappier–Young relations
between entropy and conditional measures. See also the classi-
cal work of Bedford–Lyubich–Smillie [BLS93] where these kinds
of arguments were introduced in holomorphic dynamics.

(iii) The currents provided by Theorem 7.1.1 are in general of rather
weak regularity, for instance they are not smooth. In fact, the
measures obtained by restricting the currents to 1-dimensional
complex curves must have fractional Hausdorff dimension, un-
less X is a Kummer example as in §2.2.6. For more on this,
see [FT18], which is based on Theorem 7.2.2 below.

7.1.3. Basic facts about positive currents. Recall that currents are
defined as continuous linear functionals on the space of all smooth forms
on X. For a current η the differential dη is defined using integration by
parts. Its action on smooth forms is according to ⟨dη, ϕ⟩ := − ⟨η, dϕ⟩.

We will be interested5in (1, 1)-currents, i.e. functionals on the space
of smooth (1, 1)-forms. Such a current is positive if for any smooth

5For convenience, we work in complex dimension 2. There are multiple notions
of positivity in higher dimensions, see §7.1.9.
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(1, 0)-form α we have 〈
η,

√
−1α ∧ α

〉
≥ 0

7.1.4. Exercise (Measure coefficients). Suppose that η is a positive
(1, 1)-current on a complex surface. Write it in local coordinates as

η =
√

−1
∑

ηi,jdz
idzj

where ηi,j are generalized functions.
Show that ηi,j are in fact locally finite measures. Hint: A linear

functional which is positive on positive functions is given by a measure.
7.1.5. The mass of a current. Suppose that ω is a Kähler metric
on X and η is a positive current. Then its mass relative to ω is defined
to be

´
ω ∧ η, which is a positive number by the positivity of ω. This

is analogous to the mass of a measure.
Recall that the space of positive measures of total mass bounded by

a constant is weakly compact. This implies that the space of positive
currents of mass relative to ω bounded by a constant is also weakly
compact.
7.1.6. Cohomology and currents. One can compute the cohomol-
ogy of a compact manifold X using its De Rham complex of smooth dif-
ferential forms. An analogous discussion holds when replacing smooth
forms by currents, and the cohomology groups are canonically identified.

Furthermore, in the case when X is a Kähler manifold, the decom-
position into (p, q)-components in cohomology is compatible with the
same decomposition for smooth forms, or for currents.
7.1.7. Bedford–Taylor theory. While in general it is not possible to
define the product of two currents, in complex analysis this is sometimes
possible. Recall that a local potential of a (1, 1)-current η is a function
ϕ ∈ L1

loc defined in some chart such that η =
√

−1∂∂ϕ in the sense of
distributions.

Bedford–Taylor theory (see [BT76] for a starting point) defines a
product of currents with continuous potentials locally, as follows. If in
a chart ηi =

√
−1∂∂ϕi then set

η1 ∧ η2 =
√

−1∂∂(ϕη2)
where ϕη2 is well-defined since ϕ is continuous and the coefficients of η2
are measures. Since the symmetry is broken in the definition, one must
check that η1 ∧ η2 = η2 ∧ η1 and that η1 ∧ η2 ≥ 0 if ηi ≥ 0 for i = 1, 2.

This discussion gives meaning to the expressions η2
+ = 0 = η2

− and
µ = η+ ∧ η− in Theorem 7.1.1, provided we establish continuity of
potentials. Note that the measure µ is singular with respect to the
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invariant Lebesgue measure Ω ∧ Ω, unless (X, f) is a Kummer example
(see §7.2).

Proof of Theorem 7.1.1. We only treat the first three parts of the the-
orem. The arguments below apply equally well to f−1, so we treat only
the case of v+ and η+.

For part (i), note that the operator 1
λ
f∗ acts on the space of closed

currents in the cohomology class v+, which have locally L1 potentials.
Define a distance on this space by

dist(η, η′) :=
ˆ
X

|ϕ| dVol

where η = η′ +
√

−1∂∂ϕ normalized as
ˆ
X

ϕ dVol = 0.
(7.1.8)

The space is complete for this distance, and 1
λ
f∗ acts as a uniform

contraction. Therefore, there exists a unique fixed point.
Part (ii) follows analogously, but now considering the action of 1

λ
f∗

on the space of closed positive currents. Closed positive currents have
locally L1 potentials by [H0̈7, Cor. 3.2.8], so it is a subspace of the
space considered in (i). The subspace is compact for the same distance
function, and since 1

λ
f∗ acts as a uniformly contracting bijection, the

space is either a single point or empty (since its diameter must vanish).
The space is nonempty, since for example it contains a weak limit of
the sequence

ηn := c+

n

n∑
i=0

1
λi

(f∗)iω

where ω is a Kähler metric on X. Here c+ is a nonzero constant of
proportionality depending only on [ω] · v+. It follows that there is a
unique closed positive current η+, and it must coincide with the current
constructed in (i).

