Gamma Swap

Roger Lee University of Chicago

December 29, 2008

A gamma swap on an underlying Y is a weighted variance swap on $\log Y$, with weight function

$$w(y) := y/Y_0. \tag{1}$$

In practice, the gamma swap monitors Y discretely, typically daily, for some number of periods N, annualizes by a factor such as 252/N, and multiplies by notional, for a total payoff

Notional × Annualization ×
$$\sum_{n=1}^{N} \frac{Y_n}{Y_0} \left(\log \frac{Y_n}{Y_{n-1}} \right)^2$$
. (2)

If the contract makes dividend adjustments (as typical for single-stock gamma swaps but not index gamma swaps), then the term inside the parentheses becomes $\log((Y_n + D_n)/Y_{n-1})$, where D_n denotes the dividend payment, if any, of the *n*th period.

Gamma swaps allow investors to acquire variance exposures proportional to the underlying level. One application is dispersion trading of a basket's volatility against its components' single-name volatilities; as a component's value increases, so does its proportion of the total basket value, and hence so does the desired volatility exposure of the single-name contract; this variable exposure to volatility is provided by gamma swaps, according to point 1 below. A second application is to trade the volatility skew; for example, to express a view that the skew slopes too steeply downward, the investor can go long a gamma swap and short a variance swap, to create a weighting y/Y_0-1 , which is short downside variance and long upside variance. A third application is to trade single-stock variance without the caps often embedded in variance swaps to protect the seller from crash risk; in a gamma swap, the weighting inherently dampens the downside variance, so caps are typically regarded as unnecessary.

Model-free replication and valuation

The continuously-monitored gamma swap admits model-free replication by a static position in options and dynamic trading of shares, under conditions specified in the *weighted variance swap* article, which include all positive continuous semimartingale share prices Y under deterministic interest rates and proportional dividends.

Explicitly, one replicates by using that article's (7), with payoff function

$$\lambda(y) = \frac{2}{Y_0} \Big[y \log(y/\kappa) - y + \kappa \Big] = \int_0^\infty \frac{2}{Y_0 K} \operatorname{Van}(y, K) \mathrm{d}K, \tag{3}$$

where $\operatorname{Van}(y, K) := (K - y)^+ \mathbb{I}_{K < \kappa} + (y - K)^+ \mathbb{I}_{K > \kappa}$ for an arbitrary put/call separator κ . Forms of this payoff were derived in, for instance, [2] and [3].

Therefore, in the case that the interest rate equals the dividend yield (otherwise, see the weighted variance swap article), a replicating portfolio statically holds $2/(Y_0K)dK$ out-of-the-money vanilla calls or puts at each strike K. The gamma swap model-independently has the same initial value as this portfolio of Europeans. Additionally, the replication strategy trades shares dynamically according to a "zero-vol" delta-hedge, meaning that its share holding equals the negative of what would be the European portfolio's delta under zero volatility.

Further properties

Points 2-5 follow from (3). Point 1 uses only the definition (1).

1. For an index $Y_t := \sum_{j=1}^J \theta_j Y_{j,t}$, let $\alpha_{j,t} := \theta_j Y_{j,t}/Y_t$ be the fraction of total index value due to the quantity θ_j of the *j*th component $Y_{j,t}$. Define the cumulative dispersion D_t by

$$\mathrm{d}D_t = \sum_{j=1}^J \alpha_{j,t} \mathrm{d}[\log Y_j]_t - \mathrm{d}[\log Y]_t.$$

Then going long $\alpha_{j,0}$ gamma swaps (non-dividend-adjusted) on each Y_j and short a gamma swap on Y creates the payoff

$$\sum_{j=1}^{J} \alpha_{j,0} \int_{0}^{T} \frac{Y_{j,t}}{Y_{j,0}} d[\log Y_{j}]_{t} - \int_{0}^{T} \frac{Y_{t}}{Y_{0}} d[\log Y]_{t} = \int_{0}^{T} \frac{Y_{t}}{Y_{0}} dD_{t},$$

as noted in [2]. Hence a static combination of gamma swaps produces cumulative indexweighted dispersion.

- 2. By Corollary 2.7 in [1], if the implied volatility smile is symmetric in log-moneyness, and the dividend yield equals the interest rate $(q_t = r_t)$, and there are no discrete dividends, then a gamma swap has the same value as a variance swap.
- 3. Assuming that $Y_T = Y_t R_{t,T}$ for all t, where the time-t conditional distribution of each $R_{t,T}$ does not depend on Y_t , the gamma swap has time-t gamma equal to a discounting/dividend-dependent factor times the risk-neutral expectation

$$\frac{2}{Y_0} \mathbb{E}_t \left(\frac{\partial^2}{\partial y^2} \bigg|_{y=Y_t} y R_{t,T} \log(y R_{t,T}) \right) = \frac{2 \mathbb{E}_t R_{t,T}}{Y_0 Y_t}.$$

Therefore its *share gamma*, defined to be Y_t times the gamma, does not depend on Y_t . This property motivates the term *gamma swap*.

- 4. Within the family of weight functions proportional to w(y) = yⁿ, the gamma swap takes n = 1. In that sense, the gamma swap is intermediate between the usual logarithmic variance swap (which takes n = 0) and an arithmetic variance swap (which, in effect, takes n = 2). Expressed in terms of put and call holdings, the replicating portfolios in these three cases hold, at each strike K, a quantity proportional to Kⁿ⁻². The gamma swap O(1/K) is intermediate between logarithmic variance O(1/K²) and arithmetic variance O(1).
- 5. Let F_{X_t} be the characteristic function of $X_t := \log Y_t$. Then

$$\mathbb{E}Y_t \log Y_t = -iF'_{X_t}(-i).$$

Gamma swap valuations are therefore directly computable in continuous models for which F_{X_t} is known, such as the Heston model.

References

- [1] Peter Carr and Roger Lee. Put-call symmetry: Extensions and applications. *Mathematical Finance*. Forthcoming.
- [2] Nicolas Mougeot. Variance swaps and beyond. BNP Paribas, 2005.
- [3] Marcus Overhaus, Ana Bermúdez, Hans Buehler, Andrew Ferraris, Christopher Jordinson, and Aziz Lamnouar. *Equity Hybrid Derivatives*. John Wiley & Sons, 2007.