To establish (iii), it suffices to prove the existence of locally Höl-
der potentials. The fact that v2

+ = 0 follows since f∗ preserves the
intersection pairing in cohomology, and scales v+ by λ. Similarly, η2

+ = 0
since η2

+ ≥ 0 as a current, and [η+]2 = v2
+ = 0.

Finally, consider the action of 1
λ
f∗ on the space of currents in v+ with

Hölder potentials of exponent α. Equip it with the distance

dist(η, η′) = ∥ϕ∥C0 + ∥ϕ∥Cα

with the same assumptions as in Eqn. (7.1.8). Let now L be a Lipschitz
constant for f−1, for example take L := ∥Df−1∥C0(X), using the same
background metric as for the definition of the Hölder distance. We have
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that

dist
(1
λ
f∗η,

1
λ
f∗η

′
)

= 1
λ

∥ϕ∥C0 + 1
λ

sup
x,y∈X

|f∗ϕ(x) − f∗ϕ(y)|
|x− y|α

= 1
λ

∥ϕ∥C0 + 1
λ

sup
x,y∈X

|ϕ(f−1x) − ϕ(f−1y)|
|x− y|α

≤ 1
λ

∥ϕ∥C0 + 1
λ
Lα ∥ϕ∥Cα

≤
(
Lα

λ

)
dist(η, η′)

Taking α sufficiently close to 0 that Lα

λ
< 1, it follows that the map

acts as a strict contraction and has a unique fixed point. It agrees with
the fixed point constructed in the previous parts (i) and (ii). □

7.1.9. Aside: Further notions of positivity. A detailed treatment
of the following ideas is provided by Demailly in [Dem12, III.1]. For
simplicity, we consider an n-dimensional complex vector space V – the
corresponding notions on a complex manifold are defined by considering
tangent spaces at every point. Positive throughout is understood as
non-negative, i.e. greater than or equal to zero.

First, observe that any complex vector space V has a canonical
orientation when viewed as a real vector space: if dz1, . . . , dzn is a basis
of the complex dual V ∨, then the orientation is given by(√

−1dz1 ∧ dz1
)
∧· · ·∧

(√
−1dzn ∧ dzn

)
= 2n (dx1 ∧ dy1)∧· · ·∧(dxn ∧ dyn)

Call a positive volume form any (n, n)-form which is a positive real
scalar multiple of this fixed volume. Note here that there is another
possible choice given by dx1 · · · dxn ∧ dy1 · · · dyn – this ambiguity is
ultimately responsible for rather involved signs in calculations.

Define a (p, p)-form to be strongly positive if it is a positive linear
combination of expressions:(√

−1α1 ∧ α1
)

∧ · · · ∧
(√

−1αp ∧ αp
)

for αi ∈ V ∨.

Above, αi are the same as (1, 0)-forms.
Define a (p, p)-form γ to be positive if for any strongly positive (n−

p, n− p)-form β we have that γ ∧ β is a positive volume form.
Here are some useful properties:

• Strongly positive forms are positive.
• The convex cones of positive (p, p)-forms and strongly positive

(n− p, n− p)-forms are dual to each other. Furthermore, both
cones have interior in the corresponding real vector spaces.
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• The wedge product of strongly positive forms is strongly posi-
tive. This can fail for positive forms.

• The two notions of positivity agree for p = 0, 1, n − 1, n. In
other cases, there exist positive forms which are not strongly
positive.

7.1.10. Example (Positive, but not strongly positive forms). Take
a (p, 0)-form β, then γ :=

(√
−1
)p2

β ∧ β is positive. However, it is
strongly positive if and only if β is decomposable, i.e. if and only if
there exist (1, 0)-forms αi such that β = α1 ∧ · · · ∧ αp. On C4, one can
then take β = dz1 ∧ dz2 + dz3 ∧ dz4, which is not decomposable (since
β2 ̸= 0) and obtain a positive, but not strongly positive form.

7.2. Rigidity of Kummer examples
7.2.1. Setup. On a K3 surface X equipped with a hyperbolic auto-
morphism f , there are two natural f -invariant probability measures:
dVol coming from the holomorphic symplectic form, and the measure of
maximal entropy µ. It is immediate to check that if (X, f) is a Kummer
example, then µ = dVol; this holds even with the general definition
introduced in §5.1.2. It turns out that the converse is also true, as was
established by Cantat & Dupont [CD20b].
7.2.2. Theorem (Rigidity of Kummer examples). If the measure of

maximal entropy µ is in the Lebesgue measure class, then (X, f) is a
Kummer example.
The assumption only says that µ is proportional to dVol on a set of

positive Lebesgue measure. After some preliminaries, we sketch below
a proof from [FT19], using the Ricci-flat metrics on K3 surfaces. For
simplicity, we will make the stronger assumption µ = dVol.

7.2.3. Lyapunov exponents. For a more detailed treatment of the
next topic, see Ledrappier’s lecture notes [Led84] or [Fil19a]. Suppose
that (X, g) is a compact Riemannian manifold and f : X → X is
a diffeomorphism. For a point x ∈ X, we expect ∥Dxf

n∥ to grow
exponentially in n, being the product (by the chain rule) of n matrices
of bounded size. If this is the case, denote by

σ1(x) := lim
n→+∞

1
n

log ∥Dxf
n∥

and call it the top Lyapunov exponent of f at x.
Let now m be an ergodic f -invariant probability measure. Then

the Oseledets theorem guarantees that σ1(x) is well-defined for m-a.e.
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x ∈ X and equals the same value denoted σ1(m). Furthermore, define

In :=
ˆ
X

log ∥Dxf
n∥ dm(x)(7.2.4)

and observe that this sequence is subadditive:

Ik+l =
ˆ
X

log
∥∥∥Dxf

k+l
∥∥∥ dm(x) ≤

≤
ˆ
X

(
log

∥∥∥Dxf
k
∥∥∥+ log

∥∥∥Dfkxf
l
∥∥∥ )dm(x) =

= Ik +
ˆ
X

log
∥∥∥Dxf

l
∥∥∥ d(fk∗m)(x) =

= Ik + Il

where we have used the inequality for matrix norms ∥AB∥ ≤ ∥A∥ ∥B∥
after taking logarithms. In follows by Fekete’s lemma that lim 1

n
In

exists and equals infn 1
n
In, and the Oseledets theorem guarantees that

σ1(m) = lim
n→+∞

1
n
In = inf

n→+∞

1
n
In

When X is n-dimensional, one can define analogously n Lyapunov
exponents σ1 ≥ · · · ≥ σn using the exterior power derivative matrices
Λk(Df) – their growth rate will be σ1 + · · · + σk.

7.2.5. Ledrappier–Young formula. For an arbitrary ergodic mea-
sure m, the Ledrappier–Young formula [LY85a] relates its measure-
theoretic entropy h(m), its Lyapunov exponents σi(m), and the Haus-
dorff dimension of conditional measures of m along appropriate folia-
tions. The general shape of the formula is

h(m) =
∑

σi(m)>0
σi(m) · dimi(m)(7.2.6)

where the sum is over the positive Lyapunov exponents, now listed
without multiplicities. The quantities dimi(m) are determined from
Hausdorff dimensions as follows. There exists a (measurable) fam-
ily of invariant unstable manifolds W≥σi , expanded by the forward
dynamics, and the manifolds are nested, namely W≥σi ⊆ W≥σi+1 if
σi > σi+1. There exist conditional measures supported on the leaves of
W≥σi and their Hausdorff dimension is given by dim1 + · · · + dimi(m)
where dimi(m) is the quantify from Eqn. (7.2.6). Furthermore, it is
proved in [LY85b] that 0 ≤ dimi(m) ≤ mult(σi) where mult(σi) denotes
the multiplicity of the Lyapunov exponent σi.
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7.2.7. Volume-preserving case. For the case of interest to us, namely
when X is a K3 surface, there is one non-negative Lyapunov exponent
which has multiplicity 2. The multiplicity is 2 because X is a complex
manifold, so the derivative cocycle commutes with multiplication by
the complex structure, and there is only one non-negative exponent
because the derivative cocycle preserves the volume measure, so the
sum of all exponents (for any measure) has to vanish. When m = dVol,
we have dimi(m) = 2 and in fact Ledrappier–Young [LY85a] prove that
this last property is equivalent to m being in the Lebesgue class. Fi-
nally, by Gromov–Yomdin Theorem 5.2.3 we know the entropy satisfies
h(µ) = log λ, where λ is the spectral radius of f ∗ on cohomology. We
conclude, under the assumption µ = dVol, that

σ = h

2 = log λ
2

which will be essential to the argument.
Combining this last equality with the characterization of σ as the

infimum of the In (see §7.2.3 for notation) it follows thatˆ
X

log
∥∥∥Dxf

N
∥∥∥ dµ(x) =: IN ≥ N

h

2(7.2.8)

7.3. Proof of Kummer rigidity
We can now proceed to the proof of Theorem 7.2.2. We make the
stronger assumption that µ = dVol; removing it requires a lot more
work, see [FT19, §5].

Let [η±] be the cohomology classes expanded/contracted by the au-
tomorphism. We make the additional assumption that the cohomology
class [η+] + [η−] contains a Kähler metric (see Remark 7.3.2 for how
to address the general situation). By applying the automorphism f , it
is clear that the cohomology class et[η+] + e−t[η−] contains a Kähler
metric for all t ∈ R, so let ωt denote the Ricci-flat metric in that class.
We normalize the cohomology classes such that [η+]2 = 0 = [η−]2 and
[η+][η−] = 1, so that [ωt]2 = 2.

Recall that h = log λ is the topological entropy of f . Then note that
f∗[ωt] = [ωt+h] by definitions, and in fact

f∗ωt = ωt+h

since the Ricci-flat metrics are unique in their cohomology class.
To a point x ∈ X we can associate the following quantity, which is

the local expansion factor of ω0 relative to ωt. Namely, there exists
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σ(x, t) ≥ 0 such that in an orthonormal basis at x we have:
ω0(x) = |dz1|2 + |dz2|2

ωt(x) = |eσ(x,t)dz1|2 + |e−σ(x,t)dz2|2
(7.3.1)

With this notation, and using ω0 as our background metric, it follows
that log

∥∥∥Dxf
N
∥∥∥ = σ(x,Nh). Furthermore

ω0 ∧ ωNh =
(
e2σ(x,Nh) + e−2σ(x,Nh)

)
dVol

and we can compute the integral in cohomology:
´
ω0 ∧ ωNh = eNh +

e−Nh. We can now put together the information and apply Jensen’s
inequality:

log
(
eNh + e−Nh

)
= log

(ˆ
X

ω0 ∧ ωNh

)

≥
ˆ
X

log
(
ω0 ∧ ωNh

dVol

)
dVol

=
ˆ
X

log
(
e2σ(x,N) + e−2σ(x,N)

)
dVol

So far we have not used the assumption µ = dVol, but now we can do
so in the form of the inequality Eqn. (7.2.8) that bounds from below
IN =

´
σ(x,Nh) dVol by N h

2 . Combined with the fact that log(ex+e−x)
is convex and increasing for x ≥ 0, and using Jensen again gives:ˆ

X

log
(
e2σ(x,Nh) + e−2σ(x,Nh)

)
dVol ≥ log

(
e2IN + e−2IN

)
≥ log

(
eNh + e−Nh

)
We conclude that we must have had equality throughout all the inequal-
ities, and furthermore σ(x,Nh) = Nh

2 independently of x or N .
Returning to the pointwise description of ω0 and ωNh from Eqn. (7.3.1),

one sees that f is uniformly expanding and moreover preserves two holo-
morphic foliations given by the most expanded/contracted direction of
f . From here one concludes that (X, f) is a Kummer example, using
results of Cantat [Can01a, Thm. 7.4]. Alternatively, one can now verify
that the Ricci-flat metrics are flat, see [FT19, §3.2], and deduce that
we have a Kummer example. □

7.3.2. Remark. A smooth K3 surface does not admit an everywhere
defined holomorphic foliation, or a flat metric. In the proof above,
one has to work with singular versions of the K3 surface to carry
out the argument in the general case. Namely, there is an orbifold
quotient X ν−→ Y , and orbifold-Kähler metrics ωY on Y , such that
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the cohomology class [η+] + [η−] is represented by ν∗[ωY ]. One can
furthermore arrange the orbifold-Kähler metrics to be Ricci-flat and
carry out the proof on Y instead of X. Similarly, the holomorphic
foliations used to recognize the Kummer examples are built first on the
orbifold Y .

On the other hand, the argument as presented already implies that
for a generic (2, 2, 2)-example as in §5.1.1, the measure of maximal
entropy µ cannot equal dVol. Indeed, for a hyperbolic automorphism
of a generic (2, 2, 2) example, the class [η+] + [η−] will be Kähler, even
ample. If we had µ = dVol, then the above argument would yield
everywhere-defined foliations on X, which is impossible.
